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Résumé. — Nous démontrons que l’adhérence de l’orbite du Eierelegende Wollmilchsau est
la seule adhérence d’orbite de SL2(R) en genre trois avec un exposant de Lyapunov nul dans son
spectre de Kontsevich-Zorich. Ce résultat étend des résultats partiels de Bainbridge–Habegger–
Möller et du premier auteur. La contribution principale de notre article est l’identification
des différentielles dans le fibré de Hodge correspondant au sous-espace de Forni en termes
de dégénérescences de la surface. Nous utilisons cette description des différentielles dans le
sous-espace de Forni afin de les évaluer sur les courbes d’homologie absolue et appliquons le
“jump problem”, dû à Hu et au troisième auteur, aux différentielles près du bord de l’adhérence
de l’orbite. Ceci implique un critère géométrique simple qui exclut l’existence d’un sous-espace
de Forni.

1. Introduction

The Lyapunov exponents of the Kontsevich–Zorich cocycle provide detailed infor-
mation about the straight-line flow on a translation surface, including those arising
from rational billiards [Zor06]. They have also played an important role in under-
standing the dynamics in the moduli spaces of these surfaces [EM18]. While generic
surfaces, i.e., those with dense orbit in strata of Abelian differentials, have a simple
Kontsevich–Zorich spectrum [AV07, For02, For06] discovered a genus three trans-
lation surface, now known as the Eierlegende Wollmilchsau [HS08] (Figure 1.1),
with maximally many Lyapunov exponents equal to zero in its spectrum. Surfaces
with maximally many Lyapunov exponents equal to zero proved to be extremely
exceptional [AN20, Aul15b, Aul18, Möl11]; only two closed orbits in any genus have
maximally many Lyapunov exponents equal to zero. On the other hand, in genus four,
for example, there are infinitely many orbits with one or more Lyapunov exponents
equal to zero, or zero Lyapunov exponents for short.

In genus two, the second Lyapunov exponent is either 1/2 or 1/3 depending only
on the stratum in which the translation surface lies [Bai07, Theorem 15.1]. However,
in genus three, individual Lyapunov exponents can vary depending on the orbit
closure. If a genus three translation surface has a Lyapunov exponent equal to zero,
then by combining the results of [Aul15a] and [BHM16, Proposition 4.5], it must
generate a Teichmüller curve in the principal stratum, H(1, 1, 1, 1). However, other
than a finiteness statement using equidistribution of orbit closures following [EMM15]
combined with the result of the first named author [Aul15a], little could be said
about Teichmüller curves with a zero Lyapunov exponent in the principal stratum.
We prove

Theorem 1.1. — Let M be an orbit closure in genus three with at least one zero
Lyapunov exponent in its Kontsevich–Zorich spectrum. Then M is the Teichmüller
curve generated by the Eierlegende Wollmilchsau.

This theorem resolves a question posed by the first named author in [Aul15a]. It
was proven that there are no Teichmüller curves with a zero Lyapunov exponent
outside of the principal stratum in genus three by [BHM16, Proposition 4.5]. Using
this result, [Aul15a] proved that every orbit closure in genus three with a zero
Lyapunov exponent must be a Teichmüller curve in the principal stratum, and that
there are at most finitely many. For the case of two zero Lyapunov exponents in
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Figure 1.1. The square-tiled surface known as the Eierlegende Wollmilchsau.

genus three, the maximum possible, the classification of all possible orbit closures
was carried out in the work of [Aul15b, Aul18, Möl11].

In light of these results, it suffices to prove Theorem 1.1 by focusing on Teich-
müller curves in the principal stratum. However, the techniques developed here are
sufficiently powerful that they apply to all orbit closures and all strata in genus
three. When it is convenient to do so, we assume for some technical results that a
translation surface lies on a Teichmüller curve or in the principal stratum. In Ap-
pendix A, we explain how to generalize the classification to arbitrary orbit closures
in any stratum in genus three.

We begin by recalling [Aul15a, Proposition 1.1], which uses the results of [Fil17]
to prove that zero exponents in genus three must arise from a Forni subspace.
There are two key ingredients that facilitate the results of this paper. First, in
Section 4, we consider differentials in the Hodge bundle whose real parts lie in
the Forni subspace. In [AEM17] the Forni subspace was defined, and its existence
was established. Given the well-known relations between real and complex absolute
homology and cohomology as well as the Hodge bundle, [AEM17] pass freely between
these spaces. However, we disambiguate these spaces here to highlight the nuances
of how each space interacts with other complementary subspaces, which embody the
contributions of [Aul15a, AN20] and the present work. The key insight of [Aul15a]
was to consider differentials in the Forni subspace and evaluate them on curves in
absolute homology. The result was stated in genus three and we include an easy
generalization in Proposition 4.4 for future reference. In [AN20], the jump problem
was applied to study the differentials in the Hodge bundle of Shimura-Teichmüller
curves that were not in the span of the flat differential determining the translation
surface. In this case, since the derivative of the period matrix along the Teichmüller
flow on the Teichmüller curve is known to be a symmetric rank one matrix, finding
any non-zero term outside of the known non-zero term would produce a contradiction.
This was the key ingredient in the proof of the classification in [AN20]. In the present
work, we begin by considering the differentials in the Forni subspace. By moving
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close to the boundary of moduli space where the surface degenerates, we are able to
explicitly identify the differentials in the Forni subspace. We then deduce how these
differentials in this space interact with curves on our given translation surface, and a
general statement is given in Proposition 4.5. Finally, in Proposition 4.6, we deduce
a property that is used to exclude most cases in this work.

The second key ingredient is the use of the solution to the jump problem [HN20]
that played a key role in [AN20]. From [Aul15a], there are six cases to consider.
Case 3 can be excluded entirely by solving the jump problem for the nodal surface
in that case. In Case 6, the jump problem is used to prove that the two cylinders
are homologous and then flat techniques from [AN20, § 5] prove that the only
possible translation surface satisfying the necessary conditions is the Eierlegende
Wollmilchsau. We remark that unlike [AN20, § 5], no computer assistance is necessary
for the proof presented here.

After setting terminology and notation in Section 2 and recalling the solution to
the jump problem from [HN20] in Section 3, we introduce the holomorphic Forni
subspace in Section 4. We proceed in Section 4 to recall the main technical lemma
of [Aul15a] and to generalize its consequences. We then develop general results about
the holomorphic Forni subspace and connect it to flat geometry and the degenerations
of Riemann surfaces. In Section 5, we state and prove the main theorem using the
technical results in the following sections. We also recall the six cases from [Aul15a]
that describe all possible cusps of a Teichmüller curve with a zero Lyapunov exponent.
Sections 6 through 8 are dedicated to addressing each case and either excluding it
or in Case 6, proving that the surface is in the SL2(R)-orbit of the Eierlegende
Wollmilchsau. Finally, in Appendix A, we explain how to generalize the result from
Teichmüller curves in the principal stratum to general orbit closures in genus three.
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2. Preliminaries
The purpose of this section is to set notation for the work. For a more detailed

introduction, we reference the reader to [AN20, § 2]. For background on flat surfaces
and Lyapunov exponents, we refer the reader to [FM14, Zor06]. For background on
the jump problem and plumbing differentials, see [Fay73, HN20, Yam80].

2.1. Flat Geometry

A translation surface (X, ω) is a pair consisting of a Riemann surface X carrying
an Abelian differential ω. If X has genus g ⩾ 2, then there will be cone points with
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angles that are a multiples of 2π corresponding to the zeros of ω. Since the holonomy
lies in 2πZ, given a tangent vector at a point, there is a straight-line trajectory
emanating from that point. If the trajectory is closed and does not pass through a
cone point, i.e., it is regular, then there is a set of parallel trajectories homotopic to
it that determine a cylinder. The boundaries of the cylinder necessarily consist of
closed trajectories beginning and terminating at cone points. The height of a cylinder
will always refer to the distance between its boundaries. A saddle connection is a
straight-line trajectory that begins and ends at not necessarily distinct cone points.

A direction on a translation surface is periodic if every trajectory in that direction
is closed. This implies that there is a decomposition of the surface into cylinders in
that direction. The data consisting of the cylinders with their saddle connections
and identifications between the saddle connections, but forgetting the metric data
of the cylinders and saddle connections, is called a cylinder diagram.

In [Aul15a], a depiction of a translation surface was introduced that was well-
suited to the arguments in that work. Indeed, the convention will be useful here as
well. Typically, cylinders on a translation surfaces are drawn as parallelograms with
singularities at their vertices. We choose instead to depict the cylinders as rectangles
that do not necessarily have singularities at their corners. In order to emphasize that
a single saddle connection σ is broken by the rectangle, the left-hand portion of the
saddle connection, which occurs on the right-side of the rectangle will be written σ,
and the right-hand portion of the saddle connection, which occurs on the left-hand
side of the rectangle will be denoted by σ′. See Figure 2.1.

σ

1

σ 1

σ’ σ

1

σ 1

Figure 2.1. Two translation surfaces representing the same point in moduli space.

2.2. Strata

For each genus, the bundle of Abelian differentials over the moduli space of genus
g Riemann surfaces can be stratified by the orders of the zeros of the differentials
in the space. The total order of the zeros counted with multiplicity is 2g − 2. Let κ
be a partition of 2g − 2. Then H(κ) denotes the moduli space of Riemann surfaces
carrying Abelian differentials with zeros of order specified by κ. We will use the
shorthand H(14) to mean H(1, 1, 1, 1) throughout.

These strata are not necessarily connected, but their connected components have
been classified [KZ03]. We note that the stratum H(14) is connected.
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2.3. Dynamics

Strata admit a natural action by GL2(R). A particularly important subgroup of
GL2(R) is given by the diagonal matrices, which form a 1-parameter family known
as the Teichmüller geodesic flow, or Teichmüller flow. In this manuscript, we will be
concerned with a geodesic diverging to the boundary. Define a family of matrices

gt =
(

1 0
0 et

)
.

Given a horizontally periodic translation surface (X, ω), the Teichmüller geodesic
determined by (X, ω) is the family given by gt · (X, ω) for all t ⩾ 0.

For any translation surface we can consider the group of derivatives of affine
diffeomorphisms of the surface, which naturally lie in GL2(R). If this group forms
a lattice subgroup, then the translation surface is called a lattice surface or Veech
surface. Smillie proved that the GL2(R)-orbit of a translation surface is closed if and
only if the translation surface is a Veech surface. Such a closed orbit is known as a
Teichmüller curve. A translation surface is called completely periodic if the existence
of a closed regular trajectory implies that every parallel trajectory is closed. An
important theorem of Veech is that Veech surfaces are completely periodic [Vee89].

Every GL2(R)-orbit closure, after restricting to the locus of unit area translation
surfaces, admits a finite SL2(R)-invariant measure by [EM18] and the Teichmüller
geodesic flow is ergodic with respect to that measure [Mas82, Vee82]. By [EMM15,
Fil16], every GL2(R)-orbit closure is a quasi-projective subvariety of moduli space
called an invariant subvariety. Consider the real absolute cohomology bundle H1

over the moduli space with the Gauss–Manin connection. The Kontsevich–Zorich
cocycle (KZ-cocycle for short) is a symplectic (orbifold) cocycle on this space that is
induced by the action of the Teichmüller flow. By the Oseledets multiplicative ergodic
theorem, there is a well-defined set of Lyapunov exponents associated to almost every
element in the moduli space. These can be computed by considering the monodromy
matrices At given by taking longer and longer return times of the Teichmüller flow to
a small neighborhood of (X, ω) and computing the eigenvalues of AtA

⊺
t , computing

their logarithms, normalizing by t and letting t tend to infinity. Normalizing the top
Lyapunov exponent yields a symmetric set of Lyapunov exponents known as the
Kontsevich–Zorich spectrum

1 = λ1 > λ2 ⩾ · · · ⩾ λg ⩾ −λg ⩾ · · · ⩾ −λ2 > −λ1 = −1.

Due to the symmetry, we always restrict to the top g Lyapunov exponents. For a
more detailed explanation of this setup and connections to flat geometry, see [Zor06].

It is also possible to consider the Zariski closure of the monodromy of the KZ-
cocycle. By [Fil17], the resulting group completely determines the exact number of
zero Lyapunov exponents in the KZ-spectrum. By [Aul15a, Proposition 1.1], the
only mechanism for producing zero Lyapunov exponents in genus three is known as
a Forni subspace [AEM17]. The Forni subspace is the maximal subspace of absolute
(real) cohomology on which the monodromy of the KZ-cocycle restricted to this
subspace is contained in a compact group.
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2.4. Degenerate Surfaces

Given a horizontally periodic translation surface, gt as defined above can be applied
to it to increase the modulus of every cylinder. In this way, the modulus tends to
infinity with t and the core curve of every cylinder is pinched in the limit. This
results in a nodal surface in the Deligne–Mumford compactification such that the
stable differential over the nodal surface has a pair of simple poles with opposite
residues at each node.

There is a natural graph known as the dual graph, or stable graph in the literature,
associated to such a stable curve. After removing the nodes, each connected compo-
nent is denoted by a vertex, and each edge corresponds to a node. An edge can be
incident with a single vertex. Finally, each vertex is labeled with the genus of the
connected component of the surface that it represents.

3. Asymptotics of Period Matrices

3.1. Cylinder Pinching

Let (X, ω) be a horizontally periodic translation surface. We call (X ′, ω′) the
cylinder pinch of (X, ω) along the family

{gt · (X, ω) = (Xt, ωt) | t ⩾ 0}
if (X ′, ω′) is the limit nodal surface in the Deligne-Mumford compactification given
by letting t go to infinity. We drop the family from the definition when it is not
needed for the discussion at hand. In particular, the nodal Riemann surface (X ′, ω′)
is obtained by pinching the core curves of all horizontal cylinders. Thus, given a
simple closed curve in X ′, not crossing through any nodes, we can consider it as a
path in (Xt, ωt) = gt · (X, ω).

For the rest of the section g′ denotes the geometric genus of X ′, i.e., the sum of
the genera of all irreducible components. It will be convenient to use a homology
basis that is adapted to the cylinder pinch.

Definition 3.1. — Let X ′ be a cylinder pinch of (X, ω) along a family (Xt, ωt)
of geometric genus g′. Let Xv be the irreducible component of X ′ associated to the
vertex v in the dual graph of X ′. We say that a homology class [α] ∈ H1(Xt;Z) is
supported on an irreducible component Xv of X ′ if it can be represented by a sum
of simple closed curves, which are all contained in Xv.

We say that a symplectic homology basis
B = {α1, β1, . . . , αg′ , βg′ , . . . , αg, βg}

of Xt is adapted to a cylinder pinch X ′ if the following conditions are satisfied.
(1) The set {αg′+1, . . . , αg} is a collection of cycles on Xt represented by core

curves of horizontal cylinders on X.(1)

(1) If there are linear relations among the core curves in homology, then a linearly independent
subset of them would be taken.
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(2) For 1 ⩽ i ⩽ g′, the classes αi, βi are supported on some irreducible component
of X ′ of positive genus.

(3) Furthermore, the collection of cycles αi, βi, i ⩽ g′, which are supported on
the irreducible component Xv, form a symplectic homology basis for Xv.

Remark 3.2. — We observe that such a basis can always be constructed by taking
a symplectic basis on each component Xv, which will satisfy Conditions (2) and (3).
Then a collection of core curves of cylinders can be chosen to satisfy Condition (1),
which will be linearly independent of the curves on each Xv, and they will not
intersect the curves on Xv because the core curves of the cylinders are homotopic to
the nodes of X ′ when t tends to infinity. Finally, we can take any completion of this
basis to a symplectic basis by choosing any collection of βi that work.

In general, one can only choose a homology basis locally in a neighborhood of a
translation surface in moduli space. Here we can choose it along the whole Teichmüller
geodesic. In fact, it is constant in a trivialization of the bundle of relative homology.

Given the same setup as above, we let A be the Lagrangian subspace spanned by
{α1, . . . , αg} on X and B the complementary subspace spanned by {β1, . . . , βg}.
We refer to elements of A and B as A-cycles and B-cycles, respectively.

3.2. Asymptotics of A-Normalized Differentials

Recall that given a symplectic basis {αi, βj} of absolute homology on a Riemann
surface, a basis of Abelian differentials {Θ1, . . . , Θg} is A-normalized if it satisfies∫

αj
Θi(t) = δij, where δij is the Kronecker delta. Given a cylinder pinch (X ′, ω′) of

(X, ω) along a family (Xt, ωt), choose a symplectic basis B adapted to the degenera-
tion. Let {Θ1(t), . . . , Θg(t)} be an A-normalized basis on Xt.

Now we define an A-normalized basis on X ′ as follows. This definition will depend
on the choice of adapted homology basis. For each irreducible component Xv of
positive genus of X ′, choose a basis of holomorphic differentials on Xv normalized
against the restriction of {α1, . . . , αg′} to Xv. For each vanishing cycle αi, for i > g′,
we choose the unique differential having residues ±1 at the nodes crossed by βi with
a positive residue at the preimage of the node that is reached first by βi relative
to the orientation of βi. We call the resulting basis {Θ1, . . . , Θg} an A-normalized
basis for X ′.

Suppose a B-cycle is represented by a simple closed loop βi. Then Θi is supported
exactly on the irreducible components of X ′ where βi is supported. Note that Θi has
poles exactly at the nodes crossed by the B-cycle βi. In particular, Θi is holomorphic
if and only if i ⩽ g′.

Our goal in this section is to analyze the B-periods
∫

βj
Θi(t). We need to introduce

some notation before we can state the results. Recall that the nodes of the cylinder
pinchX ′ are in correspondence with the horizontal cylinders of X. Denote by Ce

the cylinder corresponding to the node e, and let αe be the core curve of Ce, which
is a vanishing cycle. We now make the assumption that the horizontal cylinders
of (X, ω) have pairwise commensurable moduli, i.e., for every edge e there exists
positive natural numbers re ∈ N such that
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(3.1) m(Ce)
m(Ce′) = re

re′
for e, e′ ∈ E(Γ), gcd

e ∈ E(Γ)
(re) = 1,

where E(Γ) is the edge set of Γ. We recall that the assumption that horizontal
cylinders have pairwise commensurable moduli always holds for Teichmüller curves.
In Appendix A, we will apply this to surfaces that do not necessarily have pairwise
commensurable moduli by deforming them so that they do. Such deformations always
exist by the work of [Wri15].

The following observation is crucial for us to convert information about the period
matrix along the geodesic flow into flat geometric information.

Lemma 3.3. — Suppose re = re′ , then the corresponding cylinders Ce and Ce′

have the same modulus. Furthermore, if the vanishing cycles corresponding to e
and e′ are homologous, then Ce and Ce′ have the same circumference and the same
height.

Proof. — The first claim follows from the definition of re. The second claim follows
because the vanishing cycles of e and e′ are the core curves of Ce and Ce′ , respectively.
Since the period of a curve depends only on its homology class and not on a particular
element in the class, the periods of the core curves of Ce and Ce′ are equal, which
implies that their circumferences are, too. The heights are equal because the moduli
and circumferences are equal. □

To analyze the behavior of periods near the nodal surface it is convenient to
introduce a new coordinate

s(t) := e
−2π

m(Ce)
re

t
,

which is independent of e, see also [AN20, Lemma 2.1]. Note that in particular
limt→∞ s = 0. In the sequel we are often interested in the behavior of the periods as
t tends to infinity, in which case it becomes more convenient to express everything
in terms of the coordinate s. Depending on the circumstances we will write Θ(s)
instead of Θ(t(s)).

3.3. The Solution to the Jump Problem for an Adapted Basis

We now prepare to apply the solution to the jump problem as developed in [HN20]
to compute the periods of the A-normalized basis Θ1, . . . , Θg along the family Xt.
It will be necessary to realize each surface Xt as obtained by plumbing a nodal
Riemann surface Yt, i.e., removing small discs around the nodes of Yt and gluing the
resulting boundary components. The plumbing construction depends on a choice of
local coordinates and different choices of coordinates lead to different nodal Riemann
surfaces Yt. For example, one can use the local coordinates introduced in [AN20,
Lemma 2.1], in which case Yt = X ′ for all t. In Case 3 below, it will be necessary to
use a different coordinate system and then Yt will change with t.

It is known classically that a whole neighborhood of a boundary point in the
Deligne-Mumford compactification of the moduli space of Riemann surfaces can be
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obtained by plumbing. Let (X ′, ω′) be a cylinder pinch of (X, ω) along the family
(Xt, ωt). We use plumbing to describe the family Xt. Every node e of X ′ has two
preimages q±

e contained in an irreducible component Xv(e±). We choose a local
coordinate chart z±

e at the preimage of every node. Then there exists a family Yt

of nodal Riemann surfaces with Y∞ = X ′ such that the surface Xt is obtained by
removing discs {|z±

e | <
√

|se|} from Yt and identifying the boundaries {|z±
e | =

√
|se|}

via the gluing map z+
e = se

z−
e

, where se = se(s) is a real-analytic function of s. Here
we considered z±

e as coordinates in Yt using local trivializations. We write
(3.2) se(s) = sneae (1 + fe(s)) ,

where ae ̸= 0, ne is a positive integer, and fe(s) = O(s) is real-analytic.
Although the periods of interest are independent of the choice of local coordinates

used in the plumbing construction, our computation for these periods will be ex-
pressed as a series expansion whose terms depend on the local coordinates. Therefore
it will be crucial for us to choose a useful coordinate system to make the computation
feasible.

Let γ = (e1, . . . , ek) be a path in the dual graph Γ of X ′. We always consider the
edges in a path to be oriented. Denote the weighted length of γ by

l(γ) =
k∑

i=1
nei

.

Given two A-normalized differentials Θi and Θj on Xt, we define the jump problem
distance dΓ(Θi, Θj) between Θi and Θj in the dual graph Γ to be

dΓ(Θi, Θj) := min {l(γ) | γ ∈ L(i, j)} ,

where L(i, j) is the space of all (oriented) paths in Γ connecting some irreducible
component where Θi is supported to an irreducible component where Θj is supported.

Proposition 3.4. — Let (X ′, ω′) be a cylinder pinch of a Teichmüller curve and
{Θ1, . . . , Θg} a basis of A-normalized differentials on X ′. The periods

∫
βj Θi(s) of

B-cycles are analytic functions of s and∫
βj

Θi(s) :=
∑

e ∈ E(Γ)
⟨αe, βi⟩⟨αe, βj⟩ ln(se) + constant + O

(
sl
)

,

where l := dΓ(Θi, Θj) is the jump problem distancebetween Θi and Θj, and αe is the
vanishing cycle corresponding to the node e.

Here ⟨αe, βj⟩ denotes the algebraic intersection number, computed on some sur-
face Xt. Furthermore, if Θi is holomorphic at every node crossed by βj, then the
logarithmic term vanishes and

lim
s → 0

∫
βj

Θi(s) =
∫

βj

Θi.

Proof. — The result follows directly from the solution to the jump problem as
developed in [HN20, Theorem 4.2 + Corollary 4.6]. We explain how to adapt the
results in (loc. cit.) to our notation. The solution to the jump problem as defined in
(loc. cit.) is a family of differentials {Θ′

1(s), . . . , Θ′
g(s)} on Xt constructed from the

basis of differentials Θ1, . . . , Θg on X ′. Note that in (loc. cit.) the solution to the
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jump problem is a differential form defined on a Riemann surface with boundary
X̂t such that Xt is obtained by gluing the boundary components via z 7→ se/z.
Since the solution to the jump problem agrees under the gluing, it descends to a
holomorphic differential form on Xt. The choice of normalization for the Cauchy
kernel used in [HN20], together with the fact that the residues of Θi at nodes are
equal with opposite sign, implies that that solution to the jump problem yields
a basis of holomorphic differentials normalized against a basis B adapted to the
cylinder pinch.

In particular, the solution to the jump problem for Θ1, . . . , Θg on Xt agrees
with Θ1(s), . . . , Θg(s), i.e., Θ′

i(s) = Θi(s) for i = 1, . . . , g. We can thus apply the
variational formulas [HN20, Theorem 4.2 + Corollary 4.6] to compute the periods∫

βj
Θi(s).

In [HN20, Corollary 4.6], the logarithmic term of
∫

βj
Θi(s) is computed to be∑

e ∈ E(Γ)
⟨αe, βi⟩⟨αe, βj⟩ ln(se).

Note that ⟨αe, βi⟩⟨αe, βj⟩ is non-zero only if both βi and βj cross the node e, in which
case Θi has a simple pole at e. It then follows that the logarithmic term vanishes if
Θi has no poles at the nodes crossed by βj. In that case, the constant term in [HN20,
Formula (4.11)] simplifies, and we conclude that the constant term of

∫
βj

Θi(s) is
equal to

∫
βj

Θi.
It remains to show that the remaining terms of the s-expansion of

∫
βj

Θi(s) are of
order O(sl), where l is the jump problem distance of Θi and Θj. For this we recall
that in [HN20] the differential Θi(s) is written as Θi +∑∞

k=1 η(k)(s), where Θi is the
differential on X ′, which is independent of s, and η(k)(s) are explicitly constructed
holomorphic differentials [HN20]. For our purposes, it suffices to know that by [HN20,
Proposition 3.4]

(3.3)
∫

βj

η(k)(s) =
∑

γ ∈ Lk(i,j)

(
Cγ(i, j)sl(γ) + O

(
sl(γ)+1

))
,

where Lk(i, j) is the set of oriented paths in Γ consisting of k edges with starting
point at some irreducible component supporting Θi and endpoint some irreducible
component supporting βj and Cγ(i, j) is a constant. (Note that for some k, Lk(i, j)
may be the empty set.) By considering the lowest order term in Eq. (3.3), we conclude
that

∫
βj

∑∞
k=1 η(k)(s) = O(sl), where l is the jump problem distancefrom Θi to Θj. □

More precise formulas for the s-expansion of periods were derived in [HN20], which
in principle facilitate the computation of periods to arbitrary precision. In the general
formula, even the lowest order non-constant term involves multiple contributions. We
will only need an expression for the constant Cγ(i, j) in the case of paths consisting
of one or two edges.

Lemma 3.5. — Suppose γ = (e) is a path consisting of a single oriented edge with
starting point in the irreducible component Xv(e+) and endpoint in the component
Xv(e−). Then

TOME 7 (2024)



218 D. AULICINO, F. BENIRSCHKE & C. NORTON

Cγ(i, j) = −ae hol
(
Θi

(
q+

e

))
hol

(
Θj

(
q−

e

))
,

where hol(Θi(q+
e )) denotes the evaluation of the holomorphic part of Θi in the local

coordinate charts ze,(2) and ae was defined in Eq. (3.2).
If γ = (e1, e2) with e1 ̸= −e2, then

Cγ(i, j) = ae1ae2 hol
(
Θi

(
q+

e1

))
hol

(
Θj

(
q−

e2

))
ωv(e−

1 )
(
q−

e1 , q+
e2

)
,

where ωv(e−
1 ) is the A-normalized bidifferential on the component Xv(e−

1 ) = Xv(e+
2 ).

We refer to [HN20] for a precise definition of the bidifferential. For us it will be
enough to know that this expression ωv(e−

1 ) is a meromorphic differential on Xt × Xt

and that the expression ωv(e−
1 )(q−

e1 , q+
e2) is the evaluation of ω at the points q−

e1 and
q+

e2 in the chosen coordinates ze.
Proof. — This follows from [HN20, Proposition 3.4] in the special case of a path

of length one and two. □
We will only use the above lemma in the case where Θi and Θj are holomorphic

at the nodes in question.

3.4. Dependence on Local Coordinates

In order to obtain more precise information, we will have to choose the local
coordinates ze near the nodes carefully. Two specific choices will be most important
for us.

We will use the following coordinates in our analysis of Case 6 (Section 8.1).
In [AN20, Lemma 2.1], local coordinates ze are constructed such that se = sre and
such that the family Yt given above is constant and equal to X ′. In other words, the
moduli of the nodal Riemann surfaces used in the plumbing construction remain
fixed in the family. Recall that re was defined in Eq. (3.1) and is related to the
modulus of the cylinder Ce. The stable differential ω′ locally near the nodes is of the
form we

dze

ze
, where we is the circumference of the cylinder Ce. Notice that in (loc. cit.)

vertical cylinders are used instead of horizontal cylinders. This changes the formula
for ze in [AN20, Lemma 2.1], but not the formula for se.

In Case 3, it will be more convenient to use a different coordinate system. The stable
curve in this case is of geometric genus one. On each genus zero component, we use
the standard coordinate z and let ze := z−qe be the coordinate centered at qe, and on
the elliptic component, we use any choice of local coordinates centered at the nodes.
Consequentially, we have no flat geometric interpretation of the powers ne in the
expansion se(s) = sneae(1+fe(s)) anymore. The advantage of this coordinate system
is that we know the Cauchy kernel and the bidifferential on P1 are KP1(z, w) = 1

z−w
dz

and ωP1 = − 1
(z−w)2 dzdw, respectively. In particular, neither the Cauchy kernel nor

the bidifferential have a holomorphic part at the origin. As a consequence, we obtain
the following observation.
(2) See the discussion titled “Notation Convention” about evaluating a differential at a point
in [AN20, § 4.4].
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Lemma 3.6. — Consider the oriented path γ = (e, −e) for some oriented edge e
that ends in a genus zero component. Then γ does not contribute to

∫
βj

Θi(s).
In other words γ is a path passing through a node onto a component of genus zero

and immediately returns back through the same node.
Proof. — It follows from [HN20, Formula (3.11)] that a path of the form γ = (e, −e)

does not contribute to the solution to the jump problem if the holomorphic part of
the Cauchy kernel is zero at the preimage of the node in the genus zero component.
Since the Cauchy kernel on P1 is KP1(z, w) = 1

z−w
dz, the holomorphic part of the

Cauchy kernel is zero and the claim follows. □

4. Flat Geometry and the Forni Subspace

4.1. Forni B-Matrix

Let x = (X, ω) be a point in a stratum. For differentials α, β ∈ H1,0(X), the Forni
B-form is the bilinear form defined by

Bx(α, β) :=
∫

X
αβ

ω

ω
.

We also need the real version. Let η ∈ H1(X,R). There exists a unique holomorphic
form h(η) ∈ H1,0(X) with [Re h(η)] = η and the real BR-form is defined by

BR
x (η, η′) = Bx(h(η), h(η′))

for all η, η′ ∈ H1(X,R).

4.2. The Holomorphic Forni Subspace

Let ν be an ergodic SL2(R)-invariant measure on an invariant subvariety. The Forni
subbundle F is the maximal ν-measurable SL2(R)-invariant isometric subbundle of
the (real) Hodge bundle. Its fiber at a point x = (X, ω) is the Forni subspace

F (x) :=
⋂

g ∈ SL2(R)
g−1 Ann BR

gx ⊆ H1(X,R).

Here the annihilator of a bilinear form is
Ann BR

x :=
{
η ∈ H1(X,R)

∣∣∣BR(η, η′) = 0 for all η′ ∈ H1(X,R)
}

.

Definition 4.1. — Define the holomorphic Forni subspace to be
F 1,0(x) :=

{
ω ∈ H1,0(X)

∣∣∣ [Re ω] ∈ F (x)
}

.

By [AEM17, Theorem 2.4] and [FMZ14, Lemma 3.4], F (x) is Hodge star invariant.
Thus,

F (x) ⊗R C = F 1,0(x) ⊕ F 1,0(x) ⊆ H1(X,C).
Hence, the holomorphic Forni subspaces are fibers of a subbundle of the Hodge
bundle. Since the Forni subspace F (x) is contained in AnnR

x , it follows that
(4.1) F 1,0(x) ⊆ Ann Bx.
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Remark 4.2. — The Forni B-form measures the variation of the period ma-
trix along the Teichmüller flow, see [FMZ14, Lemma 2.2]. In particular, if the
Forni subspace of an orbit closure is non-trivial, in some choice of basis, the Forni
B-matrix has a zero row. Hence, the determinant of the derivative of the period
matrix along the geodesic flow is constant.

4.3. The Criterion from [Aul15a]

The following lemma [Aul15a, Lemma 4.4] was proven for the real Forni subspace
and can be easily adapted to the holomorphic Forni subspace.

Lemma 4.3. — Let (X, ω) be a translation surface with orbit closure M. Let C
be a cylinder on (X, ω) with core curve γ. If M has nontrivial Forni subspace, then
for all η ∈ F (X, ω), we have

∫
γ η = 0, and for all Θ ∈ F 1,0(X, ω), we have

∫
γ Θ = 0.

Proof. — The statement for the real Forni subspace is exactly [Aul15a, Lemma 4.4].
Since the Forni subspace F (x) is Hodge star invariant, we have [Re Θ], [Im Θ] ∈

F (x) and thus
∫

γ Θ =
∫

γ Re Θ + i
∫

γ Im Θ = 0, by [Aul15a, Lemma 4.4]. □
The following proposition will not be used in this manuscript. Nevertheless, we

include it here because it generalizes [Aul15a, Corollary 4.5]. We believe that the
result here will be valuable in the study of Forni subspaces.

Proposition 4.4. — Let (X, ω) be a genus g translation surface with orbit
closure M. Let X admit an absolute homology basis B = {a1, . . . , ag, b1, . . . , bg}.
Assume that for all r, {a1, . . . , ar, b1, . . . , br} spans a 2r-dimensional symplectic
subspace of H1(X,R), but we do not assume that for any r, either {a1, . . . , ar} or
{b1, . . . , br} span an isotropic subspace of H1(X,R). Let

• B′ = {a1, . . . , as, b1, . . . , bs, bs+1, . . . br}, where s < r and {bs+1, . . . , br}
spans an isotropic subspace of H1(X,R), or

• B′ = {b1, . . . , br}, spans an isotropic subspace of H1(X,R).
If for each γ ∈ B′, there exists Mγ ∈ M such that γ is the core curve of a cylinder
on Mγ, then the Forni subspace of M has dimension at most 2(g − r).

Proof. — The Forni subspace is a symplectic subspace of H1(X,R) by [AEM17].
Furthermore, there is a decomposition of the bundle H1(X,R) into the Forni bundle
and its symplectic complement, which coincides with its Hodge complement. In both
cases for B′ above, the smallest symplectic subspace containing B′ has dimension at
least 2r. Since every element of F (X, ω) evaluates to zero on B′ by Lemma 4.3, and
F (X, ω) is symplectic, dim F (X, ω) ⩽ 2g − 2r. □

4.4. The Forni and Hodge Bundles

We now use the setup from Section 3.1. Let (X ′, ω′) be the cylinder pinch of (X, ω)
along the family (Xt, ωt), and let B be a symplectic basis adapted to the cylinder
pinch (X ′, ω′) along the family (Xt, ωt). Let {Θ1(t), . . . , Θg(t)} be an A-normalized
basis of differentials with respect to B.
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Proposition 4.5. — Let (X, ω) be a horizontally periodic translation surface
and (X ′, ω′) be the cylinder pinch of (X, ω) along the family (Xt, ωt) with geometric
genus g′. Let

B = {α1, β1, . . . , αg′ , βg′ , αg′+1, βg′+1, . . . , αg, βg}
be a symplectic basis on Xt adapted to the cylinder pinchand {Θ1, . . . , Θg} an
A-normalized basis on X ′. Then

F 1,0(Xt, ωt) ⊆ ⟨Θ1(t), . . . , Θg′(t)⟩.

In particular, dim F 1,0(Xt, ωt) ⩽ g′. Furthermore, in the case of equality, dim F 1,0(Xt, ωt) =
g′, the following is true:

(1) F 1,0(Xt, ωt) = ⟨Θ1(t), . . . , Θg′(t)⟩.
(2) Let (Πij(t)) be the period matrix of Xt normalized against the basis B. Then

its derivative along the Teichmüller geodesic flow has the form

dΠ(t)
dt

=
(

0 0
0 A(t)

)
,

where A(t) is the derivative of the (g − g′) × (g − g′)-minor of the period
matrix on (Xt, ωt) restricted to {αg′+1, βg′+1, . . . , αg, βg}.

(3) Each differential, Θi for i ⩽ g′ is supported on exactly one irreducible com-
ponent of X ′.

Item (3) in this proposition was already noted above in Section 3.2, and we include
it in this proposition explicitly for future reference.

Proof. — Let {η1, . . . , ηd} be a basis of F 1,0(Xt, ωt), where d := dim F 1,0(Xt, ωt).
By Lemma 4.3, ηi evaluates to zero on core curves of cylinders of (Xt, ωt), which
implies that for all j > g′,

∫
αj

ηi = 0. By the definition of an A-normalized basis, this
implies that F 1,0(Xt, ωt) is contained in the span of {Θi|i ⩽ g′}. In the case d = g′,
we have equality.

We assume d = g′ for the remainder of the proof. By Eq. (4.1) the holomorphic
Forni subspace and therefore Θi, for all i ⩽ g′, annihilates the B-form. It now follows
from Rauch’s variational formula along the geodesic flow [FMZ14, Lemma 2.2] that
the derivative of the period matrix dΠ(t)

dt
of the normalized basis Θi satisfies

dΠ
dt

(t)
∣∣∣∣∣
ij

=
∫

Xt

Θi(t)Θj(t)
ω̄t

ωt

= 0

if i > g′ or j > g′. □

Proposition 4.6. — Let (X ′, ω′) be the cylinder pinch of a horizontally periodic
translation surface (X, ω) along the family (Xt, ωt) such that X ′ has geometric genus
one. Let β be a simple closed path on (X, ω) such that, after applying the cylinder
pinch, β is supported on the unique elliptic component of X ′ and that β restricts to
a path between two distinct nodes on the elliptic component. If there exists (Y, η) in
the SL2(R)-orbit closure of (X, ω) such that β is realized as a core curve of a cylinder
on (Y, η), then the orbit closure of (X, ω) has trivial Forni subspace.
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In [Aul18] the first author showed that there are only six possible cylinder diagrams
for a Teichmüller curve with zero Lyapunov exponents in genus three, which we split
as Cases 1 to 6. Proposition 4.6 will be used below to rule out Cases 1, 2 and 4 by
inspecting the cylinder diagram and finding a suitable homology class β.

Proof. — We assume by contradiction that the Forni subspace is positive dimen-
sional. Let

B = {α1, β1, . . . , αg′ , βg′ , αg′+1, βg′+1, . . . , αg, βg}
be a symplectic basis on Xt adapted to the cylinder pinchand {Θ1, . . . , Θg} an
A-normalized basis on X ′. In particular, by Proposition 4.5(3) Θ1 is a non-zero
holomorphic differential on X ′, which is only supported on the elliptic component E.
Since X ′ has geometric genus one, F 1,0(Xt, ωt) is a 1-dimensional complex space and
is spanned by Θ1(t), by Proposition 4.5(1). If β can be realized as the core curve of
a cylinder on (Xt0 , ωt0) for some t0, then

∫
β Θ(t) = 0 for all t by Lemma 4.3.

By Proposition 3.4, Θ1 is the limit of Θ1(t) as t tends to infinity. Together both
facts imply that

∫
β Θ1 = 0. We claim that this is impossible, which will yield a

contradiction. Since Θ1 is only supported on the elliptic component E, the only
contribution to the period comes from the restriction of β to E. By assumption,
β restricts to a path between two distinct nodes on E. However, the integral of a
non-zero holomorphic differential on an elliptic curve between two distinct points is
never zero, so the result follows. □

5. Proof of the Main Theorem

We begin by giving the proof of Theorem 5.1 using the technical results that will
be proved below. Some of the technical results in the following sections assume
that the translation surface either lies in a Teichmüller curve or in the principal
stratum. As mentioned in the introduction, in Appendix A, we explain how to
generalize these results to other orbit closures and strata in genus three, which yields
a self-contained proof of Theorem 1.1. Alternatively, Theorem 1.1 can be proven by
combining Theorem 5.1 with [BHM16, Proposition 4.5] and [Aul15a].

Since every orbit closure admits a horizontally periodic translation surface, it
suffices to analyze every possible horizontally periodic translation surface admissible
under the Forni Geometric Criterion [For11], and these are listed in Table 5.1 and
proven in [Aul15a, Lemma 4.1].

Theorem 5.1. — Let M be a Teichmüller curve in H(14) with at least one zero
Lyapunov exponent in its Kontsevich–Zorich spectrum. Then M is generated by the
Eierlegende Wollmilchsau.

Proof. — By [Aul15a, Proposition 1.1], a zero Lyapunov exponent for a genus
three translation surface can only arise from a non-trivial Forni subspace.

Since Teichmüller curves are generated by Veech surfaces, which are completely
periodic, we consider the dual graphs that are admissible on a Veech surface with a
zero Lyapunov exponent resulting from applying a cylinder pinch to a horizontally
periodic translation surface. The dual graphs were classified in [Aul15a, Lemma 4.1]:
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Case Dual Graph

1)
1

2)
0 1

3)
0 1

4) 0 0
1

5)
2

6)
1 1

Table 5.1. A complete list of dual graphs for surfaces that permit a zero Lyapunov
exponent in genus three.

if (X, ω) is a periodic surface in a Teichmüller curve in H(14) with zero Lyapunov
exponents, then the dual graph of a cylinder pinch of (X, ω) must have one of six
forms listed in Table 5.1.

Proposition 5.3 proves that the cylinder diagram of a Veech surface generating a
Teichmüller curve with a zero Lyapunov exponent must satisfy Case 6. Proposition 8.2
establishes that any such surface must be on the Teichmüller curve of the Eierlegende
Wollmilchsau. □

Table 5.1 is a modified version of [Aul15a, Table 1], where the second column
contains the dual graph of the degenerate surface. A key fact is that the edge of a
dual graph of a cylinder pinch (X ′, ω′) corresponds to a node, and ω′ has a pair of
poles at the node. Therefore, each edge will correspond to a cylinder on a surface
before a cylinder pinch is applied.

We will adopt the following convention. When we say that a translation surface
satisfies one of the cases, then it will be implicit that the surface is horizontally
periodic and satisfies that case.

Definition 5.2. — A cylinder is simple if each of its boundaries consists of a
single saddle connection.

In order to prove Theorem 5.1, we prove that no translation surface generating
a Teichmüller curve with a zero Lyapunov exponent can decompose into cylinders
satisfying any of Cases 1 through 5. The exclusion of each of these cases is the
subject of the following sections. In the Appendix A, we also treat the case of
invariant subvarieties in genus three that are not Teichmüller curves. Hence, we will
state the following result in a more general context.

TOME 7 (2024)



224 D. AULICINO, F. BENIRSCHKE & C. NORTON

Proposition 5.3. — Let (X, ω) ∈ H(14) be completely periodic with a non-
trivial Forni subspace. Then any decomposition of (X, ω) into cylinders satisfies
Case 6.

Proof. — By [Aul15a, Lemma 4.1], applying a cylinder pinch to a periodic transla-
tion surface with non-trivial Forni subspace results in a nodal surface with dual graph
listed in Table 5.1. By Propositions 6.1, 6.2, 7.1 and 6.3, no cylinder decomposition
of (X, ω) can satisfy Cases 1, 2, 3, or 4, respectively. It is easy to see that Case 5
always has a transverse direction with a simple cylinder (see [AN20, Lemma 4.1]).
Such a surface must decompose into cylinders by complete periodicity. Observe that
neither of the cylinders in Case 6 are simple, that Cases 1 through 4 are the only
cases where a cylinder can be simple, and none of them are possible if (X, ω) has
non-trivial Forni subspace. It follows that (X, ω) cannot decompose into cylinders
satisfying any of the Cases 1 through 5. □

6. Cases 1, 2 and 4

6.1. Case 1

Proposition 6.1. — If a genus three translation surface satisfies Case 1, then
its orbit closure has trivial Forni subspace.

Proof. — Let (X, ω) be a translation surface satisfying Case 1. Then (X, ω) de-
composes into two cylinders. By [Aul15a, Lemma 4.2], since the core curves of the
two cylinders are not homologous, there exists a saddle connection σ on both sides
of one of the cylinders. Thus, there are straight-line trajectories from σ to itself
determining a simple cylinder that only crosses one of the cylinders. Let β denote
the core curve of the simple cylinder.

Let (X ′, ω′) be the cylinder pinch of (X, ω). After removing the nodes, β is a path
between two distinct punctures on an elliptic curve. By Proposition 4.6, the orbit
closure of (X, ω) has trivial Forni subspace. □

6.2. Case 2

Proposition 6.2. — If a genus three translation surface satisfies Case 2, then
its orbit closure has trivial Forni subspace.

Proof. — Rotate to the horizontal direction for convenience of the figures. As
explained in description of Configuration 2 in [Aul15a, § 4.1], there is a unique way
of identifying three cylinders with parallel core curves so that there is a simple zero
between them, e.g., the 3-cylinder diagram in H(1, 1). This identification is depicted
between the bottoms of cylinders C2 and C3 and the top of cylinder C1 in Figure 6.1.
We claim that there always exists a closed trajectory transverse to the horizontal
direction that crosses C1 and C2 exactly once and determines a cylinder with core
curve β as depicted in Figure 6.1. We emphasize that we only use cutting and gluing
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C1

C2
C3

σ

σ

v

β

Figure 6.1. A depiction of a translation surface in Case 2 that shows the existence
of a cylinder with core curve β supported on an elliptic curve and a sphere after
pinching the core curves of every horizontal cylinder.

of the translation surface (which preserves the point in moduli space) and SL2(R)
(which preserves its orbit closure) to deform a given (X, ω) into the arrangement
depicted in Figure 6.1.

Draw C1 so that any saddle connection σ is located on its bottom as in the figure.
Without loss of generality, let C2 be the cylinder with σ on its top. Shear (X, ω)
by the horocycle flow so that the bottom left-hand corner of C2 is located at the
point v in the figure. Cut and glue the cylinder C2 so that it follows the convention
described in Figure 2.1. Given any regular point on σ on the bottom of C1, there
is a closed trajectory from that point to its copy on the top of C2. Indeed the fact
that σ is contained in the top of C2 implies that the circumference of C2 is greater
than or equal to the length of σ, so such a trajectory does exist. Let β denote this
trajectory. Its maximal homotopy class relative to the singularities of ω determine
the desired cylinder.

Let (X ′, ω′) be the cylinder pinch of (X, ω). After removing the nodes, β restricts
to a path between two distinct punctures on the elliptic curve. By Proposition 4.6,
the orbit closure of (X, ω) has trivial Forni subspace. □

6.3. Case 4

4 3 2 1

1 2 3 4

0
0

C1

C2
C3

C4 0 4 3 2 1

0

1 2 3 4

C1

C2

C3 C4

Figure 6.2. Cylinder Diagrams 4A (left) and 4B (right);

By [Aul15a, Lemma 4.10], there are two 4-cylinder diagrams satisfying Case 4,
which we call 4A and 4B following [Aul15a], and they are depicted in Figure 6.2. It
was proven in [Aul15a, Lemma 4.12] that Cylinder Diagram 4B is impossible in a rank
one invariant subvariety with a non-trivial Forni subspace. We use Proposition 4.6
to give a simpler proof that excludes Cylinder Diagram 4B.
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Proposition 6.3. — If a genus three translation surface (X, ω) ∈ H(14) satisfies
Case 4, then its orbit closure has trivial Forni subspace.

Proof. — By [Aul15a, Lemma 4.10], there are two 4-cylinder diagrams satisfying
Case 4, and they are depicted in Figure 6.2. We claim that regardless of whether
the translation surface satisfies Cylinder Diagram 4A or 4B, there exists a cylinder
C crossing each cylinder C1, C2, and C4 exactly once before closing. In Cylinder
Diagram 4A, this is the content of Proposition 6.4, proved in the next section.

For Cylinder Diagram 4B, cylinder C is the non-horizontal cylinder with core
curve β depicted in Figure 6.3. The existence of cylinder C can be seen as follows.
Consider cylinder C2 and cut and glue it so that saddle connection 0 lies on the
bottom of cylinder C2 exactly where it does. Then shear the surface with an element
of SL2(R) so that the bottom of cylinder C3 lies directly over saddle connection 0.
Consequentially, the bottom of cylinder C4 lies directly over the top of cylinder
C1. Cut and reglue cylinders C1 and C4 so that they are rectangles following the
convention of Figure 2.1. From Figure 6.2 we see that every saddle connection on
the top of C4 is contained in the bottom of C1. Therefore, there is a regular point on
the top of C4 that is identified to a point on the bottom of C1 and by considering
its homotopy class, it determines a cylinder C with core curve β as depicted in
Figure 6.3.

Let (X ′, ω′) be the cylinder pinch of (X, ω). After removing the nodes, β restricts
to a path between the two distinct punctures on the resulting elliptic curve. By
Proposition 4.6, the orbit closure of (X, ω) has trivial Forni subspace. □

C2

C1

C3
C4

0

σ

0

σ

β

Figure 6.3. A non-horizontal cylinder C in Cylinder Diagram 4B with core curve β.

To finish the proof of Proposition 6.3, it remains to treat the Cylinder Diagram 4A.

Proposition 6.4. — Let (X, ω) ∈ H(14) be a translation surface satisfying
Cylinder Diagram 4A. Then there exists a cylinder with core curve crossing C1, C2
and C4 exactly once.

Proof. — We transform a translation surface (X, ω) satisfying Cylinder Diagram 4A
as follows so that it is depicted as in Figure 6.4. Let C2 be the cylinder with the
larger circumference of the cylinders {C2, C3}. If C1 (and necessarily C4) have unit
circumference, then C2 necessarily has circumference s ⩾ 1

2 . Shear the surface so that
C2 is depicted as a rectangle with its singularities at its corners. Then the cylinders
C1 and C4 should be placed below and above C2, respectively, as rectangles. We do
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not assume that the top corners of C4 and the bottom corners of C1 are singularities
following the convention of Figure 2.1.

C2

C4

C1

3 2 1 0

0 1 2 3

C2

C4

C1

0’ 3 2 1 0

0’ 1 2 3 0

Figure 6.4. Finding cylinders as described in the proof of Proposition 6.4.

Identify the bottom of C1 and the top of C4 in Figure 6.4 with the interval [0, 1].
For this proof, we distinguish every point on the bottom of C1, and the top of C4,
even though some are identified, e.g., 0 and 1. Let f : [0, 1] → [0, 1] be the piecewise
isometry that is continuous on half-open intervals that are open on the right and
describes how the bottom of C1 is glued to the top of C4 such as in the examples
depicted in Figure 6.4.(3) Let µ denote the Lebesgue measure on R. Observe that
for any measurable set J , µ(J) = µ(f(J)).

Consider the interval J = [0, s] on the bottom of C1. If there exists an interval
(a, b) ⊂ J on the bottom of C1 such that its copy f((a, b)) lies in the interval [0, s]
on the top of C4, then the trajectories from (a, b) to itself form a cylinder as desired.

We claim that if s > 1
2 , then we are done. Since f preserves the Lebesgue measure,

we have µ(J) = µ(f(J)) > 1
2 . Thus µ(J ∩ f(J)) > 0, which implies that there exists

some subinterval (a, b) ⊂ J ∩ f(J) as above.
It remains to examine the case s = 1

2 . In this case, J = [0, 1
2 ] on the bottom of C1.

If any positive measure portion of J occurs in (0, 1
2) on the top of C4, then we are

done as above. Hence, f(J) is a subset of [1
2 , 1].

There exists a unique x ∈ [0, 1) such that f(x) = 1/2. Then x has to be contained
in [0, 1/2), since otherwise some positive measure set (x, x+ϵ) is mapped into [1/2, 1]
which contradicts that µ(f(J)) = 1/2. Now that we know that x ∈ [0, 1/2), we can
connect the interval (x, x + ϵ) on the bottom of C1 to (1/2, 1/2 + ϵ) on the top of
C4 using straight lines to construct a cylinder that passes through C1, C2 and C4
exactly once because C4 has positive height. Two such examples are depicted in
Figure 6.4. □

7. Case 3

Proposition 7.1. — If a genus three translation surface satisfies Case 3, then
its orbit closure has trivial Forni subspace.

(3) In fact, f is an interval exchange transformation that is pre and post-composed with a translation.
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Figure 7.1. The nodal surface in Case 3 and its dual graph.

Let (X ′, ω′) be the cylinder pinch of (X, ω). In Case 3, as seen in Fig. 7.1, the
nodal curve X ′ has two irreducible components: one component X0 of genus zero
and one elliptic component XE. The component X0 has four marked points, which
we choose to be 0, 1, λ, ∞. We identify λ and ∞ to form a self-node e3 and identify
0 and 1 with points p, q on XE to form two nodes e1, e2 connecting X0 and XE.

We now choose a symplectic basis adapted to the cylinder pinch(X ′, ω′) above
such that the B-cycles are of the following form. The cycle β1 is supported on the
elliptic curve XE, the cycle β2 is a loop passing from X0 to the elliptic curve XE and
back, not passing through the self node, and β3 is a cycle through the self node, only
supported on the X0. Let {Θ1, Θ2, Θ3} be the corresponding A-normalized basis.

Proof of Proposition 7.1. — We assume by contradiction that the Forni subspace
of (X, ω) is non-trivial. Since X ′ has geometric genus one, it follows from Propo-
sition 4.5 that the holomorphic Forni subspace is 1-dimensional and generated by
the differential Θ1(s) supported on the elliptic curve. Furthermore, the first row and
column of the period matrix with respect to the chosen symplectic basis is constant
along the geodesic flow.

As stated in Section 3.4, to evaluate the periods along the geodesic flow, we need
to choose a local coordinate chart near every node. In this case, it is convenient
to use the standard coordinate z on P1 and the global holomorphic coordinate on
the elliptic curve E, which by abuse of notation, we also denote by z. We can still
describe the geodesic flow by removing a small disc of radius {|ze| ⩽

√
|se|}, where

se = sneae(1 + fe(s)) by Eq. (3.2). We will write ni and ai instead of nei
and aei

,
respectively, for the remainder of the proof. Let e1 be the node between 0 and q, and
let e2 be the node between 1 and p (see Figure 7.1).

We first claim that n1 = n2. To see this we consider the period∫
β3

Θ1(s) =
∫

β1
Θ3(s).

Since Θ1 spans the Forni subspace, the period
∫

β3
Θ1(s) is constant. Assume for the

sake of contradiction that n1 < n2. Then it follows from the asymptotic formula
Lemma 3.5 that ∫

β1
Θ3(s) = a1Θ3(0)Θ1(q)sn1 + O

(
sn1+1

)
,

which is nonzero since both differentials Θ1 and Θ3 have no zero. This yields a
contradiction because n1 is a positive integer and

∫
β1

Θ3(s) is constant. Therefore,
n1 ⩾ n2, and by the symmetry of this argument, n1 ⩽ n2 as well.
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We now focus on
∫

β1
Θ1(s). It follows from n1 = n2 that∫

β1
Θ1(s) = O

(
s2n1

)
and that there are exactly four oriented loops of weighted length 2n1 starting in the
elliptic component. All remaining such loops contain one of these four paths and
thus have larger weighted length. The four oriented paths of weighted length 2n1
starting in the elliptic component can be described as follows. Let e1 and e2 be the
two oriented nodes connecting the elliptic component to the genus zero components,
oriented such that the start point is on the elliptic component (see Figure 7.1). The
four paths γi, for i ∈ {1, 2, 3, 4} consist of all oriented loops, starting on the elliptic
component and consisting of exactly two edges. In other words,

γ1 = (e1, −e1), γ2 = (e2, −e2), γ3 = (e1, −e2), γ4 = (e2, −e1).

The contributions from γ1 and γ2 are zero by Lemma 3.6.
Thus, only γ3 and γ4 can contribute. It follows from the symmetry of the normalized

bidifferential 1
(z−w)2 dwdz that both paths have the same contribution. Therefore, we

have the following expansion by Lemma 3.5

(7.1)
∫

β1
Θ1(s) = constant+2a1a2s

n1+n2ωXE(s)(p)ωXE(s)(q) 1
(1 − 0)2 +O

(
sn1+n2+1

)
.

Since a holomorphic differential on XE(s) has no zeros, independent of s, we conclude
that the entry

∫
β1

Θ1 in the period matrix is not constant. This contradicts that
Θ1 lies in the Forni subspace. We remark that in our chosen coordinate system
for plumbing, the moduli of the elliptic curve varies with s. Therefore, in Eq. (7.1)
the evaluation of the holomorphic differential ωXE

(s) on the elliptic curve XE(s)
appears. □

Remark 7.2. — As with Cases 1, 2 and 4 above, we believe that Proposition 4.6
can be used to rule out Case 3 as well. However, in [Aul18], Case 3 was split into three
subcases. One of them (Case 3B), is easy to exclude with Proposition 4.6. However,
it is not clear to the authors how the other two cases can be addressed without
careful geometric arguments and dividing Cases 3A and 3C into more subcases. For
this reason, we feel it is cleaner and more efficient to use the uniform approach to
Case 3 that was given above.

8. Case 6

Here we use the jump problem to prove that the two cylinders in Case 6, which
have homologous core curves, have equal moduli. It follows that the interiors of the
cylinders are isometric, which allows us to use the arguments from [AN20, § 5] to
conclude the proof of Theorem 5.1. We will prove below that in H(14), there is a
unique cylinder diagram satisfying Case 6 (see Figure 1.1).
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8.1. Equal Moduli

Proposition 8.1. — Let (X, ω) be a translation surface with non-trivial Forni
subspace. Let (X, ω) decompose into cylinders satisfying Case 6 such that the ratio
of the moduli of the two cylinders is rational. Then the moduli of the two cylinders
are equal. Furthermore, the periods and heights of the cylinders are equal.

Consider the cylinder pinch (X ′, ω′) of a horizontally periodic translation surface
(X, ω). In this case the nodal curve X ′ has two irreducible components. Both of
these are elliptic curves, which we denote by E1 and E2. They are joined at two
nodes p1 ∼ p2 and q1 ∼ q2. Choose a symplectic basis adapted to X ′ such that the
B-cycles are of the following form. The loop β1 is a cycle supported on E1, β2 is a
cycle supported on E2, and β3 is the cycle corresponding to the loop in the dual
graph of X ′.

Proof. — By contradiction and without loss of generality, assume r1 < r2, in which
case, by Proposition 3.4, the lowest order terms in the period matrix are as follows

Π(s) =

const. + O (s2r1) O (sr1) const. + O (sr1)
O (sr1) const. + O (s2r1) const. + O (sr1)

const. + O (sr1) const. + O (sr1) ln (sr1) + ln (sr2)


We recall the exponents rei

from Eq. (3.1), which are related to the ratios of the
cylinders on (X, ω). In the above formula, we write ri instead of rei

. Since (X, ω) has
a non-trivial Forni subspace, the derivative of the period matrix has zero determinant
along the geodesic flow. We will obtain a contradiction by computing the lowest
order term of the determinant using the jump problem.

We denote the entries in the derivative of the period matrix by
dΠ(s)

ds
=
(
π′

ij(s)
)

ij
.

It follows from the existence of a Forni subspace that dΠ(s)
ds

has zero determinant.
(See the remark at the end of Remark 4.2 or Proposition 4.5 Part 2.)

By expanding the determinant, which we already know must be zero, we see that

0 = det
(

dΠ(s)
ds

)
= (r1 + r2)(π′

12)2(s)
s

+ O
(
s2r1−2

)
.

Now the goal is to show that (π′
12(s))2/s has order exactly 2r1 − 3. The next calcula-

tion will compute the coefficient of the term of order 2r1 − 2 in (π′
12(s))2. Therefore,

after dividing by s, this term has order 2r1 − 3, and then we will prove that the
coefficient of this term is non-zero to reach a contradiction.

Since r1 < r2, there exists a unique oriented path whose weighted length equals
to the jump problem distance of Θ1 to Θ2. The path is given by the single oriented
edge e1. Thus, by Lemma 3.5 and Proposition 3.4, we conclude

π′
12(s) = −r1s

r1−1Θ1(p1)Θ2(p2) + O (sr1) ,

which is not identically zero because a holomorphic differential on an elliptic curve
is nowhere zero. Therefore, the derivative of the period matrix does not have zero
determinant. This yields a contradiction and implies r1 = r2.
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Finally, from Lemma 3.3, the circumferences and heights of the cylinders are
equal. □

8.2. Reduction to the Wollmilchsau

Before proceeding, we remark that the method of proof for the following proposition
is identical to the one used in [AN20]. In [AN20], the problem was reduced to a large
finite problem and a computer search was implemented. Here a computer assisted
proof can be avoided.

Proposition 8.2. — Let (X, ω) ∈ H(14) be a completely periodic translation
surface with non-trivial Forni subspace. Let (X, ω) decompose into cylinders satisfy-
ing Case 6 such that the ratio of their moduli is rational. Then (X, ω) generates the
Teichmüller curve of the Eierlegende Wollmilchsau.

Proof. — We claim that there is a unique cylinder diagram in H(14) satisfying
Case 6. Since the core curves of the cylinders are homologous, the cylinders have
equal circumference. Denote the cylinders by C1 and C2 as in Figure 8.1. Observe
that all of the saddle connections on the bottom of C1 are identified to the saddle
connections on the top of C2 and vice versa. Similarly, all of the saddle connections
on the bottom of C2 are identified to the saddle connections on the top of C1 and
vice versa. Consider the operation of cutting the core curves of each cylinder and
gluing the top half of C1 to the bottom half of C2 and the bottom half of C1 to the
top half of C2. This results in two 1-cylinder surfaces, each of which are contained
in H(1, 1). We leave the reader to check that there is a unique 1-cylinder diagram
in H(1, 1).(4) Since both of these 1-cylinder diagrams are unique, if we reverse the
cutting operation above and revert to the original translation surface in H(14), we
conclude that that cylinder diagram is also unique.

By Proposition 8.1, the heights of both cylinders equal. We cut and glue and, if
necessary, deform a translation surface satisfying Case 6 as follows so that it appears
as depicted in Figure 8.1. Let τ0 and σ0, with lengths t0 and s0, respectively, be
the longest saddle connections on the bottoms of C1 and C2, respectively. Cut and
glue C1 if necessary so that τ0 appears on the bottom of C1 as in Figure 8.1. Shear
the surface so that σ0 lies directly above τ0 as in Figure 8.1. Finally, cut and glue
C2 using the convention of Figure 2.1 so that σ0 lies on the bottom of C2 as in
Figure 8.1.

We normalize the circumference of the cylinders to 1 for convenience. Without loss
of generality, let t0 ⩾ s0. Since there are four saddle connections in the boundary of
each cylinder, it follows that t0 ⩾ s0 ⩾ 1

4 .
Observe that every cylinder has exactly four saddle connections on each of its

boundaries. By complete periodicity, every closed trajectory determines a cylinder
decomposition, and by Proposition 5.3, that cylinder decomposition must satisfy
Case 6. Therefore, each boundary of every cylinder in any direction must contain four
saddle connections. On the other hand, if a non-horizontal straight-line trajectory
(4) It is worth noting for the appendix that there is also a unique 1-cylinder diagram in H(2).
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crosses each of the cylinders in Figure 8.1 exactly once before closing, then each
of its boundaries would consist of at most two saddle connections. Therefore, the
saddle connection τ0 cannot intersect the region of length 2s0 on the top of C2 in
Figure 8.1 because it would imply the existence of a closed trajectory crossing C1
and C2 exactly once.

We claim that the quantities s0, t0, and tstart are subject to the constraints derived
in [AN20, § 5], which are summarized in [AN20, Corollary 5.10]. To see this we refer
to [AN20, Figure 2], which has been reproduced as Figure 8.1. As noted above, there
cannot exist a regular trajectory crossing each of the cylinders exactly once before
closing. We claim that such a trajectory must exist if any regular point in τ0 on
the bottom of C1 occurs in one of the two intervals(5) bounded by black squares in
Figure 8.1 of lengths 2s0 and t0. Indeed, the dashed lines show the boundaries of
these regions, which are drawn using the fact that the heights of C1 and C2 are equal.
The reader can check that if τ0 intersected either of these intervals bounded by black
squares, then there would exist a regular closed trajectory from τ0 on the bottom of
C1 passing through σ0 and closing when it reached the top of C2. Hence, the interior
of τ0 cannot intersect either of these intervals, and this implies the inequalities

1 − 2t0 − 2s0 ⩾ tstart ⩾ 0,

cf. [AN20, Corollary 5.10], where the circumference 2dopt can be replaced with 1 to
obtain the inequality above.

Ignoring the middle term in the inequalities, the assumption that t0 ⩾ s0 ⩾ 1
4

implies that the inequality is only satisfied exactly when

t0 = s0 = 1
4 .

Since these saddle connections were assumed to be the largest on their side of the
cylinder, all of the saddle connection lengths are exactly equal to 1

4 because there
is a unique partition of 1 into four real numbers such that the largest number is 1

4 .
Hence, every saddle connection has equal length. Finally, tstart = 0 because

1 − 2t0 − 2s0 = 0 ⩾ tstart ⩾ 0.

Having determined that every saddle connection has equal length and the location
of one of the saddle connections on each side of each cylinder, the fact that there is
a unique cylinder diagram satisfying Case 6 in H(14) implies that the translation
surface is exactly the Eierlegende Wollmilchsau as depicted in Figure 1.1. □

Appendix A. Orbit Closures and Other Strata

The results above were stated in their greatest possible generality in the context
of SL2(R)-orbit closures in genus three. Nevertheless, occasionally it was necessary
to assume that the translation surface possessed complete periodicity, was in the
principal stratum, or had rational ratios of moduli of parallel cylinders. We explain
(5) In fact, it is a single interval because the vertical sides of the rectangle are identified to form a
cylinder.
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τ0

τ0

σ0

σ0

C1

C2

t0

s0

2s0 tstart t0t0

Figure 8.1. Coordinates specifying the location of τ0 on the top of C2. Circles
correspond to cone points and squares may or may not be cone points (Repro-
duced from [AN20, Figure 2])

here how to extend Theorem 5.1 to Theorem 1.1. In this appendix, we assume
familiarity with some properties of invariant subvarieties, e.g., field of definition and
rank [Wri14, Wri15].

A.1. Other Strata

The arguments in Case 1, 2, 3 and 5 apply to all orbit closures in genus three
with non-trivial Forni subspace. Only in Case 4 and 6 do we need to modify the
arguments slightly.

Proposition A.1. — If a genus three translation surface satisfies Case 4, then
it has trivial Forni subspace.

Proof. — In Case 4, the translation surface must lie in H(2, 1, 1) if it does not lie
in the principal stratum (see [Aul15a, § 4.6]). The result follows from the observation
that no proof in Section 6.3 required saddle connection 3 in Figures 6.2 and 6.4 to
have positive length. Indeed, letting saddle connection 3 have length zero yields the
two cylinder diagrams in H(2, 1, 1) and the reader can verify that the proofs still
hold. □

Proposition A.2. — Let (X, ω) be a completely periodic genus three translation
surface with non-trivial Forni subspace. If (X, ω) satisfies Case 6 and the ratio of
the moduli of the cylinders is rational, then (X, ω) generates the Teichmüller curve
of the Eierlegende Wollmilchsau.

Proof. — Since the principal stratum was already addressed in Proposition 8.2, it
suffices to focus on the remaining strata. We claim that in Case 6, the surface must
lie in H(2, 1, 1) or H(2, 2). This can be seen because the total order of the zeros
between the two cylinders must be exactly two. This follows because after a cylinder
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pinch, we see two elliptic curves, each with two simple poles, and the total order of
the zeros and poles on an elliptic curve is zero.

By contradiction, assume that there is such a translation surface satisfying Case 6
and the assumptions of this proposition outside of the principal stratum. Then by
Propositions 5.3 and A.1, every periodic direction on the surface must satisfy Case
6. If there is a double zero between two of the cylinders, then there are three saddle
connections between them. We claim that there always exists a cylinder transverse
to the horizontal direction that crosses each cylinder exactly once, which would
contradict the fact that every periodic direction has to satisfy Case 6 as in the proof
of Proposition 8.2. In the proof of Proposition 8.2, we had t0 ⩾ 1

4 and s0 ⩾ 1
4 . With

three saddle connections in at least one of the boundaries, we can conclude that at
least one of t0 and s0 is greater than or equal to 1

3 , in which case we get

0 ⩽ tstart ⩽ 1 − 2s0 − 2t0 ⩽ 1 − 2 · 1
3 − 2 · 1

4 = −1
6 .

This contradiction proves the non-existence of Teichmüller curves with non-trivial
Forni subspace outside of the principal stratum. □

A.2. Invariant Subvarieties

Proof of Thm. 1.1. — We focus on the rank of the SL2(R)-orbit closure in the sense
of [Wri15]. First, rank three orbit closures have a trivial Forni subspace by [AEM17].

If an SL2(R)-orbit closure has rank one, then it is completely periodic by [Wri15,
Theorem 1.5]. By Propositions 5.3 and A.1, a non-trivial Forni subspace and complete
periodicity imply that every periodic direction must satisfy Case 6. If the ratio of
the moduli of the two cylinders in Case 6 is rational, then Propositions 8.2 and A.2
apply and we conclude. If the ratio is irrational, then the translation surface cannot
generate a Teichmüller curve. By [Wri15, Theorem 1.9], such an orbit closure must
be arithmetic because the ratio of circumferences of parallel cylinders in Case 6 is
one. By contradiction, assume that such an orbit closure exists. Then it contains
infinitely many (arithmetic) Teichmüller curves with a positive dimensional Forni
subspace by [Aul15a, Lemma 2.2]. However, Propositions 8.2 and A.2 prove that
only one such Teichmüller curve exists in genus three, which is a contradiction that
proves that the only rank one orbit closure with a non-trivial Forni subspace in genus
three is the Teichmüller curve of the Eierlegende Wollmilchsau.

Similarly, rank two orbit closures in genus three are arithmetic and therefore, they
too must contain infinitely many Teichmüller curves. If a rank two orbit closure had
a non-trivial Forni subspace, then all of the Teichmüller curves contained in it would
as well by [Aul15a, Lemma 2.2], which again is impossible. □
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