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Abstract. — The cutoff phenomenon is an abrupt transition from out of equilibrium to
equilibrium undergone by certain Markov processes in the limit where the size of the state space
tends to infinity: instead of decaying gradually over time, their distance to equilibrium remains
close to the maximal value for a while and suddenly drops to zero as the time parameter reaches
a critical threshold. Despite the accumulation of many examples, this phenomenon is still far
from being understood, and identifying the general conditions that trigger it has become one
of the biggest challenges in the quantitative analysis of finite Markov chains. Very recently, the
author proposed a general sufficient condition for the occurrence of a cutoff, based on a certain
information-theoretical statistics called varentropy. In the present paper, we demonstrate the
sharpness of this approach by showing that the cutoff phenomenon is actually equivalent to
the varentropy criterion for all sparse, fast-mixing chains. Reversibility is not required.

Résumé. — Le cutoff désigne une transition abrupte dans la convergence à l’équilibre de
certains processus de Markov, dans la limite où le nombre d’états tend vers l’infini : au lieu
de décroître graduellement au cours du temps, la distance à l’équilibre reste longtemps proche
de sa valeur initiale, puis chute brutalement à zéro lorsque le paramètre temporel atteint
un seuil critique. Malgré l’accumulation de nombreux exemples, ce phénomène est toujours
largement incompris, et l’identification des mécanismes généraux qui le sous-tendent constitue
l’un des défis majeurs dans l’analyse quantitative des chaînes de Markov. Récemment, l’auteur a
proposé une condition suffisante générale pour le cutoff, basée sur une quantité informationelle
appelée varentropie. Dans cet article, nous démontrons l’optimalité de ce critère en montrant
qu’il est en réalité équivalent au cutoff pour toutes les chaînes rapides et parcimonieuses.
La réversibilité en temps n’est pas requise.
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1. Introduction

The cutoff phenomenon is a dynamical phase transition which is now believed to be
universal among high-dimensional, fast-mixing Markov chains: roughly speaking, the
system under consideration abruptly moves from being nearly singular to equilibrium
to being statistically indistinguishable from equilibrium when the time parameter
reaches a critical value. We shall here only recall the necessary definitions, and refer
the reader to the introductory book [LP17, Chapter 18] or the recent paper [Sal21]
for a more detailed account as well as many references.

1.1. The cutoff phenomenon

Consider a stochastic matrix K on a finite set X , and write (Pt)t⩾0 for the corre-
sponding continuous-time semi-group, defined for all times t ⩾ 0 and states x, y ∈ X
by

Pt(x, y) := e−t
∞∑

n=0

Kn(x, y)tn

n! .

Assuming that K is irreducible, the general theory guarantees that Pt(x, y) −−−→
t → ∞

π(y), where π is the unique probability vector on X solving the stationarity equation
πK = π. A standard way to quantify this convergence consists in measuring the time
it takes for the worst-case total variation distance to drop below a given threshold
ε ∈ (0, 1):

tmix(ε) := min {t ⩾ 0: dtv(t) ⩽ ε} , where dtv(t) := max
o ∈ X

dtv(Pt(o, ·), π).

This quantity is known as the mixing time of the process, and understanding how it
depends on the underlying dynamics and on the precision ε is an important problem
with numerous applications. This question becomes particularly relevant when the
number of states is large, and one is thus naturally led to consider a sequence of
stochastic matrices (Kn)n⩾ 1 whose dimensions tend to infinity, and to examine the
asymptotic behavior of their mixing times t

(n)
mix(ε) as n → ∞. In many situations, a

remarkable phase transition known as a cutoff has been observed: instead of decaying
gradually from 1 to 0 as one could reasonably expect, the distance to equilibrium
t 7→ d

(n)
tv (t) approaches a step function as n → ∞. Equivalently, its inverse ε 7→ t

(n)
mix(ε)

becomes asymptotically constant, as illustrated on Figure 1.1.
Definition 1.1 (Cutoff phenomenon). — The sequence (Kn)n⩾ 1 is said to ex-

hibit a cutoff if

∀ ε, ε′ ∈ (0, 1), t
(n)
mix(ε′)
t
(n)
mix(ε)

−−−→
n → ∞

1.

The name cutoff was coined in 1986 by D. Aldous and P. Diaconis [AD86], but the
phenomenon itself was actually discovered in 1981 by P. Diaconis and M. Shahsha-
hani [DS81], and several instances of it were collected under the generic name abrupt
switch in lecture notes published by D. Aldous in 1983 [Ald83]. Further historical
examples can be found in the 1996 survey paper The cutoff phenomenon in finite
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ε

tmix(ε) tmix(ε′)

ε′

1

t

t → dtv(t)

Figure 1.1. A typical plot of the distance to equilibrium over time. In the large
size limit, the ratio tmix(ε′)

tmix(ε) approaches 1 and the convergence to equilibrium
becomes abrupt (cutoff).

Markov chains, by P. Diaconis [Dia96]. Since then, cutoff phenomena have been
observed in a broad variety of contexts, including birth and death chains, random
walks on finite groups, high-temperature spin glasses, interactive particle systems,
or random walks on various models of sparse random graphs.

Unfortunately, the existing proofs essentially all consist in bounding t
(n)
mix(ε) from

above and below by explicit quantities which lie within a factor 1 + o(1) from each
other and are asymptotically independent of ε. This is of course a notoriously difficult
and model-specific task, which can only be carried out on very structured examples,
and which does not bring any conceptual insight as to why a sharp transition actually
occurs. Identifying the general conditions that trigger the cutoff phenomenon has
become one of the biggest challenges in the quantitative analysis of finite Markov
chains. Very recently, a new approach to this question was proposed in [Sal21], based
on the estimation of a certain information-theoretical statistics called varentropy.

1.2. The varentropy criterion

Let us start by recalling a more classical definition: the relative entropy (or
Kullback–Leibler divergence) of a probability measure µ on our reference space
(X , π) is given by

dkl(µ, π) := Eµ

[
log µ

π

]
=

∑
x ∈ X

µ(x) log µ(x)
π(x) .
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This famous information-theoretic statistics provides an upper bound on the total-
variation distance dtv(µ, π), by virtue of the Csiszár–Kullback–Pinsker Inequality.
Moreover, its evolution under the semi-group (Pt)t⩾ 0 can be controlled in a sys-
tematic way by establishing an appropriate Log-Sobolev Inequality [DSC96], or its
modified version [BT06]. The combination of those two simple observations is at
the origin of some of the most powerful bounds on mixing times (see the text-
book [MT06]). In order to quantify the sharpness of the transition to equilibrium,
the author proposed in [Sal21] to investigate the evolution of a suitable second-order
version of relative entropy, obtained by replacing the mean by a variance:

Vkl(µ, π) := Varµ

(
log µ

π

)
=

∑
x ∈ X

µ(x)
(

log µ(x)
π(x) − dkl(µ, π)

)2

.

Because it measures the dispersion of information around the entropy, this natural
statistics is called varentropy. It appeared a decade ago in the completely different
context of optimal data compression, to quantify the error in the celebrated Asymp-
totic Equipartition Property [KV13]. However, its relevance for cutoff – embodied in
Corollary 1.3 below – was discovered only very recently. More precisely, let us define
the worst-case varentropy of our Markov chain at any given time t ⩾ 0 as follows:

Vkl(t) := max
o ∈ X

Vkl (Pt(o, ·), π) .

Let also γ = γ(K) denote the Poincaré constant of the chain, which is well known
to coincide with the spectral gap of the reversibilized transition matrix (K + K⋆)/2.
It is perhaps worth mentioning that this fundamental parameter is, unlike many
others, extremely well understood: its order of magnitude is known in many concrete
models (see [MT06] for details).

Theorem 1.2 (Width of the mixing window [Sal21]). — For any ε ∈ (0, 1/2),

tmix(ε) − tmix(1 − ε) ⩽ 2
γε2

(
1 +

√
Vkl(tmix(1 − ε))

)
.

To the best of our knowledge, Theorem 1.2 constitutes the very first general
quantitative estimate on the width of the mixing window. Since the occurrence of
a cutoff is just the assertion that this width is asymptotically negligible compared
to the position of the window along the time axis, we readily obtain the following
general criterion for cutoff.

Corollary 1.3 (Varentropy criterion). — A sufficient condition for (Kn)n⩾ 1 to
exhibit cutoff is

(1.1) γ(Kn) × t(n)
mix(ε) ≫ 1 +

√
V

(n)
kl

(
t
(n)
mix(ε)

)
,

for each fixed ε ∈ (0, 1), where an ≫ bn means that the ratio an/bn tends to +∞ as
n → ∞.

In the present form, Corollary 1.3 is much more a starting point than a definitive
answer to our main problem. Indeed, the varentropy term appearing on the right-
hand side is a new and highly non-trivial statistics, whose estimation remains entirely
to be developed before it can be effectively used to explain and predict cutoff. A first
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step in that direction was made in [Sal21], where a simple and naive estimate on
the varentropy function t 7→ Vkl(t) was established for all Markov chains with non-
negative curvature, leading to a unified proof of cutoff for a broad family of models.
This successful first application raises hopes that the varentropy criterion could
constitute the long-sought common mechanism underlying all cutoff phenomena.
The purpose of this paper is to provide a rigorous support to this claim.

1.3. Main result

In the present paper, we demonstrate the sharpness of the varentropy approach by
showing that the cutoff phenomenon is actually equivalent to the varentropy criterion
for all sparse and fast-mixing chains. We emphasize that reversibility is not needed
here: we shall only require that the support of K (i.e., the set of allowed transitions)
is symmetric:
(1.2) ∀ x, y ∈ X , K(x, y) > 0 =⇒ K(y, x) > 0.

We recall that γ = γ(K) denotes the Poincaré constant of K, and we define δ = δ(K)
as the smallest non-zero entry of K. This simple parameter controls the sparsity of
the chain, since each row of the stochastic matrix K can not have more than 1/δ(K)
non-zero entries.

Theorem 1.4 (Sharpness of the varentropy criterion). — Let (Kn)n⩾ 1 be any
sequence of transition matrices with symmetric supports and satisfying the following
conditions:

(A1) Sparsity: infn⩾ 1 δ(Kn) > 0.
(A2) Expansion: infn⩾ 1 γ(Kn) > 0.

Then, the sequence (Kn)n⩾ 1 exhibits cutoff if and only if the varentropy criterion (1.1)
holds.

Remark 1.5 (Cheeger inequalities). — The isoperimetric constant of the chain is
defined as

Φ := min
∅⊊A⊊X

{
π⃗(A × Ac)

π(A) ∧ π(Ac)

}
,

where π⃗(x, y) := π(x)K(x, y) is the stationary flow on X 2. Cheeger inequalities state
that

Φ2

2 ⩽ γ ⩽ 2Φ.

Consequently, Assumption A2 is equivalent to infn⩾ 1 Φ(Kn) > 0, hence the name
expansion.

Before we dive into the proof, let us briefly discuss the emblematic case of simple
random walk on a finite undirected graph G = (X , E), which corresponds to the
transition matrix

K(x, y) :=


1

deg(x) if {x, y} ∈ E

0 else.
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Note that the symmetry condition (1.2) is automatically fulfilled here, and that δ(K)
is simply the inverse of the maximum vertex degree. Sequences of graphs whose
transition matrices (Kn)n⩾ 1 satisfy Assumptions A1 and A2 are famously known
as expanders. Those remarkable graphs enjoy nearly as good connectivity properties
as complete graphs, but at a much lower cost in terms of edges. Consequently,
they have found numerous practical applications, some of which are described in
the beautiful survey paper [HLW06] by S. Hoory, N. Linial and A. Wigderson.
Understanding when they exhibit cutoff is arguably one of the most famous open
problems in the field (see [Per04, Open Question 34] or [LP17, Question 5]), but to
the best of our knowledge, no progress has been recorded beyond the extreme case of
Ramanujan graphs [BL22, Her17, LP16, Oza20] or the very special setup of random
environments [BCS18, BCS19, BHS17, BH20, BLPS18, BL22, HŠS22a, HSS22b,
LS10]. Our main result reduces this general problem to a varentropy estimate.

Corollary 1.6 (Expanders). — An expander sequence (Gn)n⩾ 1 exhibits cutoff
if and only if

∀ ε ∈ (0, 1), V (n)
kl

(
t(n)
mix(ε)

)
≪ (log |Gn|)2.

We hope that this simple characterization will motivate the development of a
general theory for estimating the varentropy of Markov chains. In particular, we
would like to advertise the following fascinating conjecture, which was explicitly
raised by D. Levin and Y. Peres [LP17, Question 5].

Conjecture 1.7 (Transitive expanders). — All vertex-transitive expanders ex-
hibit cutoff.

We note that this is false without vertex-transitivity [LS11]. Let us perhaps here
recall that a graph G = (X , E) is vertex-transitive if for any vertices x, y ∈ X , there
is an edge-preserving bijection ϕ : X → X that maps x to y. In words, G looks the
same from every vertex. This strong spatial homogeneity precludes many patholog-
ical phenomena observed in more heterogeneous settings, and entails considerably
simplified expressions for a number of random-walk statistics [Ald89, TT20, TT21].
In light of this, it seems reasonable to hope that Conjecture 1.7 will follow from a
universal estimate on the varentropy of vertex-transitive expanders, and we intend
to investigate this question in the near future.

2. Proof

Before we start, let us introduce some useful notation. First, we conveniently equip
our state space X with the following natural distance:

dist(x, y) := min {n ∈ N : Kn(x, y) > 0} .

Note that the symmetry axiom is guaranteed by our assumption (1.2), while the
separation and triangle inequality are straightforward to check. This allows us to
use the various notions pertaining to metric spaces. In particular, the diameter of
the state space is

diam(X ) := max
x,y ∈ X

dist(x, y),
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while the Lipschitz norm a function f : X → R is given by:

∥f∥lip := sup
x ̸= y

|f(x) − f(y)|
dist(x, y) .

We will also frequently use the following natural size parameter:

p := min
x ∈ X

π(x),

which is always positive thanks to the irreducibility of K, but tends to zero as
the number of states grows. With this notation in hand, we may now recall two
classical estimates on mixing times; see [Sal21, Lemma 11] for the first and [MT06,
Corollary 2.6] for the second.

Lemma 2.1 (Classical mixing-time estimates). — For any ε ∈ (0, 1), we have

tmix(ε) ⩾ 1
2diam(X ) −

√
2tmix(ε)
1 − ε

−
√

2
γ(1 − ε) ;

tmix(ε) ⩽ 1
2γ

log
(

1
4pε2

)
.

Our first observation is that under Assumptions A1-A2, those lower and upper
bounds lie within a constant factor from each other, thereby providing explicit access
to the exact order of magnitude of the mixing time.

Lemma 2.2 (Control on p). — We always have

log 1
p
⩽ 3 diam(X ) log 1

δ

Proof. — Fix x, y ∈ X and set n = dist(x, y). We then have Kn(x, y) > 0, and
hence Kn(x, y) > δn by definition of δ. Using the stationarity π = πK = · · · = πKn,
we can then write

π(y) =
∑

z ∈ X
π(z)Kn(z, y)

⩾ π(x)δn

⩾ π(x)δdiam(X ).

Choosing y so that π(y) = p and summing over all x ∈ X , we obtain

p|X | ⩾ δdiam(X ).

On the other hand, since the diagram of the chain has degrees at most δ−1, we have

|X | ⩽ 1 + δ−1 + δ−2 + · · · + δ−diam(X ) ⩽ δ−2diam(X ),

because δ ⩽ 1/2. The claim is now readily obtained by combining the last two
displays. □

We next recall a recent, general regularity estimate for the logarithm of the heat-
kernel at any sufficiently large time t ⩾ 0. This is taken from [Sal21, Lemma 10].
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Lemma 2.3 (Spatial regularity of the heat kernel). — For all o ∈ X and t ⩾
diam(X )/4, ∥∥∥∥∥log Pt(o, ·)

π(·)

∥∥∥∥∥
lip

⩽ c := 3 log e

δ
.

We use this regularity to show that the relative entropy can not decrease too fast.
More precisely, define the worst-case relative entropy to equilibrium at any time
t ⩾ 0 as follows:

dkl(t) := max
o ∈ X

dkl (Pt(o, ·), π) .

Lemma 2.4 (Regularity of relative entropy). — For any t ⩾ diam(X )/4 and any
s ⩾ 0, we have

dkl(t) ⩽ dkl(t + s) + cs,

where c is the constant appearing in the previous lemma.

Proof. — By an elementary and classical computation, we have

− d
dt

dkl (Pt(o, ·), π) =
∑

x,y ∈ X
Pt(o, x)K(x, y)

(
log Pt(o, x)

π(x) − log Pt(o, y)
π(y)

)

⩽

∥∥∥∥∥log Pt(o, ·)
π(·)

∥∥∥∥∥
lip

,

and the claim now readily follows from Lemma 2.3. □

Another immediate consequence of Lemma 2.3 is the following heat-kernel estimate.

Lemma 2.5 (Uniform heat-kernel estimate). — For all o, x ∈ X and t ⩾ diam(X )/4,
we have

−c diam(X ) ⩽ log
(

Pt(o, x)
π(x)

)
⩽ log 1

p
,

where c is the constant appearing in Lemma 2.3.

Proof. — The first inequality is simply the crude bound max(h)−h(x) ⩽ diam(X )
∥h∥lip applied to the function h = log Pt(o,·)

π
, and the second trivially follows from

the definition of p. □

Finally, we will need the following simple lemma, which asserts that the classical
upper bound on dtv(t) using dkl(t) (Pinsker’s inequality) can be reversed at a
reasonable price.

Lemma 2.6 (Reversed Pinsker’s inequality). — For any t ⩾ 0, we have

dkl(t) ⩽
(

1
1 − p

log 1
p

)
dtv(t).

Proof. — Since the function g : u 7→ u log u
u−1 is increasing on [1, ∞), we have for all

0 ⩽ u ⩽ v,
u log u ⩽ g(v)(u − 1)+.
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In particular, given µ ∈ P(X ), we may take u = µ(x)
π(x) and v = 1

p
to obtain

µ(x)
π(x) log µ(x)

π(x) ⩽

(
µ(x)
π(x) − 1

)
+

g

(
1
p

)
,

for all x ∈ X . Averaging this with respect to π yields

dkl(µ, π) ⩽ dtv(µ, π)g
(

1
p

)
.

The claim now follows by specializing this to µ = Pt(o, ·) and maximizing over
o ∈ X . □

We now have all we need to prove Theorem 1.4.
Proof. — Let (Kn)n⩾ 1 be a sequence of transition matrices with symmetric support

satisfying Assumptions A1-A2. Fix ε ∈ (0, 1) once and for all, and write tn := t
(n)
mix(ε)

and pn := min πn. Combining Lemmas 2.1 and 2.2, we know that

tn ≍ log 1
pn

≍ diam(Xn),

where the notation an ≍ bn means that the ratio an/bn is bounded from above and
below by positive constants that do not depend on n. We will repeatedly use this fact
below, without notice. Now, assume that (Kn)n⩾ 1 exhibits cutoff. This guarantees
the existence of a sequence of times (sn)n⩾ 1 with the following properties:

sn

tn

−−−→
n → ∞

0, and d(n)
tv (tn + sn) −−−→

n → ∞
0.

In particular, Lemma 2.6 ensures that as n → ∞,

d(n)
kl (tn + sn) ≪ log 1

pn

.

Moreover, since tn ⩾ diam(Xn)/4 for large enough n by Lemma 2.1, we can safely
invoke Lemma 2.4 with t = tn and s = sn to deduce that we also have

(2.1) d(n)
kl (tn) ≪ log 1

pn

.

Now, choose an arbitrary initial state on ∈ Xn for each n ∈ N, and let µn := Ptn(on, ·)
denote the distribution of the chain at time tn starting from on. Let Xn denote a
random variable with law µn, and consider the random variable

Zn := µn(Xn)
πn(Xn) .

Note that we then have E[Z−1
n ] = 1, E[log Zn] = dkl(µn, πn) and Var(log Zn)

= Vkl(µn, πn). Let also F : (0, ∞) → [0, ∞) be the function defined by the formula

F (u) := log u + 1
u

− 1.
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This function is decreasing on (0, 1] and increasing on [1, ∞), with F (1) = 0. Thus,
we may invoke Markov’s inequality to deduce that for any fixed θ > 0,

P
(
Zn ⩾ p−θ

n

)
⩽

E [F (Zn)]
F (p−θ

n ) = dkl(µn, πn)
θ log 1

pn
+ pθ

n − 1

P
(
Zn ⩽ pθ

n

)
⩽

E [F (Zn)]
F (pθ

n) = dkl(µn, πn)
p−θ

n + θ log pn − 1 .

The key point is that both estimates tend to 0 as n → ∞, thanks to (2.1). In other
words, we have established the following convergence in probability:

(2.2) log Zn

log 1
pn

P−−−→
n → ∞

0.

To conclude, observe that by Lemma 2.5, the random variables
(
log Zn/log 1

pn

)
n⩾ 1

all take values in a fixed compact set. Thus, the convergence (2.2) automatically also
holds in L2. In particular, we may safely take variances on both sides to obtain√

Vkl(µn, πn) ≪ log 1
pn

≍ tn.

Since the initial state on ∈ Xn was arbitrary, we may finally choose it so that
Vkl(µn, πn) = V

(n)
kl (tn), and the result is proved. □
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