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does not satisfy a temporal distributional limit theorem, regardless of centering and scaling.
The obtained results additionally lead to progress in a question posed by Dolgopyat and Sarig.

Résumé. — Dolgopyat et Sarig ont montré que pour toute fonction lisse par morceaux
f : T → R et presque tout couple (α, x0) ∈ T × T, alors SN (f, α, x0) :=

∑N
n=1 f(nα + x0) ne

peut satisfaire un théorème limite distributionnel temporel. Dans cet article, nous montrons que
l’énoncé sur le produit peut être raffiné en un énoncé sur une seule composante : pour presque
tout α ∈ T et pour tout x0 ∈ T, SN (f, α, x0) ne satisfait pas de théorème limite distributionnel
temporel, quels que soient le centrage et la mise à l’échelle. Les résultats obtenus permettent
en outre de progresser sur une question posée par Dolgopyat et Sarig.

1. Introduction and main results

Let X be a metric space, T : X → X a Borel measurable map, f : X → R a
measurable function and x0 ∈ X. Then

SN(f, T, x0) =
N−1∑
k=0

f ◦ T k(x0)

defines the Birkhoff sum of f over T at stage N with starting point x0. A pair
(T, f) is said to satisfy a temporal distributional limit theorem (TDLT) along the
orbit of a fixed x0 ∈ X whenever there exist two sequences (AM(f, T, x0))M ∈N,
(BM(f, T, x0))M ∈N with limM → ∞ BM = ∞, and a non-constant random variable Y
such that

(1.1) lim
M → ∞

1
M

#
{

1 ⩽ N ⩽M : SN(f, T, x0) − AM
BM

⩽ a

}
= P[Y ⩽ a].

For a more detailed introduction in this area, we refer the reader to [BU18] and
especially to the survey article [DF15].

Motivated by various research areas such as Discrepancy theory (see, e.g., [Bec10,
Bec11, Sch78]) and the theory of “deterministic random walks” (see, e.g., [ADDS15,
AK82]), particularly interesting and well-studied objects are ergodic sums induced
by the irrational rotation on the torus T (see Section 2 for notation and precise
definitions)

Tα : T → T
x 7→ x+ α,

where α /∈ Q. The corresponding sum SN(f, α, x0) := SN(f, Tα, x0) is often known
as the Birkhoff sum of the irrational circle rotation.

There are two different types of temporal limit laws, which we define by following
the definition in [DS20] as “quenched” and “annealed”. In the annealed case, the
average is not only taken over N for fixed α, but a pair (α,N) is drawn uniformly at
random from T× {1, . . . , M} with M → ∞. Here, a recent result of Dolgopyat and
Sarig [DS20] shows that for f(x) = {x} − 1

2 and any x0 ∈ T, SN(f, α, x0) converges
(after appropriate centering and scaling) in distribution to a Cauchy random variable.
This resembles the behaviour found by Kesten [Kes60] who showed that also the
spatial average (that is, (α, x0) is drawn uniformly at random whereas N is fixed)
converges to a Cauchy distribution.
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In the present article, we are dealing with the quenched temporal case. This means
we are investigating the pointwise behaviour of SN(f, α, x0) for fixed α ∈ T where
we study TDLTs in the sense of (1.1). There are two prominent limit distribu-
tions such that a TDLT is satisfied: On the one hand, there are examples where
a temporal central limit theorem (TCLT) holds, that is, (1.1) is obtained with
Y being a standard Gaussian random variable. Such results are known to hold
for irrational circle rotations for specific irrationals α, starting points x0 and cer-
tain functions f . For quadratic irrationals α, the existence of a TCLT was shown
to hold for SN(f, α, 0) when f(x) = {x} − 1/2, f(x) = 1[0,β)(x) − β, β ∈ Q or
f(x) = log |2 sin(πx)| (see [Bec10, Bec11, Bec14, Bor23]). For the special case where
α = [0; a, a, a, . . .], a ∈ N, Borda [Bor23] showed that a TCLT for SN(f, α, 0) holds
for any function f of bounded variation. The case f(x) = 1[0,β)(x)−β was generalized
to arbitrary orbits SN(f, α, x0), x0 ∈ R by Dolgopyat and Sarig [DS17] and further
by Bromberg and Ulcigrai [BU18] to badly approximable α under some Diophantine
assumption (with respect to α) on β.

Note that the results on quadratic irrationals mentioned above do not say anything
about typical α since the set of badly approximable numbers (and thus in particular,
of quadratic irrationals) is a set of Lebesgue measure 0. So a natural question is
whether a TDLT can hold for almost all α ∈ T or at least for α in a set of positive
measure.

If f is a smooth function, the existence of a TDLT in the metric sense (i.e. for
almost all α ∈ T) is immediately ruled out: If the Fourier coefficients of f ∼∑
n∈Z cne(nx) decay at rate cn = O(1/n2) (which holds in particular for f ∈ C2),

then for almost all α ∈ T and all x0 ∈ R, SN(f, α, x0) is bounded (see [DS20, Her79]).
Therefore, a TDLT cannot hold because the scaling sequence (BM)M ∈N needs to be
unbounded. Thus, the interesting functions to consider are those that lack smoothness
such as functions that have discontinuities or singularities. Concerning functions
with singularity, Borda [Bor23] ruled out a central limit theorem for SN(f, α, 0) for
almost every α where f(x) = log(|2 sin(πx)|). In this article, however, we are not
considering functions with singularities, but piecewise smooth functions with finitely
many discontinuities (compare to, e.g., [DS18, DS20, FH23]).

Definition 1.1 (Piecewise smooth functions). — We call a function f : T →
R with

∫
T f(x) dµ(x) = 0 a piecewise smooth function if there exist ν ⩾ 1 and

{γ1, . . . , γν} ⊆ T with 0 ⩽ ι(γ1) < . . . < ι(γν) < 1 (ι denotes the canonical
embedding T ↪→ [0, 1), see Section 2) such that the following properties hold:

• f is differentiable on T \ {γ1, . . . , γν}.
• f ′ extends to a function of bounded variation on T.
• There exists an i ∈ {1, . . . , ν} such that limδ→0[f(γi − δ) − f(γi + δ)] ̸= 0.

In [FH23], the authors examined the maximal oscillation of SN(f, α, x0) for f as in
Definition 1.1 where an unexpected sensitivity on the interplay between the number-
theoretic properties of x0, γ1, . . . , γν and analytic properties of f was discovered.
Note that the class of functions from Definition 1.1 contains most of the examples
mentioned above, such as f(x) = {x} − 1/2 or f(x) = 1[β,γ], β, γ ∈ T. Returning to
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the (non)-existence of TCLTs, the best currently known result for general piecewise
smooth f was established in [DS18]:

Therem A (Dolgopyat, Sarig, 2018). — Let f be a piecewise smooth function as
in Definition 1.1. Then there exists a set E ⊂ T×T of full two-dimensional (Haar)
measure such that for all (α, x0) ∈ E , SN(f, α, x0) does not satisfy a TDLT.

The aim of the present article is to show that the two-dimensional metric setup
above is not necessary and a TDLT fails for almost every α and any initial point
x0 ∈ T:

Theorem 1.2. — Let f be a piecewise smooth function (see Definition 1.1).
Then for (Haar-) almost all α ∈ T and for any x0 ∈ T the following holds: Let N
be uniformly distributed on {1, . . . , M}. Then the sequence of random variables
(SN (f,Tα,x0)−AM

BM
)M ∈N does not satisfy a distributional limit theorem in the sense

of (1.1), regardless of how (BM)M ∈N and (AM)M ∈N are chosen.

Remark. — Theorem 1.2 reveals that the set E from Theorem A can be chosen
as E = A × T where A has full (1-dimensional) Haar measure. The techniques used
in the proof of [DS18, Theorem A] only allow to make a statement about almost all
pairs (α, x0) ∈ T×T and we do not know whether adapting the method from [DS18]
would allow to rule out the temporal limit theorem for every x0 ∈ T and α in a
set A (that does not depend on x0) of full measure. Our method of proof takes
a different approach and we do not use Fourier-analytic methods as it was done
in [DS18, DS20].

For the special case of the sawtooth function s(x) = {x} − 1
2 , Dolgopyat and Sarig

showed in [DS20, Corollary 2.3] that for all starting points x0 ∈ T, there exists a
set Ax0 ⊆ T with full Haar measure such that for all α ∈ Ax0 , SN(s, α, x0) does not
satisfy a TDLT. Again, Theorem 1.2 implies the stronger result that there exists
a set A ⊆ T of full Haar-measure such that, for all starting points x0 ∈ T and all
α ∈ A, the associated Birkhoff sum SN(s, α, x0) does not satisfy a TLDT.

In [DS20, Corollary 2.3], Dolgopyat and Sarig were able to identify a certain family
of distributions where each member is realized as a temporal limit along a suitably
normalized subsequence of SN(s, Tα, x0). In the same paper, the authors ask for a
better understanding for general functions in the form of Definition 1.1. A comparable
family of distributions appears in our method of proof (see (3.2) in Lemma 3.7) for
all functions f in the form of Definition 1.1. For the special case f = 1[0,a], Dolgopyat
and Sarig [DS17] showed that if N is not sampled uniformly from {1, . . . , M}, but
N ∼ Log({1, . . . , M}), SN(1[0,a], α, 0) does not satisfy a TDLT. However, even for
the special case f = 1[0,a], the result of Theorem 1.2 was not yet established.

The rest of this paper is organized as follows. In Section 2, we fix notation and
we state all necessary standard results needed to prove Theorem 1.2. In Section 3.1,
we decompose f into a linear combination of the sawtooth function and certain
indicator functions (Proposition 3.1). Further, by using the metric theory of con-
tinued fractions, we obtain the almost sure existence of infinitely many (unusually)
large partial quotients whose corresponding convergent denominator also satisfies
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additional properties (see Lemma 3.4 and Remark 3.5). A fact that might be of the-
oretical interest on its own. In Section 3.2, Lemma 3.7 establishes limit distributions
of SN(f, α, x0) along certain subsequences of integers. Finally, we conclude the proof
of Theorem 1.2 by showing that there are at least two such limit distributions that
do not coincide.

2. Prerequisites

Notation

Given two functions f, g : (0,∞) → R, we write f(t) = O(g(t)), f ≪ g or g ≫ f if
lim supt→ ∞

|f(t)|
|g(t)| < ∞. Any dependence of the value of the limes superior above on

potential parameters is denoted by appropriate subscripts. For two sequences (ak)k∈N
and (bk)k∈N with bk ̸= 0 for all k ∈ N, we write ak ∼ bk, k → ∞, if limk→∞

ak

bk
= 1. We

denote the characteristic function of a set A by 1A and understand the value of empty
sums as 0. For A ⊆ N, we define the lower density of A as lim inf

N → ∞
1
N

#(A ∩ [[1, N ]]).

To avoid confusion between elements on T ≃ R/Z and on R, we use the following
notation: We write ι : T ↪→ [0, 1) for the canonical embedding. Given a real number α,
we denote its fractional part as {α} := α−⌊α⌋. Further, let ∥x∥ := min{ι(x), 1−ι(x)}
denote the canonical norm on T. We will denote the normalized Haar measure on
T by µ. For a, b, x ∈ T, we understand 1[a,b](x) as 1[ι(a),ι(b)](ι(x)). For a ∈ T and
n ∈ N, we define as usual na := ∑n

i=1 a. If x ∈ R and a ∈ T, we understand x+ a as
ι−1(x) + a ∈ T.

Let X, Y be two real-valued random variables defined on a common probability
space. If X and Y have the same distribution, we write X

d= Y . If X has the
distribution µ we write X ∼ µ. Let A,B be two events on a common probability
space with probability measure P, then P[A|B] := P[A∩B]

P[B] denotes the conditional
probability of A given B. For a, b ∈ R with a < b, we denote the uniform distribution
on [a, b] as U([a, b]). When a, b ∈ N0 with a < b, U([[a, b]]) is the (discrete) uniform
distribution on [a, b] ∩ N0.

Continued fractions and Koksma’s inequality

In this subsection, we recall several well-known results from the theory of continued
fractions which are heavily used in the proof of Theorem 1.2. For a more detailed
background, we refer the reader to classical literature such as [AS03, RS92]. Every
irrational α ∈ [0, 1) has a unique infinite continued fraction expansion denoted by
[0; a1, a2, . . . ] with convergents pk/qk := [0; a1, . . . , ak] that satisfy the recursions
pk+1 = pk+1(α) = ak+1(α)pk+pk−1, qk+1 = qk+1(α) = ak+1(α)qk+qk−1, k ∈ N,
with initial values p0 = 0, p1 = 1, q0 = 1, q1 = a1. For the sake of brevity, we just
write ak, pk, qk, although these quantities depend on α. Note that the convergents
pk/qk satisfy the inequalities
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(2.1) 1
(ak+1 + 2)qk

⩽ δk := (−1)k(qkα− pk) ⩽
1

ak+1qk
, k ⩾ 1.

Conversely, if |α−p/q| < 1
2q2 , Legendre’s Theorem implies that p/q is a convergent

of α.
Since this article deals with almost sure behaviour, we also make use of the following

classical results that arise from the well-studied area of the metric theory of continued
fractions:

• (Diamond and Vaaler [DV86]): For almost every α,

(2.2)
∑
ℓ⩽K

aℓ − max
ℓ⩽K

aℓ ∼ K logK
log 2 , K → ∞.

• (Khintchine and Lévy, see, e.g., [RS92, Chapter 5, §9, Theorem 1]): For almost
every α,

(2.3) log qk ∼ π2

12 log 2k, k → ∞.

On several positions in the proof, we will make use of Koksma’s inequality which
allows to estimate the error between sums and corresponding integrals. For more
details about this topic and the closely related area of Discrepancy theory, we refer
the reader to [KN74]. Denoting the discrepancy of a sequence (yn)n∈N ⊆ T at stage
N ∈ N by

DN((yn)n∈N) := sup
0⩽ a⩽ b< 1

∣∣∣∣ 1
N

# {1 ⩽ n ⩽ N : ι(yn) ∈ [a, b]} − (b− a)
∣∣∣∣

and the total variation of f : T → R by Var(f), Koksma’s inequality is given by∣∣∣∣∣
N∑
i=1

f(yi) −N
∫
T
f(x)dµ(x)

∣∣∣∣∣ ⩽ Var(f)NDN((yn)n∈N).

In the special case where (yn)n∈N is the Kronecker sequence (nα)n∈N, we have the
estimates

Dqn((yn)n∈N) ≪ 1
qn
, DN((yn)n∈N) ≪ 1

N

k∑
i=1

ai,

where k = k(N) is such that qk−1 ⩽ N < qk. Thus Koksma’s inequality leads (in
this particular case also known as Denjoy-Koksma inequality, see, e.g., [Her79]) to

(2.4) |Sqn(f, α, x0)| ≪f 1, |SN(f, α, x0)| ≪f

k∑
i=1

ai,

with the implied constant being uniform in x0.
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3. Proof of Theorem 1.2

3.1. Preparatory Lemmas

Proposition 3.1. — Let f : T → R be as in Definition 1.1. Let h : T → R be
defined as

h(x) =
ν∑
i=1

Hi

(
ι(x) − 1

2

)
+

ν∑
i=1

Hi

(
1[0,γi)(x) − ι(γi)

)
,

where Hi := limδ→ 0[f(γi − δ) − f(γi + δ)]. Then, for almost every α ∈ T, any N ∈ N
and any y ∈ T, we have

SN(f, α, y) = SN(h, α, y) +Of,α(1),
with the implied constant only depending on f and α.

Proof. — This can be proven analogously to [FH23, Lemma 3.1]. A more detailed
proof can be found in [DS20, Appendix A]. □

Proposition 3.2. — (Duffin and Schaeffer, [DS41, Theorem 3]). Let A ⊆ N be a
set of positive lower density and ψ : N → [0,∞) be a monotone decreasing function
such that ∑∞

q=1 ψ(q) = ∞. Then, for almost every α, there exist infinitely many
coprime (p, q) ∈ Z × A that satisfy |α− p

q
| < ψ(q)

q
.

Proposition 3.3 (Cassels [Cas50, Lemma 9]). — Let (Ik)k∈N ⊆ T be a sequence
of intervals with limk→ ∞ µ(Ik) = 0. Further let c > 0 and (Uk)k∈N be a sequence of
measurable sets that satisfy the following for all k ∈ N:

• Uk ⊆ Ik,
• µ(Uk) ⩾ cµ(Ik).

Then, µ(lim sup
k→ ∞

Uk) = µ(lim sup
k→ ∞

Ik).

Combining the statements above, we can deduce the following result.

Lemma 3.4. — Let A ⊆ N be a set with positive lower density. Then, for almost
every α = [0; a1, a2, . . .] ∈ T, there exists a sequence of even integers (kj)j ∈N such

that qkj
∈ A for all j ∈ N and limj→ ∞

∑kj
i=1 ai

akj +1
= 0.

Proof. — Let ψ(q) = 1
q log q log log q log log log q

(1) , then it holds that ∑q ∈N ψ(q) = ∞ as
well as ψ(q) ⩽ 1 for all q ∈ N.

Let (rk/sk)k∈N be the set of rationals with sk ∈ A and 1 ⩽ rk ⩽ sk − 1 with
gcd(rk, sk) = 1. We define

Ik := ι−1
(
rk
sk

− ψ(sk)
sk

,
rk
sk

+ ψ(sk)
sk

)
and Uk := ι−1

(
rk
sk
,
rk
sk

+ ψ(sk)
sk

)
.

By Proposition 3.2, we have µ(lim supk→ ∞ Ik) = 1. Since clearly Uk ⊆ Ik and
µ(Uk) ⩾ 1

2µ(Ik) for all k ∈ N, an application of Proposition 3.3 shows

(1) For convenience, we set log x := 1 if x ⩽ e.
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µ(lim supk→ ∞ Uk) = 1. In other words, for almost all α ∈ T, there are infinitely
many coprime pairs (p, q) ∈ N×A such that

(3.1) 0 ⩽ α− p

q
<
ψ(q)
q

= 1
q2 log q log log q log log log q .

By Legendre’s Theorem, for q ⩾ 10, the above is only possible if (p, q) is a convergent
of α. Thus, the pairs (p, q), q ⩾ 10 that satisfy (3.1) form a subsequence (pkj

, qkj
)j ∈N

of the sequence of convergents (pk, qk)k∈N. Since α− pkj

qkj
⩾ 0 for all j ∈ N, it follows

by (2.1) that all kj are even. Moreover, by construction of ψ and combining (2.1)
and (2.3), we have akj+1 ≫ kj log kj log log kj. By (2.2) this implies that for almost
every α, we have ∑kj

i=1 ai = o(akj+1). □

Remark 3.5. — By obvious modifications, the statement of Lemma 3.4 also holds
when “even” is replaced by “odd”. In Lemma 3.7, this would lead to an even larger
class of limiting distributions that are realized as limits of certain Birkhoff sums
along suitable subsequences. For our purpose of ruling out any TDLT, the stated
version of Lemma 3.4 is sufficient.

Proposition 3.6. — Let β1, β2, . . . , βν ∈ T \{0}, ν ∈ N. Then there exists δ > 0
such that the set {N ∈ N :∀ 1 ⩽ j ⩽ ν : ∥Nβj∥ > δ} has positive lower density.

Proof. — We partition {βi}νi=1 into rational and irrational numbers. Without
loss of generality, we may assume ι(β1) = a1

b1
, . . . , ι(βk) = ak

bk
∈ Q with ai, bi ∈

N, gcd(ai, bi) = 1, bi ⩾ 2 since βi ̸= 0 for i = 1, . . . , k, and ι(βk+1), . . . , ι(βν) /∈ Q.
Let bπ := ∏k

i=1 bi. Clearly, if N ≡ 1 (mod bπ), then for all 1 ⩽ i ⩽ k, bi ∤ N and
thus, ι(Nβi) ∈ { 1

bi
, . . . , bi−1

bi
}, which is disjoint from (0, δ) ∪ (1 − δ, 1) if δ is chosen

sufficiently small. Since {N ∈ N : N ≡ 1 (mod bπ)} has positive lower density, it
suffices to show that

{M ∈ N :∀ i ∈ {k + 1, . . . , ν} : ∥(Mbπ + 1)βi∥ > δ}

has positive lower density. Since ι(bπβi) /∈ Q for all i = k + 1, . . . , ν, it follows that
{(Mbπβi + βi)}M ∈N is uniformly distributed on T. This immediately shows

lim inf
N → ∞

1
N

# {M ⩽ N :∀ i ∈ {k + 1, . . . , ν} : ∥(Mbπ + 1)βi∥ > δ} ⩾ 1 − 2νδ > 0,

provided δ < 1
2ν . □

3.2. Main Lemma and conclusion of the proof

Lemma 3.7. — Let f(x) = (∑ν
i=1 Hi)(ι(x) − 1

2) +∑ν
i=1 Hi(1[0,γi)(x) − ι(γi)) where

γ1, . . . , γν ∈ T are distinct. Then for almost every α = [0; a1, a2, . . .] ∈ T and any
x0 ∈ T, there exists an increasing sequence (nℓ)ℓ∈N such that the following holds:

• For every ℓ ∈ N, qnℓ
is a denominator of a convergent of α.

• limℓ→ ∞

∑nℓ
i=1 ai

anℓ+1
= 0.
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• The limits
x0 := lim

ℓ→ ∞
qnℓ
x0, γi := lim

ℓ→ ∞
qnℓ
γi, i = 1, . . . , ν

exist and satisfy γi ̸= γ1 for all i = 2, . . . , ν. If γ1 ̸= 0, then γ1 ̸= 0.
• We have

(3.2) lim
ℓ→ ∞

sup
c∈ [0,1]

∣∣∣∣∣S⌊canℓ+1⌋qnℓ
(f, α, x0)

anℓ+1

−
((

ν∑
i=1

Hi

)(∫ c

0
ι(y + x0) dy − c

2

)
+

ν∑
i=1

Hi

(∫ c

0
1[0,γi] (y + x0) dy − ι(cγi)

))∣∣∣∣∣ = 0.

Proof. — Without loss of generality, we may assume that γi ̸= 0 for all i = 1, . . . ν,
since otherwise, we observe that SN(f, α, x0) = SN(f̃ , α, x0 + y0) where f̃(x) =
f(x − y0) and y0 is chosen such that γi + y0 ≠ 0 for all i = 1, . . . , ν. We apply
Proposition 3.6 to

{β1, . . . , β2ν−1} := {γ1, . . . , γν , γ2 − γ1, γ3 − γ1, . . . γν − γ1} ,
which gives us a set A ⊆ N with positive lower density and δ > 0 such that for all
N ∈ A, ∥Nγi∥ > δ and ∥Nγi −Nγ1∥ > δ for i = 2, . . . , ν.

Next, we apply Lemma 3.4 to A: For almost every α ∈ T, there exists a sequence
(qkj

)j ∈N ⊆ A such that the following holds:
• kj is even for all j ∈ N.
• For every j ∈ N, qkj

is a denominator of a convergent of α.

• lim
j→ ∞

∑kj
i=1 ai

akj +1
= 0.

For fixed x0 ∈ T, observe that (qkj
x0)j ∈N, (qkj

γi)j ∈N, i = 1, . . . , ν are (bounded)
sequences in T, thus there exists a subsequence (nℓ)ℓ∈N of (kj)j ∈N such that the
limits

x0 := lim
ℓ→ ∞

qnℓ
x0, γi := lim

ℓ→ ∞
qnℓ
γi, i = 1, . . . , ν

all exist. Since (qnℓ
)ℓ∈N ⊆ (qkj

)j ∈N ⊆ A, we have for any ℓ ∈ N, ∥qnℓ
γi − qnℓ

γ1∥ > δ
and thus, γi ̸= γ1 for all i = 2, . . . , ν.

We now turn our attention to prove (3.2). We set γ0 := 0, γ0 = 0 which allows us
to define the associated sawtooth functions si(x) = ι(x− γi) − 1

2 for all i = 0, . . . , ν.
We then have

(3.3) lim
ℓ→ ∞

S⌊canℓ+1⌋qnℓ
(si, α, x0)

anℓ+1
=
∫ c

0
ι(y + x0 − γi) dy − c

2 ,

with the convergence being uniform in c ∈ [0, 1]. Let ε > 0 be given. We will show
that for any sufficiently large ℓ and any integer u with 0 ⩽ u ⩽ ⌊canℓ+1⌋ that satisfies
∥ u
anℓ+1

+ x0 − γi∥ > ε, we have

(3.4)
∣∣∣∣∣(S(u+1)qnℓ

(si, α, x0) − Suqnℓ
(si, α, x0)

)
−
{

u

anℓ+1
+ ι(x0 − γi)

}
− 1

2

∣∣∣∣∣ < ε.

For ℓ large enough, we have
∥qnℓ

(x0 − γi) − x0 + γi∥ < ε/10.
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Now observe that

S(u+1)qnℓ
(si, α, x0) − Suqnℓ

(si, α, x0)

= Sqnℓ

(
si, α, T

uqnℓ
α (x0)

)
=

qnℓ
−1∑

n=0

{
ι
(
(n+ uqnℓ

)α
)

+ ι(x0 − γi)
}

− qnℓ

2

=
qnℓ

−1∑
n=0

{
n
pnℓ

qnℓ

+ n
δnℓ

qnℓ

+ uδnℓ
+ ι(x0 − γi)

}
− qnℓ

2

=
qnℓ

−1∑
n=0

{
n
pnℓ

qnℓ

+ u/anℓ+1

qnℓ

+ O(1/anℓ+1)
qnℓ

+ ι(x0 − γi)
}

− qnℓ

2

where δnℓ
:= ι(qnℓ

α) = 1
anℓ+1qnℓ

(1 + O( 1
anℓ+1

)), which follows from the assumption
that nℓ is even and we apply (2.1). Since gcd(pnℓ

, qnℓ
) = 1, we have

qnℓ
−1∑

n=0

{
n
pnℓ

qnℓ

+ u/anℓ+1

qnℓ

+ O(1/anℓ+1)
qnℓ

+ ι(x0 − γi)
}

=
qnℓ

−1∑
j=0

{
j

qnℓ

+ u/anℓ+1

qnℓ

+ O(1/anℓ+1)
qnℓ

+ ⌊qnℓ
ι(x0 − γi)⌋
qnℓ

+ ι(qnℓ
(x0 − γi))
qnℓ

}

=
qnℓ

−1∑
j=0

{
j

qnℓ

+ u/anℓ+1 + ι (qnℓ
(x0 − γi))

qnℓ

+ O(1/anℓ+1)
qnℓ

}

=
qnℓ

−1∑
j=0

{
j

qnℓ

+ u/anℓ+1 + ι (x0 − γi)
qnℓ

+ O(1/anℓ+1)
qnℓ

+ Rε

qnℓ

}
,

where Rε := ι(qnℓ
(x0 − γi)) − ι(x0 − γi) which satisfies |Rε| ⩽ ε

10 by the choice of
ℓ. For all integers u with 0 ⩽ u ⩽ ⌊canℓ+1⌋ such that ∥ u

anℓ+1
+ x0 − γi∥ > ε, we have

S(u+1)qnℓ
(si, α, x0) − Suqnℓ

(si, α, x0)

=Sqnℓ

(
si, α, T

uqnℓ
α (x0)

)

=
qnℓ

−1∑
j=0

{
j

qnℓ

+ u/anℓ+1 + ι (x0 − γi)
qnℓ

+ O(1/anℓ+1)
qnℓ

+ Rε

qnℓ

}
− qnℓ

2

=
qnℓ

−1∑
j=0

(
j

qnℓ

+ {u/anℓ+1 + ι (x0 − γi)}
qnℓ

+ O(1/anℓ+1)
qnℓ

+ Rε

qnℓ

)
− qnℓ

2

= {u/anℓ+1 + ι(x0 − γi)} − 1
2 +O(1/anℓ+1) +Rε,

ANNALES HENRI LEBESGUE



On Birkhoff sums that satisfy no temporal distributional limit 261

which proves (3.4). Clearly,

#
{

0 ⩽ u ⩽ ⌊canℓ+1⌋ :
∥∥∥∥∥ u

anℓ+1
+ x0 − γi

∥∥∥∥∥ < ε

}
⩽ 2εanℓ+1 + 2

and by the Denjoy–Koksma inequality (see (2.4)), we have

|S(u+1)qnℓ
(si, α, x0) − Suqnℓ

(si, α, x0)| ≪ 1,

for any 0 ⩽ u ⩽ anℓ+1 − 1. Thus,

S⌊canℓ+1⌋qnℓ
(si, α, x0)

=
⌊canℓ+1⌋−1∑

u=0
S(u+1)qnℓ

(si, α, x0) − Suqnℓ
(si, α, x0)

=
⌊canℓ+1⌋−1∑

u=0

(
{u/anℓ+1 + ι(x0 − γi)} − 1

2 +O(ε) +O (1/anℓ+1)
)

+O (εanℓ+1)

= anℓ+1

(∫ c

0
ι (y + x0 − γi) dy − c

2 +O(ε)
)

+O(1),

where the implied constants in the O-terms depend neither on c nor on ε. In the last
line, we used Koksma’s inequality to compare sum and integral. With ε → 0, (3.3)
follows. Since 1[0,γi](x) = si(x) − s0(x), (3.3) immediately implies that

lim
ℓ→∞

S⌊canℓ+1⌋qnℓ
(1[0,γi], α, x0)
anℓ+1

=
∫ c

0
1[0,γi] (y + x0) dy − cι(γi),

with the convergence being uniform in c ∈ [0, 1]. □

Proof of Theorem 1.2. — We assume that there exist normalizing sequences
(AM)M ∈N and (BM)M ∈N with AM ∈ R, BM > 0 and BM → ∞ such that

(3.5) lim
M→∞

SN(f, α, x0) − AM
BM

d= X,

where N ∼ U([[1,M ]]) and X is a random variable with a non-degenerate distribution,
i.e.X attains at least two different values with positive probability. By Proposition 3.1
and since BM → ∞, we can assume that f is of the form

f(x) =
(
ι(x) − 1

2

) ν∑
i=1

Hi +
ν∑
i=1

Hi

(
1[0,γi)(x) − ι(γi)

)
where Hi ∈ R. Let (nℓ)ℓ∈N be the sequence of integers from Lemma 3.7 and, for
some c ∈ (0, 1], define Mℓ := ⌊canℓ+1⌋qnℓ

+ qnℓ
− 1. Clearly, any N ∈ [0,Mℓ] has

a unique representation of the form N = bℓqnℓ
+ N ′ where 0 ⩽ bℓ ⩽ ⌊canℓ+1⌋ and

0 ⩽ N ′ ⩽ qnℓ
− 1. It follows immediately from the definition that we can decompose

the Birkhoff sum as

SN(f, α, x0) = Sbℓqnℓ
(f, α, x0) + SN ′

(
f, α, T

bℓqnℓ
α (x0)

)
= Sbℓqnℓ

(f, α, x0) + SN ′(f, α, x0 + bℓqnℓ
α).

TOME 7 (2024)



262 L. FRÜHWIRTH & M. HAUKE

Applying the Denjoy–Koksma inequality (see (2.4)) shows that

|SN ′(f, α, x0 + bℓqnℓ
α)| ≪f

nℓ∑
i=1

ai,

which by the properties of (nℓ)ℓ∈N implies that

(3.6) SN ′(f, α, x0 + bℓqnℓ
α)

anℓ+1
= o(1), ℓ → ∞.

If Nℓ ∼ U([[0,Mℓ]]), then it is easy to see that

Nℓ
d= bℓqnℓ

+N ′,

where bℓ ∼ U([[0, ⌊canℓ+1⌋]]), N ′ ∼ U([[0, qnℓ
− 1]]) and bℓ and N ′ are independent.

Using (3.6) we thus get
SNℓ

(f, α, x0)
anℓ+1

d=
Sbℓqnℓ

(f, α, x0)
anℓ+1

+ o(1).

Thus we get for any x ∈ R

1
Mℓ

#
{

1 ⩽ N ⩽Mℓ : SN(f, α, x0)
anℓ+1

⩽ x

}

= 1
Mℓ

#
{

0 ⩽ N ⩽Mℓ : SN(f, α, x0)
anℓ+1

⩽ x

}
+ o(1)

= P
[
SNℓ

(f, α, x0)
anℓ+1

⩽ x

]
+ o(1)

= P
[
Sbℓqnℓ

(f, α, x0)
anℓ+1

⩽ x+ o(1)
]

+ o(1)

= P
[
S⌊Ucanℓ+1⌋qnℓ

(f, α, x0)
anℓ+1

⩽ x+ o(1)
]

+ o(1),

where Uc ∼ U([0, c]). In the last line, we used that

P
[
Sbℓqnℓ

(f, α, x0)
anℓ+1

⩽ y

]
= P

[
S⌊Ucanℓ+1⌋qnℓ

(f, α, x0)
anℓ+1

⩽ y

]
+ o(1),

uniformly in y ∈ R. Moreover, by Lemma 3.7 we get the uniform (and hence almost
sure) limit

lim
ℓ→ ∞

S⌊Ucanℓ+1⌋qnℓ
(f, α, x0)

anℓ+1
= g(Uc),

where, for x ∈ [0, 1],

g(x) :=
(

ν∑
i=1

Hi

)(∫ x

0
ι(y + x0) dy − x

2

)
+

ν∑
i=1

Hi

(∫ x

0
1[0,γi] (y + x0) dy − xι(γi)

)
.

Since g(Uc) has a continuous distribution, this implies that

lim
ℓ→ ∞

1
Mℓ

#
{

1 ⩽ N ⩽Mℓ : SN(f, α, x0)
anℓ+1

⩽ x

}
= P [g(Uc) ⩽ x] .
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Now let ÃM := 0 and B̃M := M
qn(M)

, where qn(M) ⩽M < qn(M)+1. We have shown in
the previous argument that, for any c ∈ (0, 1] and for (nℓ)ℓ∈N as before, we have

lim
ℓ→ ∞

S⌊Ucanℓ+1⌋qnℓ
(f, α, x0) − ÃMℓ

B̃Mℓ

d= cg(Uc).

By the convergence of types theorem (see, e.g., [Bil95, Theorem 14.2]) and since
the limit in (3.5) also holds along every subsequence tending to infinity, there exist
quantities Bc > 0 and Ac ∈ R such that for any c ∈ (0, 1] we have

cg(Uc) d= BcX + Ac.

This implies that for any 0 < c1, c2 ⩽ 1, we can write

(3.7) g(Uc1) d= B(c1, c2)g(Uc2) + A(c1, c2),
where B(c1, c2) > 0 and A(c1, c2) ∈ R.

We now collect a few properties of the function g(x) for x ∈ R. First, we note
that g(0) = g(1) = 0. Further, g is differentiable except in all points of the form
γi + x0 and g is non-constant. To see the latter, we fix δ > 0 small enough such that
δ < mini=2, ..., ν ∥γ1 − γi∥ (which is possible because γ1 ̸= γi for all i = 2, . . . , ν). We
then get

g′
(
ι(γ1 + x0) − δ

2

)
− g′

(
ι(γ1 + x0) + δ

2

)
= δ

(
ν∑
i=1

Hi

)
+H1.

g(ε)

g(δ)

0 ε δ 1

Illustration of the argument above. Clearly, g([0, ε]) = g([0, δ]).

By choice of f , there exists at least one Hi ̸= 0, thus, we may assume H1 ̸= 0.
Since δ can be chosen arbitrarily small, it follows that g′ is not constant and hence
g is not constant. Hence, locally to the right of 0, g(x) is either monotonically
increasing or monotonically decreasing. In the following we discuss the case where
g(x) is increasing, the case where g(x) is decreasing can be handled analogously. It
follows that there exist ε, δ ∈ (0, 1) such that ε < δ with the following properties:
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The function g is increasing on [0, ϵ] with g(ε) > 0. On [ε, δ], g is decreasing and
0 < g(δ) < g(ε).

Using (3.7) we infer

g(Uε) d= B(ε, δ)g(Uδ) + A(ε, δ).
However, by the choice of ε and δ, we have g([0, ε]) = g([0, δ]), which immediately

implies that A(ε, δ) = 0 and B(ε, δ) = 1. In the following, we use that g(Uδ) condi-
tioned on the event [Uδ ⩽ ε] is in distribution equal to g(Uε) and P [g(Uε) ⩽ g(δ)] > 0,
since g(δ) > 0. This leads to

P [g(Uδ) ⩽ g(δ)]
= P [g(Uδ) ⩽ g(δ)|Uδ ⩽ ε]P [Uδ ⩽ ε] + P [g(Uδ) ⩽ g(δ)|Uδ > ε]︸ ︷︷ ︸

=0

P [Uδ > ε]

= P [g(Uε) ⩽ g(δ)]P [Uδ ⩽ ε]
< P [g(Uε) ⩽ g(δ)] ,

which is an immediate contradiction to g(Uε) d= g(Uδ). □
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