
Annales Henri Lebesgue
7 (2024) 267-305

EMILIA BLÅSTEN

PAVEL EXNER

HIROSHI ISOZAKI

MATTI LASSAS

JINPENG LU

INVERSE PROBLEMS FOR
LOCALLY PERTURBED LATTICES
– DISCRETE HAMILTONIAN AND
QUANTUM GRAPH
PROBLÈMES INVERSES POUR TREILLIS
LOCALEMENT PERTURBÉS – HAMILTONIEN
DISCRET ET GRAPHE QUANTIQUE

Keywords: lattice, metric graph, discrete Hamiltonian, S-matrix, inverse porblem.
2020 Mathematics Subject Classification: 81Q10, 81Q35, 81U40.
DOI: https://doi.org/10.5802/ahl.201
(*) M.L. was supported by PDE-Inverse project of the European Research Council of the Eu-
ropean Union and Academy of Finland grants 273979 and 284715. The work of P.E. was sup-
ported by the Czech Science Foundation within the project 21-07129S and by the EU project
CZ.02.1.01/0.0/0.0/16 019/0000778. H.I. is supported by Grant-in-Aid for Scientific Research (C)
20K03667 Japan Society for the Promotion of Science. The work of E.B. was supported by the
Research Council of Finland through the Flagship of Advanced Mathematics for Sensing, Imaging
and Modelling (decision number 359183). This work was supported by the Research Institute for
Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.

https://annales.lebesgue.fr/
https://doi.org/10.5802/ahl.201


268 E. BLÅSTEN, P. EXNER, H. ISOZAKI, M. LASSAS & J. LU

Abstract. — We consider the inverse scattering problems for two types of Schrödinger
operators on locally perturbed periodic lattices. For the discrete Hamiltonian, the knowledge
of the S-matrix for all energies determines the graph structure and the coefficients of the
Hamiltonian. For locally perturbed equilateral metric graphs, the knowledge of the S-matrix
for all energies determines the graph structure.

Résumé. — Nous considérons les problèmes de scattering inverse pour deux types d’opéra-
teurs de Schrödinger sur des réseaux périodiques localement perturbés. Pour le hamiltonien
discret, la connaissance de la S-matrice pour toutes les énergies détermine la structure du
graphe et les coefficients du hamiltonien. Pour les graphes métriques équilatéraux localement
perturbés, la connaissance de la S-matrice pour toutes les énergies détermine la structure du
graphe.

1. Introduction

1.1. The goal of this work

There are two basic models for describing the motion of quantum mechanical
particles on a periodic lattice. In the first model, the configuration space consists of
graph vertices only and the Hamiltonian is written as a difference operator which
is determined by the adjacency matrix. We refer to this operator as the discrete
Schrödinger operator in this paper. In the other model, the wave functions are
supported on the graph edges and the Hamiltonian is a differential operator on the
edges. This model is called the quantum (or metric) graph.

The aim of this paper is twofold. The first topic concerns a locally perturbed
periodic lattice, for instance, square, hexagonal or triangular. We analyze the discrete
Schrödinger operator having the form

(1.1) ĤΓ : û→ 1
µv

∑
w ∼ v, w ∈ Γ

gvwû(w) + q(v)û(v), v ∈ Γ,

on a finite part of the graph Γ and prove the following result (Theorem 5.11):
• Given a locally perturbed periodic lattice of certain class and the associated

discrete Hamiltonian ĤΓ, from the knowledge of the S-matrix for all energies,
we can determine the graph structure, that is, there exists an isomorphism
between two such lattices. Moreover, if µv is equal to the degree of v (see (2.1)),
we can determine gvw and q(v).

Here, a local perturbation of lattice means replacing a finite number of edges and
vertices by a finite number of other edges and vertices and changing the weights
gvw and the potentials q(v) on a finite number of edges and vertices, respectively.
The S-matrix is introduced by observing the behavior at infinity of solutions to the
Schrödinger equation on the lattice (Theorem 5.4).

As usual, we assume that our discrete graph is simple, i.e. for two vertices v, w
there is at most one edge having v, w as end points, and in addition, that each edge
has different end points. The main assumptions are (C-1), (C-2) (see also C-1’),
(D-1)–(D-4), and (E-1) given in § 3 and § 5.

With regards to concrete examples, we can include the square, triangular, hexago-
nal lattices and their ladders. For the sake of definiteness, let us speak of a connected
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Inverse problems for locally perturbed lattices 269

infinite hexagonal lattice, on a finite part of which horizontal edges are arbitrarily
removed, and a Schrödinger operator ĤΓ with a compactly supported scalar potential
q(v). Then, we can determine the graph structure, gvw and q(v) from the S-matrix
for all energies.

The other topic of this paper concerns the Schrödinger operator on a metric graph
Γ = {V , E}, with vertex set V and edge set E , and the topology determined by an
appropriate adjacency matrix. The metric character of the graph means that each
edge is identified with a line segment, in our case finite, and parametrized by its
arclength. This makes it possible to endow Γ naturally with the metric defined as
the length of the shortest path between two points. We do not fix the orientation of
a given edge e, that is, the graph is undirected. As in the discrete case, we assume
that for v, v′ ∈ V, there exists at most one edge with end points v, v′, and that Γ
has no loops. This can be assumed without loss of generality, since otherwise one
can insert a ‘dummy’ vertex of degree 2 to any ‘superfluous’ edge. By a function f̂
on Γ, we mean a collection of functions f̂ = {f̂ e}e ∈ E , each f̂ e being a function on
the edge e with a parametrization e(·) : [0, ℓe] → e such that f̂(p) = f̂ e(e(z)) for
p = e(z). We often denote f̂ e(z) instead of f̂ e(e(z)). We fix the parametrization e(·)
for each e. Hence ℓe is a given positive constant, which we say to be the length of e.
With each edge e ∈ E , we associate a one-dimensional Schrödinger operator

(1.2) he := − d2

dz2 + Ve(z), z ∈ [0, ℓe] =: Ie.

To convert the collection of operators (1.2) into a self-adjoint Schrödinger operator
on the whole graph, one has to impose conditions matching the functions at the
vertices. In general, self-adjoint operators referring to the differential expression in
question are parametrized by deg v × deg v unitary matrices, cf. [KS99] or [BK13,
Theorem 1.4.4]. If we require continuity of the functions at the vertices, however, this
multitude is reduced to a one-parameter family, which we adopt in our case. To be
concrete, for f̂ ∈ H2

loc(E), we impose the generalized Kirchhoff condition, otherwise
known as δ-coupling: if f̂ = {f̂ e}e ∈ E such that f̂ ∈ C(E) and f̂ e ∈ C1(Ie), it holds
that
(1.3)

∑
v ∈ e

f̂ ′
e(v) = Cvf̂(v), v ∈ V ,

where f̂ ′
e(v) is given by (2.2) and v ∈ e means that v is an endpoint of the edge e, Cv

is a real constant, f̂(v) = f̂ e(0) if e(0) = v. Here f̂ ∈ C(E) means that f̂ e(v) = f̂ e′(v)
if v ∈ e∩e′ and that f̂ , thus defined globally on E , is continuous on the whole graph
Γ. One should be careful about the definition of the Sobolev space Hm(E). In this
paper, we do not assume the continuity for f̂ ∈ Hm(E) at the junctions V . See (2.3).
Note that such a Hamiltonian can be defined as the norm-resolvent limit as κ→∞
of the following operators,

h̃e,κ = − d2

dz2 + Ve(z) + κWe(κz),

with the usual Kirchhoff condition ∑
v ∈ e f̂

′
e(v) = 0 for any v ∈ V, where Cv :=∑

v ∈ e

∫
e We(z) dz and We ∈ L1(e) is a fixed function, cf. [Exn96]. Note also that the
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singular vertex couplings with functions discontinuous at the vertex also allow for
an interpretation, but the corresponding approximation procedure is considerably
more complicated, see [CET10].

We develop an inverse spectral and scattering theory associated with such quantum
graphs which would facilitate a recovery of the graph structure, potentials Ve(z),
and constants Cv. Roughly speaking, we consider a locally perturbed periodic graph.
More precisely, we consider equilateral metric graphs with identical potentials on
the edges, and prove the following result (Theorem 7.2):

• Consider an infinite quantum graph Γ = {V , E} on which all ℓe, Ve(z) coincide
for all e ∈ E , and Cv/deg v coincide for all v ∈ V . If Γ is a local perturbation of
a periodic lattice of a certain class, then we can determine the graph structure
of Γ from the S-matrix for all energies.

Using this result, one can deal with the square, triangular, hexagonal lattices and
their ladders, for which the coupling constant Cv in (1.3) and the degree dv in (2.1)
of each vertex v is determined from the S-matrix of all energies. An application of
this result we have in mind is a network of semicondutor nanowires the width of
which is changing along the edge; the transverse contribution to energy gives rise to
an effective potential.

The proof will be done by showing the equivalence of the S-matrix and the Dirichlet-
to-Neumann (D-N) map in a bounded domain, and by reducing the problem to inverse
problems for discrete Schrödinger operators of the type (1.1).

1.2. Plan of the work

We proceed in the following steps.
(1) Preliminaries on metric graphs (§ 2).
(2) Inverse boundary value problem with the D-N map for a finite graph (§ 3):

Use the results from [BILL23a] to determine the structure of finite discrete
graphs and quantum graphs from the knowledge of the corresponding D-N
map.

(3) Inverse scattering for discrete Hamiltonians (§ 5): Show that the S-matrix and
the D-N map are equivalent and thus reduce the inverse scattering problem
to the inverse boundary value problem.

(4) Inverse scattering for quantum graphs (§ 6, § 7): Develop the spectral and
scattering theory for locally perturbed periodic graph Laplacians, show that
the S-matrix and the D-N map are equivalent, and recover the perturbations
from the D-N map.

Since we use a number of assumptions and the notation is not always simple, we
add for the reader’s convenience their overview in the following table:

Assumptions
(M-1) - (M-5) §2 (A-1) - (A-4) [AIM18, §2.3]
(B-1) - (B-3) [AIM18, §2.3] (C-1), (C-2), (C-1’) § 3.1, § 3.2

(D-1) - (D-4) § 5.1 (E-1) § 5.4
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Notations
he (1.2) Cv (1.3) dv (2.1) ϕe0(z, λ) (2.6) ϕe1(z, λ) (2.7)
re(λ) (2.8) ∆̂V,λ (2.11) Q̂V,λ (2.12) T̂V,λ (2.13) ΛV(λ) (3.5)
ΛE(λ) (3.3) ℓE , VE(z) (4.1) κV (4.2) UV (5.3) ∆̂Γ0 (5.4)
T1 (D-1) T0 (D-2) P̂ext (5.8) ≃ (5.15) Σ (3.1)
E(λ) (6.4) σ(0)(h(0)) (6.6) σ(0)(−∆̂V) (6.7) σ

(0)
T (6.8) T (6.9)

Acknowledgments

Views and opinions expressed are those of the authors only and do not necessarily
reflect those of the European Union or the other funding organizations. Neither the
European Union nor the other funding organizations can be held responsible for
them. The authors are indebted to providers of the indicated support.

2. Metric graph and the associated discrete operator

Rephrasing the treatment of a Schrödinger operator, with or without a potential,
on a metric graph to the analogous problem on a combinatorial (or discrete) graph
is a well-known procedure that has been discussed in many papers, e.g. [BER15,
Cat97, Exn97, Pan13]. We repeat it here mainly to fix notations. Let Γ = {V , E}
be a metric graph with the vertex set V and edge set E . Note that for the metric
graph, an edge e ∈ E is a segment between two vertices while for the discrete graph,
an edge is a pair of vertices. To avoid the complexity of notation, we use the same
symbol evw for an edge with endpoints v, w for both graphs, often omitting v, w.
However, we will make a distinction between them in the arguments in §2 following
Definition 2.1 and those in §3.1. For v, w ∈ V, we say that v and w are adjacent,
denoted by v ∼ w, if there exists an edge having v and w as its endpoints. For an
edge e ∈ E and v ∈ V, v ∈ e means that v is an end point of e. The degree of a
vertex v ∈ V is defined as

(2.1) dv := deg v = ♯{e ∈ E ; v ∈ e}.

Recall that for adjacent v, v′ ∈ V , the edge joining v and v′ is unique by assumption.
For a function f̂ = {f̂ e}e ∈ E on Γ, with f̂ e : Ie → C, and e ∈ E with v ∈ e, we
define

(2.2) df̂

dνe

(v) := f̂ ′
e(v).

When computing the right-hand side, we parametrize e as e(z), z ∈ [0, ℓe] with
e(0) = v, and the boundary derivative is taken in the outward direction with respect
to v, see [BK13, § I.4]. Equivalently, the boundary derivatives can be written as

df̂

dνe

(e(0)) = f̂ ′
e(0), df̂

dνe

(e(ℓe)) = −f̂ ′
e(ℓe),
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where ℓe is the length of the edge e. For the sake of brevity, we use the following
shorthand notation: ∫

e
û =

∫ ℓe

0
û(z)dz.

Then the following Green’s formula holds:

−
∫

e
(û′)′ŵ = dû

dνe

ŵ

∣∣∣∣∣
e(0)

+ dû

dνe

ŵ

∣∣∣∣∣
e(ℓe)

+
∫

e
û′ŵ′.

For an edge e ∈ E , let L2(e) be the set of all L2-functions on e, conventionally
understood as equivalence classes of functions coinciding a.e., and put

L2(E) =
⊕

e ∈ E
L2(e).

For û = {ûe}e ∈ E and ŵ ∈ {ŵe}e ∈ E , let (û, ŵ)E be the inner product:

(û, ŵ)E =
∑
e ∈ E

(ûe, ŵe)e =
∑
e ∈ E

∫
e
ûeŵe.

The Sobolev spaces are defined by
(2.3) Hm(E) =

⊕
e ∈ E

Hm(e).

Note that different conventions are used and sometimes the definition may involve
the continuity at the vertices, see [BK13, Definition I.3.6].

Given a real-valued function Ve ∈ L1(e) on each e ∈ E , we define a multiplication
operator V by (

V û
)

e
(z) = Ve(z)ûe(z).

Let Cv be as in (1.3). Throughout the paper we impose the following requirements:
(M-1) 0 < infe ℓe ⩽ supe ℓe <∞,
(M-2) supv ∈ V dv <∞,
(M-3) supe ∈ E ∥Ve∥L1(e) <∞,
(M-4) Ve(z) = Ve(ℓe − z),
(M-5) supv ∈ V |Cv| <∞.
Naturally all of these requirements except the symmetry condition (M-4) are satisfied
automatically if the graph Γ is finite. We define the operator ĤE by

(2.4)
(
ĤE û

)
e
(z) = −û′′

e(z) + Ve(z)ûe(z)

acting on Ie, with the domain consisting of functions

(2.5) û ∈ D(ĤE)⇐⇒

 û ∈ H2(E), û ∈ C(E),∑
v ∈ e û

′
e(v) = Cvû(v), v ∈ V .

It is straightforward to check that ĤE is self-adjoint.
Let λ ∈ C \ R. For any edge e ∈ E , let ϕe0(z, λ) and ϕe1(z, λ) be the solutions of
−ϕ′′ + Veϕ = λϕ on Ie satisfying the boundary conditions

ϕe0(0, λ) = 0, ϕ′
e0(0, λ) = 1,(2.6)

ϕe1(ℓe, λ) = 0, ϕ′
e1(ℓe, λ) = −1.(2.7)
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Note that ϕe1(z, λ) = ϕe0(ℓe − z, λ) by the symmetry condition (M-4). Let re(λ)
be the Green operator of −d2/dz2 + Ve(z) − λ on e with the Dirichlet boundary
condition:

re(λ)f̂ e =
(
− d2

dz2 + Ve(z)− λ
)−1

f̂ e =
∫

Ie

re(z, z′, λ)f̂ e(z′)dz′,(2.8)

where the integral kernel is given by

re(z, z′, λ) =− 1
We(λ)

{
ϕe0(z, λ)ϕe1(z′, λ), 0 < z < z′,
ϕe1(z, λ)ϕe0(z′, λ), 0 < z′ < z,

We(λ) = ϕe0(z, λ)ϕ′
e1(z, λ)− ϕ′

e0(z, λ)ϕe1(z, λ).

Note that the Wronskian for the system ϕe0 and ϕe1 is independent of z. Let û =
(ĤE − λ)−1f̂ . Then on each edge e, the function ûe(z, λ) can be written as

(2.9) ûe(z, λ) = ce(ℓe, λ) ϕe0(z, λ)
ϕe0(ℓe, λ) + ce(0, λ)ϕe1(z, λ)

ϕe1(0, λ) + re(λ)f̂ e,

where the constants ce(ℓe, λ), ce(0, λ) are determined by the δ-coupling condition (1.3).
Since ϕ′

e0(0, λ) = 1, we infer that

d

dz
re(λ)f̂ e

∣∣∣∣
z=0

= −
∫

Ie

ϕe1(z′, λ)
We(λ) f̂ e(z′) dz′,

and consequently we have using ϕ′
e1(0, λ) = −ϕ′

e0(ℓe, λ) and ϕe1(0, λ) = ϕe0(ℓe, λ)

û′
e(0, λ) = 1

ϕe0(ℓe, λ)

(
ce(ℓe, λ)− ϕ′

e0(ℓe, λ)ce(0, λ)
)
−
∫

Ie

ϕe1(z′, λ)
We(λ) f̂ e(z′) dz′.

Since ûe(0, λ) = ce(0, λ), the δ-coupling condition (1.3) can be rewritten as

(2.10)
∑

e(0)=v

(
1

ϕe0(ℓe, λ)

(
ce(ℓe, λ)− ϕ′

e0(ℓe, λ)ce(0, λ)
)
− Cv

dv

ce(0, λ)
)

=
∑

e(0)=v

∫
Ie

ϕe1(z′, λ)
We(λ) f̂ e(z′) dz′.

To make the dependence on the edge parametrization more visible, we alternatively
write f̂ e(e(z)) instead of a function f̂ e(z) on Ie.

From here until the end of § 3.1, we denote the functions on the metric graph by
û, ûe and those of the discrete graph by û, ûe.

Let us begin with recalling relations between Schrödinger operators he on edges
and the discrete Laplacian on vertices (Lemmas 2.2 and 2.3) which have been already
found in [Cat97, Exn97, Pan06, Pan13].

Definition 2.1. — The weighted discrete graph Laplacian ∆̂V,λ : ℓ2(V)→ ℓ2(V)
on V, associated with the Schrödinger operator on Γ specified by (1.2) and (1.3),
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274 E. BLÅSTEN, P. EXNER, H. ISOZAKI, M. LASSAS & J. LU

acts on a function û(v) on V as(
∆̂V,λû

)
(v) = 1

dv

∑
e(0)=v, e ∈ E

1
ϕe0(ℓe, λ) û(e(ℓe))

= 1
dv

∑
w∼v, w ∈ V

1
ϕe0(w, λ) û(w).

(2.11)

We introduce the discrete scalar potential Q̂V,λ = {Q̂v,λ}v ∈ V by

(2.12) Q̂v,λ = 1
dv

∑
v ∈ e, e ∈ E

ϕ′
e0(ℓe, λ)
ϕe0(ℓe, λ) + Cv

dv

.

Note that e(0) = v and e(ℓe) = w hold in the definitions (2.11) and (2.12).

Furthermore, defining

(2.13)
(
T̂V,λf̂

)
(v) := 1

dv

∑
e(0)=v

∫
Ie

ϕe0(z, λ)
ϕe0(ℓe, λ) f̂ e

(z) dz,

we can rewrite the coupling condition (2.10) in the following way.

Lemma 2.2. — The δ-coupling condition (1.3) can be expressed as

(2.14)
(
−∆̂V,λ + Q̂V,λ

)
û(v) = T̂V,λf̂(v), v ∈ V .

Assuming that the equation (2.14) is solvable, we write û = {ûe}e ∈ E in the form
of (2.9) with ce(0, λ), ce(ℓe, λ) being the vertex values of û(v) at v = e(0) and
v = e(ℓe), respectively. Then we have

û
∣∣∣
V

=
(
− ∆̂V,λ + Q̂V,λ

)−1
T̂V,λf̂ .

Note further that the adjoint operator (T̂V,λ)∗ acts as( (
T̂V,λ

)∗
ĝ
)

e
(z) =

∑
v=e(0)

1
dv

ϕe0(z, λ)
ϕe0(ℓe, λ)

ĝ(v)

= 1
de(0)

ϕe0(z, λ)
ϕe0(ℓe, λ)

ĝ(e(0)) + 1
de(ℓe)

ϕe1(z, λ)
ϕe1(0, λ)

ĝ(e(ℓe)),
(2.15)

where in the first line we consider both orientations of the edge e, while in the second
line we fix one orientation. Now we define the operator rE(λ) on E by

rE(λ)f̂ = re(λ)f̂
e

on e,

and we arrive at the following Krein-type formula expressing the resolvent through
its comparison to that of the Dirichlet-decoupled graph.

Lemma 2.3. — The resolvent R̂E(λ) = (ĤE − λ)−1 is expressed as

R̂E(λ) =
(
T̂V,λ

)∗ (
− ∆̂V,λ + Q̂V,λ

)−1
T̂V,λ + rE(λ).

Let us note here that for λ /∈ R, the coefficients of ∆̂V,λ and Q̂V,λ are not real and
hence the existence of the inverse (−∆̂V,λ + Q̂V,λ)−1 is not obvious. We postpone its
justification until § 6, and admit Lemma 2.3 as a formal formula for the moment.
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3. Inverse boundary value problem for a finite graph

3.1. The D-N maps

In this section, we consider a finite graph Γ = {V , E} with boundary. Assume that
(C-1) The vertex set V consists of two disjoint parts called boundary ∂V and interior

Vo. Each boundary vertex is connected to only one interior vertex. Moreover,
there are no edges between the boundary vertices.

Under the assumption (C-1), we write {Vo, ∂V , E} instead of {V , E}. Note that,
topologically speaking, the notion of the graph boundary is not trivial; here we use
the freedom to determine it ad hoc to suit our purposes.

Let ĤE be the quantum graph Schrödinger operator on the finite graph Γ as in
the previous section with Dirichlet boundary condition on the boundary ∂V . We put

(3.1) σ′ :=
( ⋃

e ∈ E
σ(he)

)
∪
{
λ ∈ C ; det

(
−∆̂V,λ + Q̂V,λ

)
= 0

}
,

which is discrete in C, as Γ is a finite graph. Note σ(ĤE) ⊂ σ′. Let he be the
differential operator on e as in (1.2). Then for any λ ̸∈ σ(ĤE) and given boundary
data f̂ , there is a unique solution û = {ûe}e∈E to the equation

(3.2)


(he − λ)ûe = 0 on ∀ e ∈ E ,
û = f̂ on ∂V ,
δ-coupling condition (1.3).

Here, as in (2.5), û is assumed to be in C(Γ). Using the solution û, we define the
D-N map ΛE(λ) : Cm → Cm, m = ♯∂V , by

(3.3) ΛE(λ) : f̂ → û′
e(v), e(0) = v ∈ ∂V .

Recall for v ∈ ∂V the edge with end point v is unique by our assumption.
Under the Dirichlet boundary condition on the boundary e(0) and e(ℓe), he has

discrete spectrum, and for any λ ̸∈ ∪e ∈ Eσ(he), we have ϕe0(ℓe, λ) ̸= 0. Hence the
weighted discrete Laplacian (2.11) is well defined. We consider the boundary value
problem for the corresponding Schrödinger-type operator ĤV,λ =: −∆̂V,λ + Q̂V,λ on
the vertex set V with the boundary value f̂ on ∂V , namely

(3.4)


(
−∆̂V,λ + Q̂V,λ

)
û(v) = 0, v ∈ Vo = V \ ∂V ,

û(v) = f̂(v), v ∈ ∂V .

Note that û = {ûe}e ∈ E is the solution to the edge Schrödinger equation (3.2) if and
only if û|V is the solution to the vertex Schrödinger equation (3.4) (cf. [Exn97]).

Using the solution ûV , which depends also on λ and is denoted by ûV(v, λ), we
next define the D-N map for ĤV,λ : Cm → Cm by

(3.5) ΛV(λ) : f̂ → 1
ϕe0(w, λ) ûV(w, λ), w = e(ℓe), v = e(0) ∈ ∂V .
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Therefore, ΛE(λ) and ΛV(λ) are meromorphic functions of λ with poles in the
discrete set σ′. Recall that given a subset A ⊂ V and an edge e ∈ E , we say that e
is adjacent to A, if e(0) ∈ A and e(ℓe) ̸∈ A.

Lemma 3.1. — Assuming that we know ℓe and Ve(z) for all e adjacent to ∂V,
then ΛE(λ) and ΛV(λ) determine each other for any λ ̸∈ σ′.

Proof. — Given the solution û to (3.2), the corresponding û|V solves (3.4). Con-
versely, given the solution ûV of (3.4), we define û by

ûe(z) = ce(ℓe, λ) ϕe0(z, λ)
ϕe0(ℓe, λ) + ce(0, λ)ϕe1(z, λ)

ϕe1(0, λ) ,

where on the edge with the initial vertex v = e(0) ∈ ∂V , we put
ce(0, λ) = f̂(v).

The function û defined in this way solves (3.2). The D-N map for ĤE is

ΛE(λ) : f̂ → ce(ℓe, λ) 1
ϕe0(ℓe, λ) + f̂(v)ϕ

′
e1(0, λ)
ϕe1(0, λ) , v = e(0) ∈ ∂V .

The D-N map for ĤV,λ is, by (3.5), taking w = e(ℓe),

(3.6) ΛV(λ) : f̂ → 1
ϕe0(ℓe, λ)

ce(ℓe, λ) +
f̂(v)

ϕe1(0, λ)

 .
Since we know ϕe0(z, λ), ϕe1(z, λ) for edges e adjacent to ∂V, the knowledge of
the D-N maps for both the ĤE and ĤV,λ is thus equivalent to that of the initial
value problem or the two-point boundary value problem for he − λ on each edge e.
Consequently, the two D-N maps are equivalent. □

3.2. A reminder: inverse problem for the discrete graph Laplacian.

To make this paper self-contained, let us recall a result obtained in [BILL23a] as
follows. We say that the collection Γ = {Vo, ∂V , E , µ, g} is a weighted discrete graph
with boundary, if it satisfies the following conditions.

• {Vo ∪ ∂V , E} is an undirected simple discrete graph satisfying (C-1).
• µ : Vo ∪ ∂V → R+ is a weight function on vertices.
• g : E → R+ is a weight function on edges.

We say Γ is finite (resp. connected) if {Vo ∪ ∂V , E} is finite (resp. connected). When
the weights µ, g are not relevant in a specific context, we write {Vo, ∂V , E} for short.
In § 3.2 and § 5.4, we use x, y, z to refer to vertices in V .

Given a subset S ⊂ Vo, we say that x0 ∈ S is an extreme point of S with respect
to ∂V if

∃ z ∈ ∂V such that d(x0, z) < d(x, z), ∀ x ∈ S, x ̸= x0,

where d(x, y) is the distance of x, y ∈ Vo ∪ ∂V understood as the minimum number
of edges forming a path connecting the two points x, y. The following Two-Points
Condition for {Vo, ∂V , E} is imposed:
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(C-2) For any subset S ⊂ Vo with ♯S ⩾ 2, there exist at least two extreme points
of S with respect to ∂V .

We consider the set of points adjacent to the boundary defined as

N(∂V) = {x ∈ Vo ; ∃ z ∈ ∂V , such that x ∼ z} ∪ ∂V .

We say that two weighted graphs with boundary Γ, Γ′ are boundary isomorphic if
there exists a bijection Φ0 : N(∂V)→ N(∂V ′) with the following properties.

(i) Φ0|∂V : ∂V → ∂V ′ is bijective.
(ii) For any z ∈ ∂V , y ∈ N(∂V) the equivalence y ∼ z ⇐⇒ Φ0(y) ∼′ Φ0(z) holds,

where x′ ∼′ y′ means that x′, y′ are adjacent in V ′ ∪ ∂V ′.

The graph Laplacian ∆̂Γ is defined by

(
∆̂Γu

)
(x) = 1

µx

∑
y ∼ x, y ∈ Vo ∪ ∂ V

gxy

(
u(y)− u(x)

)
, x ∈ Vo,

and the Neumann derivative at the boundary is defined by

(3.7) (∂νu) (z) = 1
µz

∑
x ∼ z, x ∈ Vo

gxz

(
u(x)− u(z)

)
, z ∈ ∂V .

Moreover, adding a potential function q on Vo to ∆̂Γ, we can define the D-N map in
the same way as in the previous section.

The following result is valid, cf. [BILL23a, Theorems 1 and 2].

Theorem 3.2. — Let Γ = {Vo, ∂V , E , µ, g} and Γ′ = {Vo′, ∂V ′, E ′, µ′, g′} be two
finite weighted graphs with boundary satisfying (C-1), (C-2), and let q, q′ be real-
valued potential functions on Vo,Vo′. Suppose Γ and Γ′ are boundary isomorphic
via Φ0, and their D-N maps coincide for all energies. Then, there exists a bijection
Φ : Vo ∪ ∂V → Vo′ ∪ ∂V ′ such that

(1) Φ
∣∣∣
∂V

= Φ0

∣∣∣
∂V

.
(2) x ∼ y ⇐⇒ Φ(x) ∼′ Φ(y), ∀ x, y ∈ Vo ∪ ∂V .

Identifying vertices of Γ with those of Γ′ by this bijection, assume furthermore that
µz = µ′

z, gxz = g′
xz for all z ∈ ∂V , x ∈ Vo such that z ∼ x. Then we have

(3) If µ = µ′, then g = g′, q = q′.
(4) If q = q′ = 0, then µ = µ′ and g = g′.

In particular, if µ(v) = deg v and µ′(v′) = deg v′ holds for all v ∈ Vo and v′ ∈ Vo′,
respectively, then g = g′, q = q′.
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Remark 3.3. — Let us add three remarks.
(1) The theorems in [BILL23a] that we refer to were formulated in terms of

Neumann boundary spectral data; however, the claims hold for the Dirichlet
boundary spectral data as well with a minor modification of the proof.

(2) Under the conditions (C-1), (C-2), the Neumann boundary spectral data
determine the N-D maps for all energies, that is, the N-D map of −∆̂Γ − λ
for all λ, and vice versa, see Lemma 5.8 below. In the same way, the Dirichlet
boundary spectral data and the D-N maps for all energies determine each
other.

(3) We can replace the assumption (C-1) by
(C-1’) For any z ∈ ∂V and any x, y ∈ Vo, if x ∼ z, y ∼ z, then x ∼ y.
cf. [BILL23a]. Inspecting Figures 5.1 – 5.4 in § 5 below, we see that (C-1) is satisfied
for the hexagonal lattice, but not, e.g., for the triangular lattice. The latter, however,
is covered by (C-1’). All the arguments below work under the assumption (C-1’)
with minor modification. For the sake of simplicity, we adopt (C-1) in this paper.

For a similar result for trees, we refer to [GR22].

4. Equilateral graphs

Suppose we are given a finite quantum graph Γ = {V , E} satisfying (C-1), (C-2).
We further assume that there exist a number ℓE and a function VE(z) such that
(4.1) ℓe = ℓE , Ve(z) = VE(z), ∀ e ∈ E .
Moreover, assume that

(4.2) kV := Cv

dv

is independent of v ∈ V .

Let ϕ0(z, λ) and ϕ1(z, λ) be ϕe0(z, λ), ϕe1(z, λ) in § 2. By (2.11) and (2.12), the
discrete graph Laplacian ∆̂V,λ and the vertex potential Q̂V,λ can be rewritten as

(4.3)
(
∆̂V,λû

)
(v) = 1

dv

1
ϕ0(ℓE , λ)

∑
w ∼ v

û(w), v ∈ V ,

(4.4) Q̂V,λ = 1
ϕ0(ℓE , λ)EE(λ), EE(λ) = ϕ′

0(ℓE , λ) + kVϕ0(ℓE , λ).

Thus (4.3) and (4.4) differ by a multiplicative constant ϕ0(ℓE , λ) from the discrete
operator with the graph Laplacian (∆̂V û)(v) := 1

dv

∑
w ∼ v û(w) and potential EE(λ).

This amounts to considering a graph Γ̃ with the same edge set E and the vertex
set V as our original Γ, and µv = dv, gvw = 1. We let λ vary and use analytic
continuation: if we are given the D-N map for the original quantum graph Γ for
all energies, we can obtain the D-N map of the above discrete operator ∆̂V for all
energies, and, mutatis mutandis, the Dirichlet boundary spectral data for ∆̂V under
the conditions (C-1), (C-2). Note that the D-N map for the operator ∆̂V acts as
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û(v)7→û(w), w ∼ v ∈ ∂V, w ∈ Vo; by (3.6) it can be computed from the D-N map
of ∆̂V,λ if we know ϕ0(z, λ), i.e. ℓE and VE(z).

Suppose now that we are given two such graphs Γ̃ = {V , E} and Γ̃′ = {V ′, E ′}.
Applying then Theorem 3.2 with µx = dx, gxy = 1, we infer that there is a bijection
(4.5) Φ : Γ̃→ Γ̃′

preserving the graph structure. Setting v′ = Φ(v), we conclude that
dv = dv′ , ∀ v ∈ Vo,

and consequently
Cv = C ′

v′ , ∀ v ∈ Vo.

In this way, we have proven the following theorem:
Theorem 4.1. — Let Γ = {V , E} and Γ′ = {V ′, E ′} be two finite quantum

graphs satisfying assumptions (C-1), (C-2), (4.1), (4.2) and ℓE = ℓE ′ , VE(z) = VE ′(z),
kV = kV ′ . Suppose that Γ and Γ′ are boundary isomorphic and that the D-N maps
for the Schrödinger operator for the two quantum graphs coincide for all energies.
Then there is a bijection Φ : Γ → Γ′ preserving the graph structure, and dv = dv′ ,
Cv = C ′

v′ hold for all v ∈ Vo and v′ = Φ(v).

5. Inverse scattering for the discrete Hamiltonian

It is known that the potential of the discrete Schrödinger operator on periodic
square or hexagonal lattices can be uniquely recovered from the knowledge of the scat-
tering matrix of all energies, see [And13, IK12]. Furthermore, the forward and inverse
scattering problems have been considered for infinite graphs that are local perturba-
tions of periodic lattices in [AIM16, AIM18]. For several standard types of lattices,
it was shown in [AIM18] that the scattering matrix for the discrete Schrödinger
operator on locally perturbed lattices determines the Dirichlet-to-Neumann map for
the discrete Schrödinger equation on the perturbed subgraph. In this section, we
apply Theorem 3.2 to recover the potential on locally perturbed lattices, as well as
to recover the structure of the perturbed subgraph (see Theorem 5.11). This result
may be applied, in particular, to probe graphene defects from the knowledge of the
scattering matrix, see Figures 5.1 and 5.2.

5.1. Periodic lattices and local perturbations

To begin with, we review a framework of the scattering theory on perturbed
periodic lattices used in [AIM16, AIM18]. A periodic graph in Rd is a triple Γ0 =
{L0,V0, E0}, where E0 is the edge set, and L0 is a lattice of rank d in Rd with a basis
vj, j = 1, · · · , d, in other words

(5.1) L0 =
{
v(n) : n ∈ Zd

}
, v(n) =

d∑
j=1

njvj, n = (n1, · · · , nd) ∈ Zd.

TOME 7 (2024)



280 E. BLÅSTEN, P. EXNER, H. ISOZAKI, M. LASSAS & J. LU

Figure 5.1. Periodic hexagonal lattice. The white vertices are considered to be
the boundary vertices for the subgraph of the blue (interior) vertices.

Figure 5.2. A hexagonal lattice of Figure 5.1 with one blue edge removed. By
Theorem 5.11, the exact structure of such graphs and the potential can be
uniquely recovered from the scattering matrix.

Figure 5.3. A triangular lattice satisfying (C-1’).

The vertex set V0 is defined by

(5.2) V0 =
s⋃

j=1

(
pj + L0

)
,
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Figure 5.4. A triangular lattice satisfying (C-1’) of Figure 5.3 with one blue
edge removed. By Theorem 5.11, the exact structure of such graphs and the
potential can be uniquely recovered from the scattering matrix.

where pj, j = 1, · · · , s, are points in Rd satisfying pi − pj ̸∈ L0 if i ̸= j. We
assume that the degree of vertices are equal for all vertices v ∈ V0 and denote
it by degV0 . From (5.2), we know that any function f̂ on V0 can be written as
f̂(n) = (f̂1(n), · · · , f̂s(n)), n ∈ Zd, where f̂j(n) is a function on pj + L0. Hence the
associated Hilbert space is ℓ2(V0) = ℓ2(Zd)s, and it is unitarily equivalent to L2(Td)s,
where Td is the flat torus Rd/(2πZ)d, by means of the discrete Fourier transformation

(5.3)
(
UV f̂

)
(x) =

√
degV0 (2π)−d/2 ∑

n ∈Zd

f̂(n) ein·x, x ∈ Td.

The Laplacian ∆̂Γ0 on the lattice Γ0 is defined by

(5.4)
(
∆̂Γ0u

)
(v) = 1

degV0

∑
w ∈ V0, evw ∈ E0

u(w), v ∈ V0,

where, evw denotes an edge ∈ E0 with end points v, w ∈ V0, and we will use the
symbol Ĥ0 = −∆̂Γ0 .

On the torus Td = Rd/(2πZ)d, the Floquet image of the Laplacian Ĥ0 is an s× s
matrix operator H0(x), where x ∈ Td is the quasimomentum variable. We denote
the matrix by H0; its entries are trigonometric functions. Let λ1(x) ⩽ · · · ⩽ λs(x)
be the eigenvalues of H0(x). We put

p(x, λ) := det(H0(x)− λ), Mλ :=
{
x ∈ Td : p (x, λ) = 0

}
,

Mλ,j :=
{
x ∈ Td : λj(x) = λ

}
, MC

λ :=
{
z ∈ Cd/(2πZ)d : p(z, λ) = 0

}
,

MC
λ,reg :=

{
z ∈MC

λ : ∇zp(z, λ) ̸= 0
}
, MC

λ,sng :=
{
z ∈MC

λ : ∇zp(z, λ) = 0
}
.

In the spirit of § 3.1, we define

(5.5) ∂Γ0Ω :=
{
v ∈ V0 \ Ω

∣∣∣ evw ∈ E0 for some w ∈ Ω
}
,

where Ω is any subset in V0.
We impose the following assumptions on the periodic lattice Γ0.
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(D-1) There exists a subset T1 ⊂ σ(H0) such that for λ ∈ σ(H0) \ T1, MC
λ,sng

is discrete, and each connected component of MC
λ,reg intersects with Td, the

intersection being a (d− 1)-dimensional real analytic submanifold of Td.
(D-2) There exists a finite set T0 ⊂ σ(H0) such that

Mλ,i ∩Mλ,j = ∅ if i ̸= j and λ ∈ σ(H0) \ T0.

(D-3) ∇xp (x, λ) ̸= 0 holds on Mλ for λ ∈ σ(H0) \ T0.
(D-4) The last assumption consists of two requirements:

(a) On the unperturbed lattice Γ0, there exist finite connected subsets {Ωk}∞
k=1

of V0 such that Ωk ⊂ Ωk+1, V0 = ∪∞
k=1Ωk, and the triple (Ωk, ∂Γ0Ωk, E0)

satisfies assumptions (C-1), (C-2) for all k, and
(b) the unique continuation from infinity holds on Ωext

k := V0 \ Ωk for all k.

Assumption (D-4) requires a little explanation. For a subset U ⊂ V0 satisfying
♯(V0 \U) <∞, by the unique continuation from infinity on U , we mean the following
claim. If û satisfies (−∆̂Γ0 − λ)û = 0 on U for some λ and û = 0 near infinity, then
û vanishes on whole U . Namely, if û satisfies (−∆̂Γ0 − λ)û = 0 on U and û = 0 on
|v| > R for some R > 0, then û = 0 on U .

On the other hand, the unique continuation from the boundary in the finite
domain Ωi follows from the first part of (D-4). Namely, if (−∆̂Γ0 − λ)û = 0 in Ωi

and û = ∂ν û = 0 on ∂Γ0Ωi, then û = 0 in Ωi. This claim also holds for −∆̂Γ0 + q(v)
with any potential q, see [BILL23a, Lemma 3.5] or [BILL23b, Lemma 2.4].

In particular, part (D-4a) implies the unique continuation property on V0 from
infinity.

Lemma 5.1. — If part (D-4a) is satisfied for Γ0, then the unique continuation
from infinity holds for the unperturbed equation (−∆̂Γ0 − λ)û = 0 on Γ0.

Proof. — If a solution û is finitely supported in V0, we can find Ωk such that
supp (û) ⊂ Ωk by assumption (D-4a). Then û vanishes outside Ωk on the unperturbed
lattice Γ0 for some k. By definition (5.4), we know for any z ∈ ∂Γ0Ωk,∑

x ∼ z, x ∈ Ωk

(
û(x)− û(z)

)
=

∑
x ∼ z, x ∈ V0

(
û(x)− û(z)

)
= degE0(z) ∆̂Γ0û(z) = −degE0(z)λû(z) = 0.

This indicates that û is a solution of the Schrödinger equation on (Ωk, ∂Γ0Ωk, E0) sat-
isfying simultaneously the Dirichlet and Neumann boundary conditions. Hence û van-
ishes everywhere by [BILL23b, Lemma 2.4], provided that the subgraph (Ωk, ∂Γ0Ωk, E0)
satisfies the assumptions (C-1) and (C-2). □

The assumption (D-2) implies that the eigenvalues λj(x) are simple for λ ̸∈ T0. For
λ ̸∈ T1, (D-1) guarantees the Rellich type theorem (cf. [AIM16, Theorems 5.1 and
5.7]). Therefore, (D-1) and (D-4) yield the non-existence of embedded eigenvalues
for H0(x) and its perturbation for the energy λ ̸∈ T0 ∪ T1.

For the square, triangular, hexagonal, Kagome, and diamond lattices, as well as
for subdivisions of square lattices, the subset T1 is finite. On the other hand, for the
ladder and “layered” graphite lattices, T1 fills closed intervals, cf. [AIM16, § 5].
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By virtue of [BILL23a, Proposition 1.10], our result applies to several standard
types of lattices and their perturbations. As for examples illustrating (D-4a), see
Example 5.12 of the present paper. The unique continuation from infinity on Ωext

i

is seen to be satisfied for e.g. the square, hexagonal, triangular lattices by directly
examining the figures.

Referring to the papers [AIM16, AIM18], we note that their authors employed
four assumptions, (A-1)–(A-4), of which the first three coincided with (D-1)–(D-3)
above. The fourth assumption there, (A-4), follows from part (D-4a) by Lemma 5.1.

Now let us consider an infinite connected graph Γ = {V , E}, which is a local
perturbation of the periodic lattice Γ0 = {L0,V0, E0} satisfying the assumptions
(D-1)–(D-4) above. We assume that the lattice Γ0 is perturbed only in a finite
subset Ω ⊂ V0 and the potential function is supported in the perturbed region. Later
we will further assume (C-1) and (C-2) for the perturbed part in Ω. Lemma 5.1
then holds also for the perturbed system by the same proof, see Lemma 5.10.

For a subgraph {Ω, {evw ∈ E0 : v, w ∈ Ω}} of Γ0, we consider its perturbation
{G̃, Epert}, which is a finite connected graph with vertex set G̃ and edge set Epert.
Without loss of generality, we may assume Ω is chosen sufficiently large so that
the perturbation does not remove the vertices (of Ω) which are connected to the
subgraph boundary ∂Γ0Ω. We add an unperturbed layer of edges to Epert defining

(5.6) E := Epert ∪
{
evw ∈ E0

∣∣∣ v ∈ Ω, w ∈ ∂Γ0Ω
}
.

Remark 5.2. — Let us remark here that when perturbing an infinite lattice on a
finite set, we must be careful about the boundary points for the exterior and interior
domains. We remove the edges between the boundary points. See Figures 5.2, 5.4.

For the scattering problem in this section, we set

∂G = ∂Γ0Ω, G = G̃ \ ∂Γ0Ω.

Then the weighted graph

(5.7) GΓ := {G, ∂G,E, µ, g},

where µ = {µv ; v ∈ G}, g = {gvw ; v, w ∈ G, v ∼ w} are the vertex weight and edge
weight, fits into our setting for finite graphs in § 3.2.

Observe that the edges connecting ∂G and G are known, and that by construction
there are no edges between vertices in ∂G.

In particular, we can simply choose the perturbed vertex set Ω to be Ωk for some
k as assumed in part (D-4a). We define the following sets:

Vint := G ∪ ∂G, V◦
int :=G, ∂Vint := ∂G;

Vext := V \G, V◦
ext := (V \G) \ ∂G, ∂Vext := ∂G.

Then the unique continuation from infinity holds on Vext due to part (D-4b). Hence
Vint and Vext satisfy assumptions (B-1)–(B-3) imposed in [AIM18], and consequently,
the Hilbert space ℓ2(V) admits an orthogonal decomposition

ℓ2(V) = ℓ2 (V◦
ext)⊕ ℓ2 (Vint) .
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Denote by P̂ext the orthogonal projection:
(5.8) P̂ext : ℓ2(V)→ ℓ2 (V◦

ext) .

The Laplacian ∆̂Γ on the graph Γ is defined in analogy with (5.4), replacing V0, E0
by V , E . Adding then a bounded self-adjoint perturbation of V̂ , which is assumed to
vanish on Vext, we consider Hamiltonian Ĥ of the form

Ĥ = −∆̂Γ + V̂ : ℓ2(V)→ ℓ2(V).
Note that in the forward scattering problem, following the arguments of [AIM16]

and those from [AIM18, § 2–§ 5], one can allow arbitrary structure modification on
the finite part of the graph.

5.2. Spectral representation and the S-matrix

Let us keep reviewing the needed results from [AIM16, AIM18]. In general, scat-
tering is a time-dependent phenomenon, and the S-matrix is defined through the
wave operators. However, it has the stationary counterpart which we employ here.
Let us recall how it looks for a Schrödinger operator in Rn. We introduce a Banach
space B(Rn)∗ consisting of L2

loc(Rn) functions f(x) such that

(5.9) ∥f∥2
B(Rn)∗ := sup

R > 1

1
R

∫
|x| < R

|f(x)|2dx <∞,

which is the dual space of the Banach space B(Rn) defined as follows,

(5.10) ∥f∥B(Rn) =
∞∑

j=0
Rj

(∫
Ωj

|f(x)|2dx
)1/2

<∞,

where Rj = 2j and Ωj = {x ∈ Rd ; Rj−1 ⩽ |x| < Rj}; for j = 0 we put R−1 := 0.
These spaces give rise to a rigged structure of L2(Rn), namely

B ⊂ L2 (Rn) ⊂ B∗

with continuous inclusions. Given u, v ∈ B(Rn)∗, we define

(5.11) u ≃ v ⇐⇒ lim
R → ∞

1
R

∫
|x| < R

|u(x)− v(x)|2dx = 0.

We consider the Helmholtz equation
(5.12) (−∆ + V (x)− λ)u = 0 in Rn,

where λ > 0 and V (x) is a real function decaying sufficiently rapidly at infinity.
Then, for any ϕin ∈ L2(Sn−1), there exist a unique u ∈ B(Rn)∗ satisfying (5.12) and
ϕout ∈ L2(Sn−1) such that

(5.13) u ≃ ei
√

λr

r(n−1)/2ϕ
out − e−i

√
λr

r(n−1)/2ϕ
in.

The operator
S(λ) : L2

(
Sn−1

)
∋ ϕin → ϕout ∈ L2

(
Sn−1

)
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is unitary and can be identified, up to a unitary operator, with the on-shell S-matrix
obtained by the direct-integral decomposition of the scattering operator defined in
the time-dependent theory.

As for scattering on perturbed periodic lattices, in some cases one can argue in
the same way as above, e.g., when a square lattice is concerned [IM15]. However, to
deal with general lattices, it is more convenient to pass the problem on the torus
by the discrete Fourier transform and to observe the singularities of solutions to the
Helmholtz equation.

On the torus Td, the counterpart of the above space B(Rn)∗ is defined as follows.
Let ϕ be a distribution on Td. Multiplying it by a smooth cut-off function, passing
to the Fourier transform in the appropriate local chart, and denoting the resulting
function by ϕ̃, we define B(Td)∗ to be the set of distributions such that

(5.14) sup
R > 1

1
R

∫
|ξ| < R

∣∣∣ϕ̃(ξ)
∣∣∣2 dξ <∞ ;

for two distributions ϕ, ψ on Td, ϕ ≃ ψ means

(5.15) 1
R

∫
|ξ| < R

∣∣∣ϕ̃(ξ)− ψ̃(ξ)
∣∣∣2 dξ → 0 as R→∞.

We also define the space B(Td) similarly to (5.10). See [AIM16, § 4] and [AIM18,
§ 2.4].

Assume that the unperturbed periodic lattice Γ0 satisfies the above assump-
tions (D-1)–(D-4). The spectral representation of H0 is nothing but the diago-
nalization of H0(x). Let Pj(x) be the eigenprojection associated with the eigenvalue
λj(x). Let Ij = {λj(x) ; x ∈ Td} \ T0, and

(5.16) Mλ,j =


{
x ∈ Td ; λj(x) = λ

}
, λ ∈ Ij,

∅, λ ̸∈ Ij.

For λ ∈ σ(H0) \ T0, we have Mλ,i ∩ Mλ,j = ∅ if i ̸= j, hence each of them is a
C∞-submanifold of Td. We define the Hilbert spaces hλ,j equipped with the inner
product

(ψ, ϕ)L2(Mλ,j) =
∫

Mλ,j

Pj(x)ψ(x) · ϕ(x) dMλ,j

|∇λj(x)| ,

and put
(5.17) hλ = hλ,1 ⊕ · · · ⊕ hλ,s.

For f ∈ B(Td), we define

F0,j(λ)f = Pj(x)f(x)
∣∣∣
Mλ,j

(5.18)

and
F0(λ)f =

(
F0,1(λ)f, . . . , F0,s(λ)f

)
;(5.19)

in the spirit of the above orthogonal sum, we often write the right-hand side as∑s
j=1F0,j(λ)f . Then the operators

(5.20) F0(λ) ∈ B
(
B
(
Td
)

; hλ

)
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provide us with a spectral representation (or a generalized Fourier transformation)
associated with H0. It is related to the resolvent of H0 in the following way,

(5.21) (H0 − λ∓ i0)−1 f ≃
s∑

j=1

F0,j(λ)f
λj(x)− λ∓ i0 , f ∈ B

(
Td
)
,

where the relation ≃ is defined by (5.15). This shows that the generalized Fourier
transform can be associated with the singular part of the resolvent of H0 on the
torus, which in turn describes the behavior at infinity of the resolvent of Ĥ0 in the
lattice space. Compared with the case of Rn, the lattice and the torus here can be
matched off against the position space and the momentum space, respectively.

The same fact holds for the perturbed operator Ĥ = −∆̂Γ + V̂ on ℓ2(V). One can
easily check that σe(Ĥ) = σ(Ĥ0) = σ(H0), and furthermore, that σp(Ĥ) ∩ σe(Ĥ)
is discrete in σe(H0) \ T0 with possible accumulation points in T0 only [AIM16,
Lemma 7.5]. In the following we consider λ ∈ σe(Ĥ) \ (T0 ∪σp(Ĥ)). Define B = B(V)
and B∗ = B(V)∗ as direct sums,

(5.22) B(V) = B(Vext)⊕ ℓ2 (V◦
int) , B(V)∗ = B(Vext)∗ ⊕ ℓ2 (V◦

int) ,

where the spaces B(Vext) and B(Vext)∗ are defined on the torus in the way described
above(1) . Denoting R̂(z) := (Ĥ − z)−1 and assuming λ ∈ σe(Ĥ) \ (T0 ∪ σp(Ĥ)), we
have

(5.23) R̂(λ± i0) ∈ B(B ; B∗).

The generalized Fourier transformation F±(λ) associated with Ĥ is given by(2)

(5.24) F±(λ) = F0(λ)UVQ̂1(λ± i0)U∗
V ,

where

(5.25) Q̂1(z) = P̂ext + K̂1R̂(z), K̂1 = Ĥ0P̂ext − P̂extĤ.

It is related to the resolvent in the following way, see [AIM16, Theorems 7.7 and 7.15]:

Theorem 5.3. — Let λ ∈ σe(Ĥ) \ (T0 ∪ σp(Ĥ)). For f ∈ B we have the relation

(5.26) UV P̂extR̂(λ± i0)f ≃
s∑

j=1

F±,j(λ)f
λj(x)− λ∓ i0 .

As in the case of Rn, the S-matrix is defined by means of the Helmholtz equation.

Theorem 5.4. —
(1) For any solution û ∈ B̂ to the equation

(5.27)
(
Ĥ − λ

)
û = 0,

(1) More explicitly, the norm of B(V0)∗ is defined by ∥û∥2
B(V0)∗ = supR > 1

1
R

∑
|n| < R |û(n)|2, while

in the case of Vext, the sum ranges over vertices of the set Vext only.
(2)To get (5.24), we employ the resolvent equation, cf. the argument preceding Theorem 6.11 in
§ 6.6, in particular, the formula (6.45).
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there exist unique pair of vectors ϕin, ϕout ∈ hλ such that

(5.28) UV P̂extû ≃
s∑

j=1

1
2πi

(
ϕout

j

λj(x)− λ− i0 −
ϕin

j

λj(x)− λ+ i0

)
.

Moreover, the operator S(λ) ∈ B(hλ ; hλ) defined by

(5.29) S(λ) = 1− 2πiA(λ),

where

(5.30) A(λ) := F+(λ)UVK̂2 U∗
VF0(λ)∗, K̂2 := ĤP̂ext − P̂extĤ0,

is unitary on hλ, and satisfies

(5.31) ϕout = S(λ)ϕin.

(2) For any ϕin ∈ hλ, there is a unique û ∈ B̂ and ϕout ∈ hλ such that

(5.32) (Ĥ − λ)û = 0,

and relations (5.28), (5.31) are satisfied.

The operator S(λ) is the S-matrix for our perturbed lattice, in the physics literature
usually referred to as the on-shell S-matrix.

5.3. The S-matrix and Dirichlet-to-Neumann map

Now we consider eigenvalue equations separately on Vext and Vint, assuming
that [AIM18, (B-1)–(B-3)] are satisfied. Suppose that there is no perturbation out-
side Vint and that the potential is also supported in Vint only. Let Ĥext be −∆̂Γ on
V0

ext with Dirichlet boundary condition on ∂Vext. For λ ∈ σe(Ĥext) \ (T0 ∪ T1), there
exists a unique solution û

(±)
ext ∈ B̂∗ to the following equation,
(
−∆̂Γ0 − λ

)
û

(±)
ext = 0 in V◦

ext,

û
(±)
ext = f̂ on ∂Vext,

satisfying the radiation condition(3) (outgoing for û(+)
ext and incoming for û(−)

ext ). We
define the exterior D-N map Λ(±)

ext (λ) by

Λ(±)
ext (λ)f̂ = −∂Vext

ν û
(±)
ext

∣∣∣∣
∂Vext

,

where the normal derivative of a function u at z ∈ ∂Vext in V◦
ext is defined by(

∂Vext
ν u

)
(z):= − 1

degext
E (z)

∑
x ∈ V◦

ext, {x,z} ∈ E
u(x) ,

degext
E (z):= ♯ {x ∈ V◦

ext : {x, z} ∈ E} .
(5.33)

(3)We speak here of the discrete analogue of the usual radiation condition, see [AIM18, § 2.6].
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On the other hand, for λ ̸∈ σ(Ĥint), where Ĥint is −∆̂Γ + V̂ in Vint with Dirichlet
boundary condition, there exists a unique solution ûint to the following equation,

(
−∆̂Γ + V̂ − λ

)
ûint = 0 in V◦

int,

ûint = f̂ on ∂Vint.

The interior D-N map Λint(λ) is defined by

Λint(λ)f̂ = ∂Vint
ν ûint

∣∣∣∣
∂Vint

,

where the normal derivative at ∂Vint in V◦
int is defined in the analogous way, replacing

all the exterior sets in (5.33) with the respective interior ones.
We denote

(5.34) Σ = ∂Vint = ∂Vext

and define the operator
(5.35) B

(±)
Σ (λ) :=MintΛint(λ)−MextΛ(±)

ext (λ)− ŜΣ − λχΣ,

where the operatorsMint,Mext, ŜΣ, χΣ in (5.35) contain only information referring
to Σ; for their definitions we refer to relations [AIM18, (3.30)-(3.33)].

Next, letting χΩ be the characteristic function of a subset Ω ⊂ V , we put
û(±) = χV◦

int
ûint + χV◦

ext
ûext + χΣf̂ .

Noting that, as above, the operators χV◦
int

and χV◦
ext

contain only information referring
to V◦

int and V◦
ext, we define another operator, Î(±)(λ) : ℓ2(Σ)→ hλ, by (see [AIM18,

(4.7)]),
Î(±)(λ)f̂ := F0(λ)U(Ĥ0 − λ)P̂extû

(±);
the right-hand side of this relation shows that the action of I(±)(λ) depends neither
on Vint nor on V̂ , in other words, it is independent of the perturbation.

Here, an important role is played by a Rellich-type result, [AIM16, Theorem 5.1],
and the following unique continuation property: if a solution of (−∆̂Γ0 − λ)û = 0
on V0 vanishes except for a finite number of vertices for λ ∈ C, then this solution
vanishes identically on V0. This is what was assumed as [AIM16, (A-4)], [AIM18].
The said Rellich-type theorem, together with the unique continuation property in
the exterior domain Vext (which follows from the assumption (D-4)), implies the
following claim, cf. [AIM18, Lemma 4.3].

Lemma 5.5. — Let λ ∈ σe(Ĥ) \ (T0 ∪ T1∪σp(Ĥ) ∪ σ(Ĥint)). Then
(1) the map Î(±)(λ) : ℓ2(Σ)→ hλ is injective,
(2) its adjoint Î(±)(λ)∗ : hλ → ℓ2(Σ) is surjective.

The scattering amplitude A(λ) is defined by (5.30). In a similar way one can define
the scattering amplitude in the exterior domain which we denote as Aext(λ). These
scattering amplitudes satisfy the following relation, cf. [AIM18, Theorem 4.5].

Theorem 5.6. — Let λ ∈ σe(Ĥ) \ (T0 ∪ T1∪σp(Ĥ) ∪ σ(Ĥint)). Then we have

(5.36) Aext(λ)− A(λ) = Î(+)(λ)
(
B

(+)
Σ (λ)

)−1
Î(−)(λ)∗.
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By assumption, the exterior domain is free of perturbations, therefore Λ(±)
ext (λ) and

Aext(λ) are known. By virtue of (5.29), (5.35) and Theorem 5.6, the S-matrix S(λ)
and the D-N map Λint(λ) determine each other on some interval in the spectrum,
and the same is true for the N-D map. Since the S-matrix, the D-N map and the
N-D map are all complex analytic, this mutual determination extends from the said
interval to the whole spectrum. Thus we arrive at the following claim.

Theorem 5.7. — For any λ ∈ σe(Ĥ) \ (T0 ∪ T1∪σp(Ĥ) ∪ σ(Ĥint)), the S-matrix
S(λ) and the D-N map Λint(λ) determine each other.

Let us remark that the definition of the normal derivative used in [AIM18] differs
from the present one given by (3.7), adopted from [BILL23a], by a constant only.
Hence the corresponding Neumann-to-Dirichlet maps determine each other.

Note further that the formula (5.36) is a discrete analogue of the one derived
by Isakov and Nachman in [IN95] for the Schrödinger operator in Rn. For the
discrete problem, it provides us with a constructive route from the S-matrix to the
corresponding D-N map.

5.4. The inverse scattering problem

The aim of this subsection is to show that the graph structure and the potential
can be uniquely recovered from the knowledge of the scattering matrix at all energies
for the discrete Schrödinger operator.

First of all, let us recall the definition of the Neumann-to-Dirichlet (N-D) map for
a finite weighted graph with boundary, G = {G, ∂G,E, µ, g}. Let q be a real-valued
potential function on G, and denote by {λk}N

k=1 the Neumann eigenvalues, with the
multiplicity taken into account, of the discrete Schrödinger operator −∆G + q, where
N = ♯G. We consider the following equation:

(5.37)

(−∆G + q − λ)u(x) = 0, x ∈ G, λ ∈ C,

∂νu
∣∣∣
∂G

= f,

where the Neumann boundary value ∂νu was defined in (3.7). For λ /∈ {λk}N
k=1,

denote by uf
λ the unique solution of the equation (5.37) with the Neumann boundary

value equal to f . The Neumann-to-Dirichlet map Λλ (at a fixed energy λ) for the
equation (5.37) is defined as Λλ : f 7→ uf

λ|∂G.

Lemma 5.8. — Let G be a finite connected weighted graph with boundary satis-
fying the assumptions (C-1) and (C-2) in § 3. Suppose the weights(4) µ|∂G, g|∂G×G

are given. Then knowing the Neumann-to-Dirichlet map at all energies for the equa-
tion (5.37) on G is equivalent to the knowledge the Neumann boundary spectral
data for the discrete Schrödinger operator on G.

(4)We abuse the notation here writing g|∂G×G to indicate the weights of the edges connecting the
boundary vertices with the interior vertices.
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Proof. — The proof for the manifold case can be found in [KKLM04] or [KKL01,
§ 4.1]. The proof in our case, for finite graphs, is simpler. Let {ϕk}N

k=1 be a family
of orthonormalized Neumann eigenfunctions of the discrete Schrödinger operator
corresponding to eigenvalues {λk}. Recall from [BILL23a] that the L2(G)-inner
product is defined by

⟨u1, u2⟩L2(G) =
∑

x ∈ G

µxu1(x)u2(x).

By Green’s formula [BILL23a, Lemma 2.1], we infer that〈
(−∆G + q)uf

λ, ϕk

〉
L2(G)

=
〈
uf

λ, (−∆G + q)ϕk

〉
L2(G)

−
∑

z ∈ ∂G

µzϕk(z)
(
∂νu

f
λ

)
(z)

= λk⟨uf
λ, ϕk⟩L2(G) −

∑
z ∈ ∂G

µzϕk(z)f(z),

which yields
(λ− λk)

〈
uf

λ, ϕk

〉
L2(G)

= −
∑

z ∈ ∂G

µzϕk(z)f(z).

Now take an arbitrary real-valued function wf on G ∪ ∂G satisfying ∂νw
f |∂G = f .

Then the difference uf
λ−wf lies in the domain of the Neumann graph Laplacian and

we have

uf
λ − wf =

N∑
k=1

〈
uf

λ − wf , ϕk

〉
L2(G)

ϕk

= −
N∑

k=1

1
λ− λk

 ∑
z ∈ ∂G

µzϕk(z)f(z)
ϕk −

N∑
k=1

〈
wf , ϕk

〉
L2(G)

ϕk.

(5.38)

This shows that Λλ is a meromorphic operator-valued function of λ with simple poles
at λ = λk only, and this in turn means that {Λλ} determines the set of eigenvalues
{λk}. Moreover, the residue of Λλ at λ = λk is known as a finite-dimensional linear
operator. In particular, since µ|∂G is known, the data {Λλ} determine

Qk(z1, z2) =
∑

l ∈ Lk

ϕl(z1)ϕl(z2), ∀ z1, z2 ∈ ∂G,

where Lk = {pk + 1, · · · , pk + ♯Lk}, pk ∈ N, denotes the set of integers l satisfying
λl = λk. This function Qk(·, ·) can be viewed as an m × m matrix Qk defined by
(Qk)ij = Qk(zi, zj), where m = ♯∂G, or in the matrix form

Qk =
(
ϕpk+1, · · · , ϕpk+♯Lk

)
m×♯Lk

(
ϕpk+1, · · · , ϕpk+♯Lk

)T

m × ♯Lk

.

By [BILL23b, Lemma 2.4], the eigenfunctions {ϕl|∂G}l ∈ Lk
are linearly independent

on ∂G, hence the rank of Qk is simply ♯Lk.
When the eigenvalue λk is simple, the matrix Qk determines ϕk|∂G up to the sign. In

general, since Qk is symmetric and positive semi-definite, it can be decomposed into
Qk = BBT , where B is an m× ♯Lk matrix of rank ♯Lk. Moreover, the decomposition
is unique up to an ♯Lk × ♯Lk orthogonal matrix. Thus we take the column vectors
of B, and they are the boundary values of orthonormalized eigenfunctions found by
applying the orthogonal matrix to {ϕl}l ∈ Lk

. This shows Qk determines the boundary
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values of the orthonormalized eigenfunctions (referring to the choice of {ϕk}N
k=1 we

made).
To check the converse: the Neumann boundary spectral data determine the N-D

map in accordance with the formula (5.38). We choose wf such that wf |G = 0
and ∂νw

f |∂G = f so that the last term in (5.38) vanishes. Since g|∂G × G is known,
thus wf |∂G is uniquely determined by f , and consequently, the N-D map can be
determined from the Neumann boundary spectral data. □

Without loss of generality, we assume that the perturbed vertex set Ω = Ωk0 for
some k0 as assumed in part (D-4a), cf. § 5.1. With our choice (5.8) of the domains,
Theorem 5.6 and Lemma 5.1 yield the following statement.

Corollary 5.9. — Let Γ0 be an infinite periodic lattice satisfying assumptions
(D-1)–(D-4). Let q be a finitely supported potential on Γ, and GΓ be the perturbed
finite subgraph given by (5.7). Then the knowledge of the scattering matrix of the
discrete Schrödinger operator on Γ at an arbitrarily fixed energy determines the
Neumann-to-Dirichlet map of the equation (5.37) on GΓ with µ = degE, g ≡ 1 for
the same energy.

Now we impose the following assumption on the locally perturbed lattice Γ.
(E-1) With the perturbed vertex set Ω = Ωk0 for some k0 as in part (D-4a), the

perturbed finite subgraph GΓ given by (5.7) is connected and satisfies (C-1),
(C-2).

The assumption (E-1), together with part (D-4b), implies the unique continuation
from infinity for the perturbed system.

Lemma 5.10. — Assume (E-1)and part (D-4b) are satisfied. Then the unique
continuation from infinity holds for the perturbed equation (−∆̂Γ − λ)û = 0 on Γ.

Proof. — By assumption (E-1), the system is unperturbed outside of Ωk0 . If û
vanishes near infinity, then û vanishes on V0 \ Ωk0 due to part (D-4b). Then the
lemma follows from the same argument as Lemma 5.1. □

Our main result of this section is stated as follows.

Theorem 5.11. — Consider a periodic lattice satisfying assumptions (D-1)–
(D-4), and suppose that Γ is an infinite graph obtained by a local perturbation of
this lattice. Let the potential q be finitely supported on Γ, and GΓ be the perturbed
finite subgraph given by (5.7). Assume that GΓ satisfies (E-1). Then the topology
of GΓ can be uniquely recovered from the knowledge of the scattering matrix for
the discrete Schrödinger operator on Γ for all energies. Furthermore, if we assume
that µx = deg x for all vertex v, we can determine the weight of the edge and the
potential q(x) from the scattering matrix for all energies.

Proof. — From our construction of GΓ in § 5.1, the edges connecting ∂G and G
are known, and hence the weight µ = degE on ∂G is known. The theorem then
follows from Corollary 5.9 and Theorem 3.2. □

Example 5.12. — Finite square, hexagonal (see Figure 5.1), triangular, graphene
and square ladder lattices all satisfy the Two-Points Condition (C-2) with the set
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of boundary vertices being the domain boundary. Moreover, any horizontal edges in
these lattices can be removed and the obtained graphs still satisfy the Two-Points
Condition, see Figure 5.2; the term “horizontal edges” here refers to the edges in the
non-gradient directions with respect to the function h in [BILL23a, Proposition 1.8].

6. Spectral theory for periodic quantum graph

In this and the next sections, we study the spectral theory for the Schrödinger
operator on a quantum (metric) graph. Let Γ0 = {L0,V0, E0} be a periodic lattice
introduced in § 5, and let assumptions (D-1)–(D-4) be imposed. As in § 5.1, we
consider a local perturbation Γ = {V , E} of Γ0. On each edge e ∈ E , we are given a
one-dimensional Schrödinger operator he = −d2/dz2 +Ve(z) satisfying the δ-coupling
condition (1.3) together with the assumptions (M-1)–(M-5) in § 2. We assume that
Ve(z) is equal to a fixed potential V0(z) except for a finite number of edges e. For the
sake of (mainly notational) simplicity, we further assume that V0(z) = 0 and ℓe = 1
for all edges e. The arguments below also works for the general case by replacing
ϕ

(0)
e0 (z, λ), ϕ(0)

e1 (z, λ) and σ(0)(h(0)) by those associated with V0(z). Let ĤE be the
resulting self-adjoint operator in L2(E). In the unperturbed case, when Ve = 0 holds
for each e ∈ E0 and Cv/dv is equal to a fixed constant κV , that is,

(6.1) Cv

dv

= κV , ∀ v ∈ V0,

the operator ĤE shall be denoted by Ĥ
(0)
E . In what follows, we call ĤE the “edge”

Schrödinger operator, and −∆̂V,λ the “vertex” Schrödinger operator.

6.1. Spectrum of ĤE

Let us begin with the unperturbed operator Ĥ(0)
E . Amending all the symbols intro-

duced in § 2 with the superscript (0), we have ϕ(0)
e0 (z, λ) = sin(

√
λz)√

λ
and ϕ

(0)
e1 (z, λ) =

sin(
√

λ(1−z))√
λ

, hence

(6.2)
(
∆̂(0)

V,λû
)
(v) =

√
λ

sin
√
λ

1
dv

∑
w ∼ v

û(w) =
√
λ

sin
√
λ

(
∆̂V û

)
(v),

with ∆̂V being the vertex Laplacian on V0, and

(6.3) Q̂
(0)
V,λ =

√
λ

sin
√
λ

cos
√
λ+ κV .

We put

(6.4) E(λ) = − cos
√
λ− κV

sin
√
λ√

λ
,
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and then the resolvent R(0)
E (λ) = (H(0)

E −λ)−1 can be, in view of Lemma 2.3, rewritten
as

(6.5) R
(0)
E (λ) =

(
T̂

(0)
V,λ

)∗ sin
√
λ√

λ

(
− ∆̂V − E(λ)

)−1
T̂

(0)
V,λ

+ r
(0)
E (λ).

Furthermore, we put
σ(0)(h(0)) =

{
(πj)2 ; j = 1, 2, . . .

}
,(6.6)

σ(0)(−∆̂V) =
{
λ ; E(λ) ∈ σ

(
−∆̂V

)}
,(6.7)

σ
(0)
T =

{
λ ∈ Int

(
σe

(
Ĥ

(0)
E

))
; E(λ) ∈ T

}
,(6.8)

where Int I for a subset I ⊂ R means the interior of I, and
(6.9) T = T0 ∪ T1.

Relation (6.5) allows us to write the spectrum in the following way:

Lemma 6.1. — σ(Ĥ(0)
E ) = σ(0)(−∆̂V) ∪ σ(0)(h(0)).

For example, in the Kirchhoff coupling case, κV = 0, we have σ(Ĥ(0)
E ) = [0,∞) for

square and hexagonal lattices. Note that σ(0)(h(0)) is the set of eigenvalues of infinite
multiplicities embedded in σ(Ĥ(0)

E ).

6.2. Function spaces

For an edge e ∈ E0 with the endpoints v, w ∈ V0, we define

(6.10) |ec| =
1
2 |v + w|,

i.e. the distance of its midpoint from the origin, where for x = (x1, . . . , xd) ∈ V0 ⊂ Rd

we denote |x| =
√
x2

1 + · · ·+ x2
d. It will serve as a radius-like variable allowing to

define the needed function spaces. Recall that our graph Γ = (V , E) is a local
perturbation of a periodic lattice Γ0 = (L0,V0, E0), which means that Γ and Γ0
coincide in the exterior domain
(6.11) Eext,R ∋ e⇐⇒ |ec| > R,

provided R is chosen sufficiently large; without loss of generality we may suppose
that R > 1. The interior domain
(6.12) Eint,R = E \ Eext,R

in which all the perturbations are located is finite and the “radius” plays no role
there. Hence we keep the definition (6.10) in the exterior domain, and for the interior
domain Eint,R we put instead
(6.13) |ec| = 1 if e ∈ Eint,R.

With this proviso we introduce the function spaces on E : we put rj = 2j and define

L̂2,s(E) ∋ f̂ ⇐⇒
∑
e ∈ E
|ec|2s

∥∥∥f̂ e

∥∥∥2

L2(e)
<∞,(6.14)
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B̂(E) ∋ f̂ ⇐⇒
∑
e ∈ E

r
1/2
j

 ∑
rj−1 ⩽ |ec| < rj

∥∥∥f̂ e

∥∥∥2

L2(e)

1/2

<∞,(6.15)

B̂∗(E) ∋ f̂ ⇐⇒ sup
R > 1

1
R

∑
|ec| < R

∥∥∥f̂ e

∥∥∥2

L2(e)
<∞,(6.16)

equipped with their obvious norms. As the notation suggests, B̂∗(E) can be identified
with the dual space of B̂(E), and the following inclusions hold for s > 1/2:

(6.17) L̂2,s(E) ⊂ B̂(E) ⊂ L̂2,1/2(E) ⊂ L̂2(E) ⊂ L̂2,−1/2(E) ⊂ B̂∗(E) ⊂ L̂2,−s(E),

where L̂2(E) = L̂2,0(E). Moreover, B̂∗
0(E) is a closed subspace of B̂∗(E) defined by

(6.18) B̂∗
0(E) ∋ f̂ ⇐⇒ lim

R → ∞

1
R

∑
|ec| < R

∥∥∥f̂ e

∥∥∥2

L2(e)
= 0.

Let us further note that for the “vertex” Laplacian, the spaces L̂2,s(V), B̂(V),
B̂∗(V), B̂∗

0(V) are defined in the same way as above with the norms ∥f̂ e∥L2(e) at the
right-hand sides of (6.14)–(6.16) replaced by |f̂(v)|. This is one more manifestation
of the parallelism between the discrete graph and the quantum graph. In the former,
we consider C-valued functions on the discrete set V , while in the latter, we deal with
L2((0, 1))-valued functions on the discrete set {ec ; e ∈ Eext,R}. This correspondence
is inherited, in particular, in the resolvent estimates.

6.3. Rellich-type theorem

Theorem 6.2. — Let λ ∈ (Intσe(Ĥ(0)
E )) \ σ(0)

T , and suppose that û ∈ B̂∗
0(E)

satisfies Ĥ(0)
E û = λû and the δ-coupling condition in Eext,R for some R > 1. Then

û = 0 holds in Eext,R1 for some R1 ⩾ R.

Proof. — Since R is chosen large enough so that all the perturbations are inside
of Eint,R, on each edge e ∈ Eext,R, the solution û can be written as

ûe(z) = ûe(1)sin
√
λz√
λ

+ ûe(0)sin
√
λ(1− z)√
λ

.

As the functions sin
√

λ(1−z)√
λ

and sin
√

λz√
λ

are linearly independent for such a λ, there
exists a constant Cλ > 0 such that
(6.19) C−1

λ

(
|ûe(0)|+ |ûe(1)|

)
⩽ ∥ûe∥L2(e) ⩽ Cλ

(
|ûe(0)|+ |ûe(1)|

)
for all e ∈ Eext,R. We put ŵ = û

∣∣∣
V
, then in view of Lemma 2.2, we have(

− ∆̂V − E(λ)
)
ŵ = 0, on V ∩ Eext,R.

Since û ∈ B̂∗
0(E) holds by assumption, the inequality (6.19) implies ŵ ∈ B̂∗

0(V). By
the Rellich-type theorem for vertex Schrödinger operators [AIM16, Theorem 5.1], we
have ŵ(v) = 0 for |v| > R′ with a sufficiently large R′. This proves the theorem. □
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Definition 6.3. — We say that the operator ĤE−λ has the unique continuation
property if the following assertion holds: If û satisfies (ĤE −λ)û = 0 on E , and û = 0
on Eext,R for a positive R, then û = 0 holds on E .

For the unperturbed system, by assumption (D-4) in § 5 (essentially coinciding
with (C-2) in § 3), Ĥ(0)

E − λ has the unique continuation property for all λ. Adding
a potential, it is also true for the unperturbed operator ĤE .

Lemma 6.4. — Under the assumptions (D-1)–(D-4), we have

σp

(
Ĥ

(0)
E

)
∩ σe

(
Ĥ

(0)
E

)
⊂ σ

(0)
T .

Proof. — Any eigenvector of ĤE is in L̂2(V) ⊂ B̂∗
0(E), and therefore it vanishes ‘at

infinity’ by Theorem 6.2. By the unique continuation property, it vanishes everywhere.
□

As can be checked easily, the square and hexagonal lattices satisfy the unique
continuation property.

6.4. Radiation condition

For systems having Rd as the configuration space, the radiation condition is intro-
duced either by observing the asymptotic behavior at infinity, or, what is equivalent,
from the singularities of the Fourier image of solutions to the Schrödinger equation.
Dealing with lattice Schrödinger operators, we adopt the latter approach.

Definition 6.5. — Given a distribution u ∈ D′(Td), its wave front set WF ∗(u)
is defined as follows: a point (x0, ω) ∈ Rd × Sd−1 does not belong to WF ∗(u) if and
only if there exist 0 < δ < 1 and χ(x) ∈ C∞

0 (Rd) such that χ(x0) = 1 and

(6.20) lim
R → ∞

1
R

∫
|ξ| < R

|Cω,δ(ξ)(χ̃u)(ξ)|2 dξ = 0,

where χ̃u is the Fourier transform of χu and Cω,δ(ξ) is the characteristic function of
the cone {ξ ∈ Rd ; ω · ξ > δ|ξ|}.

Let λj(x), j = 1, 2, . . . , s, be the eigenvalues of H0(x) and Pj(x) the associated
eigenprojections, and let H0 be the operator of multiplication by H0(x) on

(
L2(Td)

)s
.

In [AIM16, Lemma 4.7], it was proven that the operator

B
(
Td
)
∋ f → f(x)

λj(x)− ρ∓ i0 ∈ B
∗
(
Td
)

is bounded if ρ ̸∈
(
Intσ(H0)

)
\ T . Furthermore in [AIM16, Theorem 6.1] it was

shown that for any f ∈ B(Td), 1 ⩽ j ⩽ s and ρ ∈ σ(H0) \ T , it holds that

WF ∗
(

Pjf

λj(x)− ρ− i0

)
⊂ {(x, ωx) ; x ∈Mρ,j} ,((RC)+)

WF ∗
(

Pjf

λj(x)− ρ+ i0

)
⊂ {(x,−ωx) ; x ∈Mρ,j} ,((RC)−)
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where ωx ∈ Sd−1 ∩ Tx(Mλ,j)⊥ and ω(x) · ∇λj(x) < 0. Moreover, for any f ∈ B(Td),
the function u = (H0(x)−λ∓ i0)−1f ∈ B∗(Td) is the unique solution to the equation
(H0(x)− ρ)u = f satisfying (RC)+ or (RC)−, respectively. These claims also extend
to the case with compactly supported perturbations.

We put

(6.21) sgn(λ) =

 1 for λ > 0, sin
√
λ > 0,

−1 for λ > 0, sin
√
λ < 0,

and then we can write

(6.22) cos
√
λ± i0 = cos

√
λ∓ i 0 sgn (λ), λ > 0.

We recall the discrete Fourier transform UV defined by (5.3). Let P̂ext,R be the
orthogonal projection : L2(E) → L2(Eext,R). Taking (6.22) into account, we define
the radiation condition as follows.

Definition 6.6. — A solution û ∈ B̂∗(E) of the equation (−∆̂E + V − λ)û = f̂
is said to satisfy the outgoing radiation condition if either

(i) sin
√
λ > 0, and w = U P̂ext,Rû∥V satisfies (RC)+ with ρ = E(λ),

or
(ii) sin

√
λ < 0, and u = U P̂ext,Rû|V satisfies (RC)− with ρ = E(λ), holds.

Similarly, we define the incoming radiation condition with (RC)± replaced by
(RC)∓. If û satisfies either the outgoing radiation condition or the incoming
one, we simply say that û satisfies the radiation condition.

In [AIM16], the radiation condition was also introduced for the vertex Laplacian,
see Lemmata 4.8 and 6.2 there. Let f̂ ∈ B(E). Given a solution û to the edge
Schrödinger equation (−∆̂E + V − λ)û = f̂ , denote by û|V its restriction to V . Then
û|V satisfies the vertex Schrödinger equation

(6.23)
(
− ∆̂V − E(λ)

)
û = ĝ,

where ĝ ∈ B(V). Comparing these two definitions of the radiation condition, one can
prove the following lemma.

Lemma 6.7. — A solution û of the edge Schrödinger equation satisfies the ra-
diation condition if and only if the solution û|V of the vertex Schrödinger equation
satisfies the radiation condition.

Lemma 6.8. — Let λ ∈ (Intσe(ĤE)) \ σ(0)
T . Then the solution û ∈ B̂∗(E) of the

equation (−∆̂E + V − λ)û = f̂ satisfying the radiation condition is unique.

Proof. — For the vertex Schrödinger operator, such a result was proven in [AIM16,
Lemma 7.6]; in combination with Lemma 6.7, it yields the claim for the edge
Schrödinger operator. □
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6.5. Limiting absorption principle

Let us first investigate the existence of the limits (−∆̂V,λ±i0 + Q̂V,λ±i0)−1.

Lemma 6.9. — If E(λ) ∈ σe(−∆̂V) \ T , there exists a limit(
−∆̂V,λ±i0 + Q̂V,λ±i0

)−1
∈ B

(
B(V);B(V)∗

)
.

Proof. — We use the limiting absorption principle for the vertex Schrödinger
operator proved in [AIM16]. Taking into account (6.2) and (6.3), we define ŴV,λ by

(6.24) −∆̂V,λ + Q̂V,λ =
√
λ

sin
√
λ

(
−∆̂V − E(λ) + ŴV,λ

)
,

where ŴV,λ is a self-adjoint, bounded, and compactly supported perturbation of
−∆̂V . Then, regarding E(λ) as the energy for −∆̂V , and arguing in the same way
as in [AIM16], we can prove the existence of the limit(

−∆̂V + ŴV,λ − E(λ± i0)
)−1

.

Using the identity

(6.25) − ∆̂V + ŴV,λ±iϵ − E(λ± iϵ)

= −∆̂V + ŴV,λ − E(λ± iϵ) +
(
ŴV,λ±iϵ −WV,λ

)
,

together with the fact that ŴV,λ±iϵ − ŴV,λ → 0 as ϵ → 0, we can construct the
inverse of the right-hand side by the Neumann series. This proves the lemma. □

For λ ̸∈ ∪e ∈ Eσp(−(d/dz)2
D + Ve(z)), where −(d/dz)2

D denotes −(d/dz)2 in L2(e)
with Dirichlet boundary condition, the functions ϕe0(z, λ) and ϕe1(z, λ) are linearly
independent, hence by (2.15) there is a constant Cλ > 0 such that

(6.26) C−1
λ

(
|ĝ(e(0))|+ |ĝ(e(1))|

)
⩽
∥∥∥(T̂V,λ

)∗
ĝe

∥∥∥
L2(e)

⩽ Cλ

(
|ĝ(e(0))|+ |ĝ(e(1))|

)
holds for all e ∈ E . This implies

(T̂V,λ)∗ ∈ B
(
B(V)∗ ; B∗(E)

)
,(6.27)

and
T̂V,λ ∈ B

(
B(E) ; B(V)

)
.(6.28)

Combining Lemma 2.3 with (6.27), (6.28), we arrive at the following result.

Theorem 6.10. — Let I be a compact interval in (Intσe(ĤE)) \ σ(0)
T .

(1) There exists a constant C > 0 such that

(6.29)
∥∥∥∥(ĤE − λ∓ iϵ

)−1
∥∥∥∥
B(B̂(E);B̂∗(E))

⩽ C

holds for any λ ∈ I and ϵ > 0.
(2) For any λ ∈ I and s > 1/2, there exist strong limits

(6.30) s− lim
ϵ ↓ 0

(
ĤE − λ∓ iϵ

)−1
=:
(
ĤE − λ∓ i0

)−1
∈ B

(
L̂2,s(E); L̂2,−s(E)

)
.
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(3) For any f̂ ∈ L̂2,s(E), (ĤE−λ∓i0)−1f̂ is an L̂2,−s(E)-valued strongly continuous
function of λ ∈ I.

(4) For any f̂ , ĝ ∈ B̂(E), there exist limits

(6.31) lim
ϵ ↓ 0

( (
ĤE − λ∓ iϵ

)−1
f̂ , ĝ

)
=:
( (
ĤE − λ∓ i0

)−1
f̂ , ĝ

)
,

and ((ĤE − λ∓ i0)−1f̂ , ĝ) is a continuous function of λ ∈ I.
(5) For any f̂ ∈ B̂(E), (ĤE −λ− i0)−1f̂ satisfies the outgoing radiation condition,

and (ĤE − λ+ i0)−1f̂ satisfies the incoming radiation condition.

6.6. Spectral representation

As we have noted in the paragraph following eq. (5.2), there are unitary equiva-
lences

ℓ2(V0) ∼=
(
ℓ2
(
Zd
))s ∼=

(
L2
(
Td
))s

,

by means of the decomposition (5.2) and the discrete Fourier transformation (5.3)
with deg E0(x) = dV0 . In the following, we freely make use of the identification

(6.32) ℓ2(V0) ∋
(
f̂(v)

)
v ∈ V0

←→ f̂(n) =
(
f̂ 1(n), . . . , f̂ s(n)

)
∈
(
ℓ2
(
Zd
))s

and we put(5)

(6.33) Φ(0)(λ) = UV T̂
(0)
V,λ,

where T̂ (0)
V,λ is the unperturbed T̂V,λ defined by (2.13). Let PV,j(x) be the eigenprojec-

tion associated with the eigenvalue λj(x) of H0(x), and denote

D(0)(λ± i0) = sin
√
λ√

λ
UV

(
−∆̂V − E(λ± i0)

)−1
U∗

V

= sin
√
λ√

λ

s∑
j=1

1
λj(x)− E(λ± i0)PV,j(x).

(6.34)

By (6.5), the following formula holds:

R̂
(0)
E (λ± i0) = Φ(0)(λ)∗D(0)(λ± i0)Φ(0)(λ) + r

(0)
E (λ).(6.35)

To construct a spectral representation of Ĥ(0)
E , we put

ME,λ,j =
{
x ∈ Td ; λj(x)− E(λ) = 0

}
,

(φ, ψ)λ,j =
∫

ME,λ,j

PV,j(x)φ(x) · ψ(x) dSj,(6.36)

dSj = | sin
√
λ|√

λ

dME,λ,j

|∇xλj(x)| .

(5)To be more precise, one should insert the operator of identification J : ℓ2(V0)→ (ℓ2(Zd))s defined
by (6.32) in front of T̂

(0)
V,λ. We omit it, however, for the sake of simplicity.
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Combining (6.35) with the formula

(6.37)
(
R̂

(0)
V

(
− cos

√
λ+ i0

)
f̂ − R̂(0)

V

(
− cos

√
λ− i0

)
f̂ , ĝ

)
= 2πi

∑
j

∫
ME,λ,j

PV,j f̂ · PV,j ĝ
dME,λ,j

|∇λj(x)| ,

valid for λ ∈ (Intσe(Ĥ(0)
E )) \ σ(0)

T , for which we refer to [AIM16, eq. (6.7)], we obtain
the relation

(6.38) 1
2πi

((
R̂

(0)
E (λ+ i0)− R̂(0)

E (λ− i0)
)
f̂ , ĝ

)
=

s∑
j=1

(
PV,jΦ(0)(λ)f̂ , PV,jΦ(0)(λ)ĝ

)
λ,j
.

Furthermore, we put

(6.39) F̂ (0)
j (λ)f̂ =

(
PV,jΦ(0)(λ)f̂

) ∣∣∣∣
ME,λ,j

,

in other words, the restriction to ME,λ,j with the components

F̂ (0)(λ) =
(
F̂ (0)

1 (λ), · · · , F̂ (0)
s (λ)

)
,

hλ =
s
⊕

j=1
PV,j

∣∣∣∣
ME,λ,j

L2
(
ME,λ,j; dSj

)
,(6.40)

H = L2
(
(0,∞),hλ; dλ

)
.

Then, by virtue of (6.38) we can write
1

2πi

( (
R̂

(0)
E (λ+ i0)− R̂(0)

E (λ− i0)
)
f̂ , ĝ

)
=
(
F̂ (0)(λ)f̂ , F̂ (0)(λ)ĝ

)
hλ

.

Let E(0)(λ) be the spectral measure for Ĥ(0)
E . Integrating the last equality and using

Stone’s formula, we get(
E(0)(I)f̂ , ĝ

)
=
∫

I

(
F̂ (0)(λ)f̂ , F̂ (0)(λ)ĝ

)
hλ

dλ,

for any interval I ⊂ (Intσe(Ĥ(0)
E )) \σ(0)

T . Hence F̂ (0) extends uniquely to an isometry
from the subspace(6) Hac(Ĥ(0)

E ) to H. Moreover, we define

F̂ (0) = 0, on Hp

(
Ĥ

(0)
E

)
.

As one can see from (6.39), to obtain F̂ (0)(λ) one has in fact to diagonalize the
matrix H0(x).

The spectral representation for ĤE is constructed by the perturbation method
well known in the stationary scattering theory. For the case of perturbation by a
potential, we make use of the resolvent equation
(6.41) R̂E(λ± i0) = R̂

(0)
E (λ± i0)

(
1− VER̂E(λ± i0)

)
.

(6) For a self-adjoint operator A, Hac(A) denotes conventionally its absolutely continuous subspace,
while Hp(A) is the closure of the linear hull of eigenvectors of A.
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Then, defining F̂ (±)(λ) by

(6.42) F̂ (±)(λ) = F̂ (0)(λ)
(
1− VER̂E(λ± i0)

)
∈ B

(
B̂(E) ; hλ

)
,

and using the resolvent equation [AIM16, Lemma 7.8], we have
1

2πi
((
R̂E(λ+ i0)− R̂E(λ− i0)

)
f̂ , ĝ

)
=
(
F̂ (±)(λ)f̂ , F̂ (±)(λ)ĝ

)
hλ

.

We define an operator F̂ (±) by (F̂ (±)f̂)(λ) = F̂ (±)(λ)f̂ , and we also put

(6.43) F̂ (±) = 0, on Hp(ĤE);

this yields the sought spectral representation of ĤE .
On the other hand, concerning the perturbation of the lattice structure, we take a

cut-off function χ0 whose support contains all the perturbation, and put χ∞ = 1−χ0.
In that case the equality

(6.44) χ∞R̂E(λ± i0) = R̂
(0)
E (λ± i0)

(
χ∞ + [H(0)

E , χ∞]R̂E(λ± i0)
)

plays the role of the resolvent equation, and F̂ (±)(λ) is defined by

(6.45) F̂ (±)(λ) = F̂ (0)(λ)
(
χ∞ +

[
H

(0)
E , χ∞

]
R̂E(λ± i0)

)
.

Summarizing this discussion, we obtain the following result.

Theorem 6.11. —
(1) The operator F̂ (±) extends uniquely to a unitary operator from Hac(ĤE) to

H annihilating the subspace Hp(ĤE).
(2) The operator diagonalizes ĤE , namely(

F̂ (±)ĤE f̂
)
(λ) = λ

(
F̂ (±)f̂

)
(λ), ∀ f̂ ∈ D(ĤE).

(3) The adjoint operator F̂ (±)(λ)∗ ∈ B(hλ;B∗(E)) satisfies the eigenequation(
ĤE − λ

)
F̂ (±)(λ)∗ϕ = 0, ∀ ϕ ∈ hλ.

(4) For any f̂ ∈ Hac(ĤE), the inversion formula holds,

f̂ =
∫

σac(ĤE )
F̂ (±)(λ)∗

(
F̂ (±)f̂

)
(λ)dλ.

We omit the proof, as it is almost the same as that of [AIM16, Theorem 7.11].

6.7. Resolvent expansion

We look at the behavior at infinity of R̂E(λ ± i0)f̂ in the sense of B̂∗(E), which
is equivalent to observing the singularities of its Fourier transform in the sense of
B∗(E).
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Lemma 6.12. — For any compact interval I ⊂ (Intσe(Ĥ(0)
E )) \ σ(0)

T , there exists
a constant C > 0 such that∥∥∥∥{r(0)

e (λ)f̂e
}

e ∈ E

∥∥∥∥
ℓ2(E)

⩽ C
∥∥∥f̂∥∥∥

ℓ2(E)

holds for all λ ∈ I and e ∈ E .

Proof. — Since I is in the resolvent set of −(d/dz)2
D + Ve, the claim follows. □

For a pair f̂ , ĝ ∈ B̂∗(E), we consider the following equivalence relation

f̂ ≃ ĝ ⇐⇒ f̂ − ĝ ∈ B̂∗
0(E).

Lemma 6.13. — For any λ ∈ (Intσe(Ĥ(0)
E )) \ σ(0)

T and f̂ ∈ B(E), we have

UER̂
(0)
E (λ± i0)f̂ ≃ sin

√
λ

λ

s∑
j=1

F̂ (0)
j (λ)f̂

λj(x)− E(λ± i0) .

Proof. — Lemma 6.12 in combination with (6.35) implies

R̂
(0)
E (λ± i0)f̂ ≃ Φ(0)(λ)∗D(0)(λ± i0)Φ(0)(λ)f̂

= sin
√
λ√

λ

s∑
j=1

1
λj(x)− E(λ± i0)PV,j(x)

(
Φ(0)(λ)f̂

)
(x).

(6.46)

By virtue of [AIM16, eq. (4.34)], we have, for g ∈ B(Td), the equivalence
1

λj(x)− µ∓ i0g(x) ≃ 1
λj(x)− µ∓ i0g

∣∣∣∣∣
M

,

where M = {x ∈ Td ; λj(x) = µ}. This proves the claim. □

Next, we extend this lemma to the perturbed case.

Theorem 6.14. — For any λ ∈ (Intσe(ĤE)) \ σ(0)
T and f̂ ∈ B(E), we have

UEχ∞R̂E(λ± i0)f̂ ≃ sin
√
λ√

λ

s∑
j=1

1
λj(x)− E(λ± i0)F̂

(±)
j (λ)f̂ .

Proof. — For the case of lattice structure perturbations, we use the resolvent
equation (6.44). By Lemma 6.44, the left-hand side is, modulo B∗

0(Td), equal to

sin
√
λ√

λ

s∑
j=1

1
λj(x)− E(λ± i0)F̂

(0)
j (λ)

(
χ∞ +

[
H

(0)
E , χ∞

]
R̂E(λ± i0)

)
f̂ ,

and thus the claim follows from (6.45). For the case of potential perturbations, we
note that

UEχ∞R̂
(0)
E (λ± i0)f̂ ≃ UER̂

(0)
E (λ± i0)f̂ ,

since passing to the Fourier series, we see that (1 − χ∞)R̂(0)
E (λ ± i0)f̂ is a smooth

function on the torus Td. Then, using (6.42) and the resolvent equation (6.41), we
obtain the sought result. □
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6.8. Helmholtz equation and S-matrix

Now one can obtain the asymptotic expansion of solutions to the Helmholtz equa-
tion and derive the S-matrix.

Theorem 6.15. —
(1) For any solution û ∈ B̂∗(E) of the equation(

ĤE − λ
)
û = 0,

there is an incoming datum and an outgoing datum ϕin, ϕout ∈ hλ satisfying

(6.47) UEχ∞û ≃ −
s∑

j=1

ϕin
j

λj(x)− E(λ− i0) +
s∑

j=1

ϕout
j

λj(x)− E(λ+ i0) .

(2) For any incoming datum ϕin = (ϕin
1 , . . . , ϕ

in
s ) ∈ hλ, there exist a unique

solution û ∈ B̂∗(E) of the equation(
ĤE − λ

)
û = 0

and an outgoing datum ϕout = (ϕout
1 , . . . , ϕou

s ) ∈ hλ satisfying the rela-
tion (6.47). The operator S(λ) defined by

S(λ) : ϕin → ϕout

is unitary on hλ.

Proof. — Let û ∈ B̂∗(E) be a solution to (ĤE − λ)û = 0 and put û|V = ŵ. Then,
ŵ ∈ B̂∗(V) and satisfies (−∆̂V,λ + cos

√
λ)ŵ = 0. By virtue of Theorem 5.4(1), this

ŵ admits an asymptotic expansion(7) (5.28). As û = T̂ ∗
V,λŵ, the first claim follows.

The existence part of (2) can be proven by the same argument as above, reducing
it to the case of the vertex operator. To prove the uniqueness, we take ϕin = 0, and
consider the solution û ∈ B̂∗(E) of the equation (ĤE − λ)û = 0 such that

(6.48) UEχ∞û ≃
s∑

j=1

ϕout
j

λj(x)− E(λ+ i0) .

Then û satisfies the outgoing radiation condition, and by Lemma 6.8, such a solution
vanishes identically. □

As this argument shows, the S-matrix for ĤE at the energy λ coincides with the
S-matrix for −∆̂V,λ at the energy

√
λ

sin
√

λ
E(λ), and hence the unitarity follows. Stated

more explicitly, we conclude:

Corollary 6.16. — The S-matrix for ĤE at the energy λ coincides with the

S-matrix for −∆̂V,λ at the energy
√
λ

sin
√
λ
E(λ) = −

√
λ cot

√
λ− κV .

(7) Note that we have to replace −∆̂Γ by −∆̂V,λ and the energy parameter λ by E(λ) in (5.28).
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Remark 6.17. — By checking the above proof, one can see that all the arguments
in this section remain valid in the situation when Cv/dv is a fixed constant except
for a finite number of vertices v ∈ V . Moreover, one can deal in the same way with
the case where the unperturbed operator h(0)

e has the same potential V0(z) at all the
edges, that is, h(0)

e = −(d2/dz2)D + V0(z), ∀ e ∈ E .

7. Inverse scattering for quantum graph

Theorem 7.1. — For the Schrödinger operator ĤE on a quantum graph of the
considered class, the S-matrix S(λ) for the scattering problem and the D-N map
ΛE(λ) for the interior boundary value problem determine each other.

Proof. — By Corollary 6.16, knowing the S-matrix S(λ) for ĤE is equivalent to
knowing the S-matrix for −∆̂V,λ at the energy

√
λ

sin
√

λ
E(λ). By Theorem 5.6, this is

equivalent to knowing the D-N map for −∆̂V,λ at the energy
√

λ
sin

√
λ
E(λ). Finally by

Lemma 3.1, this is equivalent to knowing the D-N map for ĤE at the energy λ. □
We have now arrived at our next main theorem.
Theorem 7.2. — Let Γ = {V , E} and Γ′ = {V ′, E ′} be two infinite quantum

graphs as in § 5 satisfying (4.1), (4.2), and (D-1)–(D-4), whose perturbed finite
subgraphs satisfy (C-1), (C-2). Assume further that ℓE = ℓE ′ , VE(z) = VE ′(z), kV =
kV ′ . Suppose that the S-matrices for the Schrödinger operator for the two quantum
graphs coincide for all energies. Then there is a bijection Φ : Γ→ Γ′ preserving the
graph structure, and dv = dv′ , Cv = C ′

v′ hold for all v ∈ V and v′ = Φ(v).
Proof. — This is a direct consequence of Theorems 4.1 and 7.1. □
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