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Abstract. — Motivated by Mather theory of minimizing measures for symplectic twist
dynamics, we study conformally symplectic flows on a cotangent bundle. These dynamics
are the most general dynamics for which it makes sense to look at (asymptotic) dynamical
Maslov index. Our main result is the existence of invariant measures with vanishing index
without any convexity hypothesis, in the general framework of conformally symplectic flows. A
degenerate twist-condition hypothesis implies the existence of ergodic invariant measures with
zero dynamical Maslov index and thus the existence of points with zero dynamical Maslov
index.

Résumé. — Motivées par la théorie de Mather sur les mesures minimisantes pour les
dynamiques twist symplectique, nous étudions les flots conformément symplectiques d’un fibré
cotangent. Ces dynamiques sont les plus générales pour lesquelles on peut définir l’indice de
Maslov dynamique. Notre principal résultat est l’existence de mesures invariantes d’indice nul
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sans aucune hypothèse de convexité. En supposant en plus que la torsion est de signe constant
mais éventuellement dégénérée, nous montrons l’existence d’une mesure invariante ergodique
d’indice de Maslov nul et en déduisons l’existence de points d’indice de Maslov dynamique nul.

1. Introduction and Main Results

This study mainly concerns conformally symplectic flows that are defined on the
cotangent bundle M = T ∗M of a closed manifold M , where M is endowed with
its tautological 1-form λ. Thus, its symplectic form is ω = −dλ. We denote by
π : T ∗M → M the usual projection.

Symplectic dynamics have been intensively studied because they model conserva-
tive phenomena, but a lot of phenomena are dissipative, e.g. mechanical systems
with friction. Some of these dissipative dynamics are conformally symplectic: a dif-
feomorphism f : M ⟲ is conformally symplectic if, for some constant a, we have
f ∗ω = aω. When a = 1, the diffeomorphism is symplectic. A complete vector field
X on M is conformally symplectic if LXω = αω for some α ∈ R, where LX is the
Lie derivative.

When dimM ⩾ 2 and M is connected, we have also the following characterization
of conformally symplectic dynamics of M: a diffeomorphism f : M ⟲ is conformally
symplectic if and only if the image by Df of any Lagrangian subspace in TM is
Lagrangian. The existence of a conformal factor at every point is a result of [LW98]
and the independence of this factor from the point is a result of [Lib59].

In the symplectic setting, an inspiring example is the completely integrable Hamil-
tonian case. Then the manifold is foliated by invariant Lagrangian graphs. This
example is of course very specific.

However, several authors found some traces of integrability in many non integrable
cases. Aubry–Mather theory in the case of exact symplectic twist maps and its vast
extension by Mañé and Mather to the case of Tonelli Hamiltonian systems are such
results.

In both settings, the method is variational and the “ghosts” of invariant submani-
folds are filled by minimizing orbits. A cotangent bundle has a natural Lagrangian
foliation given by its vertical fibers and a feature of the minimizing orbits is that
they have vanishing Maslov index with respect to this foliation.

Here, in a more general setting, our goal is to prove the existence of a large set
of points or measures with vanishing dynamical Maslov index. We recall that the
Maslov index MI(Γ) of a piece of arc of Lagrangian subspaces Γ = (Γt)t∈ I of TM is
the algebraic number of intersection of this arc with the Maslov singular cycle of the
vertical foliation, i.e., the Maslov index gives more or less the number of times when
the arc is non-transverse to the vertical foliation. See Subsection 2.2. The dynamical
Maslov index of a Lagrangian subspace L of TM for some time interval I and some
flow (ϕt) whose differential preserves Lagrangian subspaces, which is denoted by
DMI(L, (ϕt)t∈ I), is then the Maslov index MI((Dϕt(L))t∈ I). The precise definitions
are given in Section 2.

We begin with a preliminary statement, that is the key result for finding invariant
measures with vanishing asymptotic Maslov index.
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Theorem 1.1. — Let L ⊂ M be a Lagrangian graph. Let (ϕt) be an isotopy
of conformally symplectic diffeomorphisms of M such that ϕ0 = IdM. Then there
exists a smooth closed 1-form η : M → M and a Lipschitz function u : M → R that
is C1 on an open subset U ⊂ M of full Lebesgue measure such that

∀ q ∈ U, p := ϕ−1
1

(
η(q) + du(q)

)
∈ L and DMI

(
TpL, (ϕs)s∈ [0,1]

)
= 0.

This theorem has important consequences concerning the so-called asymptotic
Maslov index.

Definition 1.2. — Let (ϕt) be an isotopy of conformally symplectic diffeomor-
phisms of M such that ϕ0 = IdM.

(1) Let L ⊂ TM be a Lagrangian subspace that is transverse to the vertical
foliation. Whenever the limit exists, the asymptotic Maslov index of L for
(ϕt) is

DMI∞(L, (ϕt)) := lim
t→ +∞

DMI(L, (ϕs)s∈ [0,t])
t

.

We will prove (see Corollary 5.15) that if L,L′ ⊂ TxM then
DMI∞(L, (ϕt)) = DMI∞(L′, (ϕt)).

This allows us to introduce the following.
(2) Let (ϕt) be an isotopy of conformally symplectic diffeomorphisms of M such

that ϕ0 = IdM. Let x ∈ M. Then, the dynamical asymptotic Maslov index at
x for (ϕt) is denoted by DMI∞(x, (ϕt)) and is the asymptotic Maslov index
of L for every Lagrangian subspace L of TxM.

The definition of (asymptotic) dynamical Maslov index first appears in the work
of Ruelle [Rue85]: the author introduces the notion of rotation number for surface
diffeomorphisms that are isotopic to identity and for 3-dimensional flows, and
extends this to symplectic dynamics. He proves that if (ϕt) is an isotopy such
that ϕ0 = IdM and ϕt+1 = ϕt ◦ ϕ1, then for every probability measure µ invariant
by ϕ1 with compact support, DMI∞(x, (ϕt)) exists at µ-almost every point and
x 7→ DMI∞(x, (ϕt)) is a measurable and bounded function. Then he defines the
asymptotic Maslov index of such a measure.

Definition 1.3. — Let (ϕt) be a conformally symplectic isotopy of M such that
ϕ0 = IdM and ϕt+1 = ϕt ◦ ϕ1. Let µ be a ϕ1-invariant probability measure with
compact support. Then, the asymptotic Maslov index of µ for (ϕt) is

DMI(µ, (ϕt)) :=
∫

M
DMI∞(x, (ϕt)) dµ(x).

If µ is a ϕ1-invariant ergodic measure with compact support, then for µ-almost
every x ∈ M it holds

DMI∞(x, (ϕt)) = DMI(µ, (ϕt)) .
Proposition 5.6 states this and the proof that we will give elaborates on a result

of Schwartzman, [Sch57].
Our first corollary gives the existence of invariant probability measures with a

vanishing asymptotic Maslov index. A priori, this doesn’t imply the existence of
points with vanishing dynamical Maslov index.

TOME 7 (2024)



310 M.-C. ARNAUD, A. FLORIO & V. ROOS

Corollary 1.4. — Let (ϕt) be a conformally symplectic isotopy of M such that
ϕ0 = IdM and ϕt+1 = ϕt ◦ ϕ1. Let L ⊂ M be a Lagrangian submanifold that is
H-isotopic(1) to a graph and such that⋃

t∈ [0,+∞)
ϕt(L)

is relatively compact. Then there exists at least one ϕ1-invariant probability measure
µ whose asymptotic Maslov index is zero and whose support is in⋂

T ∈ [0,+∞)

⋃
t∈ [T,+∞)

ϕt(L).

Moreover, if (ϕt) is a flow, then µ can be chosen (ϕt) invariant.

This result applies in the autonomous conservative Tonelli case –where the Hamil-
tonian is a proper first integral– or in the discounted autonomous case –where there
is a proper Lyapunov function defined in the complement of some compact subset–.

As T2d can be obtained as the quotient of T ∗Td by a discrete group of transforma-
tions, we obtain also a result for T2d. In the following statement, the leaves of the
reference Lagrangian foliation are the d-dimensional Lagrangian tori {0} × Td.

Corollary 1.5. — Let (ϕt) be a symplectic isotopy of T2d such that ϕ0 = IdT2d

and ϕt+1 = ϕt ◦ ϕ1. Then, there exists at least one ϕ1-invariant probability measure
µ whose asymptotic Maslov index is zero.

In the latter corollaries, we cannot ensure that the measure is ergodic and then
we don’t know if there is at least one point with zero asymptotic Maslov index. Now
we will give sufficient conditions to obtain such ergodic measures and such points.

Definition 1.6. — A Darboux chart F = (F1, F2) : U ⊂ M → Rd × Rd is
vertically foliated if

• its image is a product Id × Jd where I and J are two intervals of R;
• ∀ x ∈ U , F (T ∗

π(x)M ∩ U) = F1(x) × Jd.

Definition 1.7. — An isotopy (ϕt) of conformally symplectic diffeomorphisms
of M twists the vertical if at every point (t0, x0) ∈ R × M, there exists

• ε > 0;
• a vertically foliated chart F = (F1, F2) : U → R2d such that x0 ∈ U , F (U) =

(−a, a)d × (−a, a)d and F (x0) = 0
that satisfy for all t ∈ (t0 − ε, t0 + ε)

• Gt := (ϕt ◦ ϕ−1
t0 )(F−1({0Rd} × (−a

2 ,
a
2)d)) ⊂ U ;

• F (Gt) is the graph of a function p 7→ q = dgt(p) where
(1) for t ∈ [t0, t0 + ε), gt is a convex function;
(2) for t ∈ (t0 − ε, t0], gt is a concave function(2) .

(1)A H-isotopy is a Hamiltonian isotopy.
(2)We don’t assume the strict concavity or convexity.
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Example 1.8. — Assume that a : I → R and H : I × M → R are smooth
functions and let us use the notation Ht(x) = H(t, x). We assume that the Hessian
of H restricted to every vertical fiber is positive definite(3) . We define the time-
dependent vector field Xt of M by

iXtω = dHt − a(t)λ.
Then the isotopy defined by Xt is conformally symplectic and twists the vertical, see
Proposition 2.17. A subclass of examples is the class of discounted Tonelli flows, see
e.g. [MS17].

Remark 1.9. — In Proposition 2.15 we will prove that, when the isotopy (ϕt)
twists the vertical, all the dynamical Maslov indices are non positive.

Theorem 1.10. — Let L ⊂ M be a Lagrangian submanifold that is H-isotopic
to a graph. Let (ϕt) be an isotopy of conformally symplectic diffeomorphisms of M
that twists the vertical.

Then there exists a constant C ∈ N∗ and a point x ∈ L such that
∀ t ∈ [0,+∞),DMI

(
TxL, (ϕs)s∈ [0,t]

)
∈ [−C,C] .

In particular
DMI∞(x, (ϕt)) = 0 .

Moreover, we deduce the following.
Theorem 1.11. — Let L ⊂ M be a Lagrangian submanifold that is H-isotopic

to a graph. Let (ϕt) be an isotopy of conformally symplectic diffeomorphisms of M
that twists the vertical and such that ϕ1+t = ϕt ◦ϕ1. Let x ∈ L be the point given by
Theorem 1.10. Assume that the positive orbit of x is relatively compact. Then there
exists an ergodic ϕ1-invariant probability measure µ with compact support such that

DMI(µ, (ϕt)) = 0 .
Moreover, the support of µ is contained in the ω-limit set of x.

In lower dimensional framework, more precisely, for dissipative twist maps of T ∗T1,
Theorem 1.10 has been proved in [Flo22] through different tools. Corollary 1.13
explains why Theorem 1.11 is reminiscent of Mañé and Mather theory for invariant
measures of Tonelli Hamiltonians flows.

Definition 1.12. — A measure µ is minimizing for a Tonelli Hamiltonian flow
if its dual measure ν on TM is such that∫

TM
Ldν = inf

ρ

∫
TM

Ldρ ,

where L is the associated Lagrangian function and the infimum is taken over all
measures on TM invariant by the Euler–Lagrange flow.

Corollary 1.13. — Let L ⊂ M be a Lagrangian graph. Let (ϕt) be a Tonelli
Hamiltonian flow. The invariant measure µ with compact support of zero asymptotic
Maslov index given by Theorem 1.11 is a Mather minimizing measure.
(3) Observe that such a fiber is a linear space, hence the Hessian has an intrinsic meaning at every
point.
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Question 1.14. — In the symplectic Tonelli case, when L is not a graph, espe-
cially when its graph selector is not semi-concave, does Theorem 1.11 always give a
minimizing measure?

Question 1.15. — Without the Tonelli hypothesis, can we characterize the
invariant measure of zero asymptotic Maslov index given by Theorem 1.11?

Example 1.16. — At the beginning of this introduction, we dealt with the com-
pletely integrable case, where M is foliated by invariant graphs and where there
are minimizing invariant measures in each of these graphs. But there are dissipative
examples where there is only one measure with zero asymptotic Maslov index. In
the case of the damped pendulum, see e.g. [MS17], there are only two invariant
measures, one supported at a sink with non-zero asymptotic index and one measure
supported at a saddle hyperbolic fixed point, which has zero asymptotic Maslov
index. Moreover, the only points that have zero asymptotic Maslov index are the
points that belong to the stable manifold of this saddle point. In this case, the
Hausdorff dimension of the set of points with vanishing asymptotic Maslov index is
1. The next statement explain why it cannot be less in this setting.

Corollary 1.17. — Let (ϕt) be an isotopy of conformally symplectic diffeomor-
phisms of M that twists the vertical. Assume that there exists n closed 1-forms
η1, . . . , ηn of M such that no non-trivial linear combination of them vanishes, i.e.,

∀ (λ1, . . . , λn) ∈ Rn\{0Rn},∀ q ∈ M,
n∑
k=1

λkηk(q) ̸= 0 .

Then
dimH

(
{x ∈ M; DMI(x, (ϕt)) = 0}

)
⩾ n,

where dimH(U) denotes the Hausdorff dimension of a set U .

Remark 1.18. — When M is the d dimensional torus, this statement allows to
bound from below by d the Hausdorff dimension of the set of points with zero
asymptotic Maslov index.

We now give a by-product of the proof of Theorem 1.1. This proof relies on spectral
invariants that come from the symplectic topology, in particular graph selectors that
were introduced by Chaperon and Sikorav, see [Cha91, OV94] or [PPS03]. We will
see in the proof that the closed 1-form η and the Lipschitz function u in Theorem 1.1
only depend on ϕ1(L) and not on the isotopy and will deduce, after introducing in
Section 5 the angular Maslov index, the following statement, which expresses the
independence of the dynamical Maslov index from the isotopy.

Proposition 1.19. — Let (ϕ1,t) and (ϕ2,t) be two isotopies of conformally sym-
plectic diffeomorphisms of M such that ϕ1,0 = ϕ2,0 = IdM and ϕ1,1 = ϕ2,1. Then for
every Lagrangian subspace L of TM such that L and Dϕ1,1(L) are transverse to the
vertical foliation, we have

DMI
(
L, (ϕ1,t)t∈ [0,1]

)
= DMI

(
L, (ϕ2,t)t∈ [0,1]

)
.
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Remark 1.20. — For ease of reading, we have chosen not to deal with angular
Maslov index in this introduction. The statement given in Section 5 is more precise,
because it deals with the angular Maslov index for every Lagrangian subspace of
TM.

Organisation of the paper

Section 2 is devoted to the definition of the Maslov index and the dynamical
Maslov index. We show that the twist hypothesis forces the index to be non pos-
itive. The invariance under symplectic reduction of the Maslov index is discussed
following [Vit87]. In Section 3 we prove that any Lagrangian path contained in a
Lagrangian submanifold and whose endpoints project on the graph selector has zero
Maslov index. This result is fundamental to prove Theorem 1.1, whose proof occu-
pies Section 4. The angular Maslov index is introduced in Section 5, where also its
relation with the Maslov index is detailed. Finally, Section 6 is devoted to the proofs
of the main statements presented in the introduction.
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2. On Maslov index

2.1. Some reminders on Maslov index

Let M be a 2d-dimensional symplectic manifold that admits a Lagrangian foliation
V . We denote by V (x) = Vx := TxV its associated Lagrangian bundle. Let p : TM →
M be the canonical projection. Let Λ(M) be the Grassmannian of Lagrangian
subspaces of TM. We recall that Λ(M) is a smooth manifold with dimension 2d+
d(d+1)

2 . The fibered singular cycle associated to V is the set

Σ(M) =
{
L ∈ Λ(M) : L ∩ Vp(L) ̸= {0}

}
.

Every fiber Σx(M) of Σ(M) is a cooriented algebraic singular hypersurface of Λx(M),
see e.g. [MS16, RS93]. Hence Σ(M) is a cooriented singular hypersurface of Λ(M).

The singular locus of Σ(M) is then {L ∈ Λ(M) : dim (L ∩ Vp(L)) ⩾ 2} and the
regular locus is
(2.1) Σ1 :=

{
L ∈ Λ : dim

(
L ∩ Vp(L)

)
= 1

}
.

Once a coorientation of Σ(M) is fixed, it is classical to associate to every continuous
loop Γ : T → Λ(M) its Maslov index MI(Γ), that satisfies the following properties:

• two homotopic loops have the same Maslov index;
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• if Γ is a loop that avoids the singular locus and is topologically transverse to
the regular one of Σ(M), then MI(Γ) is the number of signed intersections
of Γ with Σ(M) with respect to the chosen coorientation;

• every loop is homotopic to a smooth loop that avoid the singular locus and
is transverse to the regular locus.

An arc in Λ(M) is an immersion Γ : [0, 1] → Λ(M). In particular, Γ([0, 1]) does not
have self-intersections. By smooth arc, we mean a C∞ arc. When Γ : [0, 1] → Λ(M)
is an arc whose endpoints are in Λ(M)\Σ(M), following Duistermaat [Dui76, p. 183],
we can concatenate Γ with an arc Γ1 that connects Γ(1) to Γ(0) in Λ(M)\Σ(M).
The Maslov index of Γ is the Maslov index of this loop, which is independent from
the choice of Γ1 since Γ1 is in Λ(M) \ Σ(M).

Remark 2.1. — If Γ : [0, 1] → Λ(M) is an arc contained in Λ(M) \ Σ(M), i.e.,
Γ(t) ∩ Σp◦Γ(t) = {0} for every t, then its Maslov index MI(Γ) is zero.

2.2. Coorientation of Σ1

We now give some details concerning the singular and regular loci of Σ(M) and
explain our choice of coorientation of Σ(M). For more details, see for example [Dui76].
For ease of reading, we denote Σ(M) (resp. Λ(M)) by Σ (resp. Λ).

Then Σ is an algebraic subvariety of Λ that is the union of
• the regular locus that is the smooth submanifold of codimension 1 and is

defined in (2.1),
• the boundary of Σ1, i.e. the singular locus Σ \ Σ1, that is a finite union of

submanifolds with codimension at least 3.
Since every loop is homotopic to a smooth loop avoiding the singular locus and
intersecting transversally the regular one and since two homotopic loops have the
same Maslov index, we just have to define the coorientation at points of Σ1. To do
that, we introduce the notion of height in a symplectic vector space (E2d,Ω).

We fix a reference Lagrangian subspace V of E and denote by P V the canonical
projection on the quotient vector space E/V . If L1, L2 are two Lagrangian subspaces
of E that are transverse to V , we define the height of L1 above L2 with respect to
V , see [Arn08], as follows.

Definition 2.2. — Let L1, L2 ⊂ E be two Lagrangian subspaces both transverse
to V . The height of L2 above L1 with respect to V is the quadratic form

QV (L1, L2) : E/V → R
defined by

∀ v ∈ E/V,QV (L1, L2)(v) := Ω
((
P V

∣∣∣L1

)−1
(v),

(
P V

∣∣∣L2

)−1
(v)
)
.

With the hypotheses of this definition, the kernel of QV (L1, L2) is isomorphic
to L1 ∩ L2. In particular, L1 is transverse to L2 if and only if QV (L1, L2) is non
degenerate.
We have
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• If L1, L2, L3 are Lagrangian subspaces in E, all transverse to V , it holds,
see [Arn08],

(2.2) QV (L1, L3) = QV (L1, L2) + QV (L2, L3).
• if V , K, L are Lagrangian subspace of E such that each of them is transverse

to the two others, then QV (K,L) ◦ P V |L = −QK(V, L) ◦ PK |L and then
QV (K,L) and −QK(V, L) have the same signature.
Let us prove that QV (K,L) ◦ P V |L = −QK(V, L) ◦ PK |L. For ℓ ∈ L, there
exists a unique pair of vectors v ∈ V, k ∈ K such that ℓ = v+k. then we have

– QV (K,L) ◦ P V (ℓ) = Ω(k, ℓ) = Ω(k, v);
– −QK(V, L) ◦ PK(ℓ) = −Ω(v, ℓ) = −Ω(v, k) = Ω(k, v).

• if L and K are Lagrangian subspaces that are transverse to V and if ϕ :
E ⟲ is a symplectic isomorphism, then QV (K,L) has same signature as
Qϕ(V )(ϕ(K), ϕ(L)).

We now describe the local coorientation of Σ1 that we will use. Let us fix L0 ∈ Σ1 and
let x0 := p(L0). We have dim (L0 ∩ Vx0) = 1. We fix a Darboux chart F = (F1, F2) :
U → R2d at x0 such that U is a small neighborhood of x0 in M, F (U) = [a, b]d×[a, b]d
and DF2|L0 is injective and

∀ x ∈ U , F (V(x) ∩ U) = F1(x) × [a, b]d.
Let us explain why such a chart exists. Using [Wei71, Theorem 7.1], we can map
locally the foliation V onto the vertical foliation of R2d by a symplectic chart (U,Φ).
Then, composing with a symplectic isomorphism ψt(x, y) = (x, y + tx) of Rd × Rd,
for some t ∈ R, we obtain a new chart F = (F1, F2) that maps V onto the vertical
foliation such that DF (L0) is transverse to {0} × Rd and then DF2|L0 is injective.

We denote by K the Lagrangian foliation with leaves F−1([a, b]d × {y0}). Then it
is transverse to the vertical bundle V . Moreover, Tx0K and L0 are transverse, since
DF2|L0 is injective. We denote by K the tangent bundle to K. Because dim (L0∩V ) =
1, the kernel of QK(V, L0) is 1-dimensional. We denote by n the index(4) of QK(V, L0).
We define

P1 = {L ∈ Λ\Σ; p(L) ∈ U , L ⋔ K, index QK(V, L) = n}
and

P2 = {L ∈ Λ\Σ; p(L) ∈ U , L ⋔ K, index QK(V, L) = n+ 1} .

Observe that P1 and P2 are connected and that P1 ∪ P2 ∪ Σ1 is a neighbourhood
of L0 in Λ. Hence P1 and P2 define locally a coorientation(5) of Σ1 at L0. To be
sure that we obtain a global coorientation of Σ, we have to prove that this local
coorientation is independent from the choice of our foliation K. We just have to look
at what happens in the fiber Λx0 for different choices of Kx0 . In other words, we will
prove a result in a fixed symplectic vector space (E,Ω).

(4)The index of a quadratic form is the maximum dimension of a subspace of E on which the
quadratic form is negative definite.
(5) Let γ ⊂ P1 ∪ P1 ∪ Σ1 be a path from P2 to P1, crossing Σ1 transversally once at γ(t). Then
γ′(t) ∈ R+N , where N is a normal vector field to Σ1 and determines a coorientation of Σ1 at L0.
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Proposition 2.3. — Let V , L0 be two Lagrangian subspaces of E such that
dim (L0 ∩ V ) = 1. Let K1, K2 be two Lagrangian subspaces of E that are transverse
to L0 and V . We denote by ni the index of QKi

(V, L0). There exists a neighbourhood
U of L0 in the Lagrangian Grassmannian of E such that

{L ∈ U ; L ⋔ K1, index QK1(V, L) = n1 + 1} =
{L ∈ U ; L ⋔ K2, index QK2(V, L) = n2 + 1}

and

{L ∈ U ; L ⋔ K1, index QK1(V, L) = n1} =
{L ∈ U ; L ⋔ K2, index QK2(V, L) = n2} .

Proof. — Because, for j = 1, 2, V and Kj are transverse Lagrangian subspaces,
every basis (e1, . . . , ed) of V can be completed in a symplectic basis (e, f j) =
(e1, . . . , ed, f

j
1 , . . . , f

j
d) of E such that f ji ∈ Kj. Then, every Lagrangian subspace

L of E that is close enough to L0 is the graph in this basis of a d × d symmetric
matrix SLj that continuously depends on L and is close to SL0

j . We identify V with
Rd via the basis (ei).
As dim kerSL0

j = 1, we have Rd = Rℓj(L0) + Ej(L0) where kerSL0
j = Rℓj(L0) and

Ej(L0) = (Rℓj(L0))⊥ is the orthogonal of kerSL0
j for the usual euclidean scalar prod-

uct, i.e., the sum of the eigenspaces for the non-zero eigenvalues. Observe that we
can choose ℓ1(L0) = ℓ2(L0). For L in some neighbourhood U of L0, SLj has a spectral
gap with one eigenvalue λ(SLj ) close to 0 and the others far away from 0. Hence
we can continuously extend ℓj(L) and Ej(L) for L close to L0 in such a way that
ℓj(L) is an eigenvector for the eigenvalue that is close to 0, and Ej(L) is (Rℓj(L))⊥.
Moreover, the signature of the restriction of SLj to Ej(L) remains equal to its value
for L = L0 if U is small enough.
The matrix of QKj

(V, L) in the basis (PKj (e1), . . . , PKj (ed)) of E/Kj is SLj and
then to estimate the index of QKj

(V, L), we only need to know the sign of λ(SLj ).
We recall that when L ∈ U is transverse to V , we have QKj

(V, L) ◦ (PKj |L)−1 =
−QV (Kj, L) ◦ (P V |L)−1. The matrix of −QV (Kj, L) in the basis (P V (f j1 ), . . . ,
P V (f jd)) is (SLj )−1 and thus we are reduced to estimate the sign of the eigenvalue
of (SLj )−1 that has the largest absolute value. Observe that P V (f 1

i ) = P V (f 2
i ). We

denote by S the matrix of QV (K1, K2) in the same basis and we deduce from (2.2)
that

(2.3) −
(
SL1

)−1
= −

(
SL2

)−1
+ S

Let us denote by ∥ · ∥2 the usual Euclidean norm on Rd and let us endow the set of
d-dimensional matrices with the associated norm defined by

∥S∥ = sup
∥v∥2=1

∥Sv∥2 .

Then if U is small enough, there exists C > ∥S∥ such that for every L ∈ U , (λ(SLj ))−1

is the only eigenvalue of (SLj )−1 whose absolute value is larger than 3C and C is an
upper bound of the modulus of all the other eigenvalues of (SLj )−1.
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Let us prove that λ(SL1 ) and λ(SL2 ) have the same sign. Let v ∈ Rd be an eigenvector
of SL1 for the eigenvalue λ(SL1 ). Then there exists v1, v2 ∈ Rd that are mutually
orthogonal such that v = v1 + v2, SL2 v1 = λ(SL2 )v1 and v2 is orthogonal to the
eigenspace of SL2 for λ(SL2 ). Using (2.3), we obtain(

λ
(
SL1
) )−1

−
(
λ
(
SL2
) )−1 ∥v1∥2

2
∥v∥2

2
= vT2

∥v∥2

(
SL2
)−1 v2

∥v∥2
− vT

∥v∥2
S

v

∥v∥2

Observe that the absolute value of the right-hand term is less than 2C. If λ(SL1 )
and λ(SL2 ) have different signs, then the absolute value of the left-hand term is
larger than the absolute value of (λ(SL1 ))−1, then larger than 3C, which provides a
contradiction. □

In order to define the Maslov index, we first introduce the notion of positive (resp.
negative) arcs. Recall that K denotes the tangent bundle to K, where K is the
Lagrangian foliation with leaves F−1([a, b]d × {y0}).

Definition 2.4. — With the same notation, an arc Γ : (−ε0, ε0) → Λ such that
Γ((−ε0, ε0)) ∩ Σ = Γ((−ε0, ε0)) ∩ Σ1 = {Γ(0)} = {L0}

and that is topologically transverse to Σ1 is positive if there exists ε > 0 such that
• for every t ∈ (−ε, 0), index(QK(V,Γ(t))) = index(QK(V, L0)) + 1;
• for every t ∈ (0, ε), index(QK(V,Γ(t))) = index(QK(V, L0)).

Respectively, an arc Γ : (−ε0, ε0) → Λ is negative if Γ ◦ (−Id) is positive.

Remark 2.5. — This is equivalent to
• for every t ∈ (−ε, 0), index(QV (K,Γ(t))) = d− index(QK(V, L0)) − 1;
• for every t ∈ (0, ε), index(QV (K,Γ(t))) = d− index(QK(V, L0)).

Definition 2.6. — Let Γ : [a, b] → Λ be an arc.
• A t ∈ [a, b] is a crossing for Γ if Γ(t) ∈ Σ.
• The arc Γ is in general position with respect to Σ if Γ(a),Γ(b) ∈ Λ \ Σ and

the path Γ is topologically transverse to Σ.
• The arc Γ is in D-general position with respect to Σ if Γ(a),Γ(b) ∈ Λ \ Σ and

the path Γ is transverse (in the differentiable sense) to Σ.

Remark 2.7. — If Γ : [a, b] → Λ is in general position with respect to Σ, then
each crossing for Γ is isolated. Let [a, b] be fixed and let k ∈ N∗ ∪ {∞}. Then, the
set of Ck arcs Γ : [a, b] → Λ that are in D-general position with respect to Σ is open
for the C1-topology.

Let Γ : [a, b] → Λ be an arc in general position with respect to Σ. A crossing
t is called positive, respectively negative, if there exists ϵ > 0 such that the arc
Γ|[t−ϵ,t+ϵ] : [t− ϵ, t+ ϵ] → Λ is positive, respectively negative.

Definition 2.8. — Let Γ : [a, b] → Λ be an arc in general position with respect
to Σ. The Maslov index of Γ with respect to V or V is

MI(Γ) :=
Card{t : t is a positive crossing for Γ} − Card{t : t is a negative crossing for Γ} .
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The notion of Maslov index can be extended to Lagrangian paths that are not in
general position.

Definition 2.9. — Let Γ : [a, b] → Λ be a path such that Γ(a),Γ(b) ∈ Λ\Σ (not
necessarily in general position with respect to Σ). Let Γ̃ : [a, b] → Λ be a smooth
arc that is C1-close to Γ and is in general position with respect to Σ. Then

MI(Γ) := MI(Γ̃) .

For the existence of the perturbation Γ̃ of Γ and for the independence of the
previous definition from the choice of Γ̃ we refer to [MBA72] or [CLM94].

Remark 2.10. — Let ϕ be a conformally symplectic diffeomorphism on M. Let
Γ : [a.b] → Λ be a smooth path such that Γ(a),Γ(b) /∈ Σ. Then

Dϕ(Γ) : [a, b] ∋ t → Dϕ(Γ(t)) ∈ Λ
is still a smooth path such that Dϕ(Γ)(a), Dϕ(Γ)(b) do not belong to{

L ∈ Λ : L ∩Dϕ(V )p(L) ̸= {0}
}
,

where Dϕ(V )x is the tangent bundle associated to the Lagrangian foliation ϕ(V).
Then the Maslov index MI(Γ), calculated with respect to the Lagrangian foliation V ,
is equal to the Maslov index MI(Dϕ(Γ)), calculated with respect to the Lagrangian
foliation ϕ(V).

Moreover, if ϕ(V) = V , then
MI(Γ) = MI(Dϕ(Γ)) .

In particular, for M = T ∗M , the Maslov index is invariant under vertical translations,
that is by any diffeomorphism of the form ϕ(p) = p+ η ◦ π(p), where η is a closed
1-form on T ∗M .

2.3. Dynamical Maslov index

We now give the definition of dynamical Maslov index.
Definition 2.11. — Let (M, ω) be a symplectic manifold that admits a La-

grangian foliation V. Let (ϕt) be an isotopy of conformally symplectic diffeomor-
phisms of M. Let L ∈ Λ and [α, β] ⊂ R be such that Dϕα(L), Dϕβ(L) /∈ Σ. Then

DMI
(
L, (ϕt)t∈ [α,β]

)
:= MI(Γ) ,

where Γ is the Lagrangian path [α, β] ∋ t 7→ Γ(t) := Dϕt(L) ∈ Λ and the Maslov
index MI(Γ) is calculated with respect to the Lagrangian foliation V .

2.4. Twist and Maslov index

In this section, we work in T ∗M and we denote V(x) = T ∗
xM .

In the introduction, we gave the definition of an isotopy which twists the vertical.
We can enhance this in the following way (we adopt the same notations F , gt and
Gt as in the definition of twist of the vertical).
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Definition 2.12. — An isotopy (ϕt) of conformally symplectic diffeomorphisms
of M strictly twists the vertical if it twists the vertical and at every t0 ∈ R

• for all t ∈ (t0, t0 +ϵ) the image F (Gt) is the graph of a function p 7→ q = dgt(p)
where gt is a strictly convex function, i.e., such that d2gt is positive definite;

• for all t ∈ (t0 −ϵ, t0) the image F (Gt) is the graph of a function p 7→ q = dgt(p)
where gt is a strictly concave function, i.e., such that d2gt is negative definite.

Observe that the condition of convexity depends on the charts we choose (even if
the property of twisting the vertical is invariant under symplectic conjugation that
preserves the vertical foliation). This is a motivation to provide a result on the twist
property that doesn’t rely on any specific chart.

Proposition 2.13. — Let (ϕt) be an isotopy of conformally symplectic diffeo-
morphisms of T ∗M that twists the vertical. Let x ∈ T ∗M and let t0 ∈ R. We denote
xt = ϕt(x). Let K be a continuous Lagrangian bundle that is defined in a neighbour-
hood of xt0 and is transverse to the vertical bundle. Then, there exists ε > 0 such
that

• ∀ t ∈ (t0, t0 + ε), QK(xt)(Dϕt ◦ (Dϕt0)−1V (xt0), V (xt)) is a negative semi-
definite quadratic form;

• ∀ t ∈ (t0−ε, t0), QK(xt)(Dϕt◦(Dϕt0)−1V (xt0), V (xt)) is a positive semi-definite
quadratic form.

Moreover, when (ϕt) strictly twists the vertical, the considered quadratic forms are
negative definite or positive definite.

Proof of Proposition 2.13. — We fix ε > 0 and a vertically foliated chart F =
(F1, F2) : U → R2d such that xt0 ∈ U , F (xt0) = 0 and for t ∈ (t0 − ε, t0 + ε)

• Gt := (ϕt ◦ ϕ−1
t0 )(F−1({0Rd} × (−a

2 ,
a
2)d)) ⊂ U ;

• F (Gt) is the graph of a function p 7→ q = dgt(p) where
(1) for t ∈ [t0, t0 + ε), gt is a convex function;
(2) for t ∈ (t0 − ε, t0], gt is a concave function.

As previously, we denote by K the Lagrangian foliation with leaves F−1([−a, a]d ×
{y0}) and by K its tangent bundle. For t ∈ (t0, t0 +ϵ) (resp. (t0 −ϵ, t0)), the quadratic
form

QK(xt)
(
D
(
ϕt ◦ ϕ−1

t0

)
V (xt0), V (xt)

)
= −QK(xt)

(
V (xt), D

(
ϕt ◦ ϕ−1

t0

)
V (xt0)

)
expressed in the chart F is just −D2gt(F2(xt0)) that is a negative (resp. positive)
semi-definite quadratic form because the isotopy twists the vertical.
When the isotopy strictly twists the vertical, we obtain in this case a negative (resp.
positive) definite quadratic form.

Observe that the bundle K that we use in the proof is not necessarily the same
bundle as in the statement. But because the two are transverse to the vertical
foliation and we consider the height between the vertical and Lagrangian subspaces
that are close to the vertical (ε is small), the two indices are the same (we can build
an isotopy between the two bundles that won’t change the signature). □

Proposition 2.14. — Let (Xt) be a conformally symplectic vector field that
generates an isotopy of conformally symplectic diffeomorphisms of T ∗M . We assume
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that for every x ∈ T ∗M , there exists a vertically foliated chart F = (F1, F2) : U →
R2d such that when we express the vector field X = (Xq, Xp) in this chart, then
∂pXq, which is always symmetric due to the symplectic nature of the vector field, is
positive definite.

Let x ∈ T ∗M and denote xt = ϕt(x). Let t0 ∈ R. Let K be a continuous Lagrangian
bundle defined in a neighbourhood of xt0 and transverse to the vertical bundle. Then
there exists ε > 0 such that

• ∀ t ∈ (t0, t0 + ε), QK(xt)(Dϕt ◦ (Dϕt0)−1V (xt0), V (xt)) is positive definite;
• ∀ t ∈ (t0 − ε, t0), QK(xt)(Dϕt ◦ (Dϕt0)−1V (xt0), V (xt)) is negative definite.

Proof of Proposition 2.14. — As noticed in the proof of Proposition 2.13, we only
need to prove the result for the tangent space K to Lagrangian foliation K with
leaves F−1([−a, a]d × {y0}).

In the chosen chart, the Jacobian matrix of X is

DX(xt0) =
(
∂qXq(xt0) ∂pXq(xt0)
∂qXp(xt0) ∂pXp(xt0)

)
and if we denote

Dϕt(x)
(
Dϕt0

)−1
(xt0) =

(
at bt
ct dt

)
then we have

(2.4)

ḃt = ∂qXqbt + ∂pXqdt
ḋt = ∂qXpbt + ∂pXpdt .

Hence uniformly in x it holds dt = 1d+o(t−t0) and bt = (t−t0)∂pXq(xt0)+o((t−t0)2),
which gives bt(dt)−1 = (t− t0)∂pXq(xt0) + o((t− t0)2). Because bt(dt)−1 is the matrix
of

QK(xt)

(
Dϕt ◦

(
Dϕt0

)−1
V (xt0), V (xt)

)
in the chart, this gives the wanted result. □

Proposition 2.15. — Let (ϕt) be an isotopy of conformally symplectic diffeo-
morphisms of T ∗M that twists the vertical. Then if L ∈ Λ and [α, β] ⊂ R are such
that Dϕα(L), Dϕβ(L) /∈ Σ, then

DMI
(
L, (ϕt)t∈ [α,β]

)
⩽ 0.

Proof of Proposition 2.15. — Let us first assume that (ϕt) is an isotopy satisfying
the conclusion of Proposition2.13 (with definite quadratic forms) in a neighborhood of
(DϕtL)t∈ [α,β]. Perturbing L, we can assume that (DϕtL)t∈ [α,β] intersects Σ eventually
only at the regular locus Σ1. We will prove that this implies that (DϕtL)t∈ [α,β] is
actually topologically transverse to Σ and that the Maslov index is non-positive.

Let t0 ∈ [α, β] be such that Dϕt0L ∈ Σ1. We introduce x0 = p(L) and xt := ϕt(x0).
Consider a continuous Lagrangian bundle K defined in a neighbourhood of xt0 and
transverse to the vertical bundle. By hypothesis, there exists ε > 0 such that

• ∀ t ∈ (t0, t0 + ε), QK(xt)(Dϕt ◦ (Dϕt0)−1V (xt0), V (xt)) is positive definite;
• ∀ t ∈ (t0 − ε, t0), QK(xt)(Dϕt ◦ (Dϕt0)−1V (xt0), V (xt)) is negative definite.
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Then, for t ∈ [t0, t0 + ε), if Lt = DϕtL, we have

QK(xt)(Lt, V (xt)) = QK(xt)
(
D
(
ϕt ◦ ϕ−1

t0

)
Lt0 , D

(
ϕt ◦ ϕ−1

t0

)
V (xt0)

)
+ QK(xt)

(
D
(
ϕt ◦ ϕ−1

t0

)
V (xt0), V (xt)

)
.

Then:
• because of the invariance under symplectic diffeomorphisms, the signature

of QK(xt)(D(ϕt ◦ ϕ−1
t0 )Lt0 , D(ϕt ◦ ϕ−1

t0 )V (xt0)) is equal to the signature of
QD(ϕt0 ◦ϕ−1

t )−1K(xt)(Lt0 , V (xt0)) and if we chose ε small enough, this signature
is equal to the signature of QK(xt0 )(Lt0 , V (xt0));

• the quadratic form

QK(xt)
(
D
(
ϕt ◦ ϕ−1

t0

)
V (xt0), V (xt)

)
= −QK(xt)

(
V (xt), D

(
ϕt ◦ ϕ−1

t0

)
V (xt0)

)
is negative definite because we assume that the isotopy (ϕt) strictly twists
the vertical.

Since the index of the sum of a quadratic form Q and a negative definite quadratic
form is at least the sum of the index and the nullity of Q, we deduce that for
t ∈ (t0, t0 + ε) the index of QK(xt)(Lt, V (xt)) is at least the sum of 1, which is the
nullity of QK(xt0 )(Lt0 , V (xt0)), and the index of QK(x0)(Lt0 , V (x0)). Moreover, as the
quadratic form −QK(xt)(V (xt), D(ϕt◦ϕ−1

t0 )V (xt0)) is close to 0 for ε small enough and
because of the continuous dependence of the eigenvalues on the quadratic form, the
index of QK(xt)(Lt, V (xt)) is exactly the sum of 1 and the index of QK(x0)(Lt0 , V (x0)).
A similar argument gives that for t ∈ (t0 − ε, t0), the index of QK(xt)(Lt, V (xt)) is
exactly the index of QK(x0)(Lt0 , V (x0)) This proves that (Lt)t∈ [α,β] intersect Σ1
topologically transversally and in the negative sense and that the Maslov index is
non-positive.
Let now (ϕt) be an isotopy that twists the vertical (with no further assumptions).
Consider the Lagrangian path (DϕtL)t∈ [α,β].

Claim 2.16. — There exists an isotopy (ϕ̃t) of conformally symplectic diffeomor-
phisms of M such that

• (Dϕ̃tL)t∈ [α,β] is a smooth perturbation of (DϕtL)t∈ [α,β], and in particular,
MI((DϕtL)t∈ [α,β]) = MI((Dϕ̃tL)t∈ [α,β]);

• (ϕ̃t) is an isotopy that satisfies the conclusion of Proposition2.13 (with definite
quadratic forms) in a neighborhood of (Dϕ̃tL)t∈ [α,β].

The claim immediately implies that the Maslov index of (DϕtL)t∈ [α,β] is non-
positive, as desired.
Let us now prove the claim. Because (ϕt) twists the vertical, we deduce from Propo-
sition 2.13 that there exists ε > 0 such that

• ∀ t ∈ (t0, t0 + ε), QK(xt)(Dϕt ◦ (Dϕt0)−1V (xt0), V (xt)) is a negative semi-
definite quadratic form;

• ∀ t ∈ (t0−ε, t0), QK(xt)(Dϕt◦(Dϕt0)−1V (xt0), V (xt)) is a positive semi-definite
quadratic form.
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If the vector field associated to (ϕt) is written in the chart as X = (Xq, Xp), we
deduce from equations (2.4) that

d

dt

(
bt(dt)−1

)
= ∂qXqbt(dt)−1 + ∂pXq − bt(dt)−1∂qXpbt(dt)−1 − bt(dt)−1∂pXp .

Since bt(dt)−1 is the matrix of QK(xt)(Dϕt ◦
(
Dϕt0

)−1
V (xt0), V (xt)) and is zero for

t = t0, we deduce that
d

dt

(
bt(dt)−1

)
|t=t0

= ∂pXq .

and then that ∂pXq is a positive semi-definite quadratic form. We now add to X
a small Hamiltonian vector-field Y that is associated to a Hamiltonian H that is
strictly convex in the fiber direction. This implies that ∂pYq is positive definite and
so is ∂p(X + Y ). According to Proposition 2.14, the isotopy associated with X + Y

is the desired isotopy (ϕ̃t). □

Proposition 2.17. — Assume that a : I → R and H : I×T ∗M → R are smooth
functions and let us use the notation Ht(x) = H(t, x). We assume that the Hessian of
H restricted to every vertical fiber is positive definite. We define the time-dependent
vector field Xt on T ∗M by

iXtω = dHt − a(t)λ.
Then the isotopy defined by Xt is conformally symplectic and strictly twists the
vertical.

Proof of Proposition 2.17. For (t0, x0) ∈ I × T ∗M , we choose a vertically foliated
Darboux chart F = (F1, F2) : U → Rd × Rd such that F (x0) = 0 and F (U) =
(−a, a)d × (−a, a)d.
We now work in this chart and denote by H the Hamiltonian in this chart, which has
a positive definite Hessian in the p direction. We chose ε0 > 0 such that for all t ∈
(t0−ε0, t0+ε0), Gt := (ϕt◦ϕ−1

t0 )(F−1({0Rd}×(−a
2 ,

a
2)d)) ⊂ U and F (Gt)(6) is the graph

of a function p 7→ q = dgt(p). We deduce from the Hamilton equations that there
exists ε ∈ (0, ε0) such that uniformly for y ∈ (−a

2 ,
a
2)d and t ∈ (t0 − ε, t0 + ε)\{t0}

if we use the notation ϕt(0, y) = (qt, pt) then

D2gt(pt) = (t− t0)
(
∂2H

∂p2 (t0, 0, y) +O(t− t0)
)
.

This results in the (strict) twist property. □

2.5. Maslov index and symplectic reduction

On a cotangent bundle, the Maslov index is invariant by symplectic reduction. The
result is due to C. Viterbo [Vit87]. For sake of completeness, we recall here Viterbo’s
proof.

Let us start by showing the invariance of the Maslov index by symplectic reduction
on a symplectic vector space. Let (V, ω) be a symplectic vector space of dimension 2d.

(6)F (Gt) is Lagrangian.
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Denote by Λ(V ) the set of Lagrangian subspaces in V and, for every subspace U ⊂ V ,
by ΛU(V ) the set of Lagrangian subspaces L such that L ∩ U = {0}.

Fix L0 ∈ Λ(V )(7) . Let W ⊂ V be a coisotropic (non-Lagrangian) vector subspace
such that

W⊥ ⊂ L0 ⊂ W ,

where W⊥ denotes the symplectic orthogonal with respect to ω. Consider the quotient
map

ΠW⊥ :W → W/W⊥

v 7→ [v] ,
where [v] = [u] if and only if v−u ∈ W⊥. Observe that ΠW⊥ is a surjective linear map.
Then, the quotient space inherits a symplectic 2-form ωW from ω, and (W/W⊥, ωW )
is still a symplectic vector space. In particular, for every Lagrangian subspace L of
V the image ΠW⊥(L ∩W ) is still a Lagrangian space in W/W⊥. Denote by

PW⊥ : Λ(V ) ↪→ Λ
(
W/W⊥

)
L 7→ ΠW⊥(L ∩W ) .

The following holds.

Claim 2.18. — The map PW⊥ restricted to ΛW⊥(V ) is a submersion.

Proof of the claim. Let us fix L ∈ ΛW⊥(V ) and let L′ ∈ Λ(V ) be such that
W⊥ ⊂ L′ ⊂ W and L ∩ L′ = {0}. The set U = {L̃ ∈ Λ(V ) : L̃ ∩ L′ = {0}}
is an open neighbourhood of L. If L̃ ∈ U , then there exists a unique linear map
B = BL̃ : L → L′ such that

L̃ = {v +Bv; v ∈ L}
and B satisfies the symmetry condition
(2.5) ∀ ℓ, ℓ′ ∈ L, ω(ℓ, Bℓ′) + ω(Bℓ, ℓ′) = 0.

Moreover, if B : L → L′ satisfies the symmetry condition (2.5), then the set L̃ =
{v +Bv; v ∈ L} is a Lagrangian subspace of V that is transverse to L′.
We denote by B the set of linear maps from L to L′ that satisfy the symmetry
condition (2.5). It is a finite dimensional vector space that is the image of the chart

L̃ ∈ U 7→ BL̃ ∈ B.

Similarly, if L = PW⊥(L) and L
′ = PW⊥(L′), the set

V =
{
L̃ ∈ Λ

(
W/W⊥

)
; L̃ ∩ L

′ = {0}
}

is an open neighbourhood of L in Λ(W/W⊥). The map that associate to every L̃ ∈ V

the linear map BL̃ : L → L
′ such that L̃ = {ℓ+BL̃ℓ; ℓ ∈ L} is a chart whose image

is the finite dimensional vector space B of linear maps B : L → L
′ such that

∀ ℓ, ℓ′ ∈ L, ωW (ℓ, Bℓ′) + ωW (Bℓ, ℓ′) = 0.

(7)L0 is the Lagrangian subspace with respect to which we calculate the Maslov index in (V, ω).
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In these charts, the map PW⊥ is read Φ : B → B where

Φ(B) = ΠW⊥ ◦B|L∩W ◦ (ΠW⊥ |L∩W )−1 .

Hence Φ is a linear map. This is then a submersion onto its image that is a linear
subspace of B. If we prove that Φ(B) = B, we will deduce that PW⊥ is a submersion.
Thus, let B0 ∈ B and let L0 be the graph of B. We choose a linear subspace L′

1 of
L′ that is transverse to W⊥ and define B1 : L ∩W → L′

1 as

∀ v ∈ L ∩W,B1(v) = ΠW⊥|−1
L′

1
◦B0 ◦ ΠW⊥(v).

When v, w ∈ L ∩W , we have

ω(v,B1w) + ω(B1v, w) = ω
(
v,ΠW⊥

∣∣∣−1
L′

1
◦B0[w]

)
+ ω

(
ΠW⊥

∣∣∣−1
L′

1
◦B0[v], w

)
= ωW

(
[v], B0[w]

)
+ ωW

(
B0[v], [w]

)
= 0 .

Hence B1 : L ∩W → L′
1 satisfies the symmetry condition and then its graph L2 is

an isotropic subspace of (L∩W ) +L′ ⊂ W such that L2 ∩L′ = {0}. We can choose
a Lagrangian subspace L̃ of V that contains L2 and is transverse to L′: L̃ is then
the graph of a map B2 : L → L′ that satisfies the symmetry condition and contains
L2. Then the graph of Φ(B2) is a Lagrangian subspace of W/W⊥ that contains L0,
hence is equal to L0, from which we deduce that Φ(B2) = B0, demonstrating the
surjectivity of Φ. □

Denote by i : ΛW⊥(V ) ↪→ Λ(V ) the standard inclusion. This is a submersion.

Lemma 2.19. — Let t ∈ [0, 1] 7→ γ(t) ∈ ΛW⊥(V ) be an arc such that γ(0) ∩L0 =
γ(1) ∩ L0 = {0}. Then

MI(i ◦ γ) = MI (PW⊥ ◦ γ) ,
where

• the Maslov index MI(i ◦ γ) is calculated with respect to L0 in Λ(W );
• the Maslov index MI(PW⊥ ◦ γ) is calculated with respect to PW⊥(L0) in

Λ(W/W⊥).

Proof. — By slightly perturbing the path, we can assume that γ is in D-general
position with respect to Σ := {L ∈ Λ(V ); L ∩ L0 ̸= {0}}. The subspace L′

0 :=
PW⊥(L0) of W/W⊥ is Lagrangian and we denote Σ = {L′ ∈ Λ(W/W⊥); L′ ∩ L′

0 ̸=
{0}}. Observe that P−1

W⊥(Σ) ⊂ Σ because W⊥ ⊂ L0.
Since the maps i and PW⊥ are submersions, we have

• the path i ◦ γ is in D-general position with respect to Σ;
• the path PW⊥ ◦ γ is in D-general position with respect to Σ.

Moreover, the choice of a coorientation of Σ determines a coorientation both on
i−1(Σ1) and on PW⊥ ◦ i−1(Σ1). Following [Vit87], we claim that

Claim 2.20. —
i−1(Σ) = P−1

W⊥(Σ) ∩ ΛW⊥(V ) .
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Proof of the claim.We first observe that on one side
i−1(Σ) =

{
L ∈ Λ(V ) : L ∩W⊥ = {0} and L ∩ L0 ̸= {0}

}
.

On the other side we have

P−1
W⊥

(
Σ
)

∩ΛW⊥(V ) ={
L ∈ ΛW⊥(V ) ;

(
(L ∩W +W⊥)/W⊥

)
∩
(
(L0 ∩W +W⊥)/W⊥

)
̸= {0}

}
;

since W⊥ ⊂ L0 ⊂ W , we have L0 = L0 ∩ W + W⊥ and any L ∈ P−1
W⊥(Σ)∩ΛW⊥(V )

is so that
((L ∩W +W⊥)/W⊥) ∩ (L0/W

⊥) =(
L ∩ L0 ∩W +W⊥

)
/W⊥ =

(
L ∩ L0 +W⊥

)
/W⊥ ̸= {0} .

Since L ∩W⊥ = {0}(
L ∩ L0 +W⊥

)
/W⊥ ̸= {0} ⇔ L ∩ L0 ̸= {0} .

We so conclude that
P−1
W⊥(Σ)∩ΛW⊥(V ) =

{
L ∈ Λ(V ) : L ∩W⊥ = {0} and L ∩ L0 ̸= {0}

}
= i−1 ({L ∈ Λ(V ) : L ∩ L0 ̸= {0}}) .

□

Since i is a submersion, the number of crossings of γ with i−1(Σ) is equal to the
number of crossings of i◦γ with Σ. Since PW⊥ is also a submersion and PW⊥(Σ) = Σ̄,
we conclude that the number of crossings of γ with i−1(Σ) is equal to the number of
crossings of PW⊥ ◦ γ with Σ.

Since the coorientation on i−1(Σ) and on PW⊥ ◦ i−1(Σ) is determined by the
coorientation of Σ, we conclude that actually the number of positive (resp. negative)
crossings of i ◦ γ corresponds to the number of positive (resp. negative) crossings of
PW⊥ ◦ γ. By the definition of Maslov index, we obtain the sought result. □

We want now to prove the invariance of the Maslov index by symplectic reduction
on the cotangent bundle M, endowed with the symplectic form ω. Let V be the
Lagrangian foliation whose fibers of the associated tangent Lagrangian bundle are
the vertical Lagrangian subspaces. Let W ⊂ M be a coisotropic submanifold and let
iW : W → M be the canonical injection; the characteristic foliation of W , denoted
by W⊥, admits for tangent bundle Tx(W⊥) = ker(i∗Wω)(x) = (TxW)⊥.

Assume that, for every x ∈ W it holds
(TxW)⊥ ⊂ TxV ⊂ TxW .

We assume that the symplectic reduction of W is a true symplectic manifold that
we denote by R : W → W/W⊥. When x ∈ W and L ∈ ΛTxW⊥(TxM), we denote

P(L) = DR(x)L =
(
L+ TxW⊥

)
/TxW⊥ ∈ Λ

(
W/W⊥

)
.

Then P is a submersion from ΛW⊥(M)|W to Λ(W/W⊥).
We denote Σ(M) := {L ∈ Λ(M); L ∩ Tp(L)V ̸= {0}} and Σ(W/W⊥) = {L ∈

Λ(W/W⊥);L ∩ Tp(L)P(V) ̸= {0}} .
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Lemma 2.21. — Let Γ : [a, b] → Λ(M) be a smooth arc such that
• Γ(a),Γ(b) /∈ Σ(M);
• Γ is in D-general position with respect to the fibered singular cycle Σ(M);
• at every point the path has trivial intersection with the tangent bundle of the

characteristic foliation of W , i.e.

Γ(t) ∩
(
Tp(Γ(t))W

)⊥
= {0} ∀ t ∈ [a, b] .

Then
MI(Γ) = MI(P ◦ Γ) ,

where
• the Maslov index MI(Γ) is calculated with respect to TV in Λ(M);
• the Maslov index MI(P ◦ Γ) is calculated with respect to P(V) in Λ(W/W⊥).

Proof. — Since P is a submersion and P−1(Σ(W/W⊥)) ∩ ΛTW⊥(M) = Σ(M)|W ,
the path P ◦ Γ is also in D-general position with respect to Σ(W/W⊥). In order
to conclude, it is then sufficient to calculate the Maslov index of a sub-path of Γ,
around a (isolated) crossing t. Let U ⊂ M be a neighborhood of p ◦ Γ(t) and let

Γ|[t−ϵ,t+ϵ] : [t− ϵ, t+ ϵ] → Λ(U) ,
be a Lagrangian path with only an isolated, transverse crossing at t. Let us trivi-
alise Λ(U) as U × Λ(Tp◦Γ(t)M). Similarly, trivialise the image P(Λ(U)) as P(U) ×
Λ(Tp◦Γ(t)W/(Tp◦Γ(t)W)⊥). Up to restrict the neighborhood U , the Maslov index of
the path Γ|[t−ϵ,t+ϵ] with respect to V corresponds to the Maslov index of Γ|[t−ϵ,t+ϵ],
seen as a Lagrangian path in the symplectic vector space Tp◦Γ(t)M thanks to the
trivialization, with respect to Tp◦Γ(t)V. Similarly, the Maslov index of the path
P(Γ|[t−ϵ,t+ϵ]) with respect to P(V) is actually the Maslov index of the Lagrangian
path P(Γ|[t−ϵ,t+ϵ]), seen in Tp◦Γ(t)W/(Tp◦Γ(t)W)⊥ through the trivialization, with
respect to P(Tp◦Γ(t)V). By applying Lemma 2.19, we can then conclude. □

3. Maslov index along a Lagrangian submanifold that
admits a generating function

Let L ⊂ T ∗M be a Lagrangian submanifold. The goal of this Section is to prove
that every arc Γ : [a, b] → TL whose endpoints project on T ∗M on the so-called
graph selector of L has zero Maslov index.

3.1. The relation between the Maslov index and the Morse index

Let us recall the definition of generating function for a Lagrangian submanifold L
of T ∗M .

Definition 3.1. — A Cr function with r ⩾ 2 function S : M×Rk → R generates
a Lagrangian submanifold L of T ∗M if
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• using the notation

CS =
{

(q, ξ) ∈ M × Rk : ∂S

∂ξ
(q, ξ) = 0

}
,

at every point of CS, the map ∂S
∂ξ

is a submersion; in this case, CS is a d-
dimensional submanifold of M × Rk;

• the map jS : CS ↪→ T ∗M defined by jS(q, ξ) = ∂S
∂q

(q, ξ) is an embedding such
that jS(CS) = L.

The generating function S is quadratic at infinity (GFQI) if there exists a compact
subset K ⊂ M × Rk and a non-degenerate quadratic form Q : Rk → R such that

∀ (q, ξ) /∈ K,S(q, ξ) = Q(ξ).

The generating function quadratic at infinity S is of index m if the non-degenerate
quadratic form Q has index m.

A result due to Sikorav [Bru91, Sik87] asserts that every H-isotopic(8) to the zero
section submanifold of T ∗M admits a GFQI.

Notation 3.2. — If we denote as before the Liouville form on T ∗M by λ and
the Liouville form on T ∗(Rk) by λ1, the product manifold N = T ∗M × T ∗(Rk) is
endowed with the symplectic form Ω = −P∗

1dλ − P∗
2dλ1 where Pi is the projection

on the ith factor.

Theorem 3.3. — Let L ⊂ T ∗M be a Lagrangian submanifold that admits a
generating function S(q, ξ) : M × Rk → R. Let (qi, ξi) ∈ M × Rk, i = 1, 2 be such
that

• ∂S
∂ξ

(qi, ξi) = 0, i.e. (qi, ξi) ∈ CS;
• if we use the notation pi = ∂S

∂q
(qi, ξi), the submanifold L is transverse to the

vertical fiber T ∗
qi
M at pi in T ∗M .

Then, ker ∂2S
∂ξ2 (qi, ξi) = {0} and for every arc γ0 joining γ0(0) = p1 to γ0(1) = p2 in L,

the Maslov index of t ∈ [0, 1] 7→ Tγ0(t)L with respect to the vertical is equal to the
difference of the Morse indices index(∂2S

∂ξ2 (q2, ξ2)) − index(∂2S
∂ξ2 (q1, ξ1)).

Proof of Theorem 3.3. —

Lemma 3.4. — Let p = ∂S
∂q

(q, ξ) ∈ L. Then L is transverse to T ∗
qM at p if and

only ifker(∂2S
∂ξ2 (q, ξ)) = {0}.

Proof of Lemma 3.4. — Let us fix p ∈ L and let δp ∈ Tp(T ∗M). We use the
notation q = π(p) ∈ M and δq = dπ(p)δp ∈ TqM .
Then δp belongs to TpL if and only if there exists δξ ∈ Rk such that

• D(∂S
∂ξ

)(δq, δξ) = ∂2S
∂q∂ξ

(q, ξ)δq + ∂2S
∂ξ2 (q, ξ)δξ = 0;

• DjS(δq, δξ) =δp = ∂2S
∂q2 (q, ξ)δq + ∂2S

∂ξ∂q
(q, ξ)δξ.

(8)This means Hamiltonianly isotopic
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Observe that π(∂S
∂q

(q, ξ)) = q and then

(3.1) Dπ

(
∂2S

∂q2 (q, ξ)δq
)

= δq and Dπ

(
∂2S

∂ξ∂q
(q, ξ)δξ

)
= 0.

We deduce

δξ ∈ ker
(
∂2S

∂ξ2

)
\{0} ⇐⇒ (0, δξ) ∈ ker

(
D

(
∂S

∂ξ

))
\{0}

⇐⇒ DjS(0, δξ) ∈ TL\{0} ⇐⇒ ∂2S

∂ξ∂q
δξ ∈ TL\{0}.

Using (3.1), we conclude that ker(∂2S
∂ξ2 (q, ξ)) ̸= {0} if and only if L is not transverse

to T ∗
qM at ∂S

∂q
(q, ξ). □

In N = T ∗M × T ∗(Rk), endowed with the symplectic form Ω= −P∗
1dλ − P∗

2dλ1,
we consider the coisotropic foliation into submanifolds

Wχ = T ∗M × Rk × {χ}

for χ ∈ Rk. The characteristic leaves of Wχ are the submanifolds W⊥
(p,χ) = {p} ×

Rk × {χ} with p ∈ T ∗M .
We will use also the Lagrangian foliation F of N with leaves Fq,χ = T ∗

qM×Rk×{χ}.
Then we have W⊥

(p,χ) ⊂ F(π(p),χ) ⊂ Wχ. We denote by F(p,ξ,χ) the tangent space to
the leaf F(π(p),χ) at the point (p, ξ, χ).
The graph G = graph(dS) ⊂ N of dS is a Lagrangian submanifold of N that is
transverse to W0 and such that G ∩ W0 is diffeomorphic to L by the map

R : (p, ξ, 0) ∈ W0 7→ p.

Observe that R is the symplectic reduction of W0. We denote by R the restriction
of R to G ∩ W0.

We use for γ0, qi, pi, ξi the same notations as in Theorem 3.3. Then Γ0 = R−1 ◦ γ0
is an arc on G ∩ W0 such that Γ0(0) = (p1, ξ1, 0) and Γ0(1) = (p2, ξ2, 0). We have

Lemma 3.5. — Let Γ(t) = (p(t), ξ(t), χ(t)) ∈ G be an arc in G such that at Γ(0)
and Γ(1), the quadratic form ∂2S

∂ξ2 is non-degenerate. The Maslov index of the arc of
Lagrangian subspaces t ∈ [0, 1] 7→ TΓ(t)G with respect to the fibered singular cycle
associated to F is

index
(
∂2S

∂ξ2 (q(1), ξ(1))
)

− index
(
∂2S

∂ξ2 (q(0), ξ(0))
)
.

Proof of Lemma 3.5. — Up to a small perturbation, we can assume that S is
smooth. The proof is divided into two steps. First, we will perturb the Lagrangian
submanifold L (i.e., its generating function) and Γ on it so that Γ is in D-general
position with respect to the fibered singular cycle associated to F . Then, we will
prove the lemma.

Step 1. — As TΓ(0)G and TΓ(1)G are transverse to FΓ(0), FΓ(1) respectively, there
exists ε > 0 such that for all t ∈ [0, ε] ∪ [1 − ε, 1], TΓ(t)G is transverse to FΓ(t). We use
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the notation t 7→ ζ(t) := (π ◦ p(t), ξ(t)) ∈ M × Rk. We now choose a neighbourhood
U of ζ([ε, 1 − ε]) in M × Rk and a diffeomorphism ψ : U → Rd × Rk such that

∀ t ∈ [ϵ, 1 − ϵ], ψ(ζ(t)) = (t, 0, . . . , 0).

Let s : ψ(U) → R defined by s(y) = S ◦ ψ−1(y). Then in the neighborhood of
(ε, 0 . . . , 0) and (1−ε, 0, . . . , 0), we know that graph(D2s) and Dψ(F ) are transverse.
We can slightly perturb the path of matrices t ∈ [ε, 1 − ε] 7→ D2s(t, 0, . . . , 0) in a
path t 7→ A(t) of symmetric matrices such that

• A(t) = D2s(t, 0, . . . , 0) in a neighbourhood of ε and 1 − ε;
• the path t 7→ graph(A(t)) is in D-general position

We now define for x1 in a neighborhood of [ε, 1 − ε]
• δ(x1) =

∫ x1
ε (A(σ) −D2s(σ, 0, . . . , 0))(1, 0, . . . , 0)dσ;

• v(x1) =
∫ x1
ε δ(σ)(1, 0, . . . , 0)dσ;

• in a neighbourhood of [ε, 1 − ε] × {0Rd−1×Rk},

u (x1, . . . , xd+k) = s (x1, . . . , xd+k) + v(x1) + δ(x1) (0, x2, . . . , xd+k)

+ 1
2(A(x1) −D2s(x1, 0, . . . , 0))

(
(0, x2, . . . , xd+k), (0, x2, . . . , xd+k)

)
.

Then u is C2 close to s and we have

∀ x1 ∈ [ε, 1 − ε], D2u(x1, 0, . . . , 0) = A(x1).

We then use a bump function η with support in a neighbourhood of [ε, 1 − ε] ×
{0Rd−1×Rk} and that is equal to 1 in a smaller neighbourhood of [ε, 1−ε]×{0Rd−1×Rk}.
We define

s̃(x1, . . . , xd+k) =
(1 − η(x1, . . . , xd+k))s(x1, . . . , xd+k) + η(x1, . . . , xd+k)u(x1, . . . , xd+k).

As s̃ is equal to u in [ε, 1 − ε] × {0Rd−1×Rk}, D2s̃ is in D-general position with respect
to Dψ(F ) along the lift of this arc in graphDu. In addition, as s̃ is C2-close to
s, D2s̃ is transverse to Dψ(F ) along the lift of ([0, ε] ∪ [1 − ε, 1]) × {0Rd−1×Rk} in
graphDs̃.

Finally, define the function S̃ to be equal to S outside ψ−1(U) and to s̃ ◦ ψ in
ψ−1(U). Thus, S̃ is C2 close to S, DS̃ ◦ζ is C1 close to DS ◦ζ = Γ and t 7→ DS̃ ◦ζ(t)
is in D-general position with respect to the fibered singular cycle associated to F . As
the new generating function S̃ is C2 close to S, the number index(∂2S

∂ξ2 (q(1), ξ(1))) −
index(∂2S

∂ξ2 (q(0), ξ(0))) does not change.
This will allow us to assume that the path t 7→ TΓ(t)G is in D-general position with

respect to the fibered singular cycle associated to F .
Step 2. — We then look at what happens at a crossing Γ(t̄). We choose a chart

close to ∂S
∂q

(q(t̄), ξ(t̄)) and we assume that we work in coordinates : q ∈ U ⊂ Rn and
(p1, . . . , pn) are the dual coordinates defined by (q,∑ pidqi) ∈ T ∗U .
In these coordinates for (q, p) = (q, ∂S

∂q
(q, ξ)) ∈ U × Rn, we use the linear and

symplectic change of coordinates
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(δq, δp) 7→
(
δQ = δp+

(
1n − ∂2S

∂q2 (q, ξ)
)
δq, δP = −δq

)
.

In the extended space TN with linear coordinates (δQ, δP, δξ, δχ), the equation of
FΓ(t) is (δP, δχ) = (0, 0), i.e., FΓ(t) is the graph of the zero function. The equation of
TG is

(3.2)

δP = −δQ+ ∂2S
∂ξ∂q

δξ

δχ = ∂2S
∂q∂ξ

δQ+
(
∂2S
∂ξ2 − ∂2S

∂q∂ξ
∂2S
∂ξ∂q

)
δξ

and this is also a graph. We then compute the change of Maslov index with respect
to FΓ(t) with the help of the height of TG above the vertical L with respect to F , i.e.,
QF (L, TG), where L has equation (δQ, δξ) = (0, 0). Observe that, for t close to t̄, F
and L are transverse and the projection PF : TN → TN /F restricted to L is an
isomorphism. Therefore, we can take (δP, δχ) as coordinates in TN /F . Additionally,
for t ̸= t̄ close to t̄, F and TG are transverse, because crossings of a path in general
position are isolated. Moreover, note that, for t close to t̄, L and TG are transverse.
If we introduce the matrix

(3.3) M(t) =
−1n ∂2S

∂ξ∂q
∂2S
∂q∂ξ

(
∂2S
∂ξ2 − ∂2S

∂q∂ξ
∂2S
∂ξ∂q

) (q(t), ξ(t)),

as the equation of TG is (we write in coordinates)(
δP
δχ

)
= M(t)

(
δQ
δξ

)
,

the matrix M(t) is invertible for t ̸= t̄ and we have

QF (L, TG)(δP, δχ) = Ω
(

(0, 0, δP, δχ),
(

(δP, δχ).
(
M(t)−1

)T
, δP, δχ

))
.

Hence the matrix of QF (L, TG)(δP, δχ) in coordinates (δP, δχ) is M(t)−1. The
change of signature of M(t)−1 at t̄ is exactly the same as the change of signature of
M(t).

Let us introduce the matrix

P(t) =
(

1n ∂2S
∂ξ∂q

(q(t), ξ(t))
0 1k

)
.

Then we have

P(t)TM(t)P(t) =
(

1n 0
∂2S
∂q∂ξ

(q(t), ξ(t)) 1k

)
M(t)

(
1n ∂2S

∂ξ∂q
(q(t), ξ(t))

0 1k

)

=
(

−1n 0
0 ∂2S

∂ξ2 (q(t), ξ(t))

)
.

Hence the change of signature of M(t) at t = t̄ along the path Γ is equal to the
change of signature of ∂2S

∂ξ2 . This is exactly the Maslov index of the arc of Lagrangian
subspaces t ∈ [t̄− ε, t̄+ ε] 7→ TΓ(t)G with respect to FΓ(t).

□
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We deduce that the Maslov index of TG along the arc Γ0 with respect to F is
index(∂2S

∂ξ2 (q2, ξ2)) − index(∂2S
∂ξ2 (q1, ξ1)).

We have noticed that W⊥
(p,χ) ⊂ F(π(p),χ) ⊂ Wχ. Also, because G is Lagrangian and

transverse to W0, at every point of intersection, the intersection of the tangent
subspaces to G and W⊥

(p,0) is {0}. The path t 7→ Γ(t) can be put in D-general
position with respect to F , as done in the first step of the proof of Lemma 3.5.
Thus, we can apply the results concerning the Maslov index that are given in [Vit87,
Section 2], see here Lemma 2.21 and Subsection 2.5.
As the curve Γ0 is contained in G ∩W0, the Maslov index of TG along Γ0 with respect
F is equal to the Maslov index of (T (G ∩ W0))/TW⊥

0 with respect to F/TW⊥
0 . We

have (T (G ∩ W0))/TW⊥
0 = TR(G) = TL and F/TW⊥

0 (Γ(t)) = Tγ0(t))(T ∗
π◦γ0(t)M) is

the vertical Vγ0(t). This proves the Theorem 3.3. □

3.2. Maslov index along graph selectors

Let us assume that the Lagrangian submanifold L of T ∗M admits a generating
function quadratic at infinity. We recall the construction of a graph selector u : M →
R. Such a graph selector was introduced by M. Chaperon in [Cha91] (see [PPS03]
and [Sib04], too) by using the homology. Here we will use the cohomological approach
(see e.g., [AV17]). We now explain this.

Notation 3.6. — Let S : M × Rk → R be a function generating a Lagrangian
submanifold. For q ∈ M and a ∈ R a real number, we denote the sublevel with
height a at q by

Saq =
{
ξ ∈ Rk; S(q, ξ) ⩽ a

}
and we use the notation Sq = S(q, .).

When S is quadratic at infinity with index m, there exists N ⩾ 0 such that all
the critical values of S are in (−N,N). Observe that, since S is a GFQI, S−N

q is
the sublevel of a non-degenerate quadratic form of index m. Thus (see, for example,
[Mil63]), the De Rham relative cohomology space H∗(Rk, S−N

q ) is isomorphic to

H∗(Rm) =

R0 if ∗ ≠ m.

We denote by αq a closed m-form of Rk such that αq|S−N
q

= 0 and 0 ̸= [αq] ∈
Hm(Rk, S−N

q ).
If a ∈ (−N,N), we use the notation ia : (Saq , S−N

q ) ↪→ (Rk, S−N
q ) for the inclusion

and then i∗a : Hm(Rk, S−N
q ) → Hm(Saq , S−N

q ). The graph selector u : M → R is then
defined by:

u(q) = sup {a ∈ R; [i∗aαq] = 0} = inf {a ∈ R; [i∗aαq] ̸= 0} .

The following result is classical (see [AV17] for a proof in our setting).
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Proposition 3.7. — Let L ⊂ T ∗M be a Lagrangian submanifold admitting a
GFQI S : M × Rk → R of regularity Cr with r ⩾ 2 and let u : M → R be the graph
selector for S which is a Lipschitz function. Then u is Cr on the open set

U :=
{
q ∈ M, ξ 7→ S(q, ξ) is Morse excellent(9)

}
which has full measure, and for all q in U , the following hold:

• du(q) ∈ L;
• u(q) = S ◦ j−1

S (du(q)).

Remark 3.8. — Let L be a Lagrangian submanifold admitting a generating func-
tion S : M × Rk → R. Then, for any C1 path γ : [0, 1] → L,

S
(
j−1
S (γ(1))

)
− S

(
j−1
S (γ(0))

)
=
∫
γ
λ.

As a consequence, we can describe the open set U without mentioning the generating
family:

U =
{
q ∈ M, T ⋆qM ⋔ L and for all path γ : [0, 1] → L

with distinct endpoints in T ⋆qM ⋔ L,
∫
γ
λ ̸= 0.

}
Indeed, the transversality condition is equivalent to (q, ξ) → S(q, ξ) being Morse,
and the condition on the path ensures that the values of S above two different critical
points of the generating family are necessarily distinct.

From Theorem 3.3 and the latter proposition, we deduce

Proposition 3.9. — We use the same notations as in the previous proposition.
Then if q1, q2 ∈ U and if γ : [0, 1] → L is a continuous arc joining du(q1) to du(q2),
the Maslov index of the arc of Lagrangian subspaces t 7→ Tγ(t)L with respect to the
vertical is zero.

Proof of Proposition 3.9. — We recall some well-known facts about Morse func-
tions. Consider a Morse function f : Rk → R that is quadratic at infinity and has dis-
tinct critical values at its critical points. We use the notation fa = {x ∈ Rk, f(x) ⩽ a}
for the sublevels of f . Then, for every critical point c such that D2f(c) has index p,
for ε > 0 small enough, the De Rham relative cohomology space H∗(f f(c)+ε, f f(c)−ε)
is isomorphic to R for ∗ = p and trivial if ∗ ≠ p.

Now, consider q ∈ U . As S(q, .) is Morse, with different critical points corresponding
to different critical values, there is only one ξq ∈ Rk that is a critical point of S(q, .)
such that S(q, ξq) = u(q). By definition of u, we have

• for every ε > 0, 0 ̸= [i∗u(q)+εαq] ∈ Hm(Su(q)+ε
q , S−N

q );
• for every ε > 0, 0 = [i∗u(q)−εαq] ∈ Hm(Su(q)−ε

q , S−N
q ).

We recall the notation for maps of pairs in relative cohomology. The notation
f : (M,N) → (V,W ) means that f : M → V with f(N) ⊂ W .
We introduce the maps associated with the inclusion S−N

q ⊂ Su(q)−ε
q ⊂ Su(q)+ε

q .
More precisely, we denote by j1 : (Su(q)+ε

q , S−N
q ) ↪→ (Su(q)+ε

q , Su(q)−ε
q ) and j2 :

ANNALES HENRI LEBESGUE



Vanishing Maslov index 333

(Su(q)−ε
q , S−N

q ) ↪→ (Su(q)+ε
q , S−N

q ) the two inclusion maps. We now use the exact
cohomology sequence induced by these maps (see [God71]):

Hm
(
Su(q)+ε
q , Su(q)−ε

q

) j∗
1−→ Hm

(
Su(q)+ε
q , S−N

q

) j∗
2−→ Hm

(
Su(q)−ε
q , S−N

q

)
.

Then [i∗u(q)+εαq] is a non-zero element of Hm(Su(q)+ε
q , S−N

q ) and its image by j∗
2 is

0. Because the sequence is exact, [i∗u(q)+εαq] is a non zero element of the image of
j∗

1 . This implies that Hm(Su(q)+ε
q , Su(q)−ε

q ) ̸= {0}, and then the index of the critical
point ξq of S(q, .) is m.

Hence, we have proved that for every q ∈ U , if du(q) = ∂S
∂q

(q, ξq) where ∂S
∂ξ

(q, ξq) = 0,
the index of ∂2S

∂ξ2 (q, ξq) is m. We deduce from Theorem 3.3 the desired result. □

4. Dynamical Maslov index, graph selectors and proof of
Theorem 1.1

4.1. Graph selector techniques adapted to conformal symplectic
isotopies of the zero section

Let (ϕt) be a Cr+1 isotopy of conformally symplectic diffeomorphisms of T ∗M
with r ⩾ 2 such that ϕ0 = IdT ∗M . We want to apply the results of section 3.2 to the
images ϕt(L0) of the zero-section and obtain results for the dynamical Maslov index

DMI
(
TxL, (ϕs)s∈ [0,t]

)
.

As every ϕt is conformally symplectic, there exists a(t) ∈]0,+∞[ such that ϕ∗
tω =

a(t)ω. Then the form βt = ϕ∗
tλ−a(t)λ is closed. The projection π : T ∗M = M → M

inducing an isomorphism in cohomology, we can choose, in a Cr way, a closed 1-form
ηt on M such that π∗ηt − βt is exact and η0 = 0. If the symplectic diffeomorphism
ft : M → M is defined by ft(p) = p− ηt, we have

f ∗
t λ = λ− π∗ηt.

If (ψt) is the isotopy of conformally symplectic diffeomorphisms defined by ψt = ft◦ϕt,
then we have

ψ∗
t λ = ϕ∗

t (λ− π∗ηt) = a(t)λ+
(
βt − ϕ∗

tπ
∗ηt

)
.

The action of ϕt on cohomology is trivial because ϕt is homotopic to IdM. As
π∗ηt − βt is exact, we deduce that ψ∗

t λ − a(t)λ is exact. Hence the image by ψt of
every H-isotopic to the zero-section submanifold L is also H-isotopic to the zero-
section, see [AF24, Corollary 3]. It admits a generating function quadratic at infinity
St : M × Rk → R and a Lipschitz continuous graph selector ut : M → R.

Remark 4.1. — The generating function St is not unique. For every segment [a, b]
of R, we can choose an integer k ∈ N uniformly in t ∈ [a, b] and in a Cr way a Cr

generating function St : M × Rk → R for Lt = ψt(L). Then the associated graph
selector(10) ut also depends in a Cr way on t.
(10) It can be proved that up to a constant, ut is independent of the chosen generating function St

of ψt(L).
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As in Proposition 3.7, we define Ut := {q ∈ M, ξ 7→ St(q, ξ) is Morse excellent},
which is an open set of M with full Lebesgue measure, on which ut is Cr and
(4.1) ∀ q ∈ Ut, dut(q) ∈ ψt(L0) i.e. ηt(q) + dut(q) ∈ ϕt(L0).

Proposition 4.2. — The set U =⋃
t
Ut × {t} is an open set of M × R, on which

the function (q, t) 7→ ut(q) is Cr.

Proof. — The set W = {(q, t) ∈ M × R;T ⋆qM ⋔ Lt} is open thanks to Thom’s
transversality theorem. Hence, for every (q0, t0) ∈ U , there exists an open subset U
of W that contains (q0, t0), an integer N ⩾ 1 and N Cr−1-maps xi : U → T ∗M such
that

• π ◦ xi(q, t) = q;
• ∀ i ̸= j;xi(q, t) ̸= xj(q; t);
• T ∗

qM ∩ Lt = {x1(q, t); . . . ; xN(q, t)}.
As S depends in a Cr way on (q, t), the map Y : W → RN defined by

Y (q, t) =
(
St
(
j−1
S (x1(q, t))

)
, . . . , St

(
j−1
S (xN(q, t))

) )
.

is continuous. Therefore
U ∩ U =

{
(q, t) ∈ U ; ∀ i ̸= j, St

(
j−1
S (xi(q, t))

)
̸= St

(
j−1
S (xj(q, t))

)}
is open because it is the preimage by Y of an open subset of RN . We have then
proved that U is open.

Let q0 ∈ Ut0 for some t0. By definition of the graph selector, there exists ξ0

such that ut0(q0) = St0(q0, ξ0) and ∂St0
∂ξ0

(q0, ξ0) = 0. Since St0(q0, ·) is Morse, we
may apply the implicit function theorem to obtain a Cr function (q, t) 7→ ξ(q, t)
solving ∂St

∂ξ
(q, ξ(q, t)) = 0 on an open connected neighbourhood of (q0, t0) in U .

By the continuity of (t, q) 7→ ut(q) and since we excluded the case where St(q, ·)
attains a critical value more than once, we also have ut(q) = St(q, ξ(t, q)) on this
neighbourhood. Thus, (t, q) 7→ ut(q) is Cr at (t0, q0), hence on the whole set U . □

4.2. Proof of Theorem 1.1

Let us begin with the case where L is the zero section, denoted by L0. With the
notations that we introduced in the previous paragraph, we are reduced to prove
that DMI(TxL0, (ψs)s∈ [0,t]) = 0 for every x ∈ ψ−1

t (graph(dut|Ut)). This is a result of
the two following lemmata for which we provide proofs.

Lemma 4.3. — There exists an integer nt such that
∀ x ∈ ψ−1

t

(
graph

(
dut|Ut

))
DMI

(
TxL0, (ψs)s∈ [0,t]

)
= nt.

Lemma 4.4. — The map t 7→ nt is locally constant.

Proof of Lemma 4.3. — We fix t ∈ R. Let γ : [0, 1] → ψt(L0) be a path such that
for i = 0, 1, qi = π(γ(i)) ∈ Ut and γ(i) = dut(qi). For τ ∈ [0, 1], we define a loop
Γ = Γτ by
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Figure 4.1. The loop Γτ .

• ∀ s ∈ [0, 1],Γτ (s) = Tψ−1
t (γ(sτ))L0;

• ∀ s ∈ [1, 2],Γτ (s) = Dψ(s−1)t(Tψ−1
t (γ(τ))L0);

• ∀ s ∈ [2, 3],Γτ (s) = Tγ((3−s)τ)ψt(L0);
• ∀ s ∈ [3, 4],Γτ (s) = Dψ(4−s)t(Tψ−1

t (γ(0))L0).
Along Γ|[0,1], the Maslov index is zero because the path is on the zero section

L0. Along Γ|[1,2], the Maslov index is MI((Dψs(Tψ−1
t (γ(τ))L0)s∈ [0,t]). Along Γ|[2,3] the

Maslov index is −MI((Tγ(s)ψt(L0))s∈ [0,τ ]). Along Γ|[3,4], the Maslov index is

−MI
((
Dψs

(
Tψ−1

t (γ(0))L0
))

s∈ [0,t]

)
.

Hence the total Maslov index along Γτ is

MI
((
Dψs

(
Tψ−1

t (γ(τ))L0
)
s∈ [0,t]

))
− MI

((
Tγ(s)ψt(L0)

)
s∈ [0,τ ]

)
− MI

((
Dψs

(
Tψ−1

t (γ(0))L0
))

s∈ [0,t]

)
.

As τ 7→ Γτ is an homotopy, the total Maslov index along Γτ does not depend on τ .
Observe that

• for τ = 0, this index is 0;
• thanks to Proposition 3.9, we have MI((Tγ(s)ψt(L0))s∈ [0,1]) = 0. Hence the

total Maslov index along Γ1 is

0 = MI
((
Dψs

(
Tψ−t(γ(1))L0

))
s∈ [0,t]

)
− MI

((
Dψs

(
Tψ−1

t (γ(0))L0
))

s∈ [0,t]

)
.

□

Proof of Lemma 4.4. — Let us fix (q0, t0) ∈ U . By Proposition 4.2 and the
continuity of (ψs), there exists ε > 0 such that

∀ t ∈ (t0 − ε, t0 + ε),
(
π
(
ψt ◦ ψ−1

t0 (dut0(q0))
)
, t
)

∈ U .

We denote γ(t) = ψt ◦ ψ−1
t0 (dut0(q0)) and Lt = ψt(L0). Then, the arc t ∈ (t0 − ε, t0 +

ε) 7→ Tγ(t)Lt does not intersect the singular cycle. Hence, the map t ∈ (t0−ε, t0+ε) 7→
nt is constant. □
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Observing that n0 = 0, we combine the two lemmata for t = 1 to deduce
that DMI(TxL0, (ψs)s∈ [0,1]) = 0 for all x ∈ ψ−1

1 (graph(du1|U1)) = ϕ−1
1 (graph((η1 +

du1)|U1)). Since ψ is obtained by composing ϕ with a vertical translation (see para-
graph 4.1), the Maslov index is the same for ϕt and ψt (see Remark at the end of
section 2.10), and Theorem 1.1 is proved in the case where L is the zero section,
taking u = u1, η = η1 and U = U1.

Let us now assume only that L is a Lagrangian graph, i.e., the graph of a closed
1-form ν. We recall that all the diffeomorphisms Tt : M ⟲ defined by Tt(p) = p+ tν
are symplectic.
Using (Tt) and (ϕt), we will define an isotopy (Ft)t∈ [0,1] such that F0 = IdM and
F1(L0) = ϕ1(L). Let α : [0, 1] → [0, 1] be a smooth non-decreasing function such
that α(0) = 0, α(1) = 1 and α is constant equal to 1

2 when restricted to some
neighbourhood of 1

2 . We then introduce (Ft) as follows:
• for t ∈ [0, 1

2 ], Ft = T2α(t);
• for t ∈ [1

2 , 1], Ft = ϕ2α(t)−1 ◦ T1.
The isotopy (Ft) is an isotopy of conformally symplectic diffeomorphisms such that
F0 = IdM. Applying the first case of this proof, there exists a closed 1-form η of M
and a Lipschitz map u : M → R that is Cr on an open subset U of M with full
Lebesgue measure such that

graph(η + du)|U ⊂ F1(L0) = ϕ1(L)
and

∀ x ∈ F−1
1

(
graph(η + du)|U

)
, DMI

(
TxL0, (Ft)t∈ [0,1]

)
= 0.

Observe that the path (DFtTxL0)t∈ [0, 1
2 ] = (DT2α(t))t∈ [0, 1

2 ] has zero Maslov index
since all these Lagrangian subspaces are transverse to the vertical. Hence

DMI
(
TxL0, (Ft)t∈ [0,1]

)
= DMI

(
TT1(x)L, (Ft)t∈ [ 1

2 ,1]

)
.

The isotopy (Ft)t∈ [ 1
2 ,1] is just a reparametrization of the isotopy (ϕt)t∈ [0,1], hence we

obtain finally

∀ q ∈ U, p := ϕ−1
1 (η(q) + du(q)) ∈ L and DMI

(
TpL, (ϕs)s∈ [0,1]

)
= 0.

5. Angular Maslov index

There are different approaches to Maslov index, at least three of these are contained
in [BG92]. To prove some of our results, we will use the second approach that we
explain now.

5.1. Definition of the angular Maslov index

In this section as in sub-section 2.1, we assume that (M, ω) is a 2d-dimensional
symplectic manifold that admits a Lagrangian foliation V. We denote by V (x) =
Vx := TxV its associated Lagrangian bundle. We equip M with an almost complex
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structure J : TM ⟲ that is compatible with ω. We briefly recall that this means
that

• for every x ∈ M, Jx : TxM ⟲ is linear and J2 = −IdTM;
• for every x ∈ M, the symmetric bilinear form ω(., Jx.) is positive definite.

We denote g := ω(., J.).
Note that each Jx is symplectic. The complex structure is then defined on every
TxM by

∀ (λ = λ1 + iλ2, v) ∈ C × TxM, λv = λ1v + λ2Jv.

The equality
∀ x ∈ M,∀ u, v ∈ TxM,Θ(u, v) = g(u, v) + iω(u, v)

defines a positive definite Hermitian form on TxM. We denote by U(M) the fiber
bundle whose fibers Ux(M) are the unitary transformations of TxM. Observe that
a real d-dimensional linear subspace L of the complex space TxM is Lagrangian if
and only if the Hermitian form Θx restricted to L is real (and then Θx is a real
scalar product). Hence the group U(M) acts on the Lagrangian Grassmannian Λ.
As established in classical literature (see (see [BW97, Lemma 3.10] or [Aud03]), the
action of Ux(M) on Λx is transitive.
If Stabx is in the stabilizer of V (x), then Stabx preserves the scalar product that
is the restriction of Θx to V (x), i.e., is an orthonormal transformation of V (x).
Moreover, every orthogonal transformation of V (x) can be extended to a unique
unitary transformation of TxM . We denote by O(M) the fiber bundle whose fibers
Ox(M) are these transformations that we call orthogonal transformations of TxM.
There is a natural bijection between Ux(M)/Ox(M) and Λx that maps Stabx on Vx.
This bijection sends each [ϕ] ∈ Ux(M)/Ox(M) to the Lagrangian space ϕ(Vx) ∈ Λx,
where ϕ ∈ Ux(M) is a representative of [ϕ]. We denote by Rx : Λx → Ux(M)/Ox(M)
its inverse bijection.

The map δx : Ux(M) → C∗ defined by δx(φ) = (detφ)2 is a morphism of groups
whose kernel contains Ox(M) and whose range is the set U(1) of complex numbers
with modulus 1. Therefore, we define δ̄x : Ux(M)/Ox(M) → U(1) and subsequently,
∆ = δ̄ ◦ R : Λ → U(1).

Definition 5.1. — Let Γ : [a, b] → Λ be a continuous map. Let θ : [a, b] → R be
any continuous lift of ∆ ◦ Γ, i.e., such that

∀ t ∈ [a, b], exp(iθ(t)) = ∆(Γ(t)).
Then the angular Maslov index of Γ is

(5.1) αMI(Γ) := θ(b) − θ(a)
2π .

Definition 5.2. — Let (ϕt) be an isotopy of conformally symplectic diffeomor-
phisms of M. Let L ∈ Λ(M) and t > 0. Define the path

s ∈ [0, t] 7→ DϕsL ∈ Λ(M).
The dynamical angular Maslov index of L at time t is

DαMI
(
L, (ϕs)s∈ [0,t]

)
= αMI

(
(DϕsL)s∈ [0,t]

)
.
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Whenever the limit exists, the asymptotic angular Maslov index of L is

DαMI∞
(
L, (ϕs)s∈ [0,+∞]

)
:= lim

t→ +∞

DαMI(L, (ϕs)s∈ [0,t])
t

.

Remark 5.3. — In fact, the existence of a Lagrangian foliation implies that the
bundle Λ is trivial, being diffeomorphic to M×U(d)/O(d), where U(d) and O(d) are
the groups of d× d unitary and orthogonal matrices respectively (see, e.g., [CGIP03,
Section 1.2]).

Remark 5.4. — Observe that the angular Maslov index is continuous with re-
spect to the path Γ. Consequently, the dynamical Maslov index at a fixed time t is
continuous with respect to L ∈ Λ(M), as long as the isotopy (ϕt) is at least C1.

The following result is classical, see [CGIP03, Lemma 2.1].

Proposition 5.5. — Let (ϕt) be an isotopy of conformally symplectic diffeomor-
phisms of M. Let x ∈ M and let L1, L2 ∈ Λx. Then, for every t > 0,∣∣∣DαMI

(
L1, (ϕs)s∈ [0,t]

)
− DαMI

(
L2, (ϕs)s∈ [0,t]

)∣∣∣ < 8d.
In particular, whenever the asymptotic angular Maslov index at x exists, it does not
depend on the chosen Lagrangian subspace L ∈ Λx.

That is why we will often mention the asymptotic Maslov index at a point.

Proposition 5.6. — Consider an isotopy (ϕt) of conformally symplectic diffeo-
morphisms of M, where ϕ0 = IdM, and ϕt+1 = ϕt ◦ ϕ1 (resp. (ϕt)t is a flow). If µ is
a Borel probability measure with compact support invariant by ϕ1 (resp. by (ϕt)t),
then the asymptotic Maslov index exists at µ-almost every point x ∈ M.

Proof. — The proof uses methods of [Sch57, Section 4]. We assume that µ is
ergodic: if not, using ergodic decomposition theorem (see, e.g., [Mañ87]), we deduce
the result for µ from the result for ergodic measures.

We start by considering the case when (ϕt)t is a flow. The map Dϕt : Λ → Λ
defines a flow on Λ. Let x ∈ M be a regular point for µ, i.e., such that the family
of measures [x]T defined by [x]T (f) = 1

T

∫ T
0 f(ϕt(x))dt tends to

∫
M fdµ for every

continuous f : M → R. Recall that µ-almost every point x ∈ M is regular for µ.
Fix L0 ∈ Λx and let ν be any limit point at infinity of the family of measures [L0]T
defined by

∀ F ∈ C0(Λ,R), [L0]T (F ) = 1
T

∫ T

0
F (DϕtL0)dt.

Then ν is an invariant measure for (Dϕt), see [KB37], such that p∗ν = µ, where p :
TM → M is the canonical projection. We have defined on Λ the continuous function
∆ : Λ → U(1). A direct result of [Sch57, Section 4], is that DαMI∞(L, (ϕs)s∈ [0,+∞])
exists and is finite at ν-almost every point (x, L) ∈ Λ. Since the asymptotic an-
gular Maslov index of L does not depend on the chosen Lagrangian subspace (see
Proposition 5.5), we conclude that it exists at p∗ν = µ-almost every point x ∈ M.

When ϕt+1 = ϕt ◦ ϕ1, we define a flow (Ft) on T × Λ by Ft(s, L) = (t+ s,Dϕt+s ◦
(Dϕs)−1L). Then we apply Schwartzman’s result to the function (t, L) 7→ ∆(L), this
gives the wanted result. □
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5.2. The angles of a Lagrangian subspace

Let (M, ω) be a 2d-dimensional symplectic manifold that admits a Lagrangian
foliation V . Let J be an almost complex structure compatible with ω. We introduce
the notion of angles of a Lagrangian subspace L ∈ Λ with respect to JV . For details,
we refer to [LMS03].

Notation 5.7. — For every x ∈ M, we denote by JV (x) the image of the La-
grangian subspace V (x) = TxV under the isomorphism Jx.

Proposition 5.8 ([LMS03, Section 1.4]). — Let (E2d, ω) be a symplectic vector
space, endowed with a complex structure compatible with ω. Fix a Lagrangian
subspace H ⊂ E. For every Lagrangian subspace L ⊂ E there exists a unique
unitary isomorphism of E denoted by ΦH,L such that

• ΦH,L(H) = L ;
• ΦH,L is diagonalizable relatively to a unitary basis of E whose vectors are in
H, with eigenvalues of the form eiθj , j = 1, . . . , d, with

θj ∈
]
−π

2 ,
π

2

]
for j = 1, . . . , d .

In the sequel, we apply Proposition 5.8 to each symplectic vector space (TxM, ωx),
endowed with the almost complex structure J . The fixed Lagrangian subspace H in
each TxM is JV (x).

Definition 5.9. — Let L ∈ Λx. The angles of L with respect to JV (x) is the
equivalence class (

θ
JV (x),L
1 , . . . , θ

JV (x),L
d

)
/ ∼ ,

where
• (θJV (x),L

1 , . . . , θ
JV (x),L
d ) ∈] − π

2 ,
π
2 ]d is the d-tuple composed by arguments of

the d eigenvalues given by Proposition 5.8 applied to TxM with respect to
JV (x) and L;

• ∼ is the equivalence relation obtained from permutations over the d-entries.

Let us denote by
{e1(x), . . . , ed(x)}

a unitary basis of TxM contained in JV (x) and given by Proposition 5.8. We have

Ce1(x) ⊕ · · · ⊕ Ced(x) = TxM ,

where TxM is viewed as a complex vector space. In particular,

{e1(x), . . . , ed(x), Jxe1(x), . . . , Jxed(x)}

is a symplectic basis of TxM, seen as a real vector space of dimension 2d.
Observe that for every x ∈ M and every v ∈ TxM it holds Jxv = iv = ei

π
2 v.

Referring then to notations introduced in Subsection 5.1, the image Rx(JV (x)) is
the equivalence class of Jx ∈ Ux(M). Thus, for L ∈ Λx we have that Rx(L) is the
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equivalence class of the unitary transformation ΦJV (x),L ◦ Jx. Consequently, since
∆x = δ̄x ◦ Rx, it holds

(5.2) ∆x(L) =
(
det

(
ΦJV (x),L ◦ Jx

))2
= exp

2i
d∑
j=1

θ
JV (x),L
j

 exp(i dπ) .

Let Γ : [a, b] → Λ be a continuous map.

Notation 5.10. — To ease the notation, for every t ∈ [a, b], we denote the angles
of Γ(t) (with respect to JV (p ◦ Γ(t))) as(

θJV,Γ1 (t), . . . , θJV,Γd (t)
)
/ ∼ .

The angular Maslov index αMI(Γ) differs by an integer from the angular quantity

(5.3) 1
π

 d∑
j=1

(
θJV,Γj (b) − θJV,Γj (a)

) ,

since the angular Maslov index is a continuous lift of the function ∆ and because
of Equation (5.2). The next paragraph will demonstrate that this integer is, in fact,
MI(Γ).

Remark 5.11. — We have that dim (L ∩ V (x)) = k, for some 0 ⩽ k ⩽ n, if and
only if exactly k angles of L with respect to JV (x) are equal to π

2 .

5.3. Relation between Maslov index and angular Maslov index

The following proposition clarifies the relation between Maslov index and angular
Maslov index.

Proposition 5.12. — Let Γ : [a, b] → Λ be a smooth path such that

Γ(a) ∩ V (p ◦ Γ(a)) = Γ(b) ∩ V (p ◦ Γ(b)) = {0} .

Then

(5.4) αMI(Γ) = 1
π

 d∑
j=1

(θJV,Γj (b) − θJV,Γj (a))
+ MI(Γ) .

Proof. — Without loss of generality, assume that the path Γ is in general position
with respect to Σ(M) = {L ∈ Λ(M) : L ∩ V (p(L)) ̸= {0}}. Let t ∈]a, b[ be a
crossing. Since Γ is in general position, Γ(t) has exactly only one angle equal to π

2
with respect to JV . Up to a permutation of angles, we can assume that θJV,Γ1 (t) = π

2 .
Let ϵ > 0 be small enough such that

• for s ∈ [t− ϵ, t+ ϵ] \ {t} it holds Γ(s) ∩ V (p ◦ Γ(s)) = {0};
• for s ∈ [t− ϵ, t+ ϵ] it holds that, for all j > 1,∣∣∣θJV,Γ1 (s)

∣∣∣ > ∣∣∣θJV,Γj (s)
∣∣∣ .
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It will be sufficient to show that Equation 5.4 holds for the subpath Γ|[t−ϵ,t+ϵ].
Let us start by calculating the angular Maslov index of Γ|[t−ϵ,t+ϵ]:

αMI
(
Γ|[t−ϵ,t+ϵ]

)
=

θJV,Γ1 (t+ ϵ) − θJV,Γ1 (t− ϵ)
π

+ 1
π

 d∑
j=2

θJV,Γj (t+ ϵ) − θJV,Γj (t− ϵ

+ k,

where

k =


+1 if − π

2 < θJV,Γ1 (t+ ϵ) < 0 < θJV,Γ1 (t− ϵ) < π

2 ,

−1 if − π

2 < θJV,Γ1 (t− ϵ) < 0 < θJV,Γ1 (t+ ϵ) < π

2 .

Let us now calculate MI(Γ|[t−ϵ,t+ϵ]). We can smoothly perturb the path Γ|[t−ϵ,t+ϵ]
into a Lagrangian path Γ̃ : [t− ε, t+ ε] → Λ(M) such that

(i) MI(Γ|[t−ϵ,t+ϵ]) = MI(Γ̃);
(ii) Γ̃ is in general position with respect to Σ, Γ̃ has a crossing at 0 with Σ and

Γ̃(s) ∩ V (p ◦ Γ̃(s)) = {0} for s ∈ [t− ε, t+ ε]\{t};
(iii) Γ̃ is in general position with respect to {L ∈ Λ(M) : L ∩ JV (p(L)) ̸= {0}}

and Γ̃(t) ∩ JV (p ◦ Γ̃(t)) = {0}
Conditions (i) and (ii) can be obtained easily, see Section 2, and they are stable

under small perturbations. Moreover, since being in general position is a dense and
open condition, we can assume, up to perturb Γ, that the initial path is also in
general position with respect to {L ∈ Λ(M) : L ∩ JV (p(L)) ̸= {0}}.

To obtain Γ̃, we need to perturb Γ|[t−ϵ,t+ϵ] so that the new path Γ̃ does not intersect
the horizontal JV at time t.

Two cases can happen.
(1) Γ(t) ∩ JV (p ◦ Γ(t)) = {0}. Then we conclude by defining Γ̃ = Γ.
(2) Γ(t) ∩ JV (p ◦ Γ(t)) ̸= {0}. In this case, because of the general position

assumption, the subspace Γ(t) ∩ JV (p ◦ Γ(t)) is 1-dimensional, generated by
one vector w. Let 0 < θ ≪ 1, complete w to a unitary basis and consider
the unitary transformation R that rotates by eiθ the vector w and that is
the identity on the other vectors of the basis. Up to selecting θ small enough,
the Lagrangian path Γ̃ := R ◦ Γ is a small perturbation of Γ|[t−ϵ,t+ϵ]. Up to
selecting a subpath of Γ̃, the defined path satisfies all the required conditions.

To calculate the Maslov index MI(Γ|[t−ϵ,t+ϵ]), we calculate MI(Γ̃) due to condi-
tion (i). In particular, up to selecting a subpath, we can assume that

Γ̃ : [t− ϵ, t+ ϵ] → Λ(M)
is in general position with respect to Σ, has a unique crossing with the vertical at
s = t, and for all j > 1 and all s ∈ [t− ϵ, t+ ϵ], it holds∣∣∣θJV,Γ̃1 (s)

∣∣∣ > ∣∣∣θJV,Γ̃j (s)
∣∣∣

and Γ̃(s) ∩ JV (p ◦ Γ̃(s)) = {0} for all s ∈ [t− ϵ, t+ ϵ].
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For every s ∈ [t− ϵ, t+ ϵ], by Proposition 5.8, we have a unitary basis of Tp(Γ̃(s))M
whose vectors are in JV (p ◦ Γ̃(s))

{v1(s), v2(s), . . . , vd(s)}

made up of eigenvectors relative to the eigenvalues eiθ
JV,Γ̃
j (s), j = 1, . . . , d, such that

(eiθ
JV,Γ̃
j (s)vj), which is also a unitary basis of Tp(Γ̃(s))M, is a basis of Γ̃(s) over R.

Now, we want then to consider the variation of the index of the quadratic form

QJV (p◦Γ̃(s))
(
V (p ◦ Γ̃(s)), Γ̃(s)

)
.

Up to a sign change, we can work with the quadratic form

Q =QJV (p◦Γ̃(s))
(
Γ̃(s), V (p ◦ Γ̃(s))

)
.

In the sequel, we denote by Q both the quadratic form and the associated bilinear
form. We consider the basis

(Ej)1⩽ j ⩽ d =
(
P JV (p◦Γ̃(s))

(
eiθ

JV,Γ̃
j (s)vj(s)

))
1⩽ j ⩽ d

of Tp ◦ Γ̃(s)M/JV (p ◦ Γ̃(s)). Then we have for all j, k

Q
(
Ej, Ek

)
= 1

2

(
ω
(
eiθ

JV,Γ̃
j (s)vj(s), i sin

(
θJV,Γ̃k (s)

)
vk

)
+ω

(
eiθ

JV,Γ̃
k

(s)vk(s), i sin
(
θJV,Γ̃j (s)

)
vj

))
We deduce that (Ej)1⩽j⩽d is orthogonal for Q and that for all j ∈ {1, . . . , d}

Q(Ej, Ej) = ω
(
eiθ

JV,Γ̃
j (s)vj(s), i sin

(
θJV,Γ̃j (s)

)
vj

)
= ω

(
cos

(
θJV,Γ̃j (s)

)
vj(s) + sin

(
θJV,Γ̃j (s)Jvj(s), sin

(
θJV,Γ̃j (s)

)
Jvj(s)

))
= cos

(
θJV,Γ̃j (s)

)
sin

(
θJV,Γ̃j (s)

)
= 1

2 sin
(
2θJV,Γ̃j (s)

)
We can thus conclude that

MI(Γ|[t−ϵ,t+ϵ]) =

MI(Γ̃) =


+1 if − π

2 < θJV,Γ̃1 (t+ ε) < 0 < θJV,Γ̃1 (t− ε) < π
2 ,

−1 if − π
2 < θJV,Γ̃1 (t− ε) < 0 < θJV,Γ̃1 (t+ ε) < π

2 . □

From Proposition 5.12 we immediately obtain the following result.

Corollary 5.13. — Let M be a 2d-dimensional symplectic manifold that admits
a Lagrangian foliation. Let (ϕt) be an isotopy of conformally symplectic diffeomor-
phisms of M. For every L ∈ Λ(M) and t > 0, the following inequality holds

(5.5)
∣∣∣DαMI

(
L, (ϕs)s∈ [0,t]

)
− DMI

(
L, (ϕs)s∈ [0,t]

)∣∣∣ < d .
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In particular, when the asymptotic angular Maslov index exists at x ∈ M, it does
not depend on the chosen Lagrangian subspace and the equality

DαMI∞(x, (ϕt)) = DMI∞(x, (ϕt))
holds.

5.4. Independence of the asymptotic Maslov index from the isotopy

The index DαMI does not depend on the chosen conformally symplectic isotopy.

Proposition 5.14. — Let ϕ be a conformally symplectic diffeomorphism isotopic
to the identity on M. Let (ϕt)t∈ [0,1], (ψt)t∈ [0,1] be isotopies of conformally symplectic
diffeomorphisms such that ϕ0 = ψ0 = IdT ∗M and ϕ1 = ψ1 = ϕ. Then for every L ∈ Λ

DαMI
(
L, (ϕt)t∈ [0,1]

)
= DαMI

(
L, (ψt)t∈ [0,1]

)
.

Extend then each isotopy on [0,+∞) by asking that ϕ1+t = ϕt ◦ ϕ and ψ1+t = ψt ◦ ϕ.
Thus, whenever the limit exists, the asymptotic angular Maslov index does not
depend on the chosen isotopy, i.e.

DαMI∞(p(L), ϕ) := DαMI∞(p(L), (ϕt)) = DαMI∞(p(L), (ψt)) .

Proof. — Since ϕ1 = ψ1 = ϕ and from (5.3), for every L ∈ Λ it holds
DαMI

(
L, (ϕt)t∈ [0,1]

)
= DαMI

(
L, (ψt)t∈ [0,1]

)
+ 2kL,

for some kL ∈ Z. The function
L 7→ DαMI

(
L, (ϕt)t∈ [0,1]

)
− DαMI

(
L, (ψt)t∈ [0,1]

)
is continuous. Therefore, the constant k = kL ∈ Z does not depend on L ∈ Λ. To
conclude, it is sufficient to find L ∈ Λ such that
(5.6) DαMI

(
L, (ϕt)t∈ [0,1]

)
= DαMI

(
L, (ψt)t∈ [0,1]

)
.

Consider then a Lagrangian graph L ⊂ M. By Theorem 1.1, with η, U and u defined
as in the statement of Theorem 1.1, for every x ∈ ϕ−1(graph((η + du)|U)) it holds

(5.7) DMI
(
TxL, (ϕt)t∈ [0,1]

)
= DMI

(
TxL, (ψt)t∈ [0,1]

)
= 0.

Let then x̄ be a point in ϕ−1(graph((η + du)|U)) ⊂ L. From Proposition 5.12 and
from (5.7), it holds

DαMI
(
Tx̄L, (ϕt)t∈ [0,1]

)
− DαMI

(
Tx̄L, (ψt)t∈ [0,1]

)
=

1
π

 d∑
j=1

θ
JV,Dϕt(Tx̄L)
j (1) − θ

JV,Dϕt(Tx̄L)
j (0)


− 1
π

 d∑
j=1

θ
JV,Dψt(Tx̄L)
j (1) − θ

JV,Dψt(Tx̄L)
j (0)

 .

Since Dϕ1(Tx̄L) = Dψ1(Tx̄L) = Dϕ(Tx̄L), the second term of the last equality is
zero, as required. □
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We may now deduce the
Proof of Proposition 1.19. — Since the difference between the angular Maslov

index and the Maslov index in Proposition 5.12 only depends on Γ(b) and Γ(a), the
results of Proposition 5.14 also hold for Maslov index. □

From Corollary 5.13 and Proposition 5.5, we deduce the following result.

Corollary 5.15. — Let (ϕt) be an isotopy of conformally symplectic diffeomor-
phisms of M. For every x ∈ M the asymptotic Maslov index, when it exists, does
not depend on the chosen Lagrangian subspace L ∈ Λx.

Moreover, the following holds.

Corollary 5.16. — Let (ϕ1,t)t, (ϕ2,t)t be two isotopies of conformally symplectic
diffeomorphisms of M such that ϕ1,0 = ϕ2,0 = IdM, ϕ1,1 = ϕ2,1 and ϕi,1+t = ϕi,t ◦ ϕi,1
for i = 1, 2. Then for every x ∈ M, when the limit exists,

DMI∞(x, (ϕ1,t)) = DMI∞(x, (ϕ2,t)) .

6. Applications and proofs of main statements

This section is devoted to the proofs of the main statements presented in the
introduction and further interesting applications.

6.1. Proof of Corollary 1.4

Let (ϕt)t∈R be a conformally symplectic isotopy of M such that ϕ0 = IdM and
ϕt+1 = ϕt ◦ ϕ1. Let L ⊂ M be a Lagrangian submanifold that is Hamiltonianly
isotopic to a graph and such that ⋃

t∈ [0,+∞)
ϕt(L)

is relatively compact.
More precisely, let L0 ⊂ M be a Lagrangian graph and let (ht)t∈ [0,1] be a Hamiltonian
isotopy such that h0 = IdM and h1(L0) = L. Let α : [0, 1] → [0, 1] be a smooth non-
decreasing function such that α(0) = 0 and α is constant equal to 1 when restricted to
some neighborhood of 1. Let β : [0, 1] → [0, 1] be a smooth non-decreasing function
such that β is constant equal to 0 on some neighborhood of 0 and equal to the
identity on some neighborhood of 1. Define then (ψt)t∈ [0,+∞) as

ψt :=


hα(t) for t ∈ [0, 1] ,
ϕβ(t−1) ◦ h1 for t ∈ [1, 2] ,
ϕt−2 ◦ h1 for t ∈ [2,+∞) .

Then (ψt) is an isotopy of conformally symplectic diffeomorphisms such that ψ0 =
IdM and ψt(L0) = ϕt−2(L) for t ⩾ 2.
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Applying then Theorem 1.1 to the Lagrangian graph L0 with respect to the isotopy
(ψt), for every t ∈ [1,+∞) there exists at least one point xt ∈ L0 such that

(6.1) DMI
(
TxtL0, (ψs)s∈ [0,t]

)
= 0 .

Due to the compactness of L0, the relation between DMI and DαMI (see Corol-
lary 5.13) and the continuity of the angular Maslov index, there exists a constant
C > 0 such that for every x ∈ L0, it holds

(6.2)
∣∣∣DMI

(
TxL0, (ψt)t∈ [0,1]

)∣∣∣ ⩽ C .

From (6.1) and (6.2), for every t ∈ [0,+∞) we then have a point zt := h1(xt+1) ∈
h1(L0) = L such that

(6.3)
∣∣∣DMI

(
TztL, (ϕs)s∈ [0,t]

)∣∣∣ ⩽ C .

Consider then the sequence (zn)n∈N in L. For every n ∈ N, we define the following
probability measure on Λ(M):

µn := 1
n

n−1∑
i=0

δDϕi(Tzn L) ,

where δ∗ is the Dirac measure supported on ∗ ∈ Λ(M). Since ⋃t∈ [0,+∞) ϕt(L) is
relatively compact, we can extract a subsequence (µnk

)k∈N that converges to a
probability measure µ̄ on Λ(M). The measure µ̄ is Dϕ1-invariant. The projected
measure µ := p∗µ̄ is a ϕ1-invariant probability measure on M.

By Corollary 5.13 it holds
DMI(µ, (ϕt)) =∫

M
DMI∞(x, (ϕt)) dµ(x) =

∫
M

DαMI∞(x, (ϕt)) dµ(x) .

Since the asymptotic angular Maslov index does not depend on the chosen Lagrangian
subspace, we have that∫

M
DαMI∞(x, (ϕt)) dµ(x) =

∫
Λ(M)

DαMI∞(p(L), (ϕt)) dµ̄(L) .

Birkhoff’s Ergodic Theorem, applied at the function L 7→ DαMI(L, (ϕt)t∈ [0,1]) and
at the probability measure µ̄ on Λ(M), assures us that∫

Λ(M)
DαMI∞(p(L), (ϕt)) dµ̄(L) =

∫
Λ(M)

DαMI
(
L, (ϕt)t∈ [0,1]

)
dµ̄(L) .

Since (µnk
)k∈N converges to µ̄, it holds∫

Λ(M)
DαMI

(
L, (ϕt)t∈ [0,1]

)
dµ̄(L) = lim

k→ +∞

1
nk

nk−1∑
i=0

DαMI
(
Dϕi

(
Tznk

L
)
, (ϕt)t∈ [0,1]

)
= lim

k→ +∞

1
nk

DαMI
(
Tznk

L, (ϕt)t∈ [0,nk]
)
.

From (6.3) and from Corollary 5.13, we have that for every k ∈ N∣∣∣DαMI
(
Tznk

L, (ϕt)t∈ [0,nk]
)∣∣∣ ⩽ C + d .
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Thus, we conclude that

DMI(µ, (ϕt)) = lim
k→ +∞

1
nk

DαMI
(
Tznk

L, (ϕt)t∈ [0,nk]
)

= 0 ,

as required. Observe that the support of the measure µ is contained in⋂
T ∈ [0,+∞)

⋃
t∈ [T,+∞)

ϕt({zn : n ∈ N}) ⊂
⋂

T ∈ [0,+∞)

⋃
t∈ [T,+∞)

ϕt(L) .

Let now (ϕt) be a conformally symplectic flow on M. We can then consider for
every t ∈ [0,+∞) the measure on Λ(M)

(6.4) µt := [zt]t = 1
t

∫ t

0
δDϕs(Tzt L) ds .

Observe, as before, that from the choice of zt, for every t, it holds
(6.5)

∣∣∣DαMI
(
TztL, (ϕs)s∈ [0,t]

)∣∣∣ ⩽ C + d .

Consider then an accumulation point µ̄ of (µt)t∈ [0,+∞) in the space of measure on
Λ(M), which exists because ⋃t∈ [0,+∞) ϕt(L) is relatively compact. More precisely, let
(tn)n∈N be a sequence such that tn → +∞ and µtn ⇀ µ̄ as n → +∞. The measure
µ̄ is (Dϕt)-invariant. The projection µ = p∗µ̄ is then a ϕt-invariant measure on M.

We denote by F the derivative of the function ∆ that we introduced in section 5
in the direction of the vector field χ, where χ is the vector field associated to the
flow (Dϕs) : Λ(M) ⟲ . Then, for every L ∈ Λ(M) and every t, it holds

DαMI(L, (ϕs)s∈ [0,t]) =
∫ t

0
F ◦Dϕs(L) ds .

By Birkhoff Ergodic Theorem for flows (see [NS60, Page 459]), the following integral
exists µ almost everywhere

F̄ (L) := lim
t→ +∞

1
t

∫ t

0
F ◦Dϕs(L) ds = DαMI∞(p(L), (ϕt)) ,

and we have ∫
Λ(M)

F̄ (L) dµ̄(L) =
∫

Λ(M)
F (L) dµ̄(L) .

Following then the same calculus as for the previous case, it holds

DMI(µ, (ϕt)) =
∫

M
DMI∞(x, (ϕt)) dµ(x)

=
∫

M
DαMI∞(x, (ϕt)) dµ(x)

=
∫

Λ(M)
F̄ (L) dµ̄(L) =

∫
Λ(M)

F (L) dµ̄(L) .

Since µ̄ = limn→ ∞ µtn , because of (6.4) and from (6.5), we have that∫
Λ(M)

F (L) dµ̄(L) = lim
n→ +∞

1
tn

∫ tn

0
F ◦Dϕs(Tztn

L) ds

= lim
n→ +∞

DαMI
(
tztn

L, (ϕs)s∈ [0,tn]
)

tn
= 0 .

Thus, we conclude that DMI(µ, (ϕt)) = 0, as desired.
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6.2. Proof of Corollary 1.5

Let (ϕt) be a symplectic isotopy of T2d such that ϕ0 = IdT2d and ϕt+1 = ϕt ◦ ϕ1.
Using a covering Π : T ∗Td → T2d, we can lift the symplectic isotopy (ϕt) on T2d to
a symplectic isotopy (Φt) on T ∗Td such that for every t ∈ R

Π ◦ Φt = ϕt ◦ Π .

Let Z0 ⊂ T ∗Td be the zero section, which is a Lagrangian submanifold. By Theo-
rem 1.1, for every n ∈ N, there exists a point un ∈ Z0 such that

DMI
(
TunZ0, (Φt)t∈ [0,n]

)
= 0 .

Since the covering Π is a submersion, for every L ∈ Λ(T ∗Td) we have

DMI
(
DΠ(L), (ϕt)t∈ [0,1]

)
= DMI

(
L, (Φt)t∈ [0,1]

)
,

where the Maslov index in T ∗Td is calculated with respect to the vertical Lagrangian
foliation V whose associated tangent bundle is TxT ∗Td, while the Maslov index in
T2d is calculated with respect to the image foliation Π(V). Observe that the tangent
bundle associated to Π(V) is ker (dp1), where p1 : T2d → Td is the projection of the
first d-coordinates.

For every n ∈ N define then Un := DΠ(TunZ0) ∈ Λ(T2d) and the probability
measure on Λ(T2d)

µn := 1
n

n−1∑
i=0

δDϕi(Un) .

Since Λ(T2d) is compact, we can extract from (µn)n∈N a subsequence converging to a
Dϕ1-invariant probability measure µ̄ on Λ(T2d). Using the projection p : Λ(T2d) →
T2d and repeating the calculus done in the proof of Corollary 1.4, the ϕ1-invariant
probability measure µ = p∗µ̄ on T2d is then such that

DMI(µ, (ϕt)) = 0 .

6.3. Existence of points and ergodic measures with vanishing asymptotic
Maslov index for conformally symplectic isotopies that twist the

vertical

In this subsection we are primarily concerned with proving Theorems 1.10 and 1.11.
Let us first recall that, in Proposition 2.15, we prove that, for an isotopy (ϕt)t∈R
of conformally symplectic diffeomorphisms of M that twists the vertical, for every
L ∈ Λ(M) and every [α, β] ⊂ R such that Dϕα(L), Dϕβ(L) /∈ Σ(M) it holds

DMI
(
L, (ϕt)t∈ [α,β]

)
⩽ 0 .

Consequently, for every x ∈ M we have

DMI∞
(
x, (ϕt)t∈ [0,+∞)

)
⩽ 0 .
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Moreover, from Corollary 5.13, we deduce that, for an isotopy (ϕt)t∈R of conformally
symplectic diffeomorphisms on M = T ∗M that twists the vertical, for every L ∈ Λ
and every x ∈ M, it holds

DαMI
(
L, (ϕt)t∈ [0,1]

)
< d and DαMI∞

(
x, (ϕt)t∈ [0,+∞)

)
⩽ 0 ,

where d = dim (M).
Proof of Theorem 1.10. — Let (ϕt)t∈R be a conformally symplectic isotopy of M

such that ϕ0 = IdM. Let L ⊂ M be a Lagrangian submanifold that is Hamiltonianly
isotopic to a graph. Let L0 ⊂ M be a Lagrangian graph, and let (ht)t∈ [0,1] be a
Hamiltonian isotopy such that h0 = IdM and h1(L0) = L. Let α : [0, 1] → [0, 1] be
a smooth non-decreasing function such that α(0) = 0 and α is constant equal to
1 when restricted to some neighborhood of 1. Let β : [0, 1] → [0, 1] be a smooth
non-decreasing function such that β is constant equal to 0 on some neighborhood of
0 and equal to the identity on some neighborhood of 1. Define then (ψt)t∈ [0,+∞) as

ψt :=


hα(t) for t ∈ [0, 1] ,
ϕβ(t−1) ◦ h1 for t ∈ [1, 2] ,
ϕt−2 ◦ h1 for t ∈ [2,+∞) .

Then (ψt)t∈ [0,+∞) is an isotopy of conformally symplectic diffeomorphisms such that
ψ0 = IdM.

Apply then Theorem 1.1 to the Lagrangian graph L0 with respect to the isotopy
(ψt)t∈ [0,+∞). That is, for every t ∈ [0,+∞) there exists at least a point zt ∈ L0

(11)

such that
(6.6) DMI

(
TztL0, (ψs)s∈ [0,t]

)
= 0 .

From (6.6) and the compactness of {hs(L0) : s ∈ [0, 1]}, there exists an integer ρ > 0
such that for every t ∈ [0,+∞) there exists a point xt := ψ1(zt+1) = h1(zt+1) ∈ L
such that

DMI
(
TxtL, (ϕs)s∈ [0,t]

)
∈ [−ρ, ρ] .

Moreover, as (ϕs) twists the vertical, we have in fact

(6.7) DMI
(
TxtL, (ϕs)s∈ [0,t]

)
∈ [−ρ, 0] .

By compactness of L, we can extract from (xt)t∈ [0,+∞) a subsequence (xn)n∈N that
converges to a point x ∈ L.

Fix N ∈ N and ϵ > 0. By continuity of the angular Maslov index, there exists
n̄ ∈ N such that for every n ⩾ n̄ it holds

(6.8)
∣∣∣∣DαMI

(
TxL, (ϕs)s∈ [0,N ]

)
− DαMI

(
TxnL, (ϕs)s∈ [0,N ]

) ∣∣∣∣ < ϵ .

Since the isotopy twists the vertical, we claim that, for every n ⩾ max(n̄, N), it
holds
(6.9) DMI

(
TxnL, (ϕs)s∈ [0,N ]

)
∈ [−ρ, 0] .

(11)Actually there exists an open set whose projection on M has full Lebesgue measure.
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Indeed, if this does not hold, then for some n ⩾ max(n̄, N) from Proposition 2.15
we have that

DMI
(
TxnL, (ϕs)[0,N ]

)
⩽ −ρ− 1 .

From (6.7) and since

DMI
(
TxnL, (ϕs)[0,n]

)
= DMI

(
TxnL, (ϕs)[0,N ]

)
+ DMI

(
DϕN (TxnL) , (ϕs)s∈ [0,n−N ]

)
,

we contradict Proposition 2.15 because

DMI
(
TϕN (xn)ϕN(L), (ϕs)s∈ [0,n−N ]

)
⩾ 1 .

From (6.8), (6.9) and Corollary 5.13, we have that for every n ⩾ max(n̄, N)∣∣∣DαMI
(
TxL, (ϕs)s∈ [0,N ]

)∣∣∣
⩽
∣∣∣DαMI

(
TxL, (ϕs)s∈ [0,N ]

)
− DαMI

(
TxnL, (ϕs)s∈ [0,N ]

)∣∣∣
+
∣∣∣DαMI

(
TxnL, (ϕs)s∈ [0,N ]

)∣∣∣
< ϵ+ ρ+ d ,

where d = dim (M). Letting ϵ → 0 and once again applying Corollary 5.13, for every
t ∈ [0,+∞), we conclude that

DMI
(
TxL, (ϕs)s∈ [0,t]

)
∈ [−C,C] ,

where C := ρ+2d. In particular, we deduce also that DMI∞(x, (ϕt)t∈ [0,+∞)) = 0. □

Proof of Theorem 1.11. — Let (ϕt) be an isotopy of conformally symplectic
diffeomorphisms of M such that ϕ1+t = ϕt ◦ ϕ1. Observe that if (ϕt) twists the
vertical, then, by Proposition 2.15, for every ϕ1-invariant measure with compact
support µ, it holds

(6.10) DMI(µ, (ϕt)) =
∫

M
DMI∞(x, (ϕt))dµ(x) ⩽ 0 .

Since the function DMI(., (ϕt)) is measurable and non-positive, this implies that
DMI(., (ϕt)t∈ [0,+∞)) ∈ L1(µ).
Let x ∈ L be the point given by Theorem 1.10. The assumption that its positive
orbit is relatively compact enables us to find a ϕ1-invariant measure µ supported on
the closure of the orbit of x with vanishing asymptotic Maslov index.
By Ergodic Decomposition Theorem (see [Mañ87]), for µ almost every y, the measure

µy = lim
N → ∞

1
N

N∑
n=0

δϕn(y)

exists and is ergodic, we have DMI(., (ϕt)) ∈ L1(µy) and

0 = DMI(µ, (ϕt)) =
∫

M
DMI(µy, (ϕt))dµ(y) .

As the function in the integral is non-positive by (6.10), we deduce that for µ almost
every y, the measure µy is ergodic and has vanishing Maslov index. □
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6.4. Autonomous and 1-periodic Tonelli Hamiltonian flow case

We can consider the particular case of a Hamiltonian 1-periodic Tonelli flow on a
cotangent bundle T ∗M , where M is a d-dimensional compact manifold. Specifically,
let H : T ∗M × R/Z → R be a Tonelli 1-periodic Hamiltonian. Denote as (ϕHs,t) the
family of symplectic maps generated by the Hamiltonian vector field of H.

Recall that any Tonelli Hamiltonian provides an isotopy of symplectic diffeomor-
phisms that twists the vertical, see Proposition 2.17. We know from Theorem 1.10
that on every Lagrangian submanifold that is H-isotopic to a graph, there exists a
point with vanishing dynamical asymptotic Maslov index. Let us now explain how
the weak KAM theory also provides such a point when the submanifold is a graph.

6.4.1. Introduction to 1-periodic weak KAM theory and proof of a partial version
of Theorem 1.10 via this theory

Let us outline some key results of the non-autonomous weak KAM theory. Most
of the results are due to Bernard, [Ber08].
Recall that a Lagrangian function L : TM × R/Z → R can be associated with H,
defined by

L(q, v, t) = max
p∈T ∗qM

(pv −H(q, p, t)) .

Then the map ℓ : T ∗M ×R/Z → TM ×R/Z defined by ℓ(q, p, t) = (q, ∂pH(q, p, t), t)
is called the Legendre map and it defines a conjugacy between the Hamiltonian maps
(ϕHs,t) of H and the so-called Euler-Lagrange maps (fLs,t) of L.
An absolutely continuous arc γ : [a, b] → M is minimizing if for every absolutely
continuous arc η : [a, b] → M such that η(a) = γ(a) and η(b) = γ(b), we have∫ b

a
L
(
(γ(t), γ̇(t), t

)
dt ⩽

∫ b

a
L
(
η(t), η̇(t), t

)
dt.

The real numbers a < b and the endpoints being given, such a minimizing arc always
exists and then (γ, γ̇) : [a, b] → TM is a solution of the Euler-Lagrange equations
and (γ, ∂vL(γ, γ̇, ·)) is a solution of the Hamilton equations for H. When a, b, are
integers, (γ(k), ∂vL(γ(k), γ̇(k), k))a⩽ k⩽ b is a piece of orbit for the time-1 map ϕH0,1.
We will often say that such a discrete piece of orbit is minimizing. If we use the
notation (q, p) = (γ(a), ∂vL(γ(a), γ̇(a), a)), it is then well-known that the arc of
Lagrangian subspaces (DϕH0,tT(q,p)(T ∗

qM))t∈ [0,b−a] has zero Maslov index with respect
to the vertical bundle (this property is often referred to as ‘having no conjugate
vectors’).

The positive Lax-Oleinik operator T is defined on the set C0(M,R) of continuous
functions by

T u(q) = sup
γ:[0,1] →M,γ(1)=q

(
u(γ(0)) −

∫ 1

0
L(γ(s), γ̇(s), s)ds

)
,

where the supremum is taken over the set of absolutely continuous arcs. Then there
exists a unique constant c ∈ R such that T + c has a fixed point. Such a fixed point
is called a positive weak KAM solution. A positive weak KAM solution is always
semi-convex, implying that it is Lipschitz and differentiable at every point where its
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minimum is attained.(12) Moreover, when u is such a positive weak KAM solution, we
have ϕH0,1(graph(du) ⊂ graph (du) and the positive orbit of every point of graph(du)
is always minimizing and thus has zero dynamical asymptotic Maslov index.

If now u is such a weak KAM solution and v : M → R is a C2 function, then u− v
is semi-convex. Let q0 ∈ M be a point where the maximum of u−v is attained. Then
u − v is differentiable and d(u − v)(q0) = 0, which implies that u is differentiable
at q0 and du(q0) = dv(q0) ∈ graph(dv). Hence, we have found a point of graph(dv)
with zero dynamical asymptotic Maslov index.

Using the same argument as in Theorem 1.11, we can deduce the existence of
measures with zero asymptotic Maslov index. However, our goal is more ambitious
because we plan to prove that all the measures given by this theorem are minimizing.

6.4.2. Introduction to autonomous weak KAM theory and proof of Corollary 1.13

In the case of an autonomous Tonelli Hamiltonian flow on T ∗M , we can characterize
the invariant measure of vanishing Maslov index given by Theorem 1.11 with the
help of weak KAM theory.

To this end, let us outline some key results of the autonomous weak KAM theory.
Most of these results are due to Fathi, see [Fat08].
Recall that a autonomous Lagrangian function L : TM → R can be associated with
H, defined by

L(q, v) = max
p∈T ∗qM

(pv −H(q, p)).

Then the map ℓ : T ∗M → TM defined by ℓ(q, p) = (q, ∂pH(q, p)) is called the
Legendre map and it defines a conjugacy between the Hamiltonian flow (ϕHt ) of H
and the so-called Euler–Lagrange flow (fLt ) of L.
A function called the action is defined on the set M(L) of (fLt ) invariant Borel
probability measures by the equality

AL(µ) =
∫
TM

L(q, v)dµ(q, v).

This function has a minimum value −α0 ∈ R and µ ∈ M(L) is minimizing if
AL(µ) = −α0. Then the measure ℓ∗µ is (ϕHt ) invariant and is said to be Mather
minimizing.

The negative Lax-Oleinik semi-group (Tt)t> 0 is defined on the set C0(M,R) of
continuous functions by

T tu(q) = inf
γ:[0,t]→M,γ(t)=q

(
u(γ(0)) +

∫ t

0
(L(γ(s), γ̇(s)) + α0)ds

)
,

where the infimum is taken over the set of absolutely continuous arcs. It is known
that for every t > 0, T tu is Lipschitz. Moreover, when u is C2, i.e., when the graph
graph(du) is a Lagrangian submanifold, then T tu it a graph selector of ϕHt (graph(du))
(see [Jou91] or [Wei14]). Also, in this case, we have

(6.11) ∀ t > s > 0,
(
ϕHt
)−1

(graph(dT tu)) ⊂
(
ϕHs
)−1

(graph(dT su)) ⊂ graph(du).

(12)A semi-convex function is the supremum of a compact family of C1,1 functions that have
equibounded derivatives. Hence a C1,1 function is semi-convex.
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A fixed point of the Lax–Oleinik semigroup is called a negative weak KAM solution
and Fathi proved that such solutions always exist. Moreover, Bernard proved in
(3.14) in [Ber08] that if µ ∈ M(L) has its support contained in graph(du), then µ is
minimizing.
Fathi also proved that for every u ∈ C0(M,R), the function T tu tends for the C0

topology to a weak KAM solution u0 when t tends to +∞. Also, the first author
of this article proved in [Arn05] that when t tends to +∞, graph(dT tu) tends to
graph (du0) for the Hausdorff metric.

Now, let us prove that the invariant measure provided by Theorem 1.11 is a Mather
minimizing measure, as stated in Corollary 1.13.

Proof of Corollary 1.13. — We consider a C2 map u : M → R and its graph
L = graph(du). We recall that the support of the measure provided by Theorem 1.11
is in the ω-limit set of some x ∈ L such that there exist a sequence (xk) ∈ L tending
to x and a sequence of integers(nk) tending to +∞ such that ϕHnk

(xk) ∈ graph(dT nku).
Because of Equation 6.11, and as xk ∈ (ϕHnk

)−1(graph(dT nku)), we deduce that

∀ k ⩾ j ⩾ 0, xj ∈
(
ϕHnk

)−1
(graph (dT nku)) ;

hence

x = lim
k→ ∞

xk ∈
⋂
t> 0

(
ϕHt :

)−1 (
graph (dT tu)

)
=
⋂
t> 0

(
ϕHt
)−1 (

graph
(
dT tu

))
and then ω(x) is in the limit of (graph(dT tu))t> 0 for the Hausdorff topology when
t tends to +∞, i.e., in graph (du0) for some weak KAM solution u0.
Hence, the supports of measures given by Theorem 1.11 are in graph (du0) and are
thus minimizing. □

6.5. Proof of Corollary 1.17

We endow M with a Riemannian metric.
We are assuming that

(6.12) ∀ (λ1, . . . , λn) ∈ Rn \ {0Rn} ,∀ q ∈ M it holds
n∑
k=1

λkηk(q) ̸= 0 .

This implies that the map I from M × Rn to M = T ∗M , defined by

I(q, λ1, . . . , λn) =
n∑
k=1

λkηk(q) ,

is a bi-Lipschitz embedding. Indeed, it is a fibered linear monomorphism from M×Rn

to T ∗M that continuously depends on the point q ∈ M . We denote by Q ⊂ M its
image I(M × Rn). Then the map j : Q → Rn defined by

j

(
n∑
k=1

λkηk(q)
)

= (λ1, . . . , λn)

is Lipschitz.
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For every (λ1, . . . , λn) ∈ Rn, consider the Lagrangian graph

L(λ1, ..., λn) :=
{

n∑
k=1

λkηk(q) : q ∈ M

}
⊂ M .

As (ϕt) is an ipy of conformally symplectic diffeomorphisms that twists the vertical,
by Theorem 1.10, there exists at least one point x ∈ L(λ1,...,λn) with zero asymptotic
Maslov index. In particular,

j
({
p ∈ Q : DMI∞

(
p, (ϕt)t∈ [0,+∞)

)
= 0

})
= Rn .

Because j is Lipschitz, this implies that
dimH

({
p ∈ M : DMI∞

(
p, (ϕt)t∈ [0,+∞)

)
= 0

})
⩾ n .
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