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Résumé. — Dans cet article, nous montrons que le type de tresse d’un ensemble de points
fixes d’un difféomorphisme hamiltonien non-dégénéré d’une surface est stable sous des per-
turbations suffisamment petites par rapport à la métrique de Hofer dHofer. Nous appelons ce
nouveau phénomène stabilité des tresses pour la métrique de Hofer.

Nous appliquons la stabilité des tresses pour étudier la stabilité de l’entropie topologique
htop des difféomorphismes hamiltoniens des surfaces par rapport à de petites perturbations
pour dHofer. Nous montrons que htop est semi-continue inférieurement sur l’espace des difféo-
morphismes hamiltoniens d’une surface fermée, muni de la métrique de Hofer, et sur l’espace
des difféomorphismes à support compact du disque bidimensionnel D muni de la métrique
Hofer. Cela répond au cas bidimensionnel d’une question de Polterovitch.

Afin de prouver la semi-continuité inférieure de htop par rapport à dHofer, nous montrons que
l’entropie topologique d’un difféomorphisme φ d’une surface compacte peut être reconstituée
à partir des types de tresses réalisés par les orbites périodiques de φ.
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1. Introduction

The objective of this article is to study a new type of dynamical stability with
respect to the Hofer metric on the space of Hamiltonian diffeomorphisms of a surface.
In this section we present the necessary background and context for our results, and
give a mostly intuitive and geometric discussion of the results. The precise statements
of our main theorems are presented in Section 2.

In order to explain our results we must first recall some notions.

1.1. Preliminary notions

Let Σ be a closed surface and ω a symplectic form on Σ. If Σ = S2 then we assume,
for reasons that will become clear later, that

∫
S2 ω = 8. The symplectomorphisms

of (Σ, ω) are the diffeomorphisms of Σ which preserve the symplectic form ω. A
time-dependent Hamiltonian H : S1 × Σ → R gives rise to a time-dependent vector
field XH on Σ, called the Hamiltonian vector field of H, given by the formula

(1.1) ιXH(t,·)ω = dΣH(t, ·),

where dΣH(t, ·) is the differential of H(t, ·) : Σ → R in Σ. The flow ϕt
H of XH is

called the Hamiltonian flow of H.
A Hamiltonian diffeomorphism ϕ is a diffeomorphism of Σ which is the time 1-map

of the Hamiltonian flow of some Hamiltonian in H. We denote the group of Hamil-
tonian diffeomorphisms of (Σ, ω) by Ham(Σ, ω). Hamiltonian diffeomorphisms are
symplectomorphisms, and we refer the reader to [Pol01] for a proof that Ham(Σ, ω)
is indeed a group with respect to the composition of diffeomorphisms.

For simplicity we introduce some terminology. If ϕ is a Hamiltonian diffeomorphism
and H is a Hamiltonian such that ϕ is the time 1-map of ϕH , we say that H
generates ϕ.

Recall that a Hamiltonian H : S1 × Σ → R is called normalized if∫
Σ Htω = 0 for each t ∈ S1, where Ht(·) := H(t, ·). Given ϕ ∈ Ham(Σ, ω) it is

always possible to find a normalized Hamiltonian H which generates ϕ.
From now on all time-dependent Hamiltonian functions on closed surfaces consid-

ered in this paper are assumed to be normalized.
Recall that the Hamiltonian action AH(y, wy) of a pair (y, wy) of a contractible

loop y : S1 → Σ and some disk capping wy : D → Σ of y is defined as

(1.2) AH(y, wy) := −
∫
D
(wy)∗ω +

∫ 1

0
H(t, y(t))dt.

If Σ is distinct from S2 the action AH(y) = AH(y, wy) does not depend on the choice
of wy but only on y. The case of (S2, ω) will be considered in Section 3.3.

If Σ ̸= S2, we fix for each free homotopy class of loops α ∈ [S1,M ] a representative
ηα : S1 → Σ of α. If y is a smooth non-contractible loop and α its free homotopy
class, we say that a smooth mapping wy : [0, 1] × S1 → Σ with wy(0, t) = ηα(t) and
wy(1, t) = y(t) is a cylindrical capping of y. The Hamiltonian action AH(y, wy) of a
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pair (y, wy) of a non-contractible loop y : S1 → Σ and a cylindrical capping wy of y
is defined as

(1.3) AH(y, wy) := −
∫

[0,1]×S1
(wy)∗ω +

∫ 1

0
H(t, y(t))dt.

If Σ ̸= T 2, then the action does not depend on the choice of wy, whereas if Σ = T 2,
the choice of cylinder has to be considered as well, see Section 3.1.2.

We may define for any two freely homotopic loops y and y′ in Σ the quantity
(1.4) ∆H(y, y′) := inf

wy ,wy′
|AH(y, wy) − AH (y′, wy′)| ,

where the infimum is taken over all cappings wy and wy′ of y and y′; disk cappings
if y, y′ are contractible, and cylindrical capping if y, y′ are non-contractible.

The Hofer metric dHofer is a Finsler metric on Ham(Σ, ω) which is bi-invariant with
respect to the group structure of Ham(Σ, ω). If ϕ1 and ϕ2 are elements of Ham(Σ, ω)
we define

(1.5) dHofer(ϕ1, ϕ2) = inf
H ∈ I(ϕ1,ϕ2)

∫ 1

0
∥Ht∥dt,

where H : S1 × Σ → R is in I(ϕ1, ϕ2) if it is normalized and generates ϕ−1
1 ◦ ϕ2, and

where ∥Ht∥ := maxp ∈ Σ Ht − minp ∈ Σ Ht. It is a highly non-trivial fact that dHofer is
a non-degenerate metric, see [Hof90].

We also consider in this paper Hamiltonian diffeomorphisms of the disk D endowed
with the symplectic structure ω0 = dx ∧ dy. For this situation we consider for
c ∈ R \ 2πQ the set Hamc(D) of Hamiltonian diffeomorphisms which coincide with
the irrational rotation by angle c in a neighbourhood of ∂D, or the set Ham0(D) of
compactly supported Hamiltonian diffeomorphisms on (D, ω0). The set Ham0(D) is
a group, and although Hamc(D) is not a group, we can still define the Hofer metric
on it and study its dynamical significance. We refer the reader to Section 3.2 for the
precise definitions we adopt in this setting.

Lastly, if (Σ, ω) is a closed surface and ϕ is a Hamiltonian diffeomorphism, we
will say that ϕ is non-degenerate if all 1-periodic orbits of ϕ are non-degenerate.
We say that ϕ is strongly non-degenerate if for every n > 0 all n-periodic orbits of
ϕ are non-degenerate. The same definition works for Hamiltonian diffeomorphisms
in Hamc(D) where c ∈ R \ 2πQ. For Ham0(D) we must adapt the definition, since
every Hamiltonian diffeomorphism in Ham0(D) has degenerate 1-periodic orbits; see
Section 3.2.

1.2. Hofer metric and dynamics

The properties of the Hofer metric are the subject of intense research in the field
of symplectic topology. One direction of investigation to better understand dHofer
is to investigate how dynamical properties of Hamiltonian diffeomorphisms vary
under perturbations with respect to dHofer. This has been pursued by several authors,
see [Cho22, KS21, PRSZ20, PS16, Ush11]. Floer homology together with its action
filtration behaves in a very stable way under perturbations with respect to dHofer. This
culminated in the dynamical stability result of Polterovich and Shelukhin in [PS16],
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which says that in a path of Hamiltonian diffeomorphisms that is continuous with
respect to dHofer the spectrum of the diffeomorphisms changes continuously in a
certain sense; see also [PRSZ20, Ush11]. With the introduction of the theory of
persistence modules to Floer theory in [PS16], the authors obtained moreover good
quantitative estimates on the size of perturbations with respect to dHofer under which
spectral stability holds. More recently, the second author and Chor [CM23] have
studied stability properties of the topological entropy htop under perturbations with
respect to dHofer. In this paper, we also investigate this question but with techniques
and in a setting which are different from that of [CM23].

For the discussion that follows we assume that Σ is either the disk or a closed
surface different from S2, so that we can define the action of contractible 1-periodic
orbits of Hamiltonians on (Σ, ω). Let p be a periodic point of a Hamiltonian diffeomor-
phism ϕ of (not necessarily minimal) period n > 0. Assume that H is a normalized
Hamiltonian that generates ϕ and that the n-periodic orbit of the Hamiltonian flow
of H which starts at p is contractible. One topological quantity that we can associate
to the pair (p, n) is its action with respect to the Hamiltonian H. To define it, we
denote by γ the n-periodic orbit of the flow ϕH which satisfies γ(0) = p. The action
of (p, n) is defined to be AnH(γ). It was proved by Schwarz in [Sch00] that AH(γ)
does not depend on the choice of the normalized Hamiltonian H generating ϕ, so
that it is indeed a topological property of the pair (p, n).

As observed by Polterovich–Shelukhin and Usher (see [PS16, Ush11]), if p is a
periodic point of (not necessarily minimal) period n of a non-degenerate Hamiltonian
diffeomorphism ϕ ∈ Ham(Σ, ω), then given ε > 0 there exists an open neighbourhood
Uε of ϕ in Ham(Σ, ω) endowed with the Hofer geometry, such that every element
ϕ′ in Uε has a periodic point p′ of period n whose action is ε-close to the action of
(p, n). One can think of this as saying that the periodic point p of ϕ gives rise to
periodic points of the same (not necessarily minimal) period and similar action for
Hamiltonian diffeomorphisms that are sufficiently close to ϕ. A natural question is
the following: do these periodic orbits, which arise from p, inherit other topological
properties of p? The main results of the present paper show that under certain
conditions the answer to this question is yes.

To explain why this question is non-trivial we notice that small perturbations in
the sense of the Hofer metric are not necessarily small in the C0-sense. So, no matter
how close a Hamiltonian diffeomorphism ϕ′ is to ϕ in the sense of dHofer, one cannot
guarantee that the periodic points of ϕ′ which arise from the periodic point p are
close to p.

1.3. Braid type of a collection of 1-periodic orbits

To present our braid stability results we recall how one associates to a collection
P = {p1, . . . , pk} of fixed points of a Hamiltonian diffeomorphism ϕ on (Σ, ω) its
braid type.

For this we first consider a Hamiltonian H : S1 × Σ → R and let Y be a finite
collection of distinct 1-periodic orbits of XH . We associate to Y a braid B(Y) in
S1 × Σ.
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Definition 1.1. — The braid B(Y) in S1 × Σ associated to a finite set Y :=
{γ1, γ2, . . . , γk} of distinct 1-periodic orbits of XH is defined as

(1.6) B(Y) :=
k⋃

i=1
ξi,

where ξi are given by

(1.7) ξi :=
{
(t, γi(t))

∣∣∣ t ∈ S1
}
.

We call B(Y) the braid associated to the set Y of 1-periodic orbits of H.

Remark 1.2. — Notice that B(Y) is a link and not a braid, but we nevertheless
abuse notation and call it braid. There are two reasons for doing this. The first is
that it is easier to define the braid type of a set of 1-periodic orbits using this link
rather than the braid in [0, 1] × Σ which is obtained from B(Y) by cutting S1 × Σ
along the surface {0} × Σ. The second is that in our arguments it is always the link
B(Y) which will appear.

From now on, a braid on Σ will always mean a smooth link in S1 × Σ which is
transverse to all the surfaces {t} × Σ.

Remark 1.3. — Although in the present paper we will only be considering the
situation where P is a collection of fixed points of a Hamiltonian diffeomorphism
ϕ, it is straightforward to see that one can also associate a braid in S1 × Σ to a
collection Q of periodic points of ϕ such that ϕ(Q) = Q.

For a Hamiltonian diffeomorphism ϕ and a choice of Hamiltonian H generating
ϕ, one can use the procedure given in Definition 1.1 to associate to a collection
P = {p1, . . . , pk} of fixed points, a braid B(YP).

Notice that there is a certain ambiguity in the construction of B(YP) since it
depends on the choice of H. If we perform this construction with another Hamiltonian
H ′ which generates ϕ we obtain a different braid B(Y ′

P): in case Σ := D or Σ has
genus ⩾ 2 the braids B(YP) and B(Y ′

P) are isotopic, but in general the relationship
between the two braids is more complicated. Since there is no preferred choice of
Hamiltonian generating ϕ the natural object to be associated to P is not a braid
but an equivalence class of braids, which was introduced by Boyland and is called
the braid type of P .

Before presenting the definition of braid types, we explain a geometric condition
that implies that two braids have the same braid type. For this we need the following
terminology. If ξ and ξ′ are smooth links in S1 × Σ which are transverse to the
surfaces {t} × Σ ⊂ S1 × Σ, and are isotopic among links transverse to these surfaces,
we say that ξ and ξ′ are freely isotopic as braids.

Fact 1.4. — If two braids in S1 × Σ are freely isotopic as braids, then they have
the same braid type.

Using Fact 1.4 we prove below that if P is a collection of fixed points of a non-
degenerate Hamiltonian diffeomorphism ϕ, then there is a collection of fixed points of
the Hofer-close Hamiltonian diffeomorphisms ϕ′ that arise from P and have the same
braid type as P . The reason why such information is useful is that many dynamical
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invariants of braids, such as the topological entropy of a braid, are actually invariants
of the braid type. To explain why this is the case we need the dynamical definition
of braid type which is explained in the next section.

1.4. Braids and surface dynamics

In the following we shortly recall relevant standard notions of surface dynamics,
see for example [Bir75, Boy94, FM02] for more details. Let Σ be a compact oriented
surface (with or without boundary), and let, for each k ∈ N, Xk ⊂ Σ \ ∂Σ be a set
of k points in Σ. We denote the mapping class group on the Xk-punctured surface Σ
by M(Σ, Xk). It is defined as the group of isotopy classes of orientation preserving
homeomorphisms on Σ that preserve Xk setwise, and such that, if ∂Σ ̸= ∅, the
allowed isotopies fix each boundary component setwise. We will denote by [f ] the
element in M(Σ, Xk) that f : Σ → Σ represents. We are ready to give the definition
of the braid type of a braid.

Definition 1.5. — Let f : Σ → Σ be a homeomorphism that is isotopic to the
identity, and let Q = {q1, . . . , qk} be a set of periodic points of f such that f(Q) = Q.
The braid type [f,Q] of the pair (f,Q) is the conjugacy class in M(Σ, Xk) of elements
[h ◦ f ◦ h−1] ∈ M(Σ, Xk), where h : Σ → Σ is a homeomorphism (preserving the
boundary components setwise) such that h(Q) = Xk. If Q = (q1, . . . , qk) is a periodic
orbit and Q = {q1, . . . , qk} the set associated to it, we also will write [f,Q] instead
of [f,Q].

We now sketch the proof of Fact 1.4. We first explain how a braid B of k strands
in S1 × Σ defines a braid type [f,Q]. Informally this is seen as follows: One first cuts
S1 × Σ along {0} × Σ to obtain from B a proper braid in [0, 1] × Σ. One creates an
isotopy of homeomorphisms starting at the identity by sliding along the braid, such
that B = B(Q) is the braid associated to a collection of periodic orbits Q of the
homeomorphism f that is created. We say that B represents [f,Q]. This construction
is part of the proof of the Birman exact sequence where it is also shown that different
representatives of an element of the braid group induce the same element of the
mapping class group; see [Bir75, Chapter 4] or [Mat05, Section 2]. Finally, one shows
that if two braids B = B(Q) and B′ = B(Q′) ⊂ S1 × Σ are freely isotopic braids,
then they give rise to conjugated pairs (f,Q) and (f ′,Q′) which therefore represent
the same braid type in the sense of Definition 1.5. For details, we refer the reader
to [Mat05, Section 2] and [Boy94, Section 4].

A braid type invariant of [f,Q] measuring its complexity is the growth rate of the
induced action of f on the fundamental group of Σ \ Q. It is defined as

Γπ1([f,Q]) := sup
g ∈ π1(Σ\Q,x0)

lim sup
n → ∞

log (lS (fn
∗ (g)))

n
,(1.8)

where f∗ is the automorphism on π1(Σ\Q, x0) with respect to some basepoint x0 and
a path σ from x0 to f(x0), S is a set of generators, and lS(h) is the minimal length
of a word in S and S−1 that is needed to represent h. The right hand side of (1.8)
is, for fixed f and Q, independent of all the choices made, and moreover invariant
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under conjugation and isotopy, see e.g. [Bow78]. Hence Γπ1([f,Q]) is well-defined.
Furthermore it follows from elementary properties of f∗, that for all k ∈ N

Γπ1

([
fk,Q

])
= kΓπ1([f,Q]).(1.9)

By an inequality of Manning (see [Bow78] for a proof in the present setting of a
punctured surface and f differentiable),

Γπ1([f,Q]) ⩽ htop(f).(1.10)

We define the topological entropy of the braid type [f,Q] as

htop([f,Q]) := inf
g
htop(g),

where the infimum runs over all g with [g,Q′] = [f,Q] for some set Q′ of periodic
points of g. It holds that in fact htop([f,Q]) is realized by the maximal topological
entropy of a pseudo-Anosov component of a map in the Thurston–Nielsen canonical
form, and moreover Γπ1([f,Q]) = htop([f,Q]). We will not use this fact, while (1.10)
is important for this article.

If B(Q) is the braid associated to the set Q of periodic orbits of f , we think of it
as a representative of the braid type [f,Q] and define

(1.11) htop(B(Q)) := Γπ1([f,Q]).

From the discussion above, it is clear that any diffeomorphism ϕ of Σ which has a set
of periodic orbits which realizes the braid B(Q) for some choice of isotopy between
id and ϕ satisfies

(1.12) htop(ϕ) ⩾ htop(B(Q)).

1.4.1. Topological entropy, braids and lower semicontinuity of htop with respect to
dHofer

From the discussion above, one can ask if the topological entropy of a surface diffeo-
morphism φ can be recovered from the topological entropy of the braid types which
are realized by sets of periodic orbits of φ. More precisely, given φ a surface diffeo-
morphism and k > 0 a positive integer, we let Braid(k, φ) be the set of braid types of
sets of periodic orbits of φ of period k. We then define Braid(φ) := ∪+∞

k=1Braid(k, φ).
Given a surface diffeomorphism is it true that

(1.13) htop(φ) = sup
b∈ Braid(φ)

htop(b) ?

Hall proved in [Hal94] that this is the case for the horseshoe map, as a consequence
of his study of horseshoe braid types. Using a different approach that combines
the methods of Franks–Handel [FH88] and Katok–Mendoza [KH95] we obtain the
following result, which states that this equality is valid for any surface diffeomorphism:
this is essentially a restatement of Theorem B.1.
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Theorem. — (1) Let Σ be a compact oriented surface (with or without boundary),
and let φ : Σ → Σ be a diffeomorphism such that htop(φ) > 0. Then

htop(φ) = sup
b∈ Braid(φ)

htop(b).

Proof. — Let ε > 0. By Theorem B.1 there is a hyperbolic k-periodic orbit P =
(p0, . . . , pk−1) of φ, for some k ∈ N, such that

Γπ1

(
[φ,P ]

)
> htop(φ) − ϵ,

where P = {p0, . . . , pk−1} and Γπ1([φ,P]) is the growth rate of the action induced
by φ on the fundamental group of Σ \ P . But as explained above,

htop(φ′) ⩾ Γπ1

(
[φ,P ]

)
,

for any diffeomorphism φ′ such that there is a periodic orbit P ′ with [φ′,P ′] = [φ,P ].
The theorem then follows directly. □

The combination of this theorem with our braid stability results allows us to obtain
lower semicontinuity of htop with respect to the Hofer metric. This gives an answer
to the two-dimensional version of the following question of Leonid Polterovich.

Question 1.6 (Polterovich). — What continuity or stability properties does the
topological entropy htop have with respect to dHofer?

Remark 1.7. — Our methods and results in the present paper differ from those
in [CM23], where the problem of stability of htop with respect to dHofer was first
investigated. While in [CM23] the stable lower bounds on htop stem from the prop-
erties of the braids projected back to the surface, such as geometric intersection
numbers, the methods here allow us to deal with lower bounds that hold for more
general braid types. For example, the results in [CM23] only deal with surfaces Σ of
genus ⩾ 2, while our results also deal with S2, T 2, and D. In [CM23] it was shown
that there are balls of any radius in Hofer’s metric on which htop is positive. In the
current paper we will only deal with stability properties under small perturbations.

Remark 1.8. — The continuity properties of htop with respect to different topolo-
gies on spaces of dynamical systems has been much studied. The topological entropy
is a measure of the complexity of a dynamical system, and it is interesting to in-
vestigate if dynamical complexity is stable under perturbation of a system. For
example, the combined results of Yomdin [Yom87] and Newhouse [New89] imply
that htop is continuous with respect to the C∞-topology on the space of C∞-smooth
diffeomorphisms of a closed surface. The analogous result does not hold for higher
dimensional manifolds, as showed in [Mis71]. Using the fundamental work of Ka-
tok [Kat80], Nitecki showed in [Nit71] that htop is lower semicontinuous with respect
to the C0-topology on the space of C1+ϵ diffeomorphisms of a closed surface, for any
ϵ > 0.
(1)This theorem can also be obtained as a consequence of the results in the recent work [Mei23] by
the second author. Indeed, one of the main results in [Mei23] is a generalization of this result to
Reeb flows on contact 3-manifolds, and the methods developed there also give a different approach
to prove this theorem.
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The relationship between contact topology and topological entropy of families of
contactomorphisms has been studied extensively and fruitfully in recent years by var-
ious methods. A large class of contactomorphisms are those that arise via Reeb flows
and there is an abundance of contact manifolds for which the topological entropy
or the exponential orbit growth rate is positive for all Reeb flows. Examples and
dynamical properties of those manifolds are investigated in [AASS23, AM19, Alv16a,
Alv16b, Alv19, ACH19, FS06, MS11]. Some of these results generalize to positive
contactomorphisms [Dah18, Dah20], and results on the dependence of some lower
bounds on topological entropy with respect to their positive contact Hamiltonians
have been obtained in [Dah21]. A related discussion and results on questions of
C0-stability of the topological entropy of geodesic flows can be found in [ADMM22].
Aspects of the relationship between the topological entropy of Hamiltonian diffeo-
morphisms and Floer homology are also studied in [CM23, ÇGG21, FS06] and other
aspects of the relationship between topological entropy of Hamiltonian diffeomor-
phisms and symplectic topology are studied in [BM19, Kha21].

In the joint work [ADMP23] of the authors, Abror Pirnapasov and Lucas Dahinden,
we study robustness and stability properties of htop of 3-dimensional Reeb flows using
methods inspired by the ones of the present paper, and using the forcing theory for
htop of Reeb flows developed in [AP22].
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2. Main results

In this section we state precisely our main results. For this, we need the following
definition. Let H⊕ be a time-dependent Hamiltonian whose time 1-map is ϕ⊕.

Definition 2.1. — Let Y⊕ = {γ1, . . . , γk} be a finite collection of distinct 1-
periodic orbits of XH⊕ that represent all the same free homotopy class of loops α
and ϵ > 0 be a positive real number. We say that the collection Y⊕ isϵ-isolated for
the action AH⊕ if

• for all 1-periodic orbits γ, γ′ of XH⊕ representing α we have that ∆H⊕(γ, γ′)
is either 0 or ⩾ ϵ.

• for all γ ∈ Y⊕ and all 1-periodic orbits γ′ of XH⊕ representing α we have that
∆H⊕(γ, γ′) = 0 implies γ′ ∈ Y⊕.

Remark 2.2. — Note that ∆H⊕(γ, γ′) is defined in (1.4), and that if the action
does not depend on the capping, then ∆H⊕(γ, γ′) is just the positive action difference,
e.g. if γ, γ′ are contractible and Σ ̸= S2, then ∆H⊕(y, y′) = |AH⊕(γ) − AH⊕(γ′)|.
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Remark 2.3. — Notice that in this definition we do not ask that for two distinct
1-periodic orbits γi ̸= γj in Y⊕ we have ∆H⊕(γi, γj) ̸= 0. Indeed, in some of our main
dynamical results all elements of Y⊕ have the same action.

Theorems 1, 2 and 3 give conditions under which a braid type of periodic orbits
of a Hamiltonian diffeomorphism on a surface will persist under small perturbations
with respect to dHofer. Theorem 1 deals with the case of closed surfaces.

Theorem 1. — Let Σ be a closed surface and ω be a symplectic form on Σ.
If Σ = S2 we assume that

∫
S2 ω = 8. Let ϕ⊕ be a non-degenerate Hamiltonian

diffeomorphism of (Σ, ω) and H⊕ be a path of normalized Hamiltonians whose time
1-map is ϕ⊕. Assume that there exist a finite collection Y⊕ = {γ1, . . . , γk} of distinct,
pairwise freely homotopic 1-periodic orbits of H⊕ and a number ϵ > 0 such that Y⊕
is 3ϵ-isolated for AH⊕ , and let B(Y⊕) be the braid in S1 × Σ associated to Y⊕ as in
Definition 1.1. If Σ = S2 we assume moreover that ϵ < 1

12 .
Then, for any non-degenerate Hamiltonian diffeomorphism ϕ⊖ whose Hofer distance

to ϕ⊕ is < ϵ, there exist a path H⊖ of normalized Hamiltonians whose time 1-map
is ϕ⊖ and a finite set Y⊖ of 1-periodic orbits of H⊖ such that

B(Y⊖) is freely isotopic as a braid to B(Y⊕),

where B(Y⊖) is the braid associated to Y⊖.

We now state our main results for Hamiltonian diffeomorphisms of the disk.

Theorem 2. — Let ϕ⊕ ∈ Hamc(D) be a non-degenerate Hamiltonian diffeo-
morphism of (D, dx ∧ dy) for some c ∈ R \ Q and H⊕ be a path of normalized
Hamiltonians whose time 1-map is ϕ⊕. Assume that there exist a finite collection
Y⊕ = {γ1, . . . , γk} of distinct 1-periodic orbits of H⊕ and a number ϵ > 0 such that
Y⊕ is 3ϵ-isolated for AH⊕ , and let B(Y⊕) be the braid in S1 ×D associated to Y⊕ as
in Definition 1.1.

Then, for any non-degenerate Hamiltonian diffeomorphism ϕ⊖ ∈ Hamc(D) whose
Hofer distance to ϕ⊕ is < ϵ, there exist a path H⊖ of normalized Hamiltonians whose
time 1-map is ϕ⊖ and a finite set Y⊖ of 1-periodic orbits of H⊖ such that

B(Y⊖) is freely isotopic as a braid to B(Y⊕),

where B(Y⊖) is the braid associated to Y⊖.

For compactly supported Hamiltonian diffeomorphisms of the disk we need to
impose further conditions on the periodic orbits that form the braid.

Theorem 3. — Let ϕ⊕ ∈ Ham0(D) be a compactly supported non-degenerate
Hamiltonian diffeomorphism of (D, dx∧ dy) and H⊕ be a path of normalized Hamil-
tonians whose time 1-map is ϕ⊕. Assume that there exist a finite collection Y⊕ =
{γ1, . . . , γk} of distinct 1-periodic orbits of H⊕ and a number ϵ > 0 such that Y⊕ is
3ϵ-isolated for AH⊕ and such that AH⊕(γi) ̸= 0 for all i ∈ {1, . . . , k}. Let B(Y⊕) be
the braid in S1 × D associated to Y⊕ as in Definition 1.1.

Then, for any compactly supported non-degenerate Hamiltonian diffeomorphism
ϕ⊖ ∈ Ham0(D) whose Hofer distance to ϕ⊕ is< ϵ, there exist a pathH⊖ of normalized
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Hamiltonians whose time 1-map is ϕ⊖ and a finite set Y⊖ of 1-periodic orbits of H⊖
such that

B(Y⊖) is freely isotopic as a braid to B(Y⊕),
where B(Y⊖) is the braid associated to Y⊖.

Remark 2.4. — In the above theorems the isolation condition on the orbits can be
replaced by the more technical condition that we will call quasi-isolation, where a set
of orbits is ϵ-quasi-isolated if the set of their action values are ϵ-isolated and if there
are no non-constant Floer cylinders with energy < ϵ which are asymptotic to one of
those orbits. See Section 3.1.3 for the precise definition and some consequences, and
Section 7 for the argument which explains why Theorems 1 and 2 remain true with
this assumption.

2.1. Applications

2.1.1. Braid stability for a set of non-degenerate orbits

We first formulate a theorem that will follow from the results in Section 2. It is
a stability statement for the braid that is associated to a set of non-degenerate,
pairwise freely homotopic 1-periodic orbits of a (not necessarily non-degenerate)
Hamiltonian diffeomorphism on Σ.

In the following we say that a compactly supported Hamiltonian diffeomorphism
on D is non-degenerate in its support if all its 1-periodic orbits in the interior of its
support are non-degenerate.

Theorem 2.5. — Let Σ be a closed surface or the two-disc D equipped with a
symplectic form ω. (If Σ = D, assume that ω = ω0 and fix c = 0 or c ∈ R \Q.) Let
ϕ⊕ : Σ → Σ be a Hamiltonian diffeomorphism (ϕ⊕ ∈ Hamc(D, ω0) if Σ = D), and let
H⊕ be a path of normalized Hamiltonians with ϕ⊕ = ϕ1

H⊕ . Let Y⊕ = {γ1, . . . , γk} be
a collection of distinct non-degenerate 1-periodic orbits of H⊕ that are pairwise freely
homotopic. Let B(Y⊕) be the braid in S1 × Σ associated to Y⊕ as in Definition 1.1.
Then there exists ϵ′ > 0 such that given any Hamiltonian diffeomorphism ϕ⊖ that
is non-degenerate (in its support if Σ = D) and satisfies dHofer(ϕ⊖, ϕ⊕) < ϵ′ (and
ϕ⊖ ∈ Hamc(D, ω0) if Σ = D) one can find a normalized Hamiltonian H⊖ that
generates ϕ⊖ and a set of 1-periodic orbits Y⊖ for H⊖ such that

B(Y⊖) is freely isotopic as a braid to B(Y⊕),
where B(Y⊖) is the braid associated to Y⊖.

A proof of this result is given in Section 8.

2.1.2. Lower semicontinuity of the htop with respect to Hofer’s metric

A consequence of Theorem 2.5 and the approximation results on htop in Appendix B
is the lower semicontinuity of the topological entropy htop with respect to dHofer in
dimension two.
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Theorem 2.6. — Let Σ be a closed surface equipped with a symplectic form ω.
Then htop : (Ham(Σ, ω), dHofer) → [0,∞) is lower semicontinuous.

Furthermore, htop : (Hamc(D, dx ∧ dy), dHofer) → [0,∞) is lower semicontinuous,
where c = 0 or c ∈ R \Q.

Proof. — We prove the first assertion, the proof for the second is analogous. Let
φ : Σ → Σ be a Hamiltonian diffeomorphism. If htop(φ) = 0, there is nothing to
prove. So assume htop(φ) > 0. Let ε > 0. By Theorem B.1 there is a hyperbolic
k-periodic orbit P = (p0, . . . , pk−1) of φ, for some k ∈ N, such that

Γπ1

(
[φ,P ]

)
> htop(φ) − ϵ,

where P = {p0, . . . , pk−1} and Γπ1([φ,P ]) is the growth rate by the action induced
by φ on the fundamental group of Σ \ P, see Section 1.4 for the definition of Γπ1

and some of its properties. Let G : Σ ×S1 → R be a Hamiltonian with ϕ1
G = φ. The

diffeomorphism ϕ⊕ := φk is generated by the Hamiltonian H⊕ : Σ ×S1 → R defined
by H⊕(x, t) := kG(x, kt). Let Y⊕ = {γ0, . . . , γk−1} be the set of 1-periodic orbits for
H⊕ given by γi(t) = ϕt

⊕(pi) = ϕ
k(t+i/k)
G (p0), i = 0, . . . , k − 1. These orbits have the

same image and are in particular pairwise freely homotopic. Since they are hyperbolic,
they are non-degenerate. Choose ϵ′ > 0 as in Theorem 2.5 with respect to ϕ⊕, H⊕
and Y⊕. Set δ = ϵ′

k
. Now let ψ be any non-degenerate Hamiltonian diffeomorphism

with dHofer(ψ, φ) < δ. By the bi-invariance of the metric dHofer it follows for ϕ⊖ := ψk

that dHofer(ϕ⊖, ϕ⊕) ⩽ kdHofer(ψ, φ) < kδ = ϵ′, and hence there is a Hamiltonian
H⊖ : Σ×S1 → R with ϕ1

H⊖ = ϕ⊖ and a set of 1-periodic orbits Y⊖ = {γ′
0, . . . , γ

′
k−1}

for H⊖ such that B(Y⊖) is isotopic as a braid to B(Y⊕). In particular it follows that
the braid types [φk,P ] and [ψk,Y⊖] coincide, where Y⊖ = {γ′

0(0), . . . , γ′
k−1(0)}.

We conclude that

htop(ψ) = 1
k
htop(ψk) ⩾ 1

k
Γπ1

(
[ψk,Y⊖]

)
= 1
k

Γπ1

(
[φk,P

)
= 1
k

(
kΓπ1

(
[φ,P ]

))
⩾ htop(φ) − ε.

Since non-degenerate ψ are C∞-dense in Ham(Σ, ω) and since htop is C∞ lower
semicontinuous [New89], this finishes the proof. □

In the recent work [ÇGG21] Çineli–Ginzburg–Gürel showed that for a Hamiltonian
diffeomorphism ϕ on a surface, htop(ϕ) coincides with the barcode entropy ℏ(ϕ) of
ϕ which they introduce. The barcode entropy is a measure of the complexity of the
Floer barcodes of ϕ in the spirit of [PRSZ20]. Combining Theorem 2.6 with [ÇGG21,
Theorem C] we obtain the following

Corollary 2.7. — The barcode entropy ℏ is lower semicontinuous with respect
to dHofer on surfaces.

In the beautiful article [Kha21], Khanevsky studied the topological entropy of
Hamiltonian diffeomorphisms on surfaces by looking at how these diffeomorphisms
act on simple curves on the surface. If Σ is a closed surface endowed with an area form
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ω, let L be an essential simple closed curve in Σ. Khanevsky showed that given any
positive number h0 there exists a curve Lh0 which is Hamiltonian isotopic to L such
that htop(ϕ) > h0 for every Hamiltonian diffeomorphism ϕ satisfying ϕ(L) = Lh0 .
It would be interesting to investigate if this lower bound is still valid for all curves
sufficiently close to Lh0 in the Hofer metric on the space of curves.

3. Background

3.1. Recollections on Hamiltonian dynamics and Floer homology for
closed surfaces different from S2

3.1.1. Surfaces different from S2 and T 2

In the following we assume that Σ is a closed surface with Σ ̸= S2 and ̸= T 2. The
constructions in the case of non-contractible loops in T 2 differ slightly, so we consider
the case of the torus below in 3.1.2. Let ω be a symplectic form on Σ. We consider a
normalized time-dependent Hamiltonian H : S1 × Σ → R. By normalized we mean
that

∫
Σ Htω = 0 for each t ∈ S1, where Ht(·) := H(t, ·).

Recall that the group Ham(Σ, ω) of Hamiltonian diffeomorphisms of (Σ, ω) is
formed by the area-preserving diffeomorphisms of (Σ, ω) which are the time 1-map
of the Hamiltonian flow of some H : S1 × Σ → R. A reference for the study of
Ham(Σ, ω) is [Pol01].

All time-dependent Hamiltonian functions on closed surfaces considered in this
paper are assumed to be normalized, as stated in the introduction.

As mentioned in the introduction, for the definition of the Hamiltonian action of
non-contractible loops we fix for each free homotopy class α ∈ [S1,Σ] of loops in
Σ a representative ηα : S1 → Σ of α. We define the Hamiltonian action as in the
introduction. The set of all 1-periodic orbits of H is denoted by P(H). The action
spectrum Spec1(H) is defined as
(3.1) Spec1(H) := {AH(γ) | γ is a 1-periodic orbit of H} .
It is not hard to see that Spec1(H) is a compact subset of R. If k is a positive integer
we let
(3.2) Speck(H) := {AH(γ) | γ is a k-periodic orbit of H} .
It is not hard to see that Speck(H) := Spec1(kH). If a Hamiltonian H is non-
degenerate, then Spec1(H) is a finite set. If H is strongly non-degenerate, then
Speck(H) is a finite set for every positive integer k.

If γ is a 1-periodic orbit of ϕt
H we let µCZ(γ) be the Conley-Zehnder index of

γ; see for example [AD14] for the definition of µCZ. We note that in order that
µCZ(γ) is actually well-defined for non-contractible loops on Σ ̸= T 2, we fix for each
ηα a symplectic trivialization Φα of η∗

αTΣ. This defines a homotopically canonical
symplectic trivialization on γ∗TΣ.

An almost complex structure J on (Σ, ω) is called compatible if ω(·, J ·) is a
Riemannian metric on Σ.
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To define Floer theory for Hamiltonian diffeomorphisms on (Σ, ω) we use the
following setup. We consider a C∞-smooth S1-family Jt of compatible almost complex
structures on Σ. The Floer operator for (H, Jt) applied to a cylinder u : R×S1 → Σ
is
(3.3) FH,J(u) = ∂su(s, t) + Jt(u(s, t))

(
∂tu(s, t) −XH(t, u(s, t)

)
.

A solution of the Floer equation for (H, Jt) is a cylinder u such that
FH,J(u) = 0. We call such cylinders Floer cylinders.

We assume from now on that H is non-degenerate. The energy E(u) of a Floer
cylinder is defined by the formula

E(u) :=
∫
R×S1

|∂su|2dtds,

where |∂su(s, t)|2 = ω(∂su(s, t), J t(∂su(s, t))). Floer showed [Flo88] that if a Floer
cylinder has finite energy then there exist 1-periodic orbits γ and γ′ of ϕt

H such
that lims → −∞ u(s, ·) = γ(·), and lims→+∞ u(s, ·) = γ′(·). A well-known computation
shows that E(u) = AH(γ) − AH(γ′).

The energy of a Floer cylinder is by definition non-negative. The only Floer
cylinders with energy equal to 0, are those which are of the form u(s, t) = γ(t),
where γ is a 1-periodic of ϕt

H . The Floer cylinder uγ(s, t) = γ(t) is called the trivial
cylinder over γ.

For two 1-periodic orbits γ and γ′ of H we let M(γ, γ′, H, Jt) be the moduli space
of Floer cylinders u : R × S1 → Σ with asymptotics lims → −∞ u(s, ·) = γ(·), and
lims→+∞ u(s, ·) = γ′(·). Two Floer cylinders u and v represent the same element
in M(γ, γ′, H, Jt) if there exists s0 ∈ R such that u(s + s0, t) = v(s, t) for all
(s, t) ∈ R× S1.

As shown in [FHS95], for a C∞-generic choice of Jt, for any choice of 1-periodic
orbits γ and γ′ of ϕt

H the moduli spaces M(γ, γ′, H, Jt) are smooth manifolds whose
dimension is µCZ(γ) − µCZ(γ′) − 1. We assume from now on that Jt is C∞-generic in
this sense: such Jt will be referred to as regular. The compactification M(γ, γ′, H, Jt)
as defined by Floer is the union of M(γ, γ′, H, Jt) with the set of broken Floer
cylinders negatively asymptotic to γ and positively asymptotic to γ′; we refer the
reader to [AD14] and [Flo88].

Fix 1-periodic orbits γ and γ′ of ϕt
H and suppose that µCZ(γ′) = µCZ(γ) − 1. In

this case M(γ, γ′, H, Jt) is a 0-dimensional manifold. As shown in [AD14, Flo88], in
this case M(γ, γ′, H, Jt) cannot contain broken Floer cylinders, and it follows that
M(γ, γ′, H, Jt) = M(γ, γ′, H, Jt). We conclude that in this case M(γ, γ′, H, Jt) is
composed of a finite set of elements. We then define

C(γ, γ′) = (#M(γ, γ′, H, Jt)) mod 2,
for any pair γ and γ′ of 1-periodic orbits of ϕt

H which satisfies µCZ(γ′) = µCZ(γ) − 1.
If µCZ(γ′) ̸= µCZ(γ) − 1 we let C(γ, γ′) = 0.

For any real number b which is not in Spec1(H) we let P1
b (H) be the set of 1-

periodic orbits of H which have action < b. If b = +∞ we write just P1(H). For real
numbers a < b which are not in Spec1(H) we let P1

(a,b)(H) be the set of 1-periodic
orbits with action in the interval (a, b).
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Given a real number b which is not in Spec1(H) we define the Floer chain complex
CF b(H) :=

⊕
γ ∈ P1

b
(H)
Z2 · γ.

The differential dJt : CF b(H) → CF b(H) is defined for each γ ∈ P1
b (H) by

dJt(γ) :=
∑

γ′ ∈ P1
b

(H)
C(γ, γ′)γ′ =

∑
γ′ ∈ P1(H)

C(γ, γ′)γ′.

The second equality is due to the fact that C(γ, γ′) ̸= 0 implies that
AH(γ′) < AH(γ) < b, since γ ∈ P1

b (H). The differential dJt is extended to all
of CF b(H) linearly. As showed by Floer [Flo88] (see also [AD14]) (dJt)2 = 0, and we
let HF b(H) denote the homology of the pair (CF b(H), dJt). When the choice of Jt

is clear from the context we will drop Jt from the notation of the differential and
denote it only by d.

Given real numbers a < b which are not in Spec1(H), we let CF (a,b)(H) := CF b(H)
CF a(H) .

Because the differential dJt maps CF a(H) to itself, we have that (CF a(H), dJt)
is a sub-complex of (CF b(H), dJt). As a consequence dJt induces a differential on
the quotient complex CF (a,b)(H), which we continue to denote by dJt . We then let
HF (a,b)(H) be the homology of the pair (CF (a,b)(H), dJt).

It is easy to see that if γ ∈ P1
(a,b)(H) is seen as an element of CF b(H), then its

differential dJt(γ) is given by the formula
dJt(γ) =

∑
γ′ ∈ P1

(a,b)(H)
C(γ, γ′)γ′.

We observe that the chain complexes CF b(H) considered above can be written as a
direct sum over the complexes CF b

α(H), where α runs over all free homotopy classes
of loops in Σ (denoted by [S1,Σ]) and the generators for CF b

α(H) are the loops
generating CF b(H) that also lie in the class α. The same holds for CF (a,b)(H) and
HF (a,b)(H), and we will add a lower index α to the chain complexes and homology
groups if we want to specify the free homotopy class α.

Continuation maps and Hofer distance. Let H⊕ and H⊖ be normalized Hamil-
tonians whose time 1-maps are non-degenerate. A homotopy between H⊕ and H⊖,
is a function Q : R× S1 × Σ → R such that for some R > 0

Q(s, t, p) = H⊕(t, p) for s ⩽ −R,
Q(s, t, p) = H⊖(t, p) for s ⩾ R.

(3.4)

We let J⊕
t and J⊖

t be smooth S1-families of compatible almost complex structures on
(Σ, ω) which are regular for H⊕ and H⊖, respectively. In this case we can define the
homologies HF (H⊕) and HF (H⊖). A smooth homotopy Js

t of compatible almost
complex structures on (Σ, ω) between J⊕

t and J⊖
t , is a smooth R × S1-family of

compatible almost complex structures on (Σ, ω) such that Js
t = J⊕

t for sufficiently
small s and Js

t = J⊖
t for sufficiently large s. We then consider the Floer operator of

(Q, Js
t ) which applied to a cylinder u : R× S1 → Σ is

(3.5) FQ,Js
t
(u) = ∂su(s, t) + Js

t (∂tu(s, t)) −XQ(s, t, u(s, t)).
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Solutions of the Floer equation for (Q, Js
t ) are cylinders u such that FQ,Js

t
(u)

= 0, and these are called Floer cylinders. The energy of these cylinders is defined as
in the previous section, see [AD14].

If u is a finite energy Floer cylinder of (Q, Js
t ) then there exists 1-periodic orbits

γ⊕ of ϕt
H⊕ and γ⊖ of ϕt

H⊖ such that lims→−∞ u(s, ·) = γ⊕ and lims→+∞ u(s, ·) = γ⊖.
For C∞-generic choices of homotopies Js

t and Q the moduli spaces M(γ⊕, γ⊖, Q, J
s
t )

of Floer cylinders of (Q, Js
t ) which are negatively asymptotic to γ⊕ and positively

asymptotic to γ⊖ are manifolds of dimension µCZ(γ⊕) − µCZ(γ⊖), for all 1-periodic
orbits γ⊕ of ϕt

H⊕ and γ⊖ of ϕt
H⊖ .

In case µCZ(γ⊕) = µCZ(γ⊖), the space M(γ⊕, γ⊖, Q, J
s
t ) is 0-dimensional, and using

the regularity of Js
t and Q and Floer compactness one obtains that M(γ⊕, γ⊖, Q, J

s
t )

is compact and therefore a finite set of points. We define

KQ,Js
t
(γ⊕, γ⊖) := (#M(γ⊕, γ⊖, Q, J

s
t )) mod 2,

if µCZ(γ⊕) = µCZ(γ⊖) and KQ,Js
t
(γ⊕, γ⊖) = 0 otherwise.

We define the continuation map ΨQ,Js
t

: CF (H⊕) → CF (H⊖) by

(3.6) ΨQ,Js
t
(γ⊕) :=

∑
γ⊖ ∈ P(H⊖)

KQ,Js
t
(γ⊕, γ⊖)γ⊖.

As shown in [AD14] the map ΨQ,Js
t

induces a homology map which we denote by
ΨQ,Js

t
: HF (H⊕) → HF (H⊖).

We will need to consider continuation maps between Floer homologies in certain
action windows. This is possible under certain conditions as explained in the next
proposition.

Proposition 3.1. — Let ϕ⊕ be a non-degenerate Hamiltonian diffeomorphism in
Ham(Σ, ω) and H⊕ : S1 × Σ → R be a normalized Hamiltonian generating ϕ⊕. We
take real numbers a < b which do not belong to Spec1(H⊕) and let ϵ > 0 be
such that all elements of Spec1(H⊕) in the interval (a− 2ϵ, b+ 2ϵ) are contained in
(a, b). Let ϕ⊖ be a Hamiltonian diffeomorphism with dHofer(ϕ⊕, ϕ⊖) < ϵ. Then, there
exist a normalized Hamiltonian H⊖ : S1 × Σ → R generating ϕ⊖ and homotopies
G : R × S1 × Σ → R between H⊕ and H⊖ and Ĝ : R × S1 × Σ → R between H⊖
and H⊕ which induce continuation maps

Ψb
G : CF b(H⊕) → CF b+ϵ(H⊖),

Ψa
G : CF a−2ϵ(H⊕) ≃ CF a(H⊕) → CF a−ϵ(H⊖),

and
Ψb

Ĝ
: CF b+ϵ(H⊖) → CF b+2ϵ(H⊕) ≃ CF b(H⊕),

Ψa
Ĝ

: CF a−ϵ(H⊖) → CF a(H⊕),
whose compositions

Ψb
Ĝ

◦ Ψb
G : CF b(H⊕) → CF b+2ϵ(H⊕) ≃ CF b(H⊕),

and
Ψa

Ĝ
◦ Ψa

G : CF a(H⊕) ≃ CF a−2ϵ(H⊕) → CF a(H⊕)
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are both chain homotopic to the identities id : CF a(H⊕) → CF a(H⊕) and id :
CF b(H⊕) → CF b(H⊕), respectively.

It follows that G induces a map

ΨG : CF (a,b)(H⊕) → CF (a−ϵ,b+ϵ)(H⊖)

and Ĝ induces a map

Ψ
Ĝ

: CF (a−ϵ,b+ϵ)(H⊖) → CF (a−2ϵ,b+2ϵ)(H⊕) ≃ CF (a,b)(H⊕),

such that the composition Ψ
Ĝ

◦ ΨG is chain homotopic to the identity map id :
CF (a,b)(H⊕) → CF (a,b)(H⊕).

Proof. — We start by explaining the construction of H⊖, G and Ĝ. Because
dHofer(ϕ⊖, ϕ⊕) < ϵ there exists a normalized Hamiltonian

(3.7) F : S1 × Σ → R

whose time 1-map is ϕ−1
⊕ ◦ ϕ⊖ and that satisfies

(3.8)
∫ 1

0
(maxFt − minFt)dt < ϵ,

where for t ∈ S1 we define Ft := F (t, ·) : Σ → R.
It follows that the time 1-map of the Hamiltonian H⊖ : S1 × Σ → R defined by

(3.9) H⊖(t, p) := H⊕(t, p) + Ft

(
(ϕt

⊕)−1(p)
)

is ϕ⊖. Because H⊕ and F are normalized, it follows that H⊖ is also normalized.
We define a C∞-smooth function β : R → [0, 1] which is non-decreasing and

satisfies
β(s) = 1 for s ⩾ −1,
β(s) = 0 for s ⩽ −2,
β′(s) ⩽ 2.

(3.10)

We define G : R× S1 × Σ → R by the formula
G(s, t, p) := β(s)H⊖(t, p) + (1 − β(s))H⊕(t, p)

=H⊕(t, p) + β(s)Ft((ϕt
⊕)−1(p)).

(3.11)

Notice that G only depends on s for −2 ⩽ s ⩽ −1, and that G is a homotopy
between H⊕ and H⊖ as

G(s, t, p) = H⊕(t, p) for s ⩽ −2,
G(s, t, p) = H⊖(t, p) for s ⩾ −1.(3.12)

Likewise we construct a homotopy Ĝ : R × S1 × Σ → R between H⊖ and H⊕
defined by

(3.13) Ĝ(s, t, p) := G(−s, t, p).

We choose homotopies Js
t between J⊕

t and J⊖
t , and Ĵs

t between J⊖
t and J⊕

t .
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Let u : R × S1 → Σ be a Floer cylinder of (G, Js
t ) negatively asymptotic to

γ⊕ ∈ P1(H⊕) and positively asymptotic to γ⊖ ∈ P1(H⊖). A direct computation
shows that the energy E(u) defined by

(3.14) E(u) :=
∫
R×S1

|∂su|2dtds,

where |∂su(s, t)|2 = ωu(s,t)(∂su(s, t), Js
t (∂su(s, t))) satisfies

(3.15) E(u) = AH⊕(γ⊕) − AH⊖(γ⊖) +
∫
R×S1

∂G

∂s
(s, t, ua(s, t))dsdt;

see for example [Ush11, Section 2]. We conclude that

(3.16)
∣∣∣AH⊕(γ⊕) − AH⊖(γ⊖) − E(u)

∣∣∣ ⩽ ∫
R×S1

∣∣∣∣∣∂G∂s (s, t, ua(s, t))
∣∣∣∣∣ dsdt < ϵ,

where the last inequality is a direct computation using the definition of G. Since
E(u) is positive, it follows that AH⊖(γ⊖) ⩽ AH⊕(γ⊕) + ϵ. To define the continuation
map ΨG,Js

t
associated to (G, Js

t ) we must take C∞-small perturbations of (G, Js
t )

supported in s ∈ [−2,−1] such that the relevant moduli spaces are regular. We
assume that these perturbations are taken so that (3.16) is still valid.

From this, if γ⊕ ∈ P1
a(H) = P1

a−2ϵ(H), then all 1-periodic orbits appearing in
the expression of ΨG,Js

t
(γ⊕) have action < a. It follows that ΨG,Js

t
(CF a(H⊕)) ⊂

CF a−ϵ(H⊖), and we obtain a map
Ψa

G : CF a−2ϵ(H⊕) ≃ CF a−ϵ(H⊕) → CF a(H⊖)
which descends to a map on the homologies. A similar argument implies that
ΨG,Js

t
(CF b(H⊕)) ⊂ CF b+ϵ(H⊖) and we obtain a map

Ψb
G : CF b(H⊕) → CF b+ϵ(H⊖)

which also descends to a map on the homologies. The fact that ΨG,Js
t
(CF a(H⊕)) ⊂

CF a−ϵ(H⊖) and ΨG,Js
t
(CF b(H⊕)) ⊂ CF b+ϵ(H⊖) implies that ΨG induces a map

ΨG : CF (a,b)(H⊕) → CF (a−ϵ,b+ϵ)(H⊖).
The construction of the maps

Ψb
Ĝ

: CF b+ϵ(H⊖) → CF b+2ϵ(H⊕) ≃ CF b(H⊕),(3.17)
Ψa

Ĝ
: CF a−ϵ(H⊖) → CF a(H⊕) ≃ CF a−2ϵ(H⊕),(3.18)

Ψ
Ĝ

: CF (a−ϵ,b+ϵ)(H⊖) → CF (a−2ϵ,b+2ϵ)(H⊕) ≃ CF (a,b)(H⊕),(3.19)

follows the same strategy using an estimate similar to (3.16) for the homotopy Ĝ.
We now explain how to show that Ψb

Ĝ
◦Ψb

G : CF b(H⊕) → CF b+2ϵ(H⊕) ≃ CF b(H⊕)
and Ψa

Ĝ
◦ Ψa

G : CF a(H⊕) ≃ CF a−2ϵ(H⊕) → CF a(H⊕) are chain homotopic to the
identity. The idea is to construct a homotopy of homotopies from the concatenation
of G and Ĝ to the trivial homotopy between H⊕ and itself, and obtain the chain
homotopy studying moduli spaces for the homotopy of homotopies: this is the usual
method of proving the invariance of Floer homology, and it was devised by Floer. In
our situation we want the chain homotopy to respect certain action windows, and this
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requires the construction of a special homotopy of homotopies Qa : R×S1 × Σ → R

where a ∈ [0,+∞).
To define, for each a ∈ [0, 1], the function Qa : R× S1 × Σ → R we first introduce

a smooth auxiliary function
(3.20) σ : [0, 1] → [0, 1]
such that

σ ≡ 0 on a neighbourhood of 0,
σ ≡ 1 on a neighbourhood of 1.

We then define
(3.21) Qa(s, t, p) := H⊕(t, p) + σ(a)

(
β(s)Ft((ϕt

⊕)−1(p))
)

We remark that the functions Qa depend smoothly on a, and that for each a ∈ [0, 1],
the function Qa is a homotopy from H⊕ to itself. So we refer to (Qa)a ∈ [0,1] as a
homotopy of homotopies. It is immediate from the definitions that Q0(s, t, p) =
H⊕(t, p) is the trivial homotopy from H⊕ to itself.

We now proceed to define, for a ∈ [1,+∞), the functions Qa : R× S1 × Σ → R.
We first let χ : [1,+∞) → [1,+∞) be a smooth increasing function satisfying

χ(1) = 1 and all derivatives of χ vanish at 1,(3.22)
χ equals the identity outside a neighbourhood of 1.(3.23)

We then let, for each a ∈ [1,+∞), Qa be defined by
Qa(s, t, p) := G(s+ χ(a), t, p) for s ⩽ −χ(a),(3.24)
Qa(s, t, p) := H⊖(t, p) for s ∈ [−χ(a), χ(a)],(3.25)
Qa(s, t, p) := Ĝ(s− χ(a), t, p) for s ⩾ χ(a).(3.26)

It is clear from the definitions that for each a ∈ [0,+∞)
Qa(s, t, p) = H⊕(t, p) if |s| ⩾ χ(a) + 2.(3.27)

Therefore each Qa is a homotopy from H⊕ to itself, and we can think of (Qa)a ∈ [0,+∞)
as a homotopy of homotopies.

We remark that
Qa(s+ χ(a), t, ·) converges to Ĝ(s, t, ·) in C∞

loc as a → +∞,(3.28)
Qa(s− χ(a), t, ·) converges to G(s, t, ·) in C∞

loc as a → +∞.(3.29)

So we can indeed think of Q+∞ as the concatenation of G and Ĝ.
Choosing an appropriate homotopy (Js

t (a))a ∈ [0,+∞) of almost complex structures
and applying the usual technique in Floer homology to show its invariance, the pair
of homotopies (Qa, J

s
t (a)) will induce a map S : CF (H⊕) → CF (H⊕) which satisfies:

Ψ
Ĝ,Ĵs

t
◦ ΨG,Js

t
= id + S ◦ d+ d ◦ S,

where d is the differential of CF (H⊕). The map S counts Floer cylinders of index
−1 for (Qa, J

s
t (a)) for the values of a ∈ [0,+∞) on which the moduli spaces of Floer

cylinders for (Qa, J
s
t (a)) are not regularly cut out.
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The main thing to be observed is that for every a ∈ [0,+∞) the Floer cylinders
of (Qa, J

s
t (a)) satisfy an estimate similar(2) to the one in (3.16). More precisely if u

is a Floer cylinder used in the definition of S and γ is the negative asymptotic limit
of u and γ′ is its positive asymptotic limit, then we have

(3.30) AH⊕(γ′) − AH⊕(γ) < ϵ.

We conclude that S(CF a−2ϵ(H⊕)) ⊂ CF a(H⊕), and since CF a−2ϵ(H⊕) = CF a(H⊕),
the map S induces a map Sa : CF a(H⊕) → CF a(H⊕), which satisfies

Ψa
Ĝ

◦ Ψa
G = id + Sa ◦ d+ d ◦ Sa.

A similar argument shows that S induces a chain homotopy between Ψb
Ĝ

◦ Ψb
G and

the identity. Once this is achieved, it is an elementary algebraic fact that

Ψ
Ĝ

◦ ΨG : CF (a,b)(H⊕) → CF (a,b)(H⊕)

is chain homotopic to the identity. □

We will also need to understand the maps ΨG and Ψ
Ĝ

geometrically. Since these
maps are induced by the continuation maps ΨG,Js

t
and Ψ

Ĝ,Ĵs
t

this can be obtained via
the definition of continuation maps in (3.6). Indeed, it follows from the definitions
of these maps, that if γ⊕ ∈ P1

(a,b)(H⊕) then

(3.31) ΨG(γ⊕) =
∑

γ ∈ P1
(a−ϵ,b+ϵ)(H⊖)

KG,Js
t
(γ⊕, γ)γ.

Similarly, if γ⊖ ∈ P1
(a−ϵ,b+ϵ)(H⊖) then

(3.32) Ψ
Ĝ

(γ⊖) =
∑

γ ∈ P1
(a,b)(H⊕)

K
Ĝ,Ĵs

t
(γ⊖, γ)γ.

For (3.32), we are using that P1
(a,b)(H⊕) = P1

(a−2ϵ,b+2ϵ)(H⊕).

3.1.2. The case Σ = T 2

Let now Σ = T 2 be the two-torus. Let ω be a symplectic form on T 2. If we only
consider contractible loops on T 2, the definition of chain complexes CF (a,b)

[.] (H) and
homologies HF (a,b)

[.] (H) can be given exactly as discussed above. Here we indicate the
restriction to contractible loops by a lower index [.]. In the case of non-contractible
loops the construction has to be adapted due to the non-uniqueness of (homotopy
classes of) capping cylinders.

As above, we fix a representative ηα for each free homotopy class α of loops in
Σ = T 2, as well as a symplectic trivialization Φα of η∗

αTT
2. Let α be a non-trivial free

homotopy class of loops in T 2. Let y : S1 → T 2 be a loop and wy : [0, 1] × S1 → T 2

with wy(0, t) = ηα(t) and wy(1, t) = y(t). Denote by [wy] the homotopy class of

(2) In order to obtain transversality, one might need to perturb the homotopies (Qa, Js
t (a)), but it

is clear that for sufficiently small perturbation the inequality (3.30) will still hold.
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wy, where the homotopy may vary among such cylinders. For a Hamiltonian H :
S1 × T 2 → R define the action of the pair (y, [wy]) to be

(3.33) AH(y, [wy]) := −
∫

[0,1]×S1
(wy)∗ω −

∫ 1

0
H(t, y(t))dt.

The action is well-defined by Stokes’ theorem. Moreover, gluing two cylinders wy

and w′
y along ηα we obtain a map from T 2 to T 2 from which it follows that the

action difference AH(y, [wy]) − AH(y, [w′
y]) is a multiple of

∫
T 2 ω.

Given −∞ ⩽ a < b ⩽ +∞ we let P1
(a,b);α(H) be the set of pairs (γ, [wγ ]) consisting

of a 1-periodic orbit γ of ϕt
H representing α and a homotopy class of cylinders [wγ ] con-

necting ηα and γ such that AH(γ, [wγ]) ∈ (a, b). The 1-periodic spectrum Spec1
α(H)

is the set of all possible actions AH(γ, [wγ]) of pairs (γ, [wγ]) ∈ P1
(−∞,∞) ; α(H).

While the Conley–Zehnder index of a 1-periodic orbit γ of ϕH in class α is not well-
defined, it is well-defined when fixing a homotopy class [wγ] of cylinders connecting
ηα and γ via a symplectic trivialization of γ∗TT 2 that we obtain by extension over
wγ of the fixed trivialization Φα of η∗

αTT
2. We denote it by µCZ(γ, [wγ]).

Fix now (finite) real numbers a < b. Suppose now that ϕH is a non-degenerate
Hamiltonian diffeomorphism of (T 2, ω). We define

CF (a,b)
α (H) :=

⊕
(γ,[wγ ]) ∈ P1

(a,b) ; α
(H)
Z2 · (γ, [wγ]).

We choose a smooth S1-family Jt of compatible almost complex structures on
(T 2, ω). The Floer equation of (H, Jt) is defined as (3.3). Given 1-periodic orbits
(γ, [wγ]) and (γ′, [wγ′ ]) in P1

(a,b);α(H) we let

M (γ, [wγ], γ′, [wγ′ ], H, Jt)
be the moduli space whose elements are Floer cylinders u of (H, Jt) negatively
asymptotic to γ and positively to γ′, and such that the gluing wγ#u is homotopic
to wγ′ . As previously, if for two Floer cylinders u1 and u2 of (H, Jt) there is an s0
that u1(s0 + ·, ·) = u2(·, ·) then u1 and u2 represent the same element in the moduli
space.

We let
C (γ, [wγ], γ′, [wγ′ ]) = #M (γ, [wγ], γ′, [wγ′ ], H, Jt) mod 2

if µCZ(γ, [wγ ]) − 1 = µCZ(γ′, [wγ′ ]), and C(γ, [wγ ], γ′, [wγ′ ]) = 0 otherwise. We define
d : CF (a,b)

α (H) → CF (a,b)
α (H) by letting

d(γ, [wγ]) =
∑

(γ′,[wγ′ ]) ∈ P1
(a,b);α(H)

C (γ, [wγ], γ′, [wγ′ ]) · (γ′, [wγ′ ])

for the generators and extending it linearly to all of CF (a,b)
α (H).

Breaking of Floer cylinders for (H, J t) connecting some (γ, [wγ]) and (y′, [wγ′ ])
appears at pairs (γ̂, [ŵγ]) with action in the action interval (AH(γ, [wγ]),
AH(γ′, [wγ′ ])), see Definition 3.9 in Section 3.3 and the discussion there in the
situation of the sphere. One shows that d2 = 0 and defines HF (a,b)

α (H) to be the
homology of the chain-complex (CF (a,b)

α (H), d).
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Moreover, one can extend the definition and properties of continuation maps from
Section 3.1.1 to the present situation, and in particular the following proposition, an
analogue to Proposition 3.1.

Proposition 3.2. — Let α be a free homotopy class of loops in T 2. Let ϕ⊕ be a
non-degenerate Hamiltonian diffeomorphism in Ham(T 2, ω) and H⊕ : S1 × Σ → R

be a normalized Hamiltonian generating ϕ⊕. We take real numbers a < b with
a, b /∈ Spec1

α(H⊕). Let ϵ > 0 be such that Spec1
α(H⊕) ∩ (a− 2ϵ, b+ 2ϵ) ⊂ (a, b). Let

ϕ⊖ be a Hamiltonian diffeomorphism with dHofer(ϕ⊕, ϕ⊖) < ϵ. Then, there exist a
normalized Hamiltonian H⊖ : S1 × T 2 → R and homotopies G : R× S1 × T 2 → R

between H⊕ and H⊖ and Ĝ : R× S1 × T 2 → R between H⊖ and H⊕ which induce
continuation maps

ΨG : CF (a,b)
α (H⊕) → CF (a−ϵ,b+ϵ)

α (H⊖)
and

Ψ
Ĝ

: CF (a−ϵ,b+ϵ)
α (H⊖) → CF (a−2ϵ,b+2ϵ)

α (H⊕) ≃ CF (a,b)
α (H⊕),

such that the composition Ψ
Ĝ

◦ ΨG is chain homotopic to the identity map id :
CF (a,b)

α (H⊕) → CF (a,b)
α (H⊕).

Since we directly define the chain complexes CF (a,b)(H) without a quotient con-
struction, the chain maps in the proposition have to be defined directly on those
chain complexes, and hence the proof of this Proposition varies a bit from our proof
of Proposition 3.1. We refer to the proof of Proposition 3.8, where these adaptations
are explained.

3.1.3. The quasi-isolation property

We will define a property for a set of periodic orbits which we call ϵ-quasi-isolation
and discuss one consequence for continuation maps which we need when replacing
isolation with quasi-isolation in the assumptions of the main theorems.

Consider as a above a closed symplectic surface (Σ, ω) with Σ ̸= S2 (The case
for S2 and D works analogously as soon as the relevant Floer theory is defined, see
Sections 3.3 and 3.2) Let H : Σ × S1 → R be a non-degenerate Hamiltonian, and
ϕ = ϕ1

H the Hamiltonian diffeomorphism that is generated by H. Let J = Jt be a
S1-family of compatible almost complex structures. Let ϵ > 0.

Definition 3.3. — We say that a finite set Y = {γ1, . . . , γk} of 1-periodic orbits
for H that all represent the same free homotopy class α is ϵ-quasi-isolated (with
respect to J) if

(a) for any i, j ∈ {1, . . . , k}, ∆H(γi, γj) is either equal to 0 or ⩾ ϵ,
(b) and there is no non-constant u : R×S1 → Σ and no i ∈ {1, . . . , k} such that

• FH,J(u) = 0
• E(u) < ϵ
• lims → ∞ u(s, t) = γi(t) or lims → −∞ u(s, t) = γi(t).

Let α be a free homotopy class of loops in Σ. Let now H⊕ be a non-degenerate
Hamiltonian that generates ϕ⊕. Let now Y = {γ1, . . . , γk} be a set of 1-periodic
orbits for H⊕ in class α which is 2ϵ-quasi-isolated for a regular family of compatible
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almost complex structures J⊕
t . Assume additionally here that AH⊕(γ1) = · · · =

AH⊕(γk) (resp. AH⊕(γ1, [wγ1 ]) = · · · = AH⊕(γk, [wγk
]) for some suitable cylindrical

cappings) and denote this action value by κ. Then, for any ϵ′ ⩽ 2ϵ, the vector space
BY ⊂ CF (κ−ϵ′,κ+ϵ′)

α (H⊕) generated by γ1, . . . , γk (resp. (γ1, [wγ1 ]), . . . , (γk, [wγk
]))

defines obviously a subcomplex of (CF (κ−ϵ′,κ+ϵ′)
α (H⊕), dJ⊕). Furthermore, we have

Proposition 3.4. — Let ϕ⊖ be a non-degenerate Hamiltonian diffeomorphism
with dHofer(ϕ⊕, ϕ⊖) < ϵ. Then there exist a normalized Hamiltonian H⊖ : S1×Σ → R

that generates ϕ⊖ and homotopies G : R × S1 × Σ → R between H⊕ and H⊖ and
Ĝ : R× S1 × Σ → R between H⊖ and H⊕ which induce chain maps

ΨY
G : BY → CF (κ−ϵ,κ+ϵ)

α (H⊖)
and

ΨY
Ĝ

: CF (κ−ϵ,κ+ϵ)
α (H⊖) → BY

such that
ΨY

Ĝ
◦ ΨY

G = id.

Proof. — For convenience of notation we assume that Σ is a closed surface different
from S2: if Σ = T 2 we assume moreover that α is the trivial free homotopy class.
For the remaining cases one has to replace below the orbits γ by pairs (γ, wγ).
We keep the construction for H⊖, G and Ĝ, almost complex structure Js

t , Ĵs
t as

in the proof of Proposition 3.1. We require that Js
t = J⊕

t resp. Ĵs
t = J⊕

t for s
sufficiently small resp. sufficiently large. Also, as in that proof define the moduli
spaces M(γ⊕, γ⊖, G, J

s
t ) and M(γ⊖, γ⊕, Ĝ, Ĵs

t ) for 1-periodic orbits γ⊕ for H⊕ and
γ⊖ for H⊖. Let KG,Js

t
(γ⊕, γ⊖) := (#M(γ⊕, γ⊖, G, J

s
t ) mod 2), if µCZ(γ⊕) = µCZ(γ⊖)

and 0 otherwise. We define ΨY
G : BY → CF (κ−ϵ,κ+ϵ)

α (H⊖) via
ΨY

G(γi) =
∑

γ′∈P1
(κ−ϵ,κ+ϵ)(H⊖)

KG,Js
t
(γi, γ)γ.

Define similarly K
Ĝ,Ĵs

t
(γ⊖, γ⊕), and then ΨY

Ĝ
: CF (κ−ϵ,κ+ϵ)

α (H⊖) → BY via

ΨY
Ĝ

(γ) =
∑

γ′∈Y
K

Ĝ,Ĵs
t
(γ, γ′)γ′.

ΨY
G and ΨY

Ĝ
are chain maps. To see that ΨY

G is a chain map, let γi ∈ Y and
γ′

1, . . . , γ
′
l ∈ P(κ−ϵ,κ+ϵ)(H⊖) be the orbits such that the 1-dimensional moduli spaces

M(γi, γ
′
j, H, J

s
t ) are non-empty. These moduli spaces can be compactified, where

the boundary components consist of broken Floer trajectories, and by the 2ϵ-quasi-
isolation property and the action estimate (3.16) these broken Floer trajectories
are exactly those that contribute to d ◦ ΨY

G(γi). Since a compact one-dimensional
manifold has an even number of boundary components, it follows that d ◦ ΨY

G = 0.
Similarly one sees that ΨY

Ĝ
is a chain map.

Finally, by action estimate (3.30) for Floer cylinders associated to the pair of
homotopies (Qa, J

s
t ) defined above and the 2ϵ-quasi-isolation property one observes

that
ΨY

Ĝ
◦ ΨY

G = id.
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□

3.2. Hamiltonian dynamics and Floer homology on D

3.2.1. Hamiltonian diffeomorphisms which are irrational rotations near ∂D.

We consider time-dependent Hamiltonians H : S1 × D → R on the disc, equipped
with the standard symplectic form ω0 := dx∧ dy, where (x, y) are the coordinates of
D. For c ∈ R+ we say that H is admissible with slope c near ∂D, if there is r0 > 0
close to 1 such that in polar coordinates (r, θ),

H(t, r, θ) = 1
2c(r

2 − 1), for r0 ⩽ r < 1.(3.34)

Admissible H generate Hamiltonian diffeomorphisms ϕ : D → D. For c ∈ R+, we
denote by Hc(D) the set of admissible Hamiltonians on D with slope c. We say that
H is non-degenerate, if ϕ is non-degenerate in D, and say that H is strongly non-
degenerate if ϕk is non-degenerate in D for all k ∈ N. For this to hold, c ∈ R+ \ 2πQ.

For c ∈ R+, let ϕ0
c be the time 1-map of the Hamiltonian c

2(x2 + y2 − 1). We define
the set of Hamiltonian diffeomorphisms(3) Hamc(D) to be the set of Hamiltonian
diffeomorphisms of D which coincide with ϕ0

c on a neighbourhood of ∂D.
We then have the following lemma:

Lemma 3.5. — Let c ∈ R+. For each element ϕ ∈ Hamc(D) there exists an
element of Hc(D) whose time 1-map is ϕ.

We thank Felix Schlenk for explaining to us the proof of this lemma. We give a
sketch of the argument and leave it up to the reader to complete it.

Sketch of proof. — The lemma will clearly follow if we can show that for each com-
pactly supported Hamiltonian diffeomorphism of D there is a compactly supported
time-dependent Hamiltonian H : S1 × D → R whose time 1-map is ϕ.

To construct the Hamiltonian H one proceeds as follows. We first construct a
smooth isotopy (ft)t ∈ [0,1] of diffeomorphisms of the disk with f0 = id and f1 = ϕ,
and with all ft supported on a fixed compact Kϕ of D: such an isotopy can be
constructed via Alexander’s trick.

Using Moser’s homotopy method this path can be changed into a path of area
preserving maps, where the end-points of the new path are still id and ϕ, and the
elements of the new path still have compact support in Kϕ: the reason for this is that
the vector field Xt given by Moser’s method vanishes where the map was already
area preserving.

For each t ∈ S1, we let Ht be the unique compactly supported function in D whose
Hamiltonian vector-field is Xt. The time-dependent Hamiltonian H(t, p) = Ht(p) is
the desired one. □

(3) Recall that every symplectomorphism of D is Hamiltonian.
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We proceed to introduce some terminology. We say that a time-dependent Hamil-
tonian H : S1 × D → R vanishes near the boundary if there exists a compact subset
K of the open disk D such that Ht vanishes outside K for every t ∈ S1.

Given elements ϕ1 and ϕ2 of Hamc(D), the Hofer distance dHofer(ϕ1, ϕ2) is defined
by the formula

(3.35) dHofer(ϕ1, ϕ2) = inf
∫ 1

0
∥Ht∥dt,

where the infimum is taken over all H : S1 × D → R that vanish near the bound-
ary and generate ϕ−1

1 ◦ ϕ2 as time 1-map, and where ∥Ht∥ := maxp ∈DHt(p) −
minp∈DHt(p).

In order to use Floer theory for an element H of Hc(D) we extend H to R2 by
letting H(t, x) = 1

2c(r
2 − 1) for r ⩾ r0. For all iterates of the time 1-map ϕ1

H of
XH to be non-degenerate, it is necessary that c ∈ R \ 2πQ, since otherwise every
point outside of D would be a periodic point of XH . We thus assume from now on
that c ∈ R \ 2πQ. This implies that all periodic points of ϕ1

H are contained in a
compact subset of the open disk D. We say that an element ϕ of Hamc(D) is strongly
non-degenerate if ϕk is non-degenerate for all k ⩾ 1. Under our assumptions, the set
of strongly non-degenerate elements ϕ ∈ Hamc(D) is C∞-dense in Hamc(D).

The Hamiltonian action AH(y) of a loop y : S1 → R2 is defined as in (1.2).
We consider an S1-family Jt of compatible almost complex structures on R2 that
coincides with the complex multiplication by i on the complement of the open disk
Dr0 centered at the origin and of radius r0. The Floer equation for (H, Jt) applied
to a cylinder u : R× S1 → R2 is

FH,J(u) = ∂su(s, t) + Jt(u(s, t))
(
∂tu(s, t) −XH(t, u(s, t)

)
= 0.

For two 1-periodic orbits γ and γ′ of H we denote M(γ, γ′, H, Jt) the moduli space
of solutions u : R×S1 → R2 of F

Ĥ,J
(u) = 0 with asymptotics lims → −∞ u(s, ·) = γ(·),

and lims → +∞ u(s, ·) = γ′(·).
In order to do Floer theory for admissible Hamiltonians on D, we need to obtain

compactifications of the relevant moduli spaces. The crucial step for this to work is
to show that all Floer trajectories in M(γ, γ′, H, Jt) stay inside D; see e.g. [FH94]
or [CO18, Lemma 2.2]. Once this is shown, one can apply the techniques of [Flo88]
to compactify the moduli space M(γ, γ′, H, Jt). Once this has been observed, one
can construct the Floer homology of a Hamiltonian H in Hc(D) as in Section 3.1.
We define CF a(H), CF (a,b)(H) and the differential dJt exactly as in Section 3.1.
The homologies HF a(H) and HF (a,b)(H) are those of the pairs (CF a(H), dJt) and
(CF (a,b)(H), dJt), respectively.

Given now two admissible non-degenerate Hamiltonians H⊕ and H⊖ in Hc(D), we
let Jt be such that all Floer cylinders with finite energy of (H⊕, Jt) and (H⊖, Jt) are
Fredholm regular. A homotopy G : R × S1 × D of Hamiltonians between H⊕ and
H⊖ is called admissible if there exists a compact subset K of the open disk D such
that for every s ∈ R the function Gs coincides with c

2(r2 − 1) on the complement of
K. Let 0 < r′ < 1 be such that K is contained in the open disk Dr′ of radius r′ and
centered at the origin.
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Given an admissible homotopy Q : R× S1 ×D between H⊕ and H⊖ and a regular
compatible R×S1-dependent family Js

t , we consider the moduli spaces composed of
Floer cylinders from 1-periodic orbits of H⊕ to 1-periodic orbits of H⊖. Again, the
almost complex structures Js

t are assumed to coincide with complex multiplication
by i in the complement of the disk Dr′ for all s and t. This forces the images of
all relevant Floer cylinders to be contained in D and is the crucial step that allows
us to compactify these moduli spaces. For C∞-generic pairs (Q, Js

t ) one obtains a
continuation map ΨQ,Js

t
: CF (H⊕) → CF (H⊖) which passes to a homology map

ΨQ,Js
t

: HF (H⊕) → HF (H⊖). The proof of the following proposition is identical to
the one of Proposition 3.1.

Proposition 3.6. — Let ϕ⊕ be a non-degenerate Hamiltonian diffeomorphism
in Hamc(D) and H⊕ : S1 × D → R be a Hamiltonian in Hc(D) generating ϕ⊕. We
take real numbers a < b which do not belong to Spec1(H⊕) and let ϵ > 0 be such
that all elements of Spec1(H⊕) in the interval (a− 2ϵ, b+ 2ϵ) are contained in (a, b).
Let ϕ⊖ be a non-degenerate Hamiltonian diffeomorphism with dHofer(ϕ⊕, ϕ⊖) < ϵ.
Then, there exist a normalized Hamiltonian H⊖ : S1 × D → R and homotopies
G : R × S1 × D → R between H⊕ and H⊖ and Ĝ : R × S1 × D → R between H⊖
and H⊕ which induce continuation maps

Ψb
G : CF b(H⊕) → CF b+ϵ(H⊖),

Ψa
G : CF a−2ϵ(H⊕) ≃ CF a(H⊕) → CF a−ϵ(H⊖),

and

Ψb
Ĝ

: CF b+ϵ(H⊖) → CF b+2ϵ(H⊕) ≃ CF b(H⊕),
Ψa

Ĝ
: CF a−ϵ(H⊖) → CF a(H⊕),

whose compositions

Ψb
Ĝ

◦ Ψb
G : CF b(H⊕) → CF b+2ϵ(H⊕) ≃ CF b(H⊕),

and
Ψa

Ĝ
◦ Ψa

G : CF a(H⊕) ≃ CF a−2ϵ(H⊕) → CF a(H⊕)

are both chain homotopic to the identities id : CF b(H⊕) → CF b(H⊕) and id :
CF a(H⊕) → CF a(H⊕), respectively.

It follows that G induces a map

ΨG : CF (a,b)(H⊕) → CF (a−ϵ,b+ϵ)(H⊖)

and Ĝ induces a map

Ψ
Ĝ

: CF (a−ϵ,b+ϵ)(H⊖) → CF (a−2ϵ,b+2ϵ)(H⊕) ≃ CF (a,b)(H⊕)

such that the composition Ψ
Ĝ

◦ ΨG is chain homotopic to the identity map id :
CF (a,b)(H⊕) → CF (a,b)(H⊕).

Moreover, one obtains the following proposition. Its proof is analogous to the proof
of Proposition 3.4.
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Proposition 3.7. — Let ϕ⊕, H⊕ as above. Let ϵ > 0 and let Y⊕ = {γ1, . . . , γk}
be a set of 1-periodic orbits for H⊕ with AH⊕(γ1) = . . . = AH⊕(γk) = κ, and which
are 2ϵ-quasi-isolated (defined analogously as in Section 3.1.3). Then Y⊕ generate a
subcomplex BY in CF (κ−2ϵ,κ+2ϵ)(H⊕). Moreover, if ϕ⊖ ∈ Hamc(D) is non-degenerate
with dHofer(ϕ⊖, ϕ⊕) < ϵ, then there exist a normalized Hamiltonian H⊖ that generates
ϕ⊖ and homotopies G : R×S1×D → R between H⊕ and H⊖ and G : R×S1×D → R

between H⊖ and H⊕ which induce chain maps
ΨY

G : BY → CF (κ−ϵ,κ+ϵ)
α (H⊖)

and
ΨY

Ĝ
: CF (κ−ϵ,κ+ϵ)

α (H⊖) → BY

such that
ΨY

Ĝ
◦ ΨY

G = id.

3.2.2. Floer homology for compactly supported Hamiltonians in D

We consider the group Ham0(D) of compactly supported Hamiltonian diffeomor-
phisms of (D, dx ∧ dy); i.e. area preserving diffeomorphisms which coincide with the
identity in some neighbourhood of ∂D. As we showed in the proof of Lemma 3.5, for
each element ϕ ∈ Ham0(D) there exists a Hamiltonian H which vanishes near the
boundary and that generates ϕ, in the sense that the time 1-map of H is ϕ. We let
H0(D) be the set of Hamiltonians on D which vanish near the boundary.

We consider S1-dependent almost complex structures Jt which admit extensions
to R2 which coincide with the complex multiplication by i outside of D.

The Hamiltonian action of a loop is defined as in (1.2). One defines the Hofer
distance of two elements ϕ1 and ϕ2 of Ham0(D) as in the previous section.

In order to define the Floer homology of H we cannot follow the steps in Section 3.1.
The reason for this is that H has degenerate periodic orbits: all 1-periodic orbits
of ϕ1

H contained in the neighbourhood of ∂D where H vanishes are degenerate. We
thus follow a more geometric approach, which is explained in [Gin10, Section 3].

Before presenting the construction we introduce some terminology. Let un : R×
S1 → W be a sequence of Floer cylinders of some pair (H, Jt), where (W,ω) is a
symplectic manifold. A 1-periodic orbit γ of ϕH is called a breaking orbit, if there
exists a sequence sn such that un(sn, ·) : S1 → W converges in C0 to γ : S1 → W :
because of elliptic regularity, the convergence is actually in C∞.

We say that a Hamiltonian diffeomorphism in Ham0(D) is non-degenerate, if every
1-periodic orbit whose action is ̸= 0 is non-degenerate. This set is C∞-dense in
Ham0(D). If H is a Hamiltonian generating a non-degenerate Hamiltonian diffeo-
morphism ϕ, then the only accumulation point of Spec1(H) is 0, and for any c > 0
the number of elements of P1(H) with action in R \ [−c, c] is finite.

Let now ϕH be a non-degenerate Hamiltonian diffeomorphism in Ham0(D) which
is generated by a Hamiltonian H, and let a < b be real numbers which are not
in Spec1(H) and such that every 1-periodic orbit in P1

(a,b)(H) is non-degenerate. It
follows that 0 is not contained in [a, b], and that P1

(a,b)(H) is a finite set. We define
CF (a,b)(H) to be the Z2-vector space generated by P1

(a,b)(H), i.e.
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(3.36) CF (a,b)(H) =
⊕

γ ∈ P1
(a,b)(H)

Z2 · γ.

We first observe that given any choice of smooth S1-family of compatible almost
complex structures Jt on (D, dx∧dy) which coincides with the complex multiplication
by i outside of D, then the maximum principle implies that a Floer cylinder whose
asymptotic limits are in the interior of D must be contained inside D.

We then notice that given any choice of smooth S1-family of compatible almost
complex structures Jt on (D, dx∧dy), if un is a sequence of Floer cylinders of (H, Jt)
whose negative and positive asymptotic limits are in P1

(a,b)(H) then any breaking
orbit of un has action in (a, b). Using the fact that all orbits in P1

(a,b)(H) are non-
degenerate and the techniques of [Flo88], it is possible to compactify all moduli
spaces M(γ, γ′, H, Jt), where γ and γ′ are in P1

(a,b)(H). The compactified moduli
space M(γ, γ′, H, Jt) is formed by the union of M(γ, γ′, H, Jt) and of broken Floer
cylinders of (H, Jt) from γ to γ′. For any broken Floer cylinder u which is negatively
and positively asymptotic to orbits P1

(a,b)(H), its breaking orbits must also be in
P1

(a,b)(H). The reason is that the action of these breaking orbits must be smaller
than that of the negative limit of u and bigger than that of the positive limit of u.

We then invoke the results of [FHS95] and choose a generic S1-family Jt so that for
any γ and γ′ in P1

(a,b)(H) the moduli space M(γ, γ′, H, Jt) is a manifold of dimension
µCZ(γ) − µCZ(γ′) − 1. In this situation M(γ, γ′, H, Jt) is a finite set of points if
µCZ(γ) − 1 = µCZ(γ′).

Let γ ∈ P1
(a,b)(H). We define for γ′ ∈ P1

(a,b)(H) with µCZ(γ) − 1 = µCZ(γ′) the
number

C(γ, γ′) := #(M(γ, γ′, H, Jt)) mod 2.
If µCZ(γ) − 1 ̸= µCZ(γ′) we let C(γ, γ′) = 0. With these preliminaries we define the
differential dJt : CF (a,b)(H) → CF (a,b)(H) by letting for each γ ∈ P1

(a,b)(H)

dJt(γ) =
∑

γ′ ∈ P1
(a,b)(H)

C(γ, γ′)γ′.

The differential dJt is extended to all of CF (a,b)(H) linearly.
Using regularity of (H, Jt) and the fact that breaking orbits of a broken Floer

cylinder u which is negatively and positively asymptotic to orbits P1
(a,b)(H) must

also be in P1
(a,b)(H), the proof that (dJt)2 = 0 is the same as the one for the analogous

statement for the case of closed surfaces of positive genus.
We are ready to state the following proposition, analogous to Proposition 3.1, for

Hamiltonian diffeomorphisms in Ham0(D).

Proposition 3.8. — Let ϕ⊕ be a non-degenerate Hamiltonian diffeomorphism in
Ham0(D) and H⊕ : S1 × D → R be a Hamiltonian in H0(D) generating ϕ⊕. We
take real numbers a < b which do not belong to Spec1(H⊕) and 0 /∈ [a, b]. Let
ϵ > 0 be such that all elements of Spec1(H⊕) in the interval (a − 2ϵ, b + 2ϵ) are
contained in (a, b). Let ϕ⊖ be a non-degenerate Hamiltonian diffeomorphism with
dHofer(ϕ⊕, ϕ⊖) < ϵ. Then, there exist a normalized Hamiltonian H⊖ : S1 × D → R

TOME 7 (2024)



550 M.R.R. ALVES & M. MEIWES

and homotopies G : R×S1 ×D → R between H⊕ and H⊖ and Ĝ : R×S1 ×D → R

between H⊖ and H⊕ which induce continuation maps
ΨG : CF (a,b)(H⊕) → CF (a−ϵ,b+ϵ)(H⊖)

and
Ψ

Ĝ
: CF (a−ϵ,b+ϵ)(H⊖) → CF (a−2ϵ,b+2ϵ)(H⊕) ≃ CF (a,b)(H⊕)

such that the composition Ψ
Ĝ

◦ ΨG is chain homotopic to the identity map id :
CF (a,b)(H⊕) → CF (a,b)(H⊕).

The proof is a variation of the proof of Proposition 3.1. We provide a sketch of the
proof and explain the necessary adjustments.

Sketch of proof. — We start by explaining the construction of H⊖, G and Ĝ.
Because dHofer(ϕ⊖, ϕ⊕) < ϵ there exists a Hamiltonian
(3.37) F : S1 × D → R

which vanishes near the boundary whose time 1-map is ϕ−1
⊕ ◦ ϕ⊖ and that satisfies

(3.38)
∫ 1

0
(maxFt − minFt)dt < ϵ,

where for t ∈ S1 we define Ft := F (t, ·) : Σ → R. We then define H⊖, G and Ĝ as in
equations (3.9), (3.11) and (3.13).

We first explain why G induces a chain map
ΨG : CF (a,b)(H⊕) → CF (a−ϵ,b+ϵ)(H⊖).

For this we first choose a homotopy of almost complex structures Js
t between J⊕ and

J⊖. We assume that for each fixed s ∈ R the almost complex structures Js
t coincide

with the complex multiplication by i outside of D. This guarantees that a Floer
cylinder of (G, Js

t ) which is positively asymptotic to an orbit γ⊖ ∈ P1
(a−ϵ,b+ϵ)(H⊖)

and negatively asymptotic to an orbit γ⊕ ∈ P1
(a,b)(H⊕) must have its image contained

in D. Moreover, a direct computation as in the proof of Proposition 3.1 shows that
for such a Floer cylinder we have that
(3.39) AH⊖(γ⊖) ⩽ AH⊕(γ⊕) + ϵ.

Using this same inequality one shows that if un is a sequence of Floer cylinders
of (G, Js

t ) whose negative asymptotic limit is in P1
(a,b)(H⊕) and whose positive

asymptotic limit is in P1
(a−ϵ,b+ϵ)(H⊖), then any breaking orbit of this sequence

is either in P1
(a,b)(H⊕) or in P1

(a−ϵ,b+ϵ)(H⊖). These observations allow us to ap-
ply Floer compactness to compactify the moduli spaces M(γ⊕, γ⊖, G, J

s
t ) where

γ⊕ ∈ P1
(a,b)(H⊕) and γ⊖ ∈ P1

(a−ϵ,b+ϵ)(H⊖). The compactification will be formed by
elements of M(γ⊕, γ⊖, G, J

s
t ) and broken Floer cylinders of (G, Js

t ) from γ⊕ to γ⊖.
The breaking orbits of these broken Floer cylinders must be either in P1

(a,b)(H⊕) or
in P1

(a−ϵ,b+ϵ)(H⊖). This follows from the estimate (3.39).
We then choose Js

t in a generic way so that the moduli spaces M(γ⊕, γ⊖, G, J
s
t )

considered in the previous paragraph are manifolds of dimension µCZ(γ⊕) −µCZ(γ⊖).
We then define

KG,Js
t
(γ⊕, γ⊖) := (#M(γ⊕, γ⊖, G, J

s
t )) mod 2,
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if µCZ(γ⊕) = µCZ(γ⊖) and KQ,Js
t
(γ⊕, γ⊖) = 0, otherwise. The map ΨG : CF (a,b)(H⊕)

→ CF (a−ϵ,b+ϵ)(H⊖) is given by
(3.40) ΨG(γ⊕) :=

∑
γ ∈ P1

(a−ϵ,b+ϵ)(H⊖)
KG,Js

t
(γ⊕, γ)γ.

With this, and using the fact that the Floer cylinders in these spaces must converge
to broken cylinders whose breaking orbits are in P1

(a,b)(H⊕) or in P1
(a−ϵ,b+ϵ)(H⊖), one

proves that the map ΨG induces a map on homology.
A similar construction is done to define the map

Ψ
Ĝ

: CF (a−ϵ,b+ϵ)(H⊖) → CF (a−2ϵ,b+2ϵ)(H⊕) ≃ CF (a,b)(H⊕).

For this we first choose a homotopy of almost complex structures Ĵs
t between J⊖ and

J⊕. We assume that for each fixed s ∈ R the almost complex structures Ĵs
t coincide

with the complex multiplication by i outside of D. To define Ψ
Ĝ

we study moduli
spaces M(γ⊖, γ⊕, Ĝ, Ĵ

s
t ), where γ⊕ ∈ P1

(a,b)(H⊕) and γ⊖ ∈ P1
(a−ϵ,b+ϵ)(H⊖). Using an

estimate analogous to (3.39) one shows that breaking orbits of sequences of elements
in M(γ⊖, γ⊕, Ĝ, Ĵ

s
t ) must be in P1

(a−2ϵ,b+2ϵ)(H⊕) or in P1
(a−ϵ,b+ϵ)(H⊖). However, by

our assumption P1
(a−2ϵ,b+2ϵ)(H⊕) = P1

(a,b)(H⊕): this shows why this assumption is
crucial for us to be able to define the map Ψ

Ĝ
from CF (a−ϵ,b+ϵ)(H⊖) to CF (a,b)(H⊕).

The proof of the fact that Ψ
Ĝ

◦ΨG : CF (a,b)(H⊕) → CF (a,b)(H⊕) is chain-homotopic
to the identity, follows the same scheme of the analogous statement in Proposition 3.1.
That is, we define the homotopy of homotopies (Qa, J

s
t (a))a ∈ [0,+∞) and study the

relevant 1-dimensional moduli spaces of Floer cylinders of the homotopy of homo-
topies (Qa, J

s
t (a))a ∈ [0,+∞) with asymptotic limits in P1

(a,b)(H⊕). Again, in order to
show that we can define the chain-homotopy map in the appropriate action windows
one shows that all breaking orbits for sequences of elements in these moduli spaces
are in P1

(a,b)(H⊕) or in P1
(a−ϵ,b+ϵ)(H⊖). This follows from estimates similar to (3.39)

for the carefully constructed homotopy (Qa)a ∈ [0,+∞). □

3.3. Hamiltonian dynamics and Floer homology on S2

Let ω be a symplectic form on S2 and assume that
∫

S2 ω = 8. In order to define
Floer homology for Hamiltonians on (S2, ω) we need to make certain adaptations.
In particular, because π2(S2) ̸= 0 there are constraints on the action windows
for which Floer homology can be defined, because of the possibility of bubbling
off of holomorphic spheres. Notice that because

∫
S2 ω = 8 it follows that the ω-

integral
∫

S ω of any sphere S in (S2, ω) is a multiple of 8: this integral clearly only
depends on the free homotopy class of S. Hamiltonian vector fields and Hamiltonian
flows on (S2, ω) are defined as in Section 3.1.1. Because H1(S2) = 0, every area-
preserving diffeomorphism of (S2, ω) is the time 1-map of a Hamiltonian flow on
(S2, ω). It follows that the group Ham(S2, ω) of Hamiltonian diffeomorphisms of
(S2, ω) coincides with the group of area-preserving diffeomorphisms of (S2, ω). A
Hamiltonian H : S1 × S2 → R is called normalized if

∫
Σ Htω = 0 for each t ∈ S1,

where Ht(·) := H(t, ·).
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Let H : S1 ×S2 → R be a normalized Hamiltonian and ϕH its time 1-map. Because
π2(S2) ̸= 0 the H-action of a closed curve y of ϕt

H is not well-defined but depends
on the choice of a capping Dy of y. We thus define for a pair (y,Dy)

(3.41) AH(y,Dy) := −
∫

Dy

ω +
∫ 1

0
H(t, y(t))dt.

If y is a closed curve and Dy and D′
y are two cappings of y, then

AH(y,D′
y) − AH(y,Dy) =

∫
Dy#−D′

y

ω,

where D′
y# − Dy is the sphere obtained by gluing D′

y and −D′
y. It follows that the

difference AH(y,Dy) − AH(y,Dy) is always a multiple of 8. Since AH(y,Dy) only
depends on the homotopy class of Dy we will define for a pair (y, [Dy]) where [Dy]
denotes the homotopy class of Dy the action AH(y, [Dy]) by

(3.42) AH(y, [Dy]) := −
∫

Dy

ω +
∫ 1

0
H(t, y(t))dt.

Given real numbers a < b we let P1
(a,b)(H) be the set of pairs (γ, [Dγ]) where γ is

a 1-periodic orbit of ϕt
H and [Dγ] is a homotopy class of cappings of γ such that

AH(γ, [Dγ]) ∈ (a, b).
The 1-periodic spectrum Spec1(H) is the set of all possible actions AH(γ, [Dγ ]) of

pairs (γ, [Dγ]) where γ is a 1-periodic orbit of ϕH and [Dγ] is a homotopy class of
cappings of γ.

Similarly, the Conley–Zehnder index of a 1-periodic orbit γ of ϕH is not well-
defined but if we fix a homotopy class [Dγ] of cappings of γ the Conley–Zehnder
index µCZ(γ, [Dγ]) is well-defined.

Suppose now that ϕH is a non-degenerate Hamiltonian diffeomorphism of (S2, ω).
We now fix real numbers a < b such that |b− a| ⩽ 1

4 . Once this is done we define

CF (a,b)(H) :=
⊕

(γ,[Dγ ]) ∈ P1
(a,b)(H)

Z2 · (γ, [Dγ]).

We now choose a smooth S1-family Jt of compatible almost complex structures
on (S2, ω). The Floer equation of (H, Jt) is defined as in (3.3). Given (γ, [Dγ]) and
(γ′, [Dγ′ ]) in P1

(a,b)(H) we let

M(γ, [Dγ], γ′, [Dγ′ ], H, Jt)
be the moduli space whose elements are Floer cylinders u of (H, Jt) negatively
asymptotic to γ and positively to γ′, and such that the gluing u#−Dγ′ is homotopic
to Dγ. As previously, if for two Floer cylinders u1 and u2 of (H, Jt) there is an s0
such that u1(s0 + ·, ·) = u2(·, ·) then u1 and u2 represent the same element in the
moduli space.

We first explain why for any sequence un of elements of the moduli space
M(γ, [Dγ], γ′, [Dγ′ ], H, Jt), the gradients of un are uniformly bounded. If this was
not the case, then bubbling analysis would imply that a non-constant holomorphic
sphere v : (S2, i) → (S2, Jt0) bubbles off of the sequence un for some t0 ∈ S1. But,
reasoning as in the proof of [AD14, Lemma 6.6.2] one obtains that the energy of v
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is bounded from above by 4 supk ∈NE(uk) ⩽ 4|b − a| ⩽ 1. Since any non-constant
holomorphic sphere in (S2, ω) must have energy ⩾ 8 we conclude that v is con-
stant, which is a contradiction. It follows from Floer’s techniques [Flo88] that since
the gradients of any sequence un of elements of the moduli space are uniformly
bounded, any such sequence must converge to a broken Floer cylinder. Moreover,
since the action decreases along Floer cylinders, we know that any breaking pair
(see Definition 3.9) (γ̂, [Dγ̂]) of the sequence un lies in P1

(a,b)(H). We choose now
Jt generically, so that M(γ, [Dγ], γ′, [Dγ′ ], H, Jt) are manifolds whose dimension is
µCZ(γ, [Dγ]) − µCZ(γ′, [Dγ′ ]) − 1.

Definition 3.9. — If un is a sequence of elements of the moduli space
M(γ, [Dγ], γ′, [Dγ′ ], H, Jt), then a pair (γ̂, [Dγ̂]) is called a breaking pair for un if:

• there exists a sequence sn such that un(sn, ·) converges in C∞ to γ̂,
• and for sufficiently large n such that un(sn, ·) is contained in a small tubular

neighbourhood Uγ̂ of γ̂, the capping of γ̂ obtained by gluing Cyln#un([sn,+∞)
× S1)# − Dγ′ is in the homotopy class [Dγ̂ ], where Cyln is any cylinder from
γ̂ to un(sn, ·) which is contained in the tubular neighbourhood Uγ̂.

We let
C (γ, [Dγ], γ′, [Dγ′ ]) = #M (γ, [Dγ], γ′, [Dγ′ ], H, Jt) mod 2

if µCZ(γ, [Dγ ]) − 1 = µCZ(γ′, [Dγ′ ]), and C(γ, [Dγ ], γ′, [Dγ′ ]) = 0 otherwise. With this
we are ready to define dJt : CF (a,b)(H) → CF (a,b)(H) by letting

dJt(γ, [Dγ]) =
∑

(γ′,[Dγ′ ]) ∈ P1
(a,b)(H)

C (γ, [Dγ], γ′, [Dγ′ ]) · (γ′, [Dγ′ ])

for the generators and extending it linearly to all of CF (a,b)(H). Once we know that
breaking pairs of the relevant moduli spaces are contained in P1

(a,b)(H) the proof
that (dJt)2 = 0 is as the one of the analogous statement for Floer homology on
closed surfaces of positive genus. We then let HF (a,b)(H) be the homology of the
chain-complex (CF (a,b)(H), dJt).

We are now ready to state the following proposition, analogous to Proposition 3.1,
for Hamiltonian diffeomorphisms on (S2, ω).

Proposition 3.10. — Let ϕ⊕ be a non-degenerate Hamiltonian diffeomorphism
in Ham(S2, ω) and H⊕ : S1 × S2 → R be a normalized Hamiltonian generating ϕ⊕.
We take real numbers a < b that do not belong to Spec1(H⊕) and such that and
b− a < 1

4 . Let ϵ > 0 be such that b− a+ 2ϵ < 1
4 and that all elements of Spec1(H⊕)

in the interval (a − 2ϵ, b + 2ϵ) are contained in (a, b). Let ϕ⊖ be a non-degenerate
Hamiltonian diffeomorphism with dHofer(ϕ⊕, ϕ⊖) < ϵ. Then, there exist a normalized
Hamiltonian H⊖ : S1 ×S2 → R generating ϕ⊖ and homotopies G : R×S1 ×S2 → R

between H⊕ and H⊖ and Ĝ : R× S1 × S2 → R between H⊖ and H⊕ which induce
continuation maps

ΨG : CF (a,b)(H⊕) → CF (a−ϵ,b+ϵ)(H⊖)
and

Ψ
Ĝ

: CF (a−ϵ,b+ϵ)(H⊖) → CF (a−2ϵ,b+2ϵ)(H⊕) ≃ CF (a,b)(H⊕),
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such that the composition Ψ
Ĝ

◦ ΨG is chain homotopic to the identity map id :
CF (a,b)(H⊕) → CF (a,b)(H⊕).

The proof is similar to the one of Proposition 3.8. There are two main things to
be observed. Firstly, because of our choice of the size of the action windows (a, b),
(a− ϵ, b+ ϵ) and (a− 2ϵ, b+ 2ϵ) the relevant Floer cylinders have small energy and
this precludes bubbling. Secondly, all breaking pairs that appear for sequences of
elements for the relevant moduli spaces are in P1

(a,b)(H⊕) or P1
(a−ϵ,b+ϵ)(H).

Finally, analogous to Proposition 3.4 one obtains
Proposition 3.11. — Let ϕ⊕ ∈ Ham(S2, ω) be non-degenerate, and H⊕ be a

normalized Hamiltonian generating ϕ⊕. Let ϵ > 0 and let Y = {γ1, . . . , γk} be a
set of 1-periodic orbits for H⊕ which is 2ϵ-quasi-isolated (analogously defined as
in Section 3.1.3), and for which there are disc cappings Dγ1 , . . . , Dγk

such that
AH⊕(γ1, Dγ1) = · · · = AH⊕(γk, Dγk

) = κ. Then the pairs (γ1, Dγ1), . . ., (γk, Dγk
)

generate a subcomplex BY in CF (κ−2ϵ,κ+2ϵ). Moreover, if ϕ⊖ ∈ Ham(S2, ω) is non-
degenerate with dHofer(ϕ⊖, ϕ⊕) < ϵ, then there exist a normalized Hamiltonian H⊖
generating ϕ⊖ and homotopies G from H⊕ to H⊖ and Ĝ from H⊖ to H⊕ which induce
chain maps

ΨY
G : BY → CF (κ−ϵ,κ+ϵ)

α (H⊖)
and

ΨY
Ĝ

: CF (κ−ϵ,κ+ϵ)
α (H⊖) → BY

such that
ΨY

Ĝ
◦ ΨY

G = id.

4. Floer cylinders and holomorphic curves

In this section we recall a construction due to Gromov which shows that Floer
cylinders on a symplectic surface (Σ, ω) for a pair (H, Js

t ) are in bijective corre-
spondence with holomorphic cylinders on the 4-manifold R× S1 × Σ endowed with
a almost complex structure which is constructed from (H, Js

t ). The construction
can be performed for symplectic manifolds of any dimension, but we restrict our
attention to surfaces because this is the case in which we are interested. We consider
coordinates (s, t, p) on R× S1 × Σ.

On a compact symplectic surface (Σ, ω) we consider a C∞-smooth R-family of
normalized Hamiltonians H : R× S1 × Σ → R and a C∞-smooth family of R× S1-
dependent almost complex structures Js

t on Σ which are compatible with ω. We
assume that there exists sH > 0 such that
(4.1) H and Js

t do not depend on s if |s| ⩾ sH .

Recall that
• if Σ is closed, normalized means that

∫
Σ H

s
t ω = 0 for each (s, t) ∈ R × S1,

where Hs
t (·) := H(s, t, ·),

• if ∂Σ ̸= 0, normalized means that Hs
t vanishes in a neighbourhood of ∂Σ for

all (s, t) ∈ R× S1.
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We denote by Hs : S1 × Σ → R the function H(s, ·, ·).
For each (s, t) ∈ R× S1, the function Hs

t defines a vector field XHs
t

on Σ defined
by ιXHs

t
= dΣH

s
t , where dΣH

s
t is the differential of Hs

t : Σ → R in Σ. When there is
no danger of confusion we write d for dΣ. Varying (s, t) in R× S1 we can think of
XHs

t
as a smooth R× S1-family of vector fields on Σ. It is thus useful to introduce

the following notation:
XH(s, t, ·) := XHs

t
(·).

The Floer operator FH,J for the pair (H, Js
t ) applied to a cylinder u : R×S1 → Σ

is

(4.2) FH,J(u) = ∂su(s, t) + Js
t (u(s, t))

(
∂tu(s, t) −XH(s, t, u(s, t))

)
.

A Floer cylinder is a map u : R× S1 → Σ such that

(4.3) FH,J(u) = 0.

Associated to the pair (H, Js
t ) we construct an almost complex structure J̃ on

R× S1 × Σ. In order to define J̃ we first introduce a natural decomposition of the
tangent bundle T (R× S1 × Σ).

• Associated to the coordinates s and t we have tangent vectors ∂s and ∂t at
the tangent space of every point (s0, t0, p0) ∈ R× S1 × Σ.

• Consider the family of surfaces {s}×{t}×Σ which foliatesR×S1×Σ. A vector
v ∈ T(s0,t0,p0)(R×S1×Σ) is called horizontal if it belongs to {s0}×{t0}×Tp0Σ.
Let H(s0,t0,p0) be the sub-space of horizontal vectors in T(s0,t0,p0)(R× S1 × Σ).

It is clear that T(s0,t0,p0)(R× S1 × Σ) = R∂s ⊕R∂t ⊕H(s0,t0,p0).
Let ΠΣ : R × S1 × Σ → Σ be the projection on the third coordinate. Then, the

restriction L(s0,t0,p0) := (DΠΣ)(s0,t0,p0)|H(s0,t0,p0) of (DΠΣ)(s0,t0,p0) to H(s0,t0,p0) is an
isomorphism between H(s0,t0,p0) and Tp0Σ. We denote its inverse by L−1

(s0,t0,p0).
At a point (s0, t0, p0), J̃(s0, t0, p0) is defined by the following formulas:

J̃(s0, t0, p0)v := L−1
(s0,t0,p0) ◦ Js0

t0 (p0) ◦ L(s0,t0,p0)(v) for v ∈ H(s0,t0,p0),

J̃(s0, t0, p0)∂s := ∂t + L−1
(s0,t0,p0)(XH(s0, t0, p0)).

These two equations completely determine J̃(s0, t0, p0) and one deduces from them
that

J̃(s0, t0, p0)∂t = −∂s − L−1
(s0,t0,p0) ◦ Js0

t0 (p0)(XH(s0, t0, p0)).

Notice that J̃(s0, t0, p0) leaves the horizontal sub-space H(s0,t0,p0) invariant and that
J̃(s0, t0, p0) restricted to H(s0,t0,p0) is the pullback of Js0

t0 (p0) by the map L(s0,t0,p0).
Because J̃ leaves invariant the horizontal sub-spaces, the surfaces {s0} × {t0} × Σ
are holomorphic for J̃ .

The next proposition gives the promised relation between Floer cylinders for (H, Js
t )

and holomorphic cylinders on (R× S1 × Σ, J̃). For this we let (s, t) be coordinates
on R× S1 and let j be the complex structure on R× S1 that satisfies j∂s = ∂t.
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For sH satisfying (4.1), we let H+∞ := HsH
and H−∞ = H−sH

. If γ is a 1-periodic
orbit of H−∞ we define the suspension γ̃ : S1 → S1 × Σ of γ by

γ̃(t) = (t, γ(t)).
Similarly, if γ′ is a 1-periodic orbit of H+∞ we define the suspension γ̃′ : S1 → S1 ×Σ
of γ′ by

γ̃′(t) = (t, γ′(t)).

Proposition 4.1. — A map u : R× S1 → Σ is a Floer cylinder for (H, Js
t ), if

and only if, its lift ũ : (R×S1, j) → (R×S1 ×Σ, J̃) defined as ũ(s, t) := (s, t, u(s, t))
is a holomorphic curve. Moreover:

• If the 1-periodic orbit γ of H−∞ is the negative limit of the Floer cylinder u,
then ũ is negatively asymptotic to the suspension γ̃ of γ at s = −∞, in the
sense that (·, u(s, ·)) : S1 → S1 × Σ converges in C∞ to γ̃ as s → −∞.

• If the 1-periodic orbit γ′ of H+∞ is the positive limit of the Floer cylinder u,
then ũ is negatively asymptotic to the suspension γ̃′ of γ′ at s = +∞, in the
sense that (·, u(s, ·)) : S1 → S1 × Σ converges in C∞ to γ̃′ as s → +∞.

Proof. — The proof is a direct computation. See for example [EKP06, Section 4.12].
□

Remark 4.2. — One can also show that any holomorphic cylinder in (R×S1×Σ, J̃)
that has one negative puncture asymptotic to the suspension of a 1-periodic orbit γ
of H−∞ and one positive puncture asymptotic to the suspension of a 1-periodic orbit
γ′ of H+∞, is the lift of a Floer cylinder of (H, Js

t ); see again [EKP06, Section 4.12].
However, we do not need this result and Proposition 4.1 is enough for all our
arguments.

5. Proof of Theorems 2 and 3

In this section we prove Theorems 2 and 3.
Proof of Theorem 3. —
Step 1. — We first define Spec(Y⊕) := {AH⊕(γ1), . . . ,AH⊕(γk)}. For each number

κ ∈ Spec(Y⊕), we denote by Yκ
⊕ ⊂ Y⊕ the subset of elements of Y⊕ whose action is

κ. We denote by nκ the cardinality of Yκ
⊕. We denote by {γκ

1 , . . . , γ
κ
nκ

} the elements
of Yκ

⊕.(4)

Fix ϵ > 0 as in the statement of the theorem and then consider for every
κ ∈ Spec(Y⊕) the Floer homology HF (κ−ϵ,κ+ϵ)(H⊕). We choose the smooth S1-family
Jt to be regular for all chain-complexes CF (κ−ϵ,κ+ϵ)(H⊕) and CF (κ−2ϵ,κ+2ϵ)(H⊖),
so that we can use always the same pairs (H⊕, Jt) to define the Floer differen-
tial dJt on CF (κ−ϵ,κ+ϵ)(H⊕) and (H⊖, Jt) to define the Floer differential dJt on
CF (κ−2ϵ,κ+2ϵ)(H⊖). We notice that since all the elements of CF (κ−ϵ,κ+ϵ)(H⊕) have
the same action the differential vanishes on CF (κ−ϵ,κ+ϵ)(H⊕). Moreover, since Y⊕ is

(4) Since Yκ
⊕ ⊂ Y⊕ = {γ1, . . . , γk}, we are actually renaming the elements of Y⊕.
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3ϵ-isolated (and hence ϵ-isolated), we conclude that the rank of CF (κ−ϵ,κ+ϵ)(H⊕) and
HF (κ−ϵ,κ+ϵ)(H⊕) coincide with #(Yκ

⊕).
We now apply Proposition 3.8 for the chain-complexes CF (κ−ϵ,κ+ϵ)(H⊕) and

CF (κ−2ϵ,κ+2ϵ)(H⊖) for all κ ∈ Spec(Y⊕). Notice that the construction of homo-
topies G and Ĝ does not depend on κ, but only on ϵ and H⊖. We can thus choose
generically the same pairs (G, Js

t ) and (Ĝ, Ĵs
t ) to induce maps from CF (κ−ϵ,κ+ϵ)(H⊕)

to CF (κ−2ϵ,κ+2ϵ)(H⊖), and from CF (κ−2ϵ,κ+2ϵ)(H⊖) to CF (κ−ϵ,κ+ϵ)(H⊕), for all κ ∈
Spec(Y⊕).

We then obtain chain maps ΨG : CF (κ−ϵ,κ+ϵ)(H⊕) → CF (κ−2ϵ,κ+2ϵ)(H⊖) and
Ψ

Ĝ
: CF (κ−2ϵ,κ+2ϵ)(H⊖) → CF (κ−ϵ,κ+ϵ)(H⊕). Since Ψ

Ĝ
◦ ΨG : CF (κ−ϵ,κ+ϵ)(H⊕) →

CF (κ−ϵ,κ+ϵ)(H⊕) is chain homotopic to the identity and the differential dJt vanishes,
we conclude that the chain map Ψ

Ĝ
◦ ΨG : CF (κ−ϵ,κ+ϵ)(H⊕) → CF (κ−ϵ,κ+ϵ)(H⊕) is

the identity. It follows that ΨG : CF (κ−ϵ,κ+ϵ)(H⊕) → CF (κ−2ϵ,κ+2ϵ)(H⊖) is injective
and that Ψ

Ĝ
: CF (κ−2ϵ,κ+2ϵ)(H⊖) → CF (κ−ϵ,κ+ϵ)(H⊕) is surjective.

Since ΨG is injective we know that the dimension of CF (κ−2ϵ,κ+2ϵ)(H⊖) is ⩾ nκ. We
let mκ ⩾ nκ be the dimension of CF (κ−2ϵ,κ+2ϵ)(H⊖), and since CF (κ−2ϵ,κ+2ϵ)(H⊖) is
the Z2-vector space over P1

(κ−2ϵ,κ+2ϵ)(H⊖), we conclude that #P1
(κ−2ϵ,κ+2ϵ)(H⊖) = mκ.

We denote by σκ
1 , . . . , σ

κ
mκ

the elements of P1
(κ−2ϵ,κ+2ϵ)(H⊖).

We now introduce some terminology. For each j ∈ {1, . . . , nκ}, the image ΨG(γκ
j )

can be written in a unique way as a sum of orbits in P1
(κ−2ϵ,κ+2ϵ)(H⊖): we use here

that we are working with Z2-coefficients. We say that an orbit σκ
l appears in ΨG(γκ

j ),
if the orbit σκ

l is one of the orbits which appear in the expression of ΨG(γκ
j ) written

in the base P1
(κ−2ϵ,κ+2ϵ)(H⊖) of CF (κ−2ϵ,κ+2ϵ)(H⊖).

We define in a similar way orbits of P1
(κ−ϵ,κ+ϵ)(H⊕) which appear in Ψ

Ĝ
(σκ

l ) for
each σκ

l ∈ P1
(κ−2ϵ,κ+2ϵ)(H⊖). We make the following claim:

Claim 1: It is possible to choose an injective map fκ : {1, . . . , nκ} → {1, . . . , mκ}
and a bijective map gκ : {1, . . . , nκ} → {1, . . . , nκ} such that for each i ∈
{1, . . . , nκ}:

• the orbit σκ
fκ(i) appears in ΨG(γκ

i ), and the orbit γκ
gκ(i) appears in Ψ

Ĝ
(σκ

fκ(i)).
It is clear that the claim will follow from the following combinatorial lemma, whose
proof is presented in Appendix A.

Lemma 5.1. — Let V and R be finite dimensional Z2-vector spaces whose di-
mensions we denote by n and m, respectively. Let {v1, . . . , vn} and {r1, . . . , rm}
be a basis of V and R, respectively, and let F : V → R and G : R → V be linear
maps such that G◦F is an isomorphism. Then, it is possible to find an injective map
f : {1, . . . , n} → {1, . . . , m} and a bijective map g : {1, . . . , n} → {1, . . . , n} such
that for each i ∈ {1, . . . , n}:

• the element rf(i) appears in F(vi), and the element vg(i) appears in G(rf(i)).

Step 2. — For each γκ
i ∈ Yκ

⊕, we consider the 1-periodic orbit σκ
fκ(i). Since σκ

fκ(i)
appears in ΨG(γκ

i ), there exists a Floer cylinder u1
κ,i of (G, Js

t ) which is negatively
asymptotic to γκ

i and positively asymptotic to σκ
fκ(i).
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Similarly, since γκ
gκ(i) appears in Ψ

Ĝ
(σκ

fκ(i)), there exists a Floer cylinder u2
κ,i of

(Ĝ, Ĵs
t ) which is negatively asymptotic to σκ

fκ(i) and positively asymptotic to γκ
gκ(i).

Since the maps gκ are permutations, there exists a natural number M ⩾ 1 such
that for every κ ∈ Spec(Y⊕) the M th iterate gM

κ equals the identity. For each pair
κ ∈ Spec(Y⊕) and i ∈ 1, . . . , nκ, we let ũ1

κ,i : R×S1 → R×S1 ×D be the lift of the
Floer cylinder u1

κ,i. The cylinder ũ1
κ,i is J̃G,Js

t
-holomorphic, where J̃G,Js

t
is the almost

complex structure on R× S1 × D constructed in Section 4.
Claim 2: We claim that the cylinders ũ1

κ,i have no intersections. More precisely, we
have that

• if κ ̸= κ′ are elements of Spec(Y⊕), then for every i ∈ {1, . . . , nκ} and
j ∈ {1, . . . , nκ′}, the cylinders ũ1

κ,i and ũ1
κ′,j have no intersections,

• if κ ∈ Spec(Y⊕) and i ̸= j are elements of {1, . . . , nκ}, then ũ1
κ,i and ũ1

κ,j

have no intersections.
Before proving the claim we explain why it implies Theorem 3. Denote by Y⊖ the

collection of orbits σκ
fκ(i), κ ∈ Spec(Y⊕), i ∈ {1, . . . , nκ}. For each κ ∈ Spec(Y⊕),

i ∈ {1, . . . , nκ} and s ∈ R we let ξs
κ,i : S1 → S1 × D be defined by

ξs
κ,i(·) := ũ1

κ,i(s, ·).

It is easy to see that ξs
κ,i is a knot embedded in S1 ×D for each s ∈ R which intersects

each of disks {t} × D transversely and only once. We also define ξ⊕
κ,i : S1 → S1 × D

by
ξ⊕

κ,i(t) := (t, γκ
i (t)) ,

and ξ⊖
κ,i : S1 → S1 × D by

ξ⊖
κ,i(t) :=

(
t, σκ

fκ(i)(t)
)
.

The braid B(Y⊕) equals the disjoint union ∪κ ∈ Spec(Y⊕) ∪i∈{1, ..., nκ} ξ
⊕
κ,i.

Since fκ is injective for each κ, the knots ξ⊖
κ,i are also disjoint. It follows that

B(Y⊖) = ∪κ ∈ Spec(Y⊕) ∪i ∈ {1, ..., nκ} ξ
⊖
κ,i is a braid with the same number of strands as

B(Y⊕).
The asymptotic behaviour of the Floer cylinders ũ1

κ,i tells us that
• ξs

κ,i converges in C∞ to ξ⊕
κ,i as we let s go to −∞,

• ξs
κ,i converges in C∞ to ξ⊖

κ,i as we let s go to +∞.
It follows from this that letting ξ−∞

κ,i := ξ⊕
κ,i and ξ+∞

κ,i := ξ⊖
κ,i, the families (ξs

κ,i)s ∈R
define isotopies between ξ⊕

κ,i and ξ⊖
κ,i.

For each s ∈ R, let Bs = ∪κ ∈ Spec(Y⊕) ∪i ∈ {1, ..., nκ} ξ
s
κ,i. To prove that (Bs)s ∈ R gives

a braid isotopy between B(Y⊕) and B(Y⊖), it suffices then to show that
• if κ ̸= κ′ are elements of Spec(Y⊕), then for every i ∈ {1, . . . , nκ} and
j ∈ {1, . . . , nκ′}, the knots ξs

κ,i and ξs
κ′,j are disjoint for each s ∈ R,

• if κ ∈ Spec(Y⊕) and i ̸= j are elements of {1, . . . , nκ}, then the knots ξs
κ,i

and ξs
κ,j are disjoint for each s ∈ R.

But from the definition of the knots ξs
κi

, it is clear that these two conditions are
equivalent to Claim 2.
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Step 3. — We thus proceed to prove Claim 2, which will imply the theorem.
We consider now for each choice of κ ∈ Spec(Y⊕) and i ∈ {1, . . . , nκ} the ordered

2M -tuple(
u1

κ,i, u
2
κ,i, u

1
κ,g(i), u

2
κ,g(i), u

1
κ,g2(i), u

2
κ,g2(i), . . . , u

2
κ,g(i), u

1
κ,gM−1(i), u

2
κ,gM−1(i)

)
.

Because of the asymptotic behaviour of the maps ũν
κ,i they can be compactified to

cylinders uν
κ,i : R× S1 → R× S1 × D.

We now fix, once and for all, a homeomorphism L : [0, 1] → R which is smooth in
the interior of [0, 1] and satisfies L(0) = −∞ and L(1) = +∞. For l ∈ {0, . . . , M−1}
and ν ∈ {1, 2} we let Lν

l : [2l + (ν − 1), 2l + ν] → R be the homeomorphisms given
by Lν

l (u) = L(u− (2l + (ν − 1))).
Using the map Lν

l we obtain homeomorphisms
Lν

l : [2l + (ν − 1), 2l + ν] × S1 → R× S1

given by Lν
l (s, t) = (Lν

l (s), t) and
Nν

l : R× S1 × D → [2l + (ν − 1), 2l + ν] × S1 × D

given by Nν
l (s, t, p) = ((Lν

l )−1(s), t, p). We then define

vν,l
κ,i : [2l + (ν − 1), 2l + ν] × S1 → [2l + (ν − 1), 2l + ν] × S1 × D

by
vν,l

κ,i = Nν
l ◦ uν

κ,gl
κ(i) ◦ Lν

l .

We notice that if i ̸= i′, intersections between two cylinders vν,l
κ,i and vν′,l′

κ′,i′ can only
occur if l = l′. In this case, any such intersection is positive, because of positivity
of intersection for holomorphic curves and the method we used to construct these
cylinders from the holomorphic cylinders ũν

κ,gl
κ(i).

We are ready to define
U

κ
i : [0, 2M ] × S1 → [0, 2M ] × S1 × D

by the formula Uκ

i (s, t) = vν,l
κ,i(s, t) if s ∈ [2l+(ν−1), 2l+ν]. The cylinders Uκ

i should
be thought of as the concatenation of the cylinders forming the ordered 2M -tuple(

u1
κ,i, u

2
κ,i, u

1
κ,g(i), u

2
κ,g(i), u

1
κ,g2(i), u

2
κ,g2(i), . . . , u

2
κ,g(i), u

1
κ,gM−1(i), u

2
κ,gM−1(i)

)
.

Because the positive asymptotic limit of an element of the tuple coincides with the
negative asymptotic limit of the next element, the map Uκ

i is indeed continuous, and
smooth when s is in the interior of the intervals [2l + (ν − 1), 2l + ν].

Step 4. — We finish the proof of Claim 2.
We argue by contradiction. We assume that there exist κ, κ′ and i, j such that

either κ ̸= κ′ or i ̸= j and that ũ1
κ,i and ũ1

κ′,j intersect. In this case the long cylinders
U

κ
i and U

κ′

j must also intersect.
We claim that all intersections of these cylinders count positively. Indeed, since

these intersections must occur in the open sets (2l + (ν − 1), 2l + ν) × S1 × D
where the cylinders are smooth and holomorphic, positivity of intersections for
holomorphic curves imply that these intersections count positively. The reason why
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the intersections can only occur in these open sets is that the lth element of the
tuples (

u1
κ,i, u

2
κ,i, u

1
κ,g(i), u

2
κ,g(i), u

1
κ,g2(i), u

2
κ,g2(i), . . . , u

2
κ,g(i), u

1
κ,gM−1(i), u

2
κ,gM−1(i)

)
and(

u1
κ′,j, u

2
κ′,j, u

1
κ′,g(j), u

2
κ,g(j), u

1
κ′,g2(j), u

2
κ′,g2(j), . . . , u

2
κ′,g2(j), u

1
κ′,gM−1(j), u

2
κ′,gM−1(j)

)
have different positive and negative asymptotic limits.

Thus, the assumption that ũ1
κ,i and ũ1

κ′,j intersect implies that Uκ

i and U
κ′

j have
positive intersection number. Observe that Uκ

i (2M, ·) = ξκ
i (·) and U

κ

i (0, ·) = ξκ
i (·).

Similarly, Uκ′

j (2M, ·) = ξκ′
j (·) and U

κ′

j (0, ·) = ξκ′
j (·).

Let V κ

i : [0, 2M ] × S1 → [0, 2M ] × S1 × D be the trivial cylinder over ξ⊕
κ,i, given

by V
κ
i (s, t) = (s, t, γκ

i (t)). Because D is contractible, there exist a homotopy Hκ
i :

[0, 1] × [0, 2M ] × S1 → [0, 2M ] × S1 × D satisfying:
• Hκ

i (a, 2M, ·) = (2M, ξ⊕
κ,i(·)) for every a ∈ [0, 1],

• Hκ
i (a, 0, ·) = (0, ξ⊕

κ,i(·)) for every a ∈ [0, 1],
• Hκ

i (0, ·, ·) = V
κ
i (·, ·) and Hκ

i (1, ·, ·) = U
κ
i (·, ·).

We refer to Hκ
i as a homotopy of cylinders with the same boundary between V κ

i and
U

κ

i . We consider similarly a homotopy of cylinders with the same boundary between
V

κ′

j and U
κ′

j .
Since either κ ̸= κ′ or i ̸= j, the knots ξ⊕

κ,i and ξ⊕
κ′,j are disjoint: it follows that

the cylinders Hκ
i (a, ·, ·) and Hκ′

j (a, ·, ·) have disjoint boundaries. The intersection
number of the cylinders Hκ

i (a, ·, ·) and Hκ′
j (a, ·, ·) does not depend on a. But, this

intersection number is clearly 0 for a = 0. This is in contradiction with the positivity
of the intersection number of Uκ′

j and U
κ
i , which had followed from the assumption

that ũ1
κ,i and ũ1

κ′,j intersect.

This contradiction shows that ũ1
κ,i and ũ1

κ′,j do not intersect, finishing the proof of
Claim 2 and completing the proof of Theorem 3. □

Proof of Theorem 2. — The proof of Theorem 2 is identical to the proof of
Theorem 3, with the only modification that one applies Proposition 3.6 where in the
previous proof one applied Proposition 3.8. □

6. Proof of Theorem 1

To prove Theorem 1 we must consider several different cases. During the proof we
will refer to the proof steps and arguments used in the proof of Theorem 2, so the
reader should first read the proof of that theorem.

We start treating the case in which Σ = S2.
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6.1. Proof of Theorem 1 in case Σ = S2.

Proof. —
Step 1. — Note that one can choose capping discs Dγi

, i = 1, . . . , k, of the
orbits in Y⊕ such that AH⊕(γi,Dγi

) − AH⊕(γj,Dγj
) = ∆H⊕(γi, γj), for all i, j ∈

{1, . . . , k}. Denote by Ỹ⊕ = {(γ1,Dγ1), . . . , (γk,Dγk
)} the set of the resulting pairs,

and by Spec(Ỹ⊕) := {AH⊕(γ1,Dγ1), . . . , AH⊕(γk,Dγk
)} the set formed by their

action values. For each number κ ∈ Spec(Ỹ⊕) we denote by Ỹκ
⊕ ⊂ Ỹ⊕ the subset of

elements of Ỹ⊕ whose action is κ. We denote by nκ the cardinality of Ỹκ
⊕, and let

{(γκ
1 ,Dγκ

1
), . . . , (γκ

nκ
,Dγκ

nκ
)} be the elements of Ỹκ

⊕.
Fix ϵ > 0 as in the statement of the theorem and then consider for every

κ ∈ Spec(Ỹ⊕) the Floer homology HF (κ−ϵ,κ+ϵ)(H⊕). We choose the smooth S1-family
Jt to be regular for all chain-complexes CF (κ−ϵ,κ+ϵ)(H⊕) and CF (κ−2ϵ,κ+2ϵ)(H⊖),
so that we can use always the same pairs (H⊕, Jt) to define the Floer differen-
tial dJt on CF (κ−ϵ,κ+ϵ)(H⊕) and (H⊖, Jt) to define the Floer differential dJt on
CF (κ−2ϵ,κ+2ϵ)(H⊖). We notice that since all the elements of CF (κ−ϵ,κ+ϵ)(H⊕) have
the same action the differential vanishes on CF (κ−ϵ,κ+ϵ)(H⊕). Moreover, since Y⊕
is 3ϵ-isolated, we conclude that the rank of CF (κ−ϵ,κ+ϵ)(H⊕) and HF (κ−ϵ,κ+ϵ)(H⊕)
coincide with #(Ỹκ

⊕).
We now apply Proposition 3.10 for the chain-complexes CF (κ−ϵ,κ+ϵ)(H⊕) and

CF (κ−2ϵ,κ+2ϵ)(H⊖) for all κ ∈ Spec(Ỹ⊕). Notice that the construction of homo-
topies G and Ĝ does not depend on κ, but only on ϵ and H⊖. We can thus choose
generically the same pairs (G, Js

t ) and (Ĝ, Ĵs
t ) to induce maps from CF (κ−ϵ,κ+ϵ)(H⊕)

to CF (κ−2ϵ,κ+2ϵ)(H⊖), and from CF (κ−2ϵ,κ+2ϵ)(H⊖) to CF (κ−ϵ,κ+ϵ)(H⊕), for all κ ∈
Spec(Ỹ⊕).

We then obtain chain maps ΨG : CF (κ−ϵ,κ+ϵ)(H⊕) → CF (κ−2ϵ,κ+2ϵ)(H⊖) and
Ψ

Ĝ
: CF (κ−2ϵ,κ+2ϵ)(H⊖) → CF (κ−ϵ,κ+ϵ)(H⊕). Since Ψ

Ĝ
◦ ΨG : CF (κ−ϵ,κ+ϵ)(H⊕) →

CF (κ−ϵ,κ+ϵ)(H⊕) is chain homotopic to the identity and the differential dJt vanishes,
we conclude that the chain map Ψ

Ĝ
◦ ΨG : CF (κ−ϵ,κ+ϵ)(H⊕) → CF (κ−ϵ,κ+ϵ)(H⊕) is

the identity. It follows that ΨG : CF (κ−ϵ,κ+ϵ)(H⊕) → CF (κ−2ϵ,κ+2ϵ)(H⊖) is injective
and that Ψ

Ĝ
: CF (κ−2ϵ,κ+2ϵ)(H⊖) → CF (κ−ϵ,κ+ϵ)(H⊕) is surjective.

Since Ψg is injective, we know that the dimension of CF (κ−2ϵ,κ+2ϵ)(H⊖) is ⩾ nκ. We
let mκ ⩾ nκ be the dimension of CF (κ−2ϵ,κ+2ϵ)(H⊖), and since CF (κ−2ϵ,κ+2ϵ)(H⊖) is
the Z2-vector space over P1

(κ−2ϵ,κ+2ϵ)(H⊖), we conclude that #P1
(κ−2ϵ,κ+2ϵ)(H⊖) = mκ.

We write (σκ
1 ,Dσκ

1
), . . . , (σκ

mκ
,Dσκ

mκ
) for the elements of P1

(κ−2ϵ,κ+2ϵ)(H⊖).
For each j ∈ {1, . . . , nκ}, the image ΨG((γκ

j ,Dγκ
j
)) can be written in a unique

way as a sum of pairs in P1
(κ−2ϵ,κ+2ϵ)(H⊖). We say that a pair (σκ

l ,Dσκ
l
) appears in

ΨG((γκ
j ,Dγκ

j
)), if the pair (σκ

l ,Dσκ
l
) is one of the pairs which appear in the expression

of ΨG((γκ
j ,Dγκ

j
)) written in the base P1

(κ−2ϵ,κ+2ϵ)(H⊖) of CF (κ−2ϵ,κ+2ϵ)(H⊖).
We define in a similar way pairs of P1

(κ−ϵ,κ+ϵ)(H⊕) which appear in Ψ
Ĝ

((σκ
l ,Dσκ

l
))

for each (σκ
l ,Dσκ

l
) ∈ P1

(κ−2ϵ,κ+2ϵ)(H⊖). Using Lemma 5.1 we know that:
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Fact 6.1. — It is possible to choose an injective map fκ : {1, . . . , nκ} →
{1, . . . , nκ} and a bijective map gκ : {1, . . . , nκ} → {1, . . . , nκ} such that for
each i ∈ {1, . . . , nκ}:

• the pair (σκ
fκ(i),Dσκ

fκ(i)
) appears in ΨG((γκ

i ,Dγκ
i
)), and the pair (γκ

gκ(i),Dγκ
gκ(i)

)
appears in Ψ

Ĝ
((σκ

fκ(i),Dσκ
fκ(i)

)).

Step 2. — For each (γκ
i ,Dγκ

i
) ∈ Yκ

⊕ we consider the pair (σκ
fκ(i),Dσκ

fκ(i)
).

Since (σκ
fκ(i),Dσκ

fκ(i)
) appears in ΨG((γκ

i ,Dγκ
i
)), there exists a Floer cylinder u1

κ,i

of (G, Js
t ) which is negatively asymptotic to (γκ

i ,Dγκ
i
) and positively asymptotic to

(σκ
fκ(i),Dσκ

fκ(i)
).

Similarly, there exists a Floer cylinder u2
κ,i of (Ĝ, Ĵs

t ) which is negatively asymptotic
to (σκ

fκ(i),Dσκ
fκ(i)

) and positively asymptotic to (γκ
gκ(i),Dγκ

gκ(i)
).

For each κ ∈ Spec1(Y⊕) and i ∈ 1, . . . , nκ, we let ũ1
κ,i : R× S1 → R× S1 × S2 be

the lift of the Floer cylinder u1
κ,i. The cylinder ũ1

κ,i is J̃G,Js
t
-holomorphic, where J̃G,Js

t

is the almost complex structure on R×S1 ×S2 constructed in Section 4. Reasoning
as in Step 2 of the proof of Theorem 3 (see Section 5), we conclude that Theorem 1
in the case Σ = S2 will follow if we can show that the cylinders u1

κ,i and u1
κ′,j have

no intersections if either κ ̸= κ′ or i ̸= j.
Step 3. — Since the maps gκ are permutations, there exists a natural number

M ⩾ 1 such that for every κ ∈ Spec1(Y⊕) the M th iterate gM
κ equals the identity.

We consider now for each choice of κ ∈ Spec1(Y⊕) and i ∈ {1, . . . , nκ} the ordered
(2M − 2)-tuple(

u1
κ,i, u

2
κ,i, u

1
κ,g(i), u

2
κ,g(i), u

1
κ,g2(i), u

2
κ,g2(i), . . . , u

2
κ,g(i), u

1
κ,gM−1(i), u

2
κ,gM−1(i)

)
.

Because of the asymptotic behaviour of the maps ũν
κ,i they can be compactified to

cylinders uν
κ,i : R× S1 → R× S1 × S2.

We now fix, once and for all, a homeomorphism L : [0, 1] → R which is smooth in
the interior of [0, 1] and satisfies L(0) = −∞ and L(1) = +∞. For l ∈ {0, . . . ,M−1}
and ν ∈ {1, 2} we let Lν

l : [2l + (ν − 1), 2l + ν] → R, u 7→ L(u− (2l + (ν − 1))).
Using the map Lν

l we obtain homeomorphisms

Lν
l : [2l + (ν − 1), 2l + ν] × S1 → R× S1

given by Lν
l (s, t) = (Lν

l (s), t) and

Nν
l : R× S1 × S2 → [2l + (ν − 1), 2l + ν] × S1 × S2

given by Nν
l (s, t, p) = ((Lν

l )−1(s), t, p). We then define

vν,l
κ,i : [2l + (ν − 1), 2l + ν] × S1 → [2l + (ν − 1), 2l + ν] × S1 × S2

by
vν,l

κ,i = Nν
l ◦ uν

κ,gl
κ(i) ◦ Lν

l .

We are ready to define

U
κ

i : [0, 2M ] × S1 → [0, 2M ] × S1 × S2
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by the formula Uκ
i (s, t) = vν,l

κ,i if s ∈ [2l + (ν − 1), 2l + ν]. One should think of Uκ
i as

the concatenation of the cylinders vν,l
κ,i.

We let
W κ

i : [0, 2M ] × S1 → S2

be the projection of Uκ

i to S2, i.e. W κ
i := ΠS2 ◦Uκ

i , where ΠS2 : [0, 2M ]×S1×S2 → S2

is the projection onto the third coordinate. Let
vν,l

κ,i := uν
κ,gl

κ(i) ◦ Lν
l .

The cylinder vν,l
κ,i is obtained by compactifying the Floer cylinder uκ

i and taking its
domain to be [2l + (ν − 1), 2l + ν]. It is then clear that

W κ
i :=

(
v2,M−1

κ,i #v1,M−1
κ,i

)
#
(
v2,M−2

κ,i #v1,M−2
κ,i

)
# · · · #

(
v2,1

κ,i#v
1,1
κ,i

)
#
(
v2,0

κ,i#v
1,0
κ,i

)
.

We need the following definition.

Definition 6.2. — Let (γ, [Dγ]) ∈ P1(H) and (γ′, [Dγ′ ]) ∈ P1(H ′) for Hamilto-
nians H : S1 × S2 → R and H ′ : S1 × S2 → R, and let V : [0, K] × S1 → S2 be a
cylinder(5) such that V : {0} × S1 = γ and V : {K} × S1 = γ′. We say that V is a
cylinder from (γ, [Dγ ]) to (γ′, [Dγ′ ]) if the disk Dγ#V obtained by gluing Dγ and V
is homotopic to Dγ′ among disks filling γ′.

Claim 3: The cylinder W κ
i : [0, 2M ] × S1 → S2 is a cylinder from (γκ

i , [Dγκ
i
]) to

(γκ
i , [Dγκ

i
]).

To prove this claim we need the following straightforward fact.

Fact 6.3. — Let a < b < c be real numbers, V1 : [a, b] → S2 be a cylinder from
(γ, [Dγ ]) to (γ′, [Dγ′ ]), and V2 : [b, c] → S2 be a cylinder from (γ′, [Dγ′ ]) to (γ′′, [Dγ′′ ]).
Then, the concatenated cylinder V2#V1 : [a, c] → S2 is a cylinder from (γ, [Dγ]) to
(γ′′, [Dγ′′ ]).

By construction, the Floer cylinders u1
κ,gl(i) belong to the moduli space

M
((
γκ
gl(i),

[
Dγκ

gl(i)

])
,
(
σκ
fκ(gl(i)),

[
Dσκ

fκ(gl(i))

])
, G, Js

t

)
.

It follows that its compactification v1,l
κ,i is a cylinder from(

γκ
gl(i),

[
Dγκ

gl(i)

])
to
(
σκ
fκ(gl(i)),

[
Dσκ

fκ(gl(i))

])
.

Similarly, one obtains that v2,l
κ,i is a cylinder from(

σκ
fκ(gl(i)),

[
Dσκ

fκ(gl(i))

])
to

(
γκ
gl+1(i),

[
Dγκ

gl+1(i)

])
.

Applying Fact 6.3 multiple times we obtain that the concatenation
W κ

i :=
(
v2,M−1

κ,i #v1,M−1
κ,i

)
#
(
v2,M−2

κ,i #v1,M−2
κ,i

)
# · · · #

(
v2,1

κ,i#v
1,1
κ,i

)
#
(
v2,0

κ,i#v
1,0
κ,i

)
is a cylinder from (γκ

(i), [Dγκ
(i)

]) to (γκ
gM (i), [Dγκ

gM (i)
]) = (γκ

(i), [Dγκ
(i)

]).
This proves Claim 3.

(5) Here K > 0 is some positive real number.
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Step 4. — Because W κ
i is a cylinder from (γκ

i , [Dγκ
i
]) to (γκ

i , [Dγκ
i
]), it is homotopic

to the trivial cylinder W κ,i
triv : [0, 2M ] × S1 → S2 over γκ

i given by the formula

W κ,i
triv(s, t) = γκ

i (t),

among cylinders which map {0} × S1 and {2M} × S1 to γκ
i .

We explain one way to prove the existence of such a homotopy. The fact thatW κ
i is a

cylinder from (γκ
i , [Dγκ

i
]) to (γκ

i , [Dγκ
i
]) implies that the sphere S := Dγκ

i
#W κ

i #(−Dγκ
i
)

is contractible. Let p0 := γκ
i (0). The cylinder W κ

i can be thought of as a loop in the
free loop space Λ(S2) starting and ending at γκ

i , and we denote by [W κ
i ] the element

of π1(Λ(S2), γκ
i ) represented by W κ

i . Let Ωp0(S2) be the based loop space of S2 with
basepoint p0. From the fibration exact sequence for homotopy groups associated to
the fibration Ωp0(S2) ↪−→ Λ(S2) → S2 we know that the inclusion Ωp0(S2) ↪−→ Λ(S2)
induces an isomorphism of fundamental groups. It follows that we can homotopy W κ

i

among loops in Λ(S2) starting and ending at γκ
i , to a loop W̆ κ

i completely contained
in Ωp0(S2). It is clear that the sphere S̆ := Dγκ

i
#W̆ κ

i #(−Dγκ
i
) is contractible since

it is homotopic to S.
We will now use the isomorphism between π2(S2) and π1(Ω(S2)), where Ω(S2) is

the based loop space of S2. This isomorphism is not canonical, as it depends on the
choice of loop in S2 which will be the base point of π1(Ω(S2)) together with a disk in
S2 capping this loop. We choose the base point of π1(Ω(S2)) to be the loop γκ

i and the
capping disk to be Dγκ

i
. The isomorphism between π1(Ω(S2), γκ

i ) and π2(S2, p0) then
identifies [W̆ κ

i ] ∈ π1(Ω(S2), γκ
i ) with [S̆] ∈ π2(S2, p0). Since [S̆] = 0 ∈ π2(S2, p0) we

obtain that [W̆ κ
i ] = 0 ∈ π1(Ω(S2)), which implies that W̆ κ

i is homotopic to the trivial
cylinder over γκ

i among cylinders which are positively and negatively asymptotic
to γκ

i . Since, as we saw in the previous paragraph, W κ
i is homotopic to W̆ κ

i among
cylinders which are positively and negatively asymptotic to γκ

i , it is also homotopic
to the trivial cylinder over γκ

i among cylinders positively and negatively asymptotic
to γκ

i . This gives us the promised homotopy.
The graph lift of the homotopy between W κ

i and W κ,i
triv gives a homotopy between

U
κ

i and the trivial cylinder Uκ,i

triv : [0, 2M ] × S1 → [0, 2M ] × S1 × S2 defined by

U
κ,i

triv(s, t) = (s, t, γκ
i (t)).

The cylinders Uκ,i
triv and U

κ′,j
triv are disjoint if either κ ̸= κ′ or i ̸= j, which implies

that their algebraic intersection number is 0. The homotopy between U
κ
i and U

κ,i
triv

and the homotopy between U
κ′

j and U
κ′,j
triv then imply that the algebraic intersection

number of Uκ
i and U

κ′

j is 0, if either κ ̸= κ′ or i ̸= j.
Reasoning as in Step 2 of the proof of Theorem 3 we conclude that any intersection

point of Uκ
i and U

κ′

j counts positively, from where we obtain that Uκ
i and U

κ′

j are
disjoint. This implies that ũ1

κ,i and ũ1
κ′,j have no intersection, if either κ ̸= κ′ or i ̸= j.

Reasoning as in Step 2 of the proof of Theorem 3 (see Section 5) one obtains an
isotopy between the braid B(Y⊕) associated to Y⊕, and the braid B(Y⊖) associated
to Y⊖ = ∪

κ ∈ Spec(Ỹ⊕) ∪nκ
i=1 {σκ

f(i)}. □
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6.2. Proof of Theorem 1 in case Σ has positive genus and the elements of
Y⊕ are contractible.

Proof. —
Step 1. — We define Spec(Y⊕) := ∪1⩽ i⩽ kAH⊕(γi). For each number κ ∈ Spec(Y⊕)

we denote by Yκ
⊕ ⊂ Y⊕ the subset of elements of Y⊕ whose action is κ. We denote

by nκ the cardinality of Yκ
⊕. We denote by {γκ

1 , . . . , γ
κ
nκ

} the elements of Yκ
⊕.

We find the maps fκ : {1, . . . , nκ} → {1, . . . , mκ} and gκ : {1, . . . , nκ} →
{1, . . . , nκ} as in Step 1 of the proof of Theorem 3. We then find the periodic orbits
σκ
f(i) of H⊖.
Following the same reasoning in Step 3 of Section 6.1 we construct the cylinders

U
κ

i : [0, 2M ] × S1 → [0, 2M ] × S1 × Σ,

and
W κ

i : [0, 2M ] × S1 → Σ.

We will show that the cylinders Uκ
i and U

κ′

j are disjoint if either κ ̸= κ′ or i ̸= j.
Once we establish this, the Theorem will follow by a reasoning identical to the one
in Step 2 of the proof of Theorem 3 (presented in Section 5).

Step 2. — We fix natural numbers κ, κ′, i, j, and let either κ ̸= κ′ or i ̸= j. As
explained in Section 6.1 the intersection points of Uκ

i and Uκ′

j always count positively.
Therefore Uκ

i and Uκ′

j are disjoint if, and only if, their algebraic intersection number
is 0.

We reason by contradiction assuming that Uκ
i and U

κ′

j intersect. Let Σ̃ be the
universal covering of Σ: this induces an obvious covering [0, 2M ]×S1 ×Σ̃ of [0, 2M ]×
S1 × Σ. It also induces an obvious covering S1 × Σ̃ of S1 × Σ.

We can thus find lifts Ũκ
i (0) : [0, 2M ] × S1 → [0, 2M ] × S1 × Σ̃ and Ũκ′

j (0) :
[0, 2M ] × S1 → [0, 2M ] × S1 × Σ̃ of these cylinders to the covering [0, 2M ] × S1 →
[0, 2M ] ×S1 × Σ̃ of [0, 2M ] ×S1 → [0, 2M ] ×S1 × Σ, which intersect each other. The
existence of these lifts uses the fact that Uκ

i and U
κ′

j are asymptotic to contractible
periodic orbits of H⊕: if the orbits were non-contractible the lifts would not exist.

Associated to the covering Σ̃ of Σ there is the group Γ of deck transformations on Σ̃.
The group Γ is also the group of deck transformations of the covering [0, 2M ]×S1 ×Σ̃
of [0, 2M ] × S1 × Σ, and of the covering S1 × Σ̃ of S1 × Σ.

We denote by ξ⊕
κ,i the knot in S1 × Σ given by

ξ⊕
κ,i :=

{
(t, γκ

i (t)
∣∣∣ t ∈ S1

}
.

In an identical way we define ξ⊕
κ′,j.

The cylinder Ũκ
i (0) is negatively asymptotic to a lift ξ⊕

κ,i(0) of ξ⊕
κ,i in S1 × Σ̃. It is

positively asymptotic to a lift ξ⊕
κ,i(1) of ξ⊕

κ,i in S1 × Σ̃.
Let T κ

i ∈ Γ be the deck transformation such that

T κ
i

(
ξ⊕

κ,i(0)
)

= ξ⊕
κ,i(1).
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We now define for each l ∈ Z
(6.1) ξ⊕

κ,i(l) = (T κ
i )l (ξ⊕

κ,i(0)),
and
(6.2) Ũκ

i (l) = (T κ
i )l

(
Ũκ

i (0)
)
.

It is clear that Ũκ
i (l) is negatively asymptotic to ξ⊕

κ,i(l− 1) and positively asymptotic
to ξ⊕

κ,i(l).
Using Ũκ′

j (0) we define in a similar way T κ′
j and the sequence of lifts ξ⊕

κ′,j′(l) and
Ũκ′

j (l) for l ∈ Z.
Step 3. — Since Σ is a surface of positive genus its universal cover Σ̃ is diffeo-

morphic to the plane. We can thus consider the lifts of ξ⊕
κ,i and of ξ⊕

κ′,j to S1 × Σ̃
as braids on the plane, and define the crossing number Cross of a pair of braids
as in [GVW15, Section 5]. Using positivity of intersections the authors showed
in [GVW15, Lemma 5.4] that because Ũκ

i (0) and Ũκ′
j (0) have positive intersection

number, the crossing numbers of Cross(ξ⊕
κ,i(0), ξ⊕

κ′,j(0)) and Cross(ξ⊕
κ,i(1), ξ⊕

κ′,j(1))
satisfy

(6.3) Cross
(
ξ⊕

κ,i(0), ξ⊕
κ′,j(0)

)
> Cross

(
ξ⊕

κ,i(1), ξ⊕
κ′,j(1)

)
.

Moreover using the fundamental [GVW15, Lemma 5.4] we obtain the following
fact:

Fact 6.4. — If Ũκ
i (0) and Ũκ′

j (0) intersect, then

Cross
(
ξ⊕

κ,i(l − 1), ξ⊕
κ′,j(l − 1)

)
> Cross

(
ξ⊕

κ,i(l), ξ⊕
κ′,j(l)

)
.

If Ũκ
i (0) and Ũκ′

j (0) do not intersect, then

Cross
(
ξ⊕

κ,i(l − 1), ξ⊕
κ′,j(l − 1)

)
= Cross

(
ξ⊕

κ,i(l), ξ⊕
κ′,j(l)

)
.

We conclude from this fact that the sequence (Cross(ξ⊕
κ,i(l), ξ⊕

κ′,j(l)))l ∈Z is a non-
increasing sequence of integers.

Endow Σ with an auxiliary Riemannian metric g and let g̃ be the induced metric
on the universal cover Σ̃. Take a Riemannian metric g0 on S1 and consider g′ to
be the product metric of g0 and g̃ on S1 × Σ̃. This Riemannian metric induces a
distance function d on S1 × Σ̃ which we will fix from now on. Remark that Γ acts
on S1 × Σ̃ by isometries.

Fix a lift ξ̃⊕
κ,i. There are only finitely many lifts of ξ̃⊕

κ′,j to S1 × Σ̃ which have
non-zero crossing number with ξ̃⊕

κ,i. The reason for this is that for a lift of ξ̃⊕
κ′,j to

have non-zero crossing number with ξ̃⊕
κ,i, its projection to the plane Σ̃ must intersect

the projection of ξ̃⊕
κ,i to Σ̃: clearly, there are only finitely many lifts of ξ̃⊕

κ′,j with this
property. It follows that there exists a constant D > 0 such that any lift ξ̃ of ξ⊕

κ′,j

such that d(ξ̃⊕
κ,i, ξ̃) > D satisfies

Cross
(
ξ̃⊕

κ,i, ξ̃
)

= 0.
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Because Γ acts by isometry we obtain that this constant D does not depend on
the lift of ξ⊕

κ,i. This gives us the following fact:

Fact 6.5. — There exists a constant D > 0 such that if ξ̂κ,i is a lift of ξ⊕
κ,i and

ξ̂κ′,j is a lift of ξ⊕
κ′,j such that d(ξ⊕

κ′,j, ξ̂κ′,j) > D then

Cross
(
ξ̂κ,i, ξ̂κ′,j

)
= 0.

The next fact follows easily from the observation above that there are only finitely
many lifts of ξ̃⊕

κ′,j to S1 × Σ̃ which have non-zero crossing number with ξ̃⊕
κ,i.

Fact 6.6. — Given any lift ξ̃⊕
κ,i of ξ⊕

κ,i we have

max
{∣∣∣Cross

(
ξ̃⊕

κ,i, ξ̃
)∣∣∣ ∣∣∣ ξ̃ is a lift of ξ⊕

κ′,j

}
< +∞.

Step 4. — We now have to deal with two cases:
(A) The deck transformations T κ

i and T κ′
j do not coincide.

(B) The deck transformations T κ
i and T κ′

j coincide.
We start treating the case (A).

Case (A): Since T κ
i and T κ′

j do not coincide, we can find a positive integer N > 0
such that

d
(
(T κ

i )l
(
ξ⊕

κ,i(0)
)
, (T κ′

j )l
(
ξ⊕

κ′,j(0)
))

> D for all l ⩾ N,

and
d
(

(T κ
i )l

(
ξ⊕

κ,i(0)
)
,
(
T κ′

j

)l (
ξ⊕

κ′,j(0)
))

> D for all l ⩽ −N,

where D > 0 is the constant given by Fact 6.5.
In particular, we conclude that

Cross
(
ξ⊕

κ,i(N), ξ⊕
κ′,j(N)

)
= Cross

(
ξ⊕

κ,i(−N), ξ⊕
κ′,j(−N)

)
= 0.

But, as observed above, Fact 6.4 implies that the sequence (Cross(ξ⊕
κ,i(l), ξ⊕

κ′,j(l)))l∈Z
is a non-increasing sequence of integers. We conclude that for every integer −N ⩽
p ⩽ N we have

Cross
(
ξ⊕

κ,i(p), ξ⊕
κ′,j(p)

)
= 0.

But this is in contradiction with (6.3) which we derived from the fact that Ũκ
i (0)

and Ũκ′
j (0) have positive intersection number. This concludes the proof in case (A).

Case (B): In this case we let T := T κ
i = T κ′

j . Since Ũκ
i (0) and Ũκ′

j (0) have positive
intersection the same is true for Ũκ

i (l) = T l(Ũκ
i (0)) and T l(Ũκ′

j (l)) for all l ∈ Z.
[GVW15, Lemma 5.4] then implies that for all l ∈ Z

(6.4) Cross
(
ξ⊕

κ′,j(l − 1), ξ⊕
κ′,j(l − 1)

)
> Cross

(
ξ⊕

κ′,j(l), ξ⊕
κ′,j(l)

)
.

It is then clear that the sequence (Cross(ξ⊕
κ,i(l), ξ⊕

κ′,j(l)))l ∈Z is unbounded. But
this is in contradiction with Fact 6.6. This establishes the theorem in case (B), and
concludes the proof of Theorem 1 under the hypothesis the Σ has positive genus and
Y⊕ is formed by contractible 1-periodic orbits of H⊕. □
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6.3. Proof of Theorem 1 in case Σ has genus ⩾ 2 and the elements of Y⊕
are non-contractible.

Proof. — The proof in this case is identical to the proof of Theorem 3. The reason
for this is that if γ is a non-contractible loop in Σ then any cylinder in Σ which is
both positively and negatively asymptotic to γ is homotopic to the trivial cylinder
over γ: this is the case because Σ is atoroidal since it has genus ⩾ 2.

We use the same notation as in the proof of Theorem 3. We then construct for
each κ ∈ Spec(Y⊕) and i ∈ {1, . . . , nκ} the cylinder Uκ

i as in the proof of Theorem 3
and obtain from the previous observation that it is homotopic to the trivial cylinder
U

κ,i

triv : [0, 2M ] × S1 → [0, 2M ] × S1 × S2 defined by

U
κ,i
triv(s, t) = (s, t, γκ

i (t)).
Once this is obtained the proof of the present case of Theorem 1 follows the arguments
presented in Step 2 of the proof of Theorem 3 (presented in Section 5). □

6.4. Proof of Theorem 1 in case Σ = T 2 and the elements of Y⊕ are
non-contractible.

Proof. — The proof in this case is similar to the one presented in Section 6.1 for
the case Σ = S2. Namely, we cannot guarantee by purely topological reasons that
the cylinder Uκ

i is homotopic to the trivial cylinder Uκ,i
triv among cylinders which are

positively and negatively asymptotic to γκ
i , since T 2 is toroidal.

However, using an argument identical to the one presented in Step 3 of Section 6.1,
we can show that if [Cylγκ

i
] is a choice of capping for γκ

i , then the cylinder W κ
i (which

is the projection of Uκ
i to T 2) is a cylinder from (γκ

i , [Cylγκ
i
]) to itself. It follows from

this that W κ
i represents the trivial element in π1(Ω[γκ

i ](T 2, γκ
i )), where Ω[γκ

i ](T 2, γκ
i )

is the connected component of the loop space of T 2 that contains γκ
i . We conclude

that W κ
i is homotopic to the trivial cylinder W κ,i

triv over γκ
i . Lifting this homotopy

we obtain the desired homotopy between U
κ
i and the trivial cylinder Uκ,i

triv among
cylinders which are positively and negatively asymptotic to γκ

i . Once this is obtained,
the proof is completed by using the argument of Step 2 of the proof of Theorem 5
(presented in Section 5). □

7. A variant of Theorems 1 and 2
We explain in this section why the assumption of the orbits to be 3ϵ-isolated in the

main theorems can be replaced by a slightly weaker but more technical assumption
of being 3ϵ-quasi-isolated. (In fact the proof will show that it is enough to assume
that the orbits are 2ϵ-quasi-isolated.)

Theorem 7.1 (Theorem 1*). — The statement in Theorem 1 holds true if the
assumption that Y⊕ is 3ϵ-isolated is replaced by the assumption that Y⊕ is 3ϵ-
quasi-isolated for some pair (H⊕, J⊕), where J⊕ is a S1-family of compatible almost
complex structures.
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Theorem 7.2 (Theorem 2*). — The statement in Theorem 2 holds true if the
assumption that Y⊕ is 3ϵ-isolated is replaced by the assumption that Y⊕ is 3ϵ-
quasi-isolated for some pair (H⊕, J⊕), where J⊕ is a S1-family of compatible almost
complex structures.

The proofs of Theorems 1 and 2 also apply here with small modifications.
Proof of Theorem 7.2. — Let ϕ⊕, H⊕, Y⊕ and J⊕ as in the theorem for some ϵ > 0,

and let ϕ⊖ be a non-degenerate Hamiltonian diffeomorphism with dHofer(ϕ⊖, ϕ⊕) < ϵ.
As in the proof of Theorem 2 one writes Y⊕ as a disjoint union of sets Yκ

⊕ of orbits
γ ∈ Y⊕ with AH⊕(γ) = κ. One then considers for each κ with Yκ

⊕ ̸= ∅ the Z2-
vector space BYκ

⊕
generated by Yκ

⊕ as subcomplexes of CF (κ−2ϵ,κ+2ϵ)(H⊕), as done
in Section 3.1.3. Proposition 3.7 gives then H⊖ generating ϕ⊖ and homomorphisms
ΨY

G : BYκ
⊕

→ CF (κ−ϵ,κ+ϵ)(H⊖) and ΨY
Ĝ

: CF (κ−ϵ,κ+ϵ)(H⊖) → BYκ
⊕

, with ΨY
Ĝ

◦ ΨY
G = id.

One then can proceed in the same way as in the proof of Theorem 2, using the
maps ΨY

G and ΨY
Ĝ

instead of the maps ΨG and Ψ
Ĝ

. Note that the condition that
|AH⊕(γ) − AH⊕(γ′)| /∈ (0, 2ϵ) for γ, γ′ ∈ Y⊕ guarantees that the first part of Claim 2
in the proof of Theorem 2 will again hold. □

Proof of Theorem 7.1. — Here again, the proof of Theorem 1 applies with the same
small modification. Instead of the homomorphisms ΨG and Ψ

Ĝ
that are guaranteed,

for an 3ϵ-isolated set of orbits with the same action, by Proposition 3.1 (Σ is a closed
surface) resp. Proposition 3.10 (Σ = S2), one uses the homomorphisms ΨY

G and ΨY
Ĝ

that are given in Proposition 3.4 resp. Proposition 3.11, for an 3ϵ-quasi-isolated set
of orbits of the same action. □

8. Proof of Theorem 2.5

In this section we deduce Theorem 2.5 from Theorems 7.1 and 7.2.
We start with the following proposition. Consider first Σ to be a closed surface. And

let H : Σ × S1 → R be a normalized Hamiltonian, and ϕ = ϕ1
H the diffeomorphism

generated by H. Let Y = {γ1, . . . , γk} be a collection of pairwise freely homotopic,
non-degenerate 1-periodic orbits for H.

Proposition 8.1. — There are open disks Ui ⊂ Σ, i = 1, . . . , n with γi(0) ∈ Ui,
i = 1, . . . , k, ε′ > 0, a non-degenerate Hamiltonian H ′ that generates a diffeomor-
phism ϕ′ = ϕ1

H′ , and a S1-family of compatible almost complex structures J ′ = J ′
t

with the property that
• dHofer(ϕ′, ϕ) < ε′,
• ϕ′|Ui

= ϕ|Ui
, i = 1, . . . , k,

• Y is 6ε′- quasi-isolated for (H ′, J ′).

Proof. — Note that the orbits in Y are topologically isolated among all the 1-
periodic orbits forH. It is a variant of the standard argument for the genericity of non-
degenerate Hamiltonian diffeomorphisms that for sufficiently small neighbourhoods
Vi of {(t, γi(t)) | t ∈ S1} in S1×Σ, there is a sequence of non-degenerate Hamiltonians
Hj : S1×Σ → R, j ∈ N, with Hj|Vi

= H|Vi
, for all i = 1, . . . , k, j ∈ N, and such that
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Hj converge toH in C∞. We may choose the Vi such that Ui := pr2(Vi∩({0}×Σ)) ⊂ Σ
are discs, where pr2 is the projection to the second coordinate, and such that γi(0)
is the only point z ∈ Ui with ϕ(z) = z. We can choose a sequence Jj, j ∈ N,
of S1-families of compatible almost complex structures on Σ such that the pairs
(Hj, Jj) are regular, and such that Jj converges with all derivatives to a S1-family
of compatible almost complex structures J .

We claim that there is ε′ > 0 and j ∈ N, such that H ′ := Hj and J ′ = Jj satisfy
the asserted properties from the proposition. The condition a) in the definition of
ε′-quasi-isolation is clearly satisfied for any sufficiently small ε′, hence if the above
does not hold, then one can pass to a subsequence of Hj for which there are non-
constant uj : R × S1 → M that satisfy FHj ,Jj

(uj) = 0 such that uj are positive
or negative asymptotic to some γi, and for which E(uj) → 0. Here the energies
of uj are defined with respect to Jj. Without loss of generality and by passing to
a further subsequence we may assume that uj are all negatively asymptotic to γi0

for some fixed i0 ∈ {1, . . . , k}. For any non-constant Floer trajectory, the periodic
orbits that appear as its negative and positive asymptotics do not coincide, so for
any j ∈ N, uj is positively asymptotic to some 1-periodic orbit for Hj which is
different from γi0 . It follows that there is sj such that uj(sj, 0) lies in the boundary
∂Ui0 of Ui0 . We may assume that sj = 0 for all j ∈ N, and, by passing to a further
subsequence, that uj(0, 0) converges to some x0 ∈ ∂Ui0 . The first derivatives of uj are
uniformly bounded. Otherwise, by a bubbling-off argument, since E(uj) → 0, one
will find a non-constant holomorphic sphere with zero energy, a contradiction. With
this, one proves, as it is standard in Floer theory, that up to a further subsequence,
(uj)j∈N uniformly converges with all their derivatives on compact subsets. Any limit
curve will satisfy FH,J(u) = 0, E(u) = 0. In particular for such u we have that
lims→∞ u(s, t) = lims→−∞ u(s, t) is a periodic orbit for H. But by the above we in
particular find such u with u(0, 0) = x0 ∈ ∂Ui0 , which contradicts the fact that
ϕ(z) ̸= z for all z ∈ ∂Ui0 . □

We have the following variant of the above proposition. For that consider Σ = D.
Let c = 0 or c ∈ R \ Q. Let H ∈ Hc(D) and ϕ ∈ Hamc(D) generated by H. Let
Y = {γ1, . . . , γk} be a collection of non-degenerate 1-periodic orbits for H. For
0 < ρ < 1 we denote by D1−ρ the set {(r, θ) ∈ D | 1 − ρ > r ⩾ 0}, where (r, θ) denote
the polar coordinates.

Proposition 8.2. — There are open disks Ui ⊂ D, i = 1, . . . , n with γi(0) ∈ Ui,
i = 1, . . . , k, and ε′ > 0, c′ ∈ R \ Q, ρ0 > 0 such that for each 0 < ρ < ρ0
there is a non-degenerate Hamiltonian H ′ ∈ Hc′(D) that generates a diffeomorphism
ϕ′ = ϕ1

H′ ∈ Hamc′(D), and there is a S1-family of compatible almost complex
structures J ′ = J ′

t with the property that
• dC2(H|D1−ρ , H

′|D1−ρ) < ε′,
• ϕ′|Ui

= ϕ|Ui
, i = 1, . . . , k,

• there are no periodic orbits of ϕ′ in D \ D1−ρ,
• Y is 6ε′- quasi-isolated for (H ′, J ′).

Proof. — If c ∈ R \Q we can choose c′ = c and the proof is a repetition of that of
Proposition 8.1. Let now c = 0. Since the orbits in Y are non-degenerate, they are
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contained in the interior of the support of H. Hence we can find for a sufficiently
small irrational number c′ > 0, sets Ui, i = 1, . . . , k, and a sequence Hj ∈ Hc′(D)
with

dC2

Hj

∣∣∣∣D1− 1
j

, H
∣∣∣∣
D1− 1

j

 → 0

as j → ∞, and that coincide with H on a sufficiently small neighbourhood of the
suspension of γ1, . . . , γk, and we can find a sequence of compatible almost complex
structures Jj such that the pairs (Hj, Jj) are regular, and such that Jj converges to
a compatible almost complex structure J . We can additionally assume that there
are no 1-periodic orbits for Hj in the complement of D1− 1

j
.

Now, similarly as above, we claim that there is ε′ > 0 and j0 ∈ N, such that for
all j > j0, Y is 6ε′- quasi-isolated for (Hj, Jj). If this is not the case then there is
subsequence of Hj and a sequence of uj : R × S1 → R2 such that FHj ,Jj

(uj) = 0,
E(uj) → 0, and w.l.o.g uj are all negative asymptotic to γi0 for some fixed i0 ∈
{1, . . . , k}. As before, this gives rise to a contradiction. □

Proof of Theorem 2.5. — We start with the case that Σ is a closed surface. Let
H⊕, ϕ⊕, Y⊕ = {γ1, . . . , γk} be given as in the theorem.

We apply Proposition 8.1 with H = H⊕, Y = Y⊕, and obtain ε′ as well as a
Hamiltonian H ′ and a S1-family of compatible almost complex structures J ′, such
that the conclusions of the proposition hold for ε′, J ′, H ′ and Y .

Apply now Theorem 7.1 with H⊕ = H ′, J⊕ = J ′, Y⊕ = Y ϵ = 2ε′. Since any
ball B ∈ Ham(Σ, ω) of radius 2ε′ with a center that lies in the ball B′ of radius ε′

contains B′, the conclusion of Theorem 7.1 imply now Theorem 2.5 in the case of
closed surfaces.

Let now Σ = D, let c = 0 or c ∈ R \Q. Let H⊕ ∈ Hc(D) be non-degenerate and
ϕ⊕ generated by H⊕. Let Y⊕ be a collection of non-degenerate 1-period orbits for
H⊕. We apply Proposition 8.2 with H = H⊕, Y = Y⊕ and obtain ε′ > 0, c′ ∈ R \Q,
and ρ0 > 0, such that for each 0 < ρ < ρ0 there is a pair (H ′, J ′) such that the
conclusions of the proposition hold. Note that we can choose c = c′ if c ̸= 0.

Let ϕ ∈ Hamc(D) be non-degenerate in its support with dHofer(ϕ, ϕ⊕) < ϵ′. Fix
H ∈ Hc(D) that generates ϕ. By a sufficiently C2-small approximation of H we can
find a non-degenerate Hamiltonian H⊖ ∈ Hc′(D) that generates a diffeomorphism
ϕ⊖ ∈ Hamc′(D) such that F (t, p) := H⊖(t, (ϕt

⊕)(p))−H⊕(t, (ϕt
⊕)(p)) (which generates

ϕ−1
⊕ ◦ ϕ⊖) satisfies

∫ 1
0 (maxFt − minFt) dt < ϵ′, and that all 1-periodic orbits for H⊖

are also 1-periodic orbits for H. In particular we have dHofer(ϕ⊖, ϕ⊕) < ϵ′.
Now apply Theorem 7.2 with ϵ = 2ϵ′, and H⊕ = H ′, J⊕ = J ′, Y⊕ = Y, and note

that one can choose in the conclusions of the theorem H⊖ as above. Hence we obtain
a collection of non-degenerate 1-periodic orbits Y⊖ such that

B(Y⊖) is freely isotopic as a braid to B(Y⊕).

Since all 1-periodic orbits for H⊖ are already 1-periodic orbits for H, the conclusion
follows. □
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Appendix A. Combinatorial lemma

In this appendix we prove Lemma 5.1. For the convenience of the reader we restate
it here.

Lemma 5.1. — Let V and R be finite dimensional Z2-vector spaces whose di-
mensions we denote by n and m, respectively. Let {v1, . . . , vn} and {r1, . . . , rm}
be bases of respectively V and R, and F : V → R and G : R → V be linear maps
such that G ◦ F is an isomorphism. Then, it is possible to find an injective map
f : {1, . . . , n} → {1, . . . , m} and a bijective map g : {1, . . . , n} → {1, . . . , n} such
that for each i ∈ {1, . . . , n}:

• the element rf(i) appears in F(vi), and the element vg(i) appears in G(rf(i)).

We introduce the following terminology, which is compatible with the definition
given in Section 5. Given a vector space V over a field K of dimension n and a basis
{e1, . . . , en} of V we say that an element ej of the basis {e1, . . . , en} appears in an
element v ∈ V if λj ̸= 0 when we write v as ∑n

i=1 λiei, with λi ∈ K, i = 1, . . . , n.
To prove Lemma 5.1 we need the following preliminary lemma.

Lemma A.1. — Let n ⩾ 1, k ⩾ 0. Let A be an (n + k)-dimensional vector
space with basis e1, . . . , en+k. Let w1, . . . , wn ⊂ A be linearly independent vectors
of A and let W be the linear subspace generated by w1, . . . , wn. Let Z ⊂ A be
any k-dimensional linear subspace that is transverse to W , i.e. W ∩ Z = {0} and
Z ⊕W = A.

Then there is an injective function ι : {1, . . . , n} → {1, . . . , n+ k} such that
(1) eι(j) appears in wj, for all j = 1, . . . , n,
(2) Z is transverse to the n-dimensional linear subspace L generated by eι(1), . . . ,

eι(n).

Proof. — We give a proof by induction on n. We start with the case n = 1, k ⩾ 0.
By assumption, w = w1 /∈ Z, and hence there is a basis vector ei1 of {e1, . . . , en+k}
that appears in w and that does not lie in Z. Therefore, the subspace L generated
by ei1 is transverse to Z. This yields the statement of the lemma for n = 1, k ⩾ 0.

Assume now that the statement holds for some n0 ⩾ 1, k0 ⩾ 0. Let n = n0 + 1,
k = k0, and let A, {e1, . . . , en+k}, w1, . . . , wn, and Z satisfy the assumptions in the
lemma. Consider the (n+k−1)-dimensional subspaceQ = ⟨{w1, . . . , wn−1}⟩⊕Z ⊂ A,
where we write ⟨X⟩ for the linear subspace generated by a finite subset X ⊂ A. We
have wn /∈ Q, and hence, as above, there is a basis vector ein of {e1, . . . , en+k}
that appears in wn and does not lie in Q. Let Ai0 := ⟨{e1, . . . , en+k} \ {ein}⟩
and let π : A → Ain be the linear projection that maps ein to 0. We consider
Z ′ := π(Z) and w′

i := π(wi) for i = 1, . . . , n− 1. Let W ′ := ⟨{w′
1, . . . , w

′
n−1}⟩. Since

ein /∈ Q, Z ′ is k-dimensional and W ′ is (n − 1)-dimensional. Note also, that Z ′ is
transverse to W ′ in Ain . By the induction hypothesis, there is an injective function
ι′ : {1, . . . , n− 1} → {1, . . . , n + k} \ {in} such that, with respect to the vector
space Ain with basis {e1, . . . , ek+n} \ {ein},

• eι′(j) appears in w′
j, for all j ∈ {1, . . . , n− 1},

• Z ′ is transverse to L′ = ⟨{eι′(1), . . . , eι′(n−1)}⟩.
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It follows from the construction that eι′(j) also appears in wj, for all j ∈ {1, . . . ,
n− 1}, now with respect to A with basis {e1, . . . , en+k}. Moreover, Z is transverse
to L := L′ ⊕ ⟨{ein}⟩ in A.

Define ι : {1, . . . , n} → {1, . . . , n+ k} by

ι(i) =

ι′(i), if i = 1, . . . , n− 1,
in, if i = n.

By the above, the conclusion of the lemma holds for ι and so the induction step is
complete. □

We now apply Lemma A.1 to prove Lemma 5.1.
Proof of Lemma 5.1. — By the hypothesis of the lemma, it is clear that F is

injective and thus m ⩾ n. Apply first Lemma A.1 with A = R, w1 = F(v1), . . . , wn =
F(vn), and Z = ker(G). This gives an injective map f : {1, . . . , n} → {1, . . . , m}
with rf(i) appearing in F(vi) and such that in particular rf(1), . . . , rf(n) generate a
subspace L that is transverse to the kernel of G, and hence G|L : L → V is an
isomorphism.

Apply Lemma A.1 again, now with A = V and w1 = G(rf(1)), . . . , wn = G(rf(n)),
and Z = {0}. This gives g : {1, . . . , n} → {1, . . . , n} bijective, such that vg(i)
appears in G(rf(i)). □

Appendix B. Approximation of entropy by the entropy of
braid types

Let φ : Σ → Σ be a diffeomorphism on a compact surface Σ, P a periodic orbit and
P ⊂ Σ the associated set of periodic points. Then Γπ1([φ,P]) denotes the growth
rate of the induced action of φ on the fundamental group of Σ \ P , see Section 1.4.
Also recall that Γπ1([φ,P ]) ⩽ htop(φ).

The aim of this section is to give a proof of the following result.
Theorem B.1. — Let Σ be a compact surface, and let φ : Σ → Σ be a diffeo-

morphism such that h := htop(φ) > 0. Then, for any ϵ > 0 there is a hyperbolic
periodic orbit P of φ such that Γπ1([φ,P ]) > h− ϵ.

This is a variant of a celebrated result of Katok first announced in [Kat84], see
also [KH95, Supplement], about the approximation of the topological entropy by
the entropies on locally maximal hyperbolic invariant sets on which the dynamics is
conjugated to a subshift of finite type, and in fact the orbits P of Theorem B.1 can
be found inside those sets. To our knowledge there is no proof of Theorem B.1 in the
literature, so we include it here. In [FH88] it was proved that there is a collection of
orbits for which the exponential growth of φ relative to it is positive. We apply the
strategy in [FH88] to the hyperbolic horseshoes that arise from Katok and Mendoza’s
results in [KH95, Supplement].

We recall relevant results from [KH95, Suppl.] which are applications of the theory
of non-uniformly hyperbolic dynamics, or Pesin theory, and we refer also to [BP07]
and references therein. Consider a φ-invariant ergodic Borel probability measure µ
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on Σ and assume it is hyperbolic, i.e. its Lyapunov exponents satisfy χ1 < 0 < χ2.
See [KH95, Suppl., Section 2] for the definition and existence of Lyapunov exponents
of the measure µ, and important properties. It is shown that for almost every x ∈ Σ
there are so-called Lyapunov charts ψx : B(0, r(x)) ⊂ R2 → Σ for x, r(x) > 0,
with respect to which the dynamics has uniformly hyperbolic behaviour. This can
be expressed with the notion of admissible stable and unstable manifolds, defined
locally in these charts, and which are locally preserved by φ. In order to do that
one restricts ψx to [−κ, κ]2 for sufficiently small(6) κ > 0 and considers the regular
rectangles R(x, κ) = ψx([−κ, κ]2) in Σ. We denote the left boundary of R by ∂lR given
by ∂lR = {ψx(−κ, s) | s ∈ [−κ, κ]} and denote the right, bottom and top boundaries
of R = R(x, κ) by ∂rR, ∂bR, and ∂tR, respectively, which are defined analogously.
Let γ ∈ (0, 1). A submanifold W ⊂ R(x, κ) is called an admissible stable (γ, κ)-
manifold near x if W = ψx({(ϕ(v), v) | v ∈ [−κ, κ]}), where ϕ : [−κ, κ] → [−κ, κ] is
a C1-map with ϕ(0) ⩽ κ/4 and |Dϕ| ⩽ γ. Analogously W ⊂ R(x, κ) is called an
admissible unstable (γ, κ)-manifold near x if W = ψx({(u, ϕ(u)) | v ∈ [−κ, κ]}, where
ϕ : [−κ, κ] → [−κ, κ] is a C1-map with ϕ(0) ⩽ κ/4 and |Dϕ| ⩽ γ. Admissible stable
and unstable (γ, κ)-manifolds near x intersect in exactly one point in R(x, κ) with
angle bounded away from zero and so they endow R(x, κ) with a product structure.
Moreover one defines admissible unstable (stable) rectangles as sets bounded by two
admissible unstable (stable) manifolds. That is, an admissible stable (γ, κ)-rectangle
in R(x, κ) is a set of the form V = ψx(V ′), V ′ = {(u, v) ∈ [−κ, κ]2 |u = (1−τ)ϕ1(v)+
τϕ2(v), τ ∈ [0, 1]}, where the left boundary ∂lV := ψx({(ϕ1(v), v) | v ∈ [−κ, κ]} and
the right boundary ∂rV := ψx({(ϕ2(v), v) | v ∈ [−κ, κ]} are two admissible unstable
(γ, κ)-manifolds near x for which ϕ1(v) < ϕ2(v) for all v ∈ [−κ, κ]. Analogously,
define admissible stable (γ, κ)-rectangles H in R(x, κ) with bottom (top) boundaries
∂bH (∂tH). We define ∂bV = ∂bR(x, κ) ∩ V , ∂tV = ∂tR(x, κ) ∩ V , and similarly ∂lH
and ∂rH. The following statement asserts the existence of rectangular covers and
hyperbolic properties of ϕ on those rectangles.

Proposition B.2 ([KH95, Theorem S.4.16]). — For every δ > 0 and ρ > 0 there
is a compact set Λδ with µ(Λδ) > 1 − δ, and constants β > 0, κ > 0, γ ∈ (0, 1) and
regular rectangles R(x1) = R(x1, κ), R(x2) = R(x2, κ), . . . , R(xt) = R(xt, κ), t ∈ N,
for some x1, . . . , xt ∈ Λδ, such that

(1) Λδ ⊂ ⋃t
i=1 B(xi, β) with B(xi, β) ⊂ intR(xi)

(2) diamR(xi) ⩽ ρ/3 for i = 1, . . . , t
(3) If y ∈ Λδ, φ

n(y) ∈ Λδ for some n > 0, y ∈ B(xi, β), and fn(y) ∈ B(xj, β),
then the connected component V of R(xi) ∩ f−n(R(xj)) containing y is an
admissible stable (γ, κ)-rectangle near xi and H = fn(V ) is an admissible
unstable (γ, κ)-rectangle near xj.

(4) diamfk(V ) < ρ for all 0 ⩽ k ⩽ n.

In (3) above we have that the union (∂lV ∪ ∂rV ) map to the union of (∂lH ∪ ∂rH),
etc.

(6)The number κ > 0 depends on the point x, but we will omit this from now on to simplify the
notation.
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Assume that hµ(φ) > 0. One can show now the following, see [KH95, Theo-
rem S.5.9] and its proof.

Proposition B.3. — Let δ > 0, ρ > 0 and choose the constants β, κ, γ, the
set Λδ and rectangles R(x1), . . . , R(xt) as in Proposition B.2. Then for any ϵ1 > 0
sufficiently small there is an unbounded set N ⊂ N such that for all n ∈ N there
is x ∈ {x1, . . . , xt}, and M > en(hµ(φ)−ϵ1) disjoint admissible stable (γ, κ)-rectangles
V1, . . . , VM near x that are mapped as in (3) above by φn to M admissible unstable
(γ, κ)-rectangles H1, . . . , HM near x.

Moreover,
ΛM =

⋂
k ∈Z

(
φkn(V1) ∪ · · · ∪ φkn(VM)

)
is a locally maximal hyperbolic invariant set with respect to φn, and φn|ΛM

is
topologically conjugate to a full two-sided shift in the symbolic space of M symbols.
In particular, htop(φn|ΛM

) > n(hµ(φ) − ϵ1).

Note that it follows from the variational principle, the ergodic decomposition the-
orem and Ruelle’s inequality that one can approximate htop(φ) by hµ(φ) of such
measures µ as considered above, and the conclusions of Proposition B.3 imply approx-
imation of the topological entropy htop(φ) by the topological entropy of hyperbolic
horseshoes of φ.

The proof of Theorem B.1 will use the above results and a variant of arguments
of Franks and Handel in [FH88].

Proof of Theorem B.1. — Let ε > 0 and let µ be an invariant ergodic hyperbolic
measure with hµ(φ) > h − ϵ/3. Choose ε1 = ε/3. Let now N ⊂ N as in Propo-
sition B.3. Choose some n ∈ N with log(20)

n
< ε1. Let x ∈ {x1, . . . , xt} and M ,

V1, . . . , VM , H1, . . . , HM ⊂ R(x) as in Proposition B.3. We say that Hi is positively
oriented if φn(∂tVi) = ∂tHi and negatively oriented if φn(∂tVi) = ∂bHi. We say
that Hi lies below Hj in R(x), i ≠ j, if every path in R(x) from ∂bR(x) to ∂tR(x)
intersects first Hi.

For convenience we restrict to a subset V ′
1 , . . . , V

′
m of the admissible stable rectan-

gles V1, . . . , VM as well as a subset H ′
1, . . . , H

′
m of the admissible unstable rectangles

H1, . . . , HM , both of size m ⩾M/10 such that
• φn(V ′

i ) = H ′
i for i = 1, . . . , m.

• All rectangles H ′
1, . . . , H

′
m are either all positively oriented or all negatively

oriented.
• Either H ′

1 is below H ′
2, . . . , H

′
m and H ′

m is above H ′
1, . . . , H

′
m−1, or H ′

1 is
above H ′

2, . . . , H
′
m and H ′

m is below H ′
1, . . . , H

′
m−1.

That we can ensure the last condition, follows from the following observation.

Lemma B.4. — Let x1, . . . , xn be a sequence of n pairwise different natural
numbers. Then it has a subsequence of length ⩾ n

5 such that all elements of the
subsequence lie in the closed interval I whose boundary is given by the first and the
last element of that subsequence.

Proof. — Let i0, i1 ∈ {1, . . . , n} such that xi0 = min{xi | i = 1, . . . , n} and
xi1 = max{xi | i = 1, . . . , n}. We assume that i0 < i1, the other case is analogous.
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If i1 − i0 + 1 ⩾ n
5 , then the subsequence xi0 , xi0+1, . . . , xi1 satisfies the properties

claimed in the lemma. Otherwise, i0 > 2n
5 or n−i1 > 2n

5 . Note that any element of the
sequence lies in the interval [x1, xi1 ] or in the interval [xi0 , x1]. So if i0 > 2n

5 , [x1, xi1 ]
or [xi0 , x1] contains > n

5 elements from {x1, . . . , xi0}. Similarly, if n − i1 >
2n
5 , the

interval [xn, xi1 ] or the interval [xi0 , xn] contains > n
5 elements from {xi1 , . . . , xn}.

In all situations these elements form a subsequence as claimed. □

We now proceed with the argument for the case that all H ′
i are positively oriented,

H ′
1 is below H ′

2, . . . , H
′
m and H ′

m is above H ′
1, . . . , H

′
m−1. The other cases are treated

analogously. By abuse of notation we drop the symbol ′, and denote these rectangles
by V1, . . . , Vm and H1, . . . , Hm. Let Λn = ⋂

k∈Z(φkn(V1) ∪ · · · ∪ φkn(Vm)), and Σm

the set of bi-infinite sequences of m symbols. The map θ : Λn → Σm defined as
x 7→ (θ(x)k)k ∈Z, with θk(x) = j if φkn(x) ∈ Vj, provides a conjugation of φn with
the two-sided shift σm on Σm.

For any a0, . . . , ak−1 ∈ {1, . . . , m} we denote by (a0 · · · ak−1)∞ the k-periodic
orbit of σn in Σm that is given by an infinite repetition of a0 · · · ak−1 in positive and
negative direction. If we want to refer to a periodic point of that orbit, we say that
(aiai+1 · · · ak−1a0 · · · ai−1)∞ is the point that has ai at the 0th position. By abuse of
notation we denote the periodic orbits or points of φn in Λn that correspond to those
in Σm via θ also by the symbols (a0 · · · ak−1)∞ etc.

Consider the periodic orbit Q of φn given by

Q =
m−1∏

j=2
(mj1j1jmj)

∞

.

We write also Q as the orbit

(B.1)
(
q2

1, q
2
2, . . . , q

2
8, q

3
1, q

3
2 . . . , q

3
8, . . . , q

m−2
8 , qm−1

1 , qm−1
2 , . . . , qm−1

8

)
,

where the periodic point q2
1 is given in the symbolic expression by

q2
1 =

m−2∏
j=2

(1j1jmjm(j + 1))
 1(m− 1)1(m− 1)m(m− 1)m2

∞

,

and the other periodic points qj
l , j ∈ {2, . . . , m− 1}, l ∈ {1, . . . , 8}, accordingly via

cyclic permutations of the symbols. We note the following, which will be relevant
below: For any j ∈ {2, . . . , m− 1}

qj
1 ∈ V1 ∩Hj ∩ φn(Hm), qj

3 ∈ V1 ∩Hj ∩ φn(H1)
qj

5 ∈ Vm ∩Hj ∩ φn(H1), qj
7 ∈ Vm ∩Hj ∩ φn(Hm),

(B.2)

and

(B.3) qj
2, q

j
4, q

j
6, q

j
8 ∈ H1 ∪Hm.

We show below that

Proposition B.5. — Γπ1([φn,Q]) ⩾ log(m− 2).
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From the Proposition we obtain
Γπ1([φn,Q]) ⩾ log(m− 2) ⩾ log(M/20)

⩾ log
(
en(h−2ϵ1)

20

)
⩾ n(h− 2ϵ1) − log(20)

> n(h− ε).

(B.4)

The hyperbolic periodic orbit Q of φn of period 8(m−2) defines a hyperbolic periodic
orbit P of φ of period 8n(m − 2), with Q ⊂ P for the associated sets of Q and P.
Then Γπ1([φ,P]) = 1

n
Γπ1([φn,P]) ⩾ 1

n
Γπ1([φn,Q]) > h − ε, which will finish the

proof of Theorem B.1. □

Proof of Proposition B.5. — The proof is a variation of an argument from [FH88].
Identify the universal covering of Σ \ Q with the Poincaré disk H. This gives us a

choice of hyperbolic metric on Σ \ Q. Every proper arc in Σ \ Q, i.e. an arc α that
lies in Σ \ Q up to its endpoints and whose endpoints lie in Q, defines uniquely a
geodesic that traces a proper arc homotopic to α. Also, any closed curve γ in Σ \ Q
defines a closed geodesic in Σ \ Q freely homotopic to γ.

For any γ1 and γ2 that are either proper arcs or closed curves, denote by I(γ1, γ2)
their geometric intersection number, i.e. the minimal number of intersections of
curves γ′

1 and γ′
2, where γ′

1 and γ′
2 are homotopic to γ1 and γ2, respectively. Similarly,

we can define I(·, ·) for families of proper arcs resp. closed curves. We will below
consider a proper arc τ with endpoints in Q and a collection of proper geodesic arcs
E such that for all k ∈ N,

I(φkn(τ), E) ⩾ (m− 2)k.(B.5)

From this the Proposition will follow as in [FH88].
Let us introduce some terminology. Let S∞ the boundary at infinity of H. Every

geodesic in H has two endpoints in S∞. We say that a rectangle Q = (α1, α2, α3, α4)
in H∪S∞ with vertices in S∞ and adjacent edges α1, . . . , α4 is a geodesic rectangle
in H if α1, . . . , α4 are geodesics. We keep the information of the ordering of the
edges and say that the left vertical edge of Q is α1, the right vertical edge of Q is
α3 and the horizontal edges are α2 and α4. We say that a geodesic β in H intersects
Q horizontally from left to right if β intersects each of its vertical edges, first the
left and then the right vertical edge. We say that geodesic rectangle Q intersects Q′

horizontally from left to right if both horizontal edges of Q, parametrized from the
left vertical edges to the right vertical edges of Q, intersect Q′ horizontally from left
to right. We say that Q ≺ Q′, if there is a geodesic in H that first intersects Q and
then Q′ horizontally from left to right.

Let j ∈ {2, . . . , m − 1}. Writing Q as in (B.1), we let ej be a simple proper arc
from qj

1 to qj
3 in Hj ∩ V1, fj a simple proper arc from qj

3 to qj
5 in Hj ∩ φn(H1), gj a

simple proper arc from qj
5 to qj

7 in Hj ∩ Vm, and hj a simple proper arc from qj
7 to

qj
1 in Hj ∩ φn(Hm). The arcs ej, fj, gj, resp. hj, uniquely define homotopic simple

geodesic arcs êj, f̂ j, ĝj, resp. ĥj. Let L̂j be the rectangle formed by êj, f̂ j, ĝj, and
ĥj. By the choice of Q, see (B.2) and (B.3), the full rectangles L̂j are up to their
vertices completely contained in Σ \ Q, and hence can be lifted to H. Any lift L̃j
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of L̂j to H is a geodesic rectangle Q = (α1, . . . , α4) in H, where α1, α2, α3, α4 are
suitable lifts of êj, f̂ j, ĝj, ĥj, respectively. Note that any two lifts of L̂2, . . . , L̂m−1
to H are pairwise disjoint.

It is a theorem of Nielsen that any lift of φn|Σ\P to H extends to a homeomorphism
F on H ∪ S∞, and let F be such an extension. Let Q be a geodesic rectangle in H,
then the image F (Q) defines uniquely a geodesic rectangle [F (Q)] in H. Note that
the endpoints of φn(fi) and φn(hi) for i ∈ {2, . . . , m− 1} lie in Q ∩ (H1 ∪Hm). It is
now easy to verify that for all j ∈ {2, . . . , m− 1} there is an arc e′

j homotopic to ej

and an arc g′
j homotopic to gj such that for all i ∈ {2, . . . , m− 1}, φn(fi) intersects

both e′
j and g′

j in exactly one point, and the order of those intersections coincides
with the orientation of fi and hi if parametrized from ei to gi. It follows that for
any lift Q of L̂j there are lifts Qi of L̂i, i = 2, . . . , m − 1, such that the geodesic
rectangle [F (Q)] intersects Q2, . . . , Qm−1 all horizontally from left to right.

Let q, q′ be distinct points in Q and σ a geodesic arc in Σ \ Q tracing a proper
arc from q to q′. Take a lift σ̃ of σ to H. Let Dj(σ) be the number of geodesic
rectangles Q = (α1, . . . , α4) that arise as lifts of rectangles L̂j and which σ intersects
horizontally from left to right. Let D(σ) = ∑m−1

j=2 Dj(σ). These numbers obviously
do not depend on the choice of lift of σ. Let σ′ be the geodesic arc in Σ \ P that
traces a proper arc homotopic to φn(σ). We claim that

D(σ′) ⩾ (m− 2)D(σ).(B.6)

This can be seen as follows. Take a lift σ̃ of σ to H. We can order the lifts of the L̂j,
j ∈ {2, . . . , m− 1} that σ̃ intersects horizontally from left to right by ≺, i.e. these
are geodesic rectangles J1, . . . , Jk, with k = D(σ), and Ji ≺ Jj if i < j. Since F |S∞

keeps the cyclic order of points at infinity of geodesics, it follows that the geodesic
arc in H with the same endpoints as F (σ̃) has to intersect the geodesic rectangles
[F (J1)], [F (J2)], . . . , [F (Jk)] horizontally from left to right, and [F (Ji)] ≺ [F (Jj)] if
i < j. Since each of the rectangles [F (Ji)] intersects horizontally from left to right
suitable lifts Q2, . . . , Qm−1 of L̂2, . . . , L̂m−1, (B.6) follows.

Now choose q and q′ two distinct points in Q ∩ (H1 ∪ Hm) and τ an arc from q
to q′ with D(τ) = 1. Furthermore, let E = ⋃m−1

j=2 êj. From (B.6) the estimate (B.5)
follows, that is

I(φkn(τ), E) ⩾ (m− 2)k.

Choose now as in [FH88] for each k ∈ N a closed curve γk in Σ \ Q as the frontier
of a small contour of the union of the geodesic representative of φkn(τ) and its two
endpoints. For those k ∈ N for which φkn(q), φkn(q′) ∈ H1 ∪ Hm, the curve γk and
E have 2I(φkn(τ), E) many intersections. Moreover there is no bigon formed by the
union of E with γk, and hence the number of those intersections is minimal among
all curves homotopic to γk. Since φkn(γ0) is freely homotopic to γk it follows that
Γπ1([φn,Q]) ⩾ log(m− 2). □
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