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answer this question at the basis of our work, a formal asymptotic expansion suggested us that
using short-time observations and initial data close to a Dirac measure should be a well-adapted
strategy. As a necessary preliminary step, we study the direct problem, i.e. we prove existence,
uniqueness and stability with respect to the initial data of non negative measure-valued
solutions when the initial data is a compactly supported, bounded, non negative measure.
A representation of the solution as a power series in the space of Radon measures is also
shown. This representation is used to propose a reconstruction formula for the fragmentation
kernel, using short-time experimental measurements when the initial data is close to a Dirac
measure. We prove error estimates in Total Variation and Bounded Lipshitz norms; this gives a
quantitative meaning to what a “short” time observation is. For general initial data in the space
of compactly supported measures, we provide estimates on how the short-time measurements
approximate the convolution of the fragmentation kernel with a suitably-scaled version of
the initial data. The series representation also yields a reconstruction formula for the Mellin
transform of the fragmentation kernel κ and an error estimate for such an approximation. Our
analysis is complemented by a numerical investigation.

Résumé. — Comment, à partir de données expérimentales, retrouver le noyau de fragmenta-
tion κ associé à une population dont l’évolution est décrite par une équation de fragmentation ?
Un développement asymptotique formel autour de la donnée initiale nous laisse penser que
la réponse réside dans le comportement en temps court de la solution, avec comme donnée
initiale une masse de Dirac. Pour exploiter cette piste, notre première étape consiste à étu-
dier le problème direct, et plus particulièrement à établir des résultats d’existence, unicité
et stabilité par rapport à la donnée initiale de solutions mesures, et ce, dans le cas où la
donnée initiale est mesure positive bornée à support compact. Au cours de cette première
étape, nous exhibons la solution sous la forme d’une série entière dans l’espace des mesures
de Radon. Nous nous servons cette représentation de la solution pour fournir une formule
de reconstruction pour le noyau de fragmentation κ, en utilisant le profil de la solution à un
temps t suffisamment court, dans le cas où la donnée initiale est une masse de Dirac. Dans
ce cadre, nous contrôlons rigoureusement l’erreur sur l’estimation du noyau κ en variation
totale (TV) et en norme “Bounded–Lipschitz”. Cette erreur dépendant en partie du temps t
auquel la mesure est faite, ceci clarifie ce qu’une observation “en temps court” signifie. Dans
le cas où la donnée initiale est une mesure de Radon générique (mais positive et à support
compact), nous montrons qu’une observation de la solution en un temps suffisamment court
permet d’approcher le produit de convolution entre le noyau κ et une homothétie de la donnée
initiale. La représentation de la solution en série entière nous fournit également une formule
de reconstruction pour la transformée de Mellin K du noyau de fragmentation κ, ainsi qu’une
estimation de l’erreur pour cette formule approchée. Nous complétons notre analyse par des
explorations numériques.

1. Introduction

The fragmentation equation is a size-structured PDE describing the evolution
of a population of particles. It is ubiquitous in modelling physical or biological
phenomena (cell division [Per07], amyloid fibril breakage [XR13], microtubules
dynamics [HHTW19]) and technological processes (mineral processing, grinding
solids [Kol41], polymer degradation [MS40] and break-up of liquid droplets or air
bubbles). As presented in [Mel57], the equation may be written as follows

(1.1) ∂

∂t
u(t, x) = −u(t, x)

x

∫ x

0
yF (x, y)dy +

∫ ∞

x
u(t, y)F (y, x)dy,

ANNALES HENRI LEBESGUE



Inverse problem for the fragmentation kernel 623

where u(t, x) represents the concentration of particles at time t of size x, and the
fragmentation measure F (y, x) the creation of particles of size x out of fragmenting
particles of size y. The mathematical properties of the fragmentation equation have
been extensively studied using a great variety of methods (statistical physics; formal
asymptotics; real, complex and functional analysis; linear semigroup theory; probabil-
ity methods). Only a few references are given here among the vast existing mathemat-
ical literature as: on particular solutions [MS40, ZM85], on the existence and unique-
ness of solutions for the Cauchy problem [BA06, BC90, DS96, Mel57, MLM97, Ste90],
on detailed properties of the solutions [BCG13, Ber03, CCM11, Haa10, PR05]. For
a rather complete list of references the interested reader may consult [BA06, Ber06,
BLL19].

Due to its importance in the modelling (see for example [Ram74, VBA66]), and its
very rich mathematical properties, a class of fragmentation measures F have proved
to be particularly fruitful: the measures composed with a fragmentation rate B(x),
that depends on the particle size, and a fragmentation kernel κ(y/x), that describes
the probability that a particle of size y is created by fragmentation of a particle of
size x:

(1.2) F (x, y) = B(x)
x

κ
(
y

x

)
.

The fact that the probability to obtain a particle of size y out of a particle of size
x only depends on the ratio y/x is a classical assumption often referred to as a
“self-similarity property” [Ber03, BW16, CCM11]. In order to be coherent with the
modelling, the fragmentation kernel must be a finite measure compactly supported
on (0, 1) and such that zdκ(z) is a probability measure. With such a fragmentation
measure, equation (1.1) reads then

(1.3) ∂

∂t
u(t, x) = −B(x)u(t, x) +

∫ ∞

x
κ

(
x

y

)
B(y)u(t, y)dy

y
.

The two key physical parameters B and κ encode fundamental information on the
mechanical stability of each particle, and can take different forms depending on the
particular process considered. To estimate the parameters B and κ using population
data (when only the particles density u(t, x) can be accessed, not the trajectory
of each individual particle) is a challenging mathematical problem, important for
the applications. The specific application that led us to its study originates from
the works [XHR09, XR13], where the authors provide experimental size distribution
profiles of different types of amyloid fibrils, in order to estimate their intrinsic
division properties (B and κ) and then to relate them to their respective pathogenic
properties [BTM+20]. It is not possible to follow experimentally each fibril one by
one, hence the necessity to draw the characteristic features of each particle from the
evolution of the whole population.

1.1. Review on existing results to estimate the fragmentation kernel

Identifying the fragmentation kernel κ from observed population data has been a
challenging problem for some time. As detailed below, in most of the cases up to
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now, the analysis of this problem has been based on the idea of self-similar long-time
asymptotic behaviour of the solutions to (1.3), see [BCG13, Ber03, BW16, CCGU12,
DS96].

In the seminal paper [Kol41] of A. N. Kolmogorov (1940) on general random pro-
cesses of particle grinding, the self-similar large time behaviour of the size distribution
is identified in a slightly different but closely related equation, discretised in time
and with a constant fragmentation rate B. The self-similar asymptotic behaviour
of the fragmentation equation written for the cumulative distribution function was
established in [Fil61] by Filippov (1961) for the case B(x) = xγ, γ > 0 and the
result is now well-known by the scientific community under fairly general balance
assumptions on the parameters (see for instance [BCG13, CCM11, EMR05, PR05]).

From the seventies, scientists from physics and chemical departments have been
using this similarity concept for the kernel inverse problem. In 1974, a scientist
of a department of chemical engineering [Ram74] developed a method to extract
information on probabilities of droplet-breakup, and in particular on the daughter-
drop-distribution (in modern terms: the fragmentation kernel), as a function of drop
sizes data, obtained from an experiment of pure fragmentation in a batch vessel. To do
so, the self-similar behaviour of the solutions of the fragmentation equation, written
here too for the cumulative distribution function, is assumed, thereby restricted to
power law fragmentation rates (i.e. B(x) = αxγ with α, γ > 0), and the moments
of the kernel are estimated from the moments of the large time size distribution.
To recover the kernel from its moments, a method based on the expansion of the
kernel on a specific polynomial basis is suggested. These results are generalised later
in 1980 [NRG80] to non-power law fragmentation rates associated with an adapted
definition for the self-similarity of the kernel so as to keep the self-similar asymptotic
behaviour of the model.

From the late nineties, the large improvements in computer hardware opened the
field of numerical investigations of mathematical models. In [KK05] the authors
provide insights on how the stationary shape of the particle size distribution is
impacted by the kernel. Their conclusion is that the inverse problem of assigning a
breakage kernel to a known self-similar particular size distribution is ill-posed not only
in a mathematical but also in a physical sense since quite different kernels correspond
to almost the same particles size distribution. This conclusion has been confirmed
by the theoretical results of [BCG13, DET18]: in these articles, key properties of
the fragmentation kernel have been proved to be linked to unobservable quantities
of the asymptotic profile, namely its behaviour for very small or very large sizes.
In [DET18], we proposed a reconstruction formula for κ based on the mere knowledge
of the long-time asymptotic profile g of the solutions of (1.3) in suitable functional
spaces [DET18]. This formula involves the moments of order s of the asymptotic
profile g, s being taken along a vertical complex line, i.e. s = u+ iv, v ∈ (−∞,∞).
However, due to its severely ill-posedness on the one hand, and to the impossibility
of observing the asymptotic profile for very small or very large sizes on the other
hand, this reconstruction formula revealed of little practical use. Of note, a similar
estimate in the case of the growth-fragmentation equation with constant growth and
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division rates has been carried out in a statistical setting in [HPNRT19], together
with a consistency result and a numerical study.

We thus explored further the influence of the kernel on the time evolution of the
length distribution [DETX21]. We showed that despite the previously seen limita-
tions, the asymptotic profile remains helpful to distinguish whether the fragmentation
kernel is an erosion-type kernel (one of the fragments has a size close to that of the
parent particle) or produces particles of similar sizes. By statistical testing, we also
showed that departing from the same initial condition, there exists a time-window
right after the initial time where two different kernels give rise to a maximal differ-
ence of their corresponding size distribution solutions, and that the initial condition
that maximizes this difference is a very sharp Gaussian. This last remark led us to
explore further the short-time behaviour of the solution, which is the basis of our
present study.

Inverse problems for fragmentation equations related with our “short-time” ap-
proach appeared in 2002 [AD02] and in 2013 [AD13]. In the first article the authors
consider the reconstruction of a source term in a coagulation-fragmentation equation.
The equation is linearized assuming that for short times the solution c(t, x) of the
equation may be approximated by the initial data c0, and keeping only linear terms
in the perturbation. The inverse problem for the linear equation is then solved using
optimal control methods, the solvability theory of operator equations, and iteration
algorithms. In the second article the authors solve the linearization of the inverse
problem for (1.1), obtained assuming F = 1 + f with |f | small, u = c0 + g where c0
is the solution of (1.1) with F = 1, assuming that |g| is also small, and keeping in
the equation only principal terms.

1.2. Outline of our main results

In the present article we revisit the question of estimating κ from measurements
on the population density u(t, x), and we introduce two main novelties. First, a new
method, that only uses short-time measurements of the solutions. As pointed out in
the above review, this is a very different idea from those generally used up to now
since these are based on the long time self-similar behaviour of the solutions. Second,
a reconstruction formula for the Mellin transform of κ and an estimate of the error
of the approximation. More precisely, we assume the fragmentation rate B to be
known, and provide a reconstruction formula for the sole fragmentation kernel.

Unless specific assumptions are stated, we restrict the study to power law frag-
mentation rates
(1.4) B(x) = αxγ, γ > 0, α > 0.
The guiding idea of our study is based on the following remark: for ∆t small enough,
the solution µ to the fragmentation equation (1.3) with B defined by (1.4) formally
satisfies

(1.5) µ(t+ ∆t, x) ≈ µ(t, x) −α∆txγµ(t, x) +α∆t
∫ ∞

x
κ

(
x

y

)
yγ−1µ(t, y)dy+ o(∆t).
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If we assume that at time t, the size distribution µ(t, x) is a Dirac delta function
at x = 1, that is denoted δ1 or δ(x− 1), then

µ(t+ ∆t, x) ≈ δ(x− 1) − α∆tδ(x− 1) + α∆tκ(x) + o(∆t),

and thus the kernel κ can be directly estimated from the measurement of the profile
µ at time t+ ∆t as

κ(x) ≈ 1
α∆t

(
µ(t+ ∆t, x) − (1 − α∆t)δ(x− 1)

)
+ o(1), ∆t ≪ 1.

To make the above estimate of κ rigorous, we first prove the uniqueness of a non
negative solution µ to the Cauchy problem for the equation (1.3) when κ and the
initial data µ0 are non negative measures satisfying some suitable conditions (see
Theorem 2.2 below). Then we expand the solution µ(t, x) as a power series about t
in the Banach space of Radon measures. Up to our knowledge, such representation
of the measure-valued solution of the fragmentation equation with a fragmentation
kernel measure κ is new, though some explicit solutions of the fragmentation equation
in form of series are given in [ZM85, ZM86] for particular continuous fragmentation
functions and particular initial data µ0.

To estimate κ from the measurement of the distribution profile µ(∆t, .) for small
values of ∆t, the cunning observation is to impose that the initial distribution µ0 is
a Dirac mass. In other words, at time t = 0, all particles should have the same size.
Heuristically, if all particles have the exact same size at t = 0, after a time t long
enough so that a non-negligible quantity of particles have broken once, but short
enough so that a negligible quantity of particles has broken twice, it is clear that the
kernel κ, sometimes referred to as the “daughter particle distribution” can directly
be read on the distribution of particles strictly smaller than initially.

Of course no experiment may produce a suspension where all the particles have the
same size since it would mean being able to follow each particle one by one. However,
we can hope to obtain a suspension where all particles have approximately the same
size, described for instance by a gaussian distribution that would be not too far from
a Dirac delta function. For that reason the stability of our estimates of κ with respect
to measurement noise and to the error on the initial data µ0 must be estimated. It is
then necessary to consider measure-valued solutions. The existence and uniqueness
of such solutions to coagulation or fragmentation equations has been already studied
in the literature of mathematics, for example in [Ber03, Nor99] for the coagulation
equation [BCGM22, BW16] for a growth-fragmentation equation [CCGU12] for a
fragmentation equation but where only the case γ = 0 would satisfy the hypothesis.

Quantifying the stability result first requires to understand what are the types of
experimental uncertainties on the initial data coming from the experiments. These
are twofold: first, instead of a delta function at x = x0, the initial data is a spread
distribution with variance σ > 0 (due to the impossibility to obtain a perfectly
homogeneous suspension). Second, this distribution is centered at x = x0 + ε for
some ε > 0, instead of x = x0 (possible bias on the measurement of the particle’s
sizes). In order to deal with these uncertainties, the Bounded–Lipshitz (BL) norm is
better suited than the total variation norm (TV). For instance, ∀ a ∈ R, b ∈ R, such
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that |b− a| < 2

∥δa − δb∥T V = 2, ∥δa − fa,σ∥T V = 2,

whereas

∥δa − δb∥BL = |b− a|, ∥δ1 − f1,σ∥BL ⩽
2
√
σ√

2π
,

where fa,σ is the density of the gaussian function centered at x = a with variance σ.
However, in the case of a generic initial data not necessarily close to a delta

function, a reconstruction formula may still be obtained through the use of the
moments of the solution. From the very beginning of the study of inverse problems
for the fragmentation equation, the moments of the solution µ ([NRG80, Ram74]),
and then its Mellin transform, have been extensively used. Of note, the Mellin
transform of κ (denoted by K from now on), is of interest by itself since it provides
a range of moments of the fragmentation kernel, in particular variance and skewness.
An exact expression for K was obtained in [DET18] from the long-time self similar
asymptotic profile of the solution µ in terms of an (in general) oscillatory integral,
but no way to approximate this integral and estimate the error was given. The exact
series representation of the solution µ to (1.3) obtained in the present paper may be
used in order to deduce an approximation of K and estimate the error of such an
approximation.

Our last contribution is thus a robust reconstruction formula of K. To this end,
we use short-time measurements of the solution µ to equation (1.3) for generic
initial data µ0, not necessary close to a Dirac measure, and the initial data itself.
This dependence on the initial data µ0 contrasts with the result in [DET18] where
the reconstruction formula (see [DET18, Theorem 2]) only involves the long-time
asymptotic profile of the solution. Since the equation is autonomous, this means to
be able to access two close consecutive measurements of the particles size distribution
- an experimental setting much more realistic than to depart from a mono-disperse
suspension.

To sum-up, the main novelties brought by this paper are
• a proof of the uniqueness and stability of the solution in the space of non

negative measures endowed with the total variation norm (Theorem 2.2),
• a representation of a solution to the fragmentation equation (endowed with

any non-negative measure as initial data) as a power series in the Banach
space of measures endowed with the total variation norm (Theorem 2.4),
implying in particular existence of measure-valued solutions to (1.3),

• a proof of the non-negativity of the power series solution (Theorem 2.6),
• as a consequence of the three previous items and summarized in Corollary 2.8,

a statement of existence of a unique non-negative measure-valued solution
to (1.3), accompanied with a power series representation of this unique solu-
tion,

• a stability result for the solution to the fragmentation equation for the BL
norm, which is a norm adapted to weak convergence of measures (Theo-
rem 2.11),
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• a robust reconstruction formula for the fragmentation kernel involving the
short-time solution of the fragmentation equation endowed with a delta func-
tion as initial condition. Robustness is to be understood in the sense that if
the initial condition is close to a delta function at x = x0 in the BL norm
(for instance a rectangular function centered in x0 or a delta function at
x = x0 + ϵ with ϵ small), then the estimated kernel obtained with the recon-
struction formula is close to the real kernel in the BL norm (Theorem 3.1 and
Theorem 3.5),

• a reconstruction formula for the Mellin transform K of the fragmentation
kernel κ involving the short-time solution of the fragmentation equation
endowed with any initial condition (Theorem 4.4).

The outline of the paper is as follows. In the remaining of Section 1, some proper-
ties of measures and classical results on measure theory are recalled, as well as the
definition of Mellin transform and Mellin convolution. Section 2 is devoted to the
proof of the existence, uniqueness, non negativity and series representation of solu-
tions to the problem (1.3) (with B defined by (1.4)) in the space of Radon measures,
and their stability with respect to the initial data in the TV norm. In Section 3,
estimates of the fragmentation kernel and bounds for the error of such estimates are
obtained using, for small values of the time variable, the expression as a series of the
solution µ provided by Theorem 2.4. The stability of these estimates with respect to
the initial data and noise measurements is also considered in BL norm. In Section 4,
we study the Mellin transform K of κ. Under some regularity assumption on κ and
on the initial data µ0, a reconstruction formula Kest of K is obtained, only based
on short time-intervals measurements of the solution to the fragmentation equation
and an estimate of the error K − Kest is obtained. An estimate of the variance of
κ is then deduced, and under a stronger regularity assumption on κ, a pointwise
estimate of the difference of κ and the inverse Mellin transform of Kest is proved.
We end the paper with a numerical investigation of the short-time behaviour of the
fragmentation equation, we illustrate the estimation results of Theorems 3.1 and 3.5,
and we explore how Theorem 4.4 can be applied to recover the variance of the kernel
from the data. For every theorem, the constants arising in estimates and depending
continuously on parameters p1, p2, . . . are denoted by C(p1, p2, . . . ).

1.3. Short reminder on measure theory

We define M(R+) as the set of Radon measures µ (not necessarily probability
measures) such that supp (µ) ⊂ R+. Let us recall that M(R+) is the dual space of
the space (C(R+), ∥.∥∞) of continuous functions. We denote by (µ+, µ−) the Jordan
decomposition of µ. We endow M(R+) with two different norms: the total variation
norm and the Bounded–Lipschitz norm. As mentioned in the introduction, the final
purpose is to obtain stability with respect to the BL norm, the TV norm being
a technical intermediate tool to reach this purpose. The TV norm of the (signed)
measure µ ∈ M(R+) is defined as

(1.6) ∥µ∥T V = sup
{∫

R+
φ(x)dµ(x), φ ∈ C(R+) ∩ L1(d|µ|), ∥φ∥∞ ⩽ 1

}
.
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We recall that (M(R+), ∥.∥T V ) is a Banach space. We now define the BL norm as

(1.7) ∥µ∥BL =

sup
{∫

R+
φ(x)dµ(x), φ ∈ C(R+) ∩ L1(d|µ|), ∥φ∥∞ ⩽ 1, ∥φ′∥∞ ⩽ 1

}
.

Comparing (1.6) and (1.7), it is clear that

(1.8) ∀ µ ∈ M(R+), ∥µ∥BL ⩽ ∥µ∥T V .

An optimal transportation point of view is provided in [PRT23, Proposition 23] for
the BL norm. It is proven that for any signed Radon measure with finite mass µ we
have

(1.9) ∥µ∥BL = inf
{( ∥∥∥µ+ − ν

∥∥∥
T V

+ ∥µ− − η∥T V

)
+W1(ν, η), (ν, η) ∈ M+

µ (R+),
}

(1.10) M+
µ (R+)

=
{

(ν, η) ∈ M+(R+) × M+(R+); ν ⩽ µ+, η ⩽ µ−, ∥ν∥T V = ∥η∥T V

}

where M+(R+) is the space of positive Radon measures with support in R+, and W1
stands for the classical Wasserstein distance [Vil03] between two positive measures
of same mass, namely

W1(ν, η):= inf
π ∈ Π(ν,η)

∫
R+

|x− y|dπ(x, y),

Π(ν, η):=
{
π positive measure on R+ s.t.

∫
R+
π(x, y)dx = η(y),∫

R+
π(x, y)dy = ν(x)

}
.

(1.11)

Let us recall that for µ, ν two probability measures and for a > 0, we have W1(aµ, aν)
= aW1(µ, ν). Formula (1.9) (1.10) can be interpreted as follows: the BL norm of the
signed measure µ is the BL distance between the two positive measures µ+ and µ−.
Now take µ+ and µ− two positive measures. Consider ν and η two positive measures
such that ν ⩽ µ+, η ⩽ µ− and ∥ν∥T V = ∥η∥T V . The subpart ν of the measure
µ+ is transported onto the subpart η of the measure µ−, with a cost W1(ν, η). The
remaining positive measures (µ+ − ν) and (µ− − η) are both cancelled with a cost
∥µ+ − ν∥T V + ∥µ− − η∥T V . Among all couples (ν, η) that satisfy ν ⩽ µ+, η ⩽ µ− and
∥ν∥T V = ∥η∥T V , we choose one such that the sum (∥µ+−ν∥T V +∥µ−−η∥T V )+W1(ν, η)
is minimal (such a couple exists, it is proved in [PR14] that the infimum is actually
a minimum). Let us give three examples.

• Take µ = δ(x − 1) and µε = δ(x − (1 + ε)). Consider νa = aµ and ηa = aµε

with 0 ⩽ a ⩽ 1. Then 0 ⩽ νa ⩽ µ, 0 ⩽ ηa ⩽ µε, and ∥νa∥T V = ∥ηa∥T V = a.
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Using formula (1.9)(1.10) we have

∥µ− µε∥BL = inf
0⩽ a⩽ 1

{(
∥µ− νa∥T V + ∥µε − ηa∥T V

)
+W1(νa, ηa)

}
= inf

0⩽ a⩽ 1

{
2(1 − a) + aε

}

=

 ε for ε ⩽ 2,
2 for ε > 2.

• Take µ = δ(x − 1) and µσ is the measure with the rectangular density
1

2σ
√

31[1−σ
√

3,1+σ
√

3] with variance σ2 for 0 < σ < 1. We take νa = µ = δ1

and ηa = µσ = fσdx, in (1.9), and obtain

∥µ− µσ∥BL ⩽ W1(µ, µσ) ⩽
∫ 1+σ

√
3

1−σ
√

3

|y − 1|dy
2
√

3
=

√
3

2 σ.

• Take µ = δ(x − 1) and µσ the Gaussian with mean 1 and variance σ2. We
have

∥µ− µσ∥BL ⩽ W1(µ, µσ) ⩽
∫

|x| e
− x2

2σ2

√
2πσ

= 2σ√
2π
.

We recall that for µ ∈ M(R+) and T ∈ C(R+), the pushforward η of the measure
µ by the function T is defined as the unique measure

η = T#µ
such that for all φ ∈ C(R+),∫

φ(x)dη(x) =
∫

(φ ◦ T )(x)dµ(x).

For ℓ > 0, we define the application
(1.12) Tℓ(x) = ℓx, x ∈ R+.

1.4. Mellin transform

Definition 1.1. — For a measure µ ∈ M(R+), its Mellin transform M [µ] is
defined as

(1.13) M [µ](s) =
∫

R+
xs−1dµ(x),

for s ∈ C such that (1.13) is well-defined.

Definition 1.2 (Mellin convolution (cf. [ML86]). — Take µ and ν two compactly
supported finite measures on R+. Their Mellin convolution (sometimes referred to
as multiplicative convolution) is defined as

∀ φ ∈ C(R+), ⟨µ ∗ ν, φ⟩ = ⟨µx ⊗ νy, φ ◦ p⟩ ,

where p : (x, y) → xy.
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If dµ(x) = f(x)dx and dν(x) = g(x)dx for f and g in L1(R+), then µ ∗ ν is the
measure with density

(f ∗ g)(x) =
∫

R+
f(y) g

(
x

y

)
dy

y
.

If dµ(x) = f(x)dx with f ∈ C(R+) and ν = δ(y − ℓ), then µ ∗ ν = Tℓ#µ is the
measure with density

(f ∗ ν)(z) = 1
ℓ
f
(
z

ℓ

)
.

Proposition 1.3 (Mellin transform and Mellin convolution). — Take µ and ν
two compactly supported finite measures on R+. For the s for which the expression
below is defined, we have

M [µ ∗ ν](s) = M [µ](s)M [ν](s).

2. Measure-valued solutions to the fragmentation equation:
existence, uniqueness, stability and series representation

The basis of our analysis in all the remaining of this work are the measure-valued
solutions to the Cauchy problem for equation 2.4 with the initial condition

(2.1) µt(t = 0) = µ0,

whose precise definition is given below. Throughout the present paper, the following
assumptions are used.

(Hyp-1) The fragmentation kernel κ ∈ M+(R+) contains no atom at x = 0 and at
x = 1, and satisfies

(2.2) supp (κ) ⊂ [0, 1],
1∫

0

dκ(z) = N < +∞,

1∫
0

zdκ(z) = 1.

(Hyp-2) The initial condition µ0 ∈ M+(R+) is compactly supported

(2.3) supp (µ0) ⊂ [0, L].

Even though κ and µt are measures, we sometimes write the fragmentation equation
as

(2.4) ∂

∂t
µt(x) = −αxγµt(x) + α

∫ ∞

x
κ

(
x

y

)
yγ−1dµt(y), µt=0(x) = µ0(x),

or as
∂

∂t
µt(x) = −αxγµt(x) + α

∫ ∞

x
κ

(
x

y

)
yγ−1µt(y)dy, µt=0(x) = µ0(x).

Definition 2.1 (Measure-valued solution for (2.4)). — A family (µt)t⩾ 0 ⊂ M
(R+) is called a measure-valued solution to problem (1.3) (1.4) (2.1) with initial data
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µ0 ∈ M(R+) satisfying (Hyp-2) if the mapping t → µt is narrowly continuous and
for all φ ∈ C(R+) such that x 7→ φ(x)/(1 + x) is bounded on [0,∞), and all t ⩾ 0,

(2.5)
∫

R+
φ(x)dµt(x)

=
∫

R+
φ(x)dµ0(x) +

∫ t

0
ds
∫

R+
dµs(x)αxγ

(
−φ(x) +

∫ 1

0
dκ(z)φ(xz)

)
.

We recall that µn converges narrowly toward µ if for all φ ∈ Cb(R+),
∫
φdµn →∫

φdµ, where Cb(R+) denotes the set of continuous and bounded functions defined
on R+.

Although several results may be found in the references given in the introduction
about the existence and uniqueness of solutions to fragmentation equations, none of
them covers exactly the hypotheses that we have in mind for κ and the initial data
µ0. For the sake of completeness, our first result is then an existence and uniqueness
of compactly supported and non negative measure-valued solutions to (2.4) under
assumptions (Hyp-1), (Hyp-2). We begin with a uniqueness and stability result.

Theorem 2.2 (Uniqueness and TV-stability for the fragmentation equation in
(M(R+), ∥.∥T V )). — Assume (Hyp-1), (Hyp-2) and γ ⩾ 0. Suppose that µt ∈
C(R+,M(R+)) is a measure-valued solution to (2.4), in the sense of Definition 2.1.
Then, for all t > 0,

∥µt∥T V ⩽ ∥µ0∥T V e
α(2L)γ(1+N)t(2.6) ∫

R+
xdµt(x) =

∫
R+
xdµ0(x)(2.7)

where N is defined in (Hyp-1) and L is defined in (Hyp-2). In particular such a
solution is unique. If moreover µt is non-negative (i.e. µt ∈ C(R+,M+(R+))), then

(2.8) supp (µt) ⊂ [0, L].

Proof. — Consider µt ∈ C(R+,M+(R+)) a non negative measure-valued solution
to (2.4) in the sense of Definition (2.1). We start proving property (2.8). To this end
we first notice that

αxγµt(x) = αµt(x)
∫ x

0

y

x
xγ−1κ

(
y

x

)
dy.

Then in the right-hand side of (2.5) we write
∫

R+
dµs(x)αxγ

(
−φ(x) +

∫ 1

0
dκ(z)φ(xz)

)
=
∫ ∞

0

∫ x

0
b(x, y) y

(
φ(y)
y

− φ(x)
x

)
dydµs(x).

where

b(x, y) = αxγ−1κ
(
y

x

)
.(2.9)
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Consider then the test function

φ(x) =


0 ∀ x ∈ [0, L]
x(x− L) ∀ x ∈ [L,L+ 1]
x ∀ x ⩾ L+ 1.

Since x → φ(x)/(1 + x) is bounded and non decreasing on [0,∞), by (2.5)∫
R+
φ(x)dµt(x) =

∫
R+
φ(x)dµ0(x) +

∫ t

0

∫ ∞

0

∫ x

0
b(x, y) y

(
φ(y)
y

− φ(x)
x

)
dydµs(x)ds

⩽
∫

R+
φ(x)dµ0(x) = 0,

where the last inequality is justified since µt ⩾ 0 for t ⩾ 0 and since x → φ(x)/x
is non decreasing as well. Since φ ⩾ 0 and µt ⩾ 0 for all t ⩾ 0 it follows that for
φ(x)dµt(x) = 0 for all t > 0 and almost every x > 0. Since by construction φ(x) > 0
for all x > L we deduce that for every t > 0, supp (µt) ⊂ [0, L]. Consider now
µt ∈ C(R+,M(R+)) a measure-valued solution to (2.4) in the sense of Definition (2.1)
(not necessarily non negative). To prove the BV estimate (2.6), we use definition (1.6),
and take φ ∈ C(R+) such that ∥φ∥∞ ⩽ 1. By (2.5),∫

R+
φ(x)dµt(x)

=
∫

R+
φ(x)dµ0(x)+

∫ t

0
ds
∫

R+
αxγdµs(x)

(
−φ(x) +

∫ 1

z=0
φ(xz)dκ(z)

)
.

Let χ ∈ C([0,∞)) such that ||χ||∞ = 1, χ(x) = 1 for all x ∈ [0, L] and χ(x) = 0 for
x > 2L and consider the function defined as

ψ(x) := αxγχ(x)
(

−φ(x) +
∫ 1

z=0
φ(xz)dκ(z)

)
,

It satisfies ψ ∈ C(R+) and, since ∥φ∥∞ ⩽ 1, and supp (χ) ⊂ [0, 2L],

sup
0⩽x⩽L

|ψ(x)| ⩽ α(2L)γ(1 +N).

Therefore, ∫
R+
φ(x)dµt(x) ⩽ ∥µ0∥T V + α(2L)γ(1 +N)

∫ t

0
∥µs∥T V ds,

which implies

∥µt∥T V ⩽ ∥µ0∥T V + α(2L)γ(1 +N)
∫ t

0
∥µs∥T V ds,

and Gronwall Lemma yields (2.6). Finally, mass conservation property (2.7) is
obtained by choosing φ(x) = x in definition 2.1 and using the last statement
of (Hyp-1). □

The following proposition provides us with a solution to the fragmentation equation
when initial condition is a Dirac delta localized at x = ℓ in terms of a fundamental
solution.
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Proposition 2.3 (Fundamental solution rescaled). — Fix ℓ > 0. Assume that
µF

t is a fundamental solution to (2.4), i.e. a solution to (2.4) when the initial data
is µ0 = δ(x − 1). Then, µℓ

t = Tℓ#µF
ℓγt, with Tℓ(x) = ℓx, is a solution to (2.4) with

µℓ
0 = δ(x− ℓ).

Proof. — We set µℓ
t := Tℓ#µF

ℓγt. Let us prove that µℓ
t is a solution to (2.4) with

initial condition µℓ
0 = δ(x − ℓ) and conclude by uniqueness of the solution. First,

µℓ
0 = Tℓ#µ0 = Tℓ#δ(x− 1) = δ(x− ℓ). Then, we obtain that for all φ ∈ Cc(R+)∫

R+
φ(x)dµℓ

t(x) =
∫

R+
φ(x)d

(
Tℓ#µF

ℓγt

)
(x)

=
∫

R+
(φ ◦ Tℓ)(x)dµF

ℓγt(x) =
∫

R+
φ(ℓx)dµF

ℓγt(x).

Since µt is a measure-valued solution to (2.4), we have∫
R+
φ(ℓx)dµF

ℓγt(x) =
∫

R+
φ(ℓx)dµ0(x)

+ α
∫ ℓγt

0

∫
R+

(
−xγφ(ℓx)dµF

s (x) + φ(ℓx)
∫ ∞

x
yγ−1dκ

(
x

y

)
dµF

s (y)
)
ds.

Let us treat each of the three terms of the sum above separately. The first term is∫
R+
φ(ℓx)dµ0(x) =

∫
R+
φ(x)dµℓ

0(x).

The second term is treated using the change of variables s = ℓγu

−α
∫ ℓγt

0

∫
R+
xγφ(ℓx)dµF

s (x)ds = −α
∫ t

0

∫
R+

(xℓ)γ φ(ℓx)dµF
ℓγu(x)du,

and then the change of variables z = Tℓ(x) i.e. dµF
ℓγu(x) = d(Tℓ#µF

ℓγu)(z)

−α
∫ t

0

∫
R+

(xℓ)γ φ(ℓx)dµF
ℓγu(x)du = −α

∫ t

0

∫
R+
zγφ(z)d

(
Tℓ#µF

ℓγu

)
(z)du

= −α
∫ t

0

∫
R+
zγφ(z)dµℓ

u(z)du.

For the third term we also use the change of variables s = ℓγu followed by the
change of variables z = Tℓ(x) and to finish the change of variable w = Tℓ(y) i.e.
dµF

ℓγu(y) = d(Tℓ#µF
ℓγu)(w) = dµℓ

u(w) to get

α
∫ ℓγt

0

∫
R+
φ(ℓx)

∫ ∞

x
yγ−1dκ

(
x

y

)
dµF

s (y)ds

= α
∫ t

0

∫
R+
φ(z)

∫ ∞

z
wγ−1dκ

(
z

w

)
dµℓ

u(w)du.

To summarize,∫
R+
φ(x)dµℓ

t(x) =
∫

R+
φ(x)dµℓ

0(x)

− α
∫ t

0

∫
R+

(
zγφ(z)dµℓ

u(z) + φ(z)
∫ ∞

z
wγ−1dκ

(
z

w

)
dµℓ

u(w)
)
du.
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Finally, since t → µF
t is narrowly continuous, then t → µℓ

t is narrowly continuous as
well. This ends the proof of Proposition 2.3. □

Theorem 2.4 (Existence of a solution to (2.4) represented as a power series). —
For any fragmentation kernel κ satisfying (Hyp-1), γ ⩾ 0 and µ0 satisfying (Hyp-2),
there exists a measure-valued solution µt ∈ C(R+,M(R+)) to (2.4) in the sense of
Definition 2.1. This solution is given by the following everywhere convergent series

(2.10) µt = e−αxγtµ0 +
∞∑

n=0
(αt)n

∫ ∞

0
ℓnγan

(
x

ℓ

)
µ0(ℓ)

dℓ

ℓ
,

where the sequence an is defined as follows for x ∈ [0, 1],
a0(x) = 0,

an+1(x) = 1
n+ 1

(
−xγan(x) +

∫ ∞

x
yγ−1κ

(
x

y

)
an(y)dy + κ(x)(−1)n

n!

)
.

(2.11)

In particular,

(2.12)
∫ ∞

0
φ(x)dµt(x) =

∫ L

0

∫ 1

0
φ(ℓx)dµF

tℓγ (x)dµ0(ℓ), ∀ φ ∈ C(R+),

and
(2.13) supp (µt) ⊂ supp (µ0), for all t > 0.

Remark 2.5. — We emphasize that in (2.11) and (2.10), κ, µ0 and an may be
measures. In this case, the Mellin convolution product has to be understood in the
sense of measures. For instance, the formula (2.10) means

µt = e−αxγtµ0 +
∞∑

n=0
(αt)nan ∗ bn(2.14)

dbn(y) = ynγdµ0(y),(2.15)
where the Mellin convolution product ∗ is defined in Definition 1.2.

Proof of Theorem 2.4. —
Step 1. A power series representation for the fundamental solution. —

In this step, we prove that
µF

t (x) = e−αtδ(x− 1) + vt,(2.16)
where

vt =
∞∑

n=1
(αt)nan ∈ C((0, T ),M(R+)), vt(0) = 0, vt ⊥ δ(x− 1),(2.17)

is a fundamental solution to (2.4), and we prove that for all t > 0, this solution
satisfies

supp
(
µF

t

)
⊂ [0, 1].(2.18)

Fix T > 0. Assume that µF
t is a fundamental solution to (2.4) on [0, T ] × R+. We

recall that µ ⊥ ν if there exists E ∈ B(R) such that µ(R) = µ(E) and ν(E) = 0. The
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Radon–Nikodym decomposition guarantees that for all t > 0, µF
t can be decomposed

as
(2.19) µF

t = A(t)δ(x− 1) + vt,

where vt ⊥ δ(x− 1), A(0) = 1 and v0(x) = 0. We plug (2.19) into (2.4) and get

A′(t)δ(x− 1) + ∂tvt(x)

= −A(t)αxγδ(x− 1) − vt(x)αxγ + α
∫ ∞

x
yγ−1κ

(
x

y

)
(A(t)δ(y − 1) + dvt(y))

which is

A′(t)δ(x− 1) + ∂tvt(x)

= −αA(t)δ(x− 1) − vt(x)αxγ + ακ(x)A(t) + α
∫ ∞

x
yγ−1κ

(
x

y

)
dvt(y).

By identification, we get that necessarily

(2.20)


A′(t) = −αA(t), A(0) = 1,

∂tvt(x) = −αxγvt(x) + α
∫ ∞

x
yγ−1κ

(
x

y

)
dvt(y) + ακ(x)A(t), v0(x) = 0.

The first line gives A(t) = e−αt. This proves that µF
t is necessarily equal to e−αt + vt,

where vt satisfies the second line of (2.20). Now let us verify that the series (2.17)
converges in C((0, T ),M(R+)). Since (M(R+), ∥.∥T V ) is a Banach space, it is enough
to prove the normal convergence of the series (2.17). We first claim that

(2.21) ∥an+1∥T V ⩽
1

n+ 1

(
(N + 1)∥an∥T V + N

n!

)
,

This comes directly from the induction formula (2.11) since x ∈ [0, 1] implies
∥xγan∥T V ⩽ ∥an∥T V ,

and ∥∥∥∥∥
∫ ∞

x
yγ−1κ

(
x

y

)
an(y)dy

∥∥∥∥∥
T V

=
∫ ∞

0

∣∣∣∣∣
∫ ∞

x
yγ−1κ

(
x

y

)
an(y)dy

∣∣∣∣∣ dX
⩽
∫ ∞

0

∫ ∞

x

∣∣∣∣∣yγ−1κ

(
x

y

)
an(y)

∣∣∣∣∣ dydx
=
∫ 1

0

∫ ∞

0
|yγκ (z) an(y)| dydz

⩽
∫ 1

0
|κ (dz)|

∫ ∞

0
yγ |an(y)| dy ⩽ N∥an∥T V ,

and finally ∥∥∥∥∥κ(x)(−1)n

n!

∥∥∥∥∥
T V

= N

n! .

We deduce from (2.21) that for all n ∈ N,

(2.22) ∥an∥T V ⩽
(N + 2)n

n! ,
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hence the normal convergence of the series (2.17) in (M(R+), ∥.∥T V ) for all t > 0.
We prove (2.22) by induction: (2.22) is true for n = 0 and n = 1, and if it is satisfied
for n ⩾ 1 we have

∥an+1∥T V ⩽
1

n+ 1

(
(N + 1)∥an∥T V + N

n!

)
⩽

1
(n+ 1)!

(N + 1)(N + 2)n +N

n! ⩽
(N + 2)n+1

(n+ 1)! .

Then the series vt defined in (2.17) converges in the Banach space C((0, T ),M(R+)).
Since from the induction rule (2.11) supp (an) ⊂ [0, 1] for all n ⩾ 0, it follows that
supp (vt) ⊂ [0, 1]. We prove then, using the differentiation rule of power series in a
Banach space, that the power series (2.17) is a solution to the second line of (2.20).
We have

d

dt
v(t, x) = d

dt

∞∑
n=1

(αt)nan = α
∞∑

n=1
n(αt)n−1an = α

∞∑
n=0

(n+ 1)(αt)nan+1.

Using the induction hypothesis (2.11) we get

d

dt
v(t, x)

= α
∞∑

n=0
(αt)n

(
−xγan(x) +

∫ ∞

x
yγ−1κ

(
x

y

)
an(y)dy + κ(x)(−1)n

n!

)

= −αxγ
∞∑

n=0
(αt)nan + α

∫ ∞

x
yγ−1κ

(
x

y

)( ∞∑
n=0

(αt)nan(y)
)
dy + α

∞∑
n=0

(−αt)nκ(x)

= −αxγv(t, x) + α
∫ ∞

x
yγ−1κ

(
x

y

)
v(t, y)dy + αe−αtκ(x),

which is (2.20). The property of the support supp (µF
t ) ⊂ [0, 1] follows from the

hypothesis on the support of κ and by inspection of formulas (2.17) and (2.11).
Step 2. A power series representation of a solution with a generic

initial condition. — By the classical superposition principle, if

(2.23) µt(x) =
∫ ∞

0
µ0(ℓ)µℓ

t (x) dℓ

converges in C((0, T ),M(R+)) (where µℓ
t is the scaled fundamental solution obtained

in Proposition 2.3 from µF
t the fundamental solution obtained in Step 1), µt will be

a solution to the fragmentation equation with initial condition µ0 ∈ M(R+). Notice
that we have the following equality for the integral (2.23):

∫ ∞

0
µ0(ℓ)µℓ

t (x) dℓ = e−αxγtµ0 +
∫ ∞

0

+∞∑
n=0

(αt)nℓnγan

(
x

ℓ

)
µ0(ℓ)

dℓ

ℓ
.(2.24)
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Since for every n, by (2.22)
m∑

n=0

∥∥∥∥∥(αt)n
∫ ∞

0
ℓnγan

(
x

ℓ

)
µ0(ℓ)

dℓ

ℓ

∥∥∥∥∥
T V

⩽ ∥µ0∥T V

m∑
n=0

(αt)n∥an∥T VL
γn

⩽ ∥µ0∥T V

m∑
n=0

(αt)n (N + 2)n

n! Lγn,

the series in the right-hand side of (2.24) converges absolutely in the Banach space
C((0, T ),M(R+)) for all T > 0. The integral (2.23) is then absolutely convergent and
defines a solution to the fragmentation equation with initial condition µ0 ∈ M(R+)
and for t ∈ [0, T ]. Property (2.12) follows then from the definition of µF

tℓγ . Since
supp (an) ⊂ [0, 1] for every n ⩾ 0, it follows from (2.10) that supp (µt) ⊂ [0, L]
for all t > 0. Using a classical diagonal argument, and since the property on the
support of the solution does not depend on T , the power series defines a solution in
C(R+,M(R+)) This ends the proof of Theorem 2.4]. □

Theorem 2.6 (Non negativity of the power series solution). — Assume the frag-
mentation kernel κ satisfies (Hyp-1) with γ ⩾ 0 and take µ0 that satisfies (Hyp-2).
Then, the power series solution (2.10) to the fragmentation equation (2.4) is non-
negative.

Remark 2.7. — Up to our knowledge, no proof of positivity for the fragmentation
equation is available in the literature in the case where either the initial condition
µ0 is a measure or the fragmentation kernel κ is a measure. In our case, both are
measures.

Proof. — We first prove the non negativity of the fundamental solution µF
t defined

by (2.16) (2.17) using an approximation argument. Consider to this end the function
χ such that:

χ ∈ C(0,∞), χ ⩾ 0, ∥χ∥∞ = 1, χ(x) = 1 ∀ x ∈ [0, 2L]; χ(x) = 0 ∀ x > 3L,

and a mollifier θ ∈ C(0,∞), such that θ ⩾ 0, supp θ ⊂ [0, 1] and the sequence
θm(x) = mθ(m(x−1)). Let us then denote by κm a regularization of the fragmentation
kernel

κm = κ ∗ θm,

by a a regularization of the fragmentation rate

a(x) = xγχ(x),

and by θk a regularization of the initial condition δ(x− 1). By construction ∥a∥∞.
⩽ (3L)γ and for each m ⩾ 1, κm is a regular function satisfying

supp [κm] ⊂ [0, 2], lim
m → ∞

∥κm − κ∥BL = 0,
∥κm∥T V ⩽ ∥κ∥T V ∥θm∥T V ⩽ N.

(2.25)
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Consider for every m ⩾ 1 the sequence of functions {an,m}n ∈ N, m ∈ N defined as
follows,

(2.26) a0,m(x) = 0,

an+1,m(x) = 1
n+ 1

(
−a(x)an,m(x) +

∫ ∞

0
a(y)κm

(
x

y

)
an,m(y)dy

y
+ κm(x)(−1)n

n!

)
.

It immediately follows, for all n ⩾ 1,m ⩾ 1,
an,m ∈ C([0,∞)), supp [an,m] ⊂ [0, 2]

and then, the sequence {an,m}n ∈ N, m∈ N satisfies also,

(2.27) an+1,m(x)

= 1
n+ 1

(
−xγan,m(x) +

∫ ∞

0
yγκm

(
x

y

)
an,m(y)dy

y
+ κm(x)(−1)n

n!

)
.

Since supp [an,m] ⊂ [0, 2] it follows that
∥x → xγan,m(x)∥T V ⩽ 2γ ∥an,m∥T V .

Then, for every m ⩾ 1 fixed, as for the proof of (2.22) it follows now that

(2.28) ∥an,m∥T V ⩽
2γn(N + 2)n

n! , ∀ n ⩾ 1, ∀ m ⩾ 1.

Step 1. The solution uk,m to the regularized problem is non negative.
Consider the regularized problem (m < ∞ and k < ∞)

(2.29)


∂

∂t
uk,m(t, x) = −αa(x)uk,m(t, x) + α

∫ ∞

x
κm

(
x

y

)
a(y)uk,m(t, y)dy

y
,

uk,m(0, x) = θk(x).
We define for k ⩾ 1 and m ⩾ 1 the sequence of functions

uk,m(t, x) = e−αxγtθk +
∞∑

n=0
(αt)n

∫ ∞

0
ℓnγan,m

(
x

ℓ

)
θk(ℓ)dℓ

ℓ
,(2.30)

For k ⩾ 1 and m ⩾ 1, the series is absolutely convergent. Moreover, by construction
supp [uk,m] ⊂ [0, 2]. Then, uk,m satisfies (2.29). By [Mel57, Lemma 3], of which the
equation (2.29) and the initial data θk satisfy the hypothesis, the Cauchy problem
for (2.29) with initial data θk possesses a global solution bounded, continuous, non
negative, analytic in t for each x > 0 and integrable in x for every t > 0. Moreover,
by construction, for all T > 0 and t ∈ (0, T ),∫

|ukm(t, x)| dx =
∫ ∞

0
e−αxγtθk(x)dx+

∫ ∞

0

∞∑
n=0

(αt)n
∫ ∞

0
ℓnγ

∣∣∣∣an,m

(
x

ℓ

)∣∣∣∣ θk(ℓ)dℓ
ℓ
dx

⩽ 1 +
∞∑

n=0
(αt)n2nγ (N + 2)n

n! < ∞.

Therefore, by [Mel57, Theorem 1], the function uk,m is the unique solution of (2.29)
that is integrable with respect to x. Moreover, this solution is non negative.
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Step 2. limit k → ∞. Consider the problem (m < ∞)

(2.31)
∂

∂t
um(t, x) = −αa(x)um(t, x) + α

∫ ∞

x
κm

(
x

y

)
a(y)um(t, y)dy

y
,

um(0, x) = δ(x− 1).

We define the sequence of measures um as

um(t, x) = e−αtδ(x− 1) +
∞∑

n=0
(αt)nan,m(2.32)

The series in (2.32) is absolutely convergent in TV norm for every m ⩾ 1 and it
defines a measure um ∈ M(R+) such that

∥um(t)∥T V ⩽ exp (αt2γ(N + 2)) +e−αt.(2.33)

The measure um(t, .) satisfies (2.31) but since supp [um(t)] ⊂ [0, 2] it also satisfies,

∂

∂t
um(t, x) = −αxγum(t, x) + α

∫ ∞

x
κm

(
x

y

)
yγ−1um(t, y)dy.

We claim now that (ukm)k ⩾ 0 converges weakly towards um. Indeed, on one hand, for
all φ ∈ Cc(R+),

(2.34) lim
k → ∞

∫ ∞

0
e−αxγtθk(x)φ(x)dx = e−αtφ(1),

and on the other hand, let us notice that for each n ⩾ 1 and m ⩾ 1 fixed,

lim
k → ∞

∫ ∞

0
ℓnγan,m

(
x

ℓ

)
θk(ℓ)dℓ

ℓ
= an,m(x), x ∈ [0, 2].

Moreover, for all k ⩾ 1, n ⩾ 1 and m ⩾ 1∫ ∞

0
ℓnγan,m

(
x

ℓ

)
θk(ℓ)dℓ

ℓ
=
∫ ∞

0

(
x

y

)nγ−1

an,m(y)k θ
(
k
x

y

)
dy.

Therefore, if

ψk(z) = znγ−1kθ(kz)

then ψk ∈ C([0,∞) and ψk ⩾ 0. Since supp θ ⊂ [0, 1] and ∥θ∥∞ ⩽ 1, for all n such
that nγ > 2,

sup
z > 0

ψk(z) = sup
z>0

znγ−1kθ(kz) = sup
z ∈ [0,k−1]

znγ−2(kz)θ(kz) ⩽ 1

It follows that for all m ⩾ 1, n ⩾ 1, k ⩾ 1 and x > 0,∣∣∣∣∣
∫ ∞

0
ℓnγan,m

(
x

ℓ

)
θk(ℓ)dℓ

ℓ

∣∣∣∣∣ ⩽ ∥an,m∥T V

It follows by the Lebesgue’s convergence that

(2.35) lim
k → ∞

∞∑
n=0

(αt)n
∫ ∞

0
ℓnγan,m

(
x

ℓ

)
θk(ℓ)dℓ

ℓ
=

∞∑
n=0

(αt)nan,m(x), x ∈ [0, 2],
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and then, combining (2.34) with (2.35) gives us

lim
k → ∞

∫ ∞

0
φ(x)uk,m(t, x)dx =

∫ ∞

0
φ(x)um(t, x)dx, φ ∈ Cc(R+),

and then

(2.36) um ⩾ 0.

Step 3. limit m → ∞. We prove here that um converges weakly towards µF
t . To

do so, we prove by induction that

(2.37) ∥an,m − an∥BL →
m → ∞

0.

For n = 1, a1,m = κm, a1 = κ, and by construction ∥κm − κ∥BL →
m → ∞

. Assume then
∥an,m − an∥BL → 0. In order to prove that the same property holds for the sequence
{an+1,m}m ∈ N it is sufficient to prove

lim
m → ∞

∥∥∥∥∥
∫ ∞

x
yγ−1κm

(
x

y

)
an,m(y)dy −

∫ ∞

x
yγ−1κ

(
x

y

)
an(y)dy

∥∥∥∥∥
BL

= 0.(2.38)

If, for the sake of notation we define the functions ãn,m and ãn as

ãn,m(ℓ) = ℓγan,m(ℓ), ãn(ℓ) = ℓγan(ℓ),

then property (2.38) reads,

lim
m → ∞

∥ãn,m ∗ κm − ãn ∗ κ∥BL = 0.(2.39)

Notice indeed that, for all test function φ such that ∥φ∥∞ ⩽ 1 and ∥φ′∥∞ ⩽ 1,

(2.40)
∫ ∞

0
φ(x)

(
ãn,m ∗ κm(x) − ãn ∗ κ(x)

)
dx =∫ ∞

0
φ(x) (ãn,m − ãn) ∗ κm(x)dx+

∫ ∞

0
φ(x) (κm − κ) ∗ ãn(x)dx

The two terms in the right-hand side of (2.40) may be bounded with the same
arguments. Consider for example the first.∣∣∣∣∫ ∞

0
φ(x) (ãn,m − ãn) ∗ κm(x)dx

∣∣∣∣ =
∣∣∣∣∣
∫ ∞

0
φ(x)

∫ ∞

0
(ãn,m − ãn)

(
x

y

)
κm(y)dy

y
dx

∣∣∣∣∣
=
∣∣∣∣∣
∫ 2

0
κm(y)

∫ ∞

0
(ãn,m − ãn)

(
x

y

)
φ(x)dxdy

y

∣∣∣∣∣
⩽ ∥κm∥T V sup

y ∈ [0,2]

∣∣∣∣∫ ∞

0
(ãn,m − ãn) (z)φ(zy)dz

∣∣∣∣
For each y ∈ [0, 2],∣∣∣∣∫ ∞

0
(ãn,m − ãn) (z)φ(zy)dz

∣∣∣∣ ⩽ ∥ãn,m − ãn∥BL (∥φ∥∞ + 2∥φ′∥∞)

from where, by (2.25)

∥(ãn,m − ãn) ∗ κm∥BL ⩽ 3N∥ãn,m − ãn∥BL.
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A similar arguments shows, using (2.22),

∥(κm − κ) ∗ ãn∥BL ⩽ 3∥km − k∥BL∥ãn∥T V ⩽ 3(N + 2)n

n! ∥km − k∥BL

and then, (2.38) holds true.
Now, for any φ ∈ C1([0,∞)), such that ∥φ∥∞ + ∥φ′∥∞ < ∞, by definition of the

measure um∫ ∞

0
um(t, x)φ(x)dx = e−αtφ(1) +

∫ ∞

0

( ∞∑
n=0

(αt)nan,m(x)
)
φ(x)dx

= e−αtφ(1) +
∞∑

n=0
(αt)n

∫ ∞

0
an,m(x)φ(x)dx.

Since for every n ⩾ 1,

lim
m → ∞

∫ ∞

0
an,m(x)φ(x)dx =

∫ ∞

0
an(x)φ(x)dx

and

(αt)n
∫ ∞

0
|an,m(x)φ(x)| dx ⩽ (αt)n∥φ∥∞∥an,m∥T V

⩽ (αt)n∥φ∥∞
2γn(N + 2)n

n!
one has,

lim
m → ∞

∫ ∞

0
φ(x)um(t, x)dx = e−αtφ(1) +

∞∑
n=0

(αt)n
∫ ∞

0
an(x)φ(x)dx =

∫ ∞

0
φ(x)dµF

t

and it follows
µF

t ⩾ 0.
This ends the proof of Theorem 2.6. □

The following corollary follows now easily from Theorem 2.2, Theorem (2.4), The-
orem 2.6 and Proposition 2.3.

Corollary 2.8 (Well-posedness of the fragmentation equation). — Assume
the fragmentation kernel κ satisfies (Hyp-1) with γ ⩾ 0 and take µ0 that satis-
fies (Hyp-2). Then, there exists a unique non-negative solution µt to the fragmen-
tation equation in C(R+,M(R+)) that has a finite TV norm. Moreover, this solution
satisfies

supp (µt) ⊂ supp (µ0)
and can be represented as the power series (2.10).

Let us provide two cases where we have explicit formulations for the fundamental
solution to (2.4) for µ0 = δ(x− 1).

Example 2.9. — For α = γ = 1 and κ = 21[0,1], we have [ZM85, formula 11]

µF
t (x) = e−tδ(x− 1) + (2t+ (1 − x)t2)e−xt,
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Example 2.10. — For α = 1, γ = 0, and κ(z) = 2δ(z − 1/2) we have [DvB18,
Proposition 1]

µF
t (x) = e−tδ(x− 1) + e−t

∞∑
k=1

(4t)k

k! δ
(
x− 1

2k

)
.

In both examples, the mass initially located at x = 1 decreases exponentially with
respect to time and is teleported on (0, 1).

The stability of the solution with respect to the TV norm has been proved in The-
orem 2.2. The stability in the BL norm is deduced now from the explicit expression
provided by Theorem 2.4.

Theorem 2.11 (Stability of the fragmentation equation in (M(R+), ∥.∥BL)). —
Assume κ satisfies (Hyp-1), µ0 ∈ M+(R+) satisfies (Hyp-2), and moreover either
γ ⩾ 1 or supp (µ0) ⊂ [m,M ] with m > 0. Then the unique solution µt to the
fragmentation equation (2.4) satisfies

∥µt∥BL ⩽ C
(
L,N, T, α, γ,mγ−1

)
∥µ0∥BL, 0 ⩽ t ⩽ T,

Proof. — We use the definition of the BL norm given by (1.7) and the representa-
tion of the solution provided in Theorem 2.4. Take φ ∈ C(R+) such that ∥φ∥∞ ⩽ 1
and ∥φ′∥∞ ⩽ 1. Then by (2.12) in Theorem 2.4,∫ +∞

0
φ(x)dµt(x) =

∫
0

∫ 1

0
φ(ℓx)dµF

tℓγ (x)dµ0(ℓ).

For ℓ ⩽M, we set

Ψ(ℓ) =
∫ 1

0
φ(ℓx)dµF

tℓγ (x).

We notice that for any r ⩾ 0, the moment of order r of the absolute value of the
fundamental solution µF

t is uniformly bounded for t ∈ [0, T ] using the rough estimate
based on Theorem 2.2∫

R+
xrd

∣∣∣µF
t

∣∣∣ (x) ⩽ Łr
∥∥∥µF

t

∥∥∥
T V

⩽ LreαLγ(N+1)T ∥δ(x− 1)∥T V =: C̃(L,N, T, r, α, γ).

Then for all ℓ ⩽ L,

|Ψ(ℓ)| ⩽
∫ +∞

0
|φ(ℓx)|d

∣∣∣µF
tℓγ

∣∣∣ (x) ⩽ ∥φ∥∞

∫ +∞

0
d
∣∣∣µF

T Lγ

∣∣∣ (x) ⩽ C̃(L,N, T, 0, α, γ),

and

|Ψ′(ℓ)| ⩽
∫ +∞

0

∣∣∣φ′(ℓx)
∣∣∣xd ∣∣∣µF

tℓγ

∣∣∣ (x) +
∫ +∞

0
|φ(ℓx)|tγℓγ−1

∣∣∣∣∣ ∂∂td
∣∣∣µF

tℓγ

∣∣∣ (x)
∣∣∣∣∣

where ∫ +∞

0

∣∣∣φ′(ℓx)
∣∣∣xd ∣∣∣µF

tℓγ

∣∣∣ (x) ⩽ C̃(L,N, T, 1, α, γ) ∥φ′∥∞ ,
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and where
∞∫

0

|φ(ℓx)|tγℓγ−1
∣∣∣∣∣ ∂∂td

∣∣∣µF
tℓγ

∣∣∣ (x)
∣∣∣∣∣

⩽ ∥φ∥∞Tmax
(
Lγ−1,mγ−1

)
γα

∫ ∞

0
xγd

∣∣∣µF
tℓγ

∣∣∣ (x) +
∞∫

0

∞∫
x

κ

(
x

y

)
yγ−1d

∣∣∣µF
tℓγ

∣∣∣ (y)dx


= ∥φ∥∞Tmax
(
Lγ−1,mγ−1

)
γα

(∫ ∞

0
xγd

∣∣∣µF
tℓγ

∣∣∣ (x) +
∫ ∞

0

∫ 1

0
κ (z) dzyγd

∣∣∣µF
tℓγ

∣∣∣ (y)
)

⩽ Tmax
(
Lγ−1,mγ−1

)
γα(N + 1)C̃(L,N, T, γ, α, γ).

We set

C
(
L,N, T, α, γ,mγ−1

)
:= C̃(L,N, T, 0, α, γ) + C̃(L,N, T, 1, α, γ)

+ T max
(
Lγ−1,mγ−1

)
γα(N + 1)C̃(L,N, T, γ, α, γ)

and define
Ψ̃(ℓ) = Ψ(ℓ)

C (L,N, T, α, γ,mγ−1) ,

then ∥∥∥Ψ̃∥∥∥
∞

⩽ 1,
∥∥∥Ψ̃′

∥∥∥
∞

⩽ 1.

We have shown that for any φ ∈ C(R+) satisfying ∥φ∥∞ ⩽ 1, ∥φ′∥∞ ⩽ 1, there exists
Ψ̃ ∈ C(R+) such that ∥Ψ̃∥∞ ⩽ 1, ∥Ψ̃′∥∞ ⩽ 1 and∫ +∞

0
φ(x)dµt(x) ⩽ C

(
L,N, T, α, γ,mγ−1

) ∫ +∞

0
Ψ̃(x)dµ0(x).

Thus the conclusion of Theorem 2.11 holds. □

Remark 2.12. — For γ < 1, and for any initial condition µ0 such that µ0(0) ̸= 0,
m = 0 and thus Theorem 2.11 does not provide any estimate on ∥µt∥BL. Stability
with respect to the initial condition is lost.

3. Inverse problem for the fragmentation kernel

In this section, estimates of the fragmentation kernel and bounds of the error of
such estimates are obtained using the series expression of the solution µ of (2.4)
provided by Theorem 2.4 for short values of the time variable.

3.1. An estimation for κ using short-time measurements

Let us first investigate the best possible case, when the initial data µ0 is a Dirac
delta function at x = 1.
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Theorem 3.1 (An estimate for κ using short-time measurements of the particles
size distribution when initial condition is a delta function at x = 1). — Assume κ
satisfies (Hyp-1) and define

(3.1) κest(t) = µF
t − e−αtδ(x− 1)

αt
,

where µF
t is the unique fundamental solution to the fragmentation equation (2.4)

with the initial data µ0 = δ(x− 1). Then we have

(3.2)
∥∥∥∥κest − κ

∥∥∥∥
T V

⩽ C(N, T, α) t, ∀ t ∈ (0, T ],

for

(3.3) C = α max
t ∈ [0,T ]

∞∑
n=0

(αt)n∥an+2∥T V = α
∞∑

n=0
(αT )n∥an+2∥T V .

Before proving Theorem 3.1, we point out that another possible formula for the
estimated kernel is

κest
bis(t) = µF

t − (1 − αt)δ(x− 1)
αt

= 1 + µF
t − δ(x− 1)

αt
.

Since e−αt = 1 − αt+ o(t), we also have∥∥∥∥κest
bis − κ

∥∥∥∥
T V

⩽ Ct.

Proof. — We have, using the notations introduced in Proposition 2.3 and Theo-
rem 2.4,

µF
t − e−αtδ(x− 1)

αt
− κ =

∞∑
n=1

(αt)nan

αt
− κ =

∞∑
n=1

(αt)n−1an − κ =
∞∑

n=0
(αt)nan+1 − κ

and since a1 = κ, we have
∞∑

n=0
(αt)nan+1 − κ =

∞∑
n=1

(αt)nan+1 = αt
∞∑

n=0
(αt)nan+2.

Thus ∥∥∥∥∥µF
t − e−αtδ(x− 1)

αt
− κ

∥∥∥∥∥
T V

⩽ αt
∞∑

n=0
(αt)n∥an+2∥T V .

The series converges (normal convergence) and thus it is bounded on any compact
set, for instance for t ∈ [0, T ]. This ends the proof of Theorem 3.1. □

When the initial data is a Dirac delta at x = ℓ > 0 Theorem 3.1 and Proposition 2.3
give an estimate of the following rescaled fragmentation kernel,

κℓ = Tℓ#κ,
where the map Tℓ is defined in (1.12). Recall that if κ is a function, then

κℓ(z) = 1
ℓ
κ
(
z

ℓ

)
, 0 ⩽ z ⩽ ℓ.
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Corollary 3.2 (An estimate for κ using short-time measurements of the particles
size distribution when initial condition is a delta function at x = ℓ). — We define

κest
ℓ (t) = µℓ

t − e−αtℓγ
δ(x− ℓ)

αtℓγ
,

where µℓ
t is the unique solution to (2.4) with the initial condition µ0 = δ(x − ℓ).

Then, for all T > 0, ∥∥∥∥κest
ℓ (t) − κℓ

∥∥∥∥
T V

⩽ Ctℓγ, ∀ t ∈ (0, T ].

where C is the constant given in (3.3)

Proof. — We notice that for any continuous map T , we have ∥T#µ∥T V ⩽ ∥µ∥T V

(with equality if the measure µ is positive, or if T is an injection). Let us set
η = µF

tℓγ −e−αtℓγ
δ(x−1). We have Tℓ#η = µℓ

t−e−αtℓγ
δ(x−ℓ), hence using Theorem 3.1∥∥∥∥∥µℓ

t − e−αtℓγ
δ(x− ℓ)

αtℓγ
− κℓ

∥∥∥∥∥
T V

=
∥∥∥∥∥Tℓ#

(
µF

tℓγ − e−αtℓγ
δ(x− 1)

αtℓγ
− κ

)∥∥∥∥∥
T V

⩽ Cαℓγt,

where C is the constant in (3.3). This ends the proof. □

In most of the cases, a Dirac delta as an initial condition is experimentally out
of reach. However, as proved in the next corollary, for all initial data µ0 satisfy-
ing (Hyp-2), it is possible to estimate not the kernel κ itself but the convolution
κ ∗ w0 where dw0(ℓ) = ℓγdµ0(ℓ). Moreover, if the initial data µ0 becomes closer and
closer, in some suitable sense, to δ(x− 1), so does κ ∗ w0 and the estimate of κ ∗ w0
gives an estimate of κ itself.

If µ0 satisfies (Hyp-2) and µ is the unique solution given by Theorem 2.4 of the
equation (2.4) with initial data µ0, define

(3.4) κest(µ0; t, x) = µ(t, x) − e−αtxγ
µ0(x)

αt
.

We have the following corollary.

Corollary 3.3 (Generic initial condition). — Assume κ satisfies (Hyp-1) and
µ0 satisfies (Hyp-2). Then, for all T > 0,

(3.5)
∥∥∥∥κest(µ0; t) − w0 ∗ κ(x)

∥∥∥∥
T V

⩽ CL2γ∥µ0∥T V t, ∀ t ∈ (0, T ],

where w0 denotes the measure with density ℓ → ℓγµ0(ℓ), C is given in (3.3) and
κest(µ0; t) is defined by (3.4).

If {µ0,n}n ∈ N ⊂ M+(R+) is a sequence such that

(3.6)

 limn → ∞ ∥µ0,n − δ(x− 1)∥BL = 0
supn ∈ N ∥µ0,n∥T V < ∞

or if

(3.7) lim
n → ∞

∥µ0,n − δ(x− 1)∥T V = 0,
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then for all ε > 0 there exists n0 such that for all T > 0,

(3.8)
∥∥∥∥κest(µ0,n; t) − κ(x)

∥∥∥∥
BL

⩽ CL2γ sup
n ∈ N

∥µ0,n∥T V t+ ε, ∀ t ∈ (0, T ], ∀ n > n0.

Proof. — For ℓ > 0, we multiply the measure

Xℓ = µℓ
t − e−αtℓγ

δ(x− ℓ)
αtℓγ

− κℓ

by the smooth function ℓ → ℓγ, and apply Corollary 3.2 to obtain

∥Yℓ∥T V ⩽ Ctℓ2γ,

with C the constant given in (3.3) and Yℓ = µℓ
t−e−αtℓγ

δ(x−ℓ)
αt

− ℓγκℓ. We multiply the
function ℓ → Yℓ from R+ onto M(R+) by ℓ → µ0(ℓ) and integrate over R+. Since
(M(R+), ∥.∥T V ) is a Banach space, we can use the Bochner integral so that we have∥∥∥∥κest(µ0; t) − w0 ∗ κ(x)

∥∥∥∥
T V

=∥∥∥∥∫
R+
Yℓdµ0(ℓ)

∥∥∥∥
T V

⩽
∫

R+
∥Yℓ∥T V dµ0(ℓ) ⩽ t

∫
R+
ℓ2γdµ0(ℓ),

and (3.5) follows.
If we suppose now that {µ0,n}n ∈ N satisfies (3.6), then so does {w0,n}n∈N and

therefore ∥w0,N ∗ κ− κ∥BL −→
n → ∞

0. We deduce by (1.8) and (3.5),∥∥∥κest(µ0,n; t) − κ
∥∥∥

BL
⩽
∥∥∥κest(µ0,n; t) − w0,n ∗ κ

∥∥∥
T V

+ ∥κ− κ ∗ w0,n∥BL

⩽ CL2γ ∥µ0,n∥T V t+ ∥κ− κ ∗ w0,n∥BL

from where (3.8) follows.
Now if {µ0,n}n ∈ N satisfies ((3.7), {w0,n}n ∈ N does too and therefore

lim
n → ∞

∥κ− κ ∗ w0,n∥T V = 0.

We deduce, ∥∥∥κest(µ0,n; t) − κ
∥∥∥

T V
⩽ CL2γ ∥µ0,n∥T V t+ ∥κ− κ ∗ w0,n∥T V

and (3.8) follows. □

Remark 3.4. — If {µ0,n}n ∈ N is such that

µ0,n ⇀
n → ∞

δ(x− 1), in the weak sense of measures,
sup
n ∈ N

∥µ0,n∥T V < ∞,

∃ Q ⊂ [0,∞), compact suppµ0,n ⊂ Q, ∀ n ∈ N,

then, by [Han99, Proposition 4], ∥w0,n − δ(x − 1)∥BL −→ 0
n → ∞

. It follows that Prop-
erty (3.6) is satisfied and (3.8) holds. Notice however that property (3.6) is not
satisfied for any weakly-converging sequence µ0,n.
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3.2. Stability of the κ estimate with respect to model and measurement
noises

Let us now turn to error estimates in more realistic observation cases, where the
noise may be twofold: 1/ a model noise, where the initial condition is close to a Dirac
delta in the BL distance; and 2/ a measurement noise, where the size distributions µ0
and µt are observed with an error. A stability result for the time-dependent solution
with respect to the initial condition µ0 has already been proved in Theorem 2.11.

Theorem 3.5 (Stability of the κ estimate with respect to noises on the initial
condition and the measurements). — Assume κ satisfies (Hyp-1). Take an initial
condition µq

0 satisfying (Hyp-2) and that is close to a delta function at x = 1 in the
sense that

∥µq
0 − δ(x− 1)∥BL ⩽ q.

We denote by µq
t the unique solution to the fragmentation equation (2.4) with ini-

tial condition µq
0. Consider the noisy measurements µq,ε0

0 and µq,ε
t of the respective

measures µq
0 and µq

t such that
∥µq,ε0

0 − µq
0∥BL ⩽ ε0, ∥µq,ε

t − µq
t ∥BL ⩽ ε.

Assume moreover either γ ⩾ 1 or supp (µ0) ⊂ [m,L] with m > 0. Then, for all
0 ⩽ t ⩽ T , there are some constants C1(N, T, α) and C2(L,N, T, α, γ,mγ−1) such
that

(3.9)
∥∥∥∥∥µ

q,ε
t − e−αtµq,ε0

0
αt

− κ

∥∥∥∥∥
BL

⩽ C1t+ ε0 + ε+ C2q

αt
.

Proof. — We use the triangle inequality to write

(3.10)
∥∥∥∥∥µ

q,ε
t − e−αtµq,ε0

0
αt

− κ

∥∥∥∥∥
BL

⩽
∥µq,ε

t − µq
t ∥BL

αt
+

∥∥∥µq
t − µF

t

∥∥∥
BL

αt
+ e−αt ∥δ(x− 1) − µq

0∥BL

αt

e−αt ∥µq
0 − µq,ε0

0 ∥BL

αt
+
∥∥∥∥∥µt − e−αtδ(x− 1)

αt
− κ

∥∥∥∥∥
BL

.

The first, third and fourth terms in the right-hand side of (3.10) are directly controlled
using the assumptions of Theorem 3.5. In the last term at the right-hand side
of (3.10), Theorem 3.1 combined with (1.8) guarantee that∥∥∥∥∥µt − e−αtδ(x− 1)

αt
− κ

∥∥∥∥∥
BL

⩽ C(N, T, α) t.

For the second term, we use Theorem 2.11 to obtain

∥µq
t − µt∥BL ⩽ C

(
L,N, T, α, γ,mγ−1

)
∥µq

0 − δ(x− 1)∥BL

Thus with the assumptions of Theorem 3.5, we obtain

∥µq
t − µt∥BL ⩽ C

(
L,N, T, α, γ,mγ−1

)
q.
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This completes the proof of Theorem 3.5 with C1 = C(N, T, α)
and C2 = 1 + C(L,N, T, α, γ,mγ−1). □

Remark 3.6. — We notice that (3.9) presents a balance between two terms, which
is classically encountered in the field of inverse problems [EHN96] and which is also
reminiscent of the classical bias-variance tradeoff in nonparametric statistics [GN16].
The time interval t plays the same role as a regularisation parameter: if too small,
the noise is not smoothed and the right-hand side of (3.9) tends to infinity; if too
large, the estimate loses its accuracy, the right-hand side being not small. There is
a time t∗ such that the estimate provided by Theorem 3.5 is optimal, namely

(3.11) t∗ =
√
ε0 + ε+ C2q

αC1
.

For this value, the error estimate is in the order of √
ε0 + ε+ q, vanishing when the

noise levels vanish, though at a lower speed than the noises themselves - the rate of
convergence in the order of

√
ε being reminiscent of mildly ill-posed problems.

Remark 3.7. — Using short-time measurements to estimate parameters of a given
time-dependent equation is an idea that has appeared for other types of equations.
Recently, a very similar approach has been used for estimating the tumbling kernel
of a mesoscopic equation for chemotaxis [HKLT24]; in their approach, convergence of
their estimate is obtained, but no quantitative error estimate as (3.9). Further away
from our equation, it has been used to estimate the exponent of a time-fractional
diffusion equation [LCL19], or yet the diffusion parameter in the heat equation [CP06].
However, up to our knowledge, no systematic approach which would analyse the
“short-time method” in a general framework, and which would justify our analogy of
the time window of the observation with a regularisation parameter, has yet been
developed.

4. Reconstruction formula in Mellin variables
We have seen in the previous section how to approximate κ when the initial

condition is not too far from a Dirac measure, and how to approximate w0 ∗ κ by
κest(µ0; .) for generic initial condition. This section is devoted to the deduction of a
reconstruction formula for the Mellin transform of the fragmentation kernel κ in the
case of generic initial condition, and to estimate the error of such an approximation,
in terms of short-time measurements of the population data and the initial data.
The best method to this end is not to use the Mellin transform of the approximation
κest(µ0; .) of κ obtained in Corollary 3.3. Instead, the series representation of µt

is used to deduce a series representation of its Mellin transform U , and then an
approximation of the Mellin transform directly.

Suppose that κ satisfies (Hyp-1), µ0 satisfies (Hyp-2) and let µ be the solution
to (2.4) with initial condition µ0 given by Theorem 2.4. We denote by U(t, .) the
x-Mellin transform of µt to (2.4), and we denote by K the Mellin transform of κ, i.e.

U(t, s) =
∫ +∞

0
xs−1dµt(x), K(s) =

∫ +∞

0
zs−1dκ(z).
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We also define

W (t, h, s) =
∫ +∞

0
xs−1e−αhxγ

dµt(x), ∀ t ⩾ 0, ∀ h > 0.

It follows from (Hyp-1) and Theorem 2.4 that K is analytic in s ∈ S+
1 = {s ∈

C; ℜe(s) > 1} and so are U(t) and W (t, h) for all t > 0 and h > 0.

4.1. A formula for U

Lemma 4.1 (Representation of U as a power series). — Take κ satisfying (Hyp-1)
and µ0 ∈ M(R+) that satisfies (Hyp-2). Then, the Mellin transform U of the solution
µt to (2.4) satisfies

(4.1)
U(t+ ∆τ, s) =W (t,∆τ, s) +

∞∑
n=1

(α∆τ)n

n! U(t, s+ γn)

×
n−1∑
j=0

(−1)n−1−jK(s+ jγ)
j−1∏
m=0

(K(s+mγ) − 1),

for t > 0 and ∆τ > 0, with the convention∏
n ∈ ∅

bn = 1.

Proof. — Since the fragmentation equation is autonomous, Theorem 2.4 implies
that for all t > 0, ∆τ > 0, we have

µt+∆τ = e−αxγ∆τµt +
∞∑

n=0
(α∆τ)n

∫ ∞

0
ℓnγan

(
x

ℓ

)
µt(ℓ)

dℓ

ℓ
,

We apply the Mellin transform to both sides of the above equality and use Propo-
sition 1.3: it follows

U(t+ ∆τ, s) = W (t,∆τ, s) +
∞∑

n=0
(α∆τ)nU(t, s+ nγ)An(s),

where we denote by An the Mellin transform of the measure an. Passing (2.11) into
the Mellin coordinates, the sequence An satisfies

A0 = 0, An+1(s) = 1
n+ 1

(
(K(s) − 1)An(s+ γ) + (−1)n

n! K(s)
)
.

By induction, we deduce

An(s) = 1
n!

(−1)n−1K(s) +
n−1∑
j=1

(−1)n−1−jK(s+ jγ)
j−1∏
m=0

(K(s+mγ) − 1)
 ,

and Lemma 4.1 is proved. □
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4.2. A reconstruction for K using short times

Since κ is supported on [0, 1], it follows that K(s+ nγ) → 0 as n → ∞, and then
an approximation formula for K may be obtained by truncation at n = 1 of the
second term at the right-hand side of (4.1). To this end, let us give the following
definitions.

Definition 4.2 (Approximation formula for the Mellin transform of the kernel).
For s ∈ C, we denote

Kest(s, t,∆τ) = U(t+ ∆τ, s) −W (t,∆τ, s)
α∆τU(t, s+ γ)

R(s, t,∆τ) = K(s) −Kest(s, t,∆τ).
(4.2)

The error term R(s, t,∆τ) may be estimated uniformly for s on some vertical strip
of the complex plane such that |ℑm(s)| > V for V > 0 large enough. This requires
some further regularity on the kernel κ, the initial data µ0 and the solution µ that
ensure that U and K decay fast enough at infinity.

(Hyp-3) There exists an interval I ⊂ (0,∞) such that κ and the function x 7→
s−1xsκ(x) are absolutely continuous functions on x ∈ [0, 1], for all s ∈ SI ,
where

SI = {s ∈ C; ℜe(s) ∈ I} .

(Hyp-4) Let µ0 ≡ u0 ∈ C3([0, L]) and either u0(L) > 0, or u0(L) = 0 and u′
0(L) < 0.

The decay at infinity of the Mellin transform U follows from the condition (Hyp-4)
on u0 thanks to the following lemma whose proof is postponed until the end of
Section 4.

Lemma 4.3 (Regularity and support of the solution to the fragmentation equation).
Assume the fragmentation kernel κ satisfies (Hyp-1). Take u0 ∈ C3([0, L]) such that
supp (u0) = [0, L]. Then, if we denote µ = u the solution to the fragmentation
equation (2.4) with µ0 = u0, it holds

(1) The function x → u(t, x) is in C3([0, L]) for all t > 0.
(2) supp (u(t, .)) = [0, L].
(3) If u0(L) > 0, then for all t > 0, u(t, L) = e−αLγtu0(L) > 0.

If u0(L) = 0 and u′
0(L) < 0, then u(t, L) = 0 and ∂xu(t, L) = e−αLγtu′

0(L)
< 0 for all t > 0.

For any interval I ⊂ (0,∞) and V > 0 let us define the domain

DI,V = {s ∈ C; ℜes ∈ I, |ℑms| > V }

We have then the following

Theorem 4.4 (Reconstruction formula for K). — Suppose that the fragmenta-
tion kernel κ satisfies (Hyp-1) and (Hyp-3) and u0 satisfies (Hyp-2) and (Hyp-4).
Then, the following holds.
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(i) For all T > 0, τ0 > 0 and V > 0 sufficiently large, there exists a constant
C > 0 depending on α, γ, V, I, T, τ0, and L, such that for all t ∈ (0, T ) and
all ∆τ ∈ (0, τ0)

(4.3) |R(s, t,∆τ)| ⩽ Cα∆τ
|s|

, ∀ s ∈ DI,V .

(ii) For all T > 0, all τ0 > 0 and s ∈ R such that s > 1 there exists a constant
C = C(t, s, τ0) > 0 such that

|R(s, t,∆τ)| ⩽ Cα∆τ, ∀ t ∈ (0, T ), ∀ ∆τ ∈ (0, τ0)(4.4)

Proof of Theorem 4.4. — We first prove (i). Combining (4.2) with Lemma 4.1, we
have the expression for the rest R

(4.5) R(s, t,∆τ) =

1
α∆τ

∞∑
n=2

(α∆τ)n

n!
U(t, s+ γn)
U(t, s+ γ)

n−1∑
j=0

(−1)n−1−jK(s+ jγ)
j−1∏
m=0

(K(s+mγ) − 1).

Step 1. Estimate for K. — We prove here that for some C̃ > 0 depending on
I it holds

(4.6) |K(s)| ⩽ C̃(I)
1 + |s|

, ∀ s ∈ SI .

By (Hyp-1), K(s) is well defined and analytic for ℜes > 0. Take s ∈ I. Since
by (Hyp-3), κ ∈ C([0, 1]) and ℜe(s) > 0 it follows that xsκ(x) −→

x → 0
0. And since κ

and x → s−1xsκ(s) are absolutely continuous on [0, 1]

K(s) =
∫ 1

0
κ(x)xs−1dx = κ(1)

s
− 1
s

∫ 1

0
κ′(x)xsdx, ∀ s ∈ SI .

Because κ is absolutely continuous on [0, 1] there exists two non-decreasing functions
on [0, 1], κ1 and κ2, such that κ = κ1 − κ2 on [0, 1], κ′

i are measurable and non
negative on [0, 1] for i = 1, 2 and∫ 1

0
κ′

i(x) ⩽ κi(1) − κi(0), i = 1, 2∫ 1

0
|κ′(x)|dx ⩽

∫ 1

0
(κ′

1(x) + κ′
2(x))dx

⩽ κ1(1) + κ2(1) − κ1(0) − κ2(0).

Therefore,

|K(s)| ⩽ κ(1)
|s|

+ 1
|s|

∫ 1

0
|κ′(x)|dx, ∀ s ∈ SI

⩽
κ(1)
|s|

+ 1
|s|

(κ1(1) + κ2(1) − κ1(0) − κ2(0))

from where (4.6) follows.
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Step 2. Estimate for U . — We prove here that for every T > 0 and for V large
enough, there exists a constant C = C(L, T, V, α, γ) > 0 such that for all t ∈ (0, T )
and n ⩾ 2,

(4.7)
∣∣∣∣∣U(t, w + nγ + iv)
U(t, w + γ + iv)

∣∣∣∣∣ ⩽ C(L, T, α, γ)n(n− 1)L(n−1)γ, ∀ s ∈ DI,V .

We follow, for |v| large, the calculation of [Die68, Chapter IV, Section 4] where
the stationary phase method is used to study the behaviour of oscillatory integrals.
For w > 0, we have for v ̸= 0

U(t, w + iv) =
∫ L

0
u(t, x)xw−1xivdx =

∫ L

0
u(t, x)xw−1eiv ln(x)dx

= 1
iv

∫ L

0
u(t, x)xw d

dx

(
eiv ln(x)

)
dx.

since d

dx
(eiv ln(x)) = iv

x
eiv ln(x). We perform an integration by part and we obtain

U(t, w + iv) = 1
iv
u(t, L)Lweiv ln(L) − 1

iv

∫ L

0
eiv ln(x) ∂

∂x
(u(t, x)xw) dx,

which we rewrite, using the same trick than above

U(t, w + iv) = 1
iv
u(t, L)Mweiv ln(L) −

( 1
iv

)2 ∫ L

0
x
∂

∂x
(u(t, x)xw) d

dx

(
eiv ln(x)

)
dx.

We perform another integration by part to obtain

U(t, w + iv) = 1
iv
u(t, L)weiv ln(L) −

( 1
iv

)2
Lw

(
L
∂

∂x
u(t, L) + wu(t,M)

)
eiv ln(L)

+
( 1
iv

)2 ∫ L

0

∂

∂x

(
x
∂

∂x
(u(t, x)xw)

)
eiv ln(x)dx.

The third term of the right-hand side above can be expanded using

∂

∂x

(
x
∂

∂x
(u(t, x)xw)

)
= w2xw−1u(t, x) + xw(1 + 2w) ∂

∂x
u(t, x) + xw+1 ∂

2

∂x2u(t, x).

Then we have

(4.8)


U(t, w + γ + iv) = C(L, t, α, γ, w, v)

iv
+ C ′(L, t, α, γ, w, v)

(iv)2 ,

U(t, w + nγ + iv) = nL(n−1)γ
(
C(L, t, α, γ, w, v)

niv
+ C ′′(L, t, α, γ, w, v, n)

(iv)2

)

for some complex constants C(L, t, α, γ, w, v), C ′(L, t, α, γ, w, v) and C ′′(L, t, α, γ, w, v, n)
defined as
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C(L, t, α, γ, w, v) = u(t, L)Lw+γeiv ln(L),

C ′(L, t, α, γ, w, v) = −Lw+γ

(
L
∂u

∂x
(t, L) + (w + γ)u(t, L)

)
eiv ln(L),

+
∫ L

0

(
(w + γ)2xw+γ−1u(t, x) + xw+γ(1 + 2(w + γ)) ∂

∂x
u(t, x)

+xw+γ+1 ∂
2

∂x2u(t, x)
)
eiv ln(x)dx

C ′′(L, t, α, γ, w, v, n) = Lw+γ

(
L
∂

∂x
u(t, L) + w + nγ

n
u(t, L)

)
eiv ln(L)

+
L∫

0

(
(w + nγ)2

(
1 + xw+nγ−1

)
u(t, x) + xw+nγ(1 + 2(w + nγ))

∂u

∂x
(t, x) + xw+nγ+1∂

2u

∂x2 (t, x)
)
dx.

If u0(L) > 0, then Lemma 4.3 guarantees that u(t, L) > 0 as well. Then we have the
following estimates on C,C ′ and C ′′

0 < C0 ⩽ |C(L, t, α, γ, w, v)| ⩽ C1, |C ′(L, t, α, γ, w, v)| ⩽ C2,

w ∈ I, t ∈ [0, T ], v ∈ R, and

|C ′′(L, t, α, γ, w, v, n)| ⩽ C3, w ∈ I, t ∈ [0, T ], v ∈ R, n ⩾ 1.

Then, using (4.8), there exists V > 0 such that for |v| ⩾ V and w ∈ I,

∣∣∣∣∣U(t, w + nγ + iv)
U(t, w + γ + iv)

∣∣∣∣∣ ⩽ nL(n−1)γ |Civ + C ′|
|Civ + C ′′|

⩽ nL(n−1)γ
(

1 + |C ′′ − C ′|
|Civ + C ′|

)
⩽ nL(n−1)γC(V ).

(4.9)

for some constant C(V ) > 0 that depends on V , and formula (4.7) follows.
Now if u0(L) = 0, then Lemma 4.3 guarantees that u(t, L) = 0 as well. Thus

U(t, w) = −
( 1
iv

)2 ∫ L

0
x
∂

∂x
(u(t, x)xw) d

dx

(
eiv ln(x)

)
dx.
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In that case, u′
0(L) < 0 so that Lemma 4.3 guarantees that ∂xu(t, L) < 0 as well,

and we go one step further in the expansion and write

U(t, w) = −
( 1
iv

)2
Lw+1eiv ln(L) ∂

∂x
(u(t, x)xw)

∣∣∣∣
x=L

+
( 1
iv

)3
Leiv ln(L) ∂

∂x

(
x
∂

∂x
(u(t, x)xw)

) ∣∣∣∣
x=L

+
( 1
iv

)3 ∫ L

0

∂

∂x

(
x
∂

∂x

(
x
∂

∂x
(u(t, x)xw)

))
eiv ln(x)dx

Using the same types of arguments than above, formula (4.7) holds again.
Step 3. Estimate for R. — Using formula (4.5) and the triangle inequality, we

have

|R(s, y,∆τ)|

⩽ α∆τ
∞∑

n=2

(α∆τ)n−2

n!

∣∣∣∣∣U(t, s+ γn)
U(t, s+ γ)

∣∣∣∣∣
n−1∑
j=0

|K(s+ jγ)|
j−1∏
m=0

|K(s+mγ) − 1| .

Using now (4.6) and (4.7) we obtain for ℜ(s) ∈ I and ℑ(s) ∈ R

(4.10) |R(s, y,∆τ)| ⩽ α∆τLγ

1 + |s|

∞∑
n=2

(α∆τ)n−2

(n− 2)! (Lγ)n−2
n−1∑
j=0

C̃j+1.

which implies

|R(s, y,∆τ)| ⩽ ατ0
LγC̃

1 + |s|

∞∑
n=2

(α∆τ)n−2

(n− 2)! (Lγ)n−2 1 − C̃n

1 − C̃
,

and Theorem 4.4 is proved for C = LγC̃
∑∞

n=2
(ατ0)n−2

(n−2)! (Lγ)n−2 1−C̃n

1−C̃
< ∞.

In order to prove now (ii), suppose that s ∈ R is fixed such that s > 1, estimate (4.6)
still holds. Moreover, since µ(t) ⩾ 0 for all t > 0 it follows that U(t, s) > 0. Since
U(·, s) ∈ C(0,∞) it follows that for all T > 0 there exists a constant C = C(T, s) > 0
such that U(t, s+ γ) > C−1 for all t ∈ (0, t). It then follows, arguing as for (4.10),∣∣∣∣∣U(t, s+ nγ)

U(t, s+ γ)

∣∣∣∣∣ ⩽ CLγn−1∥µ(t)∥T V

|R(s, t,∆τ)| ⩽ C∥µ(t)∥T V α∆τ
∞∑

n=2

(ατ0)n−2

n!

n−1∑
j=0

C̃j+1

⩽

(
C||µ(t)||T V

∞∑
n=2

(ατ0)n−2

n!
1 − C̃n

1 − C̃

)
α∆τ

where C̃ comes from Step 1. □

The estimate in Theorem 4.4 may be improved under stronger assumptions on κ.
For example,

Corollary 4.5 (A better estimate for kernels not allowing erosion). — Suppose
that the hypothesis of Theorem 4.4 hold. Suppose moreover that κ′ and x 7→ κ′(x)xs+1
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are absolutely continuous on x ∈ [0, 1], and κ(1) = 0 for s ∈ SI . Then, for all T > 0
and τ0 > 0 there exists two constants V > 0 and C(L, T, α, γ, I, V, τ0) > 0 such that
for all t ∈ (0, T ), ∆τ ∈ (0, τ0)

(4.11) |R(s, t,∆τ)| ⩽ C(L, T, α, γ, I, V, τ0)α∆τ
|s|2

, ∀ s ∈ DI,V .

Proof. — The proof is the same than the proof of Theorem 4.4, except that the
estimate for the Mellin transform in Step 1 becomes,

K(s) =
∫ 1

0
κ(x)xs−1dx = −1

s

∫ 1

0
κ′(x)xsdx

= − 1
s(s+ 1)

(
κ′(1) − κ′(0) −

∫ 1

0
κ′′(x)xs+1dx

)
, ∀ s ∈ SI

and thus for some C̄ > 0

|K(s)| ⩽ C̄

|s|2 + 1 , ∀ s ∈ SI . □

A natural question arising from Theorem 4.4 and Corollary 4.5 is if, and in what
sense the inverse Mellin transform of Kest(t,∆τ), M−1(Kest(t,∆τ)), is an approxi-
mation of the kernel κ itself. By (Hyp-3), for all s ∈ I,

sup
x ∈ [0,1]

xs|κ(x)| < ∞,(4.12)

and then, for any s0 ∈ I, (4.12) holds for all s > s0. But (4.12) is not known to be
true for s < inf{σ;σ ∈ I}.

Theorem 4.6. — Suppose that the hypothesis of Corollary 4.5 are satisfied and
denote I = (a, b) for some b > a ⩾ 0. Then, for every t > 0, every τ0 > 0 and δ > 0
sufficiently small, there exists a positive constant C that depends on t, τ0 and δ such
that, for all s ∈ (a, b),

sup
x ∈ [0,1]

xs
∣∣∣κ(x) − M−1

(
Kest(t,∆τ)

)
(x)
∣∣∣ ⩽ C∆τ, ∀ ∆τ ∈ (0, τ0).(4.13)

Proof. — By hypothesis, for all T > 0 and τ0 > 0 there exist two constants V > 0
and C > 0 such that (4.11) holds for t ∈ [0, T ], ∆τ ∈ (0, τ0), s ∈ SI and |ℑm(s)| > V .

Moreover, for each t ∈ (0, T ) the function U(t, s + γ) is analytic on the domain
{s ∈ C; ℜes > 1 − γ} and γ ⩾ 1. Then, for any δ > 0 sufficiently small to have
(a+ δ/3, a+ 2δ) ⊂ the function U(t, s+ γ) is analytic on

Qδ,V = {s ∈ SI ; ℜes ∈ (a+ δ/3, a+ 2δ, |ℑms| < 2V }

and it may then have only a finite number of zeros in Qδ,V . Therefore there exists a
closed sub-interval J ⊂ (a+ δ/2, a+ δ) such that U(t, s+ γ) ̸= 0 for s ∈ SJ ∩Qδ,V .
It follows by continuity that for some constant C(t, J, V, δ) > 0 that may depend on
t, J, V, δ,

(4.14) |U(t, s+ γ)| ⩾ C(t, J, V, δ) > 0, ∀ s ∈ SJ , |ℑs| < V.
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On the other hand, for w ∈ J ,

|U(t, w + nγ + iv)| =∣∣∣∣∣
∫ L

0
u(t, x)xw+nγ−1eiv ln(x)dx

∣∣∣∣∣ ⩽ L(n−1)γ
∣∣∣∣∣
∫ L

0
u(t, x)xw+γ−1dx

∣∣∣∣∣
⩽ L(n−1)γLa+γ+1∥u(t, .)∥∞.

Then,

(4.15)
∣∣∣∣∣U(t, w + nγ + iv)
U(t, w + γ + iv)

∣∣∣∣∣ ⩽ 2
nC(t, J, V, δ)L

a+γ+1∥u(t, .)∥∞L
(n−1)γ,

w ∈ J, v ∈ [−V, V ].
Therefore, by (4.9) and (4.15), for every t ∈ (0, T ), τ0 > 0 and δ > 0 small enough,
there exists a closed interval J ⊂ I and a constant C > 0 depending on t, J, τ0, δ
such that

|R(s, t,∆τ)| ⩽ C

1 + |s|2
∀ s ∈ SJ , ∀ ∆τ ∈ (0, τ0).(4.16)

The inverse Mellin transform of R(s, t,∆τ) is then a well-defined function for all
x > 0 and ∆τ ∈ (0, τ0), given by

M−1(R(t,∆τ))(x) = 1
2iπ

∫ r+i∞

r−i∞
R(s, t,∆τ)x−sds, r ∈ J.

and is such that
M−1(R(t,∆τ)) ∈ E ′

J

where E ′
J is the space of distributions whose Mellin transform is analytic on SJ

(cf. [ML86]). Since it also holds for x > 0,

κ(x) ≡ M−1(K)(x) = 1
2iπ

∫ r+i∞

r−i∞
K(x)x−sds, r ∈ J.

it follows from (4.2) that the inverse Mellin transform of Kest(t,∆τ) is also well
defined for ∆τ ∈ (0, τ0) and x > 0, and given by a similar integral expression. It is
then possible to apply the inverse Mellin transform to both sides of (4.2) to obtain
for t > 0, ∆τ ∈ (0, τ0), x > 0 and some constant C > 0 depending on t, τ0 and δ,∣∣∣κ(x) − M−1

(
Kest(t,∆τ)

)
(x)
∣∣∣ =∣∣∣M−1(R(t,∆τ))(x)

∣∣∣ ⩽ C∆τ x−r
∫

R

(
1 + |v|2

)−1
dv, ∀ x ∈ (0, 1), ∀ r ∈ J.

Since r ∈ J ⊂ (a+ δ/2, a+ δ),∣∣∣κ(x) − M−1
(
Kest(t,∆τ)

)
(x)
∣∣∣ ⩽ Cδx

−a−δ∆τ ∀ x ∈ (0, 1), ∀ ∆τ ∈ (0, τ0).

For every s ∈ (a, b) there exists δ > 0 such that s > a+ δ and then, for all x ∈ [0, 1],
∆τ ∈ (0, τ0),

xs
∣∣∣κ(x) − M−1

(
Kest(t,∆τ)

)
(x)
∣∣∣ ⩽ Cδx

−a−δ+s∆τ ⩽ Cδ∆τ,

and estimate (4.13) follows. □
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A different reconstruction formula of κ was already obtained in [DET18, Theorem 2,
(iii)]. We notice that there are similarities in the formulae: both of them are the
inverse Mellin transform of a ratio between two Mellin transforms of linear functionals
of the solution, the numerator taken in s and the denominator taken in s+ γ. This
reveals a serious drawback when noise is considered: both formulae then fall in the
scope of so-called severely ill-posed inverse problems, exactly as for deconvolution
problems, see e.g. [BL05, Chapter 4] for an introduction. However, despite the fact
that this new formula is an approximation whereas the previous one was exact, its
advantages are many.

• Experimentally, it is possible to use the measurement of the solutions at
several pairs of close time points, thus making the most of experimental
data, see [BTM+20]. On the contrary, with the formula in [DET18], only the
large-time asymptotic profile can be used.

• In [DET18] there are specific difficulties linked to the measurement of the
asymptotic profile: first, as time passes, the distribution is closer and closer
to zero-size particles, making the measurement all the more noisy ; second,
one needs to assess the validity of considering that the asymptotic behaviour
is reached - the distance to the true asymptotics being a second source
of noise ; third, it has been proved by numerical simulation that different
fragmentation kernels may give rise to very close asymptotic size-distribution
of particles [DETX21].

• Experimentally, it should be possible to depart from several very different
initial conditions, and then use the superimposition principle to combine them
in such a way that we get the most information. This is a direction for future
research.

Remark 4.7. — If only the hypothesis of Theorem 4.4 are assumed, the same
argument as above still shows (4.14) for some interval J ⊂ I and some constant C
depending on t, J and V . But instead of (4.16) only the following holds for some
constant C = C(t, J, τ0),

|R(s, t,∆τ)| ⩽ C

1 + |s|
∀ s ∈ SJ , ∀ ∆τ ∈ (0, τ0).(4.17)

The inverse Mellin transform of R(t,∆τ) is then still well defined, but its expression
is now

M−1(R(t,∆τ)) = −
(
x
∂

∂x

)
(h(t,∆τ))

∀ x > 0 : h(t,∆τ, x) = 1
2iπ

∫ r+i∞

r−i∞
R(s, t,∆τ)s−1x−sds, r ∈ J,

where h(t,∆τ, x) is a function, defined for all x > 0 and all ∆τ ∈ (0, τ0), such that
h(t,∆τ0) ∈ E ′

J . As above, the inverse Mellin transform of Kest(t,∆τ) is then well
defined too, but no point wise estimate like (4.13) holds.

Remark 4.8. — At first sight, regularity assumptions such as (Hyp-3), (Hyp-4)
and the non-erosion of Corollary 4.5 may be surprising. It is however classical
in the field of inverse problems to assume regularity on the object we want to
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estimate, and to gain a better convergence rate when the regularity increases, see
for instance [EHN96]. Here however it is not only on κ that regularity is required -
moreover (Hyp-3) is satisfied for a large class of measures and for all the classical
fragmentation kernels - but also on the initial condition, which is less expected. We
thus have been able to reconstruct the fragmentation kernel in two extreme cases:
either very singular initial condition, given by a Dirac delta function, or very regular
ones, at least C3.

Point (ii) of Theorem 4.4 may also be used to estimate the statistical parameters
of the kernel κ like mean, variance, skewness, kurtosis, since all of them may be
expressed in terms of K(s) for integer values of s. Consider for example the variance
given by

V ar
[
κ

2

]
= 1

2

∫
(0,1)

∣∣∣∣x− 1
2

∣∣∣∣2 κ(x)dx = 1
2K(3) − 1

2K(2) + 1
8K(1) = 1

2K(3) − 1
4

It is then possible to estimate V ar[κ] using 4.1 and defining:(
V ar

[
κ

2

])est

(t,∆τ) = 1
2K

est(3, t,∆τ) − 1
4 .

The following Corollary immediately follows from Point (ii) of Theorem 4.4 for s = 3.

Corollary 4.9 (Estimate of the variance of the kernel). — Suppose that the
assumptions of Theorem 4.4 are satisfied. Then for all T > 0 and τ0 > 0 there is
C(L, T, τ0, α, γ) such that∣∣∣V ar[κ] − (V ar[κ])est(t,∆τ)

∣∣∣ ⩽ C(L, T, α, γ)α∆τ, ∀ t ∈ (0, T ), ∀ ∆τ ∈ (0, τ0).

4.3. Proof of Lemma 4.3

Proof of Lemma 4.3. — The arguments rely on the formula obtained in Theo-
rem 2.4.

(1) We use the formula (2.10) obtained in Theorem 2.4. Note that it can be
rewritten using the change of variables

(4.18) z = x

ℓ
, dz = −z2

x
dℓ,

as

(4.19) u(t, x) = e−αxγtu0(x) +
∞∑

n=0
(αt)n

∫ 1

0

xnγ

znγ
an(z)u0

(
x

z

)
dz

z
.

The first term of the sum is clearly C1, since u0 is. To deal with the second
term, set

In(x) =
∫ 1

0

xnγ

znγ
an(z)u0

(
x

z

)
dz

z
.

The first step is to prove by induction that for all x0 > 0, for all n ⩾ 0,
z → an(z) ∈ C1[x0, 1]. The function a0 is clearly C1, since it is identically zero.
Let us assume that for some n ⩾ 0, z → an(z) ∈ C1[x0, 1]. The function an+1
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satisfies (2.11) and is composed with three terms. The first term and third
term are clearly C1 since an(z) ∈ C1[x0, 1]. We focus on the second term

Jn(x) =
∫ ∞

x
yγ−1κ

(
x

y

)
an(y)dy.

Once again, it can be rewritten using the change of variables (4.18)

Jn(x) =
∫ 1

x0

xγ

zγ
κ(z)an

(
x

z

)
dz

z
.

The dominated convergence theorem guarantees that Jn ∈ C1[x0, 1] and
that

J ′
n(x) =

∫ 1

x0

xγ

zγ
κ(z)a′

n

(
x

z

)
dz

z2 +
∫ 1

x0
γ
xγ−1

zγ
κ(z)an

(
x

z

)
dz

z
.

Indeed∣∣∣∣xγ

zγ
κ(z)a′

n

(
x

z

) 1
z2

∣∣∣∣ ⩽ 1
x2+γ

0
∥a′

n∥C0[x0,1],

∣∣∣∣∣γxγ−1

zγ
κ(z)an

(
x

z

) 1
z

∣∣∣∣∣
⩽
γmax{xγ−1

0 , 1}
x1+γ

0
∥an∥C0[x0,1].

We have proven that an ∈ C1(0, 1) since it is C1(K) for all K compact of
(0, 1).

The first step is to prove that In ∈ C1([0, L]). To do so, we use the dominated
convergence to prove that for all x0 > 0, we have In ∈ C1([x0, L]) and that

(4.20) I ′
n(x) =

nγxnγ−1
∫ 1

0

1
znγ

an(z)u0

(
x

z

)
dz

z
+
∫ 1

0

xnγ

znγ
an(z)u′

0

(
x

z

)
dz

z2 , x ∈ [x0, L].

Indeed, the conclusion of the dominated convergence holds: u0 ∈ C1([0, L]),
hence the integrand is in C1([0, L]) as well. The domination is as follows: since
supp (u0) ⊂ [0, L], the bounds of the integral In are z ∈

[
x
L
, 1
]

⊂
[

x0
L
, 1
]
, and

thus∣∣∣∣∣xnγ−1

znγ
an(z)u0

(
x

z

) 1
z

∣∣∣∣∣ ⩽
max

{(
x0
L

)nγ−1
, Lnγ−1

}
x2

0
∥u0∥∞an(z),

∣∣∣∣∣xnγ

znγ
an(z)u′

0

(
x

z

)
dz

z2

∣∣∣∣∣ ⩽ max
{(

x0
L

)nγ
, Lnγ

}
x2

0
∥u′

0∥∞ an(z),

and it was proved in (2.22) that ∥an∥T V ⩽
(N + 2)n

n! .
Now we claim that the function S defined as

(4.21) S(x) =
∞∑

n=1
(αt)nIn(x)

is of class C1([x0, L]) for all x0 > 0. Indeed, we just saw that In ∈ C1([0, L]),
and that I ′

n is given by (4.20). For x ∈ [x0, L], we can control each of the
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two terms of the sum (4.20) by two sequences that converge. Indeed using
again (2.22), we have

n
∫ 1

0

∣∣∣∣∣xnγ−1

znγ
an(z)u0

(
x

z

) 1
z

∣∣∣∣∣ dz ⩽
max

{(
x0
L

)nγ−1
, Lnγ−1

}
x2

0
∥u0∥∞n

(N + 2)n

n! ,

∫ 1

0

∣∣∣∣∣xnγ

znγ
an(z)u′

0

(
x

z

)
dz

z2

∣∣∣∣∣ dz ⩽ max
{(

x0
L

)nγ
, Lnγ

}
x2

0
∥u′

0∥∞
(N + 2)n

n! ,

and
∞∑

n=1
(αt)n

(
Lγ

xγ
0

)n (N + 2)n

n! < ∞,
∞∑

n=1
(αt)n (max {xγ

0 , L
γ})n n

(N + 2)n

n! < ∞,

This ends the proof of (1), and we have in addition for x ∈ [x0, L] an expression
of the spatial derivative of u

(4.22) ∂

∂x
u(t, x) = e−αxγtu′

0(x) − αγxγ−1te−αxγtu0(x)

+
∞∑

n=1
(αt)n

(
nγxnγ−1

∫ 1

0

1
znγ

an(z)u0

(
x

z

)
dz

z
+
∫ 1

0

xnγ

znγ
an(z)u′

0

(
x

z

)
dz

z2

)
.

Similar arguments hold to guarantee that x → u(t, x) ∈ C3([0, L]).
(2) First, we claim that supp (u(t, .)) ⊂ [0, L]. Indeed, this is a consequence of

formula (4.19) and of the fact that supp (an) ⊂ [0, 1] for n ⩾ 0. Let us now
prove that supp (u(t, .)) = [0, L]. Take y ∈ [0, L] and set Y (t) = u(t, y). The
fragmentation equation (2.4) implies

Y ′(t) ⩾ −αyγY (t),

i.e.
u(t, y) = Y (t) ⩾ e−αyγtY (0) = e−αyγtu0(y).

If u0(y) ̸= 0, then for all t ⩾ 0, u(t, y) ̸= 0. If u0(y) = 0, since y ∈ supp (u0),
for all ε > 0, there exists yε such that |y − yε| < ε and u0(yε) ̸= 0 and then
u(t, yε) ̸= 0, which implies that y ∈ supp (u(t, .)). Thus supp (u(t, .)) = [0, L].

(3) It is clear from formula (2.10) that u(t, L) = e−αLγtu0(L). Then, if u0(L) > 0,
we have u(t, L) > 0. If u0(L) = 0 and u′

0(L) < 0, we have u(t, L) = 0, and
formula (4.22) implies

∂

∂x
u(t, L) = e−αLγtu′

0(L) < 0. □

5. Numerical simulations

In this section, we illustrate the different theoretical results and investigate the
convergence errors of the reconstruction formulae.
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• Illustration of Theorem 3.1: We show on Figure 5.1 the profile of the estimated
kernel κest(t) defined in formula (3.1), for γ = α = 1, for four different kernels
κ and for different times t. For each plot, the kernel κ is displayed in an
inset on the upper right. The initial condition µ0 is a highly peaked gaussian
centered at x = 1 and the numerical solution µt used to build κest(t) is
obtained using a numerical scheme with a time step ∆t = 0.01. We observe
that the estimate κest(t) is valid for early time points: indeed, at the naked
eye, κest(t) and κ look alike. As time goes by, the size distribution is driven
towards the stationary state and the information on the kernel is lost.
On Figure 5.2 Left, we illustrate the estimate (3.2) and show that the time
evolution of the error

eT V (t) =
∥∥∥∥κest(t) − κ

∥∥∥∥
T V

increases linearly with time t for the same four kernels κ considered in Fig-
ure 5.1 and for an initial condition µ0 very close to δ(x = 1). We observe that
the slope of t → eT V (t) is small for kernels of erosion type (κ(0) ̸= 0), and
large for kernels producing daughter particles of similar sizes. This may be
linked to a larger constant in (3.2) for more peaked kernels; this provides us
with an interesting direction for future work.

• Illustration of Corollary 3.3: In Figure 5.2 Right, we draw the curves of the
error eT V (t) for three initial conditions µ0 given by (truncated) Gaussians of
standard deviation σ = 0.01, σ = 0.1 and σ = 0.2 and for the kernel κ in black
on the left figure. As seen on the formula (3.8), the increase of eT V (t) is linear
with respect to time t, but an extra constant error ε is added, related to the
distance between δ1 and µ0. We notice that a small error term ε was already
observed in Figure 5.2, Left, due to the distance between δ(x = 1) and its
numerical approximation on a discrete grid. For large standard deviations (e.g.
σ = 0.2), the error ε becomes so large that the estimate in Total Variation
norm is no more meaningful: we see the interest to turn to the Bounded
Lipshitz norm.
In Figure 5.3, we display the shape of the estimated kernel κest(t) for a small
value of t, for a kernel κ of erosion type and with three initial conditions being
Gaussians with various spreading. It can be observed at the naked eye that
the thinner the gaussian is, the better the approximation κest(t) is as well. We
observe how the estimated kernel κest is differently impacted around x = 0
and around x = 1: this gives interesting hints on how the kernel symmetry
could be used to improve the theoretical estimates.

• Illustration of Theorem 3.5: In Figure 5.4, we display the error
eBL(t) = ∥κest(t) − κ∥BL

as a function of time for a two-peaked gaussian kernel κ, for a gaussian
initial condition µ0 of variance σ2 and for a noise ε0 on the measurement
of the initial data µ0 and a noise ε1 on the measurement of the solution µt

used in the calculation of κest(t). The standard deviation σ thus plays the
role of q in Theorem 3.5. To simulate the noise on the solution observed,
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we add a multiplicative uniform noise on [−0.5εi,+0.5εi] to the simulation.
Numerically, we approximate the BL norm by the Wasserstein distance W1,
since 1/it is easier to compute using the monotone rearrangement theorem,
2/the BL norm is close to the Wasserstein distance between two measures of
approximately same mass and whose supports are not too far. The error eBL(t)
first decreases and then increases, as expected by Remark 3.6. In the inset, we
superimposed the kernel κ (in red) with the best estimated κ, namely κest(t∗)
(in blue) taken at the optimal time where the error reaches its minimum.

• Illustration of Remark 3.6: In Figure 5.5, we investigated how the minimal
error and the optimal time, i.e. the time displaying the minimal error (drawn
on Figures 5.4 as the red asterisk), evolve with respect to the noise level. To
do so, we take an equal level of noise for the three noise sources ε0, ε1 and q
(with q = σ the standard deviation of the gaussian taken for the initial size
distribution). We ran fifty simulations – to take into account the fact that the
noise we simulate is random – and we draw the optimal time (blue asterisks
in Figure 5.5) giving the optimal error (green asterisks in Figure 5.5). We
then compare the mean curves over these fifty simulations, and compare it
with the curve x 7→

√
x. We observe a good qualitative agreement with the

expected rate of convergence.
• Illustration of Corollary 4.9: We illustrate how we recover the variances of

the 6 different typical fragmentation kernels described in Table 1. We recall
that the variance and standard deviation are given by

V ar =V ar
[
κ

2

]
= 1

2K(3) − 1
4 , SD =

√
V ar,

and we define the estimated variance of the kernel as,V ar
est(t,∆t) = 1

2K
est(3, t,∆t) − 1

4 , if 1
2K

est(3, t,∆t) − 1
4 > 0

V arest(t,∆t) = 0, else.

where the formula for Kest is given in Definition 4.2. Let us recall that the
estimation of the variance V arest is not a priori the variance of the estimated
kernel κest. We also define SDest(t,∆t) =

√
V arest(t,∆t). In Figure 5.2, we

assume γ = α = 1, we consider the six kernels κ described in Table 5.1 and
the initial condition is a peaked gaussian centered at x = 2. We plot the
relative error on the standard deviation defined as

Relative Error on the Standard Deviation = |SDest(0,∆t) − SD|
SD

as a function of ∆t. We observe that for large values of ∆t the relative error is
saturated and equal to 1 for the kernels in blue, red and yellow, corresponding
to kernels with small variances. For these kernels, the estimated variance
becomes negative from a certain value for ∆t, so that V arest is then SDest

are taken to be zero. The worst estimation of the relative standard deviation
we have is for the kernel in blue, i.e. for the kernel with a very small standard
deviation (SD=0.1001): the estimation of the standard deviation SDest is
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zero, and then the relative error is equal to 1. For α∆t = 0.1, we are able to
have a good idea of the ordering of standard deviations of the six kernels.
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Figure 5.1. Profile of the estimated kernel κest(t) for γ = α = 1. Upper-right
inset, light blue: the kernel κ. Blue: κest(t) for t = 0.1. Red: κest(t) for a large
value of t. Black: κest(t) for intermediate times t.
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Figure 5.2. Time evolution of the distance in the Total Variation norm between
the fragmentation kernel and its first order estimate given by κest, departing
from u0 = δ1 (Left) or departing from a Gaussian curve centered at x = 1 with a
standard deviation σ = 0.01, σ = 0.1 and σ = 0.2 respectively (Right). Left: the
corresponding kernel is displayed on the inset with the same colour as the error
curve. Right: the fragmentation kernel is the one in Fig 5.1 bottom left (in blue
on the inset of the left figure). The corresponding initial condition is displayed
on the inset with the same colour as the error curve.

Table 5.1. Variance and Standard Deviation for 6 typical fragmentation kernels.
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Figure 5.3. Estimation of the fragmentation kernel κest(t) at various times t
(black curves), first time point in blue, latest time point in red. Upper left: for
an initial data µ0 with variance σ = 0.2, Upper Right: with variance σ = 0.1,
Bottom Left: with variance σ = 0.01. In dotted pink is what is truly estimated,
namely the convolution w0 ∗ κ (see notations of Corollary 3.3). Bottom Right:
Superimposition of the three estimates κest(t) at an early time point t = 0.01
t = 0.01 corresponding to the three initial conditions of respective variance
σ = 0.01, σ = 0.1 and σ = 0.2.
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Figure 5.4. Time evolution of the error estimate in BL norm (approximated
here by the W1− distance) between the fragmentation kernel κ and its estimate
κest(t), for ϵ0 = ϵ1 = 0.1 and for q = 0.01 (Left), q = 0.1 (Right). The insets
display the best estimate κest(t0), obtained at the timepoint t0 where the W1
distance is minimal.
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Figure 5.5. Optimal error and optimal time with respect to the noise level. We
choose an equal level for the three noise sources ε0, ε1 and q (i.e. q = σ the
standard deviation of the initial gaussian), and for 50 simulations we draw the
optimal time (blue asterisks) giving the optimal error (green asterisks). In plain
lines we draw the mean over the 50 simulations, to be compared with the curve
ε 7→

√
ε (lighter blue plain line). We observe a good agreement with the expected

rate of convergence.

Table 5.2. Parameters: α = γ = 1. Initial condition: a thin gaussian centered at
x = 2. For the 6 kernels described in Table 5.1 and displayed in the inset, we
plot the relative error on the standard deviation estimate as a function of α∆t.
We detail two cases: α∆t = 0.02 and α∆t = 0.1 on the table (Right).
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