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Abstract. — We prove an upper bound for the number of Ruelle resonances for Koopman
operators associated to real-analytic Anosov diffeomorphisms: in dimension d, the number of
resonances larger than r is a O(| log r|d) when r goes to 0. For each connected component
of the space of real-analytic Anosov diffeomorphisms on a real-analytic manifold, we prove a
dichotomy: either the exponent d in our bound is never optimal, or it is optimal on a dense
subset. Using examples constructed by Bandtlow, Just and Slipantschuk, we see that we are
always in the latter situation for connected components of the space of real-analytic Anosov
diffeomorphisms on the 2-dimensional torus.

Résumé. — Nous prouvons une borne supérieure sur le nombre de résonances de Ruelle
pour les opérateurs de Koopman associés aux difféomorphismes d’Anosov analytiques : en
dimension d, le nombre de résonances plus grandes que r est un O(| log r|d) lorsque r tend vers
0. Dans chaque composante connexe de l’espace des difféomorphismes d’Anosov analytique
réels sur une variété analytique réelle, nous établissons une dichotomie : soit l’exposant f dans
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notre borne n’est jamais optimal, soit il l’est sur un ensemble dense. En utilisant des exemples
construits par Bandtlow, Just et Slipantschuk, nous montrons que nous sommes toujours dans
le deuxième cas pour les composantes connexes de l’espace des difféomorphismes d’Anosov
analytiques réels sur le tore de dimension 2.

1. Introduction

Anosov diffeomorphisms are extensively studied hyperbolic dynamical systems.
Due to their chaotic properties, one often studies the global or statistical behavior of
these maps (rather than the pointwise dynamics). For instance, it is well-established
that Anosov diffeomorphisms have many invariant measures with rich ergodic prop-
erties (see for instance Bowen’s textbook [Bow08]). A fruitful approach to the study
of the statistical properties of dynamical systems is the so-called functional approach:
instead of studying the dynamics itself, one considers associated composition oper-
ators (sometimes referred as the Koopman and (Ruelle) transfer operators). This
field has been very active in the last two decades. Indeed, the appearance of the
notion of spaces of anisotropic distributions adapted to hyperbolic dynamics made
possible to sharpen the understanding of the spectral properties of the associated
composition operators. This line of work has been developed by many authors, see
for instance [BKL02, BT07, BT08, FRS08, GL06, GL08] in the context of Anosov
diffeomorphisms. The textbook [Bal18] gives an introduction to the functional ap-
proach of hyperbolic dynamical systems, discussing modern techniques and including
recent references. The interested reader may also refer to [Bal17] for a discussion
of the different approach of the construction of spaces of anisotropic distributions
adapted to hyperbolic dynamics.

The notion of Ruelle resonances is central in the functional approach to Anosov
diffeomorphisms. Ruelle resonances are eigenvalues of composition operators that
are relevant to understand statistical properties of Anosov diffeomorphisms. The
goal of this paper is to discuss upper and lower bounds on the number of Ruelle
resonances for real-analytic Anosov diffeomorphisms. Before stating our main results,
we will need to recall some basic facts about the spectral properties of composition
operators associated to Anosov diffeomorphisms.

1.1. Functional approach to Anosov diffeomorphisms

Let us give more details on the functional approach of statistical properties of
hyperbolic diffeomorphism. If F is a C∞ Anosov diffeomorphism (see § 2.1 for the
definition) on a compact manifold M , one may understand the statistical properties
of F by studying the associated weighted Koopman operators defined by
(1.1) LF,w : u 7→ w.u ◦ F,
where w is a C∞ function on M , and LF,w acts on functions or distributions on
M for instance. By letting the operator LF,w act on suitable spaces of anisotropic
distributions (adapted to the geometry of the hyperbolic splitting of F ), one can

ANNALES HENRI LEBESGUE



Distribution of Ruelle resonances 675

define a notion of spectrum for LF,w: the Ruelle spectrum (whose elements are called
the Ruelle resonances). In the context of C∞ Anosov diffeomorphisms and weights,
we can use the following result to define the Ruelle spectrum.

Theorem 1.1 (Theorem 2.3 in [GL06]). — Let M be a closed C∞ manifold and
F be a C∞ Anosov diffeomorphism on M . Let w be a C∞ function on M . Then
the family z 7→ (z − LF,w)−1 of operators from C∞(M) to D′(M), defined for z ∈ C
large by

(z − LF,w)−1 : u 7→
∑
n⩾0

z−(n+1)Ln
F,wu,

admits a meromorphic extension to C \ {0} with residues of finite rank.

The poles of (z−LF,w)−1 are called the (Ruelle) resonances of LF,w. The residues of
(z − LF,w)−1 are related to spectral projectors of LF,w. The elements of their images
are called the (generalized) resonant states of LF,w. The dimension of the image of
the residue Πλ of (z − LF,w)−1 at a resonance λ is called the multiplicity of λ as a
resonance.

When w is positive, the left and right eigenvectors associated to the largest reso-
nance of LF,w may be used to construct the equilibrium measure µw for F associated
to the weight logw − log |Ju| where Ju denotes the unstable Jacobian of F . The
smaller resonances may then be used to describe finer statistical properties of µw. In
particular, one can make explicit the asymptotics of correlations for this invariant
measure for F . When u and v are C∞ functions on M , one can get an asymptotic
expansion with an arbitrarily small geometric error for∫

M
u.v ◦ F ndµw

when n goes to +∞. Further statistical properties of F may be obtained by studying
the spectral properties of LF,w: central limit theorem, almost sure invariance principle,
. . .

If the case of positive w (in particular the case w = 1 that corresponds to the SRB
measure) is more relevant from a dynamical point of view, there is no particular
reason to restrict to this case if we are merely interested in the spectral properties
of LF,w. Hence, we will consider the general case in this paper.

In order to compute the resonances of LF,w, on may introduce the dynamical
determinant defined for z ∈ C small by

(1.2) dF,w(z) := exp
−

∑
n⩾1

zn

n

∑
F nx=x

∏n−1
k=0 w

(
F kx

)
|det (I −DxF n)|

 .
We will need the following important result that relates the holomorphic extension
of dF,w with the Ruelle resonances of LF,w.

Theorem 1.2 ([BT08, Kit99a, Kit99b, LT06]). — Let M be a closed C∞ mani-
fold and F be a C∞ Anosov diffeomorphism on M . Let w be a C∞ function on M .
The dynamical determinant dF,w has a holomorphic extension to C whose zeroes are
the inverses of the Ruelle resonances of LF,w (counted with multiplicities).
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1.2. Main results

We are interested in this paper in the distribution of Ruelle resonances. More
precisely, if F is a C∞ Anosov diffeomorphism on a compact manifold M and w a
C∞ function on M , we will study the asymptotics when r goes to 0 of the counting
function

NF,w(r) = # {λ resonance of LF,w such that |λ| ⩾ r} ,
where resonances are counted with multiplicities. The results from [Jéz20] suggest
that there is actually no general upper bound on NF,w(r) when r goes to 0. See in
particular [Jéz20, Proposition 2.10] that proves the absence of general upper bound
in the more general context of open hyperbolic diffeomorphisms.

However, when M,F and w are real-analytic, one expects a bound of the form
(1.3) NF,w(r) =

r→0
O
(
|log r|d

)
,

where d is the dimension of M . This bound is suggested by related results on expand-
ing maps [BN19, Rue76] and local model for the transfer operators associated to
real-analytic expanding dynamical systems [Nau12]. The bound (1.3) can be deduced
from the work of Rugh [Rug92, Rug96] when d = 2. In [FR06, Theorem 7], Faure
and Roy gives a new proof of this bound for C1 small real-analytic perturbations of
linear cat maps on the 2-dimensional torus. Let us also mention related results for
real-analytic Anosov flows in [Fri86, Fri95, GBJ20]. Our first result is the validity of
the bound (1.3) in full generality.

Theorem 1.3. — Let F be a real-analytic Anosov diffeomorphism on a real-
analytic closed manifold M of dimension d. Let w be a real-analytic function on M .
The number NF,w(r) of Ruelle resonances of LF,w of modulus more than r satisfies
the asymptotic bound

NF,w(r) =
r→0

O
(
|log r|d

)
.

Theorem 1.3 is an immediate consequence of the following bound on the dynamical
determinant (1.2) associated to LF,w.

Theorem 1.4. — Let F be a real-analytic Anosov diffeomorphism on a real-
analytic closed manifold M of dimension d. Let w be a real-analytic function on M .
Then, there is a constant C > 0 such that for every z ∈ C we have

|dF,w(z)| ⩽ C exp
(
C (log(1 + |z|))d+1

)
.

A natural question with respect to Theorem 1.3 is whether the bound is optimal
or not. Our main result addresses this question.

Theorem 1.5. — Let M be a closed real-analytic manifold of dimension d. Let
A denote the set of F ∈ Anosω(M) such that

(1.4) lim sup
r→0

logNF,1(r)
log |log r| = d.

If W is a connected component of Anosω(M) such that A⋂
W ≠ ∅ then for every

F ∈ W there is a sequence of elements of A that converges to F in the Cω topology.
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Remark 1.6. — The equality (1.4) expresses that the exponent d in (1.3) is opti-
mal.

Remark 1.7. — In § 2.2, we detail the different topologies that we consider on
the space Anosω(M). In particular, we explain what it means to converge in the Cω

topology.
The three topologies that we define in § 2.2 (C1, C∞ and Cω) induce the same

connected components. This is why we did not specify in Theorem 1.5 which topology
we use to define connected components of Anosω(M).

Remark 1.8. — One may use [GL06, Theorem 2.7] to prove that A is a Gδ for the
C∞ topology. Notice also that, while we stated Theorem 1.5 in the most dynamically
relevant case w = 1, we are going to prove a slightly more general statement, see
Theorem 4.5.

The proof of Theorem 1.5 is an adaptation of the method used by Bandtlow and
Naud [BN19] in the context of real-analytic expanding maps of the circle. This
method is based itself on a strategy in the context of scattering resonances by
Christiansen and her coauthors [BCHP11, CH10, CH05, Chr05, Chr06].

The main ingredient needed to apply this method in our context is the existence,
when F and w are real-analytic, of a Hilbert space H on which the operator LF,w

defines a compact operator whose singular values decay fast enough (this fact also
implies Theorems 1.3 and 1.4). Moreover, it is essential for the proof that the space H
is constructed with enough flexibility to deal with the perturbations (even complex)
of F and w. The construction of the space H is carried out in § 3.

The main idea in order to construct the space H is to use the construction
from [FR06] as a local model. However, due to the absence of real-analytic par-
tition of unity, one cannot easily glue the locally defined spaces to get global spaces,
as it is commonly done in the C∞ case. This issue will be solved by using a real-
analytic Fourier–Bros–Iagolnitzer transform to design a process of localization that
preserves real-analyticity. We will use the FBI transform described in [GBJ20]. How-
ever, we will only need to use the most basic properties of this transform, they are
recalled in § 2.4.

Functional spaces suited for the study of Koopman (or transfer) operators asso-
ciated to real-analytic hyperbolic dynamical systems have already been proposed
in [FR06, PS22, SBJ17, SBJ22]. The main novelty of our work is that we are able
to design such a space H without restricting to the case of diffeomorphisms that are
close to a linear model, or admit constant cone field.

Theorem 1.5 would be less interesting in the absence of examples of real-analytic
Anosov diffeomorphism satisfying (1.4). The existence of such examples are non-
trivial. For instance, if F is a cat map, the simplest example of Anosov diffeomor-
phism, then 1 is the only resonance of LF,1. The first example of diffeomorphism
satisfying (1.4) we are aware of appear in [SBJ17]. Related examples are discussed
in [PS22]. In [SBJ22], Bandtlow, Just and Slipantschuk produce many explicit ex-
amples of Anosov diffeomorphisms of the 2-dimensional torus satisfying (1.4). With
Theorem 1.5, the existence of these examples implies:
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Theorem 1.9. — Let F be a real-analytic Anosov diffeomorphism on T2. Then,
there is a sequence (Fn)n∈N of Anosov diffeomorphisms on T2 that converges to F
in the Cω topology and such that

lim sup
r→0

logNFn,1(r)
log |log r| = 2

for every n ∈ N.

More concretely, if M = T2 and w = 1, then the exponent d in Theorem 1.3 is
optimal for a dense subset of real-analytic diffeomorphisms.

Finally, let us mention that Theorems 1.3 and 1.4 have an analogue using Gevrey
regularity instead of real-analytic regularity, with a slightly simpler proof. This
yields quantitative improvements (Theorem B.1 and Corollary B.2) over the results
from [Jéz20, §2.2] in the case of Anosov diffeomorphisms. The method of proof of
Theorem 1.5 is restricted to real-analytic regularity, as we need to be able to work
with complex perturbations of an Anosov diffeomorphism. However, we can consider
complex perturbations of the weight w. Since it is easier to construct Gevrey than
real-analytic weights, we are able to find another application of the method of proof
of Theorem 1.5, see Theorem B.12. Results in Gevrey regularity are gathered in
Appendix B.

1.3. Structure of the paper

In § 2, we recall some fundamental facts about Anosov diffeomorphisms and several
tools that will be needed for the proof of our main results.

In § 3, for F and w real-analytic, we construct a space on which LF,w as good
spectral properties. This is the core of the proof of our main results.

In § 4, we deduce Theorems 1.3, 1.4, 1.5 and 1.9.
In Appendix A, we prove several technical estimates that are needed for the analysis

in § 3.
In Appendix B, we explain how our analysis can be partially adapted to the Gevrey

case. In particular, we improve certain results from [Jéz20].

Acknowledgments
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construction from [SBJ22] to me. Most of this work was done while the author was
working at Massachusetts Institute of Technology.

2. Generalities

In this section, we recall several definitions and results that we will need for the
proof of our main results. In § 2.1, we recall the definition of Anosov diffeomorphism.
In § 2.2, we introduce notation that are useful when working with real-analytic
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functions on a manifold. In § 2.3, we discuss briefly Koopman operators associated
to real-analytic dynamics. In § 2.4, we recall some basic properties of a real-analytic
Fourier–Bros–Iagolnitzer that we will use in the proof of Theorem 3.1 below. In § 2.5,
we discuss a class of operators which is relevant to the study of Koopman operators
associated to real-analytic hyperbolic dynamics.

2.1. Anosov diffeomorphism

Let M be a smooth closed manifold. Endow M with any Riemannian metric. We
recall [KH95, Definition 6.4.2] that a C1 diffeomorphism F : M → M is said to be
Anosov if there is a splitting of the tangent bundle of M as TM = Es ⊕Eu into the
sum of two continuous bundles Es and Eu invariant by the derivative of F , and such
that there are constants C > 0 and λ > 1 with

• for every x ∈ M,n ∈ N and v ∈ Es(x), we have |DF n
x · v| ⩽ Cλ−n|v|;

• for every x ∈ M,n ∈ N and v ∈ Eu(x), we have |DF−n
x · v| ⩽ Cλ−n|v|.

As microlocal analysis is more naturally formulated on the cotangent bundle, we
will rather work with the related decomposition T ∗M = E∗

s ⊕ E∗
u, where E∗

u and
E∗

s are respectively the annihilators of Eu and Es. This convention ensures that for
λ > 1 as above and some C > 0, we have

• for every x ∈ M,n ∈ N and ξ ∈ E∗
s (x), we have |t(DF n

x )−1 · ξ| ⩽ Cλ−n|ξ|;
• for every x ∈ M,n ∈ N and ξ ∈ E∗

u(x), we have |t(DF−n
x )−1 · ξ| ⩽ Cλ−n|ξ|.

Let us point out that this definition does not depend on the choice of the Rie-
mannian metric on M . In particular, one may choose an adapted metric, that is a
metric for which C = 1 in the inequalities above.

If F : M → M is an Anosov diffeomorphism on M , then one may construct
following [FRS08] an escape function G on T ∗M , that is a function that decreases
under the action of F on T ∗M . We will define G as follows. For (x, ξ) ∈ T ∗M , we
write ξ = ξu + ξs for the decomposition of ξ with respect to T ∗

xM = E∗
u(x) ⊕ E∗

s (x),
and then
(2.1) G(x, ξ) = |ξs| − |ξu| .
By choosing an adapted metric on M , we may ensure that for ξ large enough, we
have

G(F(x, ξ)) −G(x, ξ) ⩽ −C−1 |ξ| ,
for some constant C > 0 and all (x, ξ) ∈ T ∗M . Here, F denotes the symplectic lift
of F defined by F(x, ξ) = (Fx, t(DFx)−1ξ). For a general diffeomorphism H, if we
do not want to introduce a specific notation for the symplectic lift, we will denote it
by tDH−1. Let us point out here that we can give a particularly simple definition of
the escape function G because we do not care much about the smoothness of G.

2.2. Real-analytic manifolds and diffeomorphisms

Let us introduce now notation that are useful when working with real-analytic
functions on manifolds.
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Let M be a real-analytic compact manifold of dimension d. For convenience, we
endow M with a real-analytic Riemannian metric g (which is possible according
to [Mor58]). Let M̃ denote a complexification for M , and endow M̃ with a real, C∞

Riemannian metric g̃ (in particular, there is a smooth distance on M̃). For ϵ > 0
small, we let (M)ϵ denotes the Grauert tube [GS91, GS92] of size ϵ for M :

(M)ϵ =
{
expx(iv) : x ∈ M, v ∈ TxM, gx(v) < ϵ2

}
,

where expx denotes the holomorphic extension of the exponential map. Here, we will
use the Grauert tubes of M as convenient complex neighbourhoods (they are Kähler
and pseudoconvex). The Riemannian metric g induces a decomposition of T (T ∗M)
into a horizontal and a vertical bundle: for every α = (αx, αξ) ∈ T ∗M , there is an
identification

Tα(T ∗M) ≃ TαxM ⊕ T ∗
αx
M,

such that the derivative of the canonical projection T ∗M → M is given in this
decomposition by (u, v) 7→ u. We endow T ∗M with the Kohn–Nirenberg metric
defined for α ∈ T ∗M and (u, v) ∈ Tα(T ∗M) ≃ TαxM ⊕ T ∗

αx
M by

gKN,α(u, v) = gαx(u) + gαx(v)
⟨α⟩2 ,

where the Japanese bracket ⟨α⟩ is defined by ⟨α⟩ =
√

1 + gαx(αξ). Here, we identify
a metric with the associated quadratic form. The distance associated to this metric
will be denoted by dKN . Notice that two points α, β ∈ T ∗M are close for the Kohn–
Nirenberg distance dKN if αx and βx are close, αξ and βξ have the same magnitude
and, in local coordinates, which makes sense since αx and βx are close, |αξ − βξ|
is small with respect to this magnitude. We will sometimes also need the Japanese
bracket ⟨|α|⟩ =

√
1 + g̃αx(αξ) defined and positive for α = (αx, αξ) in T ∗M̃ (we can

identify T ∗M̃ with TM̃ using a Hermitian metric). When ϵ > 0 is small enough, we
may define as above the Grauert tube (T ∗M)ϵ of T ∗M (using the metric gKN), that
identifies with a subset of T ∗M̃ . Very roughly, (T ∗M)ϵ may be thought in coordinates
as a set of points (x, ξ) such that the imaginary part of x is less than ϵ, and the
imaginary part of ξ is less than ϵ⟨Re ξ⟩. We refer to [GBJ20, § 1.1.1.2] for further
discussion of this notion (see also [Jéz22, § 5.1]).

Let us fix once for all ϵ0 such that (M)ϵ0 , (M ×M)ϵ0 and (T ∗M)ϵ0 are well-defined
and the holomorphic extension of the exponential map (x, v) 7→ expx(v) for g is well
defined on neighbourhood of the zero section of T (M)ϵ0 . Notice that since we do not
care about the actual choice of g, we could choose the value of ϵ0.

For ϵ ∈ (0, ϵ0). We let Õϵ denotes the space of bounded holomorphic functions on
(M)ϵ, endowed with the supremum norm. We write Oϵ for the closure in Õϵ of the
space of holomorphic functions on (M)ϵ0 . It follows from the Oka–Weil Theorem
that the dependance of Oϵ on ϵ0 is irrelevant. We shall write Oϵ(M) if it is needed to
specify the manifold M . We will often identify an element of Oϵ with its restriction
to M , which is unambiguous due to the analytic continuation principle. Hence, if
we say that a function f on M belongs to Oϵ, strictly speaking it means that it has
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an extension to (M)ϵ that belongs to Oϵ, and ∥f∥Oϵ
denotes the sup norm of this

extension. We also let Vϵ be the space of holomorphic sections X of T (M)ϵ such that

|X|∞ := sup
x∈(M)ϵ

√
g̃x(X(x)) < +∞.

We endow Vϵ with the norm |·|∞ and let VR
ϵ be the closed subspace of Vϵ consisting

of vector fields that are tangent to M . We let then Vω be the space of real-analytic
vector fields on M , that we identify with ⋃ϵ∈(0,ϵ0) VR

ϵ . We can put on Vω the topology
of the inductive limit (in the category of locally convex topological vector space)

Vω = lim
→

VR
ϵ .

There are other possible topologies on Vω: the C1 and the C∞ topologies. They are
the metrizable topologies associated with the uniform convergence of vector fields
and respectively of their first derivatives or all their derivatives (which makes sense
in coordinates for instance). Notice that these two topologies make Vω a locally
convex topological vector space which is not complete.

Let Diffω(M) denote the space of real-analytic diffeomorphisms from M to itself
and Anosω(M) the subset of Diffω(M) made of real-analytic Anosov diffeomorphisms
on M .

Let π : TM → M be the canonical projection and exp : TM → M the exponential
map associated to g. There is a neighbourhood U in TM of the zero section and a
neighbourhood V of the diagonal in M ×M such that the map (π, exp) : U → V is
a real-analytic diffeomorphism. If X is a vector field on M taking values in U, we
let ΨX denote the map from M to itself defined by
(2.2) ΨX : x 7→ expx(X(x)).
Notice that if X is C1 small, then ΨX is a diffeomorphism from M to itself. For
F ∈ Diffω(M), write

UF = {G ∈ Diffω(M) : (F (x), G(x)) ∈ V} .
and

U = {X ∈ Vω :∀ x ∈ M,X(x) ∈ U and ΨX ∈ Diffω(M)}
It follows from the definition of V that the map

HF : X 7→ ΨX ◦ F
is a bijection from U to UF . Notice also that U is an open neighbourhood of the
origin in Vω for the C1 topology (and thus for the C∞ and Cω topologies too). We
define the C1, C∞ and Cω topologies on Diffω(M) by saying that a subset W of
Diffω(M) is open if and only if for every F ∈ Diffω(M) the set H−1

F (W ∩ UF ) is
open in Vω, respectively for the C1, C∞ or Cω topology. All these topologies are
finer than the C1 topology and consequently, Anosω(M) is always an open subset of
Diffω(M) [Ano67].

The Cω topology on Diffω(M) is rather intricate. The interested reader may refer
to [KM90] or [KM97, Chapter IX] for further discussion of the structure of the space
of analytic mappings from M to M , including the (infinite-dimensional) real-analytic
manifold structure. Fortunately, the only thing that matters to us concerning the Cω
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topology on Diffω(M) is the associated notion of convergence. A sequence (Fn)n ∈ N
of real-analytic diffeomorphisms on M converges to F ∈ Diffω(M) if and only if
there are complex neighbourhoods U and V of M such that F and the Fn’s have
holomorphic extensions from U to V and the holomorphic extension of Fn converges
to the holomorphic extension of F uniformly on U . One can use [Flo71, 7.5] to
check that this is indeed the notion of convergence induced by the Cω topology.
Notice that we will not even need that, since we could use this characterization as
a definition. Similarly, we will say that a sequence (wn)n ∈ N converges to w in the
Cω topology, if the wn’s have holomorphic extension that converges uniformly to a
holomorphic extension of g on a complex neighbourhood of M . Once again, one may
check that this coincides with the notion of convergence associated to the topology
on Cω defined in [KM90, § 3].

Most of the time, we will not work directly with the space of real-analytic vector
fields, as we will need some control over the size of the domain of the holomorphic
extensions of vectors fields we are working with. To do so, let us introduce some
additional notation. For ϵ ∈ (0, ϵ0), we will write Bϵ,δ for the ball of radius δ centered
at the origin in Vϵ and BR

ϵ,δ for Bϵ,δ ∩ VR
ϵ . Notice that for any ϵ ∈ (0, ϵ0), if δ is small

enough then, for every X ∈ BR
ϵ,δ, the map ΨX given by (2.2) is well-defined and a

real-analytic diffeomorphism from M to itself.
Now if ϵ, ϵ2 ∈ (0, ϵ0) and ϵ1 ∈ (0, ϵ), notice that we can find δ > 0 such that for

every X ∈ Bϵ,δ the formula (2.2) defines a holomorphic embedding ΨX of (M)ϵ1 into
(M)ϵ such that ΨX(M) ⊆ (M)ϵ2 .

2.3. Koopman operator

For F ∈ Diffω(M) and w ∈ Cω(M,R), we recall that the Koopman operator
associated to F and w is defined by (1.1).

Let ϵ ∈ (0, ϵ0) and F ∈ Diffω(M). Since F is real-analytic, for any ϵ′ > 0 small
enough, the operator LF,w is bounded from Oϵ to Oϵ′ for every w ∈ Oϵ′ . This follows
from the fact that the holomorphic extension of F sends (M)ϵ′ into (M)ϵ.

Similarly, we can find a δ > 0 such that for ϵ′ > 0 small enough and every X ∈ Bϵ,δ

the map ΨX ◦ F sends (M)ϵ′ into (M)ϵ, and thus, for every w ∈ Oϵ′ , we may define
the operator LΨX◦F,w by (1.1) as a bounded operator from Oϵ to Oϵ′ , and its norm
is less than C ∥w∥Oϵ′ , for some constant C > 0 that depends on F and ϵ, but not
on w. When X ∈ BR

ϵ,δ, that is when X is tangent to M , this is a standard Koopman
operator associated to the map ΨX ◦ F : M → M , and its action on any function
on M may consequently be defined.

Let us define the formal adjoint of LΨX◦F,w by
L∗

ΨX◦F,w = LF −1◦Ψ−1
X ,J(F −1◦Ψ−1

X )w◦F −1◦Ψ−1
X
,

where the Jacobian J(F−1 ◦ Ψ−1
X ) is defined by the relation (F−1 ◦ Ψ−1

X )∗dx =
±J(F−1 ◦ Ψ−1

X )dx, with dx the holomorphic extension of the Riemannian volume of
M , if M is orientable (and ± is + if F preserves orientation and − otherwise). If M
is not orientable, we define J(F−1 ◦ Ψ−1

X ) by going to the bundle of orientation of M .

ANNALES HENRI LEBESGUE



Distribution of Ruelle resonances 683

Notice that this is the formal adjoint for the L2 bilinear scalar product (and not the
sesquilinear scalar product). This definition makes sense under the same assumption
as above (in particular, X does not need to be tangent to M provided it is small
enough), and it has the same mapping properties than LΨX◦F,w. Moreover, for ϵ
small enough and every u, v ∈ Oϵ, we find by a contour shift that∫

M
u (LΨX◦F,wv) dx =

∫
M

(
L∗

ΨX◦F,wu
)
vdx.

As above, in the non-orientable case this formula is proved by going to the bundle
of orientation of M (and the integration is with respect to the Riemannian density
on M).

2.4. FBI transform

Let us recall that we want to construct a functional space adapted to a real-analytic
hyperbolic dynamics (see Theorem 3.1 below). As mentioned in the introduction,
we will use a real-analytic Fourier–Bros–Iagolnitzer transform to get a localization
procedure that preserves real-analyticity. We will use the real-analytic transform
defined in [GBJ20]. However, we will only work with the basic properties of this
transform (and thus avoid to use the most complicated results from [GBJ20]).

We recall that M is a closed real-analytic manifold of dimension d. Let us consider
a real-analytic FBI transform T on M , as in [GBJ20, Definition 2.1]. This is an
operator, for instance from C∞(M) to C∞(T ∗M), given by the formula

(2.3) Tu(α) =
∫

M
KT (α, y)u(y)dy,

for every u ∈ C∞(M) and α ∈ T ∗M . Here, dy denotes the (real-analytic) Riemannian
density on M and KT is a real-analytic kernel that satisfies the following properties:

• there is ϵ ∈ (0, ϵ0) such that KT has a holomorphic extension to (T ∗M)ϵ ×
(M)ϵ;

• for every c > 0, there are ϵ ∈ (0, ϵ0) and C > 0 such that for every α =
(αx, αξ) ∈ (T ∗M)ϵ and y ∈ (M)ϵ if the distance between αx and y is larger
than c then

(2.4) |KT (α, y)| ⩽ C exp
(

−⟨|α|⟩
C

)
;

• there are c > 0, ϵ ∈ (0, ϵ0) and C > 0 such that for every α = (αx, αξ) ∈
(T ∗M)ϵ and y ∈ (M)ϵ if the distance between αx and y is less than c then

(2.5)
∣∣∣KT (α, y) − eiΦT (α,y)a(α, y)

∣∣∣ ⩽ C exp
(

−⟨|α|⟩
C

)
.

In (2.5), the symbol a(α, y) is a holomorphic function on the set
{(α, y) ∈ (T ∗M)ϵ × (M)ϵ : d(αx, y) < 2c}

that satisfies
C−1⟨|α|⟩

d
4 ⩽ |a(α, y)| ⩽ C⟨|α|⟩

d
4 .
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The phase ΦT is holomorphic on the same set and satisfies there
(2.6) |ΦT (α, y)| ⩽ C⟨|α|⟩.
Moreover, for every α = (αx, αξ) ∈ T ∗M , we have the relations ΦT (α, αx) =
0, dyΦT (α, αx) = −αξ and if y ∈ M is at distance less than 2c from αx then we
have
(2.7) Im ΦT (α, y) ⩾ C−1d(αx, y)2.

According to [GBJ20, Theorem 6], such an operator exists. Moreover, we may (and
will) assume that T is an isometry from L2(M) to L2(T ∗M) (where M and T ∗M
are associated respectively with the Riemannian density and the volume form dα
associated to the canonical symplectic form). For every u, v ∈ C∞(M), we have∫

M
uv̄dy =

∫
T ∗M

TuTvdα.

The integral on the right hand side converges, as one can check using the non-
stationary phase method (i.e. doing repeated integration by parts) that, if u ∈
C∞(M), then Tu decreases faster than the inverse of any polynomial. One may
define the formal adjoint S = T ∗ of T as the operator with real-analytic kernel
KS(x, α) = KT (ᾱ, x̄). For u a function on T ∗M that decreases faster than the
inverse of any polynomial and x ∈ M , we set

Su(x) =
∫

T ∗M
KS(x, α)u(α)dα.

Since T is an isometry, we see that if u ∈ C∞(M) then S(Tu) = u. One may object
that in [GBJ20], the FBI transform T depends on a small semi-classical parameter
h > 0, and is only defined and isometric when h is small enough. However, one may
reduce to the description given above by taking h > 0 small enough and fixed, so that
there is a well defined and isometric FBI transform T̃ and then define the kernel of
T as KT (α, y) = h

n
2K

T̃
(hα, y), where for α = (αx, αξ) ∈ T ∗M we set hα = (αx, hαξ).

This rescaling makes the parameter h artificially disappear from the notation.
Notice that since the kernel KT of the FBI transform is real-analytic, formula (2.3)

makes sense when u is a distribution (or even a hyperfunction) and defines a smooth
function on T ∗M . Similarly, one can define Su as a distribution when u is a measur-
able function on T ∗M growing at most polynomially. We refer to [GBJ20, § 2.1] for
further discussions of the mapping properties of S and T . It will not play a role here,
as we will define our spaces of anisotropic hyperfunctions as completions of spaces
of analytic functions.

We will need the following fact relating the real-analytic FBI transform T to the
real-analytic regularity.

Proposition 2.1 ([GBJ20, Lemma 2.4]). — Let ϵ > 0. Then there are C, ρ > 0
such that for every u ∈ Oϵ and for every α ∈ T ∗M we have

|Tu(α)| ⩽ C ∥u∥Oϵ
exp (−ρ⟨α⟩) ,

where we recall that ∥u∥Oϵ
denotes the supremum of u on (M)ϵ.

To go in the other direction, we will use the following consequence of the inversion
formula STu = u and of [GBJ20, Lemma 2.6] (see also [GBJ20, Proposition 2.6])
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Proposition 2.2. — Let ρ > 0. There are C, ϵ > 0 such that if u ∈ C∞(M) is
such that

sup
α∈T ∗M

eρ⟨α⟩ |Tu(α)| < +∞

then u ∈ Oϵ and
∥u∥Oϵ

⩽ C sup
α∈T ∗M

eρ⟨α⟩ |Tu(α)| .

Let us recall here that when we write u ∈ Oϵ, we mean that u has a holomorphic
extension that belongs to Oϵ.

In addition to the real-analytic FBI transform T on M , let us choose a real-analytic
FBI transform T on the torus Td, and write S = T ∗ for its adjoint. This is the same
as above in the particular case M = Td, and we endow Td with its standard flat
metric.

For every k ∈ Zd, let us introduce the function
ek : x 7→ e2iπk·x

on the torus Td. Here, k · x denotes a scalar product. In the following proposition,
we use the standard parallelization of Td = Rd/Zd to identify its cotangent bundle
T ∗Td with Td × Rd.

Proposition 2.3. — Let c > 0. There is a constant C > 0 such that for every
k ∈ Zd and (x, ξ) ∈ T ∗Td such that |2πk − ξ| ⩾ c⟨ξ⟩ we have

(2.8) |T ek(x, ξ)| ⩽ C exp
(

−max(|ξ| , |k|)
C

)
.

For every (x, ξ) ∈ T ∗M , we have

(2.9) |T ek(x, ξ)| ⩽ C⟨ξ⟩
d
4 .

It will be crucial in § 3 below to understand how the operators T and S lift the
Koopman operators defined in § 2.3 to operators acting on functions on the cotangent
bundle. In the following proposition, we identify the operator TLΨX◦F,wS with its
kernel, which is a real-analytic function on T ∗M × T ∗M . See Remark A.1 for the
definition of this kernel.

Proposition 2.4. — Let F ∈ Diffω(M). Recall that the symplectic lift of F is
F : (αx, αξ) → (Fαx,

t(DαxF
−1)αξ), and let

G = {(α,F(α)) : α ∈ T ∗M}
be the graph of F . Let c, ϵ > 0. Then there are constants C, δ > 0 such that for
every X ∈ Bϵ,δ, w ∈ Oϵ and α, β ∈ T ∗M , then
(2.10) |TLΨX◦F,wS(α, β)| ⩽ C ∥w∥Oϵ

exp (c(⟨α⟩ + ⟨β⟩)) .
If in addition the distance between (α, β) and G (for the Kohn–Nirenberg distance)
is greater than c then

(2.11) |TLΨX◦F,wS(α, β)| ⩽ C ∥w∥Oϵ
exp

(
−⟨α⟩ + ⟨β⟩

C

)
.

The proofs of Propositions 2.3 and 2.4 are given in Appendix A.
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Remark 2.5. — Notice that if X ∈ BR
ϵ,δ in Proposition 2.4 then the exponential

bound (2.10) may be replaced by a polynomial bound.

Remark 2.6. — If X = 0 in Proposition 2.4 then the kernel TLΨX◦F,wS(α, β)
may be approximated when α is close to F(β) by an application of the holomorphic
stationary phase method. This computation is explained in the case F = IdM

in [GBJ20, Lemma 2.10]. However, for our approach here the bound (2.10) is enough.
The main point of Proposition 2.4 is to prove that, on the FBI transform side, the
action on LΨX◦F,w is negligible away from G (see the proof of Lemma 3.13 below).

2.5. Operators of exponential class

Let us end this toolbox section with the definition of a particular class of operators
that appear naturally when studying Koopman operators associated to real-analytic
or Gevrey dynamics. We refer for instance to [Pie87, § 2.3.1] for the definition of
approximation numbers (however, we use the convention that natural numbers start
at 0 rather than 1, hence the indices in sequences of approximation numbers are
shifted with respect to this reference).

Definition 2.7. — Let α > 0. Let L : B1 → B2 be a compact operator between
two Banach spaces. We say that L is of exponential class α if there is a constant
C > 0 such that the sequence of approximation numbers (an)n∈N of L satisfies
|an| ⩽ C exp (−nα/C) for every n ⩾ 0.

This kind of operators appeared in the context of hyperbolic dynamics already
in [Fri86, Fri95, Rug92, Rue76]. Similar classes of operators are used in [BN19]
and studied in [Ban08] (the main difference is that we include here Banach spaces
instead of only considering Hilbert spaces). Notice that it is clear that the product of
a bounded operator and an operator of exponential class α is of exponential class α.

Let us start by explaining how such operators usually appear in concrete setting.
In the following lemma, the summation over Zd naturally appears in two (related)
contexts: it can correspond to a decomposition in Fourier modes or in power series.

Lemma 2.8. — Let B1 and B2 be two Banach spaces. Let ν > 0. Let (Lk)k∈Zd be
a family of operators of rank at most 1 from B1 to B2 such that there are constants
C, β > 0 such that ∥Lk∥ ⩽ Ce−β|k|ν for every k ∈ Zd. Then the series ∑k∈Zd Lk

converges to an operator of exponential class ν/d.

Proof. — The series is easily seen to be summable. Let us write L for the sum,
and (an)n∈N for the sequence of approximation numbers of L. For m ∈ N, let us
approximate L by the operator ∑

k∈Zd

|k|⩽m

Lk
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whose rank is at most C0m
d + 1 for some constant C0 > 0 that does not depend on

m. Then we bound∥∥∥∥∥∥∥∥∥L−
∑

k∈Zd

|k|⩽m

Lk

∥∥∥∥∥∥∥∥∥ ⩽
∑

k∈Zd

|k|⩾m

∥Lk∥ ⩽ C
∑
p⩾m

pd−1e−βpν

⩽ Ce− βmν

2

where the constant C > 0 may change from one line to another. We find consequently
that aC0md+1 ⩽ Ce− βmν

2 , and the result then follows since the sequence (an)n⩾1 is
decreasing. □

The following lemma is based on standard estimates on Fredholm determinant.
We will use it to bound the number of Ruelle resonances for real-analytic Anosov
diffeomorphism.

Lemma 2.9. — Let α > 0. Let H be a Hilbert space and L : H → H be an
operator of exponential class α. Then, L is trace class and there is a constant C > 0
such that for every z ∈ C we have

|det (I − zL)| ⩽ C exp
(
C (log(1 + |z|))1+ 1

α

)
,

and for every r ∈ (0, 1
2) we have

(2.12) # {λ ∈ σ(L) : |λ| ⩾ r} ⩽ C| log r| 1
α ,

where the eigenvalues are counted with multiplicities.

Proof. — Let (an)n∈N denote the sequence of approximation numbers for L. For
every n ∈ N, let Ln be an operator from H to itself of rank at most 2n such
that ∥L− Ln∥ ⩽ 2a2n . Notice that we have ∥Ln − Ln+1∥ ⩽ 2(a2n + a2n+1). Since
L is of exponential class α, there is a constant C > 0 such that ∥Ln − Ln+1∥ ⩽
C exp(−2αn/C) for every n ∈ N. It follows that the series ∑n⩾0 Ln+1 −Ln converges
to L− L0.

For n ∈ N, the rank of Ln+1 − Ln is at most 2n+2. From Auerbach’s lemma
and Hahn–Banach theorem, we find that for every n ∈ N, there are linear forms
l1,n, . . . , l2n+2,n of norm 1, elements e1,n, . . . , e2n+2,n of H of norms 1, and complex
numbers λ1,n, . . . , λ2n+2,n of modulus less than ∥Ln+1 − Ln∥ such that

Ln+1 − Ln =
2n+2∑
k=1

λk,nek,n ⊗ lk,n.

Here, we write “e ⊗ l” for the rank 1 operator u 7→ l(u)e. Summing over n and
relabelling, we find that there are a sequence of linear forms (ln)n⩾1 of norm 1, a
sequence (en)n⩾N of elements of H of norms 1, and a sequence (λn)n∈N of complex
numbers such that

L =
+∞∑
n=0

λnen ⊗ ln,

and |λn| ⩽ C exp(−nα/C) for some C > 0 and every n ∈ N.
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With this representation of L, the bound on the Fredholm determinant of L follows
for instance from [Jéz20, Lemma 2.13]. The bound of the number of resonances can
then be deduced by applying Jensen’s formula to the entire function f : v 7→
det(I − evL). Indeed, we find that the number of zeros of f of modulus less than r

is a O(r1+ 1
α ). Using that each zero z0 of z 7→ det(I − zL) produces a line of zeros

of f of the form v0 + 2iπZ with Re v0 = log |z0| and Im v0 ∈ [−π, π], we get the
estimate (2.12). □

We end this section with a lemma that relates the notion of operators of exponential
class 1/d with the holomorphic regularity. While the result is not surprising, we were
not able to find a proof in the literature adapted to our particular case.

Lemma 2.10. — Let ϵ, ϵ′ ∈ (0, ϵ0) be such that ϵ′ < ϵ. Then the inclusion of Oϵ

into Oϵ′ is of exponential class 1/d, where we recall that d is the dimension of the
closed real-analytic manifold M .

Proof. — Since (M)ϵ′ is relatively compact in (M)ϵ, we can find two finite families
(Ai)i∈I and (Bi)i∈I of open subsets of (M)ϵ such that the closure of (M)ϵ′ is contained
in ⋃

i∈I Ai, the closure of ⋃i∈I Bi is contained in (M)ϵ, and for every i ∈ I there
are holomorphic coordinates in which Ai and Bi are polydiscs with the same center,
with the polyradius of Ai strictly smaller than the polyradius of Bi. For i ∈ I, we
write Ei and Fi for the spaces of bounded holomorphic functions respectively on Bi

and on Ai.
For each i ∈ I, the map Ei → Fi obtained by restriction is of exponential class 1/d,

as can be seen by developing the elements of Ei in power series around the center of
Ai and using Lemma 2.8. It follows that the map

i : ∏
i∈I Ei → ∏

i∈I Fi

(fi)i∈I 7→ (fi|Ai
)i∈I

is also of exponential class 1/d.
Define then

F =
{

(fi)i∈I ∈
∏
i∈I

Fi :∀ i, j ∈ I, fi|Uj
= fj|Ui

}
.

This is a closed subspace of ∏i∈I Fi, and there is a natural bounded linear map
P : F → Oϵ′ that associates to (fi)i∈I the function on (M)ϵ′ that coincides with fi

on Ui ∩ (M)ϵ′ for each i ∈ I. As this function can be extended to a larger Grauert
tube, it belongs indeed to Oϵ′ .

Let now Q denotes the bounded linear map from Oϵ to ∏i∈I Ei given by Qf =
(f|Bi

)i∈I . Using Q, we can define the linear operator R = i ◦Q : Oϵ → ∏
i∈I Fi, which

is of exponential class 1/d as i is. Notice also that R actually maps Oϵ into F , and
let R̃ be R with codomain restricted to F . Since the inclusion of Oϵ into Oϵ′ is just
the map P ◦ R̃, we only need to prove that R̃ is of exponential class 1/d.

Let us write (an)n∈N for the approximation numbers of R and (ãn)n∈N for the
approximation numbers of R̃. Let n ⩾ 1. There is an operator Rn : Oϵ → ∏

i∈I Fi

of rank at most n such that the operator norm of R − Rn is less than 2an. Using
Auerbach’s lemma and the Hahn–Banach theorem, we find linear forms l1, . . . , ln
of norm 1 on Oϵ, functions f1, . . . , fn of norm 1 in Oϵ and elements e1, . . . , en of
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∏
i∈I Fi such that Rn = ∑n

k=1 ek ⊗ lk and lk(fℓ) = δk,ℓ for k, ℓ = 1, . . . , n. Define then
ẽk = R̃fk for k = 1, . . . , n, and notice that these are elements of F . Then, introduce
the operator R̃n = ∑n

k=1 ẽk ⊗ lk. We have in operator norm∥∥∥Rn − R̃n

∥∥∥ ⩽ n∑
k=1

∥ek − ẽk∥ ∥lk∥ =
n∑

k=1
∥(Rn −R)fk∥ ⩽ 2nan.

It follows that ∥R̃n − R̃∥ ⩽ 2(n+1)an and thus that ãn ⩽ 2(n+1)an. This inequality
implies that R̃ is of exponential class 1/d since R is. □

3. Construction of a space of anisotropic hyperfunctions

The goal of this section is to prove the following technical result from which our
main results will follow, as explained in § 4 below. In this result, we refer to the
Koopman operators discussed in § 2.3 and the map ΨX for X a holomorphic vector
field in a neighbourhood of M defined in § 2.2.

Theorem 3.1. — Let M be a real-analytic closed manifold. Let F ∈ Anosω(M).
Let ϵ ∈ (0, ϵ0). There are δ > 0 and a separable Hilbert space H with the following
properties:

(i) there are continuous injections with dense images ι and j from Oϵ respectively
to H and to H∗;

(ii) for every X ∈ Bϵ,δ and w ∈ Oϵ, there is a compact operator L̃ΨX◦F,w from H
to itself of exponential class 1/d;

(iii) if z 7→ X(z) is a holomorphic family of elements of Bϵ,δ and z 7→ wz is a
holomorphic family of elements of Oϵ then z 7→ L̃ΨX(z)◦F,wz is a holomorphic
family of trace class operator on H;

(iv) for every X ∈ BR
ϵ,δ, w ∈ Oϵ, n ∈ N and u, v ∈ Oϵ, we have

j(u)
(
L̃n

ΨX◦F,wι(v)
)

=
∫

M
u
(
Ln

ΨX◦F,wv
)

dx.

We are going to construct H as the completion of Oϵ for a certain norm. However,
one could also interpret H as a space of bounded linear functionals on Oϵ. This is
why we might call H a space of hyperfunctions. It does not agree with the most
common terminology though, as the elements of H are not linear functionals on
the space of real-analytic functions on M , but only on real-analytic functions with
large enough radius of convergence. The elements of H are said to be anisotropic
since they satisfy regularity hypotheses that are adapted to the dynamics of F .
Morally, the elements of H are real-analytic in the stable direction of F and dual of
real-analytic in the unstable direction. Let us recall from the introduction the idea
behind the construction of the space H: we want to use the space from [FR06] as a
local model. However, due to the absence of real-analytic partition of unity, we need
to use another localization procedure. We will rely on the FBI transform, see § 2.4.

Let us start the proof of Theorem 3.1, which is the technical core of the paper. For
the rest of this section, we fix a closed real-analytic manifold M and F ∈ Anosω(M).
We let G be an escape function for F , as defined in § 2.1.
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3.1. Definition of the space

Let ϖ > 0 be a very small constant. Assume that α, β, γ are three points in T ∗M
large enough and such that dKN(α, β) ⩽ ϖ and dKN(Fβ, γ) ⩽ ϖ. Then

G(γ) −G(α) = G(F(β)) −G(β) +G(γ) −G(F(β)) +G(α) −G(β)
⩽ −C−1 |β| + Cϖϱ |β|
⩽ −C−1 |β| ,

(3.1)

where the constant C may change on the last line, and we assume that ϖ is small
enough. Notice that we used that the unstable and stable directions are Hölder-
continuous [HP70, Theorem 6.3] (hence the exponent ϱ). Here, F denotes the sym-
plectic lift of F , as in § 2.1.

Let (Uω)ω∈Ω be an open cover of M , such that for every ω ∈ Ω, there is a real-
analytic diffeomorphism κω : Uω → Vω where Vω is an open subset of the torus
Td = Rd/Zd. We assume in addition that the κω’s have Jacobian identically equal
to 1 and that the Uω’s are so small that for every ω ∈ Ω and k ∈ Zd the diameter
(for the Kohn–Nirenberg distance) of

Wω,k =
{
α ∈ T ∗M : αx ∈ Uω,

t(Dαxκω)−1αξ = 2πk
}
.

is less than ϖ/10, where ϖ is the constant defined above.
Let (χω)ω∈Ω be a partition of unity subordinated to (Uω)ω∈Ω. For every ω ∈ Ω,

choose a C∞ function χ̃ω : M → [0, 1], supported in Uω and such that χ̃ω ≡ 1 on
the support of χω. Let also θω, ρω be C∞ functions from Td to [0, 1] supported in Vω

and such that ρω ≡ 1 on a neighbourhood of the support of χ̃ω ◦ κ−1
ω and θω ≡ 1 on

the neighbourhood of the support of ρω.
Introduce the operators Aω = SχωT ,Ãω = Sχ̃ωT and Bω = SρωT . Here, if f is

a function on M , we identify it with a function on T ∗M depending only on the
position (αx, αξ) 7→ f(αx), and with the associated multiplication operator. Let us
also define the functions

eω
k = Aω(κω)∗θωBωek and ẽω

k = Ãω(κω)∗θωBωek,

where the pullback (κω)∗ denotes just the operator of composition by κω.

Remark 3.2. — The eω
k ’s and ẽω

k ’s will play the roles of local version the ek’s that
are defined on M . We will see below (Lemma 3.4) that the eω

k ’s and ẽω
k ’s are analytic.

It might seem surprising since their definitions involve the cut-off functions θω’s. Let
us explain how one can see quickly that eω

k is analytic.
Since ek is analytic, its FBI transform T ek decays exponentially fast, and it follows

then from an inspection of the kernel of S that Bωek is analytic (this is the idea
behind the proof of Proposition 2.2, see [GBJ20, Lemma 2.6]). Multiplying by θω,
we lose the real-analytic property, but not everywhere. Indeed, (κω)∗θωBωek is real-
analytic on a neighbourhood of the support of χω. We can use this knowledge to
prove that T (κω)∗θωBωek(α) is exponentially small when αx is in the support of χω

(see for instance Lemma A.2). It follows that χωT (κω)∗θωBωek decays exponentially
fast and thus that eω

k is real-analytic.
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Notice that we do not need the presence of Bω in order to prove the analyticity
of eω

k . It is needed for the proof of Proposition 3.6, which will play the role of the
Fourier inversion formula in our context.

Let study the eω
k ’s and ẽω

k ’s more precisely.

Lemma 3.3. — Let ω ∈ Ω and c > 0. Then, there is a constant C > 0 such that
for every k ∈ Zd and α ∈ T ∗M such that the (Kohn–Nirenberg) distance between α
and Wω,k is more than c we have

(3.2) |Teω
k (α)| ⩽ C exp

(
−max(⟨α⟩, |k|)

C

)
.

Moreover, there are constants C,N > 0 such that for every ω ∈ Ω, k ∈ Zd and
α ∈ T ∗M , we have
(3.3) |Teω

k (α)| ⩽ C⟨α⟩N .

The same result holds with the eω
k ’s replaced by the ẽω

k ’s.

Proof. — We will prove the result for the eω
k ’s, the proof for the ẽω

k ’s is the same.
Let us start by noticing that we have
(3.4) Teω

k = TSχωT (κω)∗θωSρωT ek.

We are going to prove first that χωT (κω)∗θωSρωT ek satisfies the bounds (3.2)
and (3.3) that we claimed for Teω

k . Introducing the kernel of the operator T (κω)∗θωS
as in Remark A.1, we write for α = (αx, αξ) ∈ T ∗M

(3.5) χωT (κω)∗θωSρωT ek(α) =
∫

T ∗Td
χω(αx)T (κω)∗θωS(α, β)ρω(βx)T ek(β)dβ.

Pick some small s > 0 and split the domain of integration in (3.5) into the sets{
β : dKN

(
β, tDκ−1

ω α
)
⩾ s and |βξ − 2πk| ⩾ s⟨βξ⟩

}
,{

β : dKN

(
β, tDκ−1

ω α
)
⩾ s and |βξ − 2πk| ⩽ s⟨βξ⟩

}
,{

β : dKN

(
β, tDκ−1

ω α
)
⩽ s and |βξ − 2πk| ⩾ s⟨βξ⟩

}
and

{
β : dKN

(
β, tDκ−1

ω α
)
⩽ s and |βξ − 2πk| ⩽ s⟨βξ⟩

}
.

(3.6)

We are going to estimate the integral on each of these sets separately.
We start with the first set. When α is such that αx is in the support of χω and

β is such that βx is in the support of ρω, since θω ◦ κω ≡ 1 on a neighbourhood of
αx and θω ≡ 1 on a neighbourhood of βx, we may use the first point in Lemma A.2
to control the kernel T (κω)∗θωS(α, β) when tDκ−1

ω α is at distance at least s from β.
We find that it is bounded by C exp(−(⟨α⟩ + ⟨β⟩)/C) for some C > 0. If in addition
we have |βξ − 2πk| ⩾ s⟨βξ⟩, then we can bound T ek(β) using (2.8). Thus, we find
that the integral over the first set in (3.6) is bounded by C exp(− max(⟨α⟩, |k|)/C)
for some C > 0.

To deal with the second set, we notice that the exponential bound on the kernel
T (κω)∗θωS(α, β) is still valid here. We can only use (2.9) to bound T ek(β), but since
we only consider a set of β’s that are approximatively of the size |k| (in particular,
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we are integrating on a set of measure bounded by C⟨k⟩d), we get that the integral
over the second set in (3.6) is bounded by C exp(− max(⟨α⟩, |k|)/C) for some C > 0
using only the bound on the kernel T (κω)∗θωS(α, β).

For the third set, notice that it has measure less than C⟨α⟩d and that α is ap-
proximately of the size of β there. We can then bound the kernel T (κω)∗θωS(α, β)
by C⟨α⟩ d

2 (using directly the definition of the transforms) and bound T ek(β) us-
ing (2.8). It follows that the integral over the third set in (3.6) is also bounded by
C exp(− max(⟨α⟩, |k|)/C) for some C > 0.

It remains to deal with the last set. As in the previous case, this set has measure
at most C⟨α⟩d and the integrand is bounded by some polynomials in ⟨α⟩ there
(using (2.9) and the definition of the transforms). Hence, the integral on the third set
is at most C⟨α⟩N for some C,N > 0. This ends the proof of (3.3). Now, if we assume
in addition that the distance between α and Wω,k is larger than c then, by taking s
small enough, we may ensure that the last set in (3.6) is empty, which proves (3.2).

We proved that χωT (κω)∗θωSρωT ek satisfies the bounds that we claimed for Teω
k .

From Lemma A.2 (or [GBJ20, Lemma 2.9], see also Remark A.4), we see that the
kernel of TS is exponentially decaying away from the diagonal, which is enough to
end the proof of the lemma writing

Teω
k (α) =

∫
T ∗M

TS(α, β)χωT (κω)∗θωSρωT ek(β)dβ,

and splitting as above the integral with respect to β’s that are close to or away from
α, and close or away from Wω,k. □

We can then use Lemma 3.3 and the properties of the FBI transform from § 2.4
to relate the eω

k ’s and ẽω
k ’s to real-analytic regularity.

Lemma 3.4. — Let ρ > 0. There are C > 0 and ϵ ∈ (0, ϵ0) such that for every
ω ∈ Ω and k ∈ Zd we have eω

k , ẽ
ω
k ∈ Oϵ and

∥eω
k ∥Oϵ

⩽ Ceρ|k| and ∥ẽω
k ∥Oϵ

⩽ Ceρ|k|.

Proof. — This result follows immediately from Proposition 2.2 and Lemma 3.3. □

Lemma 3.5. — Let ϵ ∈ (0, ϵ0). There are C, ρ > 0 such that for every ω ∈ Ω, k ∈
Zd and u ∈ Oϵ, we have

|⟨u, eω
k ⟩L2 | ⩽ C ∥u∥Oϵ

e−ρ|k| and |⟨u, ẽω
k ⟩L2| ⩽ C ∥u∥Oϵ

e−ρ|k|,

where the scalar product is in L2(M).

Proof. — As above, let us prove the result only for the eω
k ’s. Since T is an isometry,

we have

(3.7) ⟨u, eω
k ⟩L2(M) = ⟨Tu, Teω

k ⟩L2(T ∗M) .

The result then follows from Proposition 2.1 and Lemma 3.3. □

The construction of the space H from Theorem 3.1 is based on the representation
formula for smooth function given in the following proposition.
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Proposition 3.6. — There is an operator K with real-analytic kernel such that
for every analytic function u, we have
(3.8) u =

∑
ω∈Ω
k∈Zd

⟨u, eω
k ⟩L2 ẽ

ω
k + Ku,

where the sum converges in the real-analytic topology.
The proof of Proposition 3.6 is probably the most technical from the paper and

can be found in Appendix A.
For every ω ∈ Ω, choose a point xω ∈ suppχω (we may discard the ω’s for which

suppχω is empty), and for every k ∈ Zd let us write
Gω(k) = G(xω,

tDxωκω(2πk)),
where G is the escape function defined in § 2.1. For γ > 0, let us introduce the norm

∥u∥2
γ :=

∑
ω∈Ω
k∈Zd

e−2γGω(k) |⟨u, eω
k ⟩L2|2 + ∥Ku∥2

L2 ,

where K is the operator from Proposition 3.6.
Lemma 3.7. — Let ϵ ∈ (0, ϵ0). Then there are C, γ0 > 0 such that for every

0 < γ ⩽ γ0 if u ∈ Oϵ then ∥u∥γ ⩽ C ∥u∥Oϵ
< +∞.

Proof. — This is an immediate consequence of Lemma 3.5. □
When the conclusion from Lemma 3.7 holds, we let Hγ,ϵ denotes the completion of

Oϵ for the norm ∥·∥γ , and ι : Oϵ → Hγ,ϵ be the inclusion. The space H in Theorem 3.1
will be Hγ,ϵ with γ small enough.

3.2. Basic properties of the space

Now that we have a family of spaces defined, we check that they satisfy the basic
properties required in Theorem 3.1 (those that do not involve Koopman operators).
The existence of the inclusion ι following from the definition, we explain now how the
inclusion j is constructed in Lemma 3.8. After a discussion of the action of operators
with real-analytic kernel (Definition 3.9), we prove that our space is separable in
Lemma 3.12.

Lemma 3.8. — Let ϵ ∈ (0, ϵ0). Then there are C, γ0 > 0 such that for every
0 < γ ⩽ γ0 if v ∈ Oϵ then the linear form

u 7→ ⟨u, v⟩L2

on Oϵ extends to a continuous linear form lv on Hγ,ϵ. Here, the scalar product is in
L2(M) as usual. Moreover, the map j : v 7→ lv̄ is C-linear and continuous from Oϵ

to the dual of Hγ,ϵ.
Proof. — This is a consequence from Lemma 3.5 and Proposition 3.6. □
Operators with real-analytic kernels play an important role in the analysis below,

so let us define precisely what we mean by an operator with real-analytic kernel
acting on Hγ,ϵ.

TOME 7 (2024)



694 M. JÉZÉQUEL

Definition 3.9. — Let ϵ ∈ (0, ϵ0). If L ∈ Oϵ(M × M), then we can define the
operator with kernel L, that we also denote by L, and is defined for u an integrable
function on M by

Lu(x) =
∫

M
L(x, y)u(y)dy for x ∈ M.

Notice that there is ϵ′ ∈ (0, ϵ0) such that the function (x 7→ (y 7→ L(x, y)) is
bounded and holomorphic from a neighbourhood of (M)ϵ′ (in (M)ϵ0) to Oϵ′ . Moreover,
Lemma 3.5 and Proposition 3.6 imply that, if γ > 0 is small enough, the inclusion
ι : Oϵ → Hγ,ϵ and the map j : Oϵ → H∗

γ,ϵ extend to bounded operators from Oϵ′

respectively to Hγ,ϵ and H∗
γ,ϵ. Here, we recall that it follows from the definitions of

Oϵ and Oϵ′ that Oϵ ∩ Oϵ′ is dense in Oϵ′ . We can consequently define an operator
from Hγ,ϵ to itself (still denoted by L) by the formula

Lu = ι (x 7→ j(L(x, ·))(u)) for u ∈ Hγ,ϵ.

Notice that, up to taking ϵ′ slightly smaller, we can find ϵ′′ > ϵ′ such that the operator
L : Hγ,ϵ → Hγ,ϵ factorizes through an operator Oϵ′′ → Oϵ′ . Hence, it follows from
Lemma 2.10 that L is an operator in the exponential class 1/d, where d denotes the
dimension of M . Notice also that the trace class operator norm of the operator L is
less than C ∥L∥Oϵ

for some constant C that may depend on ϵ but not on L.
The following notation will be interesting in order to give an expression for the

norm of Hγ,ϵ in Lemma 3.11 below.
Definition 3.10. — Let ϵ ∈ (0, ϵ0). Let K(x, y) denote the kernel of the operator

K from Proposition 3.6. Working as in Definition 3.9, we see that when γ > 0 is
small enough and u ∈ Hγ,ϵ, we can define an analytic function on M by the formula
x 7→ j(K(x, ·))(u). We introduce then the abbreviation, for u ∈ Hγ,ϵ,

∥Ku∥2
L2 =

∫
M

|j(K(x, ·))(u)|2 dx.

With this notation and Lemma 3.8, we can express the norm of Hγ,ϵ.
Lemma 3.11. — Let ϵ ∈ (0, ϵ0) be small enough. Let γ > 0 be small enough

(depending on ϵ). Then for every u ∈ Hγ,ϵ the sum

(3.9)
∑

ω∈Ω,k∈Zd

e−2γGω(k)
∣∣∣leω

k
(u)

∣∣∣2
converges. Here, the notation lv for v ∈ Oϵ is from Lemma 3.8. Moreover,

(3.10) ∥u∥2
γ =

∑
ω∈Ω,k∈Zd

e−2γGω(k)
∣∣∣leω

k
(u)

∣∣∣2 + ∥Ku∥2
L2 .

In particular, the image of j is dense in the dual of Hγ,ϵ.
Proof. — Notice that if u ∈ Hγ,ϵ is in the image of Oϵ by ι, then the convergence

of the sum (3.9) and the equality (3.10) holds by definition. For a general u ∈ Hγ,ϵ,
let (un)n∈N be a sequence of elements of the image of ι that converges to u. Since
∥un∥γ →

n→+∞
∥u∥γ and the un’s satisfy (3.10), it follows from Fatou’s lemma that

(3.11)
∑

ω∈Ω,k∈Zd

e−2γGω(k)
∣∣∣leω

k
(u)

∣∣∣2 + ∥Ku∥2
L2 ⩽ ∥u∥2

γ .
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In particular the sum (3.9) is finite. To get the reversed inequality, use the second
triangular inequality to write ∑

ω∈Ω,k∈Zd

e−2γGω(k)
∣∣∣leω

k
(u)

∣∣∣2 + ∥Ku∥2
L2

 1
2

⩾

 ∑
ω∈Ω,k∈Zd

e−2γGω(k)
∣∣∣leω

k
(un)

∣∣∣2 + ∥Kun∥2
L2

 1
2

−

 ∑
ω∈Ω,k∈Zd

e−2γGω(k)
∣∣∣leω

k
(u− un)

∣∣∣2 + ∥K(u− un)∥2
L2

 1
2

⩾ ∥un∥γ − ∥u− un∥γ .

Here, we used (3.11) and the fact that (3.10) holds for un. Letting n tends to +∞,
we get the reversed inequality to (3.11) and thus (3.10) holds.

It follows from (3.10) that if u ∈ Hγ,ϵ is such that j(v)(u) = 0 for every v ∈ Oϵ

then u = 0. Since Hγ,ϵ is reflexive (it is a Hilbert space), it follows that the image of
Oϵ by j is dense in the dual of Hγ,ϵ □

From Lemma 3.11, we deduce another part of Theorem 3.1.

Lemma 3.12. — Let ϵ ∈ (0, ϵ0). Let γ > 0 be small enough (depending on ϵ).
Then the Hilbert space Hγ,ϵ is separable.

Proof. — Let D be a countable dense subset of M . It follows from Lemma 3.11
that if u ∈ Hγ,ϵ is such that j(K(x, ·))(u) = 0 for every x ∈ D and j(eω

k )(u) = 0 for
every ω ∈ Ω and k ∈ Zd, then u = 0. Consequently, the span of the j(K(x, ·)) for
x ∈ D and the j(eω

k ) for ω ∈ Ω and k ∈ Zd is dense in H∗
γ,ϵ. Hence, H∗

γ,ϵ, and thus
Hγ,ϵ, is separable. □

3.3. Action of Koopman operators

We are finally ready to study the action of Koopman operators on our space, and
complete the proof of Theorem 3.1.

Let us introduce Γ = Ω × Zd (where Ω is the set indexing our family of real-
analytic charts introduced at the beginning of the section) and the relation ↪→ on Γ
by (ω, k) ↪→ (ω′, k′) if and only if the Kohn–Nirenberg distance between Wω,k and
F (Wω′,k′) is less than ϖ/10. Here, we recall that F denotes the symplectic lift of
F , as defined in § 2.1. It follows from (3.1) and our choice of the Uω’s that there is
C > 0 such that if (ω, k) ↪→ (ω′, k′) and k is large enough then
(3.12) Gω(k) ⩽ Gω′(k′) − C−1 |k| .
This estimate is at the core of the proof of Theorem 3.1, along with the following
lemma.

Lemma 3.13. —
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(i) Let ϵ ∈ (0, ϵ0). There are C, δ, τ > 0 such that, if X ∈ Bϵ,δ and w ∈ Oϵ, for
every (ω, k), (ω′, k′) ∈ Γ such that (ω, k) ̸↪→ (ω′, k′), we have∣∣∣〈LΨX◦F,wẽ

ω
k , e

ω′

k′

〉
L2

∣∣∣ ⩽ C ∥w∥Oϵ
e−τ max(|k|,|k′|).

(ii) Let ϵ ∈ (0, ϵ0) and ρ > 0. Then there are C, δ > 0 such that if X ∈ Bϵ,δ and
w ∈ Oϵ, for every (ω, k), (ω′, k′) ∈ Γ

(3.13)
∣∣∣〈LΨX◦F,wẽ

ω
k , e

ω′

k′

〉
L2

∣∣∣ ⩽ C ∥w∥Oϵ
eρ max(|k|,|k′|).

Proof. — To prove (3.13), let us first apply Lemma 3.4 to find ϵ1 ∈ (0, ϵ0) such
that for every (ω, k) ∈ Γ we have ẽω

k ∈ Oϵ1 with norm less than Ceρ|k|. Let us then
recall from § 2.3 that there are δ > 0 and ϵ2 such that for every X ∈ Bϵ,δ and
w ∈ Oϵ the operator LΨX◦F,w is bounded from Oϵ1 to Oϵ2 with operator norm less
than C ∥w∥Oϵ

where C depends on F and ϵ. Thus LΨX◦F,wẽ
ω
k is in Oϵ2 with norm

less than C ∥w∥Oϵ
eρ|k|. The estimate (3.13) is then a consequence of Lemma 3.5.

We move to the proof of (i). Let us assume that (ω, k) ̸↪→ (ω′, k′) and use that T
is an isometry to write

(3.14)
〈
LΨX◦F,wẽ

ω
k , e

ω′

k′

〉
L2

=
∫

T ∗M×T ∗M
TLΨX◦F,wS(α, β)T ẽω

k (β)Teω′
k′ (α)dαdβ,

where the kernel TLΨX◦F,wS(α, β) is the one that we described in Proposition 2.4.
Let us split the integral (3.14) into pieces. Choose some small s > 0 and split the
domain of the integral in (3.14) into the four pieces:

{dKN(α,Wω′,k′) ⩾ s, dKN(β,Wω,k) ⩾ s} ,
{dKN(α,Wω′,k′) ⩽ s, dKN(β,Wω,k) ⩽ s} ,
{dKN(α,Wω′,k′) ⩽ s, dKN(β,Wω,k) ⩾ s} , and
{dKN(α,Wω′,k′) ⩾ s, dKN(β,Wω,k) ⩽ s} .

(3.15)

If α and β are both at distance more than s respectively from Wω′,k′ and Wω,k,
then we can use the estimate (3.2) from Lemma 3.3 to bound Teω′

k′ (α) and T ẽω
k (β).

We bound the kernel TLΨX◦F,wS(α, β) using (2.10) where we recall that c may be
made arbitrarily small by taking δ small enough. Hence, the part of the integral
in (3.14) corresponding to the first set in (3.15) is bounded by C ∥w∥Oϵ

e−τ max(|k|,|k′|)

for some C, τ > 0.
Now, if α and β are both at distance less than s respectively from Wω′,k′ and

Wω,k, then we can only use (3.3) to bound Teω′
k′ (α) and T ẽω

k (β). However, since
(ω, k) ̸↪→ (ω′, k′), the distance between β and F(α) is more than ϖ/20, provided
s is small enough. We can then use (2.11) to bound TLΨX◦F,wS(α, β). The part of
the integral in (3.14) corresponding to the second set in (3.15) is consequently also
bounded by C ∥w∥Oϵ

e−τ max(|k|,|k′|) for some C, τ > 0 (notice that in this case the
order of magnitude of α and β are |k′| and |k|).

Let us now consider the third case in (3.15): α at distance less than s from Wω′,k′

and β at distance more than s from Wω,k (we will not detail the symmetric case,
which is similar). In that case, we can bound T ẽω

k (β) using (3.2). If F(α) is away from
β, then we can use (2.11) to bound TLΨX◦F,wS(α, β), since the order of magnitude
of α is |k′|. If F(α) is close to β, then the size of |k| and |k′| are approximately the
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same, so that applying (3.2) to bound Teω′
k′ (β) is enough to get the required decay

(taking δ small enough so that c in (2.10) is small enough). □

We will use Lemma 3.13 to estimate the norm of LΨX◦F,wẽ
ω
k in Hγ,ϵ. We will also

need the following bound to do so.

Lemma 3.14. — Let ϵ ∈ (0, ϵ0). There are C, δ, τ > 0 such that, for every (ω, k) ∈
Γ, X ∈ Bϵ,δ and w ∈ Oϵ, we have

∥K (LΨX◦F,wẽ
ω
k )∥L2 ⩽ C ∥w∥Oϵ

e−τ |k|.

Proof. — Let us rewrite for x ∈ M :

K (LΨX◦F,wẽ
ω
k ) (x) =

∫
M

K(x, y)LΨX◦F,wẽ
ω
k (y)dy

=
∫

M
L∗

ΨX◦F,w(K(x, ·))(y)ẽω
k (y)dy,

where we identified the operator K with its kernel K(x, y), and the operator L∗
ΨX◦F,w

is discussed in § 2.3. Notice that by taking δ small enough we may ensure that there
is ϵ′ > 0 such that for every x ∈ M the function L∗

ΨX◦F,w(K(x, ·)) is an element of
Oϵ′ of norm less than C ∥w∥Oϵ

. The result then follows from Lemma 3.5. □

We are now ready to estimate the norm of LΨX◦F,wẽ
ω
k in Hγ,ϵ.

Lemma 3.15. — Let ϵ ∈ (0, ϵ0). There are constants C, τ, γ0, δ > 0 such that if
X ∈ Bϵ,δ, w ∈ Oϵ and 0 < γ ⩽ γ0 then, for every (ω, k) ∈ Γ, we have

∥LΨX◦F,wẽ
ω
k ∥γ ⩽ C ∥w∥Oϵ

e−τ |k|−γGω(k).

Proof. — Let us compute∑
ω′∈Ω
k′∈Zd

e−2γGω′ (k′)
∣∣∣〈LΨX◦F,wẽ

ω
k , e

ω′

k′

〉
L2

∣∣∣2

⩽
∑

ω′∈Ω,k′∈Zd

(ω,k)↪→(ω′,k′)

e−2γGω′ (k′)
∣∣∣〈LΨX◦F,wẽ

ω
k , e

ω′

k′

〉
L2

∣∣∣2

+
∑

ω′∈Ω,k′∈Zd

(ω,k)̸↪→(ω′,k′)

e−2γGω′ (k′)
∣∣∣〈LΨX◦F,wẽ

ω
k , e

ω′

k′

〉
L2

∣∣∣2

⩽ e−2γGω(k) ∑
ω′∈Ω,k′∈Zd

(ω,k)↪→(ω′,k′)

e− 2γ|k|
C

∣∣∣〈LΨX◦F,wẽ
ω
k , e

ω′

k′

〉
L2

∣∣∣2

+ C2 ∥w∥2
Oϵ

∑
ω′∈Ω,k′∈Zd

(ω,k) ̸↪→(ω′,k′)

e−2γGω′ (k′)−2τ max(|k|,|k′|)

⩽ C ∥w∥2
Oϵ
e−2γGω(k)e− 2γ|k|

C eρ|k| + C ∥w∥2
Oϵ
e− |k|

C

⩽ C ∥w∥2
Oϵ
e−2γGω(k)e− |k|

C

where the constant C may change from one line to another. To go from the second
to the third line, we applied Lemma 3.13 and the estimate (3.12) that is valid when
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(ω, k) ↪→ (ω′, k′). To go from the third line to the fourth one, we assumed that γ
is small enough (to deal with the second sum) and applied the estimate (3.13) in
Lemma 3.13. Notice in particular that ρ may be chosen arbitrarily small by taking
δ small, which allows us to get from the fourth line to the last line.

It remains to bound ∥K(LΨX◦F,wẽ
ω
k )∥L2 . To do so, we apply Lemma 3.14 to get

∥K (LΨX◦F,wẽ
ω
k )∥L2 ⩽ C ∥w∥Oϵ

e− τ
2 |k|+γGω(k)e− τ

2 |k|−γGω(k).

Since Gω(k) is controlled by |k|, the factor e− τ
2 |k|+γGω(k) is bounded provided γ is

small enough, and the result follows. □

Notice that the norm of the linear form leω
k
, defined in Lemma 3.8, on Hγ,ϵ is less

than eγGω(k). Consequently, under the assumptions of Lemma 3.15, for ω ∈ Ω and
k ∈ Zd large, the norm of the rank 1 operator

ι (LΨX◦F,wẽ
ω
k ) ⊗ leω

k

on Hγ,ϵ is less than Ce−β|k|, for some C, β > 0. From the estimate above, the sum∑
ω∈Ω,k∈Zd

ι (LΨX◦F,wẽ
ω
k ) ⊗ leω

k

converges to an operator from Hγ,ϵ to itself of exponential class 1/d (see Lemma 2.8).
Notice also that if X ∈ Bϵ,δ, with δ small enough, and w ∈ Oϵ, then the operator
LΨX◦F,wK has a real-analytic kernel, and thus extends to an operator of exponential
class 1/d on Hγ,ϵ, see Definition 3.9. Thus, if ϵ > 0, and γ, δ > 0 are small enough
(depending on ϵ), we may define an operator

(3.16) L̃ΨX◦F,w =
∑

ω∈Ω,k∈Zd

ι (LΨX◦F,wẽ
ω
k ) ⊗ leω

k
+ LΨX◦F,wK

on Hγ,ϵ. This is the operator from Theorem 3.1. In the following two lemmas, we
check that it satisfies the required properties.

Lemma 3.16. — Let ϵ ∈ (0, ϵ0). There are constants C, γ0, δ, a > 0 such that, if
γ ∈ (0, γ0), then, for every X ∈ Bϵ,δ and w ∈ Oϵ, the operator L̃ΨX◦F,w on Hγ,ϵ is of
exponential class 1/d.

Moreover, if z 7→ X(z) is a holomorphic family of elements of Bϵ,δ and z 7→ wz is a
holomorphic family of elements of Oϵ then z 7→ L̃ΨX(z)◦F,wz is a holomorphic family
of trace class operator on Hγ,ϵ.

Proof. — That L̃ΨX◦F,w is of exponential class 1/d follows from Lemma 2.8. The
holomorphic dependence on the parameter follows from the uniform convergence
in (3.16). □

Lemma 3.17. — Let ϵ ∈ (0, ϵ0). There are constants C, γ0, δ > 0 such that, if
γ ∈ (0, γ0), then, for every X ∈ BR

ϵ,δ, w ∈ Oϵ, n ∈ N and u, v ∈ Oϵ we have

(3.17) j(u)
(
L̃n

ΨX◦F,wι(v)
)

=
∫

M
u
(
Ln

ΨX◦F,wv
)

dx.

Proof. — Let ϵ̃ and δ be so small that for every X ∈ BR
ϵ,δ and w ∈ Oϵ the operator

L∗
ΨX◦F,w defined in § 2.3 is bounded from Oϵ to Oϵ̃. By taking γ small enough, we
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ensure that the map j : Oϵ → H∗
γ,ϵ extends to a continuous map j : Oϵ̃ → H∗

γ,ϵ (this
is a consequence of Lemma 3.5).

The proof is by induction, the case n = 0 being a consequence of the definition
of the maps ι and j. Let n ∈ N and assume that the equality (3.17) holds for every
u, v ∈ Oϵ (the other parameters are fixed). Let u, v ∈ Oϵ and consider a sequence
(vm)m∈N of elements of Oϵ such that (ιvm)m∈N converges to L̃n

ΨX◦F,wιv in Hγ,ϵ. We
have consequently

j(u)
(
L̃n+1

ΨX◦F,wι(v)
)

= lim
m→+∞

j(u)
(
L̃ΨX◦F,wι(vm)

)
.

It follows from the definition (3.16) of L̃ΨX◦F,w that

L̃ΨX◦F,wι(vm) =
∑

ω∈Ω,k∈Zd

⟨vm, e
ω
k ⟩L2ι (LΨX◦F,wẽ

ω
k ) + ι (LΨX◦F,wKvm) .

Thus

j(u)
(
L̃ΨX◦F,wι(vm)

)
=

∑
ω∈Ω,k∈Zd

⟨vm, e
ω
k ⟩L2

∫
M
u (LΨX◦F,wẽ

ω
k ) dx+

∫
M
u (LΨX◦F,wKvm) dx

=
∫

M
u

 ∑
ω∈Ω,k∈Zd

⟨vm, e
ω
k ⟩L2LΨX◦F,wẽ

ω
k + LΨX◦F,wKvm

 dx

=
∫

M
uLΨX◦F,wvmdx =

∫
M

(
L∗

ΨX◦F,wu
)
vmdx

= j
(
L∗

ΨX◦F,wu
)

(ιvm).

Here, we can use Lemma 3.5 to justify the interchange of the series and the integral
(from the second to the third line). We use (3.8) to go from the third to the fourth
line. In the last line, we use the extension of j to Oϵ̃. Letting m tends to +∞, we
find that

j(u)
(
L̃n+1

ΨX◦F,wι(v)
)

= j
(
L∗

ΨX◦F,wu
) (

L̃n
ΨX◦F,wι(v)

)
.

Since Oϵ is dense in Oϵ̃, it follows from our induction hypothesis that

j(u)
(
L̃n+1

ΨX◦F,wι(v)
)

=
∫

M

(
L∗

ΨX◦F,wu
) (

Ln
ΨX◦F,wv

)
dx

=
∫

M
u
(
Ln+1

ΨX◦F,wv
)

dx.

This ends the proof of the lemma. □

Let us finally gather all our findings and prove Theorem 3.1.
Proof of Theorem 3.1. — We take H = Hγ,ϵ with γ small enough. Remember that

H is separable (Lemma 3.12). The point (i) follows from the definition of the space
Hγ,ϵ and Lemmas 3.8 and 3.11. The operator L̃ΨX◦F,g is defined by the formula (3.16)
(provided δ is small enough) and satisfies points (ii) and (iii) according to Lemma 3.16.
Finally, point (iv) is a consequence of Lemma 3.17. □
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4. Consequences

4.1. First consequences

Let M be a closed real-analytic manifold and F ∈ Anosω(M). Let ϵ ∈ (0, ϵ0),
where ϵ0 is as in § 2.2. We will use the notation from Theorem 3.1. The goal of
this section is to use Theorem 3.1 to study the Ruelle resonances of F . We start
by proving Theorems 1.3 and 1.4, the proof of Theorems 1.5 and 1.9 can be found
respectively in § 4.2 and § 4.3.

We will only work with the properties given in Theorem 3.1. In particular, we
will not need to go back to the construction of the space H. The first step is to
explain how the eigenvalues of the operators from Theorem 3.1 are related to Ruelle
resonances.

Proposition 4.1. — Let X ∈ BR
ϵ,δ and w ∈ Oϵ. The non-zero eigenvalues of

L̃ΨX◦F,w are the Ruelle resonances of LΨX◦F,w (counted with multiplicity).

Proof. — Let λ be a non-zero complex number. We let Ẽλ denote the generalized
eigenspace of L̃ΨX◦F,w associated to λ and Π̃λ the associated spectral projector.
Similarly, we let Eλ be the space of generalized resonant states for LΨX◦F,w and Πλ

be the associated spectral projector, that is the residue at λ of the meromorphic
continuation of (z − LΨX◦F,g)−1 given by Theorem 1.1. We recall that Πλ is a finite
rank operator from C∞(M) to D′(M), and that Eλ is its image. Since Ẽλ and Eλ

are finite dimensional and ι(Oϵ) and Oϵ are dense respectively in H and in C∞(M),
we see that the operators Π̃λ ◦ ι : Oϵ → Ẽλ and Πλ : Oϵ → Eλ are surjective. We
will prove that these operators have the same kernel, which will imply the existence
of an isomorphism between Ẽλ and Eλ, and hence the result.

Let u, v ∈ Oϵ. Let us introduce for z ∈ C large

Ψu,v(z) =
∑
n⩾0

z−(n+1)
∫

M
u
(
Ln

ΨX◦F,wv
)

dx =
∫

M
u (z − LΨX◦F,w)−1 vdx.

Thanks to the meromorphic continuation of the resolvent (z − LΨX◦F,w)−1 given by
Theorem 1.1, we see that Ψu,v has a meromorphic continuation to C. Moreover, the
residue of Ψu,v at λ is

∫
M uΠλvdx.

On the other hand, using the last point in Theorem 3.1, we see that for |z| large,
we have

Ψu,v(z) =
∑
n⩾0

z−(n+1)j(u)
(
L̃n

ΨX◦F,wι(v)
)

= j(u)
((
z − L̃ΨX◦F,w

)−1
ιv
)
.

Consequently, the residue of Ψu,v at λ is j(u)
(
Π̃λι(v)

)
. Hence, we have∫

M
uΠλvdx = j(u)

(
Π̃λι(v)

)
.

Since Oϵ is dense in C∞(M) and the image of j is dense in the dual of H, we find
that the kernels of Π̃λ ◦ ι : Oϵ → Ẽλ and Πλ : Oϵ → Eλ are the same, and thus there
is an isomorphism between Ẽλ and Eλ. □
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Remark 4.2. — One could actually prove that the isomorphism between Ẽλ and
Eλ constructed in the proof of Proposition 4.1 conjugates the actions of L̃ΨX◦F,w and
LΨX◦F,w. In particular, the operators L̃ΨX◦F,w and LΨX◦F,w have the same Jordan
blocks.

In prevision of the proof of Theorem 1.4, we relate the dynamical determinant (1.2)
with the operators from Theorem 3.1.

Proposition 4.3. — Let X ∈ BR
ϵ,δ and w ∈ Oϵ. For every n ∈ N∗, the trace of

the trace class operator L̃n
ΨX◦F,w is

(4.1) tr
(
L̃n

ΨX◦F,w

)
=

∑
(ΨX◦F )nx=x

∏n−1
k=0 w

(
(ΨX ◦ F )k x

)
|det (I −Dx(ΨX ◦ F )n)| .

Proof. — Since L̃n
ΨX◦F,w is a trace class operator, its trace is the sum of its eigen-

values (counted with multiplicities), which by Proposition 4.1 is also the sum of
the Ruelle resonances of Ln

ΨX◦F,w. Since ΨX ◦ F and w are real-analytic, they are in
particular Gevrey, so that it follows from [Jéz20, Theorem 2.12(iv)] that the sum of
the Ruelle resonances of Ln

ΨX◦F,w. coincides with the right-hand side of (4.1). □

We are now ready to prove Theorems 1.3 and 1.4.
Proof of Theorems 1.3 and 1.4. — It follows from Proposition 4.3 that for every

z ∈ C we have dF,w(z) = det(I − zL̃F,g). The results then follow from Lemma 2.9
since L̃F,w is of exponential class 1/d: Theorem 1.4 follows from the upper bound on
det(I − zL̃F,g) and Theorem 1.3 from (2.12). □

4.2. Proof of Theorem 1.5

We are going to prove a slightly more general statement than Theorem 1.5. To do
so, we will need the following definition.

Definition 4.4. — Let I be an interval of R and M a closed real-analytic
manifold. We say that a function c : I → Anosω(M) is a real-analytic curve if the
map (t, x) 7→ c(t)(x) is real-analytic.

We define similarly real-analytic curves from I to Cω(M), and we say that a
function from I to Anosω(M) × Cω(M) is a real-analytic curve if its components
are.

Notice that this definition coincides with the one given in [KM90] using the struc-
ture of real-analytic manifold on the space of real-analytic maps from M to itself
(according to [KM90, Lemma 8.6]). With this definition, we can state a generalization
of Theorem 1.5.

Theorem 4.5. — Let M be a closed real-analytic manifold of dimension d. Let
Q be a subset of Anosω(M) × Cω(M) such that

(i) Q is connected for the topology induced by the C1 topology;
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(ii) for every x ∈ Q, there is a neighbourhood U of x in Q (for the C1 topology)
such that for every y, z ∈ U there is a real-analytic curve that joins y and z
in Q;

(iii) there is (F0, w0) ∈ Q such that

lim sup
r→0

logNF0,w0(r)
log | log r| = d.

Then, for every (F,w) ∈ Q, there is a sequence ((Fn, wn))n⩾1 of elements of
Q that converges to (F,w) in the Cω topology and such that

lim sup
r→0

logNFn,wn(r)
log | log r| = d

for every n ∈ N.

Theorem 1.5 is deduced from Theorem 4.5 by taking Q = W × {1}. The following
lemma ensures that the hypotheses of Theorem 4.5 hold in that case.

Lemma 4.6. — Let F ∈ Anosω(M). Then there is a neighbourhood U of F in
Anosω(M) for the C1 topology such that if G,H ∈ U then there is a real-analytic
curve that joins G and H.

Proof. — Recall that there is a C1 neighbourhood V of 0 in Vω such that if X ∈ V
then ΨX is a diffeomorphism of M . Moreover, we may assume that V is convex
(since the C1 topology is normable). Notice that

U = {ΨX ◦ F : X ∈ V and ΨX ∈ Diffω(M)}
is a neighbourhood of F for the C1 topology. By taking V small enough, we may
ensure that U is contained in Anosω(M) [Ano67]. Now, if G and H are in U , then
there are X0, X1 ∈ V such that G = ΨX0 ◦F and H = ΨX1 ◦F . If we set c(t) = ΨXt ◦F
where Xt = (1−t)X0 +tX1 for t ∈ [0, 1], then c : [0, 1] → Anosω(M) is a real-analytic
curve (since the exponential map associated to a real-analytic metric is real-analytic).
Notice here that the fact that c(t) ∈ Anosω(M) for every t ∈ [0, 1] is ensured by the
fact that V is convex. □

The proof of Theorem 4.5 is based on the strategy from [BCHP11, BN19, CH05,
CH10, Chr05, Chr06]. This method is based on potential theoretic tools. Let us start
by recalling the following definition.

Definition 4.7. — If f is an entire function, we define the order of growth of f
as

lim sup
r→+∞

sup
|z|=r

log(max(1, log |f(z)|))
log r .

Let us now relate the notion of order of growth with the number of resonances for
Koopman operators.

Lemma 4.8. — Let (F,w) ∈ Anosω(M) × Cω(M). Then the order of growth of
z 7→ dF,w(ez) is less than or equal to d+ 1 with equality if and only if

(4.2) lim sup
r→0

logNF,w(r)
log | log r| = d.
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Proof. — That the order of growth of z 7→ dF,w(ez) is less than d+ 1 follows from
Theorem 1.4. It follows from Jensen’s formula (as in the proof of Lemma 2.9) that
if the order of growth of z 7→ dF,w(ez) is strictly less than d+ 1 then (4.2) does not
hold. Reciprocally, assume that (4.2) does not hold and choose a real number τ such
that

lim sup
r→0

logNF,w(r)
log | log r| < τ < d.

Notice then that NF,w(r) ⩽ | log r|τ for r large enough. Let then (λn)n∈N be the
sequence of Ruelle resonances of LF,w (ordered so that the modulus is decreasing).
It follows from Theorem 1.4 that dF,w has genus zero, and thus for z ∈ C we have

dF,w(z) =
+∞∏
n=0

(1 − zλn).

Thus, we have for z ∈ C large and r small enough:

log |dF,w(z)| ⩽ C
+∞∑
n=0

log(1 + |z||λn|)

⩽ CNF,w(r) log(1 + |z|) + |z|
∑

n⩾NF,w(r)
|λn|

⩽ C| log r|τ log(1 + |z|) + |z|
∫ r

0
NF,w(t)dt

⩽ C| log r|τ log(1 + |z|) + |z|
∫ r

0
| log t|τ dt,

where the constant C may change from one line to another. Here, we used Fubini’s
theorem to get∑

n⩾NF,w(r)
|λn| =

∑
n⩾NF,w(r)

∫ r

0
1[0,|λn|](t)dt =

∫ r

0

∑
n⩾NF,w(r)

1[0,|λn|](t)dt

⩽
∫ r

0

∑
n⩾0

1[0,|λn|](t)dt =
∫ r

0
NF,w(t)dt.

Noticing that ∫ r

0
| log t|τ dt =

∫ +∞

| log r|
e−xxτ dx ∼

r→0
r| log r|τ

and taking r = |z|−1, we find that for large z ∈ C we have
log |dF,w(z)| ⩽ C log(1 + |z|)1+τ ,

for some new constant C. It follows that the order of growth of the function z 7→
dF,w(ez) is of order at most τ + 1 < d+ 1. □

The following technical lemma will be fundamental in order to understand how
the asymptotic of the number of resonances varies along a real-analytic curve in
Anosω(M) × Cω(M)

Lemma 4.9. — Let I be an interval in R and c : I → Anosω(M) × Cω(M) be
a real-analytic curve. There is a complex neighbourhood I of I and a holomorphic
function D : I × C → C such that the following holds:

(i) for every t ∈ I and every z ∈ C, we have D(t, z) = dc(t)(ez);
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(ii) for every t ∈ I, the order of growth of the entire function z 7→ D(t, z) is less
than d+ 1.

Proof. — Let us write c(t) = (Ft, wt) for t ∈ I. Thanks to the unique continuation
principle, we only need to construct D locally in t. Let t0 ∈ I. From the real-
analytic implicit function theorem, we know that there is a real-analytic function
(t, x) 7→ Xt(x), from a neighbourhood of {t0} ×M in R ×M to TM , such that for
every t ∈ I near t0 and x ∈ M , we have Xt(Ft0(x)) ∈ TFt0 (x)M and

expFt0 (x) (Xt(Ft0(x))) = Ft(x).
Notice that when t is fixed, Xt defines a real-analytic vector field on M . Using that
the map (t, x) 7→ Xt(x) has a holomorphic extension to a complex neighbourhood of
{t0} ×M , we find that there is ϵ ∈ (0, ϵ0) such that t 7→ Xt is a real-analytic curve
taking values in the Banach space Vϵ. Similarly, up to making ϵ smaller, we find that
t 7→ wt is a real-analytic curve from I to Oϵ.

Apply then Theorem 3.1, for that value of ϵ and with F = Ft0 , to get δ > 0 and
H satisfying the conclusion of the theorem. Since Xt0 = 0, we find that for t in
a complex neighbourhood U of t0, we have Xt ∈ Bϵ,δ and Ft = ΨXt ◦ Ft0 . Up to
making U smaller, we can assume that the map t 7→ wt, originally defined from I
to Oϵ, extends holomorphically as a map from U to Oϵ. Using the notation from
Theorem 3.1, we define for t ∈ U and z ∈ C:

D(t, z) = det
(
I − ezL̃ΨXt ◦Ft0 ,wt

)
.

If t is real, it follows from Proposition 4.3, that D(t, z) = dFt,wt(ez). It follows
from (iii) in Theorem 3.1 that D is holomorphic. Finally, we get from point (ii) in
Theorem 3.1 and Lemma 2.9 that for every t ∈ U the order of growth of the entire
function z 7→ D(t, z) is less than d+ 1. □

Before understanding how the number of resonances varies on Q, we start by
studying the particular case of a real-analytic curve. This is where potential theoretic
tools are used.

Lemma 4.10. — Let I be an interval in R and c : I → Anosω(M) ×Cω(M) be a
real-analytic curve. Assume that there is a t ∈ I such that

(4.3) lim sup
r→0

logNc(t)(r)
log | log r| = d.

Then the set of t ∈ I such that (4.3) does not hold has Hausdorff dimension zero.

Proof. — Let D be the holomorphic function from Lemma 4.9. We may assume
that I is connected. We follow then the lines of the argument in [BN19, p. 309].
For t ∈ I, we let ρ(t) denotes the order of growth of the entire function z 7→
D(t, z). Let U be a connected, relatively compact subset of I that contains I. Then,
according to [LG86, Proposition 1.40] applied to the plurisubharmonic function
(t, z) 7→ max(1, log |D(t, z)|), there is a sequence (ψn)n∈N of subharmonic functions
bounded above on U such that for every t ∈ U we have

lim sup
k→+∞

ψk(t) = 1
d+ 1 − 1

ρ(t) ⩽ 0.

ANNALES HENRI LEBESGUE



Distribution of Ruelle resonances 705

By assumption and Lemma 4.8, there is a t ∈ I such that ρ(t) = d+ 1 and for such
a t,

lim sup
k→+∞

ψk(t) = 0.

Hence, according to [LG86, Proposition 1.39], the set of t ∈ U such that ρ(t) < d+1 is
polar. It is also a Borel set (since ρ is measurable), and thus has Hausdorff dimension 0
(see for instance [HK76, Theorems 5.10 and 5.13]), and so does the intersection with I.
However, according to Lemma 4.8, a point t ∈ I is such that (4.3) holds if and only
if ρ(t) = d+ 1. □

With Lemma 4.10, we have all the tools to prove Theorem 1.5.
Proof of Theorem 4.5. — Let us write C for the set of x ∈ Q such that

lim sup
r→0

logNx(r)
log | log r| = d.

We let B be the set of x ∈ Q such that there is a sequence (xn)n∈N of elements of C
that converges to x in the real-analytic topology. We want to prove that B = Q.

Let x ∈ Q be in the adherence of C for the C1 topology. By assumption, there is
a neighbourhood U of x ∈ Q such that for every y, z ∈ U there is a real-analytic
curve in Q that joins y and z. Since x is in the adherence of C, there is an element
y ∈ C ∩ U . Now, if z ∈ U , there is a real-analytic curve that joins y and z and it
follows from Lemma 4.10 that z actually belongs to B. Thus, the neighbourhood U
of x is included in B, and thus in the adherence of C.

It follows that the adherence of C is open. Since C is not empty and Q is connected,
we get that Q is the adherence of C. Moreover, we showed that the adherence of C
coincides with B, so that B = Q. □

4.3. Proof of Theorem 1.9

In this section, we specify to the case M = T2, and deduce Theorem 1.9 from
Theorem 1.5. We will rely on the examples given in [SBJ22]. For certain Anosov
diffeomorphisms F of T2, the authors of [SBJ22] construct a space Hν on which
LF,1 (denoted there by CF ) is trace class and has an explicit spectrum. They men-
tion [SBJ22, Remark 1.4] that the Fredholm determinant of LF,1 acting on Hν

coincides with its dynamical determinant defined by (1.2). From Theorem 1.2, it
follows that the spectrum of LF,1 on Hν coincides with its Ruelle spectrum. This
fact will be crucial in the proof of Theorem 1.9, and since its proof is not detailed
in [SBJ22], we explain here why it holds.

Lemma 4.11. — If F is one of the Cω Anosov diffeomorphisms of T2 given
in [SBJ22, Theorem 1.3(i)] then, the spectrum of LF,1 on the space Hν from [SBJ22,
Theorem 1.3] is the Ruelle spectrum of LF,1.

Proof. — Using the notation from [SBJ22], we recall that (en)n∈Z2 denotes the
family of trigonometric monomials on T2. Then, for every n ∈ Z2, the function
en belongs to Hν . We let qn denote en/ ∥en∥Hν

. Then, (qn)n∈Z2 is an orthonormal
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basis of Hν (see the remark after Definition 2.2 in [SBJ22]). Moreover, it is proven
in [SBJ22] that LF,1 is trace class on Hν .

Hence, for every k ∈ N∗ we have

tr
(
Lk

F,1

)
=
∑

n∈Z2

⟨Lk
F,1qn, qn⟩Hν .

The trace here is the trace of Lk
F,1 as an operator on Hν . Moreover, it follows

from [SBJ22, Remark 4.7] that for k ∈ N∗ and n ∈ Z2〈
Lk

F,1qn, qn

〉
Hν

=
〈
Lk

F,1en, en

〉
L2

=
∫
T2
e2iπn·(F k(x)−x)dx.

For k ∈ N∗, let gk be the map from T2 to itself defined by gk(x) = F k(x) − x.
The map F is of the form given by [SBJ22, (19)]. Let k ∈ N∗. From the com-

putation of DF k that is made in [SBJ22, Proposition 5.5], we find that, for every
x ∈ T2, the number 1 is not an eigenvalue of DxF

k (where we identify DxF with an
endomorphism of R2 using the usual parallelization of T2). Indeed, DxF

k is, up to
sign, a product of matrices of the form[

a 1
1 0

]

with a > 0. Consequently, (DxF
k)4 is of the form I + A, where A is a matrix with

positive coefficients. It follows from Perron–Frobenius theorem that (DxF )4 has an
eigenvector with positive coefficients, and it must consequently corresponds to an
eigenvalue greater than 1. Since the determinant of (DxF )4 is 1, its other eigenvalue
is in (0, 1). It implies that 1 is not an eigenvalue of (DxF )4.

Consequently, for k ∈ N∗, the map gk is a local diffeomorphism, and thus by
changing variable we find that for n ∈ Z2 we have〈

Lk
F,1en, en

〉
L2

=
∫
T2
e2iπn·x ∑

F ky−y=x

1
|det (I −DyF k)|dx.

We recognize here a Fourier coefficient of a smooth function and it follows from the
Fourier inversion formula that

tr
(
Lk

F,1

)
=
∑

n∈Z2

〈
Lk

F,1en, en

〉
L2

=
∑

x∈T2

F kx=x

1
|det (I −DxF k)| .

Consequently, the Fredholm determinant of LF,1 acting on Hν coincides with the
dynamical determinant (1.2), and it follows from Theorem 1.2 that the spectrum of
LF,1 on Hν is its Ruelle spectrum. □

Now that this precision has been made, we can write the proof of Theorem 1.9.
Proof of Theorem 1.9. — Let F be a real-analytic diffeomorphism of the torus

and let W denote the connected component of W in Anosω(T2). According to Theo-
rem 1.5, we only need to prove that W contains an element G such that

(4.4) lim sup
r→0

logNG,1(r)
log |log r| = d.
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Using the standard identification of the fundamental group of T2 with Z2, we let
A ∈ SL(2,Z) be the matrix giving the action of F on the fundamental group
of Z2. By a result of Manning [Man74], the matrix A is hyperbolic (it has no
eigenvalues of modulus 1). According to [SBJ22, Theorem 1.3(i)], there is a Cω

Anosov diffeomorphism G on M whose action on the fundamental group is given by
A and such that (4.4) holds. Here, we use Lemma 4.11 to identify the eigenvalues
from [SBJ22] with the Ruelle resonances.

It follows from results of Franks and Manning [Fra69, Man74], that F and G are
topologically conjugate to the action of A on T2 via a homeomorphism homotopic
to the identity. Then, [FG14, Theorem 1] implies that G belongs to W . This refer-
ence only gives a path of C∞ diffeomorphisms joining F and G. However, one can
then deduce the existence of a path of Cω diffeomorphisms joining F and G by a
mollification argument. □

Appendix A. Kernel estimates

In this appendix, we gather several technical estimates that are used at different
places of the paper.

Proof of Proposition 2.3. — The proof is based on an application of the holomor-
phic non-stationary phase method. However, there is a subtlety in the proof that
forbids to apply directly the versions of this argument in the literature we are aware
of.

Let KT denotes the kernel of the FBI transform T on Td, and let a and ΦT be the
associated symbol and phase, from (2.5). By definition if (x, ξ) ∈ T ∗Td and k ∈ Zd

then

(A.1) T ek(x, ξ) =
∫
Td
KT (x, ξ, y)e2iπk·ydy.

The estimate (2.9) then follows by using a straightforward L∞ bound on KT .
Let now c > 0 and assume that |ξ − 2πk| > c⟨ξ⟩. Choose some small number s > 0.

Since the integrand in (A.1) is holomorphic, we may shift contour and replace the
integral on Td by an integral over Td + is 2πk−ξ

|2πk−ξ| . After a change of variable, it yields

(A.2) T ek(x, ξ) =
∫
Td
KT

(
x, ξ, y + is

2πk − ξ

|2πk − ξ|

)
e2iπk·ye−s2πk· 2πk−ξ

|2πk−ξ| dy.

The result will follow by bounding pointwise the integrand in this new integral. Let
r > 0 be small. If the distance between y and x is larger than r, and s is small
enough (depending on r), it follows from (2.4) that we have∣∣∣∣∣KT

(
x, ξ, y + is

2πk − ξ

|2πk − ξ|

)∣∣∣∣∣ ⩽ C exp
(

−⟨ξ⟩
C

)
,
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where the constant C > 0 depends on r. Consequently, the integrand in (A.2) is less
than

C exp
(

−⟨ξ⟩
C

− s2πk 2πk − ξ

|2πk − ξ|

)
⩽ C exp

(
−⟨ξ⟩
C

− s |2πk − ξ| − sξ · 2πk − ξ

|2πk − ξ|

)

⩽ C exp
(

−⟨ξ⟩
C

− 2πs c

c+ 1 |k| + s |ξ|
)

⩽ C exp
(

−⟨ξ⟩
2C − 2πs c

c+ 1 |k|
)
,

where in the last line we assumed that s < 1
2C

. Let us now consider the case of y and
x at distance less than r. We want to get a similar bound on the integrand in (A.2).
To do so, we only need to bound

(A.3) eiΦT (x,ξ,y+is 2πk−ξ
|2πk−ξ|)a

(
x, ξ, y + is

2πk − ξ

|2πk − ξ|

)
e2iπk·ye−s2πk· 2πk−ξ

|2πk−ξ| .

Indeed, the error term in (2.5) may be dealt with as in the previous case (x away
from y). Let us estimate the phase in (A.3) using Taylor’s formula

ΦT

(
x, ξ, y + is

2πk − ξ

|2πk − ξ|

)

= ΦT (x, ξ, y) + isdyΦT (x, ξ, y) · 2πk − ξ

|2πk − ξ|
+ O

(
s2⟨ξ⟩

)
= ΦT (x, ξ, y) + isdyΦT (x, ξ, x) · 2πk − ξ

|2πk − ξ|
+ O (s(s+ r)⟨ξ⟩) .

Here, we used Cauchy’s formula and (2.6) to bound the second derivative of ΦT .
Consequently, we have for some C > 0:

Im ΦT

(
x, ξ, y + is

2πk − ξ

|2πk − ξ|

)
⩾ −sξ · 2πk − ξ

|2πk − ξ|
− Cs(s+ r)⟨ξ⟩.

It follows that (A.3) is less than

C⟨ξ⟩
d
4 exp (−s |2πk − ξ| + Cs(s+ r)⟨ξ⟩)

⩽ C⟨ξ⟩
d
4 exp

(
− cs

c+ 1 max(|k| , |ξ|) + Cs(s+ r)⟨ξ⟩
)
.

The result then follows by taking s and r small enough. □

Remark A.1. — The following proof establishes estimates on kernel of operators
of the form TLS where T and S are a real-analytic FBI transform on M and its
adjoint, as defined in § 2.4, and L is an operator that maps real-analytic functions
on M to smooth functions (we could deal with more general operators, but this is
the only case that will appear here). Let us detail what we mean by this.

Pick ϵ1 > 0 small enough so that for every α ∈ T ∗M the function x 7→ KS(x, α) is
in Oϵ1 , where KS is the kernel of S. Assume that L is a bounded operator from Oϵ1

to C∞(M), for α, β ∈ T ∗M , we define formally the kernel TLS(α, β) of TLS as
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TLS(α, β) =
∫

M
KT (α, y)L(KS(·, β))(y)dy.

We use here the common practice to identify an operator with its kernel.
Such a kernel is interesting for the following reason. If ϵ ∈ (0, ϵ0) and ϵ1 is small

enough, then one may use Proposition 2.1 and [GBJ20, Lemma 2.5] to find that,
for every u ∈ Oϵ and α ∈ T ∗M , the function on M × T ∗M given by (y, β) 7→
KT (α, y)L(KS(·, β))(y)Tu(β) is integrable on M×T ∗M . It follows then from Fubini’s
theorem that
(A.4) TLu(α) =

∫
T ∗M

TLS(α, β)Tu(β)dβ.

In particular, the integrand is integrable (one can even check that it decays expo-
nentially fast). We will use such formulae to get estimates on TLu from estimates
on Tu and on the kernel of TLS.

In Proposition 2.4, we have L = LΨX◦F,w. When X is tangent to M , this is just the
composition of a multiplication and a composition operator, but this is in general
more complicated as ΨX may not leave M invariant. In Lemma A.2 below, we study
what happens when L is the composition of a multiplication and a composition
operator, but we allow there to multiply by a function which is only C∞ (rather
than analytic) at some places.

Proof of Proposition 2.4. — Let us write the kernel of TLΨX◦F,wS as

(A.5) TLΨX◦F,wS(α, β) =
∫

M
KT (α, y)w(y)KS(ΨX ◦ F (y), β)dy

for α, β ∈ T ∗M . We start by proving (2.10). By direct inspection of the kernel KS

of S, we see that there is ϵ′ > 0 such that for every y ∈ (M)ϵ′ and β ∈ T ∗M we have

|KS(y, β)| ⩽ C exp
(
c⟨β⟩

2

)
.

By taking δ > 0 small enough, we may ensure that for every X ∈ Bϵ,δ the map ΨX

sends M into (M)ϵ′ . Using a crude estimate to bound the kernel of T , we find that

|TLΨX◦F,wS(α, β)|

⩽ C ∥w∥L∞ ⟨α⟩
d
4 exp

(
c⟨β⟩

2

)
⩽ C ∥w∥Oϵ

exp (c(⟨α⟩ + ⟨β⟩)) .

Let us now prove (2.11). We assume that the distance between (α, β) and G is
larger than c. Let s > 0 be very small and assume first that the distance between
αx and F−1βx is larger than s/2. Let us split the integral in (A.5) as

(A.6) TLΨX◦F,wS(α, β)

=
(∫

D(αx,s/100)
+
∫

D(F −1βx,s/100)
+
∫

M\(D(αx,s/100)∪D(F −1βx,s/100))

)
KT (α, y)w(y)KS(ΨX ◦ F (y), β)dy,

where D(x, r) denotes the ball of center x and radius r. From the second point (2.4)
in the definition of a real-analytic FBI transform, we see that if X ∈ Bϵ,δ with δ
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small enough, then the third integral in (A.6) decays exponentially fast with α and
β (because if F (y) is away from βx and δ is small enough then ΨX ◦ F (y) will also
be away from βx, and it will also be close to M).

Let us now deal with the second integral in (A.6) (the first one is dealt with
similarly taking F to be the identity and X to be zero). From the definition of a
real-analytic FBI transform, we see that for y on a small complex neighbourhood of
D(F−1βx, s/100), the kernel KT (α, y) is an O (exp (−⟨|α|⟩/C)) and KS(ΨX ◦F (y), β)
is given by eiΦS(ΨX◦F (y),β)b(ΨX ◦ F (y), β) up to a O (exp (−⟨|β|⟩/C)). Here, the
phase ΦS is given by ΦS(y, β) = −ΦT (β̄, ȳ) and the symbol b(y, β) is given by
b(y, β) = a(β̄, ȳ). Hence, up to a negligible term, the second integral in (A.6) is given
by

(A.7)
∫

D(F −1βx,s/100)
eiΦS(F (y),β)hα,β(y)dy,

where

hα,β(y) := w(y)b(ΨX ◦ F (y), β)KT (α, y)ei(ΦS(ΨX◦F (y),β)−ΦS(F (y),β)).

Notice that the function hα,β has a holomorphic extension to a small complex neigh-
bourhood of D(βx, s/100), and that this extension is bounded by

C ∥w∥Oϵ
exp (−γ⟨α⟩ + γ⟨β⟩) ,

where the constant γ > 0 can be made arbitrarily small by taking δ small enough.
Notice also that the phase in (A.7) is non-stationary when βξ is large:

dy (ΦS(F (y), β))|y=F −1βx
= tDF −1βx

F · βξ.

Consequently, if s is small enough, then the norm of dy (ΦS(F (y), β)) will be larger
than C−1⟨β⟩ for every y ∈ D(F−1βx, s/100). We can then use the holomorphic
non-stationary phase [GBJ20, Proposition 1.1] method with phase ΦS(F (y), β)/⟨β⟩
and large parameter ⟨β⟩ (notice that the phase is positive on the boundary of
D(F−1βx, s/100) as a consequence of (2.7)) to get that (A.7) is bounded by

C ∥w∥Oϵ
exp (−γ⟨α⟩ + γ⟨β⟩ − τ⟨β⟩) ,

for some τ that does not depend on γ. Taking δ > 0 small enough, we get γ < τ ,
and we find that the second integral in (A.6) is exponentially small in ⟨α⟩ and ⟨β⟩.

Let us now deal with the case of α and β such that the distance between αx and
F−1βx is less than s. We can consequently work in coordinates, and in these coordi-
nates the distance between αξ and tDF −1βx

F · βξ is much larger than s (⟨α⟩ + ⟨β⟩)
when s is much smaller than c. As above, we can write the integral (A.5), up to a
negligible term, as ∫

D(αx,100s)
ei(ΦT (α,y)+ΦS(F (y),β))hα,β(y)dy

where
hα,β(y) = a(α, y)w(y)b(ΨX ◦ F (y), β)ei(ΦS(ΨX◦F (y),β)−ΦS(F (y),β).
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As above, we see that hα,β as a holomorphic extension to a complex neighbourhood
of D(αx, s/100), and that this extension is bounded by

C⟨α⟩
d
4 ∥w∥Oϵ

exp (γ⟨β⟩) ,
where γ > 0 can be made arbitrarily small by taking δ > 0 small enough. Provided
s is small enough, the phase y 7→ ΦT (α, y) + ΦS(F (y), β) is non-stationary on
D(αx, 100s) as

dy (ΦT (α, y) + ΦS(F (y), β)) = −αξ + tDF −1βx
F · βξ + O (s (⟨α⟩ + ⟨β⟩)) ,

and the distance between αξ and tDF −1βx
F · βξ is much larger than s (⟨α⟩ + ⟨β⟩).

The result then follows from the holomorphic non-stationary phase method using a
rescaling argument as in the previous case. □

We state now a result that allows to deal both with change of variables and
multiplication by C∞ (a priori not analytic) functions when working with FBI
transforms.

Lemma A.2. — Let M1 and M2 be closed real-analytic manifolds endowed with
real-analytic FBI transform T1, T2 with adjoint S1, S2. Let U1, U2 be open subsets
respectively of M1 and M2 and κ : U1 → U2 be a real-analytic diffeomorphism. Let
θ be a C∞ function on M1 supported in U1. Let W be a closed subset of M1 such
that θ is real-analytic on a neighbourhood of W . Then, for every c,N > 0, there
is a constant C > 0 such that for every α ∈ T ∗M1 and β ∈ T ∗M2 such that the
Kohn–Nirenberg distance between tDκ−1α and β is more than c then the kernel of
T1θκ

∗S2 satisfies
• if αx ∈ W and βx ∈ κ(W ) then

|T1θκ
∗S2(α, β)| ⩽ C exp

(
−⟨α⟩ + ⟨β⟩

C

)
;

• if αx ∈ W then

|T1θκ
∗S2(α, β)| ⩽ C exp

(
−⟨α⟩
C

)
⟨β⟩−N ;

• if βx ∈ κ(W ) then

|T1θκ
∗S2(α, β)| ⩽ C⟨α⟩−N exp

(
−⟨β⟩
C

)
;

• in general
|T1θκ

∗S2(α, β)| ⩽ C (⟨α⟩ + ⟨β⟩)−N .

Remark A.3. — The kernel of the operator T1θκ
∗S2 in Lemma A.2 does not fit

exactly in the framework from Remark A.1 as T1 and S2 are associated to different
manifolds. However, the kernel is defined similarly as

T1θκ
∗S2(α, β) =

∫
M1
KT1(α, y)θ(y)KS2(κ(y), β)dy,

for α ∈ T ∗M1 and β ∈ T ∗M2. One can adapt (A.4) similarly.
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Proof of Lemma A.2. — In the first case, one may write

T1θκ
∗S2(α, β) =

∫
M1
KT1(α, y)θ(y)KS2(κy, β)dy

=
∫

V
KT1(α, y)θ(y)KS2(κy, β)dy

+
∫

M1\V
KT1(α, y)θ(y)KS2(κy, β)dy,

where V is a neighbourhood of W on which θ is analytic. The integral on V may
be dealt as in the proof of Proposition 2.4 (this is actually slightly simpler since
there is no ΨX involved). The second integral is negligible since both kernels are
exponentially small on M1 \ V when αx and βx are in W .

Let us now consider the second case. We only need to deal with the case in which
the distance between κ−1βx and W (and thus αx) is more than some small constant
s > 0 (since otherwise the first case would apply). As in the proof of Proposition 2.4,
we split the integral defining the kernel of T1θκ

∗S2 into three:

(A.8) T1θκ
∗S2(α, β) =

(∫
D(αx,s/100)

+
∫

D(κ−1βx,s/100)
+
∫

M\(D(αx,s/100)∪D(κ−1βx,s/100))

)
KT1(α, y)θ(y)KS2(κ(y), β)dy.

The first and the last integrals may be dealt with as in the proof of Proposition 2.4,
and thus they are actually exponentially decaying with α and β. In the last integrals,
both kernels KT1 and KS2 are exponentially small, and in the first integral the inte-
grand is analytic, so that it can be dealt with using the holomorphic non-stationary
phase method as for the first and second integral in (A.6) in the proof of Proposi-
tion 2.4. Up to an exponentially decaying term, the second integral in (A.8) is given
by

(A.9)
∫

D(κ−1βx,s/100)
eiΦS2 (κ(y),β) b2(κ(y), β)θ(y)KT1(α, y)︸ ︷︷ ︸

=hα,β(y)

dy.

Here the indices 1 and 2 are used to denote objects associated respectively to the
manifolds M1 and M2. Since the imaginary part of ΦS2(κ(y), β) is positive when y
is away from κ−1βx, we may multiply hα,β by a C∞ bump function and assume that
hα,β is compactly supported in the interior of D(κ−1βx, s/100). Using that KT1 is
negligible away from the diagonal, we see that there are constants γ, L > 0 such
that, for every k ∈ N, there is a constant C > 0 such that the Ck norm of hα,β is
less than

C⟨β⟩L exp (−γ⟨α⟩) .
As in the proof of Proposition 2.4, when β is large the phase y 7→ ΦS2(κ(y), β) is non-
stationary, and we can consequently use the C∞ non-stationary phase method [Hör03,
Theorem 7.7.1] to find, using the Ck bound on hα,β, that the integral (A.9) is a
O
(
⟨β⟩−N exp (−γ⟨α⟩)

)
for every N > 0.

The third case is similar to the second, with the roles of α and β swapped.
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The fourth case follows the lines of the proof of Proposition 2.4 in the case X = 0,
with the application of the holomorphic non-stationary phase method replaced by
an application of the C∞ non-stationary phase method [Hör03, Theorem 7.7.1]. □

Remark A.4. — Taking M1 = M2 = M,κ the identity and θ identically equal to
1 in Lemma A.2, we retrieve a consequence of [GBJ20, Lemma 2.9]: the kernel of
the operator TS is exponentially small away from the diagonal (we are always in
the first case in Lemma A.2).

Remark A.5. — In the proof of Proposition 3.6 below, we are going to make
extensive use of the following fact: if K is a measurable function on T ∗M × T ∗M
such that

(A.10) K(α, β) = O
(

exp
(

−⟨α⟩ + ⟨β⟩
C

))
for some C > 0, then the function

(A.11) y 7→
∫

T ∗M×T ∗M
KS(y, α)K(α, β)KT (β, y)dαdβ

is real-analytic on M (see for instance [GBJ20, Lemmas 2.5 and 2.6]). Here, KT and
KS are the kernels of T and S from §2.4. In terms of operators, the function (A.11)
is the kernel of the operator SKT , where we identify K with the operator on T ∗M
with kernel K.

In the proof of Proposition 3.6, we are going to combine this observation with
Remark A.1.

Proof of Proposition 3.6. — It follows from Lemmas 3.4 and 3.5 that if u is Cω

then the sum ∑
ω∈Ω
k∈Zd

⟨u, eω
k ⟩L2 ẽ

ω
k

converges in Cω. For ω ∈ Ω and k ∈ Zd, we have, since Aω and Bω are self-adjoint
and κω has Jacobian 1:

⟨u, eω
k ⟩L2 =

〈
Bωθω

(
κ−1

ω

)∗
Aωu, ek

〉
L2
.

For ω ∈ Ω, since Bωθω(κ−1
ω )∗Aωu is Cω (it follows from Propositions 2.1 and 2.2 and

Lemma A.2), we can write it as the sum of its Fourier series

Bωθω

(
κ−1

ω

)∗
Aωu =

∑
k∈Zd

⟨u, eω
k ⟩L2 ek.

Since the operator Ãω(κω)∗θωBω is bounded on Cω (this is also a consequence of
Propositions 2.1 and 2.2 and Lemma A.2), we get

Ãω(κω)∗θωBωBωθω

(
κ−1

ω

)∗
Aωu =

∑
k∈Zd

⟨u, eω
k ⟩L2 ẽ

ω
k .

Since (χω)ω∈Ω is a partition of unity and S(Tu) = u, we have

u =
∑
ω∈Ω
k∈Zd

⟨u, eω
k ⟩L2 ẽ

ω
k +

∑
ω∈Ω

(
Aω − Ãω(κω)∗θωBωBωθω

(
κ−1

ω

)∗
Aω

)
u︸ ︷︷ ︸

=Ku

.
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Thus, we only need to prove that for ω ∈ Ω the operator

(A.12) Aω − Ãω(κω)∗θωBωBωθω

(
κ−1

ω

)∗
Aω

has a real-analytic kernel.
We start by proving that the operator

Ãω(κω)∗θω(I −Bω)Bωθω

(
κ−1

ω

)∗
Aω

= Sχ̃ωT (κω)∗θωS(1 − ρω)T SρωT θω

(
κ−1

ω

)∗
SχωT

(A.13)

has a real-analytic kernel. Recall that θω ≡ 1 on a neighbourhood of the sup-
ports of ρω and χω ◦ κ−1

ω . Consequently, it follows from Lemma A.2 that the kernel
ρωT θω(κ−1

ω )∗Sχω(α, β) of ρωT θω(κ−1
ω )∗Sχω is exponentially small (it satisfies (A.10))

when α is away from tDκ−1
ω β. Similarly, see Remark A.4, the kernel of T S is ex-

ponentially small away from the diagonal of T ∗Td × T ∗Td. Writing the kernel of
T SρωT θω(κ−1

ω )∗Sχω as

T SρωT θω

(
κ−1

ω

)∗
Sχω(α, β) =

∫
T ∗Td

T S(α, γ)ρωT θω

(
κ−1

ω

)∗
Sχω(γ, β)dγ,

we find that T SρωT θω(κ−1
ω )∗Sχω(α, β) is exponentially small when α is away from

tDκ−1
ω β. Since ρω ≡ 1 on a neighbourhood of the support of χω ◦ κ−1

ω , we find that
the kernel of

√
1 − ρωT SρωT θω(κ−1

ω )∗Sχω is exponentially small (it satisfies (A.10)
everywhere). We study now the kernel of χ̃ωT (κω)∗θωS

√
1 − ρω. Since θω ≡ 1 on

a neighbourhood of the support of χ̃ω ◦ κ−1
ω , we can apply the second point in

Lemma A.2 to bound the kernel of χ̃ωT (κω)∗θωS
√

1 − ρω. Using in addition that ρω ≡
1 on a neighbourhood of the support of χ̃ω ◦ κ−1

ω , we find that for every N > 0 there
is a C > 0 such that the kernel χ̃ωT (κω)∗θωS

√
1 − ρω(α, β) of χ̃ωT (κω)∗θωS

√
1 − ρω

is bounded by the quantity C exp(−⟨α⟩/C)⟨β⟩−N . Writing

χ̃ωT (κω)∗θωS(1 − ρω)T SρωT θω

(
κ−1

ω

)∗
Sχω(α, β)

=
∫

T ∗Td
χ̃ωT (κω)∗θωS

√
1 − ρω(α, γ)

√
1 − ρωT SρωT θω

(
κ−1

ω

)∗
Sχω(γ, β)dγ

and using the bound we just proved, we find that the kernel χ̃ωT (κω)∗θωS(1 −
ρω)T SρωT θω(κ−1

ω )∗Sχω(α, β) is exponentially small. It follows then from Remark A.5
that the operator (A.13) is analytic.

We prove now that the operator

(A.14) Ãω(κω)∗θω(I −Bω)θω

(
κ−1

ω

)∗
Aω

= Sχ̃ωT (κω)∗θωS(1 − ρω)T θω

(
κ−1

ω

)∗
SχωT

has a real-analytic kernel. As we proved above that, for every N > 0 there is a C > 0
such that the kernel χ̃ωT (κω)∗θωS

√
1 − ρω(α, β) is bounded by C exp(−⟨α⟩/C)⟨β⟩−N ,

we find that the kernel
√

1 − ρωT θω(κ−1
ω )∗Sχω(α, β) is a O(⟨α⟩−N exp(−⟨β⟩/C)).

Writing
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χ̃ωT (κω)∗θωS(1 − ρω)T θω

(
κ−1

ω

)∗
Sχω(α, β)

=
∫

T ∗Td
χ̃ωT (κω)∗θωS

√
1 − ρω(α, γ)

√
1 − ρωT θω

(
κ−1

ω

)∗
Sχω(γ, β)dγ,

we find that the kernel of χ̃ωT (κω)∗θωS(1 −ρω)T θω(κ−1
ω )∗Sχω is exponentially small.

It follows then from Remark A.5 that (A.14) has a real-analytic kernel.
We keep going and prove that the operator

(A.15) ÃωAω − Ãω(κω)∗θωθω

(
κ−1

ω

)∗
Aω = Sχ̃ωT

(
1 − θ2

ω ◦ κω

)
SχωT

has a real-analytic kernel. To do so, we write for α, β ∈ T ∗M

(A.16) χ̃ωT
(
1 − θ2

ω ◦ κω

)
Sχω

=
∫

M
χ̃ω(αx)χω(βx)

(
1 − θ2

ω(κω(y))
)
KT (α, y)KS(y, β)dy.

Since θω ◦ κω ≡ 1 on a neighbourhood of the supports of χ̃ω and χω, and the kernels
KT (α, y) and KS(y, β) are exponentially small when y is away respectively from αx

and βx, we find that the integral in (A.16) satisfies the estimate (A.10). It follows
then from Remark A.5 that the operator (A.15) has a real-analytic kernel.

Finally, we prove that the operator
(A.17) Aω − ÃωAω = S(1 − χ̃ω)TSχωT

has a real-analytic kernel. Since χ̃ω ≡ 1 on the support of χω, it follows from
Remark A.4 that the kernel of (1−χ̃ω)TSχω is exponentially small (it satisfies (A.10)),
and thus the operator (A.17) has a real-analytic kernel according to Remark A.5.

Summing the operators (A.13), (A.14), (A.15) and (A.17), we retrieve the opera-
tor (A.12), which consequently has a real-analytic kernel. □

Appendix B. Gevrey case

B.1. Main results

Let us explain how the analysis above can be applied in the Gevrey case. Let
σ ⩾ 1. We recall that a C∞ function f from an open subset of Rd to C is σ-Gevrey
if for every compact subset K of U , there are constants C,R > 0 such that for every
α ∈ Nd and x ∈ K, we have

|∂αf(x)| ⩽ CR|α|α!σ.
Notice that 1-Gevrey functions are exactly real-analytic functions. When σ > 1
however, there are σ-Gevrey compactly supported functions.

From now on, we assume that σ > 1. We say that a function valued in Rm is
σ-Gevrey if its components are. With this definition, σ-Gevrey mappings are stable
under composition [Gev18]. We can then define a σ-Gevrey manifold: we just modify
the usual definition of C∞ or Cω manifold by asking for σ-Gevrey (instead of C∞ or
Cω) change of charts in the atlas defining the σ-Gevrey structure. Since there is a
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σ-Gevrey version of the implicit function theorem (see for instance [Kom79]), most
of the basic differential geometry carries to the σ-Gevrey setting. Notice that a Cω

manifold has a natural structure of σ-Gevrey manifold, since real-analytic functions
are σ-Gevrey. Reciprocally, if M is a compact σ-Gevrey manifold, one can endow M
with a structure of Cω manifold that is coherent with its σ-Gevrey structure. We
say that a function on a σ-Gevrey manifold, or a map between σ-Gevrey manifolds,
is σ-Gevrey if it is σ-Gevrey in σ-Gevrey coordinates.

The Gevrey analogue of Theorem 1.4 is then:

Theorem B.1. — Let σ > 1. Let M be a closed σ-Gevrey manifold and F : M →
M be a σ-Gevrey Anosov diffeomorphism. If w : M → C is a σ-Gevrey function,
then there is a constant C > 0 such that for every z ∈ C, we have

|dF,w(z)| ⩽ C exp
(
C (log(1 + |z|))σd+1

)
.

As a corollary, we have

Corollary B.2. — Under the assumption of Theorem B.1, the number NF,w(r)
of Ruelle resonances of LF,w of modulus more than r satisfy the asymptotic bound

NF,w(r) =
r→0

O
(
|log r|σd

)
.

Remark B.3. — Notice that Theorem B.1 and Corollary B.2 are quantitative
improvements over the bounds given in [Jéz20, Theorem 2.12].

Theorem B.1 will follow from a Gevrey analogue of Theorem 3.1 (Theorem B.4
below). To state this result, we will need to define the Gevrey analogue of the spaces
Oϵ. To do so, let σ > 1 and M be a closed σ-Gevrey manifold of dimension d, and
cover M by a finite family (Kλ)λ∈Λ of compact subsets such that for every λ ∈ Λ,
the set Kλ is contained in the domain Oλ of a σ-Gevrey chart ψλ : Oλ → Oλ. If
f : M → C is a C∞ function and ϵ > 0, we define the norm

∥f∥σ,ϵ := sup
λ∈Λ

sup
x∈Kλ

sup
α∈Nd

ϵ|α|
∣∣∣∂α

(
f ◦ ψ−1

λ

)
(ψλx)

∣∣∣
α!σ .

We let then Gσ
ϵ be the space of C∞ functions f on M such that ∥f∥σ,ϵ < ∞. One

easily checks that Gσ
ϵ is a Banach space. As in the real-analytic case the space Oϵ

depends on the choice of a real-analytic metric on M , the space Gσ
ϵ depends on the

particular choice of charts (ψλ)λ∈Λ, but the union ⋃ϵ>0 Gσ
ϵ is the space of σ-Gevrey

functions on M , and thus does not depend on our particular choices.
We can now state the Gevrey analogue of Theorem 3.1.

Theorem B.4. — Let σ > 1. Let M be a closed σ-Gevrey manifold. Let F be
a σ-Gevrey diffeomorphism on M . Let ϵ > 0. There is a separable Hilbert space H
with the following properties:

(i) there are continuous injections with dense images ι and j from Gσ
ϵ respectively

to H and to H∗;
(ii) for every w ∈ Gσ

ϵ , there is a compact operator L̃F,w from H to itself of
exponential class of type 1/(σd);
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(iii) the map w 7→ L̃F,w is a bounded linear operator from Gσ
ϵ to the space of trace

class operators on H;
(iv) for every w ∈ Gσ

ϵ , n ∈ N and u, v ∈ Gσ
ϵ , we have

j(u)
(
L̃n

F,wι(v)
)

=
∫

M
u
(
Ln

F,wv
)

dx.

Proof of Theorem B.1 and Corollary B.2. — Using the point (iv) from Theorem B.4
as in the proof of Proposition 4.3, one gets that

dF,w(z) = det(I − zL̃F,w),

and the results then follow from Lemma 2.9. □

The proof of Theorem B.4 follows roughly the same lines as the proof of The-
orem 3.1, so that we will only outline the main differences. The proof is actually
simpler due to the existence of compactly supported Gevrey functions. For the rest
of this section, let us fix σ > 1, a closed σ-Gevrey manifold M and F be a σ-Gevrey
Anosov diffeomorphism on M .

B.2. Construction of the space

As in the real-analytic case, our construction starts with the choice of an escape
function. In order to take into account our Gevrey parameter, we replace (2.1) by

G(x, ξ) = |ξs|
1
σ − |ξu|

1
σ .

The crucial estimate in that case is that there are constants ϖ > 0 and C such that
if α, β, γ ∈ T ∗M are large enough and such that dKN(α, β) ⩽ ϖ and dKN(Fβ, γ) ⩽
ϖ, then

G(γ) −G(α) ⩽ −C−1 |β|
1
σ .

We follow the exposition from § 3. We let the (Uω)ω∈Ω, (κω)ω∈Ω, (χω)ω∈Ω and (χ̃ω)ω

be as in § 3. The only difference is that we require that the κω’s, the χω’s and
the χ̃ω’s are σ-Gevrey (instead of real-analytic or C∞). In that case, we can give a
simpler definition of the eω

k ’s and the ẽω
k ’s. For ω ∈ Ω and k ∈ Zd, we define

eω
k = χω(κω)∗ek and ẽω

k = χ̃ω(κω)∗ek.

This simpler definition is made possible by the existence of σ-Gevrey bump functions.
It would be possible to state an analogue of Lemma 3.3, but we will not need it.

The analogues of Lemmas 3.4 and 3.5 in this context are:

Lemma B.5. — Let ρ > 0. Then there are C, ϵ > 0 such that for every ω ∈ Ω
and k ∈ Zd we have

∥eω
k ∥σ,ϵ ⩽ Ceρ|k|

1
σ and ∥ẽω

k ∥σ,ϵ ⩽ Ceρ|k|
1
σ .
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Proof. — Let us start by estimating the derivatives of the functions ek’s defined
on the torus Td. If k ∈ Zd and α ∈ Nd, then we have∣∣∣∂α

(
e2iπk·x

)∣∣∣ ϵ|α|

α!σ = (2πϵ)|α|

α!σ |kα|

⩽
(2π |k| ϵ)|α|

α!σ .

Using Stirling’s formula to estimate α!σ, we find constants C and A that does not
depend on k nor α such that∣∣∣∂α

(
e2iπk·x

)∣∣∣ ϵ|α|

α!σ ⩽ C
(A |k| ϵ)|α|

|α|σ|α| .

Then, we notice that for every a > 0 we have

sup
x∈R∗

+

axx−σx = exp
(
σa

1
σ /e

)
,

and thus ∣∣∣∂α
(
e2iπkx

)∣∣∣ ϵ|α|

α!σ ⩽ C exp
σ(A |k| ϵ) 1

σ

e

 .
To end the proof, we only need to notice that such estimates are preserved by
multiplication by a Gevrey function and composition by a Gevrey mapping (up to
making C larger and the ϵ on the right hand side smaller). A proof of this fact may
be found for instance in the original paper of Gevrey [Gev18]. □

Lemma B.6. — Let ϵ > 0. Then there are constants C, ρ > 0 such that for every
ω ∈ Ω, k ∈ Zd and u ∈ Gσ

ϵ we have

|⟨u, eω
k ⟩L2| ⩽ C ∥u∥σ,ϵ e

−ρ|k|
1
σ and |⟨u, ẽω

k ⟩L2| ⩽ C ∥u∥σ,ϵ e
−ρ|k|

1
σ .

Proof. — We will deal only with the case of eω
k ’s. The ẽω

k are dealt with similarly.
Let us change variable and write

⟨u, eω
k ⟩L2 =

∫
Td
e−2iπk·xv(x)dx,

where v = (χωu) ◦ κ−1
ω is a σ-Gevrey function. Integrating by parts, we find that for

every L ∈ N, we have

⟨u, eω
k ⟩L2 =

∫
Td

(I − ∆)L
(
e−2iπk·x

)
(1 + 4π2|k|2)L v(x)dx

=
∫
Td
e−2iπk·x (I − ∆)Lv(x)

(1 + 4π2|k|2)L dx,
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where ∆ denotes the standard (non-positive) Laplace operator on Td. It follows that,
for some constants C,R > 0 (that depend on ϵ), we have

|⟨u, eω
k ⟩L2| ⩽ 1

(1 + 4π2|k|2)L sup
Td

∣∣∣(I − ∆)Lv
∣∣∣

⩽ C ∥u∥σ,ϵ

(
R

1 + 4π2|k|2

)L

L2σL.

Taking L to be approximately (1+4π2|k|2
R

) 1
2σ /e, we get the announced result. □

The analogue of Proposition 3.6 is just the following direct consequence of Fourier
inversion formula.

Proposition B.7. — If u is a smooth function on M then

u =
∑
ω∈Ω

∑
k∈Zd

⟨u, eω
k ⟩L2 ẽ

ω
k .

We define the Gω’s and the norms ∥·∥γ ’s by the same formulae as in § 3 (using our
new escape function). Using Lemma B.6, we immediately get the following analogue
of Lemma 3.7.

Lemma B.8. — Let ϵ > 0. There are constants C, γ0 > 0 such that for every
0 < γ ⩽ γ0 and every u ∈ Gσ

ϵ we have ∥u∥γ ⩽ C ∥u∥σ,ϵ.

For γ and ϵ as in Lemma B.8, we let Hγ,ϵ denotes the completion of Gσ
ϵ for the

norm Hγ,ϵ, and we let ι : Gσ
ϵ → Hγ,ϵ be the inclusion. The analogue of Lemma 3.8 is

the following consequence of Lemma B.6.

Lemma B.9. — Let ϵ > 0. Then there are C, γ0 > 0 such that for every 0 < γ ⩽ γ0
if v ∈ Gs

ϵ then the linear form
u 7→ ⟨u, v⟩L2

extends to a continuous linear form lv on Hγ,ϵ. Moreover, the map j : v 7→ lv̄ is
C-linear and continuous from Gσ

ϵ to the dual of Hγ,ϵ.

We also have an analogue of Lemma 3.11: for ϵ > 0 and γ > 0, the norm of Hγ,ϵ

is given by the expression (3.10), and as a consequence the Hilbert space Hγ,ϵ is
separable, and the map j has dense image.

With Γ = Ω × Zd, we define the relation ↪→ as in § 3, and we notice that there is
a constant C > 0 such that if (ω, k) ↪→ (ω′, k′) and k is large enough then

Gω(k) ⩽ Gω′(k′) − C |k|
1
σ .

The main point to prove Theorem B.4 is to get an analogue of Lemma 3.13.

Lemma B.10. — Let ϵ > 0. There are C, τ > 0 such that, if w ∈ Gs
ϵ , for every

(ω, k), (ω′, k′) ∈ Γ such that (ω, k) ̸↪→ (ω′, k′) we have∣∣∣〈LF,wẽ
ω
k , e

ω′

k′

〉
L2

∣∣∣ ⩽ C ∥w∥σ,ϵ e
−τ max(|k|,|k′|)

1
σ
.
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Proof. — Changing variables, we may write

(B.1)
〈
LF,wẽ

ω
k , e

ω′

k′

〉
L2

=
∫
Td
eiΦω′,k′

ω,k
(x)hω,ω′(x)dx,

where
hω,ω′(x) = w

(
κ−1

ω′ (x)
)
χ̃ω

(
F
(
κ−1

ω′ x
))
χω

(
κ−1

ω′ x
)

and
Φω′,k′

ω,k (x) = 2πk · κω ◦ F ◦ κ−1
ω′ (x) − 2πk′ · x.

Notice that the function hω,ω′ is σ-Gevrey, with Gevrey norm controlled by ∥w∥σ,ϵ.
Consequently, hω,ω′ has a σ-Gevrey pseudo-analytic extension h̃ω,ω′ . This is a smooth
function on the complex neighbourhood Cd/Zd of Td that coincides with hω,ω′ on
Td and such that ∂̄h̃ω,ω′ vanishes at infinite order on Td. Moreover, since hω,ω′ is
σ-Gevrey, we may choose h̃ω,ω′ as a σ-Gevrey function, with Gevrey norm controlled
by ∥w∥σ,ϵ. It implies in particular that the moduli of the components of ∂̄h̃ω,ω′ at a
point z ∈ Cd/Zd are less than

(B.2) C ∥w∥σ,ϵ exp
(
−C−1 |Im z|−

1
σ−1
)
,

where the constant C may depend on σ and ϵ but not on w. Moreover, the sup norm
of h̃ω,ω′ is also controlled by ∥w∥σ,ϵ. We can also assume that the support of h̃ω,ω′ is
contained in a small neighbourhood of the support of hω,ω′ . Similarly, construct a
σ-Gevrey pseudo-analytic extension Φ̃ω′,k′

ω,k by choosing a σ-Gevrey pseudo-analytic
extension for κω ◦F ◦κ−1

ω′ near the support of hω,ω′ . One may refer to [GBJ20, §1.1.1.3]
for the details of this construction.

Let us now study the phase Φω′,k′

ω,k . For x ∈ Td, the gradient of this phase is given
by the formula

∇Φω′,k′

ω,k (x)

= 2πtDκ−1
ω′ (x)

(
tDF

(
κ−1

ω′ x
)

· tDκω

(
F
(
κ−1

ω′ x
))

· k − tDκω′

(
κ−1

ω′ x
)

· k′
)
.

This quantity is tDκ−1
ω′ (x) applied to the difference of a point of a point in Wω′,k′

and a point in F(Wω,k). Since these two points are in the same fiber of T ∗M , it
follows from our hypothesis (ω, k) ̸↪→ (ω′, k′) that

(B.3)
∣∣∣∇Φω′,k′

ω,k

∣∣∣ ⩾ C−1 max(|k| , |k′|),

for some constant C that does not depend on ω, ω′, k nor k′.
Let then δ = δ(k, k′) = max(|k|, |k′|) 1−σ

σ , and shift contour in (B.1), replacing x
by x+ iδ∇Φω′,k′

ω,k /
∣∣∣∇Φω′,k′

ω,k

∣∣∣. We find that

(B.4)
〈
LF,gẽ

ω′

k′ , eω
k

〉
=
∫
Td
e

iΦ̃ω′,k′
ω,k

(
x+iδ∇Φω′,k′

ω,k

/∣∣∣∇Φω′,k′
ω,k

∣∣∣)
h̃ω,ω′

(
x+ iδ∇Φω′,k′

ω,k

/ ∣∣∣∇Φω′,k′

ω,k

∣∣∣) Jω′,k′

δ,ω,kdx+Rω′,k′

ω,k .

Here, Jω′,k′

δ,ω,k is the Jacobian that appears when parametrizing the new domain of
integration by Td, it is uniformly bounded. The remainder Rω′,k′

ω,k is an integral
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involving ∂̄h̃ω,ω′ and ∂̄Φ̃ω′,k′

ω,k . It follows from Taylor’s formula that the phase that
appears in Rω′,k′

ω,k has a non-negative imaginary part, provided max(|k|, |k′|) is large
enough. Hence, it follows from the bound (B.2) that for some C > 0, we have∣∣∣Rω′,k′

ω,k

∣∣∣ ⩽ C ∥w∥σ,ϵ exp
(
−C−1δ− 1

σ−1
)

= C ∥w∥σ,ϵ exp
(
−C−1 max(|k|, |k′|) 1

σ

)
.

To estimate the integral in (B.4), we start by noticing that, when max(|k|, |k′|) is
large (and thus δ is small), Taylor’s formula and (B.3) give that

Im Φ̃ω′,k′

ω,k

(
x+ iδ∇Φω′,k′

ω,k

/ ∣∣∣∇Φω′,k′

ω,k

∣∣∣) ⩾ −C−1δmax(|k|, |k′|)

= −C−1 max(|k|, |k′|) 1
σ ,

for some constant C > 0. Here, we used the fact that the derivative of Φ̃ω′,k′

ω,k at a
real point is C-linear. This estimate with the bound on Rω′,k′

ω,k and (B.4) gives the
announced result. □

From this estimate, we get immediately the analogue of Lemma 3.15. Notice that,
since we do not consider complex perturbations of F , the analogue of (3.13) is the
straightforward bound |⟨LF,wẽ

ω
k , e

ω′
k′ ⟩| ⩽ ∥w∥∞.

Lemma B.11. — Let ϵ > 0. There are constants C, τ, γ0 > 0 such that if w ∈ Gs
ϵ

and 0 < γ ⩽ γ0 then for every (ω, k) ∈ Γ we have

∥LΨX◦F,wẽ
ω
k ∥γ ⩽ C ∥w∥Oϵ

e−τ |k|
1
σ −γGω(k).

As in § 3, we use this bound to define the operator L̃F,w by the formula

(B.5) L̃F,w =
∑

ω∈Ω,k∈Zd

ι (LF,wẽ
ω
k ) ⊗ leω

k
.

It follows immediately from Lemmas 2.8 and B.11 that L̃F,w is an operator in
the exponential class 1/(dσ). One can then check that these operators fulfill the
conclusions of Theorem B.4 (to prove the point iv, one may follow the lines of the
proof of Lemma 3.17).

B.3. Consequences

As we mentioned, Theorem B.4 implies Theorem B.1 and Corollary B.2. Let us
sketch the proof of another consequence of Theorem B.4. We consider a closed real-
analytic manifold M . Let us consider the space G1+ of functions that are σ-Gevrey
for every σ > 1. Similarly, we say that a map F : M → M is 1+-Gevrey if it is
σ-Gevrey for every σ > 1.

We endow G1+ with a structure of Fréchet space (in particular, this is a Baire
space) by endowing it with the semi-norms ∥·∥σ,ϵ for σ > 1 and ϵ > 0. To do so, we
require that the charts used to define the norm ∥·∥σ,ϵ are real-analytic rather than
Gevrey.

Thanks to this notion, we can state:
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Theorem B.12. — Let M be a closed real-analytic manifold. Let F : M → M
be a 1+-Gevrey Anosov diffeomorphism. Then the set of w ∈ G1+ such that

(B.6) lim sup
r→0

logNF,w(r)
log |log r| = d

is a Gδ dense subset of G1+.

In Theorem B.12, we can consider indifferently G1+ functions valued in R or C.

Proof. — Start by noticing that it follows from Theorem B.1 that for every w ∈ G1+

we have

lim sup
r→0

logNF,w(r)
log |log r| ⩽ d.

Let A denote the set of w ∈ G1+ such that (B.6) holds. It follows from [GL06,
Theorem 2.7] that A is a Gδ in the C∞ topology (and thus in the G1+ topology
which is finer).

It remains to prove that A is dense. We will start by proving that A is non-empty.
Let x0 ∈ M be a periodic point for F . Thanks to the expansiveness of F [KH95,
Corollary 6.4.10], there is an open neighbourhood U of the orbit

{
T kx0 : k ∈ Z

}
such that if y ∈ M is such that the orbit of y for F is contained in U then y is a
point of the orbit of x0. Let then w0 be a G1+ function supported in U and such that
w0(y) = 1 for every y in the orbit of x0.

Now, if n ⩾ 1, we notice that in the sum

∑
F nx=x

∏n−1
k=0 w0

(
F kx

)
|det (I −DxF n)| ,

the only x’s that will have a non-zero contributions are the elements of the orbit of
x0, and this only happens if n is a multiple of the minimal period m of x0. Hence,

∑
F nx=x

∏n−1
k=0 w0

(
F kx

)
|det (I −DxF n)| = 0

if m does not divide n. Now, if n = ℓm for some integer ℓ, we find that

∑
F nx=x

∏n−1
k=0 w0

(
F kx

)
|det (I −DxF n)| =

m−1∑
p=0

1
|det (I −DF px0F

mℓ)| = m

|det (I −Dx0F
mℓ)| .

Let us denote by λ1, . . . , λd the eigenvalues of Dx0F
m. We order them in such a way

that, for some t ∈ {2, . . . , d− 1}, we have |λj| > 1 for j = 1, . . . , t and |λj| < 1 for
j = t+ 1, . . . , d. This way, we have
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1
|det (I −Dx0F

mℓ)| = 1∏t
j=1

(
λℓ

j − 1
)∏d

j=t+1

(
1 − λℓ

j

)
=

t∏
j=1

λ−ℓ
j

1 − λ−ℓ
j

d∏
j=t+1

1
1 − λt

j

=
t∏

j=1

∑
k⩾1

λ−kℓ
j

d∏
j=t+1

∑
k⩾0

λkℓ
j

=
∑
λ∈Z

λℓ,

(B.7)

where Z is the set of complex numbers of the form λ−k1
1 . . . λ−kt

t λ
kt+1
t+1 . . . λ

kd
d , where

k1, . . . , kt are larger than or equal to 1 and kt+1, . . . , kd are larger than or equal to 0.
It is understood that the multiplicity of an element of Z is the number of ways to
write it in the form above.

From (B.7), we get that

dF,w0(z) = exp
−

+∞∑
ℓ=1

zmℓ

ℓ

∑
λ∈Z

λℓ

 =
∏

λ∈Z
(1 − λzm) .

It follows that the resonances of LF,w0 are the mth roots of the elements of Z.
Counting the elements of Z, we find that there is a constant C such that NF,w0(r) ⩾
C−1| log r|d for r small enough, and it follows that w0 ∈ A.

We prove now that A is dense in G1+. Working as in the proof of Lemma 4.8, we
see that if w ∈ G1+ then the order of growth of z 7→ dF,w(ez) is less than d+ 1 with
equality if and only if w ∈ A. For w an element of G1+, let us consider the function
of two complex parameters f(u, z) = dF,(1−u)w0+uw(ez).

For every s > 1, we can find ϵ > 0 such that w0 and w belong to Gs
ϵ . Applying

Theorem B.4 and then working as in the proof of Proposition 4.3, we find that the for
u, z ∈ C we have f(u, z) = det

(
I − ezL̃F,(1−u)w0+uw

)
. In particular, f is holomorphic

in C2, and for every u ∈ C, the order of growth of the function z 7→ f(u, z) is less
than σd+ 1. Since this is true for every σ > 1, the order of growth of this function
is actually less than d+ 1. Moreover, we have equality for u = 0, since w0 ∈ A.

Working as in the proof of Theorem 1.5, we see that the set of u ∈ C such that
(1 − u)w0 + uw does not belong to A is contained in a polar set, in particular it has
Hausdorff dimension zero (and thus its intersection with R has empty interior). As
a consequence, w belongs to the closure of A, and following A is dense in G1+. □
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