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Abstract. — We construct an infinite measure preserving version of Chacon transfor-
mation, and prove that it has a property similar to Minimal Self-Joinings in finite measure: its
Cartesian powers have as few invariant Radon measures as possible.
Résumé. — Nous construisons une version de la transformation de Chacon en mesure

infinie, et prouvons qu’elle satisfait une propriété similaire aux autocouplages minimaux en
mesure finie : ses puissances cartésiennes ont aussi peu de mesures de Radon invariantes que
possible.

1. Introduction
1.1. Motivations

The purpose of this work is to continue the study, started in [JRdlR18] and [Dan18],
of what the Minimal Self-Joinings (MSJ) property could be in the setting of infinite-
measure preserving transformations. We want here to construct an infinite measure
Keywords: Chacon infinite measure preserving transformation, rank-one transformation, joinings.
2010 Mathematics Subject Classification: 37A40, 37A05.
DOI: https://doi.org/10.5802/ahl.21
(*) Research partially supported by French research group GeoSto (CNRS-GDR3477).

https://annales.lebesgue.fr/
https://doi.org/10.5802/ahl.21


370 É. JANVRESSE, E. ROY & T. DE LA RUE

preserving transformation whose Cartesian powers have as few invariant measures as
possible. As in the aforementioned papers, we restrict ourselves to Radon measures
(giving finite mass to compact sets), since in general there are excessively many
infinite invariant measures for a given transformation (think of the sum of Dirac
masses along an orbit).
A first attempt in this direction was to consider the so-called infinite Chacon trans-

formation introduced in [AFS97]. Indeed, the construction of this infinite measure
preserving rank-one transformation is strongly inspired by the classical finite mea-
sure preserving Chacon transformation, which enjoys the MSJ property [dJRS80].
The identification of invariant measures for Cartesian powers of the infinite Chacon
transformation was the object of our previous work [JRdlR18]. In addition to the
products of graph measures arising from powers of the transformation (see the begin-
ning of Section 3.3 for details), we found in the case of infinite Chacon some kind of
unexpected invariant measures, the so-called weird measures. These weird measures
have marginals which are singular with respect to the original invariant measure,
but it is shown in [Dan18, Example 5.4] that an appropriate convex combination of
weird measures can have absolutely continuous marginals.
We propose here another rank-one transformation, which we call the nearly finite

Chacon transformation, hereafter denoted by T . Although it preserves an infinite
measure µ, its construction is designed to mimic as much as possible the behaviour
of the classical Chacon transformation, so that the phenomenon of weird measures
disappears. Our main result, Theorem 3.10, is the following: there exists a µ-conull
set X∞ such that, for each d > 1, the ergodic T×d-invariant Radon measures on
Xd
∞ are the product measure µ⊗d and products of graph measures arising from

powers of T . Corollary 3.11 then identifies all T×d-invariant Radon measures whose
marginals are absolutely continuous with respect to µ as sums of countably many
ergodic components which are of the form given in the theorem.
Beyond the question of the MSJ property in the infinite measure world, the ex-

ample presented in this paper is also of crucial importance in the study of Poisson
suspensions. A Poisson suspension is a finite measure preserving dynamical system
constructed from an infinite measure preserving system: a state of the space is a
realization of a Poisson point process whose intensity is the infinite invariant measure,
and each random point evolves according to the dynamics of the infinite measure
preserving transformation (we refer to [Roy07] for a complete presentation of Pois-
son suspensions). Although of different nature, Poisson suspensions share surprising
properties with another category of finite measure preserving dynamical systems
of probabilistic origin: Gaussian dynamical systems, which are constructed from
finite measures on the circle. A beautiful theory has been developed in [LPT00],
concerning a special class of Gaussian systems called GAGs (a French acronym for
Gaussian systems with Gaussian self-joinings). The keystone for the construction of
a GAG system is a striking theorem due to Foiaş and Strătilă [FS67]: if a measure
supported on a Kronecker subset of the circle appears as the spectral measure of some
ergodic stationary process, then this process is Gaussian. The Poisson counterpart
of GAG, called PaP (Poisson suspension with Poisson self-joinings) is presented
in [JRdlR17], where the construction of a PaP example relies on a theorem à la
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Foiaş-Strătilă (see [JRdlR17, Theorem 3.4]). Roughly speaking, according to this
theorem, if some ergodic point process evolves under a dynamics directed by an
infinite measure preserving transformation with special properties, then this point
process is Poissonian. The special properties needed here are precisely those given
by Corollary 3.11. Therefore, systems enjoying those properties play in the theory
of Poisson suspensions the same role as measures supported on Kronecker subset in
the setting of Gaussian systems.
For some applications in the study of Poisson suspensions developed in [JRdlR17],

we also need an additional property which is the existence of a measurable law of
large numbers. Proposition 8.4 shows that the nearly finite Chacon transformation
satisfies a stronger property called rational ergodicity.

1.2. Roadmap of the paper

Section 2 is devoted to the construction of the nearly finite Chacon transformation,
and to first elementary results. For pedagogical reasons, we start in Section 2.1
by defining the nearly finite Chacon transformation with the cutting-and-stacking
method on R+ equipped with the Lebesgue measure, as it is easier to visualize the
structure of the Rokhlin towers in this setting. Most steps of the construction are
identical to construction of the classical Chacon transformation. There is just a fast
increasing sequence (n`) of integers such that each n`-th step of the construction
differs from classical Chacon, which ensures that the invariant measure has infinite
mass. Then we turn in Section 2.2 to a more convenient (but isomorphic) model for
our purposes, which is a transformation T on a set X of sequences on a countable
alphabet. In Section 2.3, we describe basic properties of a typical point with respect
to the invariant measure µ, and define the conull set X∞ referred to in Theorem 3.10.
Section 3 contains the main results concerning Radon measures on Xd which

are T×d-invariant. Section 3.1 first states some basic facts about Radon measures
on Xd. We give a criterion for such a measure to be T×d-invariant (Lemma 3.2).
We also define a notion of convergence of Radon measures (Definition 3.3), which
is specially adapted to the formulation of Hopf’s ratio ergodic theorem, and give
useful lemmas concerning this convergence. In Section 3.2, we treat the easy case of
totally dissipative measures: Proposition 3.9 eliminates the possibility of a totally
dissipative T×d-invariant Radon measure supported on Xd

∞. In Section 3.3, we state
our main result (Theorem 3.10) and establish the bases of a proof by induction on d.
At the end of Section 3.3, we fix once and for all a T×d-invariant Radon measure
σ supported on Xd

∞, for some d > 2. The remainder of the paper is completely
devoted to proving that either σ is a graph measure arising from powers of T , or
it can be decomposed as a product of two measures on which we can apply the
induction hypothesis. In Section 3.4, we choose once and for all a σ-typical point
x ∈ Xd

∞, on the orbit of which we estimate the properties of σ. We also introduce in
Definition 3.12 the central notion of n-crossings, which are finite subintervals of Z
depending on the position of the orbit of the typical point x with respect to the n-th
Rokhlin tower of the rank-one construction. The analysis of the structure of those
n-crossings constitutes the core of our proof. In Section 3.5, we provide a criterion
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for σ to be a graph measure arising from powers of T , stated in terms of n-crossings
(Proposition 3.17).
Section 4 is devoted to the proof of Proposition 4.1, which is a central result in the

analysis of the structure of n-crossings. Section 4.1 describes a hierarchy of abstract
subsets of Z and provides a lemma on the combinatorics of subsets in this hierarchy
(Lemma 4.2). Then Section 4.2 explains how to apply this lemma to the structure
of n-crossings. Section 4.3 provides a useful corollary of Proposition 4.1 in terms of
the measure σ.
Section 5 is devoted to the study of the convergence of empirical measures, which

are finite sums of Dirac masses on points on the orbit of x, corresponding to finite
subsets of Z. We provide two criteria, Proposition 5.7 and Proposition 5.9, for a
sequence of such empirical measures to converge to σ.
In Section 6 we present the main tool used to decompose σ as a product measure.

We introduce the notion of twisting transformation (Definition 6.1), which is simply
a transformation of Xd acting as T on some coordinates, and as Id on others. Based
on a theorem from [JRdlR18], Proposition 6.2 shows that, if σ is invariant by such a
twisting transformation, then σ decomposes as a product measure to which we can
apply the induction hypothesis. Then Proposition 6.3 provides a criterion for σ to
be invariant by some twisting transformation.
All the preceding tools are used in Section 7, where the proof of Theorem 3.10 is

completed. If the criterion given by Proposition 3.17 for σ to be a graph measure
fails, then for infinitely many integers n there exists some n-crossing, not too far
from 0, with some special property. We treat several cases according to the positions
of these integers with respect to the sequence (n`). With the help of Propositions 6.3
and 6.2, we show that in all cases σ decomposes as a product of two measures to
which the induction hypothesis applies.
The last (short) section is devoted to some additional properties of the nearly finite

Chacon transformation. We give some corollaries of the main result concerning the
commutant and the factors of the transformation, and we also deal with rational
ergodicity and the existence of a measurable law of large numbers.

2. Construction of the nearly finite Chacon transformation

2.1. Cutting-and-stacking construction on R+

As previously explained, this transformation is designed to mimic the classical finite
measure preserving Chacon transformation as much as possible, yet it must preserve
an infinite measure. The construction will make use of two predefined increasing
sequences of integers: 1 � n1 � n2 � · · · � n` � · · · and `0 := 1 � `1 � `2 �
· · · � `k � · · · , satisfying some growth conditions to be specified later (see below
conditions (2.1) and (2.2)). For each ` > 1, there exists a unique integer k > 0 such
that `k 6 ` < `k+1, and we denote this integer by k(`).
In the first step we consider the interval [0, 1), which is cut into three subintervals

of equal length. We take the extra interval [1, 4/3) and stack it above the middle
piece. Then we stack all these intervals left under right, getting a tower of height
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h1 := 4. The transformation T maps each point to the point exactly above it in the
tower. At this step T is yet undefined on the top of the tower.
After step n we have a tower of height hn, called tower n, the levels of which are

intervals of length 1/3n. These intervals are closed to the left and open to the right. At
step (n+ 1), tower n is cut into three subcolumns of equal width. If n /∈ {n` : ` > 1},
we do as in the standard finite measure preserving Chacon transformation: we add
an extra interval of length 1/3n+1 above the middle subcolumn, and we stack the
three subcolumns left under right to get tower n + 1 of height hn+1 = 3hn + 1. If
n = n` for some `, we add hn−k(`) extra intervals above each of the three subcolumns,
and a further extra interval above the second subcolumn. Then we stack the three
subcolumns left under right and get tower n+ 1 of height hn+1 = 3hn + 3hn−k(`) + 1.
(See Figure 2.1.)
At each step, we pick the extra intervals successively by taking the leftmost interval

of desired length in the unused part of R+. Extra intervals used at step n + 1 are
called (n+ 1)-spacers.
We want the Lebesgue measure of tower n to increase to infinity, which is easily

satisfied provided the sequence `k grows sufficiently fast. Indeed, for each n > 1 we
have hn+1 6 6hn + 1 6 7hn, whence hn/hn+1 > 1/7. It follows that for each k > 0
and each `k 6 ` < `k+1,

Leb(tower n` + 1) > Leb(tower n`)
(

1 + hn`−k

hn`

)
>
(
1 + 7−k

)
.

Therefore it is enough for example to assume that for each k > 0,

(2.1)
(
1 + 7−k

)`k+1−`k
> 2.

Under this assumption, we get at the end a rank-one transformation defined on R+
which preserves the Lebesgue measure.
We will also assume that for each `,

(2.2) n` > n(`−1) + 2`.

2.2. Construction on a set of sequences

For technical reasons, it will be more convenient to consider a model of the nearly
finite Chacon transformation in which the ambient space is a totally disconnected
non compact metric space, and each level of each tower is a compact clopen set.
Consider the countable alphabet A := {∗} ∪ N. To each t ∈ R+, we associate the

sequence ϕ(t) =
(
jn(t)

)
n>0
∈ AN defined by

jn(t) :=

∗ if t /∈ tower n,
j if t is in level j of tower n (0 6 j < hn).

By condition (2.1), R+ = ⋃
n tower n, and for each n, tower n ⊂ tower n+ 1. Hence

for each t ∈ R+,
∃ n0 > 0 : ∀ n < n0, jn(t) = ∗, and ∀ n > n0, jn(t) ∈ {0, . . . , hn − 1}.
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Figure 2.1. Construction of the nearly finite Chacon transformation by cutting
and stacking.

Moreover, each level of tower n+1 is either completely outside tower n or completely
inside a single level of tower n. Let us introduce, for each n > 1, the map pn :
{0, . . . , hn+1 − 1, ∗} → {0, . . . , hn − 1, ∗} defined by

• pn(∗) := ∗,
• ∀ j ∈ {0, . . . , hn+1 − 1}, pn(j) := ∗ if level j of tower n + 1 is completely
outside tower n, and pn(j) := j′ ∈ {0, . . . , hn − 1} if level j of tower n+ 1 is
completely inside level j′ of tower n.

Then the sequence
(
jn(t)

)
n>0

satisfies the following compatibility condition.

∀ n > 0, jn(t) = pn
(
jn+1(t)

)
.

In particular, jn(t) completely determines jm(t) for each 0 6 m 6 n. We also observe
that pn satisfies the following property:
(2.3) If pn(j) ∈ {0, . . . , hn−2}, then j ∈ {0, . . . , hn+1−2} and pn(j+1) = pn(j)+1.
Now we can define our space X, to which belongs ϕ(t) for each t ∈ R+:

X :=
{

(jn)n>0 ∈ AN : ∀ n > 0, jn = pn(jn+1) and ∃ n0, jn0 6= ∗
}
.
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X inherits its topology from the product topology of AN. In particular it is a totally
disconnected metrizable space, but it is not compact (in fact X is not closed in AN,
as the infinite sequence (∗, ∗, . . .) is in X \X).
For each n > 0 and each x ∈ X, we denote by jn(x) the n-th coordinate of x. For

each j ∈ {0, . . . , hn − 1}, we define the subset of X

Ljn := {x ∈ X : jn(x) = j}.

Then Ljn is compact and clopen in X. Moreover the family of sets (Ljn) form a basis
of the topology on X.
To define the transformation T on X, we need the following easy lemma.

Lemma 2.1. — For each x = (jn)n>0 ∈ X, there exists n such that, for each
n > n, jn ∈ {0, . . . , hn − 2}.

Proof. — Remember that at each step n` + 1, some spacers are added on the last
subcolumn of tower n`. Hence, jn`+1 = hn`+1 − 1 implies jn`

= ∗. Now take ` large
enough so that jn`

6= ∗. Then jn`+1 < hn`+1 − 1, and (2.3) shows by an immediate
induction that jm < hm − 1 for each m > n` + 1. �

We define the measurable transformation T : X → X as follows: for x = (jn)n>0 ∈
X, we consider the smallest integer n satisfying the property given in Lemma 2.1.
Then we set T (x) := (j′n)n>0, where j′n := jn + 1 if n > n, and the finite sequence
(j′1, j′2, . . . , j′n−1) is determined by the value of j′n and the compatibility conditions
j′n = pn(j′n+1), 1 6 n < n. Note that T is one-to-one, and T (X) = X \ {0}, where
0 := (0, 0, . . .).
For each n > 1 and each 0 6 j < hn − 1, T (Ljn) = Lj+1

n , hence (L0
n, . . . , L

hn−1
n )

is a Rokhlin tower for T . By construction, the family of Rokhlin towers we get in
this way has the same structure as the family of Rokhlin towers we constructed
by cutting-and-stacking on R+. From now on, “tower n” will rather designate the
Rokhlin tower (L0

n, . . . , L
hn−1
n ) in X. The main advantage that we get compared to

the construction on R+ is the following elementary fact.

Remark 2.2. — If (Ljnn )n>n is a sequence of levels in the successive Rokhlin towers,
such that Ljn+1

n+1 is always included in Ljnn (equivalently, jn = pn(jn+1)), then ⋂n Ljnn
is always a singleton

(Note that such an intersection can be empty in the construction on R+.)
Let µ be the pushforward of the Lebesgue measure on R+ by ϕ. Then µ is an

infinite, σ-finite and T -invariant measure on X, and it satisfies

∀ n > 0, ∀ j ∈ {0, . . . , hn − 1}, µ(Ljn) = 3−n.

Additional notations

For each n > 0, we denote by Cn the subset of X formed by the union of all the
levels of tower n. Note that for each n > 0, Cn ⊂ Cn+1, and that X = ⋃

n>0Cn. For
x ∈ Cn, note that jn(x) indicates the level of tower n to which x belongs.
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We also define a function tn on Cn, taking values in {1, 2, 3}, which indicates for
each point whether it belongs to the first, the second, or the third subcolumn of
tower n. We thus have for x ∈ Cn and n /∈ {n` : ` > 1}

(2.4) jn+1(x) =


jn(x) if tn(x) = 1,
jn(x) + hn if tn(x) = 2,
jn(x) + 2hn + 1 if tn(x) = 3.

In the case where n = n` for some ` > 1, we have to replace hn by hn`
+ hn`−k(`) in

the above formula. In particular, we always have
(2.5) jn+1(x) > jn(x).
Consider two integers 0 6 n < m. By construction, tower n is subdivided into

3m−n subcolumns which appear as bundles of hn consecutive levels in tower m: we
call them occurrences of tower n inside tower m. These occurrences are naturally
ordered, from bottom to top of tower m. For a point x in tower n, the precise
occurrence of tower n inside tower m to which x belongs is determined by the
sequence tn(x), tn+1(x), . . . , tm−1(x). For example, x belongs to the last occurrence
of tower n inside tower m if and only if tn(x) = tn+1(x) = · · · = tm−1(x) = 3.
Remark 2.3. — Observe that for each ` > 2 and each n(`−1) + 1 6 n 6 n` − 1,

there is 0 or 1 spacer between two consecutive occurrences of tower n inside tower n`.

2.3. Behaviour of µ-typical points

Lemma 2.4. — There exists a µ-conull subset X∞ of X satisfying: for each x ∈
X∞, there exists an integer `(x) such that, for all ` > `(x), for each n(`−1) 6 n 6 n`−`,
x ∈ Cn but x is neither in the first hundred nor in the last hundred occurrences of
tower n inside tower n`.

Proof. — If we consider x as a random point chosen according to the normalized
µ-measure on Cn, then the random variables tn(x), tn+1(x), . . . , tm−1(x) are i.i.d. and
uniformly distributed in {1, 2, 3}. Hence the probability that x belongs to some
specified occurrence of tower n inside tower m is 1/3m−n.
Since the series ∑ 1/3` converges, by Borel Cantelli there exists a subset Xn of

full µ-measure inside Cn such that, for each x ∈ Xn, there is only a finite number of
integers ` such that x belongs to the first hundred or to the last hundred occurrences
of tower (n` − `) inside tower n`.
Setting

X∞ := X \
⋃
n

(Cn \Xn) ,

we get a conull subset of X, and for each x ∈ X∞, there exists an integer `(x) such
that, for all ` > `(x), x ∈ Cn(`−1) ⊂ Cn`−`, but x is neither in the first hundred nor in
the last hundred occurrence of tower (n`−`) inside tower n`. If n(`−1) 6 n 6 n`−`, the
first (respectively last) hundred occurrences of tower n inside tower n` are included
in the first (respectively last) hundred occurrences of tower (n` − `) inside tower n`,
and this concludes the proof. �
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Remark 2.5. — In particular, for each x ∈ X∞, if n > n`(x), then x does not
belong to the first level of tower n. And since 0 is in the first level of tower n for
each n, we have 0 /∈ X∞.
Remark 2.6. — As n(`−1) + ` < n`− ` by (2.2), we may also assume that for each

x ∈ X∞ and each ` > `(x), x is neither in the first hundred nor in the last hundred
occurrences of tower n(`−1) inside tower n` − `.

3. Invariant Radon measures for Cartesian powers of the
nearly finite Chacon transformation

We fix a natural integer d > 1, and we study the action of the Cartesian power
T×d on Xd. Recall that a measure σ on Xd is a Radon measure if it is finite on
each compact subset of Xd (equivalently, if σ(Cd

n) <∞ for each n). In particular, a
Radon measure on Xd is σ-finite (but the converse is not true).
Our purpose is to describe all Radon measures on Xd which are T×d-invariant and

whose marginals are absolutely continuous with respect to µ.

3.1. Basic facts about Radon measures on Xd

We call n-box a subset of Cd
n which is a Cartesian product Lj1n × · · · × Ljdn , where

each Ljin is a level of the Rokhlin tower Cn. A box is a subset which is an n-box
for some n > 0. The family of all boxes form a basis of compact clopen sets of the
topology of Xd.
We consider the following ring of subsets of Xd

R := {B ⊂ Xd : ∃ n > 0, B is a finite union of n-boxes}.
Proposition 3.1. — Any finitely additive functional σ : R → R+ can be ex-

tended to a unique measure on the Borel σ-algebra B(Xd), which is Radon.
Proof. — Using Theorems F p. 39 and A p. 54 (Caratheodory’s extension theorem)

in [Hal50], we only have to prove that, if (Rk)k>1 is a decreasing sequence in R such
that limk→∞ ↓ σ(Rk) > 0, then ⋂

k Rk 6= ∅. But this is obvious since, under this
assumption, each Rk is a compact nonempty set. �
In particular, to define a Radon measure σ on Xd, we only have to define σ(B) for

each box B, with the compatibility condition that, if B is an n-box for some n > 0,
then σ(B) = ∑

B′⊂B σ(B′), where the sum ranges over the 3d (n + 1)-boxes which
are contained in B.
We call n-diagonal a Rokhlin tower for T×d which is of the form(

B, T×d(B), . . . , (T×d)r−1(B)
)
,

where each (T×d)j(B) is an n-box, and which is maximal in the following sense:
B has one projection which is the bottom level L0

n of tower n, (T×d)r−1B has one
projection which is the top level Lhn−1

n of tower n, and the projections of each
(T×d)jB, 1 6 j 6 r − 2 are neither the bottom level nor the top level of tower n.
(See Figure 3.1)
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Figure 3.1. An n-diagonal inside Cd
n (here d = 2)

Lemma 3.2. — Set Xd
0 := {x = (x1, . . . , xd) ∈ Xd : ∃ i, xi = 0}. Let σ be a

Radon measure on Xd. Then σ is T×d-invariant if and only if the following two
conditions hold:

(1) σ
(
Xd

0

)
= 0.

(2) for each n, all the n-boxes lying on an n-diagonal always have the same
measure.

Proof. — Assume first that σ is a T×d-invariant Radon measure on Xd. Recalling
that 0 has no preimage by T , we see that (T×d)−1(Xd

0) = ∅, whence σ
(
Xd

0

)
= 0.

Moreover, since n-boxes on an n-diagonal are levels of a T×d-Rokhlin tower, the
second condition obviously holds. Reciprocally, assume that the two conditions given
in the statement of the lemma hold. For each n, let Ωn be the subset of Cd

n constituted
of all n-boxes of the form Lj1n × · · · × Ljdn , where for each i ji 6= 0. Then the second
condition implies that σ and (T×d)∗(σ) coincide on Ωn for each n. But⋃

n>0
Ωn = X \Xd

0.

On the other hand, we have (T×d)∗(σ)(Xd
0) = σ

(
(T×d)−1(Xd

0)
)

= σ(∅) = 0. With
the first condition we see that σ and (T×d)∗(σ) also coincide on Xd

0, hence they are
equal. �

Definition 3.3 (Convergence of Radon measures on Xd). — We say that a
sequence (σk) of Radon measures on Xd converges to the nonzero Radon measure σ
if, for each n large enough so that σ(Cd

n) > 0, we have
• σk(Cd

n) > 0 for all large enough k,
• for each n-box B,

σk(B)
σk(Cd

n) −−−→k→∞

σ(B)
σ(Cd

n) .
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Observe that, when a sequence of Radon measures converges in the above sense,
then its limit is unique up to a multiplicative positive constant. Observe also that the
convergence is unchanged if we multiply each measure σk by a positive real number
(which may vary with k).

Remark 3.4. — If the sequence (σk) of Radon measures on Xd converges to the
nonzero Radon measure σ, then for n such that σ(Cd

n) > 0 and for each m > n, for
each m-box B ⊂ Cd

n, we also have
σk(B)
σk(Cd

n) −−−→k→∞

σ(B)
σ(Cd

n) .

Consequently, the above holds also when B ∈ R is included in Cd
n.

Indeed, as Cd
n is a finite union of m-boxes, we have

σk(Cd
n)

σk(Cd
m) −−−→k→∞

σ(Cd
n)

σ(Cd
m) .

Then we can write, for an m-box B ⊂ Cd
n,

σk(B)
σk(Cd

n) = σk(B)
σk(Cd

m)
σk(Cd

m)
σk(Cd

n) −−−→k→∞

σ(B)
σ(Cd

m)
σ(Cd

m)
σ(Cd

n) = σ(B)
σ(Cd

n) .

Proposition 3.5. — Let (σk) be a sequence of Radon measures on Xd, and
assume that there exists some n > 0 satisfying

• σk(Cd
n) > 0 for all large enough k,

• for each n > n, the sequence
(
σk(Cd

n)/σk(Cd
n)
)
k
is bounded.

Then there is a subsequence (kj) and a nonzero Radon measure σ on Xd such that
(σkj

) converges to σ.

Proof. — Multiplying each σk by a positive real number if necessary, we may
assume that for all large enough k, σk(Cd

n) = 1. Then the second assumption ensures
that for each box B, the sequence (σk(B))k is bounded. By a standard diagonal
procedure, we can find a subsequence (kj) such that for each box B, σkj

(B) has a
limit which we denote by σ(B). Then σ defines a finitely additive functional on the
ring R of finite unions of boxes, with values in R+. By Proposition 3.1, σ can be
extended to a Radon measure on B(Xd), which is nonzero since σ(Cd

n) = 1. And we
obviously have the convergence of (σkj

) to σ. �

Proposition 3.6. — Let (σk) and (γk) be two sequences of Radon measures on
Xd, and assume there exist two nonzero Radon measures σ and γ, an integer n > 1
and a real number θ > 0 such that

• σk −−−→
k→∞

σ,
• γk −−−→

k→∞
γ,

• ∀ k, γk 6 σk
• ∀ n > n, for all large enough k (depending on n), γk(Cd

n) > θσk(Cd
n).

Then γ � σ.
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Proof. — Let m > n > n, and let B be an m-box. For all large enough k, we have
by assumption

γk(B)
γk(Cd

n) 6
σk(B)
θσk(Cd

n) .

But by Remark 3.4, we have
γk(B)
γk(Cd

n) −−−→k→∞

γ(B)
γ(Cd

n) , and
σk(B)
σk(Cd

n) −−−→k→∞

σ(B)
σ(Cd

n) .

It follows that
γ(B)
γ(Cd

n) 6
σ(B)
θσ(Cd

n) .

The above inequality extends to each B ∈ R contained in Cd
n, and then to each

B ∈ B(X) contained in Cd
n. In particular, if B ⊂ Cd

n is Borel measurable and satisfies
σ(B) = 0, then we also have γ(B) = 0. And since X = ⋃

nC
d
n, this concludes the

proof. �

Remark 3.7. — For each ` > 1, the definition of the ring R is unchanged if we
consider only the finite unions of n`-boxes, for some ` > `. Hence in Propositions 3.5
and 3.6, it is enough for the conclusions to hold that the assumptions be verified
only when n ∈ {n` : ` > `}.

3.2. Dissipative case

Lemma 3.8. — For each x = (x1, . . . , xd) ∈ Xd
∞, for ` > max{`(xi) : i = 1, . . . , d},

we have
#{j > 0 : (T×d)j(x) ∈ Cd

n`+1} =∞.

Proof. — If ` > max{`(xi) : i = 1, . . . , d}, we know by Lemma 2.4 that each
coordinate xi is in Cn`+1, but is not in the last occurrence of tower (n` + 1) inside
tower n(`+1). Moreover by Remark 2.5, xi is not in the first level of tower (n` + 1).
The next occurrence of tower (n` + 1) inside tower n(`+1) appears after 0 or 1 spacer
by Remark 2.3. As the height of tower (n` + 1) is h(n`+1), T h(n`+1)(xi) is either in
the same level of tower (n` + 1) as xi, or in the level immediately below. Thus
T h(n`+1)(xi) ∈ Cn`+1. But the same applies to any `′ > `, and we get that T h(n`′+1)(xi)
is either in the same level of tower (n`′ + 1) as xi, or in the level immediately below.
Since these two levels are both included in Cn`+1 we get that T h(n`′+1)(xi) ∈ Cn`+1. �

Proposition 3.9. — There is no Radon, T×d-invariant and totally dissipative
measure for which Xd

∞ is a conull set. In particular, there is no Radon, T×d-invariant
and totally dissipative measure whose marginals are absolutely continuous with
respect to µ.

Proof. — Suppose that σ is such a measure. Let W be a wandering set for σ, with

σ

Xd \
⋃
j∈Z

(T×d)jW
 = 0.
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As Xd
∞ is a conull set, we may assume that W ⊂ Xd

∞. By the previous lemma,
W = ⋃

nWn, where

Wn :=
{
x ∈ W : #{j > 0 : (T×d)j(x) ∈ Cd

n} =∞
}
.

Hence there exists some n with σ(Wn) > 0. The ergodic decomposition of σ writes

σ =
∫
W

∑
j∈Z

δ(T×d)j(x)

 dσ(x),

so we get σ(Cd
n) =∞, which contradicts the fact that σ is Radon. �

3.3. Main result

An obvious example of a T×d-invariant Radon measure on Xd is the product
measure µ⊗d. Another example is what we call a graph measure arising from powers
of T : this is a measure σ of the form
(3.1) σ(A1 × · · · × Ad) = αµ(A1 ∩ T−e2A2 ∩ · · · ∩ T−edAd),
for some integers e2, . . . , ed and some fixed positive real number α. Such a measure
is concentrated on the subset{

(x1, . . . , xd) ∈ Xd : xi = T eix1 for all i = 2, . . . , d
}
.

Theorem 3.10. — For each d > 1, the infinite measure preserving dynamical
system (Xd, µ⊗d, T×d) is conservative ergodic.
Moreover, if σ is a nonzero, Radon, T×d-invariant and ergodic measure on Xd,

such that
(3.2) σ

(
Xd \Xd

∞

)
= 0,

then there exists a partition of {1, . . . , d} into r subsets D1, . . . , Dr, such that σ =
σD1 ⊗ · · · ⊗ σDr , where σDj is a graph measure on XDj arising from powers of T .

Corollary 3.11. — If σ is a nonzero, Radon, T×d-invariant measure on Xd,
whose marginals are absolutely continuous with respect to µ, then σ decomposes as
a sum of countably many ergodic components, which are all of the form described
in Theorem 3.10.

To prove Theorem 3.10 in the case d = 1, we even do not need assumption (3.2) as
we can show that µ is, up to a multiplicative constant, the only T -invariant, Radon
measure on X (the proof is the same as for the Chacon infinite transformation,
see [JRdlR18, Proposition 2.4]).
We also note that, if we have proved the second part of the theorem for some d > 2,

then the first one follows immediately. Indeed, if µ⊗d were not ergodic, then almost
all its ergodic components would satisfy (3.2), hence would be a product of graph
measures different from µ⊗d. But this would mean that for µ⊗d-almost all x ∈ Xd,
there exist at least two coordinates of x lying on the same T -orbit, which of course
is absurd. Hence µ⊗d is ergodic, and by Proposition 3.9, it is conservative.

TOME 2 (2019)



382 É. JANVRESSE, E. ROY & T. DE LA RUE

The remainder of this paper is devoted to the proof by induction of the second
part of Theorem 3.10. So we now assume that for some d > 2, the statement is true
up to d− 1. We consider a nonzero, Radon, T×d-invariant and ergodic measure σ on
Xd, satisfying (3.2).
We will show that either σ is a graph measure arising from powers of T , or it can

be decomposed into a product of two measures σ1 × σ2, σi being a T×di-invariant
Radon measure on Xdi for some 1 6 di < d, d1 + d2 = d. In this latter case we can
apply the induction hypothesis to each σi, which yields the announced result.

3.4. Choice of a σ-typical point

By Proposition 3.9, the system (Xd, σ, T×d) is conservative ergodic. By Hopf’s
ergodic theorem, if B ⊂ C ⊂ Xd with 0 < σ(C) < ∞, we have for σ-almost every
point x = (x1, . . . , xd) ∈ Xd

(3.3)
∑
j∈J 1B((T×d)jx)∑
j∈J 1C((T×d)jx) −−−−→|J |→∞

σ(B)
σ(C) ,

where the sums in the above expression range over a set J of consecutive integers
containing 0.
We say that x ∈ Xd is typical if, for all n large enough so that σ(Cd

n) > 0,
Property (3.3) holds whenever B is an n-box and C is Cd

n. We know that σ-almost
every x ∈ Xd is typical. Therefore, there exists a point x = (x1, . . . , xd) such that
(3.4) For each j ∈ Z, (T×d)jx is typical.
Since there are only countably many boxes, we may also assume that
(3.5) For each box B, x ∈ B =⇒ σ(B) > 0.
Moreover, by (3.2), we can further assume that
(3.6) ∀ i = 1, . . . , d, xi ∈ X∞.
From now on, we fix a point x = (x1, . . . , xd) satisfying the above assumptions (3.4),
(3.5) and (3.6). We will derive properties of σ from the observations made on the
orbit of this point x.
By an interval, we mean in this paper a finite set of consecutive integers. We will

need the following key notion in our argument.
Definition 3.12. — We call n-crossing a maximal interval J ⊂ Z with the

following properties:
• (T×d)jx ∈ Cd

n for each j ∈ J ,
• for each 1 6 i 6 d, j 7→ tn(T jxi) is constant on J .

An n-crossing is said to be synchronized if tn(T jx1) = · · · = tn(T jxd) for each j in
this n-crossing.
Note that an n-crossing has at most hn elements. If j is the smallest (respectively

the largest) element of an n-crossing, then there exists 1 6 i 6 d such that T jxi is in
the first (respectively the last) level of tower n. Observe also that when j runs over
an n-crossing, (T×d)jx successively passes through each n-box of some n-diagonal.
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3.5. Characterizations of graph measures arising from powers of T

Lemma 3.13. — The following assertions are equivalent:
(1) σ is a graph measure arising from powers of T ;
(2) ∃ e2, . . . , ed ∈ Z: xi = T eix1 for each i = 2, . . . , d;
(3) ∃ n : ∀ n > n, tn(x1) = · · · = tn(xd);
(4) ∃ j,∃ n : ∀ n > n, tn(T jx1) = · · · = tn(T jxd).

Proof. — Let us first prove that (1) =⇒ (2). If σ is a graph measure arising from
powers of T , then there exist a positive real number α and integers e2, . . . , ed such
that for all measurable subsets A1, . . . , Ad of X, (3.1) holds. Observe that, if ` is
large enough so that hn`−k(`) > max{|e2|, . . . , |ed|}, then for each i = 2, . . . , d and
each j, j′ ∈ {0, . . . , hn`

− 1},

Ljn`
∩ T−eiLj

′

n`
=

Ljn`
if j′ = j + ei,

∅ otherwise.

It follows that the only n`-boxes that may be charged by σ are of the form Lj1n`
×

Lj1+e2
n`

× · · · × Lj1+ed
n`

for some j1. By assumption (3.5), it follows that for each
i = 2, . . . , d, jn`

(xi) = jn`
(x1) + ei. Since this is true for all large enough `, this in

turn implies that for each i = 2, . . . , d, xi = T eix1.
Conversely, if (2) holds, the same argument shows that if ` is large enough so

that hn`−k(`) > max{|e2|, . . . , |ed|}, then the only n`-boxes that can contain x are the
n`-boxes of the form Lj1n`

× Lj1+e2
n`

× · · · × Lj1+ed
n`

for some j1. Note that the n`-boxes
of this form constitute an n`-diagonal, which we denote by D. But (2) is also valid
for each (T×d)jx, j ∈ Z hence the argument also applies to each (T×d)jx. Thus, if B
is an n`-box which is not on D, then (T×d)jx /∈ B for each j ∈ Z. Now, remembering
that x is typical for σ, we have for each n`-box B = Lj1n`

× · · · × Ljdn`

σ(B)
σ(Cd

n`
) = lim

k→∞

∑
−k6j6k 1B((T×d)jx)∑
−k6j6k 1Cd

n`
((T×d)jx) .

The above limit is 0 if B is not on D. Moreover, note that each time the orbit
of x passes through Cd

n`
, (T×d)jx successively passes through each n`-box on D.

Hence if B is on D, the limit is equal to the inverse of the number of n` boxes on
D. In particular the limit is proportional to µ

(
Lj1n`
∩ T−e2Lj1n`

∩ · · · ∩ T−edLjdn`

)
. The

coefficient of proportionality depends a priori on `, but since each n`-box is a union of
disjoint n`+1-boxes, we see that in fact this coefficient does not depend on `. Finally,
this gives (3.1) in the case of an n`-box for each large enough `, and this is enough
to conclude that (3.1) holds for each measurable set of the form A1 × · · · × Ad. We
have so far proved the equivalence of (1) and (2).
Now let us turn to the proof of (2) =⇒ (3). Since x1 ∈ X∞, we have jn(x1)→∞

and hn − jn(x1) → ∞ as n → ∞. If (2) holds, we then have jn(xi) = jn(x1) + ei
for each i = 1, . . . , d and each n large enough so that min{jn(x1), hn − jn(x1)} >
max{|e2|, . . . , |ed|}. But then for such an n we also have tn(xi) = tn(x1) for each
i = 1, . . . , d.
The implication (3) =⇒ (4) is obvious.
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Assume now that (4) holds with j = 0 (i.e. that, in fact, (3) holds). For i = 2, . . . , d,
we then have by an easy induction that jn(xi) − jn(x1) = jn(xi) − jn(x1) for each
n > n. Setting ei := jn(xi)− jn(x1) for i = 2, . . . , d, we get that xi = T eix1 and we
have (2). Now if (4) holds with some j ∈ Z, we get (2) for (T×d)jx, which is clearly
equivalent to (2) for x. Thus we have proved that (4) =⇒ (2) and this concludes the
proof of the lemma. �

For the remainder of the paper, we also fix a real number 0 < η < 1, small enough
so that η < 1

100d . In particular we will need the inequality (1− η)2 > 1/2.

Definition 3.14. — For each n, let In := {−bhn/2c, . . . ,−bhn/2c + hn − 1}
be the interval of length hn and centered at 0. For each n > 0, we call substantial
n-crossing any n-crossing whose intersection with In contains at least ηhn elements.

Lemma 3.15. — If n = n(`−1) for some large enough `, then substantial n-
crossings cover a proportion at least (1− (d+ 2)η) of In. In particular, there exists
at least one substantial n-crossing. Moreover, if all substantial n-crossings are syn-
chronized, then each substantial n-crossing is of size at least (1− (d+ 2)η)hn, and
there are at most two of them.

Proof. — Let us start by considering the case of an integer n which is of the form
n = n(`−1) for some ` > maxi `(xi). We also assume that ` is large enough so that

1
3k(`−1) <

η

2d.

We set n′ := n(`−1) − k(` − 1), and we observe that the above assumption ensures
that

(3.7) hn′ + 1
hn

<
η

d
.

We know by Lemma 2.4 that x ∈ Cd
n(`−1)

= Cd
n, and that the interval

{−100h(n`−`), . . . , 100h(n`−`)}

is contained in a single n`-crossing. A fortiori, In is contained in a single n`-crossing.
Therefore, if a coordinate T jxi reaches the top of tower n and comes back to Cn
on the interval In, then the two passages in Cn are separated by at most hn′ + 1.
Moreover, this can happen at most once on the interval In for each i. It follows
that the set of integers j ∈ In such that (T×d)jx /∈ Cd

n is constituted of at most d
pieces, and its cardinality is bounded above by ηhn by (3.7). Then there exist at
most (d+ 1) n-crossings intersecting In, and they cover a proportion at least (1− η)
of In. Now the proportion of In covered by n-crossings which are not substantial is
less than (d+ 1)η, hence the proportion of In covered by substantial n-crossings is
at least (1− (d+ 2)η). This proves the first part of the lemma
Let us assume now that all substantial n-crossings are synchronized. If we have

only one substantial n-crossing, then this n-crossing is of size at least (1−(d+2)η)hn,
and we have for j in this n-crossing

(3.8)
∣∣∣jn(T jxi1)− jn(T jxi2)

∣∣∣ 6 (d+ 2)ηhn.
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If we have at least two substantial n-crossings, note that between two of them, there
is at least one coordinate passing through the top of tower n, and for which tn has
increased by 1 mod 3. Since the tn(T jxi), i = 1, . . . , d are supposed to be equal on
each substantial n-crossing, we deduce that each coordinate passes through the top
of tower n between two substantial n-crossings. As this happens at most once for
each coordinate on In, we see that there are at most two substantial n-crossings.
Finally, from the first part of the lemma it follows that two consecutive substantial
n-crossings are separated by at most (d + 2)ηhn points. We deduce that, on any
substantial n-crossing, (3.8) holds, hence each substantial n-crossing is of size at
least (1− (d+ 2)η)hn. �

Remark 3.16. — The preceding lemma extends easily to the case when n(`−1) 6
n 6 n` − `. Indeed, when n(`−1) + 1 6 n 6 n` − ` the proof is even simpler, as two
successive passages in Cn are now separated by at most one.

Proposition 3.17. — The measure σ is a graph measure arising from powers of
T if and only if for each large enough n, all substantial n-crossings are synchronized.

Proof. — First assume that σ is a graph measure arising from powers of T . Then
by Lemma 3.13, we know that there exists e2, . . . , ed ∈ Z such that xi = T eix1 for
each i = 2, . . . , d. Take n large enough so that max{|e2|, . . . , |ed|} < ηhn. Let J be a
substantial n-crossing. In particular the size of J is at least ηhn. Hence there exists
j ∈ J such that ηhn 6 jn(T jx1) 6 (1−η)hn. We deduce that jn(T jxi) = jn(T jx1)+ei
for each i = 2, . . . , d. But we also have ηhn 6 jn+1(T jx1) 6 (1−η)hn and this ensures
that jn+1(T jxi) = jn+1(T jx1) + ei. By (2.4), the equality jn+1(T jxi)− jn+1(T jx1) =
jn(T jxi)−jn(T jx1) implies tn(T jxi) = tn(T jx1). Finally, as j 7→ tn(T jxi) is constant
on the n-crossing J , we see that J is synchronized.
Conversely, assume that there exists n such that for each n > n, all substantial

n-crossings are synchronized. Without loss of generality, we may assume that n is of
the form n(`−1), for some ` large enough to apply Lemma 3.15. Then we know that
there exists at least one substantial n-crossing Jn, of size at least (1− (d+ 2)η)hn.
For j ∈ Jn and for each i = 2, . . . , d, |jn(T jxi) − jn(T jx1)| 6 (d + 2)ηhn. Let us
prove by induction that for each n > n, there exists a substantial n-crossing Jn, of
size at least (1− (d+ 2)η)hn, and containing Jn. We already know that this property
is true for n. Assume it is true up to n for some n > n. Then, the n-crossing Jn
extends to a unique (n+ 1)-crossing Jn+1. As Jn intersects In and is of size at most
hn, Jn ⊂ In+1. It follows that

|Jn+1 ∩ In+1| > |Jn| > (1− (d+ 2)η)hn > ηhn+1,

which proves that Jn+1 is a substantial (n+ 1)-crossing. Moreover, since the size of
Jn is at least (1− (d+ 2)η)hn, we have for j ∈ Jn and each i = 2, . . . , d |jn(T jxi)−
jn(T jx1)| 6 (d+ 2)ηhn. But Jn is synchronized, hence by (2.4), we have for j ∈ Jn
|jn+1(T jxi)− jn+1(T jx1)| = |jn(T jxi)− jn(T jx1)| 6 (d+ 2)ηhn 6 (d+ 2)ηhn+1.

This equality extends to j ∈ Jn+1 since the difference is constant on an (n + 1)-
crossing. This proves that the size of Jn+1 is at least (1 − (d + 2)η)hn+1. Now if
we take any j ∈ Jn, we have j ∈ Jn for each n > n, and since we assumed that
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each substantial n-crossing is synchronized, we have tn(T jx1) = · · · = tn(T jxd), i.e.
we have (4) of Lemma 3.13. This proves that σ is a graph measure arising from
powers of T . �

Remark 3.18. — In the preceding proof, the induction provides in fact a stronger
inequality for the sizes of the substantial n-crossings (Jn): |Jn| > hn − (d+ 2)ηhn.

4. Combinatorics of some sets of integers

The purpose of this section is to establish Proposition 4.1 on the combinatorics of
the set of integers j such that (T×d)jx ∈ Cd

n for a given large n.
Proposition 4.1. — There exist constants K1 > 0 and K2 > 0 such that, for

any large enough integer `, and any integer 1 6 c 6 hn`
, the following holds: if I ⊂ Z

is an interval contained in an n(`+`)-crossing for some ` > 1, and if the length of I is
at least ηhn(`+`−1) , then

• the proportion of integers j ∈ I such that (T×d)jx ∈ Cd
n`

is at least (1− η)2`;
• among all the integers j ∈ I such that (T×d)jx ∈ Cd

n`
, the proportion of those

belonging to an n`-crossing of size 6 c is bounded above by

K1
c

hn`

+ K2

3` .

For this we will introduce a hierarchy of more and more complex subsets of Z,
prove by induction some combinatorial results on abstract sets in this hierarchy, and
finally show how to apply these results in the particular case we are interested in.

4.1. A hierarchy of subsets of Z

This part of the argument is completely abstract and independent of the rest of
the paper, but we keep the notations d (an integer, d > 2) and η (a positive real
number between 0 and 1). We set

K1 :=
1 + 2

η

1− η d.

We fix two sequences of positive integers (c`)`>1 and (s`)`>1, satisfying

(4.1) ∀ ` > 1, s`
c`
<

1
d

η

η + 1η,

and
(4.2) ∀ ` > 1, c`

c`+1
<

η

K1
.

Let F ⊂ Z, and let I ⊂ Z be an interval. We call piece of F ∩ I any maximal
interval included in F ∩ I, and we call hole of F ∩ I any maximal interval included
in I \ F . (Thus, I is the disjoint union of the pieces and the holes of F ∩ I, which
alternate.)
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Figure 4.1. A set F of order 2 inside an interval I.

We say that F is of order 1 inside the interval I if
• each hole of F ∩ I is of size 6 s1,
• two consecutive holes of F ∩ I are always separated by a piece of size at
least c1.

Recursively, we say that F is of order ` > 2 inside the interval I if there exists a
subset F ′ ⊂ Z such that

• F ⊂ F ′,
• each hole of F ′ ∩ I is of size 6 s`,
• two consecutive holes of F ′ ∩ I are always separated by a piece of size at
least c`,
• for each piece I ′ of F ′ ∩ I, F is of order (`− 1) inside I ′.

(See Figure 4.1.) Note that, if F is of order ` inside the interval I, then F is of order
` inside each subinterval J ⊂ I.

Lemma 4.2. — Let F1, . . . , Fd be d subsets of Z, and let I ⊂ Z be an interval.
Assume that for some ` > 1, Fi is of order ` inside I for each i = 1, . . . , d, and that
the size of I is at least ηc`. Set F := ⋂d

i=1 Fi. Then
• the density of F inside I satisfies

(4.3) |F ∩ I|
|I|

> (1− η)2`,

• for a given integer c, 1 6 c < h1, the proportion of integers in F ∩ I lying in
pieces of F ∩ I with size 6 c is bounded above by

K1

(
c

c1
+ c1

c2

1
(1− η)4 + · · ·+ c`−1

c`

1
(1− η)2`

)

Proof. — Let us first establish the result for ` = 1. We assume that each Fi is of
order 1 inside I, and that |I| > ηc1. For each i = 1, . . . , d, let ki be the number of
holes of Fi ∩ I. Then by definition of order 1, there are at least ki− 1 pieces of Fi ∩ I
with size at least c1, whence c1(ki − 1) 6 |I|, and

ki 6 |I|/c1 + 1.
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Since each hole of Fi ∩ I has size 6 s1, we deduce that the cardinality of I \ Fi is
bounded by s1(|I|/c1 + 1). This yields by the inequality 1 6 1

η
|I|
c1

and (4.1):

|I \ F | 6 ds1(|I|/c1 + 1) 6 d

(
1 + 1

η

)
s1|I|/c1 6 η|I|.

We thus get |F ∩ I|/|I| > 1− η > (1− η)2, which is the first point. Moreover, the
number k of holes of F ∩ I satisfies k 6 k1 + · · · + kd 6 d|I|/c1 + d, whence the
number m of pieces of F ∩ I satisfies

m 6 d|I|/c1 + d+ 1 6 d|I|/c1 + 2d 6 d

(
1 + 2

η

)
|I|/c1.

It follows that the number r of points of F ∩ I lying in a piece of size 6 c satisfies

r 6 mc 6 d

(
1 + 2

η

)
|I| c
c1
.

As we already know that |F ∩ I| > (1− η)|I|, we get by definition of K1

r

|F ∩ I|
6

(
1 + 2

η

)
1− η d

c

c1
= K1

c

c1
,

which establishes the second point for ` = 1.
Now we assume by induction that the result is true up to `− 1 for some ` > 2 and

we consider a family (Fi)16i6d of subsets of Z, which are of order ` inside an interval
I satisfying |I| > ηc`. By definition of order `, for each i there exists a subset F ′i ⊂ Z
satisfying

• Fi ⊂ F ′i ,
• each hole of F ′i ∩ I is of size 6 s`,
• two consecutive holes of F ′i ∩ I are always separated by a piece of size at
least c`,
• for each piece I ′ of F ′i ∩ I, F ′i is of order (`− 1) inside I ′.

Since |I| > ηc`, the argument developed for order 1 applies for F ′ := ⋂d
i=1 F

′
i (with

(c`−1, c`, s`) in place of (c, c1, s1)). We thus get

(4.4) |F ′ ∩ I| > (1− η)|I|,

and denoting by r′ the number of points of F ′ ∩ I lying in pieces of F ′ ∩ I of size
< c`−1, we have (using also (4.2))

(4.5) r′

|F ′ ∩ I|
6 K1

c`−1

c`
< η.

Let G stand for the union of all pieces of F ′ ∩ I of size > c`−1. The above inequality
can be rewritten as

(4.6) |G|
|F ′ ∩ I|

> (1− η).
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Let J be an arbitrary piece of G. Since for each i, Fi is of order `− 1 inside J , and
by definition of G, |J | > c`−1 > ηc`−1, the induction hypothesis gives

|F ∩ J |
|J |

> (1− η)2`−2.

Summing over all pieces of G we get, using also (4.6) and (4.4)
(4.7) |F ∩ I| > |F ∩G| > (1− η)2`−2|G| > (1− η)2`|I|,
which is the first point at order `.
Moreover, if rJ denotes the number of points of F ∩ J lying in pieces of F ∩ J of

size smaller than c, then
rJ

|F ∩ J |
6 K1

(
c

c1
+ c1

c2

1
(1− η)4 + · · ·+ c`−2

c`−1

1
(1− η)2`−2

)
.

Now let us denote by r the number of points of F ∩ I lying in pieces of F ∩ I of size
smaller than c. The contribution to r of points in G is ∑J rJ (where the sum ranges
over all pieces J of G), and by the previous inequality, it satisfies∑

J

rJ 6 K1

(
c

c1
+ c1

c2

1
(1− η)4 + · · ·+ c`−2

c`−1

1
(1− η)2`−2

)
|F ∩G|

6 K1

(
c

c1
+ c1

c2

1
(1− η)4 + · · ·+ c`−2

c`−1

1
(1− η)2`−2

)
|F ∩ I|.

The contribution to r of points in F \ G is clearly at most |F \ G|, which can be
bounded above as follows

|(F ∩ I) \G| 6 |(F ′ ∩ I) \G| (because F ⊂ F ′)
= r′ (by definition of G and r′)

6 K1
c`−1

c`
|F ′ ∩ I| (by (4.5))

6 K1
c`−1

c`
|I|

6 K1
c`−1

c`

|F ∩ I|
(1− η)2` (by (4.7))

Summing the two contributions and using the above inequalities, we get

r 6 K1

(
c

c1
+ c1

c2

1
(1− η)4 + · · ·+ c`−2

c`−1

1
(1− η)2`−2 + c`−1

c`

1
(1− η)2`

)
|F ∩ I|,

which is the second point at order `. �

4.2. Application to the structure of n-crossings

We want now to apply the preceding lemma in order to obtain some statistical
results on long range of successive n-crossings. We fix some integer `, large enough
to satisfy some conditions to be specified later, and we set k := k(`) We define the
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sequences (c`)`>1 and (s`)`>1 as follows.
• c1 := hn`

,
• s1 := h(n`−k) + 1,
• in general, c` := hn(`+`−1) , and s` := hn(`+`−1)−k(`+`−1) + 1.

Using the fact that we always have hn/hn+1 < 1/3, we observe that for each ` > 1,
with k := k(`+ `− 1),

s`
c`

=
hn(`+`−1)−k + 1

hn(`+`−1)

< 2
hn(`+`−1)−k

hn(`+`−1)

<
2
3k 6

2
3k .

Hence (4.1) is satisfied if ` is large enough. The fact that (4.2) holds if ` is large
enough follows from the following easy consequence of (2.2):

hn`

hn`+1

<
hn(`+1) − (`+ 1)

hn(`+1)

<
1

3`+1 −−−→`→∞
0.

We can therefore assume that ` is large enough so that both (4.1) and (4.2) hold.
We want to apply Lemma 4.2 to the subsets Fi (i = 1, . . . , d) defined by

Fi :=
{
j ∈ Z : T jxi ∈ Cn`

}
.

Let I ⊂ Z be an interval, n > 1 and i ∈ {1, . . . , d}. We say that xi climbs into
tower n along I if for each j ∈ I, T jxi ∈ Cn, and there is no j ∈ I such that j+1 ∈ I,
T jxi ∈ Lhn−1

n and T j+1xi ∈ L0
n. Note that I is included in an n-crossing if and only

if each coordinate xi climbs into tower n along I.

Lemma 4.3. — For each interval I ⊂ Z and each i ∈ {1, . . . , d}, if xi climbs into
tower n(`+`) along I, then Fi is of order ` inside I.

Proof. — By construction of the Nearly Finite Chacon Transformation, two suc-
cessive occurrences of tower n` inside tower n(`+1) are separated either by hn`−k or
by hn`−k + 1 spacers. Hence, if xi climbs into tower n(`+1) along I, Fi is of order 1
inside I. This proves the lemma in the case ` = 1.
Assume that the statement of the lemma is true up to `− 1 for some ` > 2. We

consider
F ′i :=

{
j ∈ Z : T jxi ∈ Cn(`+`−1)

}
.

We clearly have Fi ⊂ F ′i .
Two successive occurrences of tower n(`+`−1) inside tower n(`+`) are separated either

by hn(`+`−1)−k or by hn(`+`−1)−k + 1 spacers, where k is determined by `k 6 `+ `− 1 <
`k+1. Hence, if xi climbs into tower n(`+`) along I, each hole of F ′i ∩ I is of size
6 hn(`+`−1)−k + 1 = s`, and two consecutive holes of F ′i ∩ I are separated by a piece
of F ′i ∩ I of size hn(`+`−1) = c`. Moreover, along each piece of F ′i ∩ I, xi climbs into
tower n(`+`−1). Therefore the property for `−1 ensures that Fi is of order `−1 inside
each piece of F ′i ∩ I. It follows that Fi is of order ` inside I, and the lemma is proved
by induction. �

Proof of Proposition 4.1. — With the subsets Fi defined as above, we see that
F :=

⋂
16i6d

Fi =
{
j ∈ Z : (T×d)jx ∈ Cd

n`

}
.
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Observe that the pieces of F are precisely the n`-crossings.
Assume that the interval I ⊂ Z is included in an n(`+`)-crossing for some ` > 1

(remember that this is equivalent to: each coordinate xi climbs into tower n(`+`)
along I). Then, putting together Lemma 4.2 and Lemma 4.3, and provided that the
length of I be at least ηc` = ηhn(`+`−1) , we get:

• the proportion of j ∈ I such that (T×d)jx ∈ Cd
n`

is at least (1− η)2`,
• for each 1 6 c 6 hn`

, the proportion of j ∈ F ∩ I belonging to an n`-crossing
of size 6 c is bounded above by

(4.8) K1

 c

hn`

+
hn`

hn(`+1)

1
(1− η)4 + · · ·+

hn(`+`−2)

hn(`+`−1)

1
(1− η)2`

 .
Let us estimate the general term of the above sum, using the inequality hn`

/hn(`+1) <

1/3`+1, and the assumption (1− η)2 > 1/2.
hn(`+`−2)

hn(`+`−1)

1
(1− η)2` <

1
3(`+`−1)

1
(1− η)2`

= 1
3(`−1)

1
(3(1− η)2)`

<
1

3(`−1)

(2
3

)`
.

It follows that there exist a constant K2 such that (4.8) 6 K1
c
hn`

+ K2
3` . �

4.3. Measure of the edge of Cd
n

For each n > 0, we say that an n-box Lj1n × · · · × Ljdn is on the edge of Cd
n if there

exists i ∈ {1, . . . , d} such that ji = 0 or ji = hn − 1. We denote by ∂Cd
n the union of

all such n-boxes.
As a first application of Proposition 4.1, we have the following result.

Corollary 4.4. —
δ(n) := σ(∂Cd

n)
σ(Cd

n) −−−→n→∞
0.

sketch of proof. — This is a direct consequence of the following facts:
• Since x is typical for σ, the quotient δ(n) can be estimated by the ratio∑

j∈I 1∂Cd
n
(T×d)jx∑

j∈I 1Cd
n
(T×d)jx

for a large interval I containing 0.
• The subset of j ∈ Z such that (T×d)jx ∈ Cd

n is partitioned into n-crossings,
and in each n-crossing J there are exactly two integers j (the minimum and
the maximum of J) such that (T×d)jx ∈ ∂Cd

n.
• By Proposition 4.1, most n-crossings are large if n is large. �
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5. Convergence of sequences of empirical measures

For each finite subset J ⊂ Z, we denote by γJ the empirical measure

γJ :=
∑
j∈I

δ(T×d)jx.

The validity of Property (3.3) whenever B is an n-box and C is Cd
n (remember that

x has been chosen as a typical point) means that, if (Jn) is a sequence of intervals
containing 0, with |Jn| −−−→

n→∞
∞, then we have the convergence γJn −−−→n→∞

σ.
Our purpose in this section is to extend this convergence to the case where the

intervals Jn do not necessarily contain 0, but are not too far from 0. We will also
treat the case where the subsets Jn are no longer intervals, but union of intervals
with a sufficiently regular structure.
We fix a real number ε > 0, small enough so that (1 − ε)2 > 1 − η. Then we

consider an integer c > 1, large enough so that c−1
c
> 1− ε.

In Sections 5.1 and 5.2, we consider a fixed integer `, large enough so that the
result of Proposition 4.1 holds. We can also assume that

(5.1) K1
c

hn`

+ K2

3` < ε.

We are going to estimate the behaviour of empirical measures with respect to n`-
boxes. The following lemmas are devoted to the control of

γI
(
Cd
n`

)
=
∑
j∈I

1Cd
n`

(
(T×d)j(x)

)
for particular intervals I.

5.1. Consecutive n-intervals

For n > 1, we call n-interval any interval I = {j, j+ 1, . . . , j+hn−1} of length hn
and such that j is a multiple of hn. (The second condition is completely artificial, it is
only useful to define canonically a cutting of any interval into intervals of length hn.)

Lemma 5.1. — Let p1 be the smallest integer such that 3p1 > 2d+ 1 and p1 > d.
There exists a constant 0 < θ1 < 1 (depending only on η and d) for which the
following holds.
Let ` > `+ 1, and let n be such that n(`−1)− k(`− 1) + p1 6 n < n`. Whenever I1

and I2 are two consecutive n-intervals, both contained in the same n`-crossing, we
have

θ1γI1

(
Cd
n`

)
< γI2

(
Cd
n`

)
<

1
θ1
γI1

(
Cd
n`

)
.
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Proof. — We divide the proof into two cases.
Case 1: n(`−1) + 1 6 n 6 n`. — Set j1 := min I1 and j2 := min I2 = j1 + hn.

Proposition 4.1 applies to I1, and this ensures that, among the γI1

(
Cd
n`

)
integers j

such that (T×d)j1+jx ∈ Cd
n`
, a proportion at least (1 − ε) (by (5.1)) belong to an

n`-crossing of size at least c. Then, among those belonging to an n`-crossing of size
at least c, a proportion at least c−1

c
are not the minimum of their n`-crossing. By

the choice of ε and c, we get the partial following result: a proportion at least 1− η
of integers j ∈ {0, . . . , hn − 1} are such that, for each i = 1, . . . , d, T j1+jxi ∈ Cn`

,
but T j1+jxi is not in the bottom level of tower n`. Let us consider such an integer j.
Observe that, since I2 is in the same n`-crossing as I1, the coordinate T j1+jxi cannot
be in the last occurrence of tower n inside tower n`. Hence it will pass through zero
or one spacer before coming back to Cn. Then we can use a similar argument as
in the proof of Lemma 3.8: according to whether coordinate i sees a spacer or not,
T j2+jxi = T j1+j+hnxi is either in the same level of tower n as T j1+jxi, or in the level
immediately below. And the same applies if we consider the levels of tower n`. Hence
T j2+jxi ∈ Cn`

.
This proves that γI2

(
Cd
n`

)
> (1 − η)γI1

(
Cd
n`

)
. But we can do a similar reasoning

starting from I2 and going backwards, and we get the announced inequalities for any
0 < θ1 6 (1− η).
Case 2: n(`−1) − k(`− 1) + p1 6 n 6 n(`−1). — To simplify the notations, we set

n′ := n(`−1) − k(`− 1). The reason why we cannot do the same reasoning as in the
previous case is the following: when for some j the coordinate T jxi leaves tower n, it
will come back to Cn after 0, 1, hn′ or hn′ + 1 spacers. Because of this huge number
of spacers that might separate two climbings into tower n, we cannot be sure that
T j+hnxi will be in Cn`

. To circumvent this difficulty, we introduce what we call the
fake tower n′: it is the Rokhlin tower of height hn′ whose levels are the hn′ spacers
placed on top of tower n(`−1) in the construction. Let us denote by L̃0

n′ , . . . , L̃
hn′−1
n′ its

consecutive levels. We note that this fake tower n′ is disjoint from Cn(`−1) , a fortiori
it is disjoint from Cn`

. However we can construct a fake Cn`
inside the fake tower n′

by mimicking the structure of Cn`
inside tower n′. More precisely, we set

C̃n`
:=

⊔
j:Lj

n′⊂Cn`

L̃jn′ , and Cn`
:= Cn`

t C̃n`
.

If we consider Cn`
instead of Cn`

, then everything happens as if the n-intervals were
both contained in a single n(`−1)-crossing. Hence we can use Case 1 with (`− 1) in
place of `, which yields

(5.2) (1− η)γI1

(
C
d

n`

)
< γI2

(
C
d

n`

)
<

1
(1− η)γI1

(
C
d

n`

)
.

It remains now to compare γI
(
C
d
n`

)
with γI

(
Cd
n`

)
for I = I1 or I = I2.

For this we will consider n′-intervals intersecting I. Let J be such an n′-interval.
We say that it is suspect if there exists 1 6 i 6 d and j ∈ J such that T jxi /∈ Cn(`−1) .
Note that, by definition of a suspect interval, if J ⊂ I is an n′-interval which is not
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suspect, then γJ
(
Cd
n`

)
= γJ

(
C
d
n`

)
. Observe also that, when T jxi leaves Cn(`−1) , then

it comes back after at most hn′ + 1 spacers (remember that everything takes place
inside an n`-crossing, therefore the coordinates do not leave Cn`

). Moreover, when
it comes back to Cn(`−1) , it stays in Cn(`−1) for a time > hn(`−1) > hn. Since |I| = hn,
each coordinate 1 6 i 6 d is responsible for at most 2 suspect n′-intervals intersecting
I, and we conclude that there exist at most 2d suspect n′-intervals intersecting I.
Moreover, since we assumed that n > n′ + p1, we have hn/hn′ > 3p1 > 2d + 1, and
this ensures that there exists at least one n′-interval contained in I which is not
suspect.
Now if J ′ is a suspect interval intersecting I, we can find a chain J ′= J ′0, J

′
1, . . . , J

′
r =

J of consecutive n′-intervals, where J ′0, . . . , J ′r−1 are suspect (hence r 6 2d), J = J ′r
is not suspect and contained in I. Applying Case 1 r 6 2d times (with n′ in place of
n and `− 1 in place of ` gives

γI
(
Cd
n`

)
> γJ

(
Cd
n`

)
= γJ

(
C
d
n`

)
> (1− η)2dγJ ′

(
C
d
n`

)
> (1− η)2dγJ ′

(
C̃d
n`

)
.

Since only suspect intervals can contribute to γI
(
C̃d
n`

)
, and since there are at most 2d

of them, summing the preceding inequality over all suspect intervals J ′ intersecting
I yields

2dγI
(
Cd
n`

)
> (1− η)2dγI

(
C̃d
n`

)
.

In other words,

γI
(
C̃d
n`

)
6

2d
(1− η)2dγI

(
Cd
n`

)
.

Adding γI
(
Cd
n`

)
on both sides, we get

γI
(
C
d

n`

)
6

(
2d

(1− η)2d + 1
)
γI
(
Cd
n`

)
.

Inserting the above inequality for I = I1 in (5.2), we get

γI2

(
Cd
n`

)
6 γI2

(
C
d
n`

)
<

1
θ1
γI1

(
Cd
n`

)
with

θ1 := (1− η)
(

2d
(1− η)2d + 1

)−1

.

But we can exchange the roles of I1 and I2 and this gives the announced result. �

Remark 5.2. — Let ` and n be as in Lemma 5.1. Assume that I1 and I2 are
consecutive n-intervals, but only I1 is supposed to be contained in some n` crossing
J . Then we get the inequality

γI2∩J
(
Cd
n`

)
<

1
θ1
γI1

(
Cd
n`

)
.

Indeed, we can always change what happens on I2 \ J to do as if both I1 and I2
were included in the same n`-crossing.
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5.2. Contribution of substantial subintervals

Lemma 5.3. — Let p2 be the smallest integer such that 1
3p2 <

1
3η. For eachM > 0,

there exists a real number 0 < θ2(M) < 1 (depending also on η and d) for which the
following holds.
Let ` > `+ 1, and let n be such that

(5.3) n(`−1) − k(`− 1) + p1 + p2 6 n < n`.

For each interval I of length |I| 6Mhn contained in an n`-crossing, for each subin-
terval J ⊂ I with |J | > ηhn, we have

γJ
(
Cd
n`

)
> θ2(M) γI

(
Cd
n`

)
.

Remark 5.4. — Note that if ` is large enough, we have n(`−1)−k(`−1)+p1 +p2 <
n(`−1), hence the above is valid in particular for n(`−1) 6 n < n`.

Proof. — Under the assumptions of the lemma, we have
n` < n(`−1) − k(`− 1) + p1 6 n− p2 < n`.

We consider the (n−p2)-intervals included in I, and we will apply Lemma 5.1 to them.
Remember that hn−p2 >

1
7p2 hn. Hence the number of (n − p2)-intervals contained

in I is at most 7p2M . Moreover their length hn−p2 satisfies hn−p2 <
1

3p2 hn <
1
3 |J |.

Hence there is at least one (n− p2)-interval included in J . Let us call it J ′. Now, if
I ′ is another (n− p2)-interval contained in I, a repeated use of Lemma 5.1 yields

γJ
(
Cd
n`

)
> γJ ′

(
Cd
n`

)
> θ7p2M

1 γI′
(
Cd
n`

)
.

There might also exist two (n− p2) intervals intersecting I at its extremities but not
contained in I, hence not necessarily contained in the n`-crossing. If I ′ is such an
interval, we use Remark 5.2 and get the same inequality (with γI′∩I instead of γI′).
Summing over all the (n− p2)-intervals intersecting I, we get

(7p2M + 2) γJ
(
Cd
n`

)
> θ7p2M

1 γI
(
Cd
n`

)
.

This gives the announced result, with θ2(M) := θ7p2M
1 / (7p2M + 2). �

5.3. How to apply Proposition 3.5

Here we want to provide some conditions so that Proposition 3.5 applies to a
sequence of empirical measures (γJm) for some sequence of intervals (Jm). We make
the following assumptions.
(5.4) For each m, there exists an integer `m with `m →∞ as m→∞, such that

Jm is contained in some n`m-crossing,
and
(5.5) For each m, there exists an integer n(m) satisfying

• n(`m−1) − k(`m − 1) + p1 + 2p2 6 n(m) < n`m ,
• ηhn(m) 6 |Jm| 6 hn(m),
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Note that, as soon as ` is large enough so that Proposition 4.1 applies, the first
point of this proposition ensures that γJm

(
Cd
n`

)
> 0 for m large enough, which is

the first assumption needed to apply Proposition 3.5.
It remains, for some fixed ` and `, to control the ratio γJm

(
Cd
n(`+`)

)
/γJm

(
Cd
n`

)
,

which is the purpose of the following lemma.

Lemma 5.5. — Let ` be large enough so that Proposition 4.1 applies and (5.1)
holds. Assume also that

(5.6) (K1 +K2) 1
3` < η.

Let ` > 1, and let (Jm) be a sequence of intervals satisfying (5.4) and (5.5). Then
for each m large enough

γJm

(
Cd
n`

)
> (1− η)2`+1θ2(7)γJm

(
Cd
n(`+`)

)
.

Proof. — We first consider the case where n(m) > n(`m−1). Then we can apply
Proposition 4.1 (with `+` in place of `) to show that, if `m > `+`+1, the proportion
of integers in {j ∈ Jm : (T×d)jx ∈ Cd

n(`+`)
} belonging to an n(`+`)-crossing of size less

than hn(`+`−1) is bounded above by

K1
hn(`+`−1)

hn(`+`)

+ K2

3`+` 6 (K1 +K2) 1
3`+` < η.

Now, if I ⊂ Jm is an n(`+`)-crossing with |I| > hn(`+`−1) , another application of
Proposition 4.1 proves that the proportion of integers j ∈ I such that (T×d)jx ∈ Cd

n`

is at least (1− η)2`. We finally get in this case

(5.7) γJm

(
Cd
n`

)
> (1− η)2`+1γJm

(
Cd
n(`+`)

)
.

Now we consider the case where n(`m−1) − k(`m − 1) + p1 + 2p2 6 n(m) < n(`m−1).
Let n be the largest integer, n 6 n(m), such that hn 6 |Jm|. If n < n(m), then we
have hn+1 > |Jm| > ηhn(m). But on the other hand, hn+1 < hn(m)/3n(m)−n−1. Taking
into account the definition of p2 (Lemma 5.3), we get that n(m)−n < p2, and finally
that n satisfies

n(`m−1) − k(`m − 1) + p1 + p2 < n < n(`m−1).

Since |Jm| < hn(`m−1) , we observe that each coordinate can leave Cn(`m−1) only
once on Jm, and when it does so, it stays outside Cn(`m−1) on an interval of length
6 hn(`m−1)−k(`m−1) + 1. Since there are d coordinates, the set of integers j ∈ Jm such
that (T×d)jx ∈ Cd

n(`m−1)
is cut into at most (d + 1) pieces, and its cardinality is at
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least

|Jm| − d
(
hn(`m−1)−k(`m−1) + 1

)
> |Jm| −

d

3p1+p2
hn

> |Jm|
(

1− d

3p1+p+2

)

> |Jm|
(

1− η

6

)
>
|Jm|

2

Therefore, there exists at least one subinterval J̃m ⊂ Jm, with size

|J̃m| >
|Jm|

2(d+ 1) > ηhn,

and which is contained in a single n(`m−1)-crossing. Since n(`m−2) < n < n(`m−1), the
estimation (5.7) is valid for J̃m in place of Jm, i.e.

(5.8) γJ̃m

(
Cd
n`

)
> (1− η)2`+1γJ̃m

(
Cd
n(`+`)

)
.

Note that, if n < n(m), then by definition of n we have |Jm| < hn+1 < 7hn. If
n = n(m), |Jm| = hn(m) = hn. Hence in all cases we have ηhn 6 |J̃m| 6 |Jm| 6 7hn.
So we can also apply Lemma 5.3 with I := Jm, J := J̃m, and `+ ` in place of `. This
yields
(5.9) γJ̃m

(
Cd
n(`+`)

)
> θ2(7)γJm

(
Cd
n(`+`)

)
.

Combining (5.8) and (5.9), we get

γJm

(
Cd
n`

)
> γJ̃m

(
Cd
n`

)
> (1− η)2`+1γJ̃m

(
Cd
n(`+`)

)
> (1− η)2`+1θ2(7)γJm

(
Cd
n(`+`)

)
. �

With the above lemma, we see that all the conditions needed to apply Proposi-
tion 3.5 are satisfied, and this gives the following result.

Lemma 5.6. — Let (Jm) be a sequence of intervals satisfying (5.4) and (5.5). Then
there is a subsequence

(
γJmj

)
which converges to some nonzero Radon measure.

5.4. Convergence of sequences of empirical measures

Proposition 5.7. — Let (Im) and (Jm) be two sequences of intervals, with
Jm ⊂ Im. Assume that there exist two sequences of integers (`m) and (n(m)), and a
real number M > 0 such that

• `m →∞,
• n(`m−1) − k(`m − 1) + p1 + 2p2 6 n(m) < n`m ,
• Im is contained in some n`m-crossing,
• ηhn(m) 6 |Jm| 6 hn(m),
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• |Im| 6Mhn(m).
If γIm −−−→m→∞

σ, we also have γJm −−−→m→∞
σ.

Proof. — The assumptions (5.4) and (5.5) are satisfied for the sequence of intervals
(Jm), hence Lemma 5.6 applies to the sequence of measures

(
γJm

)
. Therefore, it is

enough to prove that, if γJm converges to some nonzero Radon measure γ, then
γ = σ up to some multiplicative constant. So, let us assume that γJm → γ. Since
Jm ⊂ Im, we have γJm 6 γIm . We can also apply Lemma 5.3 which shows that, for
each large enough integer `, we have as soon as n(m) > n` + 1

γJm

(
Cd
n`

)
> θ2(M) γIm

(
Cd
n`

)
.

Then Proposition 3.6 ensures that γ � σ. Now by ergodicity of (Xd, σ, T×d), it only
remains to show that γ is T×d-invariant. For this we want to apply Lemma 3.2. Since
Xd

0 ⊂ Xd \Xd
∞, we have σ(Xd

0) = 0 hence γ(Xd
0) = 0 by absolute continuity. Finally,

observe that if for some fixed integer n, B and B′ are two n-boxes contained in the
same n-diagonal, then for any m, as Jm is an interval,

|γJm(B)− γJm(B′)| 6 1.
Indeed, the times j when the orbit of x falls in B alternate with the times when the
orbit of x fall in B′. On the other hand the first point of Proposition 4.1 ensures that

γJm

(
Cd
n

)
−−−→
m→∞

∞,

and it follows that γ(B) = γ(B′). Lemma 3.2 now proves that γ is T×d-invariant. �

Remark 5.8. — Note that the condition γIm −−−→m→∞
σ is automatically satisfied if

0 ∈ Im for each m, since we took x as a typical point for σ.

Now we want to extend Proposition 5.7 to the case where (Jm) is no longer a
sequence of intervals, but Jm is a subset of Im with a sufficiently regular structure.

Proposition 5.9. — Let (Im) and (Jm) be two sequences of finite subsets of Z,
and let M > 0. We assume that the following conditions are satisfied.

• Jm ⊂ Im for each m.
• There exists a sequence of integers (`m) with `m →∞ as m→∞, such that
for each m, Im is an interval contained in some n`m-crossing.
• There exists a sequence of integers (n(m)) with

n(`m−1) − k(`m − 1) + p1 + 2p2 6 n(m) < n`m ,

such that for each m, Jm is a disjoint union of intervals of common size s(m),
where ηhn(m) 6 s(m) 6 hn(m), and Im \ Jm does not contain an interval of
size greater than Mhn(m).

If γIm −−−→m→∞
σ, then we also have γJm −−−→m→∞

σ.

Proof. — We just have to justify that the same arguments as in the proof of
Proposition 5.7 apply also in this case. First, we want to prove that the conclusion
of Lemma 5.6 holds for (Jm). For this, it is enough to observe that all the pieces of
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Jm satisfy assumptions (5.4) and (5.5). Hence the estimation given in Lemma 5.5 is
valid for each piece of Jm, and then it is also valid for Jm itself.
Now, let ` be a large enough integer, and takem large enough so that n(m) > n`+1.

Let J be any piece of Jm (in particular we have |J | = s(m) > ηhn(m)), and let I be
the interval constituted of J and the two adjacent pieces of Im \ Jm. Then we have
|I| 6 40hn(m) + s(m) 6 100hn(m), and we can apply Lemma 5.3 to I and J to get

γJ
(
Cd
n`

)
> θ2γI

(
Cd
n`

)
.

Summing over all pieces J of Jm, we get
γJm

(
Cd
n`

)
> θ2γIm

(
Cd
n`

)
,

which is the second key step in the proof of Proposition 5.7. This ensures that, if
γJm → γ, then γ � σ.
Finally, we have to see that γ is T×d-invariant, and it is enough for that to show that,

if for some fixed n we consider two n-boxes B and B′ on the same n-diagonal, then
γ(B) = γ(B′). But for each m and each piece J of Jm, we have |γJ(B)− γJ(B′)| 6 1,
whereas by the first point of Proposition 4.1, we know that

min
J piece of Jm

γJ
(
Cd
n`

)
−−−→
m→∞

∞. �

6. Twisting transformations and decomposition of σ as a
product

The purpose of this section is to provide a criterion ensuring that σ can be decom-
posed into the product of two measures σ1 × σ2, σi being a T×di-invariant Radon
measure on Xdi for some 1 6 di < d, d1 + d2 = d. We will need for that to introduce
the following type of transformation of Xd.

Definition 6.1. — The transformation S : Xd → Xd is said to be a twisting
transformation if there exists a partition {1, . . . , d} = G0 t G1 into two nonempty
subsets such that for each (y1, . . . , yd) ∈ Xd,

S(y1, . . . , yd) = (z1, . . . , zd), where zi :=

Tyi if i ∈ G1,

yi if i ∈ G0.

The reason why we introduce those twisting transformations is that, if we are able to
prove that σ is invariant by some twisting transformation then σ can be decomposed
as a product of two measures. More precisely, by Theorem A.1 in [JRdlR18] we have
the following result.

Proposition 6.2. — Assume that σ is invariant by some twisting transformation
S, and let {1, . . . , d} = G0 tG1 be the partition associated with S. Then there exist
Radon measures σ0 and σ1 on XG0 and XG1 respectively, such that

• σ = σ0 ⊗ σ1;
• each σs is T×|Ga|-invariant (a = 0, 1), and the system (XGa , T×|Ga|, σa) is
conservative ergodic.

TOME 2 (2019)



400 É. JANVRESSE, E. ROY & T. DE LA RUE

Thus, if the assumption of the above proposition is satisfied, we can write σ as
the product of two measures which are invariant by some smaller Cartesian power
of T , and to which we can apply the induction hypothesis to finish the proof of
Theorem 3.10. We want now to give a condition under which we are able to prove
that σ is indeed invariant by some twisting transformation.
In the next proposition, we use again the notation Ωn which was introduced in

the proof of Lemma 3.2: recall that Ωn is the union of all n-boxes of the form
Lj1n × · · · × Ljdn where for all i = 1, . . . , d, ji 6= 0. We observe that, if B is an n-box
contained in Ωn and if S is a twisting transformation, then S−1B is also an n-box
(but not necessarily contained in Ωn). Note also that Ωn ⊂ Ωn+1 for each n.

Proposition 6.3. — Assume that there exist (σ′n), (σn), two sequences of Radon
measures on Xd, and a sequence (Sn) of twisting transformations satisfying

• σn −−−→
n→∞

σ,
• σ′n −−−→n→∞

σ,
• For each m > 0, and for n large enough (depending on m), for each m-box
B ⊂ Ωm, σ′n(S−1

n B) = σn(B).
Then there exists a twisting transformation S such that σ is S-invariant. In particular,
σ is a product measure as in Proposition 6.2.

Proof. — Note that, d being fixed here, there exist only finitely many twisting
transformations. Therefore, considering subsequences if necessary, we may assume
that there exist a twisting transformation S such that Sn = S for each n.
Now, let m > 0 be large enough so that δ(m) < 1/2 (see Corollary 4.4). In

particular, σ(Cd
m) > 0. Let m′ > m. Then, for each n large enough (depending

on m′), if B is an m′-box contained in Ωm, then B ⊂ Ωm′ and we know that
σ′n(S−1B) = σn(B). By Remark 3.4, the assumptions of the lemma also yield

σ′n(S−1B)
σ′n(Cd

m) −−−→n→∞

σ(S−1B)
σ(Cd

m) .

But the left-hand side of the above formula is equal to
σ′n(S−1B)
σ′n(Cd

m) = σn(B)
σn(Cd

m)
σn(Cd

m)
σ′n(Cd

m) ,

where
σn(B)
σn(Cd

m) −−−→n→∞

σ(B)
σ(Cd

m) .

It remains to control the ratio σn(Cd
m)/σ′n(Cd

m). For this, we write
σ′n(Cd

m) = σ′n(S−1Ωm) + σ′n(Cd
m \ S−1Ωm),

and
σn(Cd

m) = σn(Ωm) + σn(Cd
m \ Ωm).

We observe that the first terms σ′n(S−1Ωm) and σn(Ωm) are equal. Moreover, as
Cd
m \ Ωm and Cd

m \ S−1Ωm are included in ∂Cd
m, we have by Corollary 4.4

σn(Ωm)
σn(Cd

m) −−−→n→∞

σ(Ωm)
σ(Cd

m) > 1− δ(m)
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and
σ′n(S−1Ωm)
σ′n(Cd

m) −−−→
n→∞

σ(S−1Ωm)
σ(Cd

m) > 1− δ(m),

where δ(m) → 0 as n → ∞. In particular, σn(Ωm) and σ′n(S−1Ωm) are positive if
δ(m) < 1/2 and n is large enough. Hence we can write

σn(Cd
m)

σ′n(Cd
m) =

1 + σn(Cd
m\Ωm)

σn(Ωm)

1 + σ′n(Cd
m\S−1Ωm)

σ′n(S−1Ωm)

−−−→
n→∞

1 + σ(Cd
m\Ωm)

σ(Ωm)

1 + σ(Cd
m\S−1Ωm)

σ(S−1Ωm)

.

This yields

σ(S−1B) = σ(B)
1 + σ(Cd

m\Ωm)
σ(Ωm)

1 + σ(Cd
m\S−1Ωm)

σ(S−1Ωm)

.

But the above argument is also valid if, at the beginning, we start with m′ instead
of m (and keep the same m′-box B.) This gives

σ(S−1B) = σ(B)
1 + σ(Cd

m′\Ωm′ )
σ(Ωm′ )

1 + σ(Cd
m′\S

−1Ωm′ )
σ(S−1Ωm′ )

.

Moreover, as σ(Cd
m) > 0, we can choose the m′-box B in such a way that σ(B) > 0,

and comparing the last two equalities, we get

1 + σ(Cd
m\Ωm)

σ(Ωm)

1 + σ(Cd
m\S−1Ωm)

σ(S−1Ωm)

=
1 + σ(Cd

m′\Ωm′ )
σ(Ωm′ )

1 + σ(Cd
m′\S

−1Ωm′ )
σ(S−1Ωm′ )

.

But the ratio on the right-hand side can be made arbitrarily close to 1 by choosing
m′ large enough, hence it is equal to 1. This proves that, for any m′ > m and any
m′-box B ⊂ Ωm, σ(S−1B) = σ(B). We thus get as in the proof of Lemma 3.2 that
σ and S∗(σ) coincide on ⋃m Ωm = X \Xd

0. And since both measures are equal to 0
on Xd

0, this concludes the proof. �
The first two assumptions in Proposition 6.3 will be given by applications of

Proposition 5.7 and Proposition 5.9. The following simple example presents the
main ideas of how to construct sequences of measures (σn) and (σ′n) satisfying the
third requirement of Proposition 6.3.

Example 6.4. — Let n /∈ {n` : ` > 1}. Let J be an interval contained in an n-
crossing, set J ′ := J + hn, assume that J ′ is also contained in an n-crossing. Finally,
assume that, for each j ∈ J ,

{
tn(T jxi) : i = 1, . . . , d

}
= {1, 2}.

Define σn := γJ , and σ′n := γJ ′ . For an arbitrary j ∈ J , consider the partition
{1, . . . , d} = G0 t G1 into two nonempty subsets, where G0 :=

{
i ∈ {1, . . . , d} :

tn(T jxi) = 1
}
, and G1 :=

{
i ∈ {1, . . . , d} : tn(T jxi) = 2

}
. Note that, since J is

contained in an n-crossing, this partition does not depend on the choice of j ∈ J . Let
Sn be the twisting transformation associated with (G0, G1). Then for each m 6 n
and each m-box B ⊂ Ωm, we have σ′n(S−1

n B) = σn(B).
Indeed, consider first i ∈ G0. Then, for j ∈ J , T j(xi) is in the first subcolumn of

tower n, hence when the orbit of xi reaches the top of tower n, it will see no spacer
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before coming back to Cn. We thus have jn(T j+hnxi) = jn(T jxi), and in fact we have
the equality jm(T j+hnxi) = jm(T jxi) for each m 6 n (remember that jn determines
jm for m 6 n).
On the other hand, if i ∈ G1, the orbit of xi will pass through the spacer above

the middle subcolumn before coming back to Cn, and we have, for each m 6 n,
jm(T j+hnxi) = jm(T jxi)− 1 (provided jm(T jxi) 6= 0).
Now, if B ⊂ Ωm is an m-box for some m 6 n, the above argument shows that, for

each j ∈ J , (T×d)jx ∈ B ⇐⇒ (T×d)j+hnx ∈ S−1B.

7. End of the proof of the main result

Now we come back to the last part of the proof of Theorem 3.10. We interpret
Proposition 3.17 as follows:

• either σ is a graph measure arising from powers of T ,
• or there exist infinitely many integers n such that there exists at least one
substantial n-crossing which is not synchronized.

It only remains to show how this latter property implies that σ can be decomposed
as a product measure, as explained in Section 3.3 and with the tools of Section 6.
From now on, we thus assume that for infinitely many integers n, there exists

at least one substantial n-crossing which is not synchronized. We have to study
different cases, according to the relative positions of these integers n with respect to
the sequence (n`).

7.1. The case n(`−1) 6 n 6 n` − `

Here we first assume that there exist infinitely many integers n for which
• there exists at least one substantial n-crossing which is not synchronized.
• ∃ ` : n(`−1) 6 n 6 n` − `.

Let us consider such an n. To unify the treatments of the cases n = n(`−1) and
n(`−1) < n 6 n` − `, we set

h̃n :=

hn + hn(`−1)−k(`−1) if n = n(`−1),

hn if n(`−1) < n 6 n` − `.

In this way, as long as we stay inside the interval [−100hn, 100hn] (which is contained
in a single n`-crossing as n 6 n`− `), if j is in some n-crossing and jn(T jxi) > 0, we
have

jn
(
T j+h̃nxi

)
=


jn (T jxi) if tn(T jxi) = 1,
jn (T jxi)− 1 if tn(T jxi) = 2,
one or other of the above values if tn(T jxi) = 3.

Let J be a substantial n-crossing which is not synchronized. Then for j ∈ J ,
{tn(T jxi) : i = 1, . . . , d} contains at least two different values (which do not de-
pend on the choice of j ∈ J since j 7→ tn(T jxi) is constant on an n-crossing).

ANNALES HENRI LEBESGUE



Nearly finite Chacon 403

We first assume that {1, 2} ⊂ {tn(T jxi) : i = 1, . . . , d}. Then, by the above
formula, for j ∈ J \min J , the difference jn (T jxi)− jn

(
T j+h̃nxi

)
takes both values

0 and 1 as i runs over {1, . . . , d}. Set, for a = 0, 1

Ga :=
{
i : jn

(
T jxi

)
− jn

(
T j+h̃nxi

)
= a

}
.

Then we can define a twisting transformation Sn with this partition. We also define
the interval J ′ := J + h̃n, and the two measures σn := γJ , σ′n := γJ ′ .
As explained in Example 6.4, if for some B is an m-box for some m 6 n with

B ⊂ Ωm, we then have

(7.1) σ′n(B) = σn(S−1
n (B)).

Let us explain how we construct Sn, σn and σ′n when {2, 3} = {tn(T jxi) : i =
1, . . . , d} for j ∈ J . Then, for j ∈ J \{max J}, the difference jn

(
T j−h̃nxi

)
− jn (T jxi)

takes both values 0 and 1 as i runs over {1, . . . , d}. In this case we define the partition
by

Ga :=
{
i : jn

(
T j−h̃nxi

)
− jn

(
T jxi

)
= a

}
, a = 0, 1,

and the corresponding twisting transformation Sn. We consider J ′ := J−h̃n, σn := γJ ′
and σ′n := γJ , and we get (7.1) for any m-box B ⊂ Ωm, m 6 n.
Finally we consider the case when {1, 3} = {tn(T jxi) : i = 1, . . . , d} for j ∈ J .

Then, for j ∈ J \ {min J}, there are two options:
• either there exists i ∈ {1, . . . , d} with tn(T jxi) = 3, and jn (T jxi) −
jn
(
T j+h̃nxi

)
= 1 (we see one spacer above the third column for at least

one coordinate),
• or for each i ∈ {1, . . . , d} such that tn(T jxi) = 3, we have jn (T jxi) −
jn
(
T j+h̃nxi

)
= 0 (we see no spacer above the third column).

In the first option, we do the same construction as in the case {1, 2} ⊂ {tn(T jxi) :
i = 1, . . . , d}. In the second option, we observe that

jn
(
T jxi

)
− jn

(
T j+2h̃nxi

)
=

1 if tn(T jxi) = 1,
0 if tn(T jxi) = 3.

We then set J ′ := J + 2h̃n, and construct Sn, σn and σ′n as before.
Since we assume that there are infinitely many integers n with these proper-

ties, we can apply Proposition 5.7 to prove that σn → σ and σ′n → σ. Indeed, J
and J ′ are both contained in {−5hn, . . . , 5hn} which is contained in an n`-crossing.
Since J is a substantial n-crossing, we have ηhn 6 |J | = |J ′| 6 hn, and we have
γ{−5hn,...,5hn} −−−→n→∞

σ. Then Proposition 6.3 shows that σ can be decomposed as a
product of two Radon measures to which we can apply the induction hypothesis.
We are now reduced to study the case where, for each ` large enough and each

n`−1 6 n 6 n` − `, all substantial n-crossings are synchronized, but still there
exist infinitely many integers n for which at least one substantial n-crossing is not
synchronized.

TOME 2 (2019)



404 É. JANVRESSE, E. ROY & T. DE LA RUE

7.2. The case n` − ` < n < n` − k(`)

This case cannot be treated as the preceding one since, for such an n, we are
not sure any more that an interval around 0 and of size of order hn is completely
contained in an n`-crossing. Hence on such an interval, when the orbit of some xi
leaves Cn, it may stay out of Cn for a long time (up to hn`−k(`) + 1, which may be
much larger than hn).
The following lemma is introduced to remedy this problem.

Lemma 7.1. — For each large enough `, there exists an integer

ngood(`) ∈ {n` − k(`) + p1 + 2p2, . . . , n` − k(`) + p1 + 2p2 + d}

such that {hngood(`), . . . , 2hngood(`)} is contained in an n`-crossing.

Proof. — Assume that ` > maxi `(xi), and that n`−k(`)+p1+2p2+d < n`. We say
that the coordinate i ∈ {1, . . . , d} is bad for n if there exists some j ∈ {hn, . . . , 2hn}
such that T jxi /∈ Cn`

. We observe that if {hn, . . . , 2hn} is not contained in an
n`-crossing, then at least one coordinate is bad for n. To prove the lemma, it is
sufficient to show that for each i = 1, . . . , d, there is at most one n ∈ {n`−k(`)+p1 +
2p2, . . . , n`−k(`)+p1 +2p2 +d} for which i is bad. So assume that i is bad for some n
in this interval, and let j ∈ {hn, . . . , 2hn} such that T jxi /∈ Cn`

. The orbit of xi comes
back to Cn`

before j+hn`−k(`) +1, then stays in Cn`
on an interval of length hn`

. But
we have j+hn`−k(`)+1 < hn+1 and j+hn`

> 2hn`−k(`)+p1+2p2+d, hence i cannot be bad
for any n′ > n in the interval {n`− k(`) + p1 + 2p2, . . . , n`− k(`) + p1 + 2p2 + d}. �

Remark 7.2. — It follows from Proposition 5.7 that we have the following conver-
gence:

γ{hngood(`),...,2hngood(`)} −−−→`→∞
σ.

Indeed, this proposition applies where ` plays the role of `m − 1, ngood(`) is n(m),
{hngood(`), . . . , 2hngood(`)} is Jm, and {0, . . . , 2hngood(`)} is Im.
We will also need the following result, which will also be useful in the next section.

We consider here an integer n such that n` − ` < n 6 n` − k(`) for some `, and we
set n′ := n`−k(`). As in the proof of Lemma 5.1 we introduce the fake n′-tower, and
the fake n-tower that mimicks the structure of tower n inside tower n′. (Note that
this is possible as long as n 6 n′.) C̃n is the union of the levels of the fake n-tower,
and Cn := Cn t C̃n. Recall that jn indicates the level of tower n to which a point
in Cn belongs. We extend this definition to points in Cn: jn indicates the level of
tower n (possibly fake) to which a point in Cn belongs.

Lemma 7.3. — For each large enough `, for each n such that n`−` < n 6 n`−k(`),
for each integer r such that |rhn| < 10hn`

, for each i = 1, . . . , d, we have
• xi ∈ Cn and 4` < jn(xi) < hn − 1− 4`,
• T rhnxi ∈ Cn,
• jn(xi)− 4` 6 jn

(
T rhnxi

)
6 jn(xi) + 4`.
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Proof. — If ` − 1 > maxi `(xi) (cf. Lemma 2.4), we have xi ∈ Cn(`−2) ⊂ Cn for
i = 1, . . . , d. Moreover, xi is not in the first hundred occurrences of tower n(`−1)−(`−1)
inside tower n(`−1). Hence, as n`/`→∞ as `→∞, and remembering (2.5), we have
for ` large enough
jn(xi) > jn(`−1)(xi) > 100hn(`−1)−(`−1) > 100× 3n(`−1)−(`−1) > 100× 3n(`−2) > 4`.

By a symmetric argument, we also get for ` large enough jn(xi) < hn − 1− 4`.
We observe that, since |rhn| < 10hn`

, {−|rhn|, . . . , |rhn|} is contained in an n(`+1)-
crossing. Hence when the orbit of some coordinate leaves Cn on this interval, it
comes back after 0, 1, hn′ or hn′ + 1 iterations of the transformation. If we consider
the enlarged tower Cn instead of Cn, then T jxi comes back to Cn after 0 or 1
iteration of the transformation. Hence jn

(
T hnxi

)
∈ {jn(xi) − 1, jn(xi)}, and by a

simple induction we get jn
(
T rhnxi

)
∈ {jn(xi)−|r|, . . . , jn(xi)+ |r|}. The result then

follows from the fact that |r| < 4` (indeed, by hypothesis we have n > n` − `, hence
hn > 10hn`

/4` for ` large enough). �

Remark 7.4. — If, as in the case we are currently studying, we have the strict
inequality n < n` − k(`), then the number of occurrences of the fake n-tower inside
the fake n′-tower is a multiple of 3. So we can extend the function tn to a function
tn defined on Cn in such a way that, for each r such that |rhn| < hn`

and each
i = 1, . . . , d

tn
(
T rhnxi

)
= tn(xi) + r mod 3.

We consider now an integer n with n` − ` < n < n` − k(`) for some `, where ` is
large enough to apply the preceding lemmas, and we assume that there is at least
one substantial n-crossing which is not synchronized. With the assumption stated
at the end of Section 7.1, we can also assume that for each n(`−1) 6 m 6 n− 1, all
substantial m-crossings are synchronized. Then, as in the second part of the proof
of Proposition 3.17, we can construct inductively a family (Jm)n(`−1)6m6n where

• Jn(`−1) is a substantial n-crossing of length > (1− (d+ 2)η)hn(`−1) ;
• for each m > n(`−1), Jm is a substantial m-crossing extending Jm−1 and of
size |Jm| > hm − (d+ 2)ηhn(`−1) (see Remark 3.18).

In particular, the size of the n-crossing Jn satisfies |Jn| > hn − (d+ 2)ηhn(`−1) , and
we can assume that ` is large enough so that this implies |Jn| > (1− η/100)hn. Since
we assume that there is at least one substantial n-crossing which is not synchronized,
this ensures that Jn itself is not synchronized. Indeed, assume that there is another
substantial n-crossing J ′n which is not synchronized. Because the length of Jn is so
close to hn, the orbit of each coordinate has to pass through the top of tower n
between Jn and the other substantial n-crossing J ′n. But J ′n intersects In, hence the
distance between Jn and J ′n is less than hn. This shows that, for each i = 1, . . . , d,
tn(xi) increases by 1 mod 3 between the two substantial n-crossings. Then, as J ′n is
not synchronized, Jn itself is not synchronized.
Moreover, by Remark 2.6, the (n` − `)-crossing containing 0 covers the interval
{−100hn(`−1) , . . . , 100hn(`−1)}. In particular, it contains J(`−1) hence it is J(n`−`). As
Jn extends J(n`−`), this proves that Jn contains 0.
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Consider the set
R :=

{
r > 1 : Jn + rhn ⊂ {hngood(`), . . . , 2hngood(`)}

}
Since 2hngood(`) < hn`

, Lemma 7.3 applies to each r ∈ R. In particular, for each
r ∈ R and each i = 1, . . . , d we have T rhnxi ∈ Cn. But by choice of ngood(`), we also
know that T rhnxi ∈ Cn`

. Since Cn`
is disjoint from the fake n′-tower, T rhnxi /∈ C̃n,

and finally T rhnxi ∈ Cn. Let J̃n be the interval obtained by removing the first
4` elements of the n-crossing Jn. Then, by Lemma 7.3, we have 0 ∈ J̃n, and for
each r ∈ R, J̃n + rhn is contained in an n-crossing. Note that the size of J̃n is
> (1− η/100)hn − 4` > (1− η)hn.
By Remark 7.4, for each r ∈ R and each i = 1, . . . , d, we have tn(T rhnxi) =

tn(xi) + r mod 3. In particular, as Jn is not synchronized, for each r ∈ R, tn(T rhnxi)
takes at least 2 values as i varies. We define

r0 := min{r ∈ R : tn(T rhnxi) takes both values 1 and 2 as i = 1, . . . , d}.
We have minR 6 r0 6 minR + 2.
Now let us consider r such that both r and r + 1 are in R. For j ∈ J̃n, we want to

compare the position in tower n of T j+rhnxi and T j+(r+1)hnxi for each coordinate.
• If i is such that tn(T rhnxi) = 1, the orbit of xi will not pass through a
spacer between J̃n + rhn and J̃n + (r + 1)hn. Hence in this case we have
jn(T j+rhnxi)− jn(T j+(r+1)hnxi) = 0.
• If i is such that tn(T rhnxi) = 2, the orbit of xi will pass through one spacer
between J̃n+rhn and J̃n+(r+1)hn. Hence in this case we have jn(T j+rhnxi)−
jn(T j+(r+1)hnxi) = 1.
• If i is such that tn(T rhnxi) = 3, we have jn(T j+rhnxi) − jn(T j+(r+1)hnxi) ∈
{0, 1}, depending on the position of T rhnxi in the subsequent towers.

More precisely, in every case the value of jn(T j+rhnxi)−jn(T j+(r+1)hnxi) is determined
as follows: let m be the smallest integer, m > 0, such that tn+m(T rhnxi) 6= 3. Note
that n + m < n` since J̃n + rhn and J̃n + (r + 1)hn are contained in the same
n`-crossing. Then we have

(7.2) jn(T j+rhnxi)− jn(T j+(r+1)hnxi) =

0 if tn+m(T rhnxi) = 0,
1 if tn+m(T rhnxi) = 1.

The difficulty which arises here is that, when tn(xi) = 3, the value of this difference
may vary with r. This is why we need the following lemma.

Lemma 7.5. — There exists an integer s, 0 6 s < 3d−1, such that
• s = 0 mod 3,
• for each i = 1, . . . , d, there exists a smaller integer mi, 0 6 mi 6 d − 2,
satisfying tn+mi

(T (r0+s)hnxi) 6= 3.

Proof. — We first remark that for each i = 1, . . . , d and each m > 0, the map
r ∈ R 7→ tn+m(T rhnxi) has a very regular behaviour. Indeed, it is constant on
intervals of length 3m, and if both r and r + 3m are in R, we have
(7.3) tn+m(T (r+3m)hnxi) = tn+m(T rhnxi) + 1 mod 3.
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If
{
i ∈ {1, . . . , d} : tn(T r0hnxi) = 3

}
= ∅, we just have to set s := 0 and we get the

result with mi = 0 for each i. Otherwise, we consider

i1 := min
{
i ∈ {1, . . . , d} : tn(T r0hnxi) = 3

}
.

Then we choose s1 ∈ {0, 1, 2} such that tn+1(T (r0+3s1)hnxi1) = 1, which is possible
by (7.3). We note that replacing r0 by (r0 + 3s1) does not affect the values of the
tn(T rhnxi). Now, if

{
i ∈ {1, . . . , d} : tn+1(T (r0+3s1)hnxi) = 3

}
= ∅, we have the result

with s = 3s1. Otherwise, we set

i2 := min
{
i ∈ {1, . . . , d} : tn+1(T (r0+3s1)hnxi) = 3

}
.

(Note that i2 > i1.) Then we choose s2 ∈ {0, 1, 2} such that

tn+2(T (r0+3s1+9s2)hnxi2) = 1.

Again, replacing (r0 + 3s1) by (r0 + 3s1 + 9s2) does not affect the values of the
tn+m(T rhnxi), m = 0, 1.
We continue in this way until we have found s1, . . . , sk ∈ {0, 1, 2} such that, for

each i = 1, . . . , d, there exists m, 0 6 m 6 k such that

tn+m(T (r0+3s1+···+3ksk)hnxi) 6= 3.

Since the algorithm also produces an strictly increasing sequence i1 < i2 < · · · in
{1, . . . , d}, we are guaranteed that it will stop in k 6 d steps. Moreover, since the
sequence i1 < · · · < ik contains no i such that tn(T r0hnxi) ∈ {1, 2}, we have in fact
k 6 d−2. We then get the announced result by setting s := 3s1+· · ·+3ksk 6 3d−1. �

Figure 7.1. The choice of J and J ′ when n` − ` < n < n` − k(`)

Now, with s defined in Lemma 7.5, we set

R1 := {r ∈ R : (r + 1) ∈ R and r = r0 + s mod 3d−1}.

Observe that R1 6= ∅, as R is an interval of size

|R| > bhngood(`/hnc > 3ngood(`)−n > 3p1 > 3d.

Recall that for each 0 6 m 6 d − 2, and each i = 1, . . . , d, the map r ∈ R 7→
tn+m(T rhnxi) is 3d−1-periodic. Hence, by choice of s, for each i = 1, . . . , d the differ-
ence

jn(T j+rhnxi)− jn(T j+(r+1)hnxi)
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depends neither on j ∈ J̃n nor on r ∈ R1. Moreover, by choice of r0, this difference
takes both values 0 and 1 as i varies. Therefore we can construct the following
partition {1, . . . , d} = G0 tG1, where for a = 0, 1,

Ga :=
{
i : ∀ j ∈ J̃n,∀ r ∈ R1, jn(T j+rhnxi)− jn(T j+(r+1)hnxi) = a

}
,

Then we denote by Sn the corresponding twisting transformation. We also consider
the two disjoint subsets J and J ′ of {hngood(`), . . . , 2hngood(`)} defined by

J :=
⊔
r∈R1

J̃n + rhn, and J ′ := J + hn.

(See Figure 7.1) Then, as in Example 6.4, the measures σn := γJ and σ′n := γJ ′
satisfy (7.1) for each m-box B ⊂ Ωm, m 6 n.
Assuming the existence of infinitely many integers n with these properties, we can

apply Proposition 5.9 to prove that σn → σ and σ′n → σ. Indeed, J and J ′ are both
contained in {hngood(`), . . . , 2hngood(`)} which is contained in an n`-crossing. They both
have the structure required in the assumptions of this proposition, with M = 3d−1.
Moreover, we also know by Remark 7.2 that γ{hngood(`),...,2hngood(`)} −−−→n→∞

σ.
Then Proposition 6.3 shows that σ can be decomposed as a product of two Radon

measures to which we can apply the induction hypothesis.
We are now reduced to study the case where, for each ` large enough and each

n`−1 6 n < n` − k(`), all substantial n-crossings are synchronized, but still there
exist infinitely many integers n for which at least one substantial n-crossing is not
synchronized.

7.3. The case n = n` − k(`)

We consider now an integer n of the form n = n`−k(`) for some `, where ` is large
enough. We assume that there is at least one substantial n-crossing which is not
synchronized, and also that for each n(`−1) 6 m 6 n− 1, all substantial m-crossings
are synchronized. Then, as in Section 7.2, we prove that the n-crossing Jn containing
0 is of size |Jn| > (1− η/100)hn, and is not synchronized. We also define J̃n ⊂ Jn as
in the previous section: J̃n contains 0 and |J̃n| > (1− η)hn.
We still work with the fake tower n, as introduced before Lemma 7.3 which is still

valid in this case. The new difficulty here is that we cannot anymore extend tn to Cn.
We consider integers r with 0 6 r 6 10d, and we assume that ` is large enough so

that k(`) > 10d, thus 10d < hn`
/hn and the results of Lemma 7.3 are valid for these

integers r. In particular, for each such r, either J̃n+rhn is contained in an n-crossing
(we then say that r corresponds to a true n-crossing), or there is one coordinate xi
such that T rhnxi is in the fake tower n C̃n (in this case we say that r corresponds to
a fake n-crossing). Observe that for each i = 1, . . . , d, there is at most one integer
r, 0 6 r < bhn`

/hnc, such that T rhnxi is in the fake tower n. Indeed, as everything
takes place in a single Cn(`+1)-crossing, when the orbit of xi leaves Cn`

, it comes back
to Cn`

after at most hn + 1 units of time, and then stays in Cn`
for hn`

units of time.
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If both T rhnxi and T (r+1)hnxi are in Cn, then tn(T (r+1)hnxi) = tn(T rhnxi)+1 mod 3.
If T rhnxi is in the fake tower n, then T (r−1)hnxi and T (r+1)hnxi are in Cn, and we
have tn(T (r−1)hnxi) = 3, and tn(T (r+1)hnxi) = 1.
With these facts in mind, we can prove the following lemma.

Lemma 7.6. — There exist two consecutive integers, −2 6 r < r + 1 6 10d,
such that

• J̃n + rhn is contained in an n-crossing,
• J̃n + (r + 1)hn is contained in an n-crossing,
•
{
i ∈ {1, . . . , d} : tn(T rhnxi) = 1

}
6= ∅,

•
{
i ∈ {1, . . . , d} : tn(T rhnxi) = 2

}
6= ∅.

Proof. — There is at most d integers r, 0 6 r 6 10d, such that J̃n+rhn corresponds
to a fake n-crossing (indeed, each coordinate can be responsible for only one r for
which this property fails). Hence there is a smaller integer r0, 0 6 r0 6 10d− 2, such
that r0, (r0 + 1), (r0 + 2) and (r0 + 3) correspond to true n-crossings.
If r0 = 0, since Jn is not synchronized, there are two coordinates xi1 and xi2 such

that tn(xi1) 6= tn(xi2). If {tn(xi1), tn(xi2)} = {1, 2}, we just have to take r = 0. If
{tn(xi1), tn(xi2)} = {1, 3}, we set r = 1, and if {tn(xi1), tn(xi2)} = {2, 3}, we set
r = 2. In all these cases we get

{tn(T rhnxi1), tn(T rhnxi2)} = {1, 2}.

If r0 > 0 and the n-crossing containing r0hn is not synchronized, then we can
proceed as in the previous case, replacing 0 by r0.
If r0 > 0 and the n-crossing containing r0hn is synchronized, then by definition of

r0, (r0 − 1) corresponds to a fake n-crossing, hence there is at least one coordinate
xi1 such that tn(T r0hnxi1) = 1. Since the corresponding n-crossing is assumed to be
synchronized, we have tn(T r0hnxi) = 1 for each i = 1, . . . , d. We also observe that
there exists at least one coordinate xi2 such that T (r0−1)hnxi2 ∈ Cn. Indeed, otherwise
all coordinates would be in the fake n-tower at the same time, and this would imply
that the n-crossing Jn containing 0 is synchronized. Now we take r := r0 − 3. Then
for each coordinate xi such that T (r0−1)hnxi ∈ Cn, we have tn(T rhnxi) = 1, and for
each coordinate xi such that T (r0−1)hnxi /∈ Cn, we have tn(T rhnxi) = 2. �

Now, with r provided by Lemma 7.6, we consider the two measures σn := γJ̃n+rhn

and σ′n := γJ̃n+(r+1)hn
(see Figure 7.2). We can show by the same argument as in

Section 7.1 that there exists a twisting transformation Sn such that (7.1) holds
whenever B is an m-box in Ωm for some m 6 n.
Finally, if we have infinitely many integers n to which the above arguments apply,

Proposition 5.7 shows that σn −−−→
n→∞

σ and σ′n −−−→n→∞
σ. Then Proposition 6.3 shows

that σ can be decomposed as a product of two Radon measures to which we can
apply the induction hypothesis.
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Figure 7.2. The three possible cases for the choice of the measures σn and σ′n
when n = n` − k(`). Here the orbit of the coordinate xi1 is in the fake Rokhlin
tower C̃n on the interval J̃n + (r0 − 1)hn, whereas on the same interval the orbit
of the coordinate xi2 is in Cn.

7.4. The case n` − k(`) < n < n`

It only remains now to study the case where, for each ` large enough and each
n`−1 6 n 6 n` − k(`), all substantial n-crossings are synchronized, but still there
exist infinitely many integers n for which at least one substantial n-crossing is not
synchronized.
We consider now an integer n with n` − k(`) < n < n` for some large `, and we

assume that there is at least one substantial n-crossing which is not synchronized.
We can also assume that for each n(`−1) 6 m 6 n − 1, all substantial m-crossings
are synchronized. Then, as in Section 7.2, we construct a family (Jm) of intervals,
n`−1 6 m 6 n, where Jm is the m-crossing containing 0, and is of size |Jm| >
hm− (d+2)ηhn(`−1) . We set n′ := n`−k(`). We have |Jn′| > (1−η/100)hn′ , provided
` is large enough.
As in Section 7.3, we apply Lemma 7.3 for n′. We consider all integers r > 0 such

that rhn′ 6 4hn: each such integer r corresponds either to a true n′-crossing (if for
each i = 1, . . . , d, T rhn′xi ∈ Cn′), or to a fake n′-crossing (if there exists i such that
T rhn′xi ∈ C̃n′). If T rhn′xi ∈ Cn′ , then we can consider tn′(T rhn′xi) which evolves
according to the rules stated in Section 7.3. We can even precise a little bit more
these rules by considering also the position of T jxi relatively to tower n: If T rhn′xi
is in the fake tower n′, then T (r−1)hn′xi and T (r+1)hn′xi are in Cn′ ⊂ Cn, and we have
tn′(T (r−1)hn′xi) = tn(T (r−1)hn′xi) = 3, and tn′(T (r+1)hn′xi) = tn(T (r+1)hn′xi) = 1.
Let us first consider the case where each 0 6 r 6 b4hn/hn′c corresponds to a true

n′-crossing. Then the interval {0, . . . , 4hn} is contained in a single n`-crossing. We
denote by J̃n the interval obtained by removing from Jn its first 3 points. Then,
as in the proof of Lemma 7.3, we prove that 0 ∈ J̃n, and that the intervals J̃n,
J̃n + hn, J̃n + 2hn, J̃n + 3hn are each contained in some n-crossing. Since Jn is not
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synchronized, we show by similar arguments as in the proof of Lemma 7.6 that for
some s ∈ {0, 1, 2},

{1, 2} ⊂
{
tn(T shnxi) : i = 1, . . . , d

}
.

Then we construct the measures σn := γJ̃n+shn
and σ′n := γJ̃n+(s+1)hn

: by similar
arguments as before, we construct a twisting transformation Sn such that (7.1) holds
whenever B is an m-box in Ωm for some m 6 n. If this can be done for infinitely
many integers n, then Proposition 5.7 shows that σn −−−→

n→∞
σ and σ′n −−−→n→∞

σ. Then
Proposition 6.3 shows that σ can be decomposed as a product of two Radon measures
to which we can apply the induction hypothesis.
Now we consider the case where there exists some r, 1 6 r 6 b4hn/hn′c, which

corresponds to a fake n′-crossing. This case is illustrated on Figure 7.3. We define r0 as
the smallest integer with this property. Then we know that there exists i ∈ {1, . . . , d}
such that T r0hn′xi ∈ C̃n′ . Each such i is called an outgoing coordinate. Note that
for each outgoing coordinate i, we have for each n′ 6 m 6 n tm(T (r0−1)hn′xi) = 3
(indeed, the orbit of the outgoing coordinate has to reach the top of tower m before
leaving Cn`

).

Figure 7.3. The behaviour of tn′ along the orbits of outgoing and non-outgoing
coordinates

We also observe that, since the interval {0, . . . , (r0 − 1)hn′} is contained in an
n`-crossing, we have for each i1, i2 ∈ {1, . . . , d}, each 0 6 r 6 r0 − 1 and each
n′ 6 m 6 n

(7.4) tm(T rhn′xi1)− tm(T rhn′xi2) = tm(xi1)− tm(xi2).
For n′ 6 m < n, the above difference vanishes. Hence, we have tm(T (r0−1)hn′xi1) =
tm(T (r0−1)hn′xi2) for each i1, i2. Taking into account the outgoing coordinates, we see
that for each i = 1, . . . , d, tm(T (r0−1)hn′xi) = 3. This proves that at time (r0 − 1)hn′ ,
each coordinate is in the last occurrence of tower n′ inside tower n.
Now, since the n-crossing Jn containing 0 is not synchronized, there exist i1, i2

such that the difference in (7.4) does not vanish for m = n, and this implies that
there exist some i ∈ {1, . . . , d} such that tn(T (r0−1)hn′xi) 6= 3. In particular such an i
is not an outgoing coordinate. At time r0hn′ , the orbit of a non-outgoing coordinate
is in the first occurrence of tower n′ inside tower n. When r runs over the set
R := {r0, . . . , r0 + 3n−n′−1}, we get that for each non-outgoing coordinate i, T rhn′xi

TOME 2 (2019)



412 É. JANVRESSE, E. ROY & T. DE LA RUE

successively belongs to successive occurrences of tower n′ inside tower n, and we
have tn′(T rhn′xi) = r − r0 + 1 mod 3.
On the other hand, if i is an outgoing coordinate, the orbit of xi falls into the

first occurrence of tower n′ inside tower n only at time (r0 + 1)hn. And we have, for
r ∈ R \ {r0}, tn′(T rhn′xi) = r − r0 mod 3.
Set R1 := {r ∈ R : r − r0 = 1 mod 3}. Then R1 6= ∅ because n > n′, and for

r ∈ R1, we have

tn′(T rhn′xi) =

1 if i is an outgoing coordinate,
2 otherwise.

Let J̃n′ be the interval obtained after removing the first 4` points from Jn′ , and set
J := ⊔

r∈R1 J̃n′ + rhn′ , J ′ := J + hn′ , and let I be the smallest interval containing J
and J ′. Then J and J ′ have inside I the structure required in Proposition 5.9, with
M = 3. We consider the two measures σn := γJ and σ′n := γJ ′ . Then there exists a
twisting transformation Sn, defined from the partition of {1, . . . , d} into outgoing
and non-outgoing coordinates, such that (7.1) holds whenever B is an m-box in Ωm

for some m 6 n′.
If we have infinitely many integers n for which the above construction is possible,

then Proposition 5.7 ensures that γI −−−→
n→∞

σ, then Proposition 5.9 yields σn −−−→
n→∞

σ

and σ′n −−−→n→∞
σ. Finally, Proposition 6.3 shows that σ can be decomposed as a

product of two Radon measures to which we can apply the induction hypothesis.
This concludes the proof of Theorem 3.10.

8. Further properties and a question

We now provide some direct consequences of our main result on the commutant
and factors of the nearly finite Chacon transformation T . The proof of the follow-
ing proposition is directly derived from Section 5 of [JRdlR18] (see in particular
Remark 5.7 therein).
Proposition 8.1. —
• If S is an invertible µ-preserving transformation of X commuting with T ,
then S = T k for some k ∈ Z.
• If π : (X,µ, T )→ (Y, ν,R) is a factor map to another invertible, σ-finite mea-
sure preserving dynamical system (Y, ν,R), then π is in fact an isomorphism
between the two systems.

For some applications in the study of Poisson suspensions developed in [JRdlR17],
we also need an extra property which is the existence of a measurable law of large
numbers.
Definition 8.2. — Ameasurable law of large numbers for a conservative, ergodic,

measure preserving dynamical system (X,A , µ, T ) is a measurable function L :
{0, 1}N → [0,∞] such that for all B ∈ A , for µ-almost every x ∈ X,

L (1B(x),1B(Tx), . . .) = µ(B).
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Definition 8.3. — A conservative, ergodic, measure preserving dynamical sys-
tem (X,A , µ, T ) is rationally ergodic if there exists a set B ∈ A , 0 < µ(B) < ∞,
and a constant M > 0 such that, for any r > 1,∫

B

 ∑
06j6r−1

1B(T jx)
2

dµ(x) 6M

∫
B

∑
06j6r−1

1B(T jx) dµ(x)
2

.

According to Theorem 3.3.1 in [Aar97], a measurable law of large numbers exists
for T as soon as T is rationally ergodic.
Proposition 8.4. — The nearly finite Chacon transformation is rationally er-

godic, hence admits a measurable law of large numbers.

Proof. — In the cutting-and-stacking construction of the Nearly Finite Chacon
transformation, we always cut the tower into 3 subcolumns, hence T is rank one with
bounded cuts. But it is proved in [BSS+15, Theorem 2.3] that this property implies
that T is rationally ergodic. �
Let us finally mention the following observation. The original definition by

Rudolph [Rud79] of minimal self joinings for finite measure preserving transfor-
mations considered any ergodic T `1 × · · · × T `d-invariant measure on the d-fold
Cartesian product for `1, . . . , `d ∈ Z \ {0}. Although the terminology which was
finally adopted refers only to T⊗d-invariant measures, it is nevertheless interesting
to consider the action of T `1 × · · · × T `d . In the context of the nearly finite Cha-
con transformation, we can then ask whether there exists, for some d and some
`1, . . . , `d ∈ Z \ {0}, an ergodic T `1 × · · · × T `d-invariant measure (say, supported on
Xd
∞) different than those described in the statement of Theorem 3.10.
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