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Abstract. — We study some properties of the function KVol defined by

KVol(X, ω) := Vol(X, ω) sup
α,β

Int(α, β)
lg(α)lg(β)

on the moduli space of translation surfaces. For the Teichmüller discs Tn of the original Veech
surfaces arising from the right-angled triangles (π/2, π/n, (n − 2)π/2n) for odd n ⩾ 5, we
establish the first known explicit formula for KVol (beyond the case of the moduli space of
flat tori).

Résumé. — On étudie la fonction KVol sur les espaces de modules de surfaces de translation
définie par

KVol(X, ω) := Vol(X, ω) sup
α,β

Int(α, β)
lg(α)lg(β) .

En particulier, sur les disques de Teichmüller Tn des surfaces de Veech associées au billard dans
les triangles (π/2, π/n, (n − 2)π/2n) pour n impair ⩾ 5, nous donnons la première formule
explicite connue pour KVol (en dehors du cas des espaces de modules de tores plats).
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1. Introduction
Our objects of study are translation surfaces and their geodesics. These structures

arise in the study of rational polygonal billiards and more generally in Teichmüller
dynamics. This paper focuses on computing relations between lengths of geodesics
and their intersections on those surfaces.

1.1. Motivation and results

For any closed (meaning compact, connected, without boundary) oriented surface
X, the algebraic intersection endows the first homology group H1(X,R) with a
symplectic bilinear form denoted Int(·, ·). When X is endowed with a Riemannian
metric g (possibly with singularities), one can ask the following question: how much
can two curves of a given length intersect? Namely, what is

(1.1) KVol(X) := Vol(X, g) · sup
α,β

Int(α, β)
lg(α)lg(β) ,

where the supremum ranges over all piecewise smooth closed curves α and β in X,
and lg(·) denotes the length with respect to the Riemannian metric. It is readily seen
that multiplying by the volume Vol(X, g) makes the quantity invariant by rescaling
the metric g. This function is well defined, finite (see [MM14]) and continuous in the
metric.

Recent work [CKM21a, CKM21b] provides estimates of KVol on Teichmüller curves
of some square-tiled translation surfaces (X, ω). In this paper we shed some light
into the case of non-square-tiled surfaces, namely we investigate the family of Veech
surfaces [Vee89], obtained for odd n ⩾ 5 by gluing opposite sides of two copies of
a regular n-gon. The associated Teichmüller curve Tn is canonically identified with
H2/Γn, where Γn is the Hecke triangle group of signature (2, n, ∞) (see Section 2
and Section 4). In this context, we establish the first known explicit formula for
KVol (beyond the case of the moduli space of flat tori, see [MM14]).

Theorem 1.1. — For any odd integer n ⩾ 5, and any (X, ω) ∈ Tn,

KVol(X, ω) =
n
2 cot π

n
· 1

sin π
n

cosh dhyp(X, γ0,∞) ,

where γ0,∞ is the hyperbolic geodesic in H2 with endpoints 0 and ∞.
In particular KVol is real analytic on Tn except along the geodesic with endpoints

cos π
n

and ∞.
Remark 1.2. — The quantity KVol appears naturally in the comparisons between

the stable norm ∥ · ∥s and the Hodge norm. More precisely (see [Mas96, MM14]):

∥ · ∥s ⩽
√

Vol(M, g)∥ · ∥Hodge ⩽ KVol(M, g)∥ · ∥s

The upper bound is sharp. There is a nice interpretation of KVol, as the solution
to a geometric optimisation problem: what is the largest area, with respect to the
symplectic intersection form, of a parallelogram inscribed in the unit ball of the
stable norm?
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1.2. Context and history

While KVol is a close cousin of the systolic ratio supα
Vol(X,g)

lg(α)2 , very little is known
on the function KVol. For any Riemannian surface (X, g), we have KVol(X, g) ⩾ 1,
and equality holds if and only if (X, g) is a flat torus [MM14]. Almost all of the
obvious questions about KVol on hyperbolic surfaces are currently open.

In this paper we propose to continue the study of KVol as a function on the
moduli space of translation surfaces, originally initiated by the third named author
in [CKM21a, CKM21b]. Translation surfaces are rich objects that may be seen from
many different angles. In our context, we will use the definition in terms of Euclidean
polygons. Informally we will consider translation surfaces as objects constructed by
gluing polygons along parallel sides of the same length using translations. More
formally, if P is a (finite set of) Euclidean polygon(s), we say that h is a pairing of
the edges E(P ) if every e ∈ E(P ) is mapped to h(e) by a translation τe, such that
τe sends the unit vector normal to e (pointing toward the interior of P ) to the unit
vector normal to h(e) (pointing toward the exterior of P ). After identifications of e
with τe(e), we will say that the quotient X is a (possibly non connected) translation
surface, with polygonal representation P and pairing h.

In this paper the polygons we will mainly consider are pairs of regular n = 2m + 1-
gons, glued by one side, with “obvious” opposite sides identified, see Figure 2.1. The
translation surface we obtain will be denoted by X0 and will be referred to as the
double regular n−gon.

A translation surface inherits the metric of the Euclidean plane everywhere but
(possibly) at the images of the vertices of P (called the singularities). In particular,
the geodesics may be viewed as straight lines, until they hit a singularity. Geodesic
trajectories that start and end at a singularity (not necessarily the same) are referred
to as saddle connections. In particular, although geodesics on X are piecewise straight
lines, they can be quite complicated as they may be unions of saddle connections with
different directions. In fact, every closed curve on a translation surface is homologous
to a union of saddle connections, which can be chosen so as to minimize the length
in its homology class.

Remark 1.3. — In this paper, as in [CKM21a], we get major help from the fact
that the surface has only one singularity, so every saddle connection is closed. By a
convexity argument, this means that in (1.1) we may take the supremum over pairs
of saddle connections.

In [CKM21a], KVol is studied for ramified covers of the torus (or arithmetic
Teichmüller curves). It is proved in [CKM21a] that KVol, defined on the Teichmüller
curve of the surface tiled with three squares, is unbounded, but it does have a
minimum, achieved at a surface, unique modulo symmetries, and otherwise fairly
undistinguished. The interesting surfaces, i.e. the three square surfaces, and the
surface tiled with six equilateral triangles, are local maxima, with KVol = 3, where
3 should be thought of as the ratio of the total area of the surface, to the area of the
smallest cylinder of closed geodesics. The local maxima are not locally unique, they
come in hyperbolic geodesics, in the Teichmüller curve viewed as a quotient of the
hyperbolic plane by a Fuchsian group.
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1.3. KVol on non arithmetic Teichmüller curves

The fundamental ingredient for the study of the dynamics of the translation flow
on a surface is the natural action of the group GL(2,R) on the moduli space of the
set of all translation surfaces having the same genus (the action is given by the linear
action on the polygons defining the translation surface). Since KVol is constant along
any SO(2,R)-orbit, we will naturally consider KVol as a function on the quotient

T = SO(2,R)\SL(2,R) · X = H2/Stab(X)
(see Section 4 for details). Throughout this paper we restrict our attention to the case
where T has finite volume, or equivalently SL(X) := Stab(X) is a lattice in SL(2,R).
We will say that X is a Veech surface. As discussed above, the simplest source of
Teichmüller curves is the torus covers. From Theorem 1.1, we deduce the following
more precise statement for the non-square-tiled surfaces obtained by Veech [Vee89].

Corollary 1.4. — For odd integer n ⩾ 5, let Tn be the Teichmüller curve of
the double regular n−gon. For any X ∈ Tn the following holds

n

2 cot π

n
⩽ KVol(X) ⩽ n

2 cot π

n
· 1

sin π
n

.

Moreover the bounds are sharp and:
(1) The maximum of the function KVol on Tn is achieved, precisely, along γ0,∞,

that is, by images of the right-angled staircases under the Teichmüller geodesic
flow (see Figure 2.1).

(2) The minimum of the function KVol on Tn is achieved, uniquely, at X0.
Finally, in the definition of KVol, the supremum is achieved by pairs of curves that
are (images of) pairs of sides of the double regular n−gon.

Remark 1.5. — The case of the regular 4m-gon, which is combinatorially more
complicated, is dealt with in [Bou23a].

One of the reasons it is more complicated is that on the staircase model associated
with the regular 4m-gon KVol is both achieved as the ratio Int(α,β)

l(α)l(β) for a unique pair
(α, β) and the limit of the same ratio for a family of pairs of closed curves, whereas
on the staircase model associated with the double regular 2m+1-gon the maximizing
pair of curve wins by a large margin over any other pair of curves, and hence the
same pair of curves maximizes KVol for small deformations of the staircase of the
2m + 1-gon. This is due to the shape of cylinder decompositions. Also, the analog
of Proposition 6.1 is combinatorially more complicated and requires a more precise
estimation of the length of some saddle connections.

Remark 1.6. — Another notable consequence of Theorem 1.1 is that the supre-
mum in the definition of KVol, is actually a maximum, for every X ∈ Tn. This is not
a general fact about translation surfaces, not even about Veech surfaces, since it is
not the case for almost every flat torus [MM14]. However we suspect it might be the
case for Veech surfaces of genus larger than two, with the following heuristic argu-
ment. In a Veech surface, every direction is either completely periodic, or uniquely
ergodic [Vee89]. This means that if the supremum in (1.1) is not achieved by closed
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geodesics, it must be achieved, in a generalized sense, by a pair (α, β) where at
least one of α, β is an irrational foliation instead of a closed curve. But irrational
foliations, which are dense in a Veech surface, visit the whole surface, hence they
take up too much length, for what little intersection you can get out of them, to be
serious candidates to realize KVol.

Unlike the three-square surface case [CKM21a], KVol is bounded on the Teichmüller
discs of the double regular n−gon. In fact this holds for other Veech surfaces than
the double n−gon. Our second main result is the first step toward a classification of
GL(2,R)-orbits with bounded KVol.

Theorem 1.7. — KVol is bounded on the Teichmüller disc of a Veech surface
having only one singularity if and only if there are no parallel saddle connections
intersecting non trivially.

The first author proved a more general version of Theorem 1.7, which applies to
translation surfaces with several singularities, see [Bou23a, Bou23b]. As a corollary,
we obtain

Theorem 1.8. — If X is a genus two surface with only one singularity, then the
function KVol is bounded on the Teichmüller disc of X if and only if X is a primitive
Veech surface i.e. X is not arithmetic.

In fact, the same discussion applies to the Teichmüller disc of surfaces in the Prym
eigenform loci in genus three and four (with one singularity, see [LN14]) by looking
at possible cylinder diagrams.

Remark 1.9. — Another difference with [CKM21a] is that the minimum of KVol
on Tn is achieved, uniquely, by the most interesting surface in the disc, namely
the double n−gon. On the other hand, similarly to the three-square case, the local
maxima, which are also global maxima, are achieved along hyperbolic geodesics in
the Teichmüller disc, which correspond to surfaces with a right-angled template,
see Figure 2.1.

1.4. Strategy for the proof of Theorem 1.1

One of the main reasons why KVol is complicated to compute is that the set of
curves on a surface is hard to grasp. For translation surfaces, this is also the case:
saddle connections can be very complicated. However saddle connections come in
families, given by the SL(2,R)-action. Remarkably, for Veech surfaces, as observed
in [Vee89], directions of saddle connections correspond to the cusps of the correspond-
ing Teichmüller curve. Even more specifically, in our situation, the double n-gons,
the fundamental domains of the associated Veech groups have a simple shape, with
only one cusp (see Figure 2.2) and simple identification patterns on the boundary.
This also implies that all cylinder decompositions look the same up to the action of
SL(2,R). These reasons explain why the family of double n-gons is amenable to the
computation of KVol.
We know briefly explain the main steps of the proof.
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• We first compute KVol on the right angled staircases of the Teichmüller disks:
for any (closed) saddle connection α, one decomposes the surface into cylinders
in the direction of α. This gives a bound on the ratio Int(α, β)/l(α)l(β)
for any saddle connection β, see Proposition 5.3. On the staircase model
associated to the double regular n-gon, this bound is achieved (uniquely) by
the pair of systoles, intersecting once (Remark 5.4). However, for surfaces in
the Teichmüller disk that are not right angled, the bound is not attained, and
we need to refine our interpretation of KVol: this is done in Section 4 and
Section 5, and the main result is Proposition 5.1.

• Then, we compute KVol on the double regular n-gon. We use a completely
different method: given two saddle connections α and β, we subdivide them
into shorter (non-closed) segments for which we can control both the length
and the number of intersection points. This is the content of Section 6.

• Finally, we relate the pairs of curves that achieve the supremum in the
definition of KVol on the right angled staircases and the double regular n-gon
using the action of SL(2,R). This is done using the formalism of Section 4
and Section 5, and we show in Section 7 how to interpolate between the
double regular n-gon and the right angled staircase. This step relies on the
fact that the fundamental domain for the Veech group of the double regular
n-gon has a simple shape, so that we can make explicit computations.

1.5. Organization of the paper

In Section 2 we recall prerequisites on translation surfaces, Veech groups, Veech
surfaces, and we describe the right-angled staircase models for our surfaces. In
Section 3 we explain why KVol is bounded on some Teichmüller curves. In Section 4
and Section 5 we explain how to interpret KVol geometrically, in terms of hyperbolic
distance on the Teichmüller curve (identified with a quotient of H2 by a Fuchsian
group), and we give an upper bound for KVol on the Teichmüller curve. In particular
this proves that the maximum is achieved by the staircase surfaces.

Note that the results of Section 4 as well as Proposition 5.1 are not specific to the
Teichmüller curve of the double regular n−gon.

In Section 6 we perform the first main step of the proof: we compute KVol for the
double n-gon, by a geometric method, carefully looking at how saddle connections
intersect depending on their directions.

In Section 7 we perform the second main step of the proof: we interpolate, by
analytical methods, between the double n-gon and the staircase surfaces, thus proving
that the minimum is achieved, uniquely, by the former.
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2. Double n−gons and staircase models

This section collects background material on the flat geometry of the double
n−gons. We assume that the reader is familiar with basic notions about flat geometry,
such as the GL(2,R)-action and Veech groups and Teichmüller curves. General
references for this include the surveys [Mas22, Wri16, Zor06].

2.1. Preliminaries

Let X be a translation surface. We denote the holonomy vector of a saddle connec-
tion α on X by −→α =

∫
α ω ∈ R2. By abuse of notation we will often confuse −→α with

α. We have l(α) = ∥−→α ∥. A horizontal cylinder C(w, h) is an euclidean annulus of the
form [0, w] × (0, h)/(0, x) ∼ (w, x). The parameters w and h are called, respectively,
circumference and height of the cylinder. An open subset C ⊂ X is called a cylinder
in direction θ if eiθC is isomorphic to C(w, h) for some parameters w, h. We will say
that w and h are the circumference and height of C. The modulus of the cylinder is
the ratio h/w.

The action of SL(2,R) on moduli spaces provides a powerful tool to study the
dynamics of the translation flow on X. On the level of surfaces, any A ∈ SL(2,R)
induces an affine homeomorphism f : X → A · X such that the derivative map Df
of f equals A.

Remark 2.1. — Since f is affine, it maps saddle connections of X to saddle
connections of A · X. Observe also that orientation-preserving homeomorphisms of
surfaces preserve the intersection form.

We denote by Aff(X) (respectively Aff+(X)) the group of affine (respectively,
orientation preserving) homeomorphisms of X, that is the group of affine homeo-
morphisms from X to itself. The derivative map provides a homomorphism from
Aff+(X) to GL+(2,R). Its range coincides with the Veech group SL(X) of X.

2.2. The staircase model for the double n−gon

In this section, we review the flat geometry of the Veech examples [Vee89], and
their different models. The constructions below are contained in [Hoo13, Mon05]
and [FL23, Section 6.6.1]).

Originally, for n ⩾ 3, the Veech examples come from the unfolding construction
of the right-angled triangles with angles (π/2, π/n, (n − 2) · π/2n). We denote the
associated surface by X0.

• If n ⩾ 8 is even then X0 is the quotient of the regular n−gon (with radius
1) by gluing obvious opposite sides by translation. The genus of X0 is ⌊n/4⌋.
Moreover, if n ≡ 0 mod 4 then X0 has a unique singularity, otherwise it has
two singularities of the same degree.

• If n ⩾ 5 is odd, then X0 is the quotient of the double of the regular n−gon
(with radius 1) by gluing obvious opposite sides by translation. It has a unique
singularity and genus (n − 1)/2.

TOME 7 (2024)



794 J. BOULANGER, E. LANNEAU & D. MASSART

As mentioned in the introduction we will focus on the latter case and in the sequel
we will assume n = 2m + 1 is an odd integer.

The double n-gon X0 has a staircase model S0 in its GL(2,R)-orbit, drawn in
Figure 2.1 and described in [Hoo13] or [Mon05] (see also [Vee89, §5] or [Bou22]).
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Figure 2.1. Above, the double (2m + 1)−gon X0 is cut into 2(2m − 1) triangles,
which are re-arranged into a slanted stair-shape, whose slanted sides are then
rotated and sheared to create the right-angled stair-shape S0. Below, a stair-
case model S0 for X0 (n = 2m + 1), for m = 2, 3, 4, with saddle connections
(αi, βi)i=1, ..., m. The surface S0 for m = 2 is usually shown rotated by 180 degrees,
as the golden L (see [DFT11, DL18]).

Specifically, the staircase surface S0 is made from a chain of n − 2 rectangles
R1, . . . , Rn−2 where the sides of Rk are identified to the sides of Rk+1 and Rk−1.
The horizontal sides of Rn−2 (resp. the vertical sides of R1) are identified together.
In particular, for k = 2, . . . , n − 2, the union of the rectangles Rk−1 and Rk is
a horizontal cylinder whose core curve is homologous to the union of the saddle
connections αk and αk−1. Its vertical boundary is βm−k+1. With the notations of
Figure 2.1, the lengths of saddle connections satisfy the equations

(2.1) l(αk) = l(βk) = sin 2kπ

n
, for any k = 1, . . . , m,

and in particular one easily computes:

(2.2) Vol(S0) = n

2 cos π

n
.

The surface S0 is decomposed into m horizontal cylinders. In order to exhibit the
Veech group and a fundamental domain, one needs to compute the moduli of the m
horizontal cylinders of S0.
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For k = 1, . . . , m, the core curve of the kth cylinder of S0 is given by αk−1 + αk

(with the dummy condition α0 := 0), and its height is βm−k+1. It is easily seen that
all moduli are the same and equal to

height
width =

sin 2(m−k+1)π
n

sin 2(k−1)π
n

+ sin 2kπ
n

=
sin (2k−1)π

n

2 sin 2(k−1+k)π
2n

cos 2(k−1−k)π
2n

= 1
2 cos π/n

.

From this knowledge, we can apply the Thurston–Veech construction, and obtain
an affine homeomorphism of S0 whose derivative map (outside the singularity) is
a parabolic element of SL2(R). More precisely the affine homeomorphism acts as a
Dehn twist in each horizontal cylinder Rk for k = 1, . . . , n − 2.

2.3. Veech group and fundamental domain

In this section, we describe the Veech group of S0. For n ⩾ 3, we denote by Γn the
Hecke triangle group of level n (or signature (2, n, ∞)) generated by

T =
(

1 Φn

0 1

)
and R =

(
0 −1
1 0

)
, setting Φn = 2 cos π

n
.

In the following we will simply use the notation Φ for Φn. It follows from [Vee89]
that the Veech group of S0 coincides with Γn.

The group Γn, acting on the hyperbolic plane H2, has a fundamental domain D
depicted in Figure 2.2. It is comprised between the vertical geodesics with abscissae
−Φ/2 and Φ/2, and the geodesic with endpoints ±1. In the fundamental domain
the staircase model S0 is represented by the point i, while X0 corresponds to the
lower corners of D (the intersection between a vertical boundary and the circular
boundary).

D

X0

S0

0− Φ
2 Φ

2

Figure 2.2. A fundamental domain D of the Veech group of the staircase model
of the double regular (2m + 1)-gon, along with its reflection in the geodesic
(−1, 1).
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3. Boundedness of KVol on Teichmüller discs

In this section we consider translation surfaces with only one singularity.
Before studying the maximum of KVol on Teichmüller discs, we prove Theorem 1.7

which gives a criterion to ensure that it is indeed a bounded function. We conclude
this section with a proof of Theorem 1.8.

To begin with, observe that if there are two parallel saddle connections α, β on X
having non trivial intersection, then applying the Teichmüller geodesic flow in the
orthogonal direction of α, β, we get for all t > 0

KVol(gtX) ⩾ 1
e−2t|α∥β|

.

Thus KVol is not bounded on the Teichmüller disc of X. Actually, this remark applies
to a large class of translation surfaces (of genus at least two): those decomposed into
a single metric cylinder, as we will see below.

Before proving Theorem 1.7, we recall the notion of the angle of a horizontal
saddle connection on a surface whose horizontal foliation has only closed leaves.
The union of all (horizontal) saddle connections and the singularity defines a finite
oriented graph. Orientation on the edges comes from the canonical orientation of
the horizontal foliation. At the singularity p the directions of saddle connections
attached to p alternate between incoming and outgoing as we follow the clockwise
order. For a saddle connection γ one can count the number of different sectors
between the two directions it determines. This gives an angle (2k + 1)π well defined
modulo 2(2m−1)π. Observe that if γ has angle π then it is the boundary of a metric
cylinder embedded into the surface.

Lemma 3.1. — Let X be a translation surface with only one singularity. If X has
a cylinder decomposition all of whose boundary saddle connections have pairwise
trivial intersection, then there is a saddle connection with angle π. In particular if
X has a one cylinder decomposition and genus(X) > 1 then there are two parallel
saddle connections intersecting non trivially.

For a more general statement, see [Bou23b, Théorème D, Theorem 5.1.5].
Proof of Lemma 3.1. — We consider a saddle connection γ having the smallest

angle (2k + 1)π at p (see Figure 3.1). Assume k > 0. Then γ determines 2k + 1
sectors and so 2k saddle connections β1, . . . , β2k. Since the angle of γ is minimal,
no βi can begin and end inside the sector of angle (2k + 1)π cut by γ. Therefore the
intersection of βi with γ is non trivial for every i = 1, . . . , k.

□

From this observation and the fact that one-cylinder surfaces are dense, we imme-
diately deduce that KVol is not bounded on any connected component of the moduli
space of translation surfaces of genus m ⩾ 2, with a single singularity. Similarly,
since KVol is a continuous function, it is not bounded on the Teichmüller disc of a
generic (with respect to the Masur–Veech measure) surface X. Veech surfaces are ex-
ceptionally symmetric translation surfaces and are not generic if m ⩾ 2. Theorem 1.7
deals with those surfaces.

ANNALES HENRI LEBESGUE



Algebraic intersection 797

γ
β1

β2

Figure 3.1. A separatrix diagram of a genus 4 surface. The singularity p has
conical angle 10π and γ has angle 3π (or 7π modulo 10π).

Proof of Theorem 1.7. — As already mentioned at the beginning of this section,
KVol is not bounded if there are parallel saddle connections intersecting non-trivially,
and hence we only need to prove the “if” part of the theorem.

Let us consider only surfaces which have total area 1. Let X be a Veech surface
with a unique singularity. We recall that for such X the supremum in the definition
of KVol can be taken over saddle connections, see Remark 1.3.

Let θ be the angle associated to two periodic directions (d, d′) having saddle
connections α, β with nontrivial intersections. The hypothesis that parallel saddle
connections do not intersect ensures that d ̸= d′, so that up to swapping d and d′

we may assume θ ∈]0, π[. Then, any intersection between a saddle connection α
with direction d, and a saddle connection β with direction d′, if it occurs outside
the singularity, is positive. Therefore, given two saddle connections α and β, with
respective directions d and d′, either Int(α, β) = −1, in which case α and β intersect
only once, at the singularity, or Int(α, β) ⩾ 0.

Let α1, . . . , αr be the saddle connections in direction d. By Veech dichotomy, X
is decomposed into cylinders C1, . . . , Cs (of heights h1(d), . . . , hs(d)) with direction
d. Observe that since X has genus m and a unique singularity, the number s of
cylinders is bounded by the genus m of the surface. We can subdivide β each time
it intersects the αk, and count the length of each segment we obtain. This gives:

(3.1) l(β) · sin θ =
r∑

k=1
hk(d)Int(αk, β) =

r∑
k=1

ck(d)
Int(αk, β)

l(αk) ,

where ck(d) = hk(d) · l(αk) represents the area of an embedded parallelogram sup-
ported on αk. We write l(αk)l(β) = αk ∧ β/ sin θ, so

1 =
r∑

k=1
ck(d)

Int(αk, β)
αk ∧ β

.
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Writing in a slightly different way:

1 =
∑

k
Int(αk,β)⩾ 0

ck(d)
Int(αk, β)

αk ∧ β
−

∑
k

Int(αk,β)=−1

ck(d)
αk ∧ β

.

By [Vor96], there are no small triangles in X i.e. there exists M > 0, depending only
on X, such that |αk ∧ β| > M (this is actually the easy part of the characterization
of Veech surfaces in [SW10]). In particular since ck(d) ⩽ Area(X) = 1, we have∑

k
Int(αk,β)=−1

ck(d)
αk ∧ β

< r · 1
M

< C

for some uniform constant C = C(X) (recalling r ⩽ m). Thus
Int(αk, β)

αk ∧ β
<

1 + C

ck(d) <
1 + C

M
.

Hence
Int(αk, β)
l(αk)l(β) is uniformly bounded on the Teichmüller disc of X. Since Area(X) =

1, KVol is uniformly bounded as well. □

In genus 2 we have a more precise description.
Proof of Theorem 1.8. — By [McM07], in the stratum H(2), Teichmüller discs are

either dense or closed. So if X is not a Veech surface, KVol is not bounded from above
on its Teichmüller disc. For Veech surfaces, a quick inspection of possible cylinder
diagrams leads to the following observation: for two-cylinder decompositions, there
are no parallel saddle connections with non trivial intersections. Now a Veech surface
in genus two is either primitive or square-tiled. By [McM05, Corollary A.2], square-
tiled surfaces all admit one-cylinder decompositions. Since genus two primitive Veech
surfaces do not have one-cylinder decompositions, we get the desired result. □

4. SL(2,R)−action and directions in the Teichmüller disc

In this section we analyze the action of affine homeomorphisms on the set of saddle
connections.

If X is a translation surface, and A ∈ GL+(2,R) we denote by f : X → A · X the
corresponding affine map. By Remark 2.1 f preserves the intersection form. Saddle
connections of X are mapped to saddle connections of A · X, but lengths are not
preserved in general. The right quantity to consider is not the length of α or β

but rather the quantity −→α ∧
−→
β = l(α)l(β) sin θ, where θ is the angle between the

holonomy vectors −→α ,
−→
β associated to α, β. The wedge product is invariant under

SL(2,R) and is twice the area of a (virtual) triangle delimited by α and β.

Remark 4.1. — In general we cannot identify f with its derivative map Df ∈
GL+(2,R). The reason is that there might be affine maps whose derivative map
is trivial. Equivalently the group Aff(X) is only virtually isomorphic to the Veech
group SL(X), up to the group of automorphism Aut(X). In our situation, since there
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is only one singularity, Aut(X) is trivial, and we will implicitly identify matrices
with affine homeomorphisms.

The above observation motivates the following definition.

Definition 4.2. —
• For d ∈ RP 1, we say that a saddle connection in S0 has direction d if it has

direction d in the plane template of Figure 2.1.
• For M ∈ GL+(2,R) we say that a saddle connection α in M · S0 has direction

d if M−1 · α has direction d in S0

Roughly speaking, we prefer to see each saddle connection α on M · S0 as coming
from a saddle connection M−1α on S0, and we define the direction of α accordingly.
For this reason we refer to S0 as the base surface of the orbit. Although this choice
is arbitrary, choosing the staircase model S0 as base surface will turn out to be
convenient. This way of labelling directions is a bit counter-intuitive because α may
not have direction d in a plane template for M · S0, but it makes sense with the
following statement.

Proposition 4.3. — Using the identifications(1)

Ψ : d = [x : y] ∈ RP 1 7→ −x

y
∈ R ∪ {∞} ≃ ∂H2

and, for M = ( m1,1 m1,2
m2,1 m2,2 ) ∈ SO(2,R)\GL+(2,R),

χ : M · S0 ∈ Tn 7→ m2,2i + m1,2

m2,1i + m1,1
∈ H2,

the locus of surfaces in Tn where the directions d and d′ make an (unoriented) angle
θ ∈]0, π

2 ] is the banana neighbourhood

γd,d′,r =
{
z ∈ H2 : dhyp(z, γd,d′) = r

}
where cosh r = 1

sin θ
, γd,d′ denotes the hyperbolic geodesic with endpoints Ψ(d) and

Ψ(d′), and dhyp is the hyperbolic distance.

In particular, the locus of surfaces in Tn where the directions d and d′ are orthogonal
is the hyperbolic geodesic with endpoints Ψ(d) and Ψ(d′).

To simplify notations we will omit the reference to Ψ, and d will either denote d
or Ψ(d) depending on the context. Similarly we will denote by γd,d′ the hyperbolic
geodesic with endpoints Ψ(d) and Ψ(d′).

Notation 4.4. — In the rest of the paper, we denote by θ(X, d, d′) the angle
between the directions d and d′ in the surface X = M ·S0. Notice that Proposition 4.3
gives

cosh dhyp(X, γd,d′) = 1
sin θ(X, d, d′) .

(1) Note that χ defines a right action of GL+(2,R). See [Mas22, Section 6.1], as to why we should
quotient by SO(2,R) on the left, and act by GL+(2,R) on the right.
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Proof of Proposition 4.3. — For θ ∈]0, π
2 ] and u, v ∈ R2 with equivalence classes

d ̸= d′ we define

M(d, d′, θ) ={
M ∈ GL+(2,R) : min

(
angle(±Mu, ±Mv), angle(±Mv, ±Mu)

)
= θ

}
.

Observe that M(d, d′, θ) is well defined (it only depends on the equivalence classes
d, d′ because the angles are taken modulo π) and equivariant by right multiplication:
if G ∈ GL+(2,R) then

(4.1) M(d, d′, θ).G = M
(
G−1d, G−1d′, θ

)
.

Denote M̄(d, d′, θ) the projection of M(d, d′, θ) to H2. Observe that M(d, d′, θ) is
invariant by left multiplication by SO(2,R), so any matrix in GL+(2,R) that projects
to an element of M̄(d, d′, θ), is actually in M(d, d′, θ).

Let us look at the case d = ¯( 1
0 ) = ∞ and d′ = ¯( 0

1 ) = 0. Observe that in that
case M̄(d, d′, θ) is invariant by z 7→ λz, for any λ > 0. Indeed, take λ > 0 and
z ∈ M̄(d, d′, θ), and let M

be an element of M(d, d′, θ) ⊂ GL+(2,R) which projects to z. Then the matrix

M ′ = M ·
(

1 0
0 λ

)
∈ GL+(2,R)

projects to λz. But the equivalence class, in RP 1, of ( 1 0
0 λ )( 1

0 ) (resp. ( 1 0
0 λ )( 0

1 )), is d
(resp. d′), and we have seen that M(d, d′, θ) only depends on the equivalence classes
d, d′, so M ∈ M(d, d′, θ) entails M ′ ∈ M(d, d′, θ). Therefore λz ∈ M̄(d, d′, θ).

ū v̄

γd,d′ = γ0,∞γd,d′,r

γd,d′,rγd,d′,ri

z = eiθ

θ θ

ū v̄

γd,d′

γd,d′,r

γd,d′,r

θ θ

Figure 4.1. The set γd,d′,r for cosh r = 1
sin θ

.

Thus, to determine M̄(d, d′, θ), it suffices to determine its intersection with the
horizontal straight line {y = 1}, which we parametrize as{

i + cot α : α ∈ ]0, π[
}

A corresponding set of matrices in GL+(2,R) is given by{(
1 cot α
0 1

)
: α ∈ ]0, π[

}
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which sends ( 1
0 ) and ( 0

1 ) to, respectively, ( 1
0 ) and ( cot α

1 ). The angle of the latter
vectors is α, so M̄(d, d′, θ) ∩ {y = 1} = {( cot θ

1 )}. Therefore, M̄(d, d′, θ) is the
half-line which starts at the origin, with co-slope cot θ. This is precisely γd,d′,r with
cosh r = 1

sin θ
, since the hyperbolic distance from z = eiθ to the geodesic γ0,∞ is

realized by the geodesic η parameterized by η(t) = eit for t ∈ [θ, π/2], so that by
definition

r = dhyp(z, γd,d′) = lhyp(η) =
∫ π/2

θ

dt

sin t
= 1

2 log
1 + cos θ

1 − cos θ
,

thus cos θ = e2r−1
e2r+1 , and

sin θ =
√

1 − cos2 θ =

√√√√1 −
(

e2r − 1
e2r + 1

)2

=
2er

e2r + 1 = 1
cosh r

.

Now let us consider the general case. Pick G ∈ GL+(2,R) taking directions d, d′

to ¯( 1
0 ) = ∞ and ¯( 0

1 ) = 0 respectively. Then, by Equation (4.1), M(∞, 0, θ).G =
M(d, d′, θ), so M̄(d, d′, θ) is the image of M̄(∞, 0, θ) by the orientation-preserving
isometry of H2 corresponding to the action of G. One verifies that this isometry sends
∞ and 0 to the images of the directions d and d′ by the identification RP 1 ≃ ∂H2 via
the opposite of the co-slope, respectively. This finishes the proof of Proposition 4.3.

□

5. Another look at KVol

Recall that the function KVol can be expressed as a supremum over saddle con-
nections α, β in (1.1). We will use the invariance of Int(·, ·) for the action of affine
homeomorphisms on translation surfaces and the invariance of ∧ for the linear action
of SL(2,R) on R2 in order to have a more suitable formula to work with. In the
sequel we will use the notation K(X):

KVol(X) = Vol(X) · K(X).
Proposition 5.1. — Let P be the set of periodic directions in X = M · S0 for

some M ∈ SL(2,R). Then
K(X) = sup

d, d′ ∈ P
d ̸= d′

K(d, d′) · sin θ(X, d, d′),

where K(d, d′) = sup{ Int(α,β)
α∧β

| α ⊂ S0 in direction d
β ⊂ S0 in direction d′ } and θ(X, d, d′) is the angle given

in Notation 4.4.

Remark 5.2. — Although Definition 4.2, Proposition 4.3 and Proposition 5.1 are
stated here for the Teichmüller disk of the double regular n-gon with base surface S0,
they can be generalized to any Teichmüller disk of surfaces with a unique singularity.
Proposition 4.3 does not require any additional assumption whereas we need to
assume that parallel saddle connections are pairwise non intersecting in order to
generalize Proposition 5.1. Notice that this condition (which is the boundedness
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condition of Theorem 1.7) does not depend of the choice of base surface in the
Teichmüller disk.

Observe that the quantity K(d, d′) is invariant under the diagonal action of the
Veech group Γ. Moreover sin θ(X, d, d′) = 1/ cosh r, where r is the hyperbolic distance
between X and the geodesic γd,d′ , by Proposition 4.3.

Proof of Proposition 5.1. — Given two saddle connections α, β ⊂ X having
directions d, d′ (in X) and making an angle θ, one has α ∧ β = l(α)l(β) sin θ. Notice
that parallel saddle connections do not intersect in X, so we will assume d ̸= d′.
By definition these saddle connections are the images by M of saddle connections
α′, β′ ⊂ S0 having directions d, d′ (in S0), and thus M ∈ M(d, d′, θ). In particular
the projection of M to H2, that is X ∈ M̄(d, d′, θ), gives θ = θ(X, d, d′). Now, by
definition (see (1.1)),

sup
α,β

Int(α, β)
l(α)l(β)

= sup
d, d′ ∈ P

d ̸= d′

sup
α ⊂ X in direction d
β ⊂ X in direction d′

Int(α, β)
l(α)l(β)

= sup
d, d′ ∈ P

d ̸= d′

sup
α ⊂ X in direction d
β ⊂ X in direction d′

Int(α, β)
α ∧ β

· sin angle(α, β)

= sup
d, d′ ∈ P

d ̸= d′

sup
M−1α ⊂ S0 in direction d
M−1β ⊂ S0 in direction d′

Int(M−1α, M−1β)
M−1α ∧ M−1β

· sin θ(X, d, d′)

= sup
d, d′ ∈ P

d ̸= d′

K(d, d′) · sin θ(X, d, d′)

as desired. □

We end this section with the computation of K(0, ∞) and K(0, Φ), for later use.

Proposition 5.3. — The following hold:
(i) K(0, ∞) = 1

l(αm)2 and K(0, Φ) = 1
Φ · K(0, ∞).

(ii) ∀ (d, d′) /∈ Γn · (0, ∞), K(d, d′) ⩽ K(0, Φ).

Remark 5.4. — A direct consequence of Proposition 5.3 (combined with Proposi-
tion 5.1) is that for every X ∈ Tn such that sin θ(X, 0, ∞) ⩾ 1

Φ , we have

K(X) = K(0, ∞) · sin θ(X, 0, ∞).

This is for example the case for every right angled staircase, which are represented via
χ as elements of the hyperbolic geodesic γ0,∞, and for which we have sin(X, 0, ∞) = 1.
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Proof of Proposition 5.3. —
(i) We use the notations of Figure 2.1. The directions d = 0 and d′ = ∞ correspond
to the vertical and the horizontal, respectively. By definition

K(0, ∞) = sup
α ⊂ S0 vertical

β ⊂ S0 horizontal

Int(α, β)
l(α)l(β) = sup

i,j=1, ..., m

Int(αi, βj)
l(αi)l(βj)

Since the αi and the βj are saddle connections that can only intersect at the singu-
larity, we have Int(αi, βj) ∈ {0, ±1}. Moreover, l(αk) = l(βk) = sin 2kπ/(2m + 1) ⩾
sin π/(2m + 1) and equality is realized for k = m. From Int(αm, βm) ̸= 0, we draw

K(0, ∞) =
1

l(αm)l(βm) = 1
l(αm)2 .

The discussion for the directions d = 0 and d′ = Φ is similar. They correspond to
the vertical and the direction of the diagonal of horizontal cylinders. It is clear that

K(0, Φ) = sup
α ⊂ S0 vertical

β ⊂ S0 diagonal of a horizontal cylinder

Int(α, β)
l(α)l(β)

is maximal for α = βm and β = α1+βm. And we have K(0, Φ) = Int(α,β)
α∧β

= 1
l(α1)l(βm) =

1
ΦK(0, ∞).
(ii) Let (d, d′) /∈ Γ · (0, ∞). Since K(d, d′) is invariant under the diagonal action of
the Veech group and d is a periodic direction, we can assume d = ∞, and, up to
a horizontal shear, d′ ∈]0, Φ[. Notice that given a geodesic β in direction d′, every
intersection with any of the αi requires a vertical length l(α1) (this is where we use
the fact that d′ is not vertical), that is

∀ i ∈ {1, · · · , m}, l(β) sin θ(S0, d, d′) ⩾ l(α1)Int(αi, β).
Hence

∀ i ∈ {1, · · · , m},
Int(αi, β)

l(αi)l(β) sin θ(S0, d, d′) ⩽
1

l(α1)l(αi)
But l(αi)l(β) sin θ(S0, d, d′) = αi ∧ β, and l(αi) ⩾ l(αm), so that the last equation
reduces to

∀ i ∈ {1, · · · , m},
Int(αi, β)

αi ∧ β
⩽

1
l(α1)l(αm) = 1

ΦK(0, ∞),

where the last equality follows from (i). This concludes the proof of Proposition 5.3.
□

6. Computation of KVol for the double (2m + 1)-gon

In this section we show that KVol(X0) is realised by pairs of sides of the double
(2m + 1)-gon:

TOME 7 (2024)



804 J. BOULANGER, E. LANNEAU & D. MASSART

Proposition 6.1. — For every pair of saddle connections α and β on X0, we
have:

Int(α, β)
l(α)l(β) ⩽

1
l2
0

where l0 is the length of the side of the (2m + 1)-gon.
Moreover, equality is achieved if and only if α and β are two distinct sides of the
regular (2m + 1)-gon.

In particular, since the directions d = 0 and d′ = ∞ represent sides of the double
(2m + 1)-gon, we deduce the following:

Corollary 6.2. — For X = X0 the double (2m + 1)-gon, we have:
K(X0) = K(0, ∞) · sin θ(X0, 0, ∞)

The main idea of the proof of Proposition 6.1 is to subdivide both saddle con-
nections α and β into segments of length at least l0 such that each segment of α
intersect each segment of β at most once. While, strictly speaking, we do not achieve
that, we still get estimates good enough for our purpose, see Lemma 6.8.

6.1. Sectors and transition diagrams

Let α and β be two saddle connections on the double (2m + 1)-gon. We partition
the set of possible directions into 2m + 1 sectors of angle π

2m+1 , as in Figure 6.1 for
the double heptagon.

Figure 6.1. The seven sectors for the double heptagon.

To each sector Σi there is associated a transition diagram which encodes the
admissible sequences of intersections with the sides of the double (2m + 1)-gon,
as in [DL18, §3] (See also [SU10, SU11] for the original description of sectors and
transition diagrams, in the case of the regular octagon). Such a diagram looks like:

eσi(1) ⇋ eσi(2) ⇋ · · · ⇋ eσi(2n) ⇋ eσi(2m+1)

with σi ∈ S2m+1, and it means that for any curve α in sector Σi, each intersection
of α with eσi(j) is preceded and followed by an intersection with either eσi(j−1) or
eσi(j+1)

(2) . In particular, each intersection with eσi(1) (resp. eσi(2m+1)) is preceded

(2) Unless it reaches a singularity.
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(and followed) by an intersection with eσi(2) (resp. eσi(2m)). We say that the side eσi(1)
(resp. eσi(2m+1)) is sandwiched by eσi(2) (resp. eσi(2m)) in the sector Σi.

For the sake of completeness, we provide the seven possible transition diagrams
for the double heptagon.

(6.1)

Σ0 : e1 ⇋ e2 ⇋ e0 ⇋ e3 ⇋ e6 ⇋ e4 ⇋ e5
Σ1 : e5 ⇋ e6 ⇋ e4 ⇋ e0 ⇋ e3 ⇋ e1 ⇋ e2
Σ2 : e2 ⇋ e3 ⇋ e1 ⇋ e4 ⇋ e0 ⇋ e5 ⇋ e6
Σ3 : e6 ⇋ e0 ⇋ e5 ⇋ e1 ⇋ e4 ⇋ e2 ⇋ e3
Σ4 : e3 ⇋ e4 ⇋ e2 ⇋ e5 ⇋ e1 ⇋ e6 ⇋ e0
Σ5 : e0 ⇋ e1 ⇋ e6 ⇋ e2 ⇋ e5 ⇋ e3 ⇋ e4
Σ6 : e4 ⇋ e5 ⇋ e3 ⇋ e6 ⇋ e2 ⇋ e0 ⇋ e1

6.2. Construction of the subdivision

Let us denote by Σα (resp. Σβ) the sector of α (resp. β), and σα (resp. σβ) the
corresponding permutation. Now, we cut α (resp. β) at each intersection with a non-
sandwiched side in the sector Σα (resp. Σβ). We get a decomposition α = α1 ∪· · ·∪αk

and β = β1 ∪ · · · ∪ βl with k, l ⩾ 1 and each segment is called sandwiched or non-
sandwiched according to the following rules (see Figure 6.2):

• a segment which goes from one side to another non-adjacent side of one of
the (2m + 1)-gons is called non-sandwiched.

• a segment which intersects a sandwiched side in its interior is called sand-
wiched. Such segments go through both (2m + 1)-gons (see Figure 6.3).

• an initial or final segment α1, αk, β1, βl is called non-sandwiched.
Notation 6.3. — When a segment αi (or βj) intersects the side e which is sand-

wiched by e′ in the corresponding sector, we say that αi is of type e′ → e → e′.
Remark 6.4. — For a sandwiched segment αi of type e′ → e → e′, there is a

parallelogram P (e′, e) ⊂ X0 with the following property: one of its sides is e′ and
one of its diagonals is e. The segment αi goes from one e′-side to the opposite side.
The closure of P (e′, e) is a cylinder.

Notice that for each sector Σi, the sides of the (2m + 1)-gon which are sandwiched
in Σi are those having direction in the boundary of Σi. For instance, the sides of the
double heptagon which are sandwiched in the sector Σ0 are e1 and e5 (see Figure 6.1).

Moreover, the side of the (2m + 1)-gon with direction in Σi ∩ Σi−1 is sandwiched
in both sectors Σi and Σi−1, but in Σi it is sandwiched by its successor in the cyclic
order (modulo 2m+1), while in Σi−1 it is sandwiched by its predecessor. For instance,
e1 is sandwiched by e2 in Σ0, while it is sandwiched by e0 in Σ2m (Σ6 for the double
heptagon).

Remark 6.5. — Since no two sectors have the same pair (sandwiched side, sand-
wiching side), prescribing the type of αi automatically tells which sector the direction
of α belongs to.

Remark 6.6. — If α is a diagonal of the double (2m + 1)-gon, the sector is not
uniquely defined. However, in such cases α is not divided into pieces and k = 1.
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Figure 6.2. Examples of non-sandwiched segments in green and a sandwiched
segment in red. The sandwiched segment is of type e2 → e1 → e2. Remark that
the points ⃝ and △ on the side e2 are not the same.

The next two lemmas are the reason for this peculiar way of subdividing saddle
connections.

Lemma 6.7. — Every segment of α (resp. β) has length at least l0, with equality
if and only if α (resp. β) is a side of the double (2m + 1)-gon.

Proof. — A non-sandwiched segment goes from one side (or vertex) of a (2m + 1)-
gon to a non-adjacent side in the same (2m + 1)-gon. So its length is at least l0.

Now take a sandwiched segment αi which intersects a sandwiched side e in its
interior. If the type of αi is e′ → e → e′, then by Remark 6.4, αi goes from the side
e′ of P (e′, e) to the opposite side of P (e′, e). In particular the length of αi is no less
than that of e′ which is l0. □

6.3. Study of the intersections

In this section, we investigate the possible intersections between the segments of α
and β. First observe that αi and βj can have nontrivial intersections on the interior
of the sides of a sector Σα. However if this happen, we can slightly deform α as
follows. We change the slope of αi and αi+1 so that the new segment α′

i intersects
βj in the interior of Σα the same number of times αi intersects βj. We choose the
deformation small enough so that we do not create new intersections with the others
segments. The new path α′ = α1 ∪ · · · ∪ α′

i ∪ α′
i+1 ∪ · · · ∪ αk is homologous to α by

construction. In the sequel we will simply write α instead of α′.
Now, since β is made of segments of straight lines in the same direction, and

α is made of segments whose directions are close to a given direction, all non-
singular intersections have the same sign. In particular, adding the possible singular
intersection, it gives:
(6.2) Int(α, β) ⩽

∑
i,j

|Int(αi, βj)| + 1

where |Int(αi, βj)| is the geometric intersection between αi and βj.
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Lemma 6.8. — If α and β are not both diagonals, then Int(α, β) ⩽ kl.
Proof of Lemma 6.8. — We will show that ∑i,j |Int(αi, βj)| ⩽ kl − 1. Let us fix

i, j. We first observe that if either αi or βj is a non-sandwiched segment, then αi

and βj intersect at most once (possibly on a side). Indeed a non-sandwiched segment
goes from one side to another non-adjacent side of one of the (2m + 1)-gons. In
particular it is a segment that is contained entirely in one of the (2m + 1)-gons. A
sandwiched segment consists of two straight segments, not contained in the same
(2m + 1)-gon. Hence in total they intersect at most once.

Thus it remains to consider the case where αi and βj are sandwiched segments.
Up to a rotation and a symmetry, we can assume αi is of type e2 → e1 → e2
(see Figure 6.1). The sector determined by α is necessarily Σ0.

Now if βj is sandwiched but neither e1 nor e2 appear in the type of βj, then βj is con-
tained in the parallelogram P (ek, el) (defined in Remark 6.4) for some ek, el ̸∈ {e1, e2}.
In particular αi does not intersect this parallelogram, and neither does it intersect βj.

Eventually it remains to treat the following cases where βj is of type:
(1)e0 → e1 → e0 (2)e1 → e0 → e1

(3)e1 → e2 → e1 (4)e2 → e1 → e2

(5)e2 → e3 → e2 (6)e3 → e2 → e3

In all situations but (3), we can show that αi and βj intersects at most once. We
proceed case by case. We start with the simple cases (1) and (4): since the sandwiched
side of βj is e1, (as for αi), both αi and βj are made of two sandwiched segments
glued along the same side (namely e1), and hence they intersect at most once. More
precisely:

Case (1): Recall that αi is contained in the parallelogram P (e2, e1) and goes
from one e2-side to the opposite side. Let us denote by e, e′ the two other sides of
P (e2, e1). Similarly βj is contained in another parallelogram P (e0, e1) sharing the
same diagonal, and βj goes from one side e0 to the opposite side. We can see that
the intersection of P (e2, e1) with P (e0, e1) is connected: it is a parallelogram. In
particular the intersection of βj with P (e2, e1) goes from the side e to the side e′ and
thus intersects αi exactly once (see Figure 6.4).

Case (4): By Remark 6.4 αi and βj are contained in the same P (e2, e1). They
both go from one e2-side to the opposite e2-side. In particular they intersect at most
once.

Next we deal with cases (2), (5) and (6), for which we use the fact that the type
of the segment determines a sector for its direction (Remark 6.5).

Case (2): By (6.1), since e0 is sandwiched by e1, the direction of β lies in the
sector Σ5. Moreover βj lies in the parallelogram P (e1, e0) and goes from the side
e1 to the opposite (see Figure 6.5). The segments αi and βj intersect each other at
most twice. Assume by contradiction αi ∩ βj = {p, q} with p ̸= q ∈ X0. Since p and
q belong to different parts of the segment αi, they belong to different copies of the
(2m + 1)-gon. The slope s of the holonomy vector defined by pq coincides with the
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Figure 6.3. The six different cases where αi (in red) and βj (in green) are sand-
wiched and intersect.

slope of β and thus belongs to the sector Σ5 i.e. slope(e4) ⩽ s ⩽ 0 (with equality iff
β is a diagonal). On the other hand, the intersection of αi with the two sides e1 on
the plane template of Figure 6.5 determines two points c and d.

By construction the slope s satisfies s ⩽ slope(cd). Since slope(cd) = slope(e4)
we get that β is a diagonal. We run into a contradiction because βj = β is not
sandwiched (see beginning of Section 6.2), and therefore Int(αi, βj) ⩽ 1.

Case (6): This case is the same as Case (2) rotating by an angle 2π
2m+1 and swap-

ping αi and βj.

Case (5): By (6.1), since e3 is sandwiched by e2, the direction of β lies in the sector
Σ3 and β is contained in the parallelogram P (e2, e3). In particular its slope verifies
s ⩾ slope(e6). The segment αi intersects P (e2, e3) with two connected components.
One such component intersects one side e2 at a point a while the other component
intersects the other side e2 at a point b (which project in the double (2m + 1)-gon
to the red bullet and the red triangle in Figure 6.3 Case (5)). As in Case (2) the
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e1

e2

e2

e0

e0

Figure 6.4. Case 1 re-drawn

p

qc

d

e0

e6

e1

e4

e5

e2

e3

Figure 6.5. The parallelogram P (e1, e0) and two intersections in Case (2): β ̸∈ Σ5

segments αi and βj intersect each other at most twice. Assume by contradiction
αi ∩ βj = {p, q} with p ̸= q ∈ P (e2, e3). Necessarily slope(ab) ⩾ slope(pq) = s. Since
α ∈ Σ0 we can check that slope(ab) ⩽ slope(e6) (recall that the slope of α′

i is very
close to the slope of αi).

Thus s = slope(e6) and β is a diagonal: we again run into a contradiction because
βj = β is not sandwiched. Therefore Int(αi, βj) ⩽ 1 as desired.

Mid-way assessment : at this point let us pause for a second to summarize what
we have proved.

Setting aside case (3) which will be considered below, we have for every i, j,
|Int(αi, βj)| ⩽ 1. In particular ∑i,j |Int(αi, βj)| ⩽ kl. Recall that we want the
quantity on the left to be less than kl − 1 instead of kl; the desired bound comes
from the following observation: up to permuting α and β, we may assume α is not
a diagonal. Then α1 is non-sandwiched and lies in one of the (2m + 1)-gons while
the second non-sandwiched αi lies in the other (2m + 1)-gon(3) . In particular, since

(3) Notice that the last non-sandwiched segment before a sequence of sandwiched segments and the
next non-sandwiched segment after such a sequence lie in different (2m + 1)-gons, as in Figure 6.7
and Figure 6.8.
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β1 is non sandwiched, it lies in one of the two (2m + 1)-gons and it cannot intersect
both α1 and the next non-sandwiched αi.

In particular, ∑i,j |Int(αi, βj)| ⩽ kl − 1. Hence, by Equation (6.2), we get that
Int(α, β) ⩽ kl.

Treating case (3)

In this paragraph we assume there are indices i, j such that αi is sandwiched of
type e2 → e1 → e2 and βj is sandwiched of type e1 → e2 → e1. In this case, αi and
βj could intersect twice, but we will show that if this happens then there is an index
j′ such that αi and βj′ don’t intersect. Hence the conclusion ∑i,j |Int(αi, βj)| ⩽ kl
will still hold (and in fact the inequality will be strict, as we require).

Figure 6.6. αi and βj could intersect twice in the configuration of case 3. Below,
a closer look at the cylinder P (e2, e1). In the example of this picture, αi does not
intersect βj−1.

To do that let us assume αi0 , . . . , αi0+p (resp. βj0 , . . . , βj0+q) are consecutively
sandwiched of type e2 → e1 → e2 (resp. e1 → e2 → e1), this sequence being maximal
(i.e αi0−1 and αi0+p+1 – resp. βj0−1 and βj0+q+1 – are not sandwiched). An example
of such a configuration is depicted in Figure 6.7 for p = q = 0 and in Figure 6.8 for
p = q = 3. We claim that there are at most (p + 3)(q + 2) intersections between
αi0−1 ∪ αi0 ∪ · · · ∪ αi0+p ∪ αi0+p+1 and βj0−1 ∪ βj0 ∪ · · · ∪ βj0+q ∪ βj0+q+1, while there
are (p + 3)(q + 3) pairs of segments.

Indeed, in this configuration αi0−1 ∪ αi0 ∪ · · · ∪ αi0+p ∪ αi0+p+1 and βj0−1 ∪ βj0 ∪
· · · ∪ βj0+q ∪ βj0+q+1 go through the cylinder P (e2, e1) defined by e1 and e2, as in
Figure 6.7. Now, instead of cutting β each time it crosses e1 we can cut β each time
it crosses e2. Notice that β crosses e1 once more than it crosses e2, so it gives a
decomposition βj0−1 ∪ · · · ∪ βj0+q ∪ βj0+q+1 = β̃j0 ∪ · · · ∪ β̃j0+q ∪ β̃j0+q+1 with only
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Figure 6.7. αi0−1 ∪αi0 ∪· · ·∪αi0+p ∪αi0+p+1 and βj0−1 ∪βj0−1 ∪· · ·∪βj0+q ∪βj0+q+1
for p = q = 0. There are only six intersections but nine pairs of segments.

Figure 6.8. αi0−1 ∪αi0 ∪· · ·∪αi0+p ∪αi0+p+1 and βj0−1 ∪βj0 ∪· · ·∪βj0+q ∪βj0+q+1
for p = q = 3. There are only ten intersections but thirty-six pairs of segments.

q + 2 segments while each β̃j for j ∈ [[j0, j0 + q + 1]] can intersect each of the αi for
i ∈ [[i0 − 1, i0 + p + 1]] at most once, which leaves at most (p + 3)(q + 2) intersections.

In conclusion, summing with all other segments yields ∑i,j |Int(αi, βj)| < kl.
Adding the possible singular intersection, we get the desired result. This concludes
the proof of Lemma 6.8. □

6.4. Conclusion

We are now able to prove the main proposition of this section.
Proof of Proposition 6.1. — If either α or β is not a diagonal, then:

• l(α)l(β) > kl · l2
0 by Lemma 6.7,

• Int(α, β) ⩽ kl by Lemma 6.8,
In particular, we have:

Int(α, β)
l(α)l(β) <

1
l2
0

as desired.
Otherwise, both α and β are diagonals. Then:

(1) either none of them is a side of a (2m + 1)-gon and then:
(a) l(α)l(β) ⩾ 4 cos2( π

2m+1)l2
0 > 2l2

0 because the shortest diagonals of the
(2m + 1)-gon which are not sides have length 2 cos( π

2m+1)l0.
(b) Int(α, β) ⩽ 2 because there is at most one non-singular intersection and

one singular intersection.
In particular, Int(α,β)

l(α)l(β) < 1
l20

.
(2) or α (up to a change in names) is a side, and then:
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(a) Int(α, β) ⩽ 1 as there is no non-singular intersection,
(b) l(α)l(β) ⩾ l2

0 with equality if and only if both α and β are sides of a
(2m + 1)-gon.

In particular, we have Int(α,β)
l(α)l(β) ⩽ 1

l20
with equality if and only if both α and β

are sides of a (2m + 1)-gon.
This concludes the proof of Proposition 6.1. □

7. Extension to the Teichmüller disc

In this section, we finally show our main result:

Theorem 7.1. — For any surface X in the Teichmüller disc of the double (2m+1)-
gon, we have:
(7.1) K(X) = K(0, ∞) sin θ(X, 0, ∞).

Theorem 1.1 follows directly as sin θ(X, 0, ∞) = 1
cosh dhyp(X,γ0,∞) by Proposition 4.3.

Before proving Theorem 7.1, we show how to deduce Corollary 1.4.
Proof of Corollary 1.4. — Since Vol(S0) = n

2 cos π
n

by Equation (2.2) and the
furthest point of D from γ0,∞ is X0, the corresponding sin θ(X0, 0, ∞) being equal
to sin π

n
, Equation (7.1) implies

n

2 cos π

n
· K(0, ∞) · sin π

n
⩽ KVol(X) ⩽ n

2 cos π

n
· K(0, ∞).

We conclude with Proposition 5.3 and Equation (2.1): K(0, ∞) = 1
l(αm)2 = 1

sin2 π
n

.
The maximum is achieved precisely when sin θ(X, 0, ∞) = 1 i.e. X belongs to the

geodesic γ0,∞, namely X is the image of S0 by a diagonal matrix of SL(2,R). As we
have seen the minimum is achieved uniquely at X0. Finally by Proposition 6.1, the
supremum is achieved by pairs of curves that are (images of) pairs of sides of X0. □

7.1. Interpolation between the regular n-gon and the staircase model

Recall that Proposition 5.1 provides another expression of KVol:
(7.2) K(X) = sup

(d,d′)
K(d, d′) sin θ(X, d, d′),

where the supremum is taken over all pairs (d, d′) of distinct periodic directions.
The quantity K(d, d′) is invariant under the diagonal action of the Veech group.
Moreover, we know that Equation (7.1) holds:

• for X in the geodesic γ0,∞ by Remark 5.4,
• for X = X0 the double (2m + 1)-gon by Corollary 6.2.

The main idea of the proof of Theorem 7.1 is to use these two results and interpolate
between them to show that Equation (7.1) holds in fact for the whole Teichmüller disc.
By symmetry, we can restrict to the surfaces X on the right half of the fundamental
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domain, that is on D+ = {x+iy | 0 ⩽ x ⩽ Φ
2 and x2 +y2 ⩾ 1}. Using Equation (7.2),

it suffices to show that for any pair of distinct periodic directions (d, d′) one has:
(♣) ∀ X ∈ D+, K(d, d′) sin θ(X, d, d′) ⩽ K(0, ∞) sin θ(X, 0, ∞)

The proof is divided in two steps:
(1) Show that it suffices to prove (♣) for 0 ⩽ d < Φ

2 < d′.
(2) Show that (♣) holds under the assumption 0 ⩽ d < Φ

2 < d′.
The proof of the first step (Section 7.2) involves hyperbolic geometry and Veech
group action, while the second step (Section 7.3) will be deduced from the study of
the function

X 7→ sin θ(X, 0, ∞)
sin θ(X, d, d′) .

7.2. Reduction to convenient geodesics

In this section, we prove that it suffices to verify (♣) for pairs (d, d′) with 0 ⩽ d <
Φ
2 < d′. The main step of the proof is Lemma 7.6.

Definition 7.2. — Given a pair of distinct periodic directions (d, d′) and its
associated geodesic γd,d′ on H2, we denote by V (d, d′) the connected component of
H2\(Γn.γd,d′) containing X0.

Remark 7.3. — If one of the images of γd,d′ by the action of the Veech group
Γn passes through X0, then V (d, d′) is not well defined. It is convenient, in this
case, to set V (d, d′) = {X0}. Note that in this case there exists G ∈ Γn such that
sin θ(X0, G.d, G.d′) = 1, so by Equation (♣) for X = X0 we have

K(d, d′) sin θ(X, d, d′) ⩽ K(d, d′) = K(G.d, G.d′) sin θ(X0, G.d, G.d′)
⩽ K(0, ∞) sin θ(X0, 0, ∞) ⩽ K(0, ∞) sin θ(X, 0, ∞),

therefore, (♣) holds for any X ∈ D+.

Remark 7.4. — Notice that, by definition, the boundary of V (d, d′) is made of
geodesic segments in the Veech group orbit of γd,d′ . Since d and d′ correspond to
directions of cusps, there is a finite number of such segments.

Lemma 7.5. — For any pair of distinct periodic directions (d, d′), the furthest
point X1 from γ0,∞ in the boundary of V (d, d′) ∩ D+ is further away from γ0,∞ than
any point X ∈ D+ outside V (d, d′). Equivalently

∀ X ∈ D+ \ V (d, d′), sin θ(X1, 0, ∞) ⩽ sin θ(X, 0, ∞).

Proof. — Take X ∈ D+ \ V (d, d′) and call g the perpendicular to γ0,∞ which
contains X. If g intersects V (d, d′) then there is an intersection point in the boundary
of V (d, d′), and this point is further away from γ0,∞ than X (see Figure 7.1).

If g does not meet V (d, d′), then g intersects the geodesic γΦ/2,∞ above V (d, d′) at
M . We claim that the highest point K of

V (d, d′) ∩ γΦ/2,∞
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X

(0, 0)

X0

K

M

V (d,d′)∩D+

Figure 7.1. The highest K point of V (d, d′) ∩ γΦ/2,∞ is further away from γ0,∞
than M , which is itself further away from γ0,∞ than X.

is further away from γ0,∞ than M . Indeed by construction we have the inequality

sin θ(M, 0, ∞) ⩾ sin θ(K, 0, ∞).

By Proposition 4.3, one has cosh dhyp(M, γ0,∞) = sin−1 θ(M, 0, ∞). Since cosh is an
increasing function, we deduce dhyp(M, γ0,∞) ⩽ dhyp(K, γ0,∞). Now since M is by
construction further away from γ0,∞ than X, this proves the lemma. □

Lemma 7.6. — Let (d1, d′
1) and (d2, d′

2) be two pairs of directions such that the
associated geodesics γd1,d′

1
and γd2,d′

2
cross the half fundamental domain D+. We

assume that:

(i) K(d1, d′
1) ⩾ K(d2, d′

2).
(ii) The geodesic γd2,d′

2
lies outside V (d1, d′

1).
(iii) (♣) holds for any pair of directions whose associated geodesic is in the

boundary of V (d1, d′
1).

Then (♣) holds for (d2, d′
2).

Proof. — Pick a point X ∈ D+. We subdivide the proof in two cases.
First case: X ̸∈ V (d1, d′

1). Then, Lemma 7.5 gives us a point X1 on the boundary
of V (d1, d′

1) such that

(7.3) sin θ(X1, 0, ∞) ⩽ sin θ(X, 0, ∞).
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Note that up to acting by the Veech group, which does not change the conclusion,
we may assume that X1 lies on γd1,d′

1
itself, so sin θ(X1, d1, d′

1) = 1. Then

K(d2, d′
2) sin θ(X, d2, d′

2) ⩽ K(d2, d′
2)

⩽ K(d1, d′
1) by assumption (i)

= K(d1, d′
1) sin θ(X1, d1, d′

1) because sin θ(X1, d1, d′
1) = 1

⩽ K(0, ∞) · sin θ(X1, 0, ∞) by assumption (iii)
⩽ K(0, ∞) · sin θ(X, 0, ∞) by (7.3).

Second case: X ∈ V (d1, d′
1). Then, by assumption (ii), the perpendicular to γd2,d′

2
through X crosses the boundary of V (d1, d′

1) before it reaches γd2,d′
2
, and again, up

to acting by the Veech group we may assume the crossing occurs at γd1,d′
1

so that
sin θ(X, d1, d′

1) ⩾ sin θ(X, d2, d′
2). Therefore

K(d2, d′
2) sin θ(X, d2, d′

2) ⩽ K(d1, d′
1) sin θ(X, d2, d′

2) by assumption (i)
⩽ K(d1, d′

1) sin θ(X, d1, d′
1)

⩽ K(0, ∞) · sin θ(X, 0, ∞) by assumption (iii),

which finishes the proof. □

In particular, since we can apply Lemma 7.6 when (d2, d′
2) is in the orbit of (d1, d′

1)
under the diagonal action of the Veech group, it suffices to prove (♣) for pairs of
directions (d, d′) such that some segment of γd,d′ is in the boundary of V (d, d′). Since
V (d, d′) is invariant under the dihedral group preserving X0, it suffices to consider
segments of the boundary which are contained in D+. These geodesics satisfy the
following property.

Lemma 7.7. — If γd,d′ is a geodesic whose closest point to X0 lies in D+, then γd,d′

intersects the geodesic γΦ/2,∞. In particular, we can assume d < Φ
2 < d′. Moreover,

the direction of the tangent vector of γd,d′ at the intersection point lies in the first
quadrant, in particular d + d′ > Φ.

Proof. — If γd,d′ does not intersect the geodesic γΦ/2,∞, then the perpendicular
projection of X0 to γd,d′ lies below X0, hence not in D, see Figure 7.2 (left part). The
statement about the tangent vector at the intersection follows from the convexity of
V (d, d′) and its symmetry with respect to γΦ/2,∞. See Figure 7.2 (right part). □

In particular, to prove Theorem 7.1 it suffices to show that (♣) holds for pairs
(d, d′) with d < Φ

2 < d′ and d + d′ > Φ. We distinguish two cases:
(1) d ⩾ 0
(2) d < 0

In fact, case 1 is more difficult and will be proven in the next section. However,
case 2 can be directly deduced from case 1. Indeed, by Lemma 7.7, if d < 0 then
d′ ⩾ Φ − d > Φ. In particular, γd,d′ lies outside V (0, Φ), whose boundary is made
of the geodesic segments that are images of γ0,Φ by the rotation around X0, in
particular γ0,Φ ∩ D is the only boundary of V (0, Φ) intersecting D+; see Figure 7.3
for the double pentagon. Since K(d, d′) ⩽ K(0, Φ) (by Proposition 5.3) and the pair
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(0, 0)

X0

(a/2, 0)

P

(d′, 0)

D+

X0

Figure 7.2. Left: when d′ < Φ/2, the orthogonal projection of X0 to γd,d′ does
not lie in D. Right: when the tangent vector to γd,d′ at the intersection with the
right boundary of D does not lie in the first quadrant, V (X0, d, d′) is not convex.

(0, Φ) satisfies (♣) by case 1, we conclude by Lemma 7.6 that (d, d′) satisfies (♣).
This shows that case 1 implies case 2.

0 1
Φ

Φ
2

1 Φ2
Φ

Φ2−2
Φ

X0

S0

Figure 7.3. The domain V (0, Φ) for the double pentagon.
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7.3. Study of the ratio of sines

In this section we show that any pair of periodic directions (d, d′) in case 1 (i.e
0 ⩽ d < Φ

2 < d′) satisfies (♣). Our proof relies on the study of the function

F(d,d′) : X 7→ sin θ(X, 0, ∞)
sin θ(X, d, d′) .

More precisely:
Proposition 7.8. — Under the assumption 0 ⩽ d < Φ

2 < d′, the function F(d,d′)
on D+ takes its minimum at X0.

Before giving the proof of this proposition, let us first state and prove the following
corollary, which concludes the proof of Theorem 7.1:

Corollary 7.9. — For any (d, d′) such that 0 ⩽ d < Φ
2 < d′, (♣) holds.

Proof of Corollary 7.9. — Let (d, d′) be such that 0 ⩽ d < Φ
2 < d′, and X ∈ D+.

We know from Corollary 6.2 that
K(d, d′) sin θ(X0, d, d′) ⩽ K(0, ∞) sin θ(X0, 0, ∞).

In particular, by minimality of F(d,d′) at X0

K(d, d′) ⩽ K(0, ∞)F(d,d′)(X0) ⩽ K(0, ∞)F(d,d′)(X)
Hence

K(d, d′) sin θ(X, d, d′) ⩽ K(0, ∞) sin θ(X, 0, ∞)
This concludes the proof. □

Proof of Proposition 7.8. — We divide the proof in 5 steps:
(1) We remark that F(d,d′) is well defined and differentiable on H2, and has a well

defined minimum on D+.
(2) We study the gradient of F(d,d′) in D+ and show that it doesn’t vanish in-

side D+.
(3) We remark that F(d,d′) is not minimal at the left boundary of D+.
(4) We study the variations of F(d,d′) on the lower boundary of D+, which we

parametrize as
{
(cos θ, sin θ) : θ ∈

[
π
n
, π

2

]}
, and show that F(d,d′) increases with

θ.
(5) We study the variations of F(d,d′) on the line x = Φ

2 and show that it increases
strictly with y.

Proof of Step 1. — Note that by Proposition 4.3

F(d,d′)(X) = cosh dhyp(X, γd,d′)
cosh dhyp(X, γ0,∞)

where dhyp(X, γd,d′) is the hyperbolic distance from X to the geodesic γd,d′ . Distance
functions are not differentiable, but their cosh’s are.

Moreover, F(d,d′)(x + iy) → +∞ when y → +∞ (and x ∈ [0, Φ
2 ]), so if A > 0 is

sufficiently big, we have F(d,d′)(X) > F(d,d′)(X0) for any X = x+ iy ∈ D+ with y > A.
In particular, F(d,d′) reaches its minimum on the compact set K = D+∩{x+iy|y ⩽ A}.
This finishes the proof of Step 1.
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Proof of Step 2. — Note that since the natural logarithm is an increasing
diffeomorphism, we may as well look for the minimum of log F(d,d′)(X) over D+. Now

∇ log F(d,d′)(X)

= ∇ cosh dhyp(X, γd,d′)
cosh dhyp(X, γd,d′) − ∇ cosh dhyp(X, γ0,∞)

cosh dhyp(X, γ0,∞)
= tanh dhyp(X, γd,d′)∇dhyp(X, γd,d′) − tanh dhyp(X, γ0,∞)∇dhyp(X, γ0,∞).

Now the distance gradients are unit vectors, and they are parallel only along the
common perpendicular (if it exists) to γ0,∞ and γd,d′ , or never (otherwise), so the
gradient of F(d,d′) cannot vanish outside of the common perpendicular. Along the
common perpendicular, the numbers tanh dhyp(X, γd,d′) and tanh dhyp(X, γ0,∞) are
equal only at the middle of the common perpendicular segment between the two
lines, and there the distance gradients point in opposite directions. So the gradient
of F(d,d′) cannot vanish at all. Thus F(d,d′) does not have a minimum in the interior
of D+.

Proof of Step 3. — On the left boundary of D+, which is contained in γ0,∞,
we have ∇dhyp(X, γ0,∞) = 0, and ∇dhyp(X, γd,d′) points to the left because d ⩾ 0.
Therefore no point on the left boundary is a local minimum for F(d,d′).

Proof of Step 4. — Now let us study the function F(d,d′)(X) restricted to the
lower boundary of D+.

We first give a more convenient expression of F(d,d′). Let X = x + iy be a point in
the domain D+. We have

sin θ(X, 0, ∞) = y√
x2 + y2

and since the matrix
(

−1 d
1

d′−d
−d′

d′−d

)
∈ SL2(R) acts on H2 by isometry and sends the

geodesic γd,d′ to γ0,∞ and x + iy to

x̃ + iỹ = (−x − iy + d)(d′ − d)
x + iy − d′ = d − d′

(x − d′)2 + y2 · (−(x − d)(x − d′) − y2 + iy(d′ − d))

we have:

sin θ(X, d, d′) = ỹ√
x̃2 + ỹ2 = y(d′ − d)√

((x − d)(x − d′) + y2)2 + y2(d′ − d)2

Hence:

(7.4) F(d,d′)(X) = 1
d′ − d

√
((x − d)(x − d′) + y2)2 + y2(d′ − d)2

x2 + y2

To study the variations of F(d,d′)(X), it suffices to consider what is inside the square
root in (Equation (7.4)):

G : (x, y) 7→ ((x − d)(x − d′) + y2)2 + y2(d′ − d)2

x2 + y2
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On the lower boundary of D+, this reduces to
(1+dd′−(d+d′) cos θ)2+(d′−d)2 sin2 θ = (1+dd′)2−2(1+dd′)(d+d′) cos θ+2dd′ cos 2θ−1
whose derivative with respect to θ is

−4dd′ sin 2θ + 2(1 + dd′)(d + d′) sin θ = 2 sin θ [(1 + dd′)(d + d′) − 4dd′ cos θ] .

We want to prove that G is an increasing function of θ. This follows from (1 +
dd′)(d + d′) ⩾ 4dd′, which in turn follows from d + d′ ⩾ 2

√
dd′, and the fact that

x2 − 2x + 1 ⩾ 0 for any real number x, in particular for x =
√

dd′.
Proof of Step 5. — We compute the differential of G with respect to y. It gives

∂G

∂y
(x, y) = 2y

(x2 + y2)2 · (y4 + 2x2y2 + x4 − dd′(2x − d)(2x − d′)).

The sign of ∂G
∂y

(x, y) is the sign of the polynomial P (X) = X2 +2x2X +x4 −dd′(2x−
d)(2x − d′), which has discriminant

∆ = 4dd′(2x − d)(2x − d′).
Setting x = Φ

2 yields:
∆ = 4dd′(Φ − d)(Φ − d′).

In particular:
• If d′ > Φ, then ∆ < 0 and P has no real roots.
• If d′ = Φ then ∆ = 0 and the only real root of P is −Φ2

4 < 0.
• Else, Φ

2 < d′ < Φ and P has two real roots:

λ− = −Φ2

4 −
√

dd′(Φ − d)(Φ − d′) < 0 and λ+ = −Φ2

4 +
√

dd′(Φ − d)(Φ − d′).

But d(Φ − d) ⩽ Φ2

4 and d′(Φ − d′) ⩽ Φ2

4 so
√

dd′(Φ − d)(Φ − d′) ⩽ Φ2

4 and
λ+ ⩽ 0.

In conclusion, P has no real positive roots, in particular it is positive on R∗
+, and so

is ∂G
∂y

(Φ
2 , y). This finishes the proof of the last step.

In particular, the only possible minimum for F(d,d′) on D+ is X0. This proves
Proposition 7.8. □
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