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ON THE SIGNATURE OF A
POSITIVE BRAID
SUR LA SIGNATURE D’UNE TRESSE
POSITIVE

Abstract. — We show that the signature of a positive braid link is bounded from below by
one-quarter of its first Betti number. This equates to one-half of the optimal bound conjectured
by Feller, who previously provided a bound of one-eighth.

Résumé. — On montre que la signature d’un entrelacs représentable par une tresse positive
est au moins un quart de son premier nombre de Betti. Cela correspond a la moitié de la borne
optimale conjecturée par Feller, qui avait auparavant prouvé une borne d’un huitième.

1. Introduction

The signature σ(L) of an oriented link L was introduced by Trotter [Tro62]. Its
definition leads to the classic lower bound σ(L) ⩽ b1(L) on the minimum first
Betti number of any Seifert surface for L. For certain classes of links, this bound
can be reversed, up to scale(1) . The first such result is due to Feller, who proved
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824 J. E. GREENE & L. LIECHTI

the lower bound σ(L) ⩾ 1
100b1(L) for a positive braid closure L and conjectured

an optimal slope of 1
2 for these links [Fel15]. Notably, Rudolph had earlier shown

that σ(L) ⩾ 0, and Stoimenow had shown that σ(L) ⩾ b1(L)1/3, for a positive braid
closure L [Rud82, Sto08]. Subsequently, the slope was improved to 1

24 for the more
general class of positive links by Baader, Dehornoy and the second author [BDL18],
and to 1

8 by Feller for positive braid closures [Fel18].
Our goal is to establish the following result, striking within one-half of Feller’s

conjectured bound:

Theorem 1.1. — For every positive braid closure L that is not an unlink, we
have

σ(L) ⩾ b1(L)
4 + 1

2 .

Our proof of Theorem 1.1 uses the signature formula of Gordon and Litherland for
the Goeritz form of chessboard surfaces [GL78], as in [BDL18, Fel18]. Our advance
in the case of a positive braid closure stems from a careful choice of subspaces on
which we are able to tightly control the signature of the Goeritz form.

One-half of the signature of a knot is a lower bound for the topological four-
genus [KT76, Mur65]. Theorem 1.1 immediately implies the following lower bound
for the topological four-genus in terms of the usual Seifert genus.

Corollary 1.2. — The topological four-genus of a positive braid knot is greater
than one-quarter of the Seifert genus.

For the consequences of Corollary 1.2 with respect to concordance, we refer to
the discussions by Stoimenow [Sto08] as well as Baader, Dehornoy and the second
author [BDL18].

Another application of Theorem 1.1 concerns the location of the zeroes of the
Alexander polynomial of positive braid closures. Dehornoy noted that for random
positive braids, these zeroes seem to accumulate on rather specific lines depending
on the braid index and the probability of the braid generators, as in Figure 3.4 and
the discussion surrounding it in [Deh15]. Since the signature is a lower bound for the
number of zeroes of the Alexander polynomial that lie on the unit circle [GL16, Lie16],
Theorem 1.1 at least explains why there is a substantial number of zeroes on the
unit circle.

Corollary 1.3. — For a positive braid link, more than one-quarter of the zeroes
of the Alexander polynomial lie on the unit circle.

Organisation. In Section 2, we introduce the necessary background on positive
braids and their diagram combinatorics, as well as chessboard surfaces and the
Goeritz form. In Section 3, we study the signature of specific integer matrices that
we call trisum matrices. These matrices appear again as the matrices of the Goeritz
form restricted to certain subspaces in Section 4, where we give a proof of Theorem 1.1.
Finally, in Section 5, we discuss limitations of our approach.

Acknowledgements. We thank the anonymous referees for their comments on a first
version of this article.
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On the signature of a positive braid 825

2. Background

2.1. Diagram combinatorics

Let β be a positive braid on n + 1 strands, that is, a product of positive powers of
the standard braid generators σ1, . . . , σn of the braid group Bn+1. The standard link
diagram D for the closure L of β contains a positive crossing for every occurrence
of a braid generator σi in β. The index of a crossing is the index of the standard
braid generator corresponding to it. An example of a standard diagram is shown in
Figure 2.1.

Figure 2.1. The geometric realization of the positive braid
σ1σ

2
4σ2σ1σ3σ2σ4σ1σ

2
3σ2σ4σ1σ3, its standard diagram and a chessboard color-

ing thereof. On the right, the grey curves indicate a basis of the first homology
of the black chessboard surface.

Let cr(D) be the number of crossings of D. There are different types of faces in
the diagram D. For each crossing of the diagram there is a face that starts above it.
There are cr(D) faces of this type. Furthermore, there is an unbounded face F ′ and
a face F containing the braid axis; compare with Figure 2.1. Among the cr(D) faces
that belong to the first category, let fi be the number of faces with i sides, for i ⩾ 2.
Locally, every crossing is met by four faces, so we have

4cr(D) =
∑
i⩾ 2

ifi + s + s′,

where s and s′ are the number of sides of F and F ′, respectively.
Since ∑

i⩾ 2
fi = cr(D),
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826 J. E. GREENE & L. LIECHTI

subtracting 4cr(D) from both sides yields
0 =

∑
i⩾ 2

(i − 4)fi + s + s′,

and thus
2f2 + f3 = s + s′ +

∑
i⩾ 5

(i − 4)fi.(2.1)

We will use another fact about nonsplit positive braid links L on n + 1 strands
with standard diagram D, namely

b1(L) = cr(D) − n.(2.2)
This is a consequence of Stallings’s construction [Sta78] of a fibre surface (which must
be genus-minimising) for nonsplit positive braid closures with first Betti number
equal to cr(D) − n.

2.2. Chessboard surfaces

Choose the chessboard colouring of the standard diagram D defined by the follow-
ing property: the faces above odd index crossings are black, as in Figure 2.1. Let SB

be the (not necessarily orientable) surface defined by the black faces of this colouring,
with ∂SB = L, and let SW be the (not necessarily orientable) surface defined by the
white faces of this colouring. We have
(2.3) dim(H1(SB)) + dim(H1(SW )) = cr(D).

2.3. Goeritz form

The Goeritz form G is a symmetric bilinear form on the first homology H1(S)
of a compact, not necessarily orientable surface S embedded in S3; see Goeritz’s
article [Goe33] or also Chapter 9 in Lickorish’s book [Lic97]. For two simple closed
curves γ1 and γ2 in S, the Goeritz form on the corresponding homology elements
is defined as G(γ1, γ2) = lk(γ1, γ±

2 ). Here, lk denotes the linking number and γ±
2

denotes the two-sided push-off of γ2 along the normal direction to S. In order to
obtain positivity of the signature for positive links, we (nonstandardly) define the
linking number to count one-half of the negative crossings minus one-half of the
positive crossings between links.

If S is orientable, then by definition G equals the symmetrised Seifert form and thus
only depends on ∂S. In particular, σ(G) = σ(∂S) = σ(L), the signature invariant of
the boundary link. If S is nonorientable, a correction term is necessary, leading to
the formula σ(L) = σ(G) − µ by Gordon and Litherland; see [GL78, Theorem 6] and
the discussion following it, which extends the result to links. Here, µ is a correction
term counting the number of positive minus the number of negative crossings among
all crossings of a diagram where any local orientation of the chessboard surface fails
to induce the correct link orientation on the boundary. Our nonstandard definition of
the linking number results in a factor −1 for both σ(L) and σ(G) in the formula, so
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On the signature of a positive braid 827

in our convention, the formula reads σ(L) = σ(G) + µ. Since µ counts every crossing
of a diagram for exactly one of the two chessboard surfaces, we sum both bounds to
obtain the following result, which we use later on.

Theorem 2.1. — Let D be a positive diagram of a link L, and let SB and SW be
the two associated chessboard surfaces with Goeritz forms GB and GW , respectively.
Then

2σ(L) = σ(GB) + σ(GW ) + cr(D).

In order to use Theorem 2.1, we have to consider the Goeritz forms GB and GW of
the chessboard surfaces SB and SW , respectively. For the respective first homologies,
we pick a basis that consists of curves γ winding around white and black faces in
the counterclockwise sense: see Figure 2.1.

Lemma 2.2. — Let β be a positive braid on n + 1 strands that uses each genera-
tor σi at least twice, and let D be the standard diagram for its closure L. Let GB

and GW be the Goeritz forms of the chessboard surfaces SB and SW , respectively.
We have the following:

(i) if γ winds around an n-sided face that is not F or F ′, G∗(γ, γ) = 4 − n;
(ii) if γ1 and γ2 wind around adjacent faces of the same index whose boundaries

meet in one crossing, G∗(γ1, γ2) = −1;
(iii) if γ1 and γ2 wind around faces with no common crossing in their bound-

aries, G∗(γ1, γ2) = 0;
(iv) if γ1 and γ2 wind around faces whose indices are apart by two and whose

boundaries meet in one common crossing, G∗(γ1, γ2) = 1.

Proof. — All four facts can be checked directly using the definition. Alternatively,
one can use Lickorish’s combinatorial description of the coefficients of a Goeritz
matrix in [Lic97, Chapter 9]. Comparing with Lickorish’s description, one should
keep in mind that our nonstandard definition of the linking number results in a sign
change for each coefficient. □

Remark 2.3. — We later change the orientation of certain curves γi in order to get
particularly simple, nonnegative Goeritz matrices. We note that (ii) in Lemma 2.2
holds if the curves γ1 and γ2 are both oriented counterclockwise or if both are oriented
clockwise. Otherwise, G∗(γ1, γ2) = +1. Similarly, (iv) in Lemma 2.2 holds if both
curves are oriented counterclockwise or if both are oriented clockwise.

3. A signature bound for tridiagonal and trisum matrices

In this section, we discuss signature bounds for certain tridiagonal matrices. Fur-
ther, we introduce and study a generalisation of them which we call trisum matrices.
These matrices and their direct sums appear as the Gram matrices we study in
the next section, when we restrict the Goeritz forms of the chessboard surfaces to
appropriate subspaces.
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828 J. E. GREENE & L. LIECHTI

3.1. Tridiagonal matrices.

Let T (d1, . . . , dn) denote the tridiagonal matrix with diagonal entries d1, . . . , dn ∈
Z and with 1s on the secondary diagonals. We use the shorthand da to denote a
string of a copies of d, where a, d ∈ Z, a ⩾ 0.

The first lemma is easy and well-known, and we supply one short proof related to
those that follow.

Lemma 3.1. — If ϵ = ±1 and M = T ((ϵ · 2)a), then σ(M) = ϵ · dim(M).

Proof. — The Gram-Schmidt algorithm shows that M is congruent over Q to the
diagonal matrix with entries ϵ · 2

1 , ϵ · 3
2 , . . . , ϵ · a+1

a
. It follows that M is definite with

sign ϵ, so σ(M) = ϵ · dim(M). □

The following result holds for general integer coefficients on the diagonal. Let tr(M)
denote the sum of the negative entries on the diagonal of the matrix M .

Proposition 3.2. — If M = T (d1, . . . , dn), then

σ(M) ⩾ −1
2 + 1

2tr(M).

Remark 3.3. —
(1) If d1, . . . , dn ⩾ 0, then σ(M) ⩾ 0: for lowering diagonal entries does not raise

the signature, and σ(M) = 0 when all di equal zero.
(2) The matrix M = T (−1, −2, . . . , −2) is negative definite and attains the

bound in Proposition 3.2.
(3) The bound in Proposition 3.2 does not depend on the number or sum of

positive diagonal coefficients. For example, if M = T (0, N, 0, N, . . . , 0, N, −1)
with N any positive integer, then σ(M) = −1, which coincides with the bound
in Proposition 3.2.

(4) Since σ(−M) = −σ(M), Proposition 3.2 also implies the upper bound

σ(M) ⩽ 1
2 − 1

2tr(−M) = 1
2 + tr(M),

where tr(M) denotes the sum of the positive diagonal coefficients of the
matrix M . We shall not make use of this bound.

Proof of Proposition 3.2. — We proceed by induction on the dimension n of the
matrix M . In the one-dimensional case n = 1, the statement clearly holds. We note
that the summand −1

2 is necessary precisely for the matrix (−1).
We need a second base case n = 2 in case the first diagonal coefficient is d1 = 0

or if the first diagonal coefficient is d1 = −1 and the second is d2 ⩾ 0. In the first
case, σ(M) = 0, so the bound is satisfied. In the second case σ(M) = 0 and the
bound is satisfied, even improved by a summand +1

2 .
We now assume that n ⩾ 2, and n ⩾ 3 in case d1 = 0 or if d1 = −1 and d2 ⩾ 0.

We distinguish cases depending on the first diagonal coefficient d1.
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On the signature of a positive braid 829

Case 1: d1 ⩾ 1. — The signature of the matrix

M =




d1 1
1 d2 1

1 . . . ∼




d1
d2 − 1

d1
1

1 . . .

is bounded from below by 1 + σ(M ′), where M ′ is the matrix obtained from M by
deleting the first row and the first column and reducing the diagonal coefficient d2
by 1. We have tr(M ′) ⩾ tr(M) − 1. By induction hypothesis, the statement is true
for M ′, and we obtain

σ(M) ⩾ 1 + σ(M ′) ⩾ 1 − 1
2 + 1

2tr(M ′) ⩾ 1
2tr(M).

We see that an occurrence of this case actually improves the signature bound by at
least 1

2 , and the signature bound is even improved by 1 if d2 > 0.
Case 2: d1 = 0. — The signature of the matrix

M =




0 1 0 0 · · ·
1 d2 1 0 · · ·
0 1
0 0 M ′

... ...

∼




0 1 0 0 · · ·
1 d2 0 0 · · ·
0 0
0 0 M ′

... ...

equals the signature of the matrix M ′. Since tr(M ′) ⩾ tr(M), we obtain the desired
bound for σ(M) by induction hypothesis.

Case 3: d1 = −1. — The signature of the matrix

M =




−1 1
1 d2 1

1 . . . ∼




−1
d2 + 1 1

1 . . .

equals −1 + σ(M ′), where M ′ is the matrix obtained from M by deleting the first
row and the first column and replacing the diagonal coefficient d2 by d2 + 1. We
distinguish two cases. If d2 < 0, then tr(M ′) = tr(M) + 2. In particular, the desired
lower bound for σ(M) follows from the induction hypothesis on M ′. If d2 ⩾ 0,
then tr(M ′) = tr(M) + 1. This is not enough to prove the desired inequality by the
induction hypothesis on M ′. However, we notice that after such a case, the matrix M ′

is as in Case 1 of our case distinctions, which in turn improves the signature bound
for M ′ by at least 1

2 . This exactly compensates for the loss in the present case and
the desired bound is attained after two steps.
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Case 4: d1 ⩽ −2. — The signature of the matrix

M =




d1 1
1 d2 1

1 . . . ∼




d1
d2 − 1

d1
1

1 . . .

is bounded from below by −1 + σ(M ′), where M ′ is the matrix obtained from M by
deleting the first row and the first column. We have tr(M ′) ⩾ tr(M) + 2. Again, the
desired inequality follows from the induction hypothesis on M ′.

□

3.2. Trisum matrices

We will need an extension of the lower bound of Proposition 3.2 to a slightly wider
class of matrices.

Let N = T (d1, . . . , dr) and let Ci = T (2ai , 1, 2bi), i = 1, . . . , k. Let M̃ be the direct
sum of matrices M̃ = N ⊕ C1 ⊕ · · · ⊕ Ck. Furthermore, for each i = 1, . . . , k, let
1 ⩽ g(i) ⩽ r be an index with dg(i) ⩽ 0, and let h(i) be the index of the column
of M̃ that contains the diagonal coefficient 1 of the block Ci. Let M be the matrix
obtained from M̃ by letting Mg(i),h(i) = Mh(i),g(i) = 1 for each i = 1, . . . , k and
keeping all other entries the same. We call M a trisum matrix with core N and
blocks Ci. Let tr(M) denote the sum of the negative diagonal coefficients of its core,
and let b(M) denote the sum of the dimensions of its blocks.

Proposition 3.4. — If M is a trisum matrix, then

σ(M) ⩾ −1
2 + 1

2tr(M) + 1
2b(M).

Proof. — We proceed by induction on the number k of blocks of M .
If k = 0, then the bound coincides with the bound from Proposition 3.2.
Now suppose the bound holds for matrices with k blocks Ci, and let M be a matrix

with k + 1 blocks Ci. We make a case distinction depending on the block Ck+1.
Case 1: Ck+1 = T (1). — In this case, σ(M) = 1 + σ(M ′), where M ′ is obtained

from M by deleting the last row and column and replacing the diagonal coeffi-
cient dg(k+1) by dg(k+1) − 1. Thus, tr(M ′) = tr(M) − 1 and b(M ′) = b(M) − 1.
Applying the induction hypothesis for M ′, we get

σ(M) = 1 + σ(M ′) ⩾ 1 − 1
2 + 1

2tr(M ′) + 1
2b(M ′)

= −1
2 + 1

2tr(M) + 1
2b(M).

Case 2: Ck+1 = T (2a, 1, 2b) for a = 0 or b = 0. — Note that the matrix T (2a, 1)
is congruent to the diagonal matrix with diagonal coefficients 2

1 , 3
2 , . . . , a+1

a
, 1

a+1 . In
particular, we get that σ(M) = a + 1 + σ(M ′), where M ′ is obtained from M by
deleting the last a+1 rows and columns and replacing the diagonal coefficient dg(k+1)

ANNALES HENRI LEBESGUE



On the signature of a positive braid 831

by dg(k+1) − (a + 1). As in Case 1, applying the induction hypothesis for M ′ gives
the desired bound.

Case 3: Ck+1 = T (2, 1, 2). — The matrix T (2, 1, 2) is congruent to the diagonal
matrix with diagonal coefficients 2, 0, 2. It follows that σ(M) = 2 + σ(M ′), where M ′

is obtained from M by deleting the last three rows and columns, but also the row
and column of index g(k + 1). In order to see this, first apply the base change to M
that effectuates the congruence of the block T (2, 1, 2) to the diagonal matrix with
diagonal coefficients 2, 0, 2. The row and the column of index h(k + 1) now have one
nonzero coefficient, namely Mg(k+1),h(k+1) = Mh(k+1),g(k+1) = 1. As a next change of
base, the row/column of index h(k + 1) can be subtracted as often as necessary from
other rows/columns in order for the row and the column of index g(k + 1) to have
only their diagonal coefficient nonzero, as well as the coefficients Mg(k+1),h(k+1) =
Mh(k+1),g(k+1) = 1. After this change of base, the last three indices together with
index g(k + 1) become a direct summand of the matrix M , with signature 2.

We remark that deleting the row and column of index g(k +1) makes the blocks Ci

with g(i) = g(k+1) into direct summands of the matrix M ′. Therefore M ′ decomposes
as M ′

1 ⊕ M ′
2 ⊕ C where each M ′

j has at most k of the blocks Ci and is of the form
so that we can apply the induction hypothesis, and C consists of direct summands
of the type Ci. For a block of type Ci, we have σ(Ci) ⩾ 1

2 dim(Ci). Applying the
induction hypothesis to M ′

j, we obtain

σ(M) = 2 + σ(M ′)
= 2 + σ(M ′

1) + σ(M ′
2) + σ(C)

⩾ 2 − 1
2 + 1

2tr(M ′
1) + 1

2b(M ′
1) − 1

2 + 1
2tr(M ′

2) + 1
2b(M ′

2) + 1
2 dim(C)

⩾ 1 + 1
2tr(M) + 1

2 (b(M ′
1) + b(M ′

2) + dim(C))

= −1
2 + 1

2tr(M) + b(M),

where the first inequality uses the induction hypothesis for both M ′
1 and M ′

2, and
the second inequality uses the fact that dg(k+1) ⩽ 0, which in particular means
that tr(M ′

1) + tr(M ′
2) ⩾ tr(M).The final equality follows from dim(Ck+1) = 3.

Case 4: Ck+1 = T (2a, 1, 2b) for a ⩾ 1 and b ⩾ 1. — Case 3 covers the case a = b =
1, so we can suppose that a > 1 or b > 1. The matrix T (2a, 1, 2b) is congruent to the
diagonal matrix with coefficients 2

1 , . . . , a+1
a

, x, b+1
b

, . . . , 2
1 , where x = 1− a

a+1 − b
b+1 <

0. In particular, σ(M) ⩾ a+b−1+σ(M ′), where M ′ is obtained from M by deleting
the last a + b + 1 rows and columns. Applying the induction hypothesis for M ′ yields
the desired bound, since a + b ⩾ 3 and therefore the improvement a + b − 1 is at
least half as large as the deficit a + b + 1 for the bound we have when we apply the
induction hypothesis to M ′. □

The congruences noted in the proof of Proposition 3.4 establish the following useful
result.
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Porism 3.5. — If M = T (2a, 1, 2b), then

σ(M) =


dim(M), if min{a, b} = 0,

dim(M) − 1, ifa = b = 1, and
dim(M) − 2, otherwise.

In particular, σ(M) ⩾ 1
2 dim(M). □

4. Proof of Theorem 1.1

4.1. Preliminaries.

Let L be a positive braid link, and let β be a positive braid whose closure is L
such that

(a) β has minimal index n ⩾ 1 among all positive braids whose closure is L and
(b) the sum of the indices of the generators appearing in β is minimal subject

to (a).
We quickly dispense with some trivial cases:

• If n = 1, then L is the unknot, and σ(L) = b1(L) = 0.
• If n ⩾ 2 and β does not use the generator σi for some 1 ⩽ i ⩽ n − 1, then L

is the split union L1 ⊔ L2, where each of L1 and L2 is a positive braid link.
In this case, σ(L) = σ(L1) + σ(L2) and b1(L) = b1(L1) + b1(L2).

• If n ⩾ 2 and β uses a single generator σi for some 1 ⩽ i ⩽ n−1, then L is the
connected sum L1#L2, where each of L1 and L2 is a positive braid link. Once
more, in this case, we have σ(L) = σ(L1)+σ(L2) and b1(L) = b1(L1)+ b1(L2).

• If n = 2 and β uses σ1 at least twice, then L is a (2, k)-torus link, k ⩾ 2,
and k − 1 = σ(L) = b1(L) ⩾ 1

4b1(L) + 1
2 .

Thus, Theorem 1.1 follows if we can prove it under the additional assumptions that
(c) n ⩾ 3 and
(d) β uses each generator σi at least twice,

which we assume in the remainder of the section. In particular, we have s + s′ ⩾ 4
in the notation of Section 2.1, so Equation (2.1) entails

2f2 + f3 ⩾ 4 +
∑
i⩾ 5

(i − 4)fi.(4.1)

Lemma 4.1. — In every column of β except possibly the first, there exists a face
with at least four sides.

Proof. — Let i > 1 denote the index of a column of β. Select an occurrence of σi−1
in β and let f denote the face in the ith column incident to it. By assumption (d),
the top and bottom crossings incident with f exist and are distinct from one another.
Suppose for a contradiction that f is not incident with any other crossings. Then a
cyclic permutation and a sequence of distant braid moves converts β into a minimal
index positive braid representation β′ of L with the same index sum as β and
which contains the subword σiσi−1σi. Then the braid move σiσi−1σi → σi−1σiσi−1
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converts β′ into a minimal index positive braid representation β′′ of L with lower
index sum than β′, violating assumption (b). Hence f is incident with at least one
additional crossing, so it has at least four sides. □

4.2. Subsets and subspaces

In this section, we describe our choice of subspaces on which to examine the Goeritz
form in the case of a positive braid closure. The subspaces are chosen so that the
restrictions of the Goeritz forms to them are presented by trisum matrices. Then
we can estimate their signatures using the results of Section 3 towards the end of
proving Theorem 1.1.

4.2.1. The black surface

We define two subsets B0, B2 ⊂ H1(SB) of the first homology of the black chess-
board surface, obtained by selecting homology classes of certain curves γ winding
around white faces.

Let B0 denote the set of homology classes of the following curves in SB. First, we
take all curves γ corresponding to white faces above crossings of index i ≡ 0 (mod4),
with the following exception: for each index, we omit one curve corresponding to a
face with the most sides. Note that this number of sides is at least four, by Lemma 4.1.
Second, we take all the curves corresponding to white faces with two sides above
crossings of index i ≡ 2 (mod4). Third, we take some curves corresponding to white
faces with three sides above crossings of index i ≡ 2 (mod 4). More precisely, we
identify a face with at least four sides in this column. Proceeding upwards from it,
we take every other three-sided face we encounter, beginning with the first one. In
this way, we collect at least half of the white faces with three sides in each column
of index ≡ 2 (mod 4).

Similarly, define B2 just like B0, but with the role of the indices i ≡ 0 (mod 4)
and i ≡ 2 (mod 4) interchanged: see Figure 4.1 for an example.

4.2.2. The white surface

Now, we define two subsets B1, B3 ⊂ H1(SW ) of the first homology of the white
chessboard surface SW , as follows.

Let B1 denote the set of homology classes of the following curves in SW . First, we
take all curves γ corresponding to black faces above crossings of index i ≡ 1 (mod 4),
with the following exception: for each index, we omit one curve corresponding to a
face with the most sides. Once more, Lemma 4.1 implies that this face must have
at least four sides, unless i = 1 and every face in the first column has three or fewer
sides; then assumption (d) applies to show that this face has three sides. Furthermore,
we add the curves corresponding to black faces with two sides above crossings of
index i ≡ 3 (mod 4). Finally, we add every other curve corresponding to white faces
with three sides above crossings of index i ≡ 3 (mod 4), exactly as in the definition
of B0.
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Figure 4.1. An example of selecting B2 ⊂ H1(SB): the red dashed curve is
omitted since it runs around a white face with the most sides among all faces of
index two. The purple dashed curve is omitted since its corresponding face has
four crossings. Finally, the blue dashed curve is omitted since it is the second
curve running around a face with three sides when counting upwards from the
purple curve.

Finally, define B3 just like B1, but with the role of the indices i ≡ 1 (mod 4)
and i ≡ 3 (mod 4) interchanged. The exception for the leftmost column is now the
following: when we add every other face with three sides, we round down in case the
number of such faces is odd and there is no face with more than three sides.

4.2.3. Subspaces and Gram matrices

Define Xj to be the subspace of homology generated by Bj, j = 0, 1, 2, 3. Note
that Bj is a basis of Xj for each j. Define Gj to be the Gram matrix of Bj with
respect to the relevant Goeritz form (i.e. GB, if j is even, and GW , if j is odd).

The first lemma in this section is more or less immediate from the construction.

Lemma 4.2. — For each j = 0, 1, 2, 3, the matrix Gj is a direct sum of tridiag-
onal matrices T (2a), tridiagonal matrices T (2a, 1, 2b), and trisum matrices Mi, for
indices 1 ⩽ i ⩽ n, i ≡ j (mod 4).

Proof. — Fix a value j = 0, 1, 2, 3 and an index i ≡ j (mod 4), 1 ⩽ i ⩽ n. As
in the proof of Lemma 4.1, assumption (b) implies that there is no appearance
of σiσi−1σi in β, even after distant braid moves. It follows that a 3-sided face in
column i − 2 shares two crossings with faces in the same column and one crossing
with a face in column i; hence no 3-sided face in column i+2 shares a crossing with a
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face in column i.This shows that the subspace of homology generated by the curves
we selected for the base Bj from column i − 2 and i gives rise to a direct summand
of Gj. We now show that this direct summand is in turn a direct sum of tridiagonal
matrices T (2a), tridiagonal matrices T (2a, 1, 2b), and a trisum matrix Mi.

The core of the trisum matrix Mi corresponds to the faces selected for Bj from
the ith column. It is a tridiagonal matrix by Lemma 2.2. In fact, Lemma 2.2 gives off-
diagonal coefficients −1, but following Remark 2.3 we may change the orientation of
every other curve γ winding around a face from the ith column in order to have all off-
diagonal coefficients 1. Further, the trisum matrix Mi has one block for each 3-sided
face in column i − 2 which shares a crossing with one of the selected faces in the ith

column. This block is of the form T (2a, 1, 2b), where a, b ⩾ 0. This follows Lemma 2.2
as well as the care we took in selecting every other 3-sided face in column i − 2: at
most one 3-sided face can appear in any chain of faces(2) we add from the column i−2
during the construction of the base Bj. The off-diagonal coefficient 1 we need for
each block of the trisum matrix is given by (iv) in Lemma 2.2. Again, we might need
to invoke Remark 2.3 and adjust the orientations of the curves winding around the
faces in column i − 2 in order to have all off-diagonal coefficients 1.

A 3-sided face in column i − 2 might share its crossing with the face from the ith

column we did not select in the construction of Bj. Such a 3-sided face is responsible
for a direct summand T (2a, 1, 2b). Finally, a chain of 2-sided faces in column i − 2
we added during the construction of the base Bj is responsible for a direct sum-
mand T (2a). One more time, we might need to invoke Remark 2.3 and adjust the
orientations of the curves winding around faces in column i − 2 for off-diagonal
coefficients 1. □

The second lemma follows directly from counting the sizes of the bases Bj.

Lemma 4.3. —
4∑

j=1
dim(Xj) ⩾ f2 + f3 − 1

2 + cr(D) − n.

Proof. — For each index i = 1, . . . , n, every 2-sided face in the ith column con-
tributes a basis element to Bj+2, where 0 ⩽ j + 2 ⩽ 3 and i + 2 ≡ j + 2 (mod 4).
The total number of these elements, summed over i = 1, . . . , n, is f2. At least half
of the 3-sided faces in the ith column contribute a basis element to Bj+2, with the
exception of i = 1, where at least one less than half of them contribute. The total
number of these elements is thus ⩾ (f3 − 1)/2. Lastly, all but one face in the ith

column contributes a basis element to Bj, for each index 0 ⩽ j ⩽ 3 and i ≡ j
(mod 4). The total number of these elements is cr(D) − n. The stated inequality now
issues directly. □

The final lemma concerns the signature of the matrices Gj.

(2) By a chain of faces we mean a linearly ordered set of faces in the same column such that two
faces share a crossing exactly if they are adjacent in the linear order.
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Lemma 4.4. — We have
3∑

j=0
σ(Gj) ⩾ −1

2(f2 + f3) + 2.

Proof. — By Lemma 4.2,

(4.2)
3⊕

j=0
Gj =

(
n⊕

i=1
Mi

)
⊕ T,

where T is the direct sum of some tridiagonal matrices of the form T (2a), a ⩾ 1,
and T (2a, 1, 2b), a, b ⩾ 0. By Lemma 3.1 and Porism 3.5, we have

(4.3) σ(T ) ⩾ 1
2 dim(T ).

We also have

(4.4)
n∑

i=1
b(Mi) + dim(T ) = f2 + f ′

3,

where f ′
3 denotes the number of 3-sided faces used in the construction of the bases Bj.

Let p denote the number of indices 1 ⩽ i ⩽ n such that tr(Mi) < 0. The negative
diagonal coefficients in the core of the matrix Mi are the values of the form 4 − s,
where s ⩾ 5 is the number of sides in a face in the ith column. Since we omit at least
one face with ⩾ 5 sides in forming the core of Mi for each of p indices, it follows that

n∑
i=1

tr(Mi) ⩾ p +
∑
i⩾ 5

(4 − i)fi.

Invoking Inequality (4.1) leads to the bound

(4.5)
n∑

i=1
tr(Mi) ⩾ p − (2f2 + f3 − 4).

Let q denote the number of indices 1 ⩽ i ⩽ n such that tr(Mi) = b(Mi) = 0. For
each such index, (1) of Remark 3.3 gives

σ(Mi) ⩾ 0 = 1
2tr(Mi) + 1

2b(Mi).

For the other n−q indices, we bound σ(Mi) from below by Proposition 3.4. Summing
all of these bounds, we obtain

(4.6)
n∑

i=1
σ(Mi) ⩾ −n − q

2 + 1
2

n∑
i=1

tr(Mi) + 1
2

n∑
i=1

b(Mi).

It follows that the number of indices 1 ⩽ i ⩽ n for which tr(Mi) = 0 and b(Mi) ⩾ 1
is equal to n − p − q. Thus, f ′

3 ⩾ n − p − q, which rearranges to

(4.7) p + q − n + f ′
3 ⩾ 0.
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Consequently,
3∑

j=0
σ(Gj)

(4.2)=
n∑

i=1
σ(Mi) + σ(T )

(4.3)+ (4.6)
⩾

q − n

2 + 1
2

n∑
i=1

tr(Mi) + 1
2

n∑
i=1

b(Mi) + 1
2 dim(T )

(4.4)+ (4.5)
⩾

q − n

2 + 1
2(p − (2f2 + f3 − 4)) + 1

2(f2 + f ′
3)

(4.7)
⩾ −1

2(f2 + f3) + 2,

as desired. □

4.3. The combined signature bound

We are nearly ready to put everything together to prove Theorem 1.1. The last
fact we shall use is that if G : H × H → Z is a symmetric, bilinear form, and X ⊂ H
is a subspace, then

(4.8) σ(G) + dim H ⩾ σ(G|X×X) + dim X.

That is because the left side equals two times the dimension of the largest subspace
of H on which G is positive definite, while the right side equals two times the
dimension of the largest subspace of X ⊂ H on which G is positive definite.

Proof of Theorem 1.1. — As argued at the outset of the section, we may assume
that hypotheses (a)-(d) hold for L, so the results of this section pertain to it. Using
Theorem 2.1 twice (∗), then (4.8) four times (∗∗) and finally Lemma 4.4, Lemma 4.3
and (2.3) (∗ ∗ ∗), we obtain

4σ(L) − 2cr(D) (∗)= 2σ(GB) + 2σ(GW )
(∗∗)
⩾

3∑
j=0

(σ(Gj) + dim(Xj)) − 2 (dim(H1(SB)) + dim(H1(SW ))

(∗∗∗)
⩾

(
−1

2(f2 + f3) + 2
)

+
(

f2 + f3 − 1
2 + cr(D) − n

)
− 2cr(D)

= 3
2 + f2

2 − cr(D) − n.

Thus,

4σ(L) ⩾ 3
2 + f2

2 + cr(D) − n ⩾
3
2 + b1(L),(4.9)

using (2.2) in the second inequality. Both values σ(L) and b1(L) are integers. Thus,
we obtain the improvement 4σ(L) ⩾ 2 + b1(L), and dividing through by 4 gives the
bound in Theorem 1.1. □
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5. Discussion

The proof of Theorem 1.1 suggests room for improvement in the direction of Feller’s
conjecture. However, we could not quickly see how to do more, and examples suggest
the need for more ideas. On the one hand, Proposition 3.2 is clearly suboptimal
if, say, tr(M) < −2n, which suggests improving it towards the end of improving
Theorem 1.1. On the other hand, it is easy to give examples for which the relevant
tridiagonal matrices have only −1s and −2s on the diagonal. Then the bound in
Proposition 3.2 seems to be sharp, and it correspondingly seems hard to improve on
Theorem 1.1 for these examples. In another direction, Equation (4.9) shows that the
bound of Theorem 1.1 can be improved in case the proportion of faces with two sides
to the total number of faces is large. However, this proportion can be arbitrarily
small, as witnessed by the following example.

Example 5.1. — Consider the positive braid β = (σ1 · · · σnσn · · · σ1)2 ∈ Bn+1.
Even up to conjugation, no braid moves can be applied to this braid. Further-
more, its closure L is a nontrivial and nonsplit link. Finally β is of minimal index
representing L, since the link L has n + 1 components, so a braid representing
it must have at least n + 1 strands. Independently of n, its standard diagram D
has f2 = 4, f4 = cr(D)−4, and fk = 0 for k ≠ 2, 4. The signature of such links L was
computed by the second author in [Lie20, Remark 15]. It equals approximately two-
thirds of the first Betti number. More precisely, σ(L) = 2n + 1 and null(L) = n − 1.

It seems that in order to obtain a bound for the signature of positive braids
via Goeritz forms that is better than the quarter from Theorem 1.1, one would
have to deal with subspaces of the first homology groups of the chessboard surfaces
that contain more faces with four or more sides. In our proof, the specific almost
tridiagonal form of the matrices for the Goeritz forms restricted to our subspaces Xj

played a crucial role. Since faces with four sides can share crossings with faces to
both the right and to the left, a division of the matrix for the Goeritz form into
blocks that correspond to columns two indices apart as in Lemma 4.2 should be
impossible in general. Perhaps more complicated partitions or also a new and more
global approach would be necessary for further improvements.
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