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Abstract. — We study the compactly supported rational cohomology of configuration
spaces of points on wedges of spheres, equipped with natural actions of the symmetric group
and the group Out(Fg) of outer automorphisms of the free group. These representations show
up in seemingly unrelated parts of mathematics, from cohomology of moduli spaces of curves
to polynomial functors on free groups and Hochschild–Pirashvili cohomology.

We show that these cohomology representations form a polynomial functor, and use vari-
ous geometric models to compute many of its composition factors. We further compute the
composition factors completely for all configurations of n ⩽ 10 points. An application of this
analysis is a new super-exponential lower bound on the symmetric group action on the weight
0 component of H∗

c (M2,n).
Résumé. — Nous étudions la cohomologie rationnelle à support compact des espaces de

configurations de points sur les bouquets de sphères, équipée d’actions naturelles du groupe
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842 N. GADISH & L. HAINAUT

symétrique et du groupe Out(Fg) des automorphismes extérieurs du groupe libre. Ces représen-
tations apparaissent dans des parties qui ne semblent pas avoir de lien entre elles, notamment
la cohomologie des espaces de modules de courbes ainsi que les foncteurs polynomiaux sur les
groupes libres et la cohomologie de Hochschild–Pirashvili.

Nous prouvons que ces représentations obtenues par la cohomologie ont une structure
de foncteur polynomial et utilisons divers modèles géométriques pour calculer une grande
quantité de leurs facteurs de composition. De plus, nous calculons complètement les facteurs
de composition pour toutes les configurations de n ⩽ 10 points. Comme application de cette
analyse, nous obtenons une nouvelle borne inférieure à croissance super-exponentielle pour
l’action du groupe symétrique sur la composante de poids 0 de H∗

c (M2,n).
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1. Introduction

This paper explores a circle of ideas centered around compactified configuration
spaces of graphs and Hochschild cohomology, with applications to moduli spaces of
marked curves and representation theory of outer automorphism groups of free groups.
Revisiting ideas of Quoc Hô [Hô17], we explain the relation between Hochschild
cohomology with square-zero coefficients and configuration spaces – two classes
of mathematical objects that have independently been studied by many groups
of researchers (see e.g. [PV18, TW19] for the former, and [BCGY23, Pet20] for
the latter). This work seeks to popularize the connection, establish a dictionary,
and bring the two points of view together to say new things about both objects
as well as perform computations. Readers interested in either Hochschild homology,
configuration spaces, polynomial representations of Out(Fn), moduli spaces of curves,
or hairy graph complexes should be aware of how these subjects interact and share
insights. The original motivation for this work is the following.

1.1. Super-exponential unstable cohomology of M2,n

The moduli space M2,n of genus 2 curves with n marked points has complicated and
mostly unknown rational cohomology. Considering the action of the symmetric group
Sn by permuting marked points, the cohomology becomes an Sn-representation. In
cohomological degree small compared to n it exhibits representation stability as
shown by Jiménez Rolland [JR11], consequently bounding Betti numbers to be
eventually polynomial in n. In contrast, the orbifold Euler characteristic of M2,n

was computed by Harer–Zagier to be (−1)n+1

240 (n + 1)! [HZ86, §6], thus necessitating
super-exponential growth in n as well as lots of odd-dimensional cohomology. This
was awkward as there were almost no known infinite families of unstable cohomology
classes, certainly not ones that grow super-exponentially in n and reside in odd
degrees (see the introduction of [BBP23] and Remark 1.3 in particular). Building on
an unpublished formula of Petersen and Tommasi (see Proposition 1.10) we construct
such families in the two highest non-trivial cohomological dimensions.

Our result is most naturally phrased Poincaré dually, on compact support co-
homology. Below, F (X, n) is the ordered configuration space of n distinct points
in X.

Theorem 1.1. — For every n ⩾ 3, the weight 0 cohomology grW
0 Hn+∗

c (M2,n;Q)
contains the following Sn-subrepresentations

⊕
k odd

sgnn ⊗H2(n−k) (F (S3, n)/SU(2))⊕⌊ k
6 ⌋ ⊕ Hn−4(M0,n) if ∗ = 2⊕

k even
sgnn ⊗H2(n−k) (F (S3, n)/SU(2))⊕⌊ k

6 ⌋ if ∗ = 3

where ⌊x⌋ is the integer part of x. These degrees are Poincaré dual to the top two
nontrivial degrees in which ordinary rational cohomology appears.

The characters of H∗(M0,n) and H∗(F (S3, n)/SU(2)) have been computed by
Getzler and Pagaria, respectively, and are recalled in § 5.3.1. In particular, one can
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844 N. GADISH & L. HAINAUT

check that these subrepresentations have total dimension on the order of (n − 2)!
thus grow super-exponentially. We want to emphasize that in the above theorem
the case ∗ = 2 corresponds, under Poincaré duality, to (singular) homology in the
virtual cohomological dimension; this fact that the rank of Hvcd(M2,n) grows quickly
was already suggested by computations of Chan [Cha21] and Bibby–Chan–Gadish–
Yun [BCGY23].

Remark 1.2. — Note the rather peculiar appearance of configurations on odd
dimensional manifolds. This brings to mind Hyde’s discovery [Hyd20] that the Sn-
character of H∗(F (R3, n)) appears in counts of polynomials over finite fields. Hyde’s
formula was recently given a geometric explanation by Petersen–Tosteson [PT21].
An analogous geometric explanation of Theorem 1.1 would be most pleasing, but no
such is known.

As explained in Proposition 1.10 below, there is a transferal of information from
Hochschild homology to moduli spaces of curves. With this, calculations of Powell
and Vespa of the former allow us to prove a conjecture from [BCGY23].

Corollary 1.3. — For all n ∈ N, the standard representation χ(n−1,1) = stdn

occurs in grW
0 Hn+2

c (M2,n) with multiplicity
⌊

n
12

⌋
, while the irreducible representation

χ(2,1n−2) = stdn ⊗ sgnn never occurs.

Our analysis suggests a multitude of new conjectures about the multiplicity of
certain Sn-isotypical components inside grW

0 H∗
c (M2,n), detailed in Conjecture 6.13

1.2. Configurations on wedges of spheres

We access the unstable cohomology of M2,n via configuration spaces of points on
graphs. These are complicated topological spaces, which appear e.g. when studying
moduli of tropical curves [BCGY23], geometric group theory and applied topol-
ogy [GK02]. We take particular interest in their compactly supported cohomology,
which turns out to depend only on the first Betti number of the graph (the loop
order g), and carries an action of the group Out(Fg) of outer automorphisms of the
free group. These cohomology representations are of interest since, as we explain
below, they are closely related to Hochschild–Pirashvili cohomology and play a uni-
versal role in the theory of “Outer” polynomials functors on free groups. Notably,
the cohomology provides a large natural class of Out(Fg)-representations that do not
factor through GLg(Z). Detailed in § 1.4, the special case of these representations
with g = 2 is the key object that gives us a handle on the cohomology of M2,n and
allows for the results mentioned above.

Recall the (ordered) configuration space of n points on a topological space X

F (X, n) = {(x1, . . . , xn) ∈ Xn | xi ̸= xj ∀ i ̸= j} ⊆ Xn.

An often overlooked observation is that, while the homotopy type of the configuration
space of n ⩾ 2 points is famously not a homotopy invariant of X, the compactly
supported cohomology H∗

c (F (X, n);Z) is an invariant of the proper homotopy type
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of X under mild point-set hypotheses. We explain this in detail in § 2.2. Let us
consider cohomology with Q-coefficients.

Since every finite graph is homotopy equivalent to a wedge of circles X = ∨g
i=1 S1,

it suffices to study such wedges. The group of homotopy classes of auto-equivalences
of such X is naturally isomorphic to Out(Fg), and thus H∗

c (F (∨g
i=1 S1, n);Q) acquires

a natural Out(Fg)-action.
Varied motivations, including the theory of string-links and spaces of embeddings

Rm ↪→ Rn [TW17, TW19], polynomial functors on free groups [HPV15, PV18], and
unstable cohomology of moduli spaces, lead to the following hard open problem.

Goal 1.4. — Characterize the Out(Fg)-representations H∗
c (F (∨g

i=1 S1, n);Q) for
all finite wedges of circles.

This problem is essentially out of reach with our methods due to the fact that
representations of Out(Fg) are in general not semi-simple. However, after semi-
simplification they become a direct sum of factors arising from GLg(Z)-representa-
tions. The present work focuses therefore on the simpler question of determining
only these composition factors, ignoring the extension problem of these factors.

We situate this problem as a special case of configurations on wedges of spheres
of arbitrary dimension. Let X = ∨

i ∈ I Sdi be a finite wedge of spheres, possibly of
different dimensions di ⩾ 1. Our main object of study is the rational cohomology
with compact support H∗

c (F (X, n);Q) (or rather an associated graded thereof), and
how it behaves under continuous maps, in particular as the number and dimensions
of spheres vary. This seemingly more general problem turns out to be no harder, as
it is governed by a kind of polynomial functor which is entirely determined by its
values on wedges of circles, as explained next.

Recall that a symmetric sequence is a sequence of vector spaces (Φ[m])m ∈N such
that Φ[m] carries an action by the symmetric group Sm

(1) . Joyal’s theory of analytic
functors treats symmetric sequences as coefficients of a power series taking vector
spaces to vector spaces:

V 7−→
⊕

m ∈N
Φ[m] ⊗Sm V ⊗m.

Such a functor is polynomial of degree at most d if only the terms with m ⩽ d are
nonzero. Our setup involves functors in two variables, hence we consider coefficients
(Φ[n, m])(n,m) ∈N2 which are graded Sn × Sm-representations.

Theorem 1.5 (Polynomiality). — Consider the full subcategory of compact topo-
logical spaces X that are homotopy equivalent to wedges of spheres, i.e. X ≃ ∨

i∈I Sdi .
For every n ∈ N there exists a natural “collision” filtration on the functor X 7→
H∗

c (F (X, n)), whose associated graded factors through the reduced cohomology
X 7→ H̃∗(X) followed by a polynomial functor of degree n.

Explicitly, there exists a collection of graded Sn × Sm-representations Φ[n, m],
indexed by (n, m) ∈ N2 and not depending on X, and a natural Sn-equivariant
isomorphism of graded vector spaces
(1) Such sequences are called linear species in combinatorics, and FB-modules in the context of
representation stability.
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(1.1) gr H∗
c (F (X, n)) ∼=

⊕
m ∈N

Φ[n, m] ⊗Sm

(
H̃∗(X)

)⊗m
.

Here H̃∗(X) ∼=
⊕

i ∈ I Q[−di] is considered as a graded vector space, and ⊗ is the
graded tensor product whose symmetry uses the Koszul sign rule.

We will prove that Φ[n, m] = 0 whenever m > n and that Φ[n, n] ̸= 0, which
means that the right hand side of (1.1) is the evaluation at H̃∗(X) of a polynomial
functor of degree n.

Remark 1.6. — The associated graded is necessary when keeping track of the
action by homotopy automorphisms of X. For example when X = ∨g

i=1 S1 is a wedge
of circles, both sides of (1.1) are representations of Out(Fg), but the right-hand side
always factors through a representation of GLg(Z), while on the left hand side this
is in general not the case before taking the associated graded – see Remark 4.11.

With this polynomiality theorem, understanding the “coefficient” representations
Φ[n, m] is an important step towards the determination of Hochschild–Pirashvili
cohomology for all wedges of spheres. Instead of Goal 1.4 we thus focus on the
following. Below, we let χλ denote the irreducible representation of Sn associated
with partition λ ⊢ n.

Goal 1.7. — Compute Φ[n, m] as a graded Sn × Sm-representation. That is,
compute the graded multiplicity of the Sn × Sm-irreducible representation χλ ⊠ χµ

occurring in Φ[n, m] for every pair of partitions λ ⊢ n and µ ⊢ m.
This computation is in general a hard problem, though our geometric perspective

gives access to important special cases presented in Theorem 1.8, and it further
reveals structure that has not been explored until recently – e.g. the Lie structure
discussed in § 3.3. We remark that Powell and Vespa study the same representations
in [PV18] from a purely algebraic perspective; they also address there the problem
of determining the extensions between the composition factors.

For X a wedge of circles, H∗
c (F (X, n)) turns out to be concentrated in degrees

∗ = n − 1 and n only, see § 4.3. Two classes of representations are particularly
accessible.

Theorem 1.8 (Symmetric and exterior powers). — Let X = ∨g
i=1 S1 be a wedge

of circles. Its reduced cohomology H̃∗(X) is concentrated in degree 1, where it is
isomorphic to Qg with its standard action by GLg(Z). The Sn-equivariant isotypic
components of the exterior powers Λ∗(Qg) in the associated graded gr H∗

c (F (X, n))
are given up to isomorphism by

gr Hn
c (F (X, n)) ⩾

⊕
m⩾ 0

Hn−m(M0,n) ⊗ Λm(Qg)(1.2)

gr Hn−1
c (F (X, n)) ⩾

⊕
m⩾ 0

Hn−m−2(M0,n) ⊗ Λm(Qg)(1.3)

For the symmetric powers Sym∗(Qg), the Sn-equivariant isotypic components in
the associated graded gr H∗

c (F (X, n)) are given by sign twists of the Whitehouse
modules
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gr Hn
c (F (X, n)) ⩾

⊕
m⩾ 0

sgnn ⊗H2(n−m)
(
F (R3, n − 1)

)
⊗ Symm(Qg)(1.4)

gr Hn−1
c (F (X, n)) ⩾

⊕
m⩾ 0

sgnn ⊗H2(n−m−1)
(
F (R3, n − 1)

)
⊗ Symm(Qg)(1.5)

with Sn acting via the identification F (R3, n − 1) ∼= F (S3, n)/SU2.

See § 5.3 for proofs. The Sn-characters of H∗(M0,n) and H∗(F (R3, n − 1)) are
recalled in § 5.3.1.

Encoding the “coefficient” representations Φ[n, m] by entries of a matrix indexed
by partitions (λ ⊢ n, µ ⊢ m) as in Table 1.1 below, the last theorem fully describes
the columns associated with partitions µ = (m) and (1m) for all m ⩾ 1.

Remark 1.9. — We note the unexpected appearance of the spaces M0,n and
F (R3, n − 1) while considering wedges of circles. This is a consequence of polyno-
miality in Theorem 1.5, and its uniform treatment of all spheres. In particular, for
S2 ∼= CP 1 and S3 ∼= SU2.

1.3. Explicit computations

We approach calculation with two distinct tools, each giving access to one of the
two symmetric group actions on Φ[n, m] while obscuring the other.

• A Chevalley–Eilenberg complex for H∗
c (F (X, n)), described by Petersen

[Pet20], and an associated “collision” spectral sequence. This gives insight
into the right Sm-action on Φ[n, m], determining the polynomial contribution
of H̃∗(X).

• An Sn-equivariant cell structure on the one-point compactification F (X, n)+,
when X is a wedge of circles. This makes the Sn-action by permuting point
labels relatively computable.

Overlaying the two sets of resulting data, we are able to compute many new irre-
ducible multiplicities of Φ[n, m]. In particular, we calculate the Sn × Sm-character
of Φ[n, m] completely for all n ⩽ 10, and a certain part of Φ[11, m]. Beyond this
range, the representations Φ[n, m] are currently out of reach.

Our calculation technique is illustrated in Appendix A, culminating in Table A.8
which shows all multiplicities for n = 10. Complete tabulations of Φ[n, m] for all
n ⩽ 10 can be found by following this URL(2) . All the computations for this paper
were performed on Sage [TSJ+20]. Our algorithms are freely available on GitHub(3) .

For example, Table 1.1 gives the complete decomposition of gr H6
c (F (∨g S1, 7))

into irreducible representations of S7 ×Out(Fg) after splitting the collision filtration,
equivalently this is the lower degree of Φ[7, m] for all m. The rows correspond to the
various S7-irreducible representations and the columns to the Out(Fg)-irreducible

(2) https://louishainaut.github.io/GH-ConfSpace/
(3) https://github.com/louishainaut/GH-ConfSpace
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Table 1.1. (λ, µ) multiplicity in Φ[7, m] in codimension 1, arranged in lex-order
of partitions. Unspecified entries are all zero. Yellow and red columns correspond
to symmetric and alternating powers, respectively, and are completely described
by Theorem 1.8. Lilac rows are computed in [PV18, Examples 3-4].

6 5, 1 5 4 . . . 3 . . . 2, 12 2, 1 2 15 14 13 12 1
7 . . . 1 . . . 1 1

6, 1 . . . . . .
5, 2 . . . 1 . . . 1 1 1
5, 12 1 . . . . . . 2 1 1
4, 3 . . . 1 . . . 1 1

4, 2, 1 . . . 2 . . . 1 2 1 1 1
4, 13 . . . 1 . . . 1 1
32, 1 1 . . . . . . 2 1 1
3, 22 . . . 2 . . . 1 1

3, 2, 12 1 . . . 1 . . . 2 1 1
3, 14 1 . . . 1 . . . 1
23, 1 . . . 1 . . . 1 1
22, 13 1 . . . . . . 1
2, 15 . . . . . .
17 1 . . . . . .

representations. E.g. the bottom-left corner records a single copy of the representa-
tion Λ6(Qg) of Out(Fg) on which the symmetric group acts via the sign, while no
other summands exhibit a sign action. Note about this table that our Theorem 1.8
accounts for nearly all the nontrivial contributions – these are the shaded columns.
The cohomology in the other degree H7

c (F (∨g S1, 7)) can be quickly obtained from
Table 1.1 using the Euler characteristic.

The same Euler characteristic calculation gives a lower bound on the equivari-
ant multiplicities of H∗

c (F (X, n)). It shows, in particular, that every Schur functor
(see (2.2)) does occur in the cohomology, in fact super-exponentially many times as
n grows. See § 5.4 and the example therein.

1.4. Weight 0 cohomology of moduli spaces

The coefficients Φ[n, −] discussed above determine the weight 0 cohomology groups
grW

0 H∗
c (M2,n,Q), studied in recent work of Chan, Galatius and Payne [CGP22,

CFGP23], via the following proposition. For a partition λ ⊢ m let Φ[n, λ] denote the
Sn-equivariant multiplicity space of the Sm-irreducible χλ in Φ[n, m], equivalently
it is Φ[n, m] ⊗Sm χλ. Recall that Φ[−, −] is graded, and denote by Φ[−, −]i the part
in degree i.

Proposition 1.10. — There exists a family of coefficients rλ ∈ N indexed by
partitions λ = (a, b) with at most 2 parts such that for each i ⩾ 0 and n ∈ N there
is an Sn-equivariant isomorphism

ANNALES HENRI LEBESGUE
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(1.6) grW
0 H i

c(M2,n) ∼=
⊕

λ=(a,b)

(
Φ[n, λ∗]i−3−|λ|

)⊕rλ

where grW
0 is the weight 0 subspace of H∗

c in the sense of Hodge theory, and the sum
runs over partitions λ with up to two parts and conjugate partition λ∗.

Explicitly, the coefficients are given by

(1.7) r(a,b) =


⌊

a−b
6

⌋
+ 1 if a ≡2 b ≡2 1⌊

a−b
6

⌋
if a ≡2 b ≡2 0

0 if a ̸≡2 b

where ⌊x⌋ is the integer part of x ∈ Q and x ≡2 y is equivalence modulo 2.

Our Theorem 1.1 is a direct corollary of this Proposition along with Theorem 1.8
Note that the direct sum is finite since Φ[n, λ] = 0 if |λ| > n. Also, due to the

grading of Φ[n, λ], Formula (1.6) produces cohomology only in degrees n + 2 and
n + 3.

Remark 1.11. — Formula (1.6) was discovered by Petersen and Tommasi, and
they explained it to us in private communication. We present here an alternative
proof of this formula building on [BCGY23, Theorem 1.2]. Our determination of the
coefficients rλ is new.

Our computation of Φ[n, λ] for all n ⩽ 10 mentioned in § 1.3, as well as additional
computations of the relevant terms when n = 11, recovers the Sn-character of
grW

0 H∗
c (M2,n) as appearing in [BCGY23]. We do not have complete calculations

beyond that. Nevertheless, in § 6.1 we give a new lower bound on the character
of grW

0 H∗
c (M2,n), which grows very rapidly, and for n ⩽ 11 it accounts for a large

portion of the full weight 0 cohomology.

1.5. Hochschild cohomology and configuration spaces

The Hochschild–Pirashvili homology of a wedge of circles is an invariant of a
commutative algebra, which turns out to be fundamental to a wide range of fields:
from rational homotopy theory of spaces of “long embeddings” Rm ↪→ Rn as studied
by Turchin–Willwacher [TW17], to the theory of “Outer” polynomial functors on
the category of free groups studied by Powell–Vespa [PV18].

We show in § 3, these cohomology groups are related via Schur–Weyl duality to
H∗

c (F (∨g
i=1 S1, n);Q). This relation is known to some experts, but it does not appear

in the literature in a form that we can readily use. For the benefit of the reader
we give the following identification. Let A(n) = Q[ϵ1, . . . , ϵn]/(ϵiϵj | i ⩽ j) be the
square-zero algebra on n generators, concentrated in degree 0, equipped with an
Sn-action permuting the generators and multigraded by the degree of each generator;
and let A(n) be its linear dual coalgebra.

TOME 7 (2024)
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Theorem 1.12 (Hochschild cohomology and configurations). — Let X be a
simplicial set with finitely many non-degenerate simplices, and geometric realization
|X|. For every positive integer n the cohomology H∗

c (F (|X|, n),Q) is isomorphic
to the (1, . . . , 1)-multigraded component of Hochschild–Pirashvili cohomology of
X+ = X ⊔ {∗} with coefficients in the coalgebra A(n). This isomorphism respects the
Sn-action on both sides, and is natural with respect to maps X → X ′.

In particular, for X = ∨g
i=1 S1, whose group homotopy auto-equivalences is natu-

rally identified with Out(Fg), this specializes to an isomorphism that respects the
natural actions of Sn and Out(Fg) on both objects, with Out(Fg) identified with the
homotopy equivalences ∨g

i=1 S1 → ∨g
i=1 S1.

We think of this relationship as a geometric interpretation of the algebraic construc-
tion of Hochschild–Pirashvili homology in [Pir00], and we prove it in § 3.2. This theo-
rem reformulates a hard open problem of Hochschild–Pirashvili (co)homology [TW19,
§2.5] as explained in the next section.

1.6. Relations to previous work

The representations H∗
c (F (X, n)) appear in previous work in the following forms.

Turchin–Willwacher define in [TW19, §2.5] a class of Out(Fg)-representations which
they call bead representations. They show that these do not factor through GL(g,Z),
and are the smallest known representations with this property. Turchin–Willwacher
pose the (still open) problem of describing these representations, and explain that
they play a role in the rational homotopy theory of higher codimensional analogues
of string links. Our current work provides a geometric interpretation of these repre-
sentations as H∗

c (F (∨g
i=1S

1, n)), and computing our coefficients Φ[n, m] is equivalent
to calculating the composition factors of the bead representations.

In later work Powell–Vespa [PV18] discovered that the linear duals to the bead
representations are fundamental to the theory of polynomial functors on the category
of finitely generated free groups. They establish vast machinery to study these objects
and compute the representations in some cases that are relevant to our work here.
To make use of their work, and to make it more accessible to a topologically minded
reader, we include a dictionary between their terminology and ours in § 4.4. That
section will recall the construction and significance of bead representations, and their
relation to our work.

Another precursor to our project is Hô’s study of factorization homology and its
relations to configuration spaces [Hô20]. On the one hand rational Hochschild homol-
ogy is known to be a special case of factorization homology, and on the other hand
Hô showed that many variants of configuration spaces arise as factorization homology
with suitable coefficients [Hô20, Proposition 5.1.9]. Essentially our Theorem 1.12 is
a special case of his work, but for the benefit of the reader we include our own proof.
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2. Preliminaries

2.1. Polynomial functors on VectQ

Eilenberg and MacLane introduced in [EM54] the notion of polynomiality for func-
tors between categories of modules, defined using the notion of cross-effect functors.
In the present work we use functors VectQ → VectQ, sending (finite-dimensional)
rational vector spaces to rational vector spaces. In this specific case the category of
polynomial functors is semi-simple and the general theory of polynomial functors
admits a simpler presentation, as recalled below. For additional details we refer
to Joyal [Joy86] and MacDonald [Mac95, Appendix I.A]. The end of this section
includes a brief discussion of the notion of polynomiality for functors grp → VectQ,
from finitely generated free groups to rational vector spaces, as considered in [DV15].

Definition 2.1 (Symmetric sequences). — A symmetric sequence (of Q-vector
spaces) is a sequence of vector spaces (Am)∞

m=0 such that Am is equipped with a linear
action of the symmetric group Sm. The sequence is finitely supported if Am = 0 for
all m ≫ 0; denoted as a finite sequence (Am)n

m=0 for some n ⩾ 0.

Proposition 2.2 (Polynomial functors, [Mac95, Appendix I.A]). — Fix n ⩾ 0
and let (Am)n

m=0 be a finitely supported symmetric sequence. A functor Ψ: VectQ →
VectQ of the form

(2.1) Ψ(V ) =
n⊕

m=0
Am ⊗Sm V ⊗m

is polynomial of degree ⩽ n in the sense of Eilenberg–MacLane. Moreover, every
polynomial functor Ψ : VectQ → VectQ is isomorphic to one obtained by the above
construction, for representations Am determined uniquely by Ψ up to isomorphism.

In the above proposition, the representation Am is called the mth coefficient of the
polynomial functor Ψ. The largest m for which Am ̸= 0 is the degree of Ψ.

Definition 2.3. — Analogously, for a general symmetric sequence (Am)∞
m=0, the

functor

Ψ(V ) =
∞⊕

m=0
Am ⊗Sm V ⊗m

is called analytic.

Famously, analytic functors VectQ → VectQ contain exactly the data of their
sequence of coefficients (see e.g. [Mac95, Appendix I.A]). Stated precisely,
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Proposition 2.4. — The construction (A0, . . . , Am, . . .) 7→ Ψ defines an equiv-
alence of categories between the category of symmetric sequences and the category
of analytic functors. It further restricts to an equivalence between the subcategory of
finitely supported symmetric sequences and the subcategory of polynomial functors.

The inverse construction is given by sending Ψ to (A0, A1, . . .) where An is the
“multi-linear part”

An = Ψ(Qn)(1, ..., 1)

on which diagonal (n × n)-matrices act with weight (1, . . . , 1).

Remark 2.5. — In [Mac95] MacDonald gives a slightly different definition of
polynomial functors than Eilenberg–MacLane’s, but this difference is immaterial
in our context. In light of the previous proposition, one may take functors of the
form (2.1) as a definition of polynomial functors VectQ → VectQ. However, when
VectQ is replaced with a different category of modules, there do exist polynomial
functors that are not characterized by a symmetric sequence of coefficients. In that
case, functors as in (2.1) define a proper subcategory of polynomial functors.

Given two polynomial functors Ψ1 and Ψ2 of respective degrees deg Ψ1 = d1 and
deg Ψ2 = d2, their sum Φ ⊕ Ψ, product Φ ⊗ Ψ, and composition Φ ◦ Ψ are also
polynomial functors. Moreover

deg(Ψ1 ⊕ Ψ2) = max(d1, d2) deg(Ψ1 ⊗ Ψ2) = d1 + d2 deg(Ψ1 ◦ Ψ2) = d1d2.

Proposition 2.4 implies that polynomial functors form a semi-simple abelian cate-
gory, and the irreducible objects are the so called Schur functors

(2.2) Sλ : V 7−→ χλ ⊗Sm V ⊗m

where χλ is the irreducible Sm-representation corresponding to the partition λ ⊢ m.
Most familiar are the symmetric and alternating powers S(m)(V ) = Symm(V ) and
S(1m)(V ) = Λm(V ). Recall that the space Sλ(V ) is non-trivial if and only if the
number of parts in λ does not exceed dim V , and in that case the resulting GL(V )-
representations for different λ are all distinct.

More generally, if Ψ is a polynomial functor and its coefficients decompose as
Am

∼=
⊕

λ⊢m Aλ ⊗ χλ, i.e. the χλ-multiplicity space is Aλ, then

Ψ(−) ∼=
⊕

λ

Aλ ⊗ Sλ(−)

an irreducible decomposition of Ψ into Schur functors, with sum over all partitions λ.
In this paper we will actually not work with the category VectQ but with the

category grVectQ of graded rational vector spaces, with the symmetry of ⊗ obeying
the Koszul sign rule; everything said until now applies verbatim to this situation.
The coefficients of polynomial functors grVectQ → grVectQ can be determined by
considering graded vector spaces V of finite type, concentrated in a single degree:

Proposition 2.6. — Let V = Qd[−i] be a graded vector space of rank d con-
centrated in degree i, and let Ψ be a polynomial functor with coefficients Am

∼=⊕
λ⊢m Aλ ⊗ χλ where Aλ are graded vector spaces. Then
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Ψ(V ) =


⊕

m⩾ 0
⊕

λ⊢m Aλ ⊗ Sλ(Qd)[−mi] if i is even⊕
m⩾ 0

⊕
λ⊢m Aλ∗ ⊗ Sλ(Qd)[−mi] if i is odd

where the sum runs over all partitions and λ∗ denotes the conjugate partition of λ.
In other words, when V is concentrated in even degree, the value Ψ(V ) as a GL(V )-

representation determines the coefficients of Ψ with at most dim(V ) parts. On the
other hand when V is concentrated in odd degree, the GL(V )-representation Ψ(V )
determines the coefficients with all parts having size at most dim(V ).

2.1.1. Polynomial functors from free groups

We also consider the notion of polynomiality for functors out of the category grp
of finitely generated free groups. The relevant variant we need is that of contravariant
functors Ψ: grpop → VectQ, however since this notion is not the main focus of this
paper, we will only sketch the general idea and refer the interested reader to [HPV15,
§3.2] for a detailed presentation.

The category grp consists of free groups Fd
∼= ⟨a1, . . . , ad⟩ for every nonnegative

integer d and group homomorphisms. The free product Fn∗Fm
∼= Fn+m and the trivial

group F0 endow this category with the structure of a pointed monoidal category;
and [HPV15, §3] define contravariant polynomial functors of degree n − 1 on grp
to be ones for which the nth cross effect functor

crn Ψ(Fg1 , . . . , Fgn) := ker
(

Ψ (Fg1 ∗ · · · ∗ Fgn) →
n⊕

i=1
Ψ
(
Fg1 ∗ · · · ∗ F̂gi

∗ · · · ∗ Fgn

))
induced by the morphisms 1 → Fgi

vanish identically.
Remark 2.7. — The reference [HPV15, §3], as well as a large part of the literature,

focuses more on covariant polynomial functors. While the categories of covariant
and contravariant polynomial functors on grp are not equivalent, the subcategories
of functors taking finite-dimensional values are related via linear duality, see [Pow21,
§7] for details. In particular, since the polynomial functors that we will encounter
take finite-dimensional values, we will allow ourselves to dualize statements about
covariant polynomial functors.

A major difference between polynomial functors grpop → VectQ and VectQ →
VectQ is that the former category is not semi-simple, and the analogue of Proposi-
tion 2.2 fails. Indeed, polynomial functors on grp have a more complicated structure,
described next.

An important class of polynomial functors on grp is given by precomposing
polynomial functors VectQ → VectQ by the rationalization ι : grp → VectQ

Fd
ab7−→ Zd ⊗Q7−→ Qd

and linear duality. In this way, every Schur functor Sλ as defined in (2.2) gives rise
to a polynomial functor grpop → VectQ of degree |λ|, denoted by ι∗Sλ. As before,
these functors still comprise the simple polynomial functors, however now they admit
non-trivial extensions.
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Proposition 2.8 (Polynomial filtration, [DV15, Corollaires 3.6, 3.7]). — Every
polynomial functor Ψ : grpop → VectQ admits a natural “polynomial” filtration by
degree. The associated graded functor splits as the direct sum of functors of the
form ι∗Sλ.

Stated differently, every polynomial functor on grp is obtained as an iterated
extension of functors ι∗Sλ. These functors ι∗Sλ are basic examples of the following
notion.

Definition 2.9 (Outer functors). — A functor Ψ : grpop → VectQ is said to
be an outer functor if it sends inner automorphisms to the identity map. That is,
if for every free group Fg the Aut(Fg)-action on Ψ(Fg) factors through Out(Fg) =
Aut(Fg)/ Inn(Fg) (recall that an automorphism is inner if it is the conjugation by a
fixed element).

An outer functor is polynomial if it is both outer and polynomial in the sense
discussed above.

2.2. Cohomology with compact support of configuration spaces

Homology and cohomology in this paper will be taken with rational coefficients
unless otherwise stated, and we will henceforth suppress the coefficients from the
notation. That is, H∗

c (−) will denote rational singular cohomology with compact
support H∗

c (−;Q).
Recall that H∗

c (−) is related to homology and cohomology as follows. First, when
X is a locally compact space then H∗

c (X) ∼= H̃∗(X+) for X+ the one-point com-
pactification, and when X is an n-manifold Poincaré duality identifies H i

c(X) ∼=
Hn−i(X) ∼= Hn−i(X)∨ (the second isomorphism needs the homology to be finite-
dimensional). Furthermore, the linear dual of H∗

c (X) is the Borel-Moore homology,
which we denote by HBM

∗ (X).
The configuration spaces F (X, n) are famously not a homotopy invariant of the

space X. For example the real line R is homotopy equivalent to a point, but
F ({∗}, 2) = ∅ while F (R, 2) ̸= ∅; a highly nontrivial example of failure of homotopy
invariance is found in [LS05]. Also, a continuous map f : X → Y does not induce a
map F (X, n) → F (Y, n) if f is not injective and n ⩾ 2. We show however that at the
level of cohomology with compact support homotopy invariance and functoriality do
hold, at least for proper maps.

Proposition 2.10. — Let f : X → Y be a proper map between locally compact
Hausdorff spaces. For every positive integer n, the map f induces a natural morphism
in each degree i

H i
c(F (Y, n)) → H i

c(F (X, n)).
Proof. — Since f is proper, the n-fold cartesian product f×n : Xn → Y n is also

proper. The subset U = (f×n)−1(F (Y, n)) is open in F (X, n) and the restriction of
f×n to U is a proper map fn := f×n|U : U → F (Y, n). We can therefore construct
the morphism H i

c(F (Y, n)) → H i
c(F (X, n)) as the composition

(2.3) H i
c(F (Y, n)) f∗

n−→ H i
c(U) −→ H i

c(F (X, n))
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where the second map is extension by zero.
Alternatively, f induces a map F (X, n)+ → F (Y, n)+ between the one-point com-

pactifications, where any collisions in Y are sent to ∞. The induced map on coho-
mology is, with the identification H∗

c (F (X, n)) ∼= H̃∗(F (X, n)+), the composition
in (2.3). □

With this alternative definition it is easy to see that if f, g : X → Y are homotopic
through a proper homotopy H : X × I → Y , then they induce equal maps on
H∗

c (F (−, n)).

Corollary 2.11. — A proper homotopy equivalence f : X → Y induces an
isomorphism H∗

c (F (Y, n)) ∼= H∗
c (F (X, n)) for each n. In particular, if X and Y are

compact, the same follows for any homotopy equivalence.

A special case of this corollary is that for a finite connected graph G, the groups
H∗

c (F (G, n)) only depend on the first Betti number (or loop order) of G.
Another implication of functoriality and homotopy invariance is the following.

Corollary 2.12. — Let X be a compact space and n a positive integer. The
monoid Maps(X, X) of continuous self maps acts on H∗

c (F (X, n)), and this action
factors through its monoid of connected components [X, X] = π0(Maps(X, X)).

3. Geometry of Hochschild cohomology

This section highlights the geometric description of Hochschild–Pirashvili cohomol-
ogy as compactly supported cohomology of a configuration space. This presentation
highlights the fact that the cohomology acquires an additional Lie-module structure,
discussed in § 3.3. Readers interested only in our new calculations and results can
safely skip this section.

Let us first briefly explain the notation used below. A more detailed introduction to
Hochschild–Pirashvili cohomology can be found in [Pir00]. Throughout this section
k is any commutative ring.

Remark 3.1 (Basepoints). — If X is a (simplicial) set, we will denote by X+
the pointed (simplicial) set obtained by adjoining to X a disjoint basepoint. Let
Fin∗ be the category of finite pointed sets, a skeleton of which is given by the sets
n+ = {∗, 1, . . . , n} for all n ∈ N.

Let A be an augmented commutative k-algebra, with augmentation morphism
ϵ : A → k. Define a covariant functor A• : Fin∗ → Alg

k
, sending n+ to A⊗n and the

morphism α : m+ → n+ to the morphism α∗ : A⊗m → A⊗n defined on pure tensors
by

α∗(a1 ⊗ . . . ⊗ am) =
 n⊗

j=1

∏
i ∈ α−1(j)

ai

 · ϵ

 ∏
i ∈ α−1(∗)

ai

 ,

with the convention that ∏i ∈ ∅ ai = 1 and a∗ = 1. More conceptually, A• is the
unique coproduct-preserving functor Fin∗ → Alg

k
sending 1+ to A and the map

1+ → 0+ to the augmentation map ϵ : A → k.
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Definition 3.2 (Hochschild–Pirashvili homology). — Let X : ∆op → Fin∗ be
a pointed simplicial set with finitely many p-simplices for all p and let A be an
augmented commutative k-algebra. The composition A• ◦ X produces a simpli-
cial k-module, and its associated chain complex is denoted CH∗(X; A). Define the
Hochschild–Pirashvili homology of X with coefficients in A to be the homology of
this chain complex, denoted HH∗(X; A).

Remark 3.3. — The previous definition extends to general simplicial sets X by
considering the colimit of CH∗(X ′; A) over all finite simplicial subsets X ′ ⊆ X, i.e.
the left Kan extension. However, this extension will not be needed in our applications
below.

When working instead with C, a coaugmented cocommutative coalgebra, dualiz-
ing the previous definition gives HH∗(X; C), the Hochschild–Pirashvili cohomol-
ogy of X with coefficients in C. Explicitly, one defines a contravariant functor
C• : Finop

∗ → Modk (in fact taking values in coalgebras), and the composition
C• ◦ X is a cosimplicial k-module. The associated cochain complex CH∗(X; C) has
cohomology HH∗(X; C) by definition.

Remark 3.4 (Loday construction). — Definition 3.2 is a special case of a more
general construction, taking a pair (A, M) of a commutative k-algebra A and a
module M over A and producing a covariant functor L(A, M) : Fin∗ → Modk
(see [Pir00, §1.7]). Then HH∗(X; L(A, M)) is again defined as the homology of the
chain complex associated to the simplicial k-module L(A, M) ◦ X. This construction
has the property that HH∗(S1; L(A, M)) ∼= HH∗(A, M), the classical Hochschild
homology. The special case we consider in this paper is related to those in [TW19]
and [PV18] via the following identification.

For X a pointed simplicial set, A an augmented k-algebra and C a coaugmented
coalgebra, there exist isomorphisms (compare [PV18, Lemma 13.11])

CH∗(X+; A) = CH∗(X+; L(A,k)) ∼= CH∗(X; L(A, A)),(3.1)
CH∗(X+; C) = CH∗(X+; L(C,k)) ∼= CH∗(X; L(C, C)),(3.2)

natural in X, A and C, and thus the Hochschild (co)homologies are the same.

To state the main claim of this section we introduce some terminology. Let V be
a free k-module of finite rank, then the square-zero algebra AV := k ⊕ V is the
unital k-algebra with trivial multiplication on V . Dually, define AV := k⊕ V ∨ the
coalgebra cogenerated by primitive elements V ∨, and note that AV ∼= (AV )∨. The
central goal of the section is the following.

Proposition 3.5. — Let X be a simplicial set with finitely many simplices in
every degree, and for every n ⩾ 0 consider the coalgebra AQn ∼= Q⊕Qϵ1 ⊕ . . . ⊕Qϵn

cogenerated by the primitive cogenerators ϵ1, . . . , ϵn. There is an Sn-equivariant
isomorphism

(3.3) HH∗
(
X+; AQn

)(1, ..., 1) ∼= H∗
c (F (|X|, n))

where the superscript (1, . . . , 1) denotes the multi-graded summand of Hochschild–
Pirashvili cohomology that is multi-linear in the ϵi’s (see Proposition 2.4).
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Remark 3.6. — For a general simplicial set X there is a homotopy invariant
reformulation as

HH∗
(
X+; AQn

)(1, ..., 1) ∼= H̃∗(|X|n/∆n(|X|)).

This becomes expression (3.3) involving configuration spaces when |X| is compact.

Remark 3.7. — An equivalent formulation of Proposition 3.5 is the following: Con-
sider the symmetric sequence given by n 7→ H∗

c (F (|X|, n)). Then the corresponding
functor
(3.4) V 7→

∏
n⩾ 0

H∗
c (F (|X|, n)) ⊗Sn (V ∨)⊗n

is naturally isomorphic to Hochschild–Pirashvili cohomology V 7→ HH∗(X+; AV ).
In particular the above functor is the linear dual of the functor at the subject of
Powell–Vespa’s [PV18]. Hence the close relation between our work and theirs.

3.1. Labeled configuration spaces

We proceed by constructing a simplicial set whose simplicial homology with k-
coefficients is the Hochschild–Pirashvili homology. Let ComMon(Set∗) be the cate-
gory of commutative monoids in the category of pointed sets, i.e. M ∈ ComMon(Set∗)
is a pointed set equipped with a unit 1 ∈ M and a product M ∧ M → M satisfying
the usual axioms of commutative monoids (here ∧ is the smash product). Note
that M has a canonical augmentation ϵ : M → {∗, 1}, sending every non-invertible
element to the basepoint.

Given a monoid M ∈ ComMon(Set∗), its Loday construction is defined analogously
to Definition 3.2. This is the covariant functor M• : Fin∗ → ComMon(Set∗), defined
on objects as n+ 7→ M∧n.

Definition 3.8 (Hochschild simplicial set). — Given M ∈ ComMon(Set∗) as
above, and X a pointed simplicial set with finitely many p-simplices for every p, the
Hochschild simplicial set is defined as the composition M• ◦ X.

As in Remark 3.3, this definition extends to general pointed X by considering the
colimit over finite simplicial subsets X ′ ⊆ X.

Given a pointed set S, let the reduced k-module spanned by S be k̃[S] := k[S]/k[∗]
where ∗ ∈ S is the basepoint. Then, k̃[S∨T ] ∼= k̃[S]⊕k̃[T ] and k̃[S∧T ] ∼= k̃[S]⊗k̃[T ].
It is thus immediate that k̃[−] takes monoids in pointed sets to augmented k-algebras.
Furthermore, applying k̃[−] to a pointed simplicial set X results in a simplicial k-
module, which under the Dold–Kan correspondence coincides with the reduced
simplicial chain complex C̃∗(X). These constructions are all compatible with ∨ and
∧ of pointed simplicial sets.

Remark 3.9. — Due to the strong monoidality of k̃[−], it follows that the complex
of reduced simplicial k-chains of the Hochschild simplicial set M• ◦ X is isomorphic
to the Hochschild–Pirashvili chain complex CH∗(X; k̃[M ]).
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In the rest of this subsection we introduce the notion of the configuration space of
X with labels in M and prove that this simplicial set is isomorphic to the Hochschild
simplicial set.

For every simplicial set X, the Yoneda embedding provides a contravariant functor
X• : Finop

∗ → sSet∗, defined as the pointwise hom-functor Map∗(−, X), sending n+
to the pointed simplicial set Map∗(n+, X) ∼= X×n whose basepoint is the constant
pointed map.

Definition 3.10. — Given M ∈ ComMon(Set∗) and a pointed simplicial set X,
the configuration space of X with labels in M is the pointed simplicial set defined
as the following coend

(3.5) X• ⊗Fin∗ M• :=
 ∨

n⩾ 0
X×n ∧ M∧n

/∼

where ∼ is the equivalence relation
(α∗(x1, . . . , xn), (s1, . . . , sm)) ∼ ((x1, . . . , xn), α∗(s1, . . . , sm))

for all pointed maps α : m+ → n+.

Note in particular that if α is a bijection of n+, then α∗ and α∗ act on X×n and
M∧n by mutually inverse permutations of the coefficients.

One can think of a point in the labeled configuration space as a tuple of points
in X, each of which decorated by an element of M . When two such labeled points
collide in X, one replaces them by a single point labeled by the product of the two
original labels. Points labeled by the unit 1 ∈ M can be introduced or deleted freely.

Proposition 3.11. — Let X be a pointed simplicial set and let M be a commu-
tative monoid in pointed sets. Then the Hochschild simplicial set M• ◦ X is naturally
isomorphic to the labeled configuration space X• ⊗Fin∗ M•.

Proof. — When X has finitely many nondegenerate simplices, this is essentially
the co-Yoneda lemma enriched in simplicial sets. Indeed, at the level of p-simplices
the co-Yoneda lemma precisely gives a natural isomorphism

Xp
• ⊗Fin∗ M• = Map∗(−, Xp) ⊗Fin∗ M• = M•(Xp)

and by naturality these isomorphisms form an isomorphism of simplicial sets.
When X is any simplicial set, it is the filtered colimit over its finite simplicial sub-

sets. Since maps from finite sets commute with filtered colimits, and ⊗Fin∗ commutes
with all colimits, the same co-Yoneda argument extends to X. □

Combining this proposition with Remark 3.9, one obtains the following.

Corollary 3.12. — Let X be a pointed simplicial set and let M be a commu-
tative monoid in pointed sets. Then the Hochschild chain complex CH∗(X; k̃[M ])
is isomorphic to the reduced simplicial chain complex of the labeled configuration
space X• ⊗Fin∗ M• with k-coefficients. Thus, the Hochschild–Pirashvili homology is
the homology of the labeled configuration space.

The motivating example for this discussion is the subject of the next section.
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3.2. Configuration spaces of distinct points

Let T be a finite set. The square-zero monoid in pointed sets generated by T is
the pointed set M [T ] := {0, 1}∐T , with basepoint 0, unit 1 and otherwise trivial
multiplication: s · s′ = 0 for all s, s′ ∈ T .

Claim 3.13. — Let X+ be a simplicial set with a disjoint basepoint and finitely
many non-degenerate simplices. Given a finite set T , the configuration space with
labels in the square-zero monoid M [T ] has geometric realization

|M [T ]• ◦ (X+)| ∼=
∨

n⩾ 0
(F (|X|, n) ×Sn T n)+

where Y + is the one-point compactification of a topological space Y . That is, the
resulting labeled configuration space is the wedge sum of compactified configuration
spaces of particles in |X| with decorations in T .

Proof. — First, we prove that there is an isomorphism of simplicial sets

M [T ]• ◦ (X+) ∼=
∨

n⩾ 0

(
Xn/∆n(X)

)
∧Sn (T n)+

where ∆n(X) ⊆ Xn is the fat diagonal – the simplicial subset whose p-simplices are
the n-tuples of elements in Xp not all of whose coordinates are distinct; equivalently
its p-simplices are the non-injective functions from n to Xp.

On the left-hand side, p-simplices are described as follows. There is a natural
bijection M [T ]•((Xp)+) ∼= (({1}∐T )Xp)+, further simplified by

(3.6)
(
{1}

∐
T
)Xp ∼=

∐
Y ⊆ Xp

T Y ∼=
∐

n⩾ 0
Inj(n, Xp) ×Sn T n,

where Inj(n, Xp) denotes the set of injective functions from n to Xp. Remembering
the basepoint, we obtain the natural bijection

M [T ]•((Xp)+) ∼=
∨

n⩾ 0
Inj(n, Xp)+ ∧Sn (T n)+ ∼=

∨
n⩾ 0

(
Xn

p /∆n(Xp)
)

∧Sn (T n)+,

where the last isomorphism uses the obvious identification Xn
p /∆n(Xp) ∼= Inj(n, Xp)+

which sends noninjective functions in Xn
p to the basepoint. It remains to verify that

the simplicial maps on both sides commute with these bijections. Crucially, this uses
the fact that the multiplication on T is trivial.

Face and degeneracy maps α : Xp → Xq act on ({1}∐T )Xp by multiplying the
labels of points in every fiber (with the empty product being 1). But since the
product of two elements from T is trivial, a function φ ∈ ({1}∐T )Xp is sent to
the basepoint unless every fiber of α contains at most one element with label in
T and every other element is labeled by the unit 1, in which case it is sent to the
composition

α(φ−1(T )) α−1
−→ φ−1(T ) φ−→ T

extended by 1 when this is undefined. On the RHS of (3.6) the function φ : φ−1(T ) →
T represents the element ((x1, φ(x1)), . . . , (xn, φ(xn))) for some enumeration of
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φ−1(T ). This tuple is sent under α to ((α(x1), φ(x1)), . . . , (α(xn), φ(xn))), which is
easily seen to be the tuple corresponding to α∗(φ) described above.

Since geometric realization commutes with wedge sums, Cartesian products and
quotients, one obtains a homeomorphism

|M [T ]• ◦ (X+)| ∼=
∨

n⩾ 0

(
|X|n/∆n(|X|)

)
∧Sn (T n)+,

where one observes that ∆n(|X|) = |∆n(X)| ⊆ |X|n is the topological fat diagonal,
in which at least two coordinates are equal.

Up to this point, the analysis applies to any simplicial set. When |X| is com-
pact (equivalently, X has finitely many non-degenerate simplices), |X|n/∆n(|X|) is
homeomorphic to the one-point compactification F (|X|, n)+, inducing the claimed
homeomorphism. □

Every labeled configuration space is naturally filtered by number of points in
a configuration. In the case of the last claim the filtration actually splits, and
the resulting graded factors are the compactified configuration spaces with a fixed
number of points. This grading is refined further to a multi-grading by listing the
multiplicities of every label s ∈ T . E.g. if T = {red, blue}, then the component with
multi-degree (nr, nb) is the configuration space of nr red points and nb blue points,
all of which distinct, compactified by one point at ∞.

Corollary 3.14. — For T = {1, . . . , n}, the (1, . . . , 1) multi-degree component
of the realisation |M [T ]• ◦ (X+)| is the one-point compactification of the ordinary
ordered configuration space of n distinct points in |X|. The natural Sn-action on T
by permutations agrees with the usual action on the configuration space by relabeling
points.

Remark 3.15. — From this point on we will abuse notation and use X to refer
both to the simplicial set and its geometric realization. The notation F (X, n)+ for
compactified configuration spaces can be understood either as a topological space
or as the simplicial set Xn/∆n(X), so that |F (X, n)+| ∼= F (|X|, n)+ when X has
finitely many non-degenerate simplices. Since simplicial and singular homology agree,
the ambiguity in notation is immaterial.

Note that linearizing M [T ] results in an augmented square-zero k-algebra in the
usual sense: k̃[M [T ]] ∼= k · 1 ⊕ k[T ] with trivial multiplication on k[T ], denoted
by AT . Consider the Hochschild chain complex with coefficient in this square-zero
algebra,

Corollary 3.16. — Let X be a simplicial set with finitely many non-degenerate
simplices. For T = {1, . . . , n} and AT = k⊕k[T ] the square-zero k-algebra generated
by T , the Hochschild chain complex CH∗(X+, AT ) is naturally multi-graded by the
multiplicity of each s ∈ T , so that the (1, . . . , 1) multi-degree component is equivalent
to the reduced chains on the one-point compactification

(3.7) CH∗(X+, AT )(1, ..., 1) ≃ C̃∗
(
F (X, n)+;k

)
compatibly with the Sn-action on both chain complexes.
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Similarly, the (d1, . . . , dn) multi-degree component is naturally isomorphic to the
reduced chains on the one-point compactification of the configuration space of ∑ di

distinct points with exactly di many having label i ∈ T .
Taking homology on both sides gives a natural isomorphism

(3.8) HH∗(X+; AT )(1, ..., 1) ∼= H̃∗
(
F (X, n)+;k

)
.

Corollary 3.17. — With the notation of the previous corollary, and AT :=
k · 1 ⊕ k[T ]∨ the coalgebra dual to the square-zero algebra AT , there is a natural
isomorphism
(3.9) HH∗(X+; AT )(1, ..., 1) ∼= H∗

c (F (X, n);k) .

Proof. — We dualize the quasi-isomorphism in (3.7). On the left-hand side, Hoch-
schild chains dualize to cochains. On the right-hand side, one uses the identification
between cohomology with compact support and reduced cohomology of the one-point
compactification. □

Specializing to rational coefficients and in light of the equivalence between sym-
metric sequences and analytic functors, these isomorphisms can be restated as the
following isomorphisms, natural in the vector space V :

HH∗(X+; AV ) ∼=
⊕
n⩾ 0

H̃∗(F (X, n)+;Q) ⊗Sn V ⊗n(3.10)

HH∗(X+; AV ) ∼=
∏

n⩾ 0
H∗

c (F (X, n);Q) ⊗Sn (V ∨)⊗n(3.11)

These facts are the ones claimed in Proposition 3.5.

3.3. Lie structure

The interpretation of Hochschild–Pirashvili homology as related to configuration
space reveals additional structure, as explained to us by Victor Turchin.

Proposition 3.18. — Let X be a compact CW complex. Then the symmetric
sequence H∗

c (F (X, •)) is naturally endowed with a right module structure over the
suspended Lie operad Σ Lie, that is a map H∗

c (F (X, •)) ◦ Σ Lie → H∗
c (F (X, •))

satisfying the usual right-module axioms.
The operadic suspension Σ Lie is defined by Σ Lie(n) ∼= sgnn ⊗ Lie(n)[1 − n], so

that an algebra over it is equivalent to a Lie algebra structure on the (de)suspension.
Remark 3.19. — Around the time a first version of this article was made public,

Christine Vespa informed us that Geoffrey Powell recently studied (outer) polyno-
mial functors of grp via right Lie-modules [Pow21, Pow22, Pow24], and the corre-
sponding right Lie structure is the same as described in the previous Proposition.
Briefly, Powell uses Morita theory to construct an equivalence of categories between
outer polynomial functors on free groups – i.e. compatible sequences of Out(Fg)-
representations – and representations of the PROP associated with Lie operad. The
equivalence centers around the representations H∗

c (F (X, n)) for X a wedge of circles.
See also [Ves22, §2.4-2.5].
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Proof of Proposition 3.18. — Unpacking the definitions, this structure attaches a
map

mφ : H∗
c (F (X, n − 1)) → H∗+1

c (F (X, n))
to every surjection φ : [n] ↠ [n − 1], that are compatible with the symmetric group
actions in the obvious way and satisfy appropriate versions of anti-symmetry and
Jacobi identity.

The existence of such a structure follows from Koszul duality of the commutative
and Lie operads, and the fact that the Lie-module n 7→ H∗

c (F (X, n)) is Koszul
dual to the Com-module n 7→ H∗(Xn) (see [AT14, Lemma 11.4]). A more explicit
construction of the maps mφ can be obtained from [TW19, §5], using that for X
compact we have a homeomorphism (X+)∧n/∆n(X+) ∼= F (X, n)+. □

Under the identification of symmetric sequences and analytic functors (Φ[•]) ↔ Ψ,
a right Σ Lie-module structure on a symmetric sequence (Φ[•]) becomes the map of
analytic functors

(3.12) Ψ (FreeLie(V )) → Ψ(V )

such that every Lie-bracket increases the grading by +1.

Corollary 3.20. — Let X be a simplicial set with finitely many simplices
in every degree. The Hochschild–Pirashvili cohomology functor with square-zero
coefficients HH∗(X; A•) is endowed with the following natural structure:

(3.13) HH∗
(
X; AFreeLie(V )

)
→ HH∗

(
X; AV

)
graded such that if FreeLiek(V ) denotes the subspace of k-fold nested brackets then

(3.14) HH i
(
X; AFreeLiek(V )

)
→ HH i+k

(
X; AV

)
.

If one is interested in Hochschild homology instead of cohomology, one need only
dualize this Lie structure. More explicitly, the Hochschild–Pirashvili homology with
square-zero coefficients carries a natural (shifted) right coLie-comodule structure.

Remark 3.21 (Geometric interpretation). — Thinking of Hochschild–Pirashvili
cohomology HH∗(X; AV ) as related to cohomology of configurations of points in |X|
with labels in V , the Lie-module structure above comes from the following geometric
construction.

Suppose a configuration {x1, . . . , xn} ⊆ |X| with labels FreeLie(V ) has the point
xn labeled by the bracket [v, w]. The retraction φ : [n + 1] ↠ [n] with φ(n + 1) =
φ(n) = n induces the map

mφ : H∗
c (F (X, n)) → H∗+1

c (F (X, n + 1))

effectively splitting the nth point in two, as described above. Label the points of this
new configuration so that xn has label v, xn+1 has label w, while all other points
retain their original label. This process can be repeated until there are no points
labeled with brackets. The corollary above shows that the composition of these
operations is independent of the order in which they were performed, and produces
a well-defined cohomology class on configurations with labels in V .
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4. Geometric approaches to computation

Now let X be a finite wedge of spheres. Our approach to computations is centered
around contrasting two distinct tools for computing H∗

c (F (X, n)), each providing
complementary information. First we use the so called collision spectral sequence,
obtained by filtering the cartesian power Xn by its diagonals. This tool gives a
handle on the polynomial structure of H∗

c (F (X, n)), but makes the symmetric group
action by permutations less accessible.

Our second main tool, applying only when X is a wedge of circles, is the cellular
chain complex of the one-point compactification F (X, n)+. This second tool gives a
handle on the symmetric group action on H∗

c (F (X, n)), but obscures the polynomial
structure somewhat.

Our approach lets us calculate an associated graded gr H∗
c (F (X, n)) for all n ⩽ 10.

For example, a complete tabulation of the composition factors of H9
c (F (X, 10)) can

be found in Table A.8. The output of all our calculations can be found by following
this URL(4) .

4.1. Collisions and the CE-complex

We begin by considering the collision spectral sequence. This sequence has been
used to study configuration spaces since the 80’s, see e.g. [CT78, Kri94, Tot96].
More recently, Hô [Hô17] and Petersen [Pet20] recast the spectral sequence as the
Chevalley–Eilenberg complex of a twisted Lie algebra. The same spectral sequence
also appears in Powell–Vespa’s [PV18] as coming from the polynomial filtration of
Hochschild–Pirashvili homology, referred to as the Hodge filtration (though this is
not in the sense of Hodge theory).

The following construction first appeared in Getzler’s [Get99a]. Recall that a
twisted dg Lie algebra is a symmetric sequence g = (g(n))n ∈N of chain complexes
that is a Lie algebra object in the category of symmetric sequences, with ⊗ given by
Day convolution: there is a bracket

[−, −] : IndSn+m

Sn×Sm
g(n) ⊗ g(m) → g(n + m)

that is Sn+m-equivariant and satisfies appropriate versions of anti-symmetry and
Jacobi identity. Equivalently, g is equipped with a left module structure over the Lie
operad (see below) with respect to the composition product Lie ◦g → g.

To every such g one associates the Chevalley–Eilenberg bi-complex
CCE

−k (g) := Symk(g[1]),
where we view g[1] as a bigraded object, with horizontal grading −1 and vertical
grading given by the internal cohomological grading of g. The differentials of this
bi-complex are d and δ, where d is the extension of differential on g to a signed
derivation on tensors, and

δ(sg1 ⊗ . . . ⊗ sgk) =
∑
i < j

ϵijs[gi, gj] ⊗ sg1 ⊗ . . . ⊗ ŝgi ⊗ . . . ⊗ ŝgj ⊗ . . . ⊗ sgk,

(4) https://louishainaut.github.io/GH-ConfSpace/

TOME 7 (2024)

https://louishainaut.github.io/GH-ConfSpace/
https://louishainaut.github.io/GH-ConfSpace/


864 N. GADISH & L. HAINAUT

with ϵij being the sign induced by the Koszul sign rule when moving sgi and sgj to
the front. The bigrading of g[1] induces a bigrading of the double complex CCE

∗ (g).
The sign ϵij depends on both the horizontal and the vertical grading. Note that
since we use cohomological grading while the CE complex computes homology, the
horizontal grading is negative.

Remark 4.1. — Since g is a symmetric sequence, the Chevalley–Eilenberg homology
HCE

∗ (g), defined as the cohomology of the total complex associated to CCE
∗ (g), admits

a further filtration by arity. Moreover both differentials d and δ preserve the arity
filtration, therefore the CE complex naturally splits by arity. With this, we note
that if g(0) = 0 (as will be the case in our situation), then CCE

−k (g)(n) ̸= 0 only for
1 ⩽ k ⩽ n.

Further recall that if A is any commutative dg algebra, then A⊗g = (A⊗g(n))n ∈N
admits a twisted Lie bracket by extending [−, −] in an A-bilinear manner.

The central input to our calculation is the following result. Before stating it, let
us fix some notation. Let Lie(n) be the multi-linear part of the free Lie algebra on
(x1, . . . , xn), so considered as a symmetric sequence Lie is tautologically a twisted
Lie-algebra. Let S Lie be its suspension

S Lie(n) ∼= sgnn ⊗ Lie(n)[−n]
considered as a twisted Lie algebra as well, where V [−n] is the chain complex
consisting of V in degree n and zero in all other degrees.

Proposition 4.2 ([Pet20], Corollary 8.8). — Let X be a paracompact and locally
compact Hausdorff space, and let A be a cdga model for the compactly supported
cochains C∗

c (X;Q). Then there is a natural isomorphism of symmetric sequences in
graded vector spaces

H∗
c (F (X, n),Q) ∼= HCE

∗ (A ⊗ S Lie)(n).

When A models the cochains on a formal space, as is the case for wedges of
spheres, the following simplification holds. Recall that a double complex is naturally
filtered by its columns Fp(⊕s,t Cs,t) = ⊕

s⩾ p,t Cs,t; we consider the resulting spectral
sequence next.

Let (C(X), d) be a functorial commutative cochain model for C∗
c (X;Q), where

X is any paracompact and locally compact Hausdorff space. Then the canonical
filtration by columns of the bicomplex CCE

∗ (C(X) ⊗ S Lie) gives rise to a functorial
spectral sequence converging to the symmetric sequence n 7→ H∗

c (F (X, n);Q).

Lemma 4.3 (Formal spaces, compare [TW19, Remark 4.6]). — When X is a
compact formal space, i.e. the cdgas (C(X), d) and (H∗(X), 0) are quasi-isomorphic,
the spectral sequence induced by filtering CCE

∗ (C(X) ⊗ S Lie) by columns collapses
at its E2-page, and E∞ ∼= E2 ∼= HCE

∗ (H(X) ⊗ S Lie) functorially in X.

Note 4.4. — Even when X is formal, there might exist nonformal maps X → X,
i.e. such that the map C(X) → C(X) is not equivalent to the induced H(X) →
H(X). If not for those, one would simply replace the model (C(X), d) by (H(X), 0)
and conclude that the CE-bicomplex splits into the direct sum of its rows. However,
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nonformal maps are responsible for nontrivial extensions between those rows, as is
already the case for X = S1 ∨ S1 ∨ S1 (see Remark 4.11).

Proof. — Filtering the Chevalley–Eilenberg double complex by columns gives a
spectral sequence with E0 coinciding with CCE

∗ (C(X) ⊗ S Lie) but only with the
vertical differentials of C(X). Since CCE

∗ involves tensor powers and we are working
over Q, the Künneth formula gives a natural isomorphism
(4.1) E1 ∼= CCE

∗ (H(C(X) ⊗ S Lie)) ∼= CCE
∗ (H(X) ⊗ S Lie)

where the latter isomorphism follows from the fact that (−) ⊗ S Lie is exact.
We claim that the spectral sequence collapses at its E2-page. Indeed, since X

is compact and formal, the cohomology H(X) = H∗(X;Q) itself constitutes a
commutative cochain model for C∗

c (X) with vanishing differential. With this model
the Chevalley–Eilenberg bicomplex computing H∗

c (F (X, n)) is exactly the E1-page
considered in the previous paragraph. But since the vertical differentials of the latter
bicomplex are zero, its spectral sequence collapses at E2. The fact that the spectral
sequences for C(X) and H(X) both compute the same cohomology then forces all
higher differentials of the former spectral sequence to also vanish. □

Definition 4.5 (Collision filtration). — The collision filtration on H∗
c (F (X, n))

is the filtration induced by the following shift of the filtration F by columns of the
CE-bicomplex. For every n ∈ N let the pth level of the collision filtration be the
(p − n)th filtration by columns

Fp H i
c(F (X, n)) ∼= Fp−n HCE

i+n(C(X) ⊗ S Lie)(n).

The reasoning behind the name is that this filtration comes from filtering the pair
(Xn, ∆n(X)) by the number of collisions in the fat diagonal (see [BG23, §3.7] for
details in the dual setting of Borel–Moore homology, but see the next remark).

Remark 4.6. — Comparing with [BG23, Definition 3.7.1], we note that this older
definition was incorrect. Instead of defining the filtration directly on the homology,
one should define the filtration FkCBM

∗ (Confn(X)) at the chain level in the same
fashion as described there, and consider the induced filtration on homology,

FkHBM
∗ (Confn(X)) := Im

[
H∗

(
FkCBM

∗ (Confn(X))
)

→ HBM
∗ (Confn(X))

]
.

Corollary 4.7. — When X is a compact formal space, e.g. a finite wedge of
spheres, then grF H∗

c (F (X)) is naturally isomorphic to the CE-homology HCE
∗ (H(X)

⊗ S Lie).
Moreover, for any map X → Y between compact formal spaces, the induced map

grF H∗
c (F (Y, n)) → grF H∗

c (F (X, n)) is computed from the natural map H∗(Y ) →
H∗(X) via its action on the CE-homology HCE

∗ (H∗(−) ⊗ S Lie).
In particular, the action of the monoid Maps(X, X) on grF H∗

c (F (X, n)) factors
through End(H∗(X)).

Unpacking the definition of the CE-complex when X is a wedge of equidimensional
spheres and forgetting the Sn-action, the first page of the collision spectral sequence
takes the following explicit form involving tensor powers.

TOME 7 (2024)



866 N. GADISH & L. HAINAUT

Proposition 4.8. — When X = ∨g
i=1 Sd is a wedge of equidimensional spheres

so that Hd(X) ∼= Qg, the E1-page of the collision spectral sequence takes the form

(4.2) Ep,q
1

∼=

T k(Hd(X))⊕(|s(n,n−p)|·(n−p
k )) if q = dk and p + k ⩽ n

0 otherwise

with T k(V ) = V ⊗k, and |s(n, n − p)| denoting an unsigned Stirling number of the
first kind (see e.g. [Sta12, §1.3]).

Each of these Ep,q
1 -terms admits an action by Sn, but we do not have an explicit

description of the latter in closed form.
Proof sketch. — Recall that Chevalley–Eilenberg complex of a twisted Lie algebra

g has underlying symmetric sequence of vector spaces the composition product
Com ◦g, with Com the commutative operad. When g = (Q ⊕ Hd(X)) ⊗ S Lie, this
composition consists of tensors power of Hd(X) tensored with the composition
Com ◦ S Lie.

On the other hand, applying Petersen’s formula (Proposition 4.2) for X = R2

identifies Com ◦ S Lie with the cohomology of F (R2, n) – the configuration spaces
of n points in the plane. Their Betti numbers are expressed in terms of Stirling
numbers – see [Get99b]. Keeping track of the filtration and tensor degree gives the
stated formula. □

4.2. Action by outer automorphisms of free groups

The wedge ∨g
i=1S

1 is a classifying space for the free group Fg, thus its self-maps up
to homotopy are given by End(Fg) up to conjugation. As explained below, it follows
that the graded vector spaces H∗

c (F (∨g
i=1S

1, n)) are representations of this endomor-
phism monoid (the statements in this section apply equally well to cohomology with
integer coefficients, but we will not need that).

Pursuing further naturality, we use the description in terms of relative cohomology
H∗

c (F (X, n)) ∼= H∗(Xn, ∆n(X)) for every compact Hausdorff space X, where ∆n(X)
is the fat diagonal. Since ∨g

i=1S
1 is homotopy equivalent to the standard simplicial

classifying space BFg, and since the functors X 7→ Xn and X 7→ ∆n(X)

(4.3)
((

∨g
i=1S

1
)n

, ∆n
(
∨g

i=1S
1
))

−̃→ ((BFg)n, ∆n(BFg))
with the latter pair obviously functorial in Fg. More precisely, let grp be the category
of finitely generated free groups. The following is clear.

Proposition 4.9. — The construction Fg 7→ H∗((BFg)n, ∆n(BFg)) is a con-
travariant functor from grp to graded vector spaces, and for every g ⩾ 1 it is
isomorphic to H∗

c (F (∨gS1, n)) as Sn-representations.
In particular, for every g and n ⩾ 1 the vector spaces H∗

c (F (∨gS1, n)) are equipped
with a natural action of the monoid End(Fg).

Every pointed map of spaces f : ∨g
i=1S

1 → ∨h
i=1S

1 is determined up to homotopy
by the induced homomorphism π1(f) : Fg → Fh, and so the above functor from grp
completely characterizes the functoriality of H∗

c (F (∨g
i=1S

1, n)) on wedges of circles.
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Of particular interest, every H∗
c (F (∨g

i=1S
1, n)) is a representation of the automor-

phism group Aut(Fg). But since an inner automorphism – conjugation by some
σ ∈ Fg – is given by a map that is nonpointed-homotopic to the identity, its action
on H∗

c (F (∨g
i=1S

1, n)) must be trivial. In other words, it is an outer functor (see
Definition 2.9). Note that the configuration space functor F (−, n) admits a natural
Sn-action, and thus Sn acts on the resulting outer functor by natural transforma-
tions.

Lastly, pass to the associated graded of the collision filtration. By Corollary 4.7 the
action of a homomorphism Fg → Fh on grF H∗

c (F (−, n)) is determined by the action
on cohomology Zh → Zg. Making this precise (compare with [PV18, Theorems 6.9,
17.8]),

Proposition 4.10. — Under the collision filtration, the associated graded of the
outer functor Fg 7→ H∗

c (F (∨g
i=1S

1, n);Q) is the restriction of a well-defined functor
on the category of finitely-generated free abelian groups along the abelianization,

(4.4) Fg
ab7−→ Zg 7−→ gr H∗

c

(
F
(
∨g

i=1S
1, n

))
In particular, for every g and n ⩾ 1 the graded quotients gr H∗

c (F (∨g
i=1S

1, n)) admit
a natural action of the matrix ring End(Zg).

Proof. — Every homomorphism f : Zg → Zh is the abelianization of some mor-
phism f̄ : Fg → Fh. Define f ∗ : gr H∗

c (F (∨h
i=1S

1, n)) → gr H∗
c (F (∨g

i=1S
1, n)) by f̄ ∗.

Corollary 4.7 shows that this does not depend on the choice of f̄ . □

We will see below that (4.4) is in fact a polynomial functor on grp and that the
collision filtration coincides with the polynomial filtration. Our eventual goal is to
work towards computing its composition factors (see § 5).

Remark 4.11 (Extensions of the Out-action). — Since rational polynomial repre-
sentations of GLg(Z) admit no non-trivial extensions, one might expect that the ex-
tension problem for the collision filtration is trivial and thus that H∗

c (F (∨g
i=1S

1, n);Q)
is isomorphic to HCE

∗ (H∗(∨g
i=1S

1) ⊗ S Lie) as representations.
However, this is not the case: the Out(Fg)-representation H∗

c (F (∨g
i=1S

1, n);Q)
does not factor through GLg(Z), and the collision filtration exhibits enormously
complicated nontrivial extensions – see [TW19, §2.3] and [PV18, Theorem 13].

4.3. Equivariant CW-structure

We now bring in a completely orthogonal approach to computing H∗
c (F (X, n);Q)

when X is a wedge of circles: using an Sn-equivariant CW-structure on the one-
point compactification F (X, n)+. This was introduced and featured as the central
computational tool in the first author’s recent work [BCGY23].

The resulting cellular cochain complex consists of only two nontrivial chain groups,
each of which is free as an Sn-representation. The linear dual of this 2-step complex
also featured in Powell–Vespa [PV18], though the vast generality of their framework
needs some unpacking to make it amenable to computations.
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Proposition 4.12 ([BCGY23, Theorem 1.2]). — Let X = ∨g
i=1 S1 be a wedge

of g circles. The Sn-representation H∗
c (F (X, n)) is computed by a 2-step complex of

free Sn-modules

(4.5) . . . → 0 → Q[Sn]⊕(n+g−2
g−1 )︸ ︷︷ ︸

cohomological degree n−1

→ Q[Sn]⊕(n+g−1
g−1 )︸ ︷︷ ︸

cohomological degree n

→ 0 → . . .

As in the previous section, this statement holds equally well for integral cohomology,
but we will not need that here.

Proof. — First note that H∗
c (F (X, n)) coincides with the ordinary reduced co-

homology of the one-point compactification F (X, n)+. Then [BCGY23] gives an
Sn-equivariant CW-structure on this compactification, with cells in dimensions
n − 1 and n only and a free Sn-action. The resulting cellular cochain complex is as
claimed. □

[BCGY23] also gives explicit formulas for the coboundary map and for the actions
of endomorphisms of X on this complex. We do use these in explicit calculations,
but their details are not important for our discussion.

What is important is that the complex splits into its isotypic components. That
is, for every irreducible representation χλ of Sn, the multiplicity space χλ ⊗Sn

H∗
c (F (X, n)) is also computed by the same complex

(4.6) . . . → 0 → χ
⊕(n+g−2

g−1 )
λ → χ

⊕(n+g−1
g−1 )

λ → 0 → . . .

where one only needs to specialize the coboundary map to χλ. This small complex
efficiently computes the multiplicity of χλ in H∗

c (F (X, n)) for various values of n and
g. Its downside, however, is that the collision filtration is not as readily accessible as
in the Chevalley–Eilenberg complex of § 4.1. The following discussion explains how
to “see” the collision filtration on the terms of (4.6).

Remark 4.13 (End(Fg)-action). — Recall that upon taking the associated graded
of the collision filtration on H∗

c (F (X, n);Q), the End(Fg)-action discussed in § 4.2
factors through the matrix ring End(Zg) (see Corollary 4.10). Furthermore, on the
associated graded, the filtration degree is exhibited by the weights of the action of
the diagonal matrices Zg ⊂ End(Zg). However, these weights can already be read-off
from simple chain-level endomorphisms of the 2-step complex (4.6).

Lemma 4.14. — Let X = ∨g
i=1 S1 be a wedge of g circles and let χλ be an

irreducible representation of Sn. The action of the diagonal matrix diag(d1, . . . , dg) ∈
Mg(Z) on the χλ-multiplicity space of gr H∗

c (F (X, n);Q) is realized by the (non-
invertible) space-level map φ : X → X that for every 1 ⩽ i ⩽ g wraps the ith circle
around itself with degree di.

This induces an operator on the 2-step complex (4.6) that preserves each χλ-
summand, and is thus an effectively computable block-diagonal transformation whose
eigenspaces determine the collision filtration.

Proof. — The transformation φ acts on the homology of X by the diagonal matrix
diag(d1, . . . , dg). Since the induced map on F (X, n)+ is equivariant and cellular, it
further induces an endomorphism of the complex (4.6).
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The result of wrapping the ith circle around itself is realized as a sum of shuffles of
the points lying on that circle. But regardless of their order, the number of points on
each circle is preserved by the operation. These numbers of points are the invariants
that differentiate the Sn-orbits of cells in F (X, n)+, hence the summands of (4.6)
are preserved. In particular, the chain operator φ∗ can be diagonalized within every
summand.

Lastly, since a scalar matrix diag(n, . . . , n) acts on H1(X) by the scalar n, will act
on the subspace of collision filtration degree ⩽ p by eigenvalues nd with n−p ⩽ d ⩽ n.
In this way the eigenspaces of φ detect the collision filtration at the chain level. □

Remark 4.15. — Varying the diagonal entries (d1, . . . , dg) in the above lemma,
the trace by which φ acts on (4.6) characterizes the GLg(Z)-action on gr H∗

c (F (X, n))
completely, which is the ultimate goal of this project – see § 5 below.

Furthermore, the block-diagonal structure of the action of φ on (4.6) is effective
for computer calculations: it can be diagonalized on every χλ summand individually,
thus allowing for parallel calculations on relatively small matrices.

4.4. Bead representations

Let us recall where the Sn ×Out(Fg)-representations H∗
c (F (∨g

i=1 S1, n)) previously
appeared in the literature and establish a dictionary with related work. Turchin and
Willwacher studied the Hochschild–Pirashvili cohomology of ∨g

i=1 S1, and in [TW19,
Section 2.5] they consider the (1, . . . , 1)-multigraded component, equipped with
its Sn-action – by Proposition 3.5 this is the same as our H∗

c (F (∨g
i=1 S1, n)). They

then split the Sn-action into isotypic components and call the resulting Out(Fg)-
representation bead representations.

Proposition 4.16. — For every λ ⊢ n, Turchin–Willwacher’s bead representa-
tions U I

λ , U II
λ are the Out(Fg)-equivariant multiplicity of the Specht module χλ in

H∗
c (F (∨g

i=1 S1, n)) for ∗ = n and n − 1 respectively. That is,

(4.7) U∗
λ(g) = H∗

c

(
F
(
∨g

i=1S
1, n

))
⊗Sn χλ.

They pose a (still open) problem to describe these representations, starting with
computing the decomposition of gr H∗

c (F (∨g
i=1S

1, n)) into Schur representations. This
latter point is exactly the subject of this paper, e.g. they are the rows of Table 1.1.
The decomposition of all U I

λ and U II
λ with |λ| = n ⩽ 10 can be found on this

webpage(5) .

Remark 4.17 (Extensions of Schur functors). — The bead representations turn out
to be central to the theory of outer polynomial functors (see Definition 2.9). Indeed,
recall that the irreducible polynomial GLg(Z)-representations are given by evaluating
Schur functors Sλ(−) at Qg, and these representations admit no non-trivial exten-
sions. In fact, the functors Sλ(−) themselves already admit no non-trivial extensions
in the category of functors. On the other hand, every Schur functor can be pulled

(5) https://louishainaut.github.io/GH-ConfSpace/
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back to a polynomial outer functor ι∗Sλ, and as such they do admit extensions, i.e.
there exist non-split surjections of polynomial outer functors E ↠ ι∗Sλ. Amazingly,
Powell–Vespa show that the functors Pλ := (Fg 7→ Hn

c (F (∨g
i=1S

1, n))⊗Sn χλ∗) admit
canonical surjections Pλ ↠ ι∗Sλ and prove that it is the maximal indecomposable
extension of polynomial outer functors, i.e. a projective cover (see [PV18, Theo-
rem 19.1] for the dual statement). Moreover, every polynomial outer functor admits
a minimal projective resolution by sums of such bead representations.

Decomposing the bead representations into their composition factors is thus a fun-
damental task in the representation theory of Out(Fg), serving as further motivation
for our present study.

Powell and Vespa prove a multitude of facts about these functors in [PV18], and
we think it valuable to make their results accessible to the topologically minded
reader. We will therefore devote the rest of this section bridging the terminology
gap between their setup and what we consider to be more natural in the topological
context.

• Powell–Vespa study the Hochschild–Pirashvili homology of X that we dis-
cuss in § 3. In (3.10) we highlight its relation to homology of compactified
configuration spaces as a functor in both a space X and a vector space V .
Powell–Vespa denote this bi-functor by (X, V ) 7→ HH∗(X, L(AV , AV )), which
is isomorphic to our HH∗(X+, AV ) in (3.10). This is an analytic functor in V ,
and for fixed X our Proposition 3.5 identifies the corresponding symmetric
sequence of coefficients as the Borel–Moore homology n 7→ HBM

∗ (F (X, n)),
linearly dual to H∗

c (F (X, n)). In Powell–Vespa’s notation, this symmetric
sequence of coefficients is the functor HH∗(X; ϑ∗ InjFin).

• They get a functor from the category of free groups by composing with the
classifying space B(−) : Fg 7→ B(Fg) in place of the space X. Since B(Fg)
is coherently homotopy equivalent to the wedge ∨g

i=1S
1, their functors agree

with the ones we study here.
• They show that these Hochschild homology groups form an outer polynomial

functor on the category of free groups, and so over a field of characteristic
0 all their composition factors are of the form ι∗Sλ for various partitions λ.
They denote these functors by αSλ. Calculating their multiplicities is the
subject of our work.

The associated graded representation we call gr H∗
c (F (∨g

i=1S
1, n)) corre-

sponds in their formalism to αn crn HH∗(B(−); ϑ∗ InjFin), evaluated at Fg.
Here crn is the functor that extracts the nth coefficient of a polynomial func-
tor, returning an Sn-representation, and αn converts this representation into
a sum of Schur functors.

• For an integer partition λ ⊢ n, a subscript λ either on Hochschild homology
HH∗(−; ϑ∗ InjFin) or on the coefficients ϑ∗ InjFin refers to the χλ-multiplicity
space of the corresponding Sn-representation.

In particular, our coefficients Φ[λ, m] for a partition λ and m ⩽ |λ| is the Sm-
representation crm HH∗(B(−); ϑ∗ InjFin

λ ), with Φ[λ, µ] giving the multiplicity
of αSµ∗ (note that the partition µ needs to be transposed).
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• As they discuss in [PV18, §16.3], for λ ⊢ n a partition of n, the bead rep-
resentations U I

λ and U II
λ , mentioned at the beginning of § 4.4, are dual

to HHn(B(−); ϑ∗ InjFin
λ ) and HHn−1(B(−); ϑ∗ InjFin

λ ) respectively. Powell–
Vespa refer to these by ωβn(Sλ) and (Cokerad PΣ

coalg)λ respectively.

Example 4.18 ((2, 1n−2) bead representation). — To illustrate the translation from
Powell–Vespa’s formalism, consider [PV18, Example 4]:

(4.8) HH∗
(
B(−); ϑ∗ InjFin

(2,1n−2)

) ∼=

αS(n−1,1) ∗ = n

0 otherwise,

the ∗ = n case is also denoted ωβnS(2,1n−2).
We reinterpret this line as stating that for X a wedge of circles, the cohomology

H∗
c (F (X, n)) has as its χ(2,1n−2)-multiplicity space isomorphic to the Schur repre-

sentation ι∗S(n−1,1)∗(H̃1(X)) when ∗ = n, and otherwise vanishes. In terms of the
coefficients Φ[−, −], this means that the graded vector space Φ[(2, 1n−2), (2, 1n−2)]
has rank 1 concentrated in degree 0, and that for every other partition λ ̸= (2, 1n−2)
the graded vector space Φ[(2, 1n−2), λ] is trivial.

For completeness of the dictionary, we include:
• In their calculations Powell–Vespa frequently use the functors βdSλ, which in

our terminology are linear dual to the top cochains in the 2-step complex (4.6)
equipped with Aut(Fg)-actions. These also assemble to a polynomial functor
on free groups, but it does not factor through Out(Fg), i.e. conjugations act
nontrivially as noted in [BCGY23, Remark 2.12].

5. Polynomiality and consequences

Let us next consider configurations on X for X a wedge of spheres. As we let the
number of spheres vary, the compactly supported cohomology acquires the structure
of a polynomial functor evaluated on the vector space H̃∗(X), as shown in this
section.

Remark 5.1. — Having a single polynomial functor compute the cohomology
of F (X, n) for any finite wedge of spheres constrains the functor and endows it
with further structure that one would not have expected. For example consider the
following three cases:

(1) For configurations on a wedge of 1-spheres, the cohomology is closely related
to the algebraic construction of Hochschild–Pirashvili homology as an expo-
nential functor, see [PV18]. On the other hand, the configuration spaces admit
a Fox-Neuwirth cell decomposition(6) with cells in only the top two dimen-
sions, freely permuted by the symmetric group. This gives a free presentation
of the cohomology as an Sn-module, leading to rather efficient calculations –
details in § 4.3.

(6)This is a decomposition into locally closed sets that become cells of the one-point compactification.
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(2) For configurations on a wedge of 2-spheres, the ambient space X = ∨g
i=1 S2

can be realized as a complex algebraic curve of genus g. The cohomology in
question thus admits a mixed Hodge structure, and an action by the Galois
group of Q. Moreover, for a single sphere F (CP 1, n) ∼= PSL2()×M0,n, which
explains the appearance of these moduli spaces in our calculations below.

(3) For configurations on a wedge of 3-spheres, since S3 ∼= SU(2) is a Lie group, it
follows that F (S3, n) ∼= S3 ×F (R3, n−1). This lets us identify the equivariant
multiplicity of all exterior powers.

5.1. Polynomiality for wedges of spheres

The polynomiality statement of Theorem 1.5 will follow from the more refined
main result of this section. Let Σ denote the category of finite sets and bijections(7) ,
with skeleton the finite sets n = {1, 2, . . . , n}.

Theorem 5.2. — Let X be a finite wedge of spheres, possibly of different di-
mensions, and consider the collision filtration on H∗

c (F (X, n)) (Definition 4.5). Its
associated graded quotients

grF
p Hp+∗

c (F (X, n)) = FpHp+∗
c (F (X, n))/Fp−1H

p+∗
c (F (X, n))

admit the following algebraic description.
There exists a functor in two variables Ψp : Σ × grVectQ → grVectQ such that

Ψp(n, −) is a polynomial functor of degree n − p with a natural Sn-action, and such
that for any finite wedge of spheres X = ∨

i∈I Sdi there is a natural isomorphism of
graded Sn-representations

grF
p Hp+∗

c (F (X, n)) = Ψp
(
n, H̃∗(X)

)
.

Note 5.3. — Let us reiterate that while the two inputs of Ψp are different types
of objects, the equivalence of categories mentioned in Proposition 2.4 relates such
functors and bi-functors Σ × Σ → grVectQ as well as grVectQ × grVectQ → grVectQ
taking inputs of the same type. We prefer the presentation of Ψp given here as it
lends itself well to a simple geometric interpretation.

A key step in the proof of this theorem is the following lemma. Recall that we
defined AW to be the square-zero algebra Q ⊕ W , with trivial multiplication on W .
Furthermore, the CE-complex CCE

∗ (AW ⊗ S Lie)(n) is bigraded and its filtration by
columns is denoted F•. Thus the graded quotient grF−p is exactly the pth column of
the bicomplex.

Lemma 5.4. — Let W be a graded vector space and fix degree p ⩾ 0. Then for
all n ∈ N the functor sending W to the arity n term of the Chevalley–Eilenberg
homology grF−p HCE

∗ (AW ⊗S Lie)(n) is a polynomial functor of degree p taking values
in graded vector spaces.
(7) In the representation stability literature this category is called FB.
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Proof. — First, the construction W 7→ AW ⊗ S Lie produces a twisted dg Lie alge-
bra that in every arity is a polynomial functor of degree 1. Clearly this construction
is functorial in W , i.e. linear maps W → W ′ induce morphisms of twisted dg Lie
algebras.

Second, for a Lie algebra g in symmetric sequences, the pth column of the CE-
bicomplex is defined as a natural quotient of g⊗p. In every arity n this expression is
given up to degree shifts by

g⊗p =
⊕

B1
∐

...
∐

Bp=n

g[B1] ⊗ . . . ⊗ g[Bp],

that is, a tensor product of exactly p terms from g. Thus since every one of the g[k]’s
is a polynomial functor of degree 1, then the CE-complex in homological degree p is
polynomial of degree p.

Since the category of polynomial functors is abelian, it only remains to note
that the CE-differentials respect the polynomial functor structure, i.e. that they are
natural transformations in W . This follows from the general fact that the CE-complex
CCE

−∗ (L) is functorial in its input, the Lie algebra L. □

Proof of Theorem 5.2. — Recall that in § 4.1 we show that the associated graded
of the collision filtration on H∗

c (F (X, n)) is computed, after suitable regrading, by
the Chevalley–Eilenberg (CE) homology of a twisted Lie algebra, naturally in X.
Explicitly, there is an isomorphism of graded Sn-representations

(5.1) grF
p H∗

c (F (X, n)) ∼= grFp−n HCE
∗ (H∗(X) ⊗ S Lie(n)).

Thus the polynomiality statement reduces to one about this CE-homology.
Furthermore, the cohomology algebra of a wedge of spheres is the square-zero

algebra H∗(X) ∼= Q1 ⊕ H̃∗(X). Therefore the claim of Theorem 5.2 follows from the
last lemma. □

The polynomiality result thus proved has many consequences for the cohomology
H∗

c (F (X, n)), but the converse also holds: we next use the cell structure on F (X, n)+

from § 4.3 to constrain the nonzero “coefficients” of the polynomial functor and
bound its degree.

Proposition 5.5. — For every n ∈ N the functors Ψp(n, −) : grVectQ → grVectQ
from Theorem 5.2 have the following properties:

(1) Ψp(n, −) = 0 for all p > n − 1.
(2) Ψp(n, W ) decomposes as

Ψp(n, W ) ∼=
n−p⊕

m=n−p−1
Φp[n, m] ⊗Sm W ⊗m

for some Sn × Sm-representations Φp[n, m]. In particular the polynomial
functor Ψp(n, −) has degree n − p and only two homogeneous terms.

In the “leading” special case p = 0, the two nontrivial terms Φ0[n, n] and Φ0[n, n−1]
are given as follows.
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(3) The coefficient Φ0[n, n] is the “diagonal” representation
Φ0[n, n] =

⊕
λ⊢n

χλ ⊠ χλ.

(4) The coefficient Φ0[n, n − 1] is
Φ0[n, n − 1] = χ(1n) ⊠ χ(1n−1).

We further note that the highest filtration terms not covered by this proposition,
Ψn−1[n, −] and Ψn−2[n, −], are computed completely in § 5.3, as they consists only of
functors of degree ⩽ 2 and are thus multiples of symmetric and alternating powers.

Proof. — The first statement is simply the claim that the associated graded quo-
tient grp Hp+∗

c (F (X, n)) is trivial for p < 0 and p ⩾ n, both cases being clear.
For the remaining statements, we use Proposition 2.6 to deduce that it is enough

to consider X a wedge of g circles with arbitrarily large g to uniquely determine
the coefficients Φp[n, m]. Then, Proposition 4.12 shows that H i

c(F (X, n)) = 0 unless
i ∈ {n − 1, n}, so its associated graded is similarly 0.

On the other hand, set W := H̃∗(X) and consider the graded vector space
grFp−n HCE

∗ (AW ⊗ S Lie)(n) =
⊕
q ∈Z

Ep,q

with Ep,q in grading q. Lemma 4.3 shows that Ep,q ∼= grF
p Hp+q

c (F (X, n)). In light of
the previous paragraph it follows that Ep,q = 0 unless p + q ∈ {n − 1, n}.

But since W is concentrated in grading q = 1, the polynomial description of the
CE-homology as ⊕Φp[n, m]⊗Sm W ⊗m is graded such that its mth summand is placed
in grading q = m. It follows that
(5.2) Φp[n, m] ⊗Sm W ⊗m = Ep,m = 0
unless p + m ∈ {n − 1, n}. The second claim now follows since the above calculation
is valid for every g ⩾ 1, and since for g ⩾ m the vanishing in (5.2) implies that
Φp[n, m] = 0.

The third statement follows from Proposition 4.8: the nth row with grading q = n
of the E1-page has only one nonzero term E0,n

1 = T n(Qg), the nth tensor power, with
the Sn-action by permutation of the tensor factors. Since this term can support no
differentials, it survives to E0,n

∞ unchanged. Schur–Weyl duality gives a decomposi-
tion of T n(Qg) as an Sn-equivariant polynomial functor, agreeing with the claimed
expression for Φ0[n, n].

Our proof of the last statement is long and technical. We defer it to § 6.2. □
Proposition 5.5 implies Theorem 1.5, since the associated graded gr H∗

c (F (X, n)) is
a sum ⊕pΨp(n, −) up to cohomological shifts, and for p > n the functor Ψp(n, −) = 0
so only finitely many functors contribute for any given n.

Remark 5.6. — In Theorem 1.5, the coefficients are the graded vector spaces
Φ[n, m], while in Proposition 5.5 the coefficients are the (non-graded) vector spaces
Φp[n, m]. These two objects are related as suggested by the notation: Φ[n, m] decom-
poses as

Φ[n, m] =
m⊕

p=0
Φp[n, m],
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with Φp[n, m] being the part of Φ[n, m] in degree p.
Remark 5.7 (Powell–Vespa’s polynomiality result). — We bring to the reader’s

attention the fact that Powell and Vespa proved in [PV18, Theorem 5] a result that
is extremely close to our Theorem 5.2. They show that the Hochschild–Pirashvili
homology of the classifying spaces B(Fg) with square-zero coefficients form a poly-
nomial functor from the category of finitely generated free groups to graded vector
spaces – see § 2.1.1.

Recalling that B(Fg) ≃ ∨
g S1 a wedge of 1-spheres, and that Hochschild–Pirashvili

homology with square-zero coefficients is dual to compactly supported cohomology
of the configuration spaces (Theorem 1.12), their polynomiality result generalizes
our Theorem 1.5 for wedges of circles in that we only work at the associated graded
level and with the classical notion of polynomial functors. However, their setup does
not include wedges of spheres of higher dimensions as we consider here.

For a first geometric consequence of the polynomiality result we give the following.
Corollary 5.8. — Let X be a finite wedge of spheres, all with the same dimen-

sion d. Considering the collision filtration on H i
c(F (X, n)), the pth graded quotient

grF
p H i

c(F (X, n)) is nonzero only when i = dn − (d − 1)p or i = d(n − 1) − (d − 1)p.
In particular, when d ⩾ 3 non-zero graded pieces grF

p H i
c(F (X, n)) appear in

distinct cohomological degrees i, so there are no non-trivial extensions between the
graded pieces.

Proof. — From Proposition 5.5 the graded quotient grF
p Hp+∗

c (F (X, n)) is polyno-
mial with coefficients Φp[n, m] ̸= 0 only for p + m ∈ {n − 1, n}. Since W := H̃∗(X)
is concentrated in grading q = d, the summand

Φp[n, m] ⊗Sm W ⊗m

is concentrated in grading q = dm. It follows that grp Hp+∗(F (X, n)) is nontrivial
only in grading p+dm where p+m ∈ {n−1, n}. Setting i = p+dm and substituting
m ∈ {n − 1 − p, n − p} gives the claim.

For the second part of the claim note that the equations dn−(d−1)p = dn−(d−1)p′

and d(n − 1) − (d − 1)p = d(n − 1) − (d − 1)p′ immediately give p = p′ when d > 1,
while the equation dn − (d − 1)p = d(n − 1) − (d − 1)p′ gives d = (d − 1)(p′ − p),
which has no integral solution for d ⩾ 3 since the last equation means that d − 1 is
a divisor of d, but in that case d − 1 is greater than 1 and coprime with d. □

We conclude this section by relating the collision filtration with more familiar
filtrations defined on Hochschild–Pirashvili homology. Consider the contravariant
functor from finitely generated free groups
(5.3) Fg 7→ H∗

c

(
F
(
∨g

i=1S
1, n

))
discussed in § 4.2. Djament–Vespa [DV15] define a filtration on functors of this sort,
whose associated graded quotients factor through the abelianization Fg 7→ Zg and are
polynomial in the classical sense. They call this the polynomial filtration, and [PV18,
Theorem 17.8] shows that it agrees with another natural filtration – Pirashvili’s so
called Hodge filtration on Hochschild–Pirashvili homology. Adapting the filtrations
to the contravariant setting of interest here, we have the following.

TOME 7 (2024)



876 N. GADISH & L. HAINAUT

Corollary 5.9 (Coincidence of filtrations). — The filtration induced on the
functor Fg 7→ H∗

c (∨g
i=1S

1, n) by the collision filtration coincides with the polynomial
filtration of contravariant functors.

Proof. — The collision spectral sequence along with Theorem 5.2 give a natural
isomorphism grF

p H i
c(F (X, n)) ∼= ⊕mΦp[n, m] ⊗Sm

[
H̃∗(X)⊗m

]i−p
, where [W ]q is the

q-graded part of a graded vector space W . Indeed Φp[n, m] is concentrated in grading
p, so H̃∗(X)⊗m must contribute to grading i − p. Since H̃∗(X) is concentrated in
grading 1, it means that only m = i − p contributes non-trivially.

In other words, for every i the functor Fg 7→ H i
c(F (∨g

i=1S
1, n)) is filtered by the

collision filtration, and the pth graded factor is a homogeneous polynomial functor of
degree i − p. The dual version for contravariant functors of [PV18, Remark 6.10] is
stating exactly that such a filtration is unique, and it is the polynomial filtration. □

5.2. Schur functor multiplicity

One can make sense of the polynomial functor structure of gr H∗
c (F (X, n)) geo-

metrically using the following fact. Let [X, Y ] denote the set of homotopy classes of
maps between topological spaces X and Y .

Lemma 5.10. — Let X and Y be wedges of g and h spheres, respectively, all
of equal dimension d. Then the operations induced by [X, Y ] on homology give a
surjection onto the integer matrix space

HomZ(Hd(X;Z), Hd(Y ;Z)) ∼= Mg×h(Z).
In particular, [X, X] surjects onto the matrix ring Mg(Z).

Proof. — When dealing with wedges of circles, the claim follows since wedges of
circles are classifying spaces of free groups and the abelianization map Homgrp(Fg, Fh)
→ Mg×h(Z) is surjective. For general d one only needs to observe that X and Y are
the reduced suspensions of corresponding wedge of circles. The (d−1)-fold suspension
of an appropriate basepoint preserving map between wedges of circles realizes any
prescribed homological action. □

From Corollary 4.7 the functor X 7→ gr H∗
c (F (X, n)) factors through H∗(X). This

uniquely characterizes the polynomial structure on gr H∗
c (F (X, n)), as explained

next.

Corollary 5.11 (Uniqueness). — Let Ψ′(n, −) be any polynomial functor on
graded vector spaces, such that its composition with reduced cohomology X 7→
H̃∗(X) admits a natural isomorphism

Ψ′
(
n, H̃∗(X)

) ∼= grp Hp+∗
c (F (X, n))

as functors out of the full subcategory of topological spaces consisting of finite
wedges of spheres. Then Ψ′(n, −) ∼= Ψp(n, −), the functor from Theorem 5.2. In fact,
it is already uniquely determined by its restriction to the subcategory of wedges of
d-dimensional spheres for any fixed d ⩾ 1.
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Proof. — By naturality in X, there is a natural isomorphism Ψp(n, H̃∗(−)) ∼=
Ψ′(n, H̃∗(−)). In particular, the two functors agree on every homomorphism H∗(X)
→ H∗(Y ) induced by a map of spaces. But since the previous lemma shows that
these include all integrally defined homomorphisms, and since the integer lattice is
Zariski dense in the space of all linear maps, the two polynomial functors must agree
on all linear maps. □

A structural consequence of the polynomiality of gr H∗
c (F (X, n)) is that it factors

into Schur functors evaluated at H̃∗(X), as discussed in § 2.1. Explicitly,

(5.4) grp Hp+∗
c (F (X, n)) ∼=

⊕
λ

Φp[n, λ] ⊠ Sλ

(
H̃∗(X)

)
where Φp[n, λ] is some Sn-representation and Sλ(−) is a Schur functor. Note that
Φ[n, λ] is the χλ-multiplicity space in the Sm-representation Φ[n, m] from the intro-
duction.

Definition 5.12. — The Sn-representation Φp[n, λ] appearing in (5.4) is the
equivariant multiplicity of the Schur functor Sλ in grp Hp+∗

c (F (X, n)).

Understanding the cohomology gr H∗
c (F (X, n)) amounts to describing these equi-

variant multiplicities, e.g. giving their characters for all p.

Proposition 5.13 (Genus bound principle). — Let λ ⊢ m be a partition with
ℓ parts. Then given X = ∨g

i=1 Sd, the Sn-equivariant multiplicity of the Schur
representation Sλ(H̃(X)) under the natural action by the monoid of homotopy
classes [X, X] on H∗

c (F (X, n)) is independent of g once g ⩾ ℓ. In particular, this
multiplicity could be read off from X a wedge of exactly ℓ spheres.

Proof. — Let λ be a partition with ℓ parts, that is λ = (λ1, λ2, . . . , λℓ), and
consider X a wedge of g ⩾ ℓ spheres of dimension d.

Consider the surjection [X, X] ↠ End(Zg) given by the homological action. The
Schur representations Sµ(Qg) for partitions µ with ⩽ g parts are distinct nonzero irre-
ducible representations of End(Zg), differentiated e.g. by their characters on diagonal
matrices: these are evaluations of the respective Schur polynomial sµ(x1, . . . , xg) at
the diagonal entries. In particular, Sλ(H̃∗(X)) is a nonzero irreducible representation
of [X, X], distinct from all other Schur representations appearing in Decomposi-
tion (5.4). Thus by Schur’s lemma, there is an Sn-equivariant isomorphism

(5.5) Φp[n, λ] ∼= Hom[X,X]
(
Sλ

(
H̃∗(X)

)
, grp Hp+∗

c (F (X, n))
)

determining the equivariant multiplicity independently of g. □

Swapping even spheres for odd spheres has the effect of conjugating the partition
up to grading shifts

(5.6) Sλ(H̃∗(X)) ∼=

Sλ(Qg) if X = ∨g
i=1 S2d

Sλ∗(Qg) if X = ∨g
i=1 S2d+1.

Thus the notion of “simple” partitions, detectable by wedges of few spheres, includes
partitions λ such that either λ or its conjugate λ∗ have few parts.

TOME 7 (2024)



878 N. GADISH & L. HAINAUT

Corollary 5.14. — Let X be a wedge of g spheres of dimension d and fix
a partition λ. Then under the Mg(Z)-action induced by [X, X] on homology, the
Sn-equivariant multiplicity HomMg(Z) (Sλ(Qg), grp Hp+∗

c (F (X, n))) is isomorphic to

(5.7)


Φp[n, λ] d even and λ has ⩽ g parts
Φp[n, λ∗] d odd and λ∗ has ⩽ g parts
0 otherwise.

Remark 5.15. — Proposition 5.5 above showed that Φp[n, λ] ̸= 0 only if p + |λ| ∈
{n − 1, n}. In other words, the only equivariant multiplicities to compute are the
ones with p = n − 1 − |λ| and n − |λ|.

The first examples of “simple” partitions are λ = (m) and (1m). We utilize the
principle thus outlined in the next section.

5.3. Symmetric and alternating powers

We now compute the Sn-equivariant multiplicity of Symm(−) and Λm(−) occur-
ring in grp Hp+∗

c (F (−, n)), or equivalently the coefficients Φ[n, (m)] and Φ[n, (1m)].
These are determined in terms of other geometric objects whose homology is well-
understood, and they will prove Theorem 1.8.

Since symmetric and alternating powers are Sλ for partition λ with only one
row or column, their equivariant multiplicity in gr H∗

c (F (X, n)) are determined by
configurations on a single sphere. These spaces have been studied extensively, most
notably [FZ00] computed the integral cohomology rings of F (Sd, n) for all (d, n).

Our calculations for Symm and Λm follow a very similar pattern: projecting con-
figurations on a sphere to a moduli space of such configurations. Let us begin with
the simpler case of alternating powers.

Proposition 5.16 (Alternating powers). — The equivariant multiplicity of Λm

(−) in the functor Ψp(n, −) is

(5.8) Φp[n, (1m)] ∼=


H2(n−m) (F (R3, n − 1)) ⊗ sgnn if p = n − m

H2(n−m−1) (F (R3, n − 1)) ⊗ sgnn if p = n − m − 1
0 otherwise,

where Sn acts on F (R3, n − 1) via the identification with F (SU(2), n)/SU(2).
These Sn-representations are the Whitehouse modules up to sign, see [ER19].
Proof. — Let λ = (m) so that λ∗ = (1m) and consider configurations on S3. Since

λ has only one part, Corollary 5.14 identifies Φp[n, λ∗] as the equivariant multiplicity
of Symm(Q) in grp Hp+∗

c (F (S3, n)) as a representation of π0(Maps(S3, S3)) ∼= Z. Here
a ∈ Z acts on Symm(Q) as multiplication by am. Thus we proceed by computing
H∗

c (F (S3, n)).
First, since F (S3, n) is a manifold, Poincaré duality gives an Sn-equivariant iso-

morphism
(5.9) H3n−i

c (F (S3, n)) ⊗ sgnn
∼= Hi(F (S3, n))
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where the additional sign comes from the induced Sn-action on the orientation
bundle of (S3)n.

The cohomology of F (S3, n) was computed in [FZ00], but we seek a different
description. Thinking of S3 as the group SU(2), the quotient by the diagonal action
(5.10) F (SU(2), n) → F (SU(2), n)/SU(2)
is a trivial SU(2)-principal bundle. This is furthermore an Sn-equivariant map.
Since SU(2) has homology only in degrees 0 and 3, there is an Sn-equivariant
isomorphism(8)

Hi(F (S3, n)) ∼= Hi(F (SU(2), n)/SU(2)) ⊕ Hi−3(F (SU(2), n)/SU(2)).(5.11)
Via the identification SU(2) \ {1} ∼= S3 \ {N} ∼= R3 one gets a homeomorphism

F (SU(2), n)/SU(2) ∼= F (R3, n − 1) by mapping
(x1, . . . , xn) 7→

(
x−1

1 x2, . . . , x−1
1 xn

)
.

It is furthermore well-known that, for n ⩾ 2, H∗(F (R3, n − 1)) is concentrated
in grading 2k for 0 ⩽ k ⩽ n − 2 (see [Coh76, Lemma 6.2]). Therefore the ho-
mology H∗(F (S3, n))) coincides with H∗(F (R3, n − 1)) in even degrees, and with
H∗−3(F (R3, n− 1)) in odd ones. Under Poincaré duality these become H3n−∗

c in even
and odd codimension respectively.

Let us match (5.11) with the collision filtration. By Proposition 5.5 the only
nontrivial terms in grp Hp+∗

c (F (S3, n)) are those in grading ∗ = 3q where p + q ∈
{n − 1, n}. If p + q = n then the term in degree p + 3q has even codimension 3n −
(p + 3q) = 2(n − q), and similarly p + q = n − 1 implies odd codimension 2(n − q) + 1.
Thus by parity of dimensions the collision filtration has no extensions:

(5.12) H3n−i
c (F (S3, n)) =

grk H3n−2k
c if i = 2k even

grk−1 H3n−2k−1
c if i = 2k + 1 odd

Now recall that grp Hp+∗
c (F (S3, n)) ∼= ⊕mΦp[n, (1m)] ⊠ Symm(Q) where the mth

symmetric power has grading ∗ = 3m. Considering the case of even codimension
first, with k = p and 3m = ∗ = 3n − 3p we have an equivariant isomorphism

grp H3n−2p
c = H3n−2p

c
∼= H2p

(
F (R3, n − 1)

)
⊗ sgnn

which equivariantly identifies the degree m = n − p summand
(5.13) Φp[n, (1n−p)] ⊠ Symn−p(Q) ∼= H2p

(
F (R3, n − 1)

)
⊗ sgnn .

Considered as Sn-representations, the term Symn−p(Q) is a trivial 1-dimensional
representation, and thus the first case of the proposition follows.

The odd codimension case is similar: taking p = k and grading 3m = ∗ = 3n − 3p
we have

grp−1 H3n−2p−1
c = H3n−2p−1

c
∼= H2(p−1)

(
F (R3, n − 1)

)
⊗ sgnn .

(8) For Sn-equivariance one also needs to observe that the Sn-action on the SU(2) fibers is homo-
logically trivial. Indeed, one can check that the Sn-action commutes with the left SU(2) action.
Thus it must act on every copy of SU(2) as right multiplication by a fixed matrix. But since SU(2)
is connected, such multiplication is homotopically trivial.
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This gives the equivariant identification in degree m = n − p

(5.14) Φp−1
[
n, (1n−p)

]
⊠ Symn−p(Q) ∼= H2(p−1)(F (R3, n − 1)) ⊗ sgnn

which produces the second case of the theorem. The remaining cases vanish due to
Proposition 5.5. □

Let us now consider symmetric powers. In this case the collision filtration exhibits
an extension, and we identify its terms using Deligne’s theory of weights.

Proposition 5.17 (Symmetric powers). — Let n ⩾ 3. The equivariant multi-
plicity of Symm(−) in the functor Ψp(n, −) is

(5.15) Φp[n, (m)] ∼=


Hn−m(M0,n) if p = n − m

Hn−m−2(M0,n) if p = n − m − 1
0 otherwise,

where M0,n is the moduli space of genus 0 algebraic curves with n marked points.

Proof. — Proceeding as in the previous case, Corollary 5.14 identifies Ψp[n, (m)]
with the multiplicity of Symm(Q) in grp Hp+∗

c (F (S2, n)) as a representation of the
group π0(Maps(S2, S2)) ∼= Z. We therefore seek to understand H∗

c (F (S2, n)).
Since F (S2, n) is a manifold, Poincaré duality gives an Sn-equivariant isomorphism

H2n−∗
c

(
F (S2, n)

) ∼= H∗
(
F (S2, n)

)
.

Thinking of S2 as CP 1, the group PSL2(C) acts 3-transitively and [FZ00, Theo-
rem 2.1] shows that the quotient map

F (CP 1, n) → M0,n

is a trivial PSL2(C)-principal bundle. This projection is clearly Sn-equivariant.
Moreover, all spaces and maps involved are algebraic, so their homology is equipped
with a natural Hodge structure.

Since the rational cohomology of PSL2(C) is the same as that of S3 ≃ C2 \{0}, by
the same argument as in the case of alternating powers there is an Sn-equivariant
isomorphism
(5.16) Hi(F (S2, n)) ∼= Hi(M0,n) ⊕ Hi−3(M0,n) ⊗ Q(−2).
It is also known that Hi(M0,n) is pure of weight 2i as the complement of a hyperplane
arrangement. Overall it follows that Hi(F (S2, n)) is mixed of weights 2i and 2i − 2.

We want to compare (5.16) with the collision filtration. By Proposition 5.5 there
is an extension

0 → grF
i H2n−i

c

(
F (S2, n)

)
→ H2n−i

c

(
F (S2, n)

)
→ grF

i−2 H2n−i
c

(
F (S2, n)

)
→ 0

(5.17)

and we match it with the one in (5.16). It suffices to show that grF
i H2n−i

c (F (S2, n))
is pure of weight 2n−2i and grF

i−2 H2n−i
c (F (S2, n)) is pure of weight 2n− (2i−2), for

then under Poincaré duality they must match Hi(M0,n) and Hi−3(M0,n) ⊗ Q(−2)
respectively.
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Petersen showed in [Pet17, §3.2] that the collision spectral sequence is compatible
with Hodge structures, thus it suffices to show the claimed purity on the E1 page.
We will prove generally that Ep,2q

1 has pure weight 2q. Indeed, Proposition 4.8 shows
that Ep,2q

1 is a sum of H2(CP 1)⊗q, and thus has the claimed pure weight.
Now grF

p Hp+∗
c (F (S2, n)) ∼= ⊕mΦp[n, (m)] ⊠ Symm(Q) where the mth symmetric

power has grading 2m. Together with grF
i H2n−i

c (F (S2, n)) ∼= Hi(M0,n) it follows
that for i = p and 2m = ∗ = 2n − 2p we have an isomorphism
(5.18) Φp[n, (n − p)] ⊠ Symn−p(Q) ∼= Hp(M0,n).
The first case of the theorem follows.

The same argument applied to grF
i−2 H2n−i

c (F (S2, n)) ∼= Hi−3(M0,n) ⊗Q(−2) gives
the second case. And the vanishing in all other cases follows from Proposition 5.5. □

Remark 5.18 (End(P1)-action on M0,n). — A consequence of the calculation in the
proof is a description of the π0(End(P1))-action on H∗(M0,n), defined via Poincaré
duality H∗(M0,n) ∼= H∗

c (M0,n) with End(P1) acting on the cohomology. Explicitly,
(5.18) shows that a degree k map on P1 acts on Hp(M0,n) as multiplication by kn−p.

5.3.1. Explicit characters

The Sn-representations arising in the previous section can be understood combina-
torially: let us recall their characters. For every Sn-representation W , let chn(W ) ∈ Λ
denote the Frobenius characteristic of W ,

chn(W ) :=
∑
λ⊢n

χW (λ)
zλ

pλ

where pλ are the power-sum symmetric functions, χW (λ) is the character value of W
on a permutation of cycle type λ, and zλ = ∏

imimi! for λ = (1m1 , 2m2 , . . . , nmn).
The equivariant Poincaré polynomial for H∗(M0,n) was computed by Getzler

in [Get95, Theorem 5.7], where he gave the following formula in the ring of symmetric
functions. Below, raising one symmetric function to the power of another f g is inter-
preted using the plethystic exponential and logarithm of Getzler–Kapranov [GK98]

f g := Exp(g · Log(f)).

Proposition 5.19. — The characters of the Sn-representations Hi(M0,n) are
encoded by the generating function Cht(m) = ∑∞

n=3
∑∞

i=0 (−t)ichn(Hi(M0,n)) given
by

(5.19) Cht(m) = κ
1 + tp1

1 − t2

∞∏
n=1

(1 + tnpn)Rn(t)

where pi = (xi
1+xi

2+. . .) denote the power-sum symmetric functions, κ is a truncation
operator sending the monomials 1, p1, p2

1 and p2 to zero while fixing the other
monomials, and

Rn(t) = 1
n

∑
d|n

µ(n/d)
td

with µ the Möbius function.
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The character of Hi(M0,n) is thus obtained from the degree n part of the symmetric
function appearing as coefficient for ti in (5.19).

A formula for the character of the Sn-representation Hi(F (R3, n − 1)) was given
by Pagaria very recently.

Theorem 5.20 ([Pag23, Corollary 4.11]). — The characters of Hi(F (R3, n − 1))
as Sn-representations are encoded by Cht(w) = ∑∞

n=1
∑∞

i=0 tichn(H2i(F (R3, n − 1)))
where

(5.20) Cht(w) = 1
1 − t

(
(1 − t · p1)

t−1
t − 1

)
.

5.4. A lower bound

The Euler characteristic of the collision spectral sequence (4.1) gives a concrete
lower bound on gr H∗

c (F (X, n)). Let us focus on configurations on wedges of circles:
X = ∨g

i=1 S1. In this section we will use the shorthand H∗
c to denote H∗

c (F (X, n)).
Lemma 5.21 (Lower bound). — Decompose the terms of the Chevalley–Eilenberg

complex of the twisted Lie algebra (Q ⊕ V [−1]) ⊗ S Lie as

(5.21) Symp ((Q ⊕ V [−1]) ⊗ S Lie[1]) (n) ∼=
n⊕

q=1
Mp,q ⊗Sq V ⊗q

for Sn ↷ Mp,q ↶ Sq explicitly computable (though complicated) Sn×Sq-bimodules.
Fix q ⩾ 1 and suppose the irreducible χλ⊠χµ appears in the virtual representation

n−q∑
p=0

(−1)p+qMp,q

with (signed) multiplicity m. When m has sign (−1)n, the top cohomology gr Hn
c

contain at least |m| copies of χλ ⊗ Sµ(H̃1(X)). Otherwise, gr Hn−1
c contains at least

|m| copies of χλ ⊗ Sµ(H̃1(X)).
Explicit computations up to n ≈ 15 are easily carried out on a home computer.

Some consequences are given below.
Proof. — The E1-page of the collision spectral sequence (4.1) is given by the

Chevalley–Eilenberg complex on H∗(X) ⊗ S Lie, and H∗(X) = Q ⊕ H1(X)[−1].
Since the Euler characteristic can be computed at every page of a spectral sequence,
the degree q polynomial subfunctor of (gr Hn

c ) − (gr Hn−1
c ) has the form

(5.22)
n−q∑

p=0
(−1)p+qMp,q

⊗Sq H̃1(X)⊗q.

As this Euler characteristic is in fact the difference between two genuine representa-
tions, the claim follows. □

Remark 5.22. — Together with the exact multiplicities of symmetric and alter-
nating powers from § 5.3, the lower bound produced in this way has thus far proved
to be a good approximation for the true cohomology. For example, up to n = 11
particles, the ranks our estimates produce capture ∼ 90% of the cohomology.
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Forgetting the Sn-action, the lower bound gives the following explicit estimate on
the (nonequivariant) multiplicity of every Schur functor.

Proposition 5.23. — Let λ ⊢ q be any partition, then the Schur functor Sλ

appears in (gr Hn
c ) − (gr Hn−1

c ) with nonequivariant multiplicity

(−1)n−1
(
|s(n − 1, q)| − |s(n − 1, q − 1)|

)
dim(χλ)

where s(n, q) is a Stirling number of the first kind and dim(χλ) has a combinatorial
description as the number of standard Young tableaux of shape λ, equivalently given
by the hook-length formula.

Proof. — In Proposition 4.8 we noted that Ep,q
1 consists of |s(n, n − p)| ·

(
n−p

q

)
copies of the tensor power T q(H̃1(X)). By Schur–Weyl duality, the tensor power
decomposes as ⊕

λ⊢q

χλ ⊠ Sλ(H̃1(X)).

Thus the Schur functor Sλ appears in the Euler characteristic with multiplicity
n−q∑
p=0

(−1)p+q|s(n, n − p)| ·
(

n − p

q

)
· dim(χλ).

Recalling that the Stirling numbers are defined by (x)n := x(x−1) . . . (x−n+1) =∑
s(n, p)xp, the above sums simplify by considering the generating function∑

p,q

(−1)p|s(n, n − p)| ·
(

n − p

q

)
xq = (x + 1)n.

Comparing the qth coefficients of (x+1)n = (x+1) · (x)n−1 one arrives at the claimed
multiplicity. □

Example 5.24. — The partition (2, 1) ⊢ 3 is the smallest one not accounted for
in § 5.3. The number of copies of S(2,1) counted by the Euler characteristic is

= (−1)n−12 (|s(n − 1, 3)| − |s(n − 1, 2)|)

= (−1)n−1(n − 2)!
[(

log n

e1−γ

)2
− O(1)

](5.23)

as follows from the well-know comparison between Stirling numbers and harmonic
sums (see e.g. [Ada97]). Here γ is the Euler–Mascheroni constant so that e1−γ ≈ 1.5.
In particular the multiplicity of S(2,1) in gr Hn−1

c grows super exponentially in n.

More generally, the estimate |s(n − 1, q)| ∼ (n−2)!
(q−1)! (log(n) + γ)q from [Ada97] shows

that for every λ the multiplicity of Sλ in (gr Hn−1
c ) − (gr Hn

c ) is at least on the order
of C(n − 2)! log(n/c)q for some constants C and c.

Remark 5.25. — The last estimate is surprising. On the one hand it implies that
Schur functors of low degree |λ| are hugely more prevalent in the bottom cohomology
gr Hn−1

c than in the top gr Hn
c . On the other hand the presentation in (4.5) shows

that dim Hn
c − dim Hn−1

c ∼ (n!)ng so the top cohomology Hn
c is much larger overall.
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One concludes that the top cohomology contains many more Schur functors of high
degree.

To be more explicit, an estimate of Erdös [Erd53] gives that the numbers |s(n, q)|
are monotonically increasing in q until q ≈ log(n) and then they decrease. This
means that Sλ with |λ| ≲ log(n) are more common in gr Hn−1

c , but all remaining
ones are more prevalent in gr Hn

c . It further follows that every Schur functor with
|λ| ⩽ n does appear in gr H∗

c , with only one exception for λ = (2), since Sym2 does
not appear in H∗

c (F (X, 3)).

6. Applications

6.1. Weight 0 cohomology of M2,n

Our original motivation for studying the cohomology H∗
c (F (X, n)) is its connection

with the cohomology of moduli spaces of algebraic curves Mg,n. This relationship
comes from the description of the weight 0 part of H∗

c (Mg,n) in terms of tropical
geometry, and is manifested most explicitly in genus g = 2 as given by the following
theorem, which can be found under an equivalent formulation in [BCGY23].

Theorem 6.1 ([BCGY23, Theorem 1.2]). — Fix n ∈ N and let X = S1 ∨ S1 be
a wedge of two circles. There exists an Sn-equivariant isomorphism
(6.1) grW

0 H3+∗
c (M2,n) = (H∗

c (F (X, n)) ⊗ sgn3)
S2×S3 .

In this formula, the (S2 × S3)-action is the following. On sgn3 it is the sign rep-
resentation of S3, with S2 acting trivially. On H∗

c (F (X, n)) it factors through the
action of Out(F2) via a homomorphism S2 × S3 → Out(F2). Using Nielsen’s identi-
fication Out(F2) ∼= GL2(Z) [Nie17], the latter homomorphism is the 2-dimensional
representation sgn2 ⊗ std3, where sgn2 is the sign representation of the S2 factor and
std3 = Z3/⟨(1, 1, 1)⟩ is the standard 2-dimensional representation of the S3 factor.

With this fact at hand we can proceed to prove Proposition 1.10 from the intro-
duction.

Proof of Proposition 1.10. — We only prove the first part of the proposition. The
values of the coefficients r(a,b) will be determined in Lemma 6.3 below.

By [Nie17], abelianization gives Out(F2) ∼= GL2(Z). Since Theorem 1.5 shows
that the associated graded gr H∗

c (F (X, n)) is a polynomial representation of GL2(Z),
and since those are semi-simple, the collision filtration splits canonically so that
H∗

c (F (X, n)) ∼= gr H∗
c (F (X, n)) as Sn × Out(F2)-representations.

The dimension of (H∗
c (F (X, n))⊗sgn3)S2×S3 can be computed as the scalar product

of S2 × S3-characters〈
triv, ResGL2(Z)

S2×S3 H∗
c (F (X, n)) ⊗ sgn3

〉
=
〈
sgn3, ResGL2(Z)

S2×S3 H∗
c (F (X, n))

〉
.

To remember the Sn-action one may think of this calculation taking place in the
ring of virtual Sn-representations.

Expand the polynomial functor H∗
c (F (X, n)) as in (5.4),

H∗
c (F (X, n)) ∼=

⊕
λ

Φ[n, λ∗] ⊠ Sλ(Q2)
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where each Φ[n, λ∗] is an Sn-representation. Here the conjugate partition λ∗ appears
since H̃∗(X) ∼= Q2 is concentrated in odd grading. It follows that the above character
inner product expands similarly,〈

sgn3,
∑

λ

ResGL2(Z)
S2×S3 Φ[n, λ∗] ⊠ Sλ(Q2)

〉
(6.2)

=
∑

λ

〈
sgn3, ResGL2(Z)

S2×S3 Sλ(Q2)
〉

· Φ[n, λ∗].

This implies the first part of Proposition 1.10, identifying the multiplicity of the
Sn-irreducible χλ as

□(6.3) rλ =
〈
ResGL2(Z)

S2×S3 Sλ(Q2) ; sgn3

〉
.

Remark 6.2. — The formula in Proposition 1.10 first came to our knowledge via
private communications with Dan Petersen and Orsola Tommasi. Interestingly, in
their work the coefficients rλ are defined as

rλ = dim grW
0 H3

c (M2,Vλ)
with Vλ the local system associated to the corresponding irreducible representation
of the symplectic group Sp4.

Due to the restriction on the coefficient Φ[n, n] given in Proposition 5.5, it follows
that our definition of rλ agrees with theirs. Alternatively, one may directly compute
dim grW

0 H3
c (M2,Vλ) from the main Theorem of [Pet15] and the branching rule

of [Pet13, Proposition 3.4], and show that the values obtained agree with the ones
given in the following Lemma. This coincidence led the second author and Dan
Petersen to formulate [HP23, Conjectures 5.1 and 5.3].

Lemma 6.3. — The coefficients rλ from Proposition 1.10 are the following. For
λ = (a, b) with a ⩾ b ⩾ 0,

r(a,b) =


⌊

a−b
6

⌋
+ 1 if a ≡2 b ≡2 1⌊

a−b
6

⌋
if a ≡2 b ≡2 0

0 if a ̸≡2 b.

Proof. — The group S2 × S3 is included in GL2(Z) by sending the transposition
(12) ∈ S2 to −I2, transpositions in S3 map to matrices with eigenvalues (1, −1) and
its 3-cycles map to matrices with eigenvalues (ζ3, ζ−1

3 ) where ζ3 is a primitive 3rd
root of unity.

The character of the Schur representation S(a,b)(Q2) is given by sending a ma-
trix A ∈ GL2(Z) with eigenvalues (x, y) to the Schur polynomial s(a,b)(x, y) =∑a

i=b xiya+b−i (see [Mac95, §I.3]). One readily checks that transpositions in S3 acts
with trace equal to (−1)b times the residue of (a−b+1) mod 2, and 3-cycles act with
trace (a − b + 1) mod 3 (taking 2 mod 3 to have residue −1). With these character
values the scalar product with sgn3 is as claimed. □

Example 6.4 (Multiplicity of χ(2,1n−2) and χ(n−1,1)). — Let us use calculations of
bead representations to see that the Sn-representation χ(2,1n−2)

∼= Stdn ⊗ sgnn never
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occurs in grW
0 Hn+2

c (M2,n), as conjectured in [BCGY23, Conj. 3.5]. Indeed, in Exam-
ple 4.18 we explained that Powell–Vespa effectively compute χ(2,1n−2) to never occur
in the cohomology Hn−1

c (F (X, n)). In light of Proposition 1.10, this immediately
implies that this irreducible representation does not appear in grW

0 Hn+2
c (M2,n).

The other half of the conjecture involves the standard representation χ(n−1,1). After
a preprint of the present paper was made public the multiplicity of this representation
has been computed by Powell [Pow22]. Combining his result with Proposition 1.10
shows that grW

0 Hn+3
c (M2,n) contains this representation with the conjectured mul-

tiplicity. Since the equivariant Euler characteristic of M2,n is known it follows that
grW

0 Hn+2
c (M2,n) also contains this representation with the conjectured multiplicity.

Together with our computations of Φ[n, λ] for n ⩽ 10 below, Proposition 1.10 re-
covers the Sn-character of grW

0 H∗
c (M2,n). For n = 11 we have computed the relevant

summands of Φ[11, λ], and obtained the result shown below. All our computations
agree with those present in [BCGY23].

grW
0 H13

c (M2,11,Q) = 3χ(9,12) + 3χ(8,3) + 5χ(8,2,1) + 3χ(8,13) + 2χ(7,4) + 16χ(7,3,1)+
5χ(7,22) + 16χ(7,2,12) + 2χ(7,14) + 4χ(6,5) + 15χ(6,4,1) + 23χ(6,3,2)+
28χ(6,3,12) + 24χ(6,22,1) + 21χ(6,2,13) + 5χ(6,15) + 10χ(52,1) + 19χ(5,4,2)+
28χ(5,4,12) + 21χ(5,32) + 50χ(5,3,2,1) + 28χ(5,3,13) + 13χ(5,23) + 38χ(5,22,12)+
17χ(5,2,14) + 7χ(5,16) + 8χ(42,3) + 29χ(42,2,1) + 20χ(42,13) + 25χ(4,32,1)+
28χ(4,3,22) + 48χ(4,3,2,12) + 22χ(4,3,14) + 22χ(4,23,1) + 25χ(4,22,13)+
11χ(4,2,15) + 2χ(4,17) + 13χ(33,2) + 8χ(33,12) + 22χ(32,22,1) + 20χ(32,2,13)+
11χ(32,15) + 4χ(3,24) + 15χ(3,23,12) + 8χ(3,22,14) + 6χ(3,2,16) + 3χ(25,1)+
4χ(24,13) + 2χ(23,15) + 2χ(22,17) + χ(111),

which has dimension 850732.
For numbers n larger still, the super-exponential multiplicity of every Schur functor

discussed in Example 5.24 implies similar growth in grW
0 H∗

c (M2,n)(9) . The reader
can find our equivariant lower bound for grW

0 H∗
c (M2,n) presented on this web-

page(10) . Forgetting the Sn-action, a lower bound on the dimension of the cohomology
grW

0 Hn+2
c (M2,n) for all n ⩽ 17 are listed in Table 6.1.

6.2. Patterns and conjectures

We start this section by proving the fourth statement of Proposition 5.5,

Proposition 6.5. — For a wedge of circles X = ∨g
i=1 S1,

gr0 Hn−1
c (F (X, n)) = χ(1n) ⊠ Symn−1(Qg).

(9)The Sn-equivariant Euler characteristic of these representations is computed in [CFGP23], and
gives a lower bound on multiplicity of all χλ in cohomology. Our lower bound is orthogonal, and
shows the codimension 1 cohomology is much larger than can be deduced from [CFGP23].
(10) https://louishainaut.github.io/GH-ConfSpace/
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Table 6.1. Dimension of grW
0 Hn+2

c (M2,n,Q)

n 0 1 2 3 4 5 6 7 8 9 10
dim 0 0 0 0 1 5 26 155 1066 8666 81012

n 11 12 13 14
dim 850 732 ⩾ 7 920 155 ⩾ 94 325 925 ⩾ 1 220 494 146

n 15 16 17
dim ⩾ 17 048 375 436 ⩾ 255 669 776 040 ⩾ 4 096 729 778 379

Equivalently, the coefficient Φ0[n, n − 1] of the polynomial decomposition is

Φ0[n, n − 1] = χ(1n) ⊠ χ(1n−1).

Proof. — From Proposition 5.16 the equivariant multiplicity of the alternating
power Λn−1 in Ψ0(n, −) is

Φ0
[
n, (1n−1)

]
= H0

(
F (R3, n − 1)

)
⊗ sgnn = sgnn,

so Φ0[n, n − 1] is at least as large as indicated, and it remains to prove that it does
not contain any other terms.

For this we look closely at the collision spectral sequence. Once again, it is enough
to prove the statement when X = ∨g

i=1 S1 is a wedge of sufficiently many circles. In
fact g ⩾ n − 1 is enough, but we may as well consider all g’s simultaneously. The
polynomial representation Φ0[n, n−1]⊗Sn−1 Qg[−1]⊗n−1 is by definition the kernel of
the differential d1 : E0,n−1

1 → E1,n−1
1 . The multiplicity of alternating powers implies

that this kernel contains at least one copy of sgnn ⊠ Symn−1(Qg)[1 − n], which has
dimension

(
n+g−2

n−1

)
. We claim that the kernel of this differential cannot have larger

dimension; our proof strategy is to describe a specific subspace of E0,n−1
1 of that

precise dimension and prove that the kernel must lie inside that subspace.
A basis for E0,n−1

1 = Λn (H∗(X) ⊗ S Lie(1))n−1 is given by tuples〈
(x1, αi1), . . . , (xk−1, αik−1), (xk, 1), (xk+1, αik+1), . . . , (xn, αin)

〉
where the symbols xi are copies of the “Lie variable” in S Lie(1) ∼= Qx, and the
vectors α1, . . . , αg ∈ H̃1(X) form a basis. Here 1 refers to the unit 1 ∈ H0(X), and
the indices are such that 1 ⩽ k ⩽ n along with 1 ⩽ i1, . . . , îk, . . . , in ⩽ g. We
denote this basis element by B(i1, ..., îk, ..., in).

For E1,n−1
1

∼=
⊕

(n
2)(H∗(X)⊗S Lie(2))⊗Λn−2 (H∗(X) ⊗ S Lie(1))n−2 we work with

the basis of tuples〈
([xj, xk], αi0), (x1, αi1), . . . ,

̂(
xj, αij

)
, . . . , ̂(xk, αik

), . . . , (xn, αin)
〉

for every pair {j, k} and sequence of indices (i0, i1, . . . , îj, . . . , îk, . . . , in). Note that
now all terms in the tuple contain a cohomology class αi ∈ H̃1(X). We denote this
basis element by C(i0,i1, ..., îj , ..., îk, ..., in).
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Now, the differential d1 acts on our basis by
(6.4) d1 : B(i1, ..., îk, ..., in) 7−→

∑
j ̸= k

±C(ij ,i1, ..., îj , ..., îk, ..., n)

and in particular all resulting basis elements appear with coefficient ±1. Let us
consider the dual problem: which Bi’s are sent to a linear combination containing a
nonzero multiple of a particular c = C(i0, ..., îj , ..., îk, ..., in)?

From the description of d1 there are exactly two basis elements with this property:
b1 = B(i1,...,i0,...,îk, ..., in) and b2 = B(i1, ..., îj , ..., i0, ..., in), with i0 inserted in the jth, resp. kth,
empty slot. It follows that every element of ker(d1) that contains a nontrivial multiple
of b1 must also contain one of b2, and the coefficient of one uniquely determines the
coefficient of the other.

Define an equivalence relation of the Bi’s, generated by the relation that b1 ∼ b2 if
their indexing tuples differ by moving one ij of b1 to the empty slot of b2. Then the
discussion in the previous paragraph shows that ker(d1) is spanned by ∼-equivalence
classes, and it remains to count these classes.

It is straightforward to see that equivalence classes are in bijection with multisets
⟨i1, . . . , in−1⟩ with 1 ⩽ ij ⩽ g for all j. Thus there are exactly

(
n+g−2

n−1

)
many

equivalence classes, and the kernel has at most this dimension. This is what we
wanted to show. □

Remark 6.6. — Using the Euler characteristic as in § 5.4, one can obtain from
the previous proposition a plethystic description of gr1 Hn

c (F (X, n)), equivalently
Φ1[n, n − 1], identical to the one in [PV18, Corollary 3].

Calculations for small values of n also suggest the following pattern.

Conjecture 6.7. — For n ⩾ 4 and X = ∨
g S1 a wedge of circles,

gr1 Hn−1
c (F (X, n)) =

(
χ(3,1n−3) ⊠ Symn−2(Qg)

)
⊕
(
χ(n) ⊠ Λn−2(Qg)

)
.

Equivalently, the coefficients of Φ1[n, n − 2] are given by

(6.5) Φ1[n, n − 2] =
(
χ(3,1n−3) ⊠ χ(1n−2)

)
⊕
(
χ(n) ⊠ χ(n−2)

)
.

Up to this point we mainly discussed the Sn-equivariant multiplicity of individual
Schur functors in gr H∗

c (F (X, n)), equivalently the coefficients Φ[−, µ]. Let us now
shift perspective and instead consider for fixed Sn-irreducible χλ the corresponding
isotypic component as a sum of Schur functors. These are equivalently given by the
coefficient Φ[λ, −] := ⊕|λ|

m=0Φ[λ, m].
Through our calculations we have identified several patterns in these coefficients –

see below. We present our conjectural formulas only for multiplicities in codimension 1
cohomology of F (∨S1, n), but using the spectral sequence to compute the Euler char-
acteristic, one can readily compute the corresponding multiplicity in codimension 0
as well.

In some of the conjectural patterns below we use the notation
Mn =

⊕
2a+b=n

S(a,1b), a sum of hook shapes,
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where the sum is over a ⩾ 1 and b ⩾ 0. One may recognize that Mk is the semisim-
plification of the indecomposable injective functor denoted ωβS(1k−1) in [PV18].
The fact that these terms occur in Conjecture 6.9 associated to the multiplicity of
χλ ⊗Sn gr Hn−1

c (F (X, n)) suggests that the indecomposable representation dual to
ωβS(1k−1) is a quotient of χλ ⊗Sn Hn−1

c (F (X, n)), but this is not implied by our work.
The following can be deduced from [PV18, Examples 3-4 and Corollary 19.8] using

the dictionary in § 4.4.
Proposition 6.8. — For partition λ ⊢ n, the equivariant multiplicity of χλ in

gr Hn−1
c (F (X, n)), equivalently the bead representation U II

λ from [TW19, §2.5], is
the following polynomial functor.

• For the trivial representation λ = (n), it is Mn−1.
• For the sign representation λ = (1n), it is S(n−1).
• For λ = (2, 1n−2) it is 0.

We observed the following further patterns, verified computationally for up to
n ⩽ 11 and compliant with the lower bound in § 5.4. Any multiplicity involving S(k)∗

and S(1k)∗ is completely determined by Theorem 1.8.
Conjecture 6.9. — The equivariant multiplicity of χλ in gr Hn−1

c (F (X, n)) are:

• For λ = (n − 1, 1) it is

S(n/2) if n is even
0 if n is odd

(proved in Prop 6.12 below).

• For λ = (n − 2, 2) it is the sum ∑⌊ n
4 ⌋−1

k=0 Mn−2−4k +∑⌊ n−7
4 ⌋

k=0 Mn−5−4k

+


∑⌊ n

4 ⌋−2
k=0 S(n−4

2 −2k) if n is even∑⌊ n−5
4 ⌋

k=0 S(n−1
2 −2k) if n is odd

• For λ = (n − 2, 1, 1) it is the sum ∑⌊ n−5
4 ⌋

k=0 Mn−3−4k +∑⌊ n−6
4 ⌋

k=0 Mn−4−4k

+


∑⌊ n−6

4 ⌋
k=0 S(n−2

2 −2k) if n is even∑⌊ n−3
4 ⌋

k=0 S(n+1
2 −2k) if n is odd

• For λ = (n − 3, 3)∗ it is ∑n−6
k=0 ⌊k+3

3 ⌋S(n−4−k) + anS(1,1) + bnS(1)

• For λ = (n − 3, 2, 1)∗ it is ∑n−5
k=0

⌊
2k+3

3

⌋
S(n−3−k) +

⌊
n−2

3

⌋
S(1,1) +

⌊
n−4

3

⌋
S(1)

• For λ = (n − 3, 1, 1, 1)∗ it is ∑n−6
k=0

⌊
k+3

3

⌋
S(n−4−k) + cnS(1,1) + dnS(1)

• For λ = (n − 2, 2)∗ it is ∑⌊n/2⌋−2
k=0 S(n−3−2k)

• For λ = (n − 2, 1, 1)∗ it is ∑⌊(n−3)/2⌋
k=0 S(n−2−2k)

where the numbers an, bn, cn and dn are ⌊n/6⌋ plus 6-periodic functions of n. Explic-
itly,

an = ⌊n/6⌋ + (−1, 0, −1, 0, 0, 0)n

bn = ⌊n/6⌋ + (−1, −1, −1, 0, −1, 0)n

cn = ⌊n/6⌋ + (0, 0, 0, 0, 1, 0)n

dn = ⌊n/6⌋ + (0, −1, 0, 0, 0, 0)n
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where (−)n returns the entry in position residue of n modulo 6 (starting at residue 0).

Remark 6.10. — Interestingly, the complicated patterns for λ = (n − 2, 2) and
(n − 2, 1, 1) become far simpler when summed together ; and the same is true for their
conjugate partitions. For the partitions λ = (n − 3, 3)∗ and (n − 3, 1, 1, 1)∗ it is now
their difference that has a significantly simpler form: one can observe that cn − an

and dn − bn both take the value 1 if n is even and 0 if n is odd. We have no guess as
to why this should be the case.

Remark 6.11. — After a first version of this paper was made public, Powell [Pow22]
computed the composition factors of χ(n−1,1) in gr Hn

c (F (X, n)), related to the first
case of Conjecture 6.9 via Euler characteristic. That said, verifying that the conjec-
ture follows from Powell’s work is challenging, since calculating the Euler character-
istic involves plethysm coefficients whose determination is still an open problem. In
the next proposition we prove this case of the conjecture by combining several ideas
from this paper.

Proposition 6.12. — The equivariant multiplicity of χ(n−1,1) in codimension 1
cohomology gr Hn−1

c (F (X, n)) is S(n/2) when n is even, and 0 when n is odd.

Proof. — Powell [Pow22, Theorem 3] provides the equivariant multiplicity of
χ(n−1,1) in codimension 0 cohomology gr Hn

c (F (X, n)). To see that the equivari-
ant multiplicity in codimension 1 is at least as large as we claim, we note that when
n is even, our Proposition 5.16 shows that the Sn-equivariant multiplicity of the
Schur functor S(n/2) in codimension 1 is the same as that of S(n/2+1) in codimension 0,
and Powell’s calculation shows the representation χn−1,1 ⊠ S(n/2+1) indeed occurs in
codimension 0.

To show that the multiplicity is no larger than claimed, it is therefore enough
to bound its dimension. The (non-equivariant) Euler characteristic of the χ(n−1,1)-
multiplicity space can be read-off from the 2-step complex (4.6), and takes the value
(−1)n(n − 1)

(
n+g−2

g−2

)
. One can then compute the non-equivariant multiplicity in

codimension 0 provided by Powell, and verify that the multiplicity in codimension 1
has the dimension we claim. □

Using Proposition 1.10, Conjecture 6.9 leads to the following conjectural irreducible
multiplicities in grW

0 Hn+2
c (M2,n,Q).

Conjecture 6.13. — The multiplicity of the irreducible representation χλ in
grW

0 Hn+2
c (M2,n,Q) is the following:

• For λ = (n − 2, 2) it is


⌊k2−k+1

3 ⌋ if n = 4k

⌊3k2−k+4
6 ⌋ if n = 4k + 1

⌊k(k−1)
6 ⌋ if n = 4k + 2

0 if n = 4k + 3.

• For λ = (n − 2, 1, 1) it is


⌊ (k−1)(k−2)

6 ⌋ if n = 4k

0 if n = 4k + 1
⌊k2+k+1

3 ⌋ if n = 4k + 2
⌊3k2+3k+2

6 ⌋ if n = 4k + 3.
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• For λ = (n − 2, 2)∗ it is

0 if n = 2k

⌊ (k−2)(k−1)
6 ⌋ if n = 2k + 1.

• For λ = (n − 2, 1, 1)∗ it is

⌊ (k−2)(k−1)
6 ⌋ if n = 2k

0 if n = 2k + 1.

The multiplicities in Conjectures 6.9 and 6.13 have nice presentations as generating
functions. These can be found in Appendix B.

Appendix A. Full decomposition for 10 particles

We explain here how to combine insights from the different presentations of § 4 to
compute the full cohomology of F (X, 10) for X any wedge of circles. Conceptually,
the 2-term complex of § 4.3 gives access to individual Sn-isotypic components,
most effective for Schur functors Sλ for λ with few parts. On the other hand, the
Chevalley–Eilenberg complex of § 4.1 accesses individual GL-isotypic components,
most effective for Sλ of large total degree |λ|. Between these two, one can uniquely
determine the complete representation.

To illustrate our approach we focus on the multiplicity of a few specific S10-
irreducibles in the bottom cohomology H9(F (X, 10)). Note that by the bound on
polynomial degree in Proposition 5.5 and since the highest degree term Φ0[10, 9] is
also computed there, the only remaining multiplicities that need to be computed
are those of Schur functors of degree ⩽ 8. In the following we will show how to
compute the equivariant multiplicity of the S10-representations χ(8,2), χ(6,3,1), χ(42,2)
and χ(3,2,15).

Step 1: Lower bound

First compute the lower bounds for these S10-irreducible as in § 5.4, corrected
with the knowledge of the exact multiplicity of the symmetric and alternating powers
S(k) and S(1k) from § 5.3:

Table A.1. Lower bounds for n = 10

S10-irrep GL-equivariant multiplicities
(8, 2) ⩾ S(4) + S(3) + S(2,1) + S(2) + S(17) + S(14) + S(13)

(6, 3, 1) ⩾ S(5) +6S(4) +11S(3) +2S(2,1) +10S(2) +S(16) +2S(15) +
3S(14) + 5S(13) + 7S(12) + 4S(1)

(42, 2) ⩾ S(5) +6S(4) +6S(3) +S(2,1) +10S(2) +2S(14) +6S(13) +
5S(12) + S(1)

(3, 2, 15) ⩾ S(7)+S(6)+2S(5)+3S(4)+3S(3)+4S(2)+2S(12)+2S(1)

We already know the multiplicity of all symmetric powers S(m), so we proceed to
determine the multiplicities of Schur functors with two parts S(a,b).
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Step 2: Traces on Schur functors with two parts

To gain understanding of the End(Z2)-action on each of the above multiplicity
spaces, we use the 2-step complex from 4.3 with genus g = 2 to compute its character.
Start by computing the trace of the action induced by specific diagonal matrices on
each multiplicity space: diag(1, 1), diag(1, 2) and diag(2, 2) – these calculations are
not too demanding as they only involve one or two doubling maps on S1 ∨ S1.

Once these traces are obtained, we subtract from them the traces of the Schur
functors appearing in the lower bound. We thus obtain the traces of terms missing
from our lower bound. In our example, the traces corresponding to the lower bounds,
as well as the true computed traces of our 3 diagonal matrices and the difference
between them are as in Table A.2

Table A.2. Traces for the matrices diag(1,1), diag(1,2) and diag(2,2)

S10-irreducible Lower bound Computed traces Difference
(8, 2) [14, 59, 140] [14, 59, 140] [0, 0, 0]

(6, 3, 1) [129, 522, 1220] [145, 580, 1396] [16, 58, 176]
(42, 2) [99, 428, 1024] [109, 464, 1136] [10, 36, 112]

(3, 2, 15) [72, 684, 2256] [72, 684, 2256] [0, 0, 0]

One thus immediately sees that for the first and last rows the lower bound is sharp,
i.e. it accounts for all Schur functors S(a,b). The remaining rows are missing a 16-
dimensional and a 10-dimensional representation respectively, with known character
values at diag(1, 2) and diag(2, 2).

The problem thus reduces to finding a sum of Schur functors that produces the
traces seen in the last column of Table A.2. Note that while the complete traces are
rather large, their difference from our lower bound is significantly smaller. Moreover,
as stated at the outset of this calculation, only Schur functors of degree ⩽ 8 may
appear. The corresponding traces on these Schur functors are given in Table A.3.

Table A.3. Traces of Schur functors at diag(1,1), diag(2,1) and diag(2,2)

Schur functor Traces Schur functor Traces
(2, 1) [2, 6, 16] (3, 1) [3, 14, 48]
(22) [1, 4, 16] (4, 1) [4, 30, 128]
(3, 2) [2, 12, 64] (5, 1) [5, 62, 320]
(4, 2) [3, 28, 192] (32) [1, 8, 64]
(6, 1) [6, 126, 768] (5, 2) [4, 60, 512]
(4, 3) [2, 24, 256] (7, 1) [7, 254, 1792]
(6, 2) [5, 124, 1280] (5, 3) [3, 56, 768]
(42) [1, 16, 256]

It is useful to note that s(a,b)(2, 2) = 2a+bs(a,b)(1, 1) for any Schur polynomial s(a,b),
i.e. the third trace in the table is always 2a+b larger than the first. Therefore since
S(2,1) is the only Schur functor in our table for which 2a+b < 16, any sum of other
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Schur functors must have its third trace at least 16 times larger than the first. Since
the missing Schur functors for χ(6,3,1) and χ(42,2) have their third trace < 16 times
their first, one immediately concludes that S(2,1) occurs several times.

Let us therefore account for these copies of S(2,1) and remove them from the
trace until the third column is ⩾ 16 times the first. For example, from the traces
[10, 36, 112] corresponding to χ(42,2) we subtract m × [2, 6, 16] with m such that
16 · (10 − 2m) ⩽ 112 − 16m. That is, m ⩾ 3, leaving traces [4, 18, 64] to be accounted
for. In general the S(2,1)-multiplicity is ⩾ c1 − c3/16 where ci is the ith trace in our
table.

At this point the remaining Schur functors can be uniquely determined. The Schur
functors S(a,b) that need to be added can be found in Table A.4; the interested reader
is invited to verify that no other combination of Schur functors gives the desired
traces.

Table A.4. Corrections to the lower bounds in genus 2

S10-irreducible Missing Schur functors
(8, 2) 0

(6, 3, 1) 5S(2,1) + 2S(3,1)
(42, 2) 3S(2,1) + S(3,1) + S(2,2)

(3, 2, 15) 0

We therefore add these Schur functors to our lower bound estimate and proceed
to find Schur functors with 3 or more parts.

Step 3: Ranks in genus 3 and 4

One could attempt the same game in higher genus, i.e. finding multiplicities of
S(a,b,c) and so on, but it turns out that one can (almost always) make due with only
the nonequivariant ranks in genus 3 and 4. For example, Table A.5 shows the ranks
in genus 3 and 4 of the revised lower bound compared with the true rank computed
using the 2-step complex in § 4.3.

Table A.5. Ranks in genus 3 and 4

S10-irreducible Lower bound Actual ranks Difference
(8, 2) [40, 90] [46, 126] [6, 36]

(6, 3, 1) [405, 897] [411, 931] [6, 34]
(42, 2) [308, 691] [308, 691] [0, 0]

(3, 2, 15) [217, 541] [217, 541] [0, 0]

From Table A.5 one sees that only rather small Schur functors may appear. Ta-
ble A.6 lists the ranks of all Schur functors of degree ⩽ 8 with 3 or 4 parts. For most
Specht modules of S10 this table is already sufficient for uniquely determining the
multiplicity of every Schur functor with 3 or 4 parts.

However, this is not always the case, e.g. for partition (8, 2) in our example. Let us
explain why the remaining combination of Schur functors occurring in our examples
are as presented in Table A.7. To gain more insight one can take the following steps:
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Table A.6. Ranks of Schur functors

Schur functor Ranks in genus 3, 4 Schur functor Ranks in genus 3, 4
(2, 12) [3, 15] (3, 22) [3, 36]
(3, 12) [6, 36] (3, 2, 12) [0, 20]
(22, 1) [3, 20] (23, 1) [0, 4]
(2, 13) [0, 4] (6, 12) [21, 189]
(4, 12) [10, 70] (5, 2, 1) [24, 256]
(3, 2, 1) [8, 64] (5, 13) [0, 35]
(3, 13) [0, 10] (4, 3, 1) [15, 175]
(23) [1, 10] (4, 22) [6, 84]

(22, 12) [0, 6] (4, 2, 12) [0, 45]
(5, 12) [15, 120] (32, 2) [3, 45]
(4, 2, 1) [15, 140] (32, 12) [0, 20]
(4, 13) [0, 20] (3, 22, 1) [0, 15]
(32, 1) [6, 60] (24) [0, 1]

Table A.7. Remaining corrections to the lower bounds

S10-irreducible Missing Schur functors
(8, 2) S(3,12) + S(2,14)

(6, 3, 1) 2S(2,12) + S(2,13)
(42, 2) 0

(3, 2, 15) 0

• As before, with S(2,1) having the smallest ratio between its first and third
traces, now it is S(2,12) that has the smallest ratio between its ranks in genus 3
and 4 (at least among the Schur functors that are small enough to contribute
nontrivially). Thus S(2,12) must appear with multiplicity high enough to make
the second column ⩽ 6 times the first. E.g. it appears at least once for
partition (6, 3, 1) leaving unknown ranks [3, 19], at which point it is clear that
it must appear with multiplicity 2 to account for the rank in genus 3. The
remaining ranks [0, 4] do not uniquely determine the multiplicities of Schur
functors with 4 parts.

• For partition (8, 2) ranks alone are not enough to uniquely determine the
multiplicity of S(3,12). However, it is feasible to compute the trace of the
matrix diag(2, 1, 1), and this additional information is sufficient.

• The second term of partition (8, 2), the functor S(2,14), does not even show up
until one considers wedges of ⩾ 5 circles. However, since the representation
χ(8,2) has relatively small dimension, it is feasible to compute the nonequiv-
ariant rank of the isotypic component H9

c (F (X, 10))(8,2) in genus 5 using the
2-term complex. This is sufficient for determining the S(3,12) term from the
previous point, and further detects that there exists some Sλ for λ with 5
parts (though it can not decide which).
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With these additional considerations we have completely accounted for all Schur
functors with ⩽ 3 parts and reduced the ambiguity regarding functors with 4 parts
to a small number of cases of very small dimension: deciding between S(2,13),S(23,1)
and S(24).

Looking further to Sλ for λ with ⩾ 5 parts we reach the computational limits of
the 2-term complex, where it is no longer feasible to compute further ranks or traces.
Instead, observe that any yet undetected Schur functor must have relatively large
polynomial degree. More precisely, any Schur functor with ⩾ 5 parts is either an
exterior power or it has total polynomial degree ⩾ 6, as are the degrees of S(23,1)
and S(24).

Step 4: CE-complex in high polynomial degree

Fortunately, at high polynomial degree a new tool becomes available: high polyno-
mial degrees only appear as Φp−1[10, 10 − p] for p small, so the Chevalley–Eilenberg
complex more readily gives access to the nonequivariant multiplicity of individual
Schur functors. However, this complex forgets the data as to which Sn-isotypical
component they belong, and further simplification is needed.

Couple this with the crucial observation that by plugging wedges of even spheres
into the CE-complex, the partitions of Sλ are the conjugate of the ones appearing
for wedges of circles. For example the functor S(2,16)∗ , which would have been com-
putationally expensive to access and require on a wedge of ⩾ 7 circles, contributes
S(7,1) on a wedge of only two even spheres! And its high polynomial degree makes it
even easier to access.

With this, the last step in our calculation is to compute the nonequivariant multi-
plicity of Schur functors of polynomial degree ⩾ 6 and compare them with the total
multiplicity of those functors in our lower bound. If they are found to agree, the
bound is sharp and all Schur functors have been counted. Fortunately, this always
turned out to be the case.

To make the last computations feasible we use one more trick: inputting wedges of
spheres of different dimensions. Let us explain one such computation in detail, and
for the other ones we will only specify what the analogous computation produces.

Step 4’: Mixing spheres of different dimensions

Say we want to compute the nonequivariant multiplicity of the Schur functor
S(2,14)∗ , which on even spheres gives S(5,1)(H̃∗(X)) so two spheres suffice. Consider
the space X = S2∨S4.

The CE-complex for this X admits a multigrading where the multidegree (a, b)
consists of tensors (

H2(S2)⊗a ⊗ H4(S4)⊗b
)⊕(a+b

a )
⩽ H̃∗(X)⊗(a+b).

This multigrading is preserved by the CE-differential, so one may decompose the
complex and consider one multidegree at a time. The (a, b)-multigraded subcomplex
is substantially smaller than most Sλ-isotypic components, and furthermore it is
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spanned by a basis of pure tensors. These facts make calculations feasible, and we
are able to determine the (a, b)-multigraded part of the CE-homology.

At the same time, Maps(X, X) acts on these subcomplexes, giving them the
structure of polynomial GL(1) × GL(1)-representations, with the (a, b)-multigraded
component coinciding with the Syma(H2(X)) ⊗ Symb(H4(X))-isotypic component
of this action. Knowing the multiplicity of each of these representations in homology,
one is able to deduce the multiplicity of every Sλ for λ with 2 parts: one needs only
to count how often every Syma ⊗ Symb occurs in each Sλ.

Let us consider the (5, 1)-multigraded component. One can compute(11) that
Sym5 ⊗ Sym1 only occurs once in S(5,1) and once in S(6). It follows that its total mul-
tiplicity in CE-homology is Φ3[10, (5, 1)] ⊕ Φ3[10, (6)]. Given that we already know
the multiplicities of all symmetric powers, this determines the rank of Φ3[10, (5, 1)].

One then compares this rank with the lower bound, and find that they agree.
It follows that the bound accounts for the entire multiplicity of S(2,14) on wedges
of circles, which is thus known equivariantly. Note further that approaching this
calculation with the multigraded components has the added benefit that it is sensitive
to multiple Schur functors at a time: if the lower bounds of all of them sum to the
calculated multiplicity of the multigraded component, then all their lower bounds
in fact exhaust the whole multiplicity space.

Other cases of this approach needed to completely determine H9
c (F (X, 10)) are:

• X = S2∨S4, multidegree (4, 3): computing rank of Φ2[10, (4, 3)]+Φ2[10, (5, 2)]
+ Φ2[10, (6, 1)] + Φ2[10, (7)].

• X = S1∨S2, multidegree (2, 5): computing rank of Φ2[10, (5, 12)]
+ Φ2[10, (6, 1)].

• X = S2∨S4, multidegree (4, 4): computing rank of Φ1[10, (4, 4)]+Φ1[10, (5, 3)]
+ Φ1[10, (6, 2)] + Φ1[10, (7, 1)] + Φ1[10, (8)].

• X = S2∨S4∨S6, multidegree (5, 2, 1): computing rank of Φ1[10, (5, 2, 1)] +
Φ1[10, (5, 3)] + Φ1[10, (6, 1, 1)] + 2 · Φ1[10, (6, 2)] + 2 · Φ1[10, (7, 1)] + Φ1[10, (8)].

• X = S1∨S2, multidegree (3, 5): computing rank of Φ1[10, (5, 13)] + Φ1[10,
(6, 12)].

Note that in some of these cases we mix even and odd dimensional spheres. The
partition (5, 13) has 4 parts, and its transpose has 5 parts. So it would take ⩾ 4
even spheres to access its multiplicity. But mixing even and odd spheres makes S(5,13)
contribute nontrivially already with only two spheres.

In all these cases the rank obtained from the CE-homology calculation agrees
with the rank obtained from Table A.8. Therefore all Schur functors Sλ for which
Φ[10, λ∗] appeared in one of the cases above cannot occur with higher multiplicity
in any S10-isotypical component.

Careful bookkeeping shows that at this point every multiplicity of every Schur
functor has been uniquely determined, therefore Table A.8 contains the full decom-
position of every isotypical component.

(11) In general the multiplicity with which Syma1 ⊗ . . .⊗Symar appears in Sλ is equal to the number
of semistandard Young tableaux of shape λ filled with ai many i’s.
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Appendix B. Conjectural generating functions

We present here the conjectural multiplicities from Conjectures 6.9 and 6.13 in the
form of generating functions.

Let Λ denote the ring of symmetric functions (see e.g. [Mac95]). Some of the
generating functions below are expressed as elements of Λ[[t]], the λ-ring of power
series in t with coefficients in Λ. Let ch : K0(FunPoly) → Λ be the linear function
on the Grothendieck group of polynomial functors, defined by sending the Schur
functor Sλ to the Schur symmetric function sλ, and let Exp: tΛ[[t]] → Λ[[t]] be the
plethystic exponential, defined e.g. in [GK98].

Consider partitions with one long row λ[n] = (n−|λ|, λ). The generating functions∑
n⩾ 1

(−t)n · chGL(g)

(
gr Hn−1

c

(
F

(∨
g

S1, n

))
⊗Sn χλ[n]

)
and ∑

n⩾ 1
tn ·

〈
χλ[n], grW

0 Hn+2
c (M2,n,Q)

〉
Sn

are, respectively,
• for λ[n] = (n) they are t2(Exp(s1(t2−t))−1)

1−t
− t and (t4−t7+t10)(1+t3)

(1−t4)(1−t12) (see 6.8),
• for λ[n] = (n − 1, 1) they are Exp(s1t

2) − 1 and t12

(1−t4)(1−t12) (see 6.12),
• for λ[n] = (n − 2, 2) they are
1

1 − t4

( (
t − t4

) (
1 + s1t

2 − Exp
(
s1t

2
))

−
(
t3 + t4 + t5

)
·
(
Exp

(
s1
(
t2 − t

))
− 1

))
and (t5 + t13 + t14)(1 + t3)

(1 − t4)2(1 − t12) ,

• for λ[n] = (n − 2, 1, 1) they are

1
1 − t4

((
1 − t3

) 1 + s1t
2 − Exp (s1t

2)
t

+ t4
(
Exp

(
s1
(
t2 − t

))
− 1

))

and (t6 − t8 + t11) (1 − t6)
(1 − t) (1 − t4)2 (1 − t12)

.

For partitions with one long column λ[n]∗ the generating functions∑
n⩾ 1

tn · chGL(g)

(
gr Hn−1

c

(
F

(∨
g

S1, n

))
⊗Sn χλ[n]∗

)
and ∑

n⩾ 1
tn ·

〈
χλ[n]∗ , grW

0 Hn+2
c (M2,n,Q)

〉
Sn

are, respectively,
• for λ[n]∗ = (1n) they are t Exp(s1t) and t7

(1−t2)(1−t6) (see 6.8)
• for λ[n]∗ = (2, 1n−1) they are 0 for both generating functions (see 6.8),
• for λ[n]∗ = (2, 2, 1n−4) they are t3(Exp(s1t)−1)

1−t2 and t9

(1−t2)2(1−t6)
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Table A.8. Equivariant multiplicity of each isotypic component in gr H9
c (F (X, 10)).

S10-irrep GL-equivariant multiplicities in gr H9
c (F (X, 10))

(10) S(4,1) + S(3,13) + S(2,15) + S(18)
(9, 1) S(5)
(8, 2) S(4) + S(3,12) + S(3) + S(2,14) + S(2,1) + S(2) + S(17) + S(14) + S(13)
(8, 12) S(4) + S(3,1) + S(3) + S(2,13) + S(2,12) + S(2) + S(16) + S(15) + S(12) + S(1)
(7, 3) S(5) + 4S(3) + S(2,12) + 2S(2,1) + 2S(2) + S(15) + S(14) + S(13) + 2S(12) + S(1)

(7, 2, 1) S(5) + 3S(4) + S(3,1) + 5S(3) + S(2,13) + S(2,12) + 4S(2,1) + 5S(2) + S(16) + S(15) + 2S(14) +
3S(13) + 3S(12) + 2S(1)

(7, 13) S(6) + 2S(4) + 2S(3) + S(2,12) + S(2,1) + 3S(2) + S(15) + S(14) + S(13) + 2S(12)
(6, 4) 2S(4) + 2S(3) + 2S(2,1) + 4S(2) + S(14) + 3S(13) + 2S(12)

(6, 3, 1) S(5) + 6S(4) + 2S(3,1) + 11S(3) + S(2,13) + 2S(2,12) + 7S(2,1) + 10S(2) + S(16) + 2S(15) +
3S(14) + 5S(13) + 7S(12) + 4S(1)

(6, 22) S(5) + 4S(4) + 7S(3) + 6S(2,1) + 8S(2) + 3S(14) + 6S(13) + 4S(12) + S(1)

(6, 2, 12) 2S(5) + 6S(4) + S(3,1) + 13S(3) + 2S(2,12) + 8S(2,1) + 10S(2) + 2S(15) + 3S(14) + 5S(13) +
7S(12) + 5S(1)

(6, 14) S(5) + 2S(4) + 4S(3) + 3S(2,1) + 4S(2) + 2S(14) + 3S(13) + 2S(12) + S(1)
(52) S(5) + 3S(3) + 3S(2,1) + S(14) + S(13) + 2S(1)
(5, 4, 1) S(5)+5S(4)+S(3,1)+10S(3)+S(2,12)+7S(2,1)+9S(2)+S(15)+3S(14)+5S(13)+6S(12)+3S(1)
(5, 3, 2) 2S(5)+7S(4)+S(3,1)+18S(3)+S(2,12)+12S(2,1)+13S(2)+S(15)+4S(14)+7S(13)+9S(12)+6S(1)

(5, 3, 12) S(6) +S(5) +13S(4) +2S(3,1) +16S(3) +S(2,12) +10S(2,1) +20S(2) +S(15) +4S(14) +10S(13) +
12S(12) + 5S(1)

(5, 22, 1) 4S(5) + 8S(4) + S(3,1) + 19S(3) + S(2,12) + 11S(2,1) + 16S(2) + S(15) + 3S(14) + 8S(13) +
11S(12) + 6S(1)

(5, 2, 13) S(6) + 3S(5) + 8S(4) + 14S(3) + 9S(2,1) + 13S(2) + 3S(14) + 6S(13) + 8S(12) + 5S(1)
(5, 15) S(7) + 2S(5) + S(4) + 5S(3) + 2S(2,1) + 3S(2) + S(13) + 2S(12) + 2S(1)
(42, 2) S(5) + 6S(4) + S(3,1) + 6S(3) + S(22) + 4S(2,1) + 10S(2) + 2S(14) + 6S(13) + 5S(12) + S(1)
(42, 12) 3S(5) + 3S(4) + 14S(3) + S(2,12) + 8S(2,1) + 7S(2) + S(15) + 2S(14) + 3S(13) + 6S(12) + 5S(1)
(4, 32) S(5) +4S(4) +S(3,1) +8S(3) +S(2,12) +4S(2,1) +6S(2) +S(15) +S(14) +2S(13) +5S(12) +3S(1)
(4, 3, 2, 1) 4S(5) + 15S(4) + 2S(3,1) + 25S(3) + 16S(2,1) + 23S(2) + 4S(14) + 11S(13) + 14S(12) + 9S(1)
(4, 3, 13) S(6) + 4S(5) + 9S(4) + 17S(3) + 9S(2,1) + 16S(2) + 2S(14) + 7S(13) + 10S(12) + 5S(1)
(4, 23) S(5) + 7S(4) + S(3,1) + 8S(3) + 4S(2,1) + 11S(2) + S(14) + 5S(13) + 6S(12) + S(1)
(4, 22, 12) S(6) + 4S(5) + 11S(4) + S(3,1) + 19S(3) + 9S(2,1) + 16S(2) + S(14) + 5S(13) + 11S(12) + 8S(1)
(4, 2, 14) 2S(6) + 3S(5) + 7S(4) + 8S(3) + 3S(2,1) + 11S(2) + 4S(13) + 6S(12) + 3S(1)
(4, 16) S(6) + S(5) + S(4) + 2S(3) + 2S(2) + 2S(12) + S(1)
(33, 1) S(6) + 5S(4) + 5S(3) + 2S(2,1) + 8S(2) + 3S(13) + 5S(12) + S(1)
(32, 22) 3S(5) + 3S(4) + 12S(3) + 7S(2,1) + 5S(2) + S(14) + 2S(13) + 4S(12) + 5S(1)
(32, 2, 12) S(6) + 3S(5) + 9S(4) + S(3,1) + 13S(3) + 6S(2,1) + 14S(2) + S(14) + 5S(13) + 8S(12) + 4S(1)
(32, 14) S(7) + 4S(5) + 2S(4) + 9S(3) + 4S(2,1) + 4S(2) + S(13) + 3S(12) + 4S(1)
(3, 23, 1) 3S(5) + 6S(4) + S(3,1) + 8S(3) + 3S(2,1) + 8S(2) + 2S(13) + 5S(12) + 3S(1)
(3, 22, 13) 2S(6) + 2S(5) + 7S(4) + 8S(3) + 3S(2,1) + 9S(2) + 2S(13) + 5S(12) + 3S(1)
(3, 2, 15) S(7) + S(6) + 2S(5) + 3S(4) + 3S(3) + 4S(2) + 2S(12) + 2S(1)
(3, 17) S(8) + S(6) + S(4) + S(2)
(25) 2S(4) + 2S(2) + S(13)
(24, 12) 2S(5) + S(4) + 4S(3) + 2S(2,1) + S(2) + S(12) + 2S(1)
(23, 14) S(6) + S(5) + S(4) + 2S(3) + 2S(2) + S(12)
(22, 16) S(7) + S(5) + S(3) + S(1)
(2, 18) 0
(110) S(9)
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• for λ[n]∗ = (3, 1n−3) they are t2(Exp(s1t)−1)
1−t2 and t8

(1−t2)2(1−t6)

• for λ[n]∗ = (2, 2, 2, 1n−6) they are t4(Exp(s1t)−1−s1t)
(1−t)(1−t3) + t7(s1t2+s1,1)

(1−t2)(1−t3) and
t7−t8+t10−t13+t14

(1−t)(1−t2)(1−t3)(1−t6)

• for λ[n]∗ = (3, 2, 1n−5) they are (t3+t5)(Exp(s1t)−1−s1t)+t5(s1t2+s1,1)
(1−t)(1−t3) and

t5−t7+t9+t13

(1−t)(1−t2)(1−t3)(1−t6)

• for λ[n]∗ = (4, 1n−4) they are t4(Exp(s1t)−1−s1t)
(1−t)(1−t3) + t4(s1t2+s1,1)

(1−t2)(1−t3) and
t4−t5+t11

(1−t)(1−t2)(1−t3)(1−t6) .

Remark B.1. — The agreement of these expressions with the conjectural char-
acters in Conjecture 6.9 has been verified computationally up to a high degree of
confidence. However, we have not proved this formally.
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