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ABSTRACT. — We develop a calculus based on zonoids — a special class of convex bodies —
for the expectation of functionals related to a random submanifold Z defined as the zero set of
a smooth vector valued random field on a Riemannian manifold. We identify a convenient set
of hypotheses on the random field under which we define its zonoid section, an assignment of a
zonoid ((p) in the exterior algebra of the cotangent space at each point p of the manifold. We
prove that the first intrinsic volume of ((p) is the Kac—Rice density of the expected volume
of Z, while its center computes the expected current of integration over Z. We show that the
intersection of random submanifolds corresponds to the wedge product of the zonoid sections
and that the preimage corresponds to the pull-back.

Combining this with the recently developed zonoid algebra, it allows to give a multiplication
structure to the Kac—Rice formulas, resembling that of the cohomology ring of a manifold.
Moreover, it establishes a connection with the theory of convex bodies and valuations, which
includes deep results such as the Alexandrov—Fenchel inequality and the Brunn—Minkowski
inequality. We export them to this context to prove two analogous new inequalities for random
submanifolds. Applying our results in the context of Finsler geometry, we prove some new
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Crofton formulas for the length of curves and the Holmes-Thompson volumes of submanifolds
in a Finsler manifold.

RESUME. — Nous développons un calcul basé sur les zonoides — une classe particuliére
de corps convexes — pour ’espérance de fonctionnelles liées & une sous variété aléatoire Z
définie comme I’ensemble des zéros d’un champ aléatoire lisse a valeurs vectorielles dans une
variété riemannienne. Nous identifions un ensemble d’hypothéses pour le champ aléatoire sous
lesquelles nous pouvons définir sa section en zonoides, 'attribution d’un zonoide ((p) dans
I’algébre externe de I'espace cotangent a chaque point p de la variété. Nous démontrons que
le premier volume intrinséque de ((p) est la densité de Kac—Rice du volume moyen de Z,
tandis que son centre correspond au courant moyen d’intégration sur Z. Nous prouvons que
I'intersection de sous variétés indépendantes correspond au produit extérieur des sections en
zonoides et que la préimage correspond au pull back.

La combinaison de ces résultats avec ’algebre des zonoides récemment développée, permet
de donner une structure multiplicative aux formules de Kac—Rice qui évoque celle d’'un anneau
de cohomologie d’une variété. En outre, cela permet d’établir une connection avec la théorie
des corps convexes et des valuations, qui contiend des résultats profonds tels que l'inéga-
lité d’Alexandrov—Fenchel ou de Brunn—Minkowski. Nous exportons ces résultats dans notre
contexte pour produire deux nouvelles inégalités analogues pour les sous variétés aléatoires. En
appliquant nos résultats dans le contexte de la géométrie Finsler, nous prouvons des nouvelles
formules de Crofton bour la longueurs de courbes et le volume de Holmes-Thompson des sous
variétés d’une variété finslerienne.

1. Introduction
1.1. Overview

Let X: M — RF be a random smooth function on a smooth Riemannian manifold
M of dimension m. Under the hypothesis that the random subset Z := X~1(0) is
almost surely a submanifold, we study the following functionals:

(1.1) AHE{VOl(m_k)(ZﬂA)}, wr—>E{/Zw},

where A C M is any Borel subset and w is any smooth differential (m — k)-form
with compact support, that is, w € Q™ *(M). In more fancy words, the former is
the measure obtained by taking the expectation of the random measure “(m — k)-
volume of the intersection with Z”; while the latter, which is defined whenever Z is
oriented, is the current obtained by taking the expectation of the random current
[, € Qn=k(M)*. Our aim is not just to find formulas for them two, but to establish
a framework to understand the relations among them for multiple instances of Z.

1.1.1. The examples that we have in mind

There is a vast literature dedicated to the study of nodal sets of random fields [AT07,
AWO09, Bog98, MP11]. The first example in our mind is Kostlan polynomials [Kos93],
studied in relation with real algebraic geometry [SS93a, SS93b, SS93c|, [GW14,
GW15, GW16], [NS09, NS16a], [BKL18, BLLP19, FLL15, K120, LL16a, LL16b,
LS19a]; then, random submanifolds in homogenous spaces and integral geome-
try [BFS14, BL20, LM21]; random eigenfunctions and Riemannian random waves
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[Ber77, Zel09], a topic that in the current years is at the center of a lot of attention,
see [CH20, CM15, CM18, Gas20, KKW13, KWY21, Mafl7, MPRW15, MRW20,
MRV21, MW1la, MW11b, MW14, NPR19, RW16, SW19, Wigl0] and the sur-
veys [CCJ19, Mar21, Wigll, Wig22]. The vast majority of these works deals with
Gaussian random fields [Bog98, LS19b, Nic16, NS16a, NS16b, Not21]|. The methods
and the results proposed in this paper are aimed to a general study of random fields
including non-Gaussian situations, see for instance [KSW21, Ste21].

Our results are also to be compared with the work of Akhiezer and Kazarnovskii
[AK18]. Their average number of zeros, corresponds, in our case, to the average
number of zeroes of a system of independent scalar Gaussian random fields in finite
dimensional function spaces. In [Kaz20], a more general distribution than Gaussian
is covered although it remains in the setting of scalar fields in finite dimensional
function spaces. It is yet unclear for us if Kazarnovskii’s “B-bodies” correspond to
our zonoid section.

1.2. Main results
1.2.1. Expected length and currents

We propose to study the functionals in (1.1) using zonoids - a special family of
convex bodies (see § 3). A convex body is a zonoid if it can be approximated, in the
Hausdorff topology, by a finite Minkowski sums of segments. To any regular enough
random function X : M — R we associate a field of convex bodies in the exterior
algebra of the cotangent space:

M > p— Cx(p) C ATIM.

For any p € M, the convex body (x(p) is a zonoid defined as the expectation of a
random segment, via the following formula (Definition 5.1):

(1.2) Ce(p) = E{[0,dp XA A d XM | X (p) = 0} pxp (0),

where px(y) : RF — [0, 400] is the density of the random vector X (p). Every convex
body K has a well defined length ¢(K), that is, the first intrinsic volume (Defini-
tion 3.9) of K, also called the first Lipschitz—Killing curvature [AT07]. Moreover,
a zonoid K always has a center of symmetry ¢(K). For technical reasons we will
have to consider the point e(K) := 2¢(K), which we named nigiro, see Definition 3.3.
Finally, we identify a set of desired condition on the random field X under which
we can apply a Kac—Rice formula. We call those the z-KROK conditions, see below
after Theorem A. The first main result of the paper is the following theorem.

THEOREM A. — Let X: M — R¥ be a zKROK random field and let Z :=
X~1(0). Then there is a continuous section of zonoids (x as in (1.2) such that:

(1.3) E {volpn_1(Z N A)} :/AéZdM, E{/Zw} :/Mez/\w,

where 07(p) = (((x(p)) € R and ez(p) = e(Cx(p)) € A*TrM are a continuous
function and a continuous k-form, respectively, and where [, fdM denotes the
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906 L. MATHIS & M. STECCONI

integral of a function f on the subset A C M, with respect to the Riemannian
volume measure of M. We call (x the zonoid section of X.

In the main body of the paper, Theorem A is divided into Theorem 7.1 and
Theorem 7.7.

The description of the 2-KROK hypotheses (Definition 4.1) is an important part
of this work (see § 4) in that they are the conditions that are required to employ our
version of the Kac—Rice formula (Theorem 6.2), on which Theorem A is ultimately
based. Roughly speaking, a random field X: M — R* is 2-KROK if (Compare
with [Ste22, 2.1]):

(1) X is almost surely of class C'.

(2) 0is a regular value of X, almost surely. This is to guarantee that Z = X~1(0)
is almost surely a submanifold.

(3) The law of X (p) on R¥ is absolutely continuous and . ..

(4) ...its density px(y)(z) is continuous in both variables at (p,0).

(5) The conditional expectation E{J,X|X (p) = 0} makes sense and it is regular
enough, where for every f = (f1, ..., f*) € CY(M,RF), we write J,f =
Hdpfl ARRRNA dpka~

If X is Gaussian, then it is very easy to check the z-KROK conditions (see Proposi-

tion 4.9 and Proposition 4.10) and in this case the zonoids (x(p) are ellipsoids.
We can express the length and the nigiro of the zonoid section as follows.

((Cx(p)) = E{JpX [ X(p) = 0} pxr)(0),

Y (Cx (1) = E{d, X" A+ A dyX* | X(p) = 0} pxn(0),

where X = (X!, ..., X*) and J,X denotes the Jacobian determinant of X, that
is, J,X = ||[d, X' A -+ Ad,X*|. From the first equation in (1.4), the reader that is
familiar with Kac—Rice formulas, can recognize that the first identity in (1.3) is in
fact a translation of the most common version of it (see [AW09]). On the contrary,
the formula obtained by combining the second identities in (1.3) and (1.4) is new.

(1.5) E{/Zw} - /M (E{d, X" A~ Ad, X5 | X (p) = 0} pxi (0)) A,

Although it is based on Kac—Rice formula, to the authors” knowledge such a general
result for the expected current was not available in the literature. In particular, under
our hypotheses, the resulting current is represented by a continuous differential
form. Other works which study the expected current of a random submanifold
are [Anc20, DMS12, DRI18, Let16, Nic16, NS16b, SZ99, SZ08].

Remark 1.1. — If X(p) and d, X are stochastically independent, then the condi-
tioning disappears:

Cx(p) = E{{Oadel ARRRRA dek”PX(p)(O)a

see Remark 4.4.
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1.2.2. The wedge and pull-back properties

Given two independent random fields X, X, with zero sets Z; := X; 1(0),i = 1,2,
one can study the intersection Z, := Z; N Zy as the zero set of the random field

Xo := (X1, X3). The idea behind this paper is to answer to the following questions:

QUESTION 1.2. — Suppose that you are given X; and you know that tomorrow
you will have to compute 0z,nz, Or €z, nz, for some yet unknown X,. What can you
do today to start simplifying tomorrow’s work?

In more formal terms, we want to identify some objects associated to X; and X,
that are sufficient to determine the density 0z, 2, and the form ez 2, and a set of
rules to compute them.

In the case of the expected current the answer is pretty simple since, by linearity,
we have ez ,nz, = ez, AN ez, so the answer to Question 1.2 is that one needs to
compute the form ez, in this case.

In the volume case things are more subtle in that the couple (dz,,0z,) is not a
sufficient data to determine 0y, rz,. This is where the zonoid section really comes
into play as an elegant answer to Question 1.2.

For example, if S C M is a submanifold and the field Y = X|g is 2-KROK, then
ey = ex|s, but the density of expected volume dy is not determined by dy. However,
the zonoid section of Y is determined by that of X, via pull-back.

THEOREM B (Pull-back property). — Let X: M — RF be z-KROK. Let S be a
smooth manifold and let p: S — M be a smooth map such that ¢ i X ~(0) almost
surely. Then X o ¢: S — R* is z-KROK and

(1.6) Cxop(q) = dg™ (Cx (0(q))), VqeS.

Recently in [BBLM22] a framework was developed by the first author together
with Breiding, Birgisser and Lerario to build multilinear maps on zonoids from
multilinear maps on the underlying vector spaces, see Proposition 3.13 or [BBLM22,
Theorem 4.1] In particular, the wedge product of two zonoids (; C A’“T; M and

G2 C A’”T;M is defined and lives in Ak1+k2T;M.

THEOREM C (Wedge property). — Let X;: M — R* be independent z-KROK
random fields. Let Xy := (X, X5): M — R¥**2 and assume that X, i 0 almost
surely. Then, X is z-KROK and

Cxo = Cxy N Cxo-

In other words, an answer to (1.2) above is to compute the zonoid section of Xj,
so that tomorrow it will be sufficient to apply Theorem A and Theorem C to get
8z:n2, = £(Cx, N Cx,). The passage from X, a probability law on C'(M,R¥), to (x is
a big reduction of data since the zonoid (x(p) is defined pointwise (Definition 5.1)
and depends only on the law of

(X(p), dy XA A dek> random vector in R¥ x AkT;M,

hence the zonoid section does not remember the whole correlation structure of the
field X. This is the same spirit as that of Kac-Rice formula.
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Remark 1.3. — It is important that the z-KROK hypotheses are stable enough to
allow the operations in both Theorem C and Theorem B, while keeping Theorem A
true. The transversality hypothesis in Theorem B and in Theorem C cannot be
avoided, as shown in Example 10.6. Nevertheless, in many cases it is automatically
satisfied, for instance when the fields are Gaussian and smooth (see Proposition 4.10),
or when the fields are of the form X =Y — X discussed in § 1.3.6, see Corollary 10.4.

1.2.3. Alexandrov—Fenchel and Brunn—Minkowski

The results just discussed create a bridge between random fields and the very rich
theory of convex bodies. Such connection allows to draw on deep results such as
the Alexandrov-Fenchel inequality (Proposition 3.19 and [Sch14, Theorem 7.3.1])
and the Brunn—Minkowski inequality (Proposition 3.20 and [Sch14, p. 372(e)]) to
obtain relations between different instances of d;. The former allows to deduce
Theorem D which, in the case M is a surface, says the following. Let us say that a
2-KROK field X is self-transverse if given X’ an independent copy of it, we have
that (X, X’) A (0,0) almost surely.

THEOREM D (KRAF for surfaces). — Let dim M = 2 and let Z,, Zs be random
curves defined by independent self-transverse z-KROK fields, then, for all p € M,

(1.7) 0mnz(p) 2 \/0z,02(D) - 62,02(D),

where Z! is an independent copy of Z;.

Similarly, from the Brunn—Minkowski inequality we deduce Theorem E.

THEOREM E (KRBM for surfaces). — Let dim M = 2 and let Z,, Zy be random
curves defined by independent self-transverse z-KROK fields. For t € [0, 1], let Z,
be the random curve such that Z, = Z, with probability t and Z, = Z, otherwise.
Then, for all p € M,

1—
(1.8) 52002 (P) 2 05, (9)8%, 02 ()
where Z! is an independent copy of Z;.

This result is based on the observation that Z; is the zero set of another field
X; that, if »-KROK, has for zonoid section the Minkowski sum of the other two:
Cx, = (1 —t)Cx, + tCx,, see Proposition 5.3.

Remark 1.4. — The inequality (1.8) actually involves the same three terms as (1.7).
Indeed from the definition of Z; it is immediate to deduce that:

(SZtﬂZé == (1 —t>25zlmzi +t2522rjzé +2t(1 —t)(SZmZQ.

In the full statements of Theorem D and Theorem E (see Subsection 7.2) there is
no assumption on the dimension of M and the notion of self-transverse is replaced
by multi-transverse (Definition 7.2).
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1.2.4. Comment on the proof of Theorem A

The main technical result that we need and that is the content of Theorem 6.2 is
the following version of Kac—Rice formula expressing the expectation of the integral
of some functional a: C'(M,R¥) x M — R over the submanifold Z = X ~1(0) defined
by a random field X € C'(M, RF):

(19 E{[ alX.pdz()| = [ E{a(X.p)5X | X(2) = 0} pxin (0)dM ()

where again [, adZ denotes the integral with respect to the Riemannian volume
measure of Z, considered with the Riemannian metric induced by Z C M. We don’t
consider this an original result, since this formula is essentially known as one of the
many variations of Kac—Rice. Nevertheless, we remark that we couldn’t find any
reference in the literature for a statement equivalent to Theorem 6.2, which is crucial
for us since it shows the validity of (1.9) under the hypothesis that X is a z-KROK
random field, except for the case when k = dim M, that is Proposition 6.1 and for
which we refer to [Ste22] (see also Appendix A).

We also remark that to obtain Theorem 6.2 we use an argument that is new in
this context and which shows that the validity of Formula (1.9) just in the case
k = dim M, when Z is discrete, implies its validity for all cases. For this we exploit
the properties of a class of Gaussian random fields on a Riemannian manifold (M, g),
that we call normal, defined as those for which g is the associated metric in the sense
of [AT07], see Subsection 6.1. This strategy reflects the philosophy of this paper in
that it exploits the interplay between different instances of the Kac—Rice formula.

1.3. Other results
1.3.1. Density of intersection in terms of mixed volumes

To a convex body K C RY one can associate d + 1 numbers Vo(K), ..., Vi(K)
called the intrinsic volumes of K (also called Lipschitz—Killing curvatures in more
general contexts [AT07]). They are the coefficients in Steiner’s formula [Sch14]:
voly(K 4+ tBy) = 2%, V4_i(K) vol;(tB;), where B; C R’ is the unit ball. The length
V) (K) = ((K) is the one appearing in Theorem A. Then, the Euler characteristic
Vo(K) = x(K) € {0,1} only tells if K is empty or not and V;(K) = voly(K) is the
usual volume.

The role of the intrinsic volumes in our picture is clarified by the wedge product
of zonoids [BBLM22|. In particular, if K = ¢ is a zonoid, we have i!V;(¢) = £(¢"),
see Proposition 3.17. Combining it with Theorem A and Theorem C, this yields
Corollary 7.3:

E {voly(Zi N --- N Zy)} = k! /M Vi(Cx)dM,

whenever Z; are i.i.d. zero sets of a scalar z-KROK random field X: M — R. The
notion of intrinsic volume for zonoids is related to that of mized volume. The mixed

volume of m convex bodies K1, ..., K,,, C R™, denoted MV (K7, ..., K,,), is defined
as the coefficient of t; - - - ¢, in the polynomial voly(t; K + ..., K,,), see [Schl4,
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Theorem 5.1.7]. If Z3, ..., Z,, are random level sets of m independent scalar z-KROK
field X1, ..., X,, respectively, on a m dimensional manifold M, then, provided that
Z; are almost surely transverse to each other, Corollary 7.3 states also that

E{#(Z10- -0 Zpn)} = m! /M MV (Cy,s ..., Cx, JAM.

1.3.2. What does the zonoid section know?

The zonoid section can be separated into two parts as follows, see Definition 3.3.

(110 Cx(p) = e(Cxp) + Ex o)

where (x(p) has its center of symmetry at the origin. The length, and thus the
density of expected volume, depends only the centered zonoid, that is, on (x(p). In
general, the centered zonoid is a sufficient data to compute the expectation of all

quantities of the form [, F(7,Z)dZ. More precisely, given a measurable function
F:Gim—k,TM)— R, we have

(1.11) ]E{/ZF(T,,Z) dZ(p)} :/G(mk’TM)deQ{,

where V, is a measure on G(m — k, T'M) associated to the centered zonoid section
(x via the cosine transform, see § 3.3. The function (x — V¢, is, in fact, injective

~ We will discuss this in more details in § 7.4. In particular, we will show that the
centered zonoid section (x depends only on the law of the random submanifold

Z = X7Y0), see Proposition 7.14.

1.3.3. The zonoid section as the expectation of a random varifold

A d-Varifold in M is a positive Borel measure on the total space of the Grassmann

bundle
G(d, TM)={V CT,M :pe M,V is a linear subspace of dimension d} .

We thus can think of a d-varifold V' as a linear continuous functional F' — V(F),
defined for every bounded continuous function F' : G(d,TM) — R and such that
V(F) < Csup |F| for some constant C' € [0, +00). Traditionally, varifold are in-
troduced as a non-oriented variant of the concept of currents. Indeed, any non-
necessarily-oriented d dimensional compact submanifold Z C M of a Riemannian
manifold M canonically defines a varifold Vz(F) := [, F(1,Z)dM (p).

On the other hand, a classical result in the theory of zonoids (see [Schl4]) is
that centered zonoids in a Fuclidean space V' are in 1 — 1 correspondence with
even measures on the sphere S(V). In our case, the zonoid (x(p) of a z-KROK
field X : M—2R*, lives in V. = A*I*M and it is special in that the associated
measure is supported on the space of simple vectors, which can be identified with
Gk, TyM) = G(d,T,M), where we set d = m — k. Because of this observation,

a zonoid section ¢ = {((p)},em, is uniquely associated to a section of measures
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{kcp) }pe m and we can use this data to construct a d-varifold V; via the formula

(see (7.15)).
Vo(F) = / / FOV)dpen (V)M (p).
()= - (V)dpe ) (V)dM (p)
We have the following.

THEOREM F (Expectation of a random varifold). — Let X € C*(M,R*) be a z-
KROK random field, and let d = m — k be the dimension of the random submanifold
Z := X~Y0). Then

EVy, =Ve,.

We will prove that (see Lemma 7.12), in the case in which ( = (x is the zonoid
section of a 2-KROK field, one can recover the zonoid section (x from the varifold
Ve and viceversa. In this sense, Theorem F explains the title of the paper.

1.3.4. Many representatives of the Fuler class

All the previous results extend naturally to random sections of vector bundles
(Theorem 8.6); if m: E — M is a smooth vector bundle of rank k and X: M — E
is a random section that is z-KROK in any local trivialization (in this case we say
that it is locally z-KROK, see Definition 8.1) then the zonoid section is defined
(Definition 8.5) as a function of the form:

M>p—(x(p) C AkT;M®detEp,

where we recall that det £ := A*E is a real line bundle, trivial if and only if E is
orientable. The reader who is familiar with algebraic topology will recognize a strong
analogy between such extensions of Theorem C and Theorem B with the axiomatic
properties of characteristic classes of vector bundles. Indeed, in the case in which
both M and E are orientable the expected current e((x) = E [,, if smooth, is in
fact a closed k-form representing the De Rham-FEuler class of E:

(1.12) le(¢x)] = e(E) € Hpp(M),

see Theorem 8.6 (4). A more subtle version of this fact holds without any orientability
assumption, see Corollary 8.8 and Remark 8.9. (1.12) can be regarded as a generalized
Gauss—Bonnet—Chern theorem (see [Nic20, Spi79]) in that on the left there is a local
object that depends on the structure of the random field, while on the right hand
side we have a global topological quantity depending only on the bundle. In other
words, a random section specifies a way to distribute the Euler class of E over the

manifold M. For instance in the case when k& = m the Euler class becomes a number:
the Euler characteristic x(F) € Z and (1.12) reads

(1.13) | (¢ = x(®).

The classical statement of Gauss—Bonnet—Chern Theorem for a vector bundle
E endowed with a metric h and a connection V can be recovered from (1.12) by
taking X to be a suitable Gaussian random section. This has been proved, by direct
computations, in [Nic16].
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1.3.5. Finsler Crofton formula

In § 9 we give an interpretation of our results in the context of Finsler Geom-
etry [BCS00]. Given a scalar 2-KROK random field X € C*(M) on M, the convex
body ((p) := (x(p), if full dimensional, defines a norm F, := h¢q) : T,M — R, that
is continuous with respect to p € M. This norm is such that the convex body ((p) is
the dual of the unit ball, see Definition 9.3. Such an assignment is called a Finsler
structure™™) . In our case the convex body ¢(p) always contains the origin and depends
continuously on p but may not be full dimensional, thus h¢(,) only defines a semi
norm. We will call a semi Finsler structure the choice of a semi norm F), : T,M — R
that depends continuously on p € M. Then we have that a scalar z-KROK random
field X € C'(M,R) defines a semi Finsler structure FX, see Definition 9.3.

Given a (semi) Finsler structure F' on M, the usual definition of the length of a
curve as the integral of the norm of the velocity still makes sense, see (9.1). Combining
the pull-back property (Theorem B) with Theorem A we are able to produce a
Crofton formula, that is, to relate the length of a curve with the expectation of the
number of points of intersection with an hypersurface. More precisely, if X : M — R
is 2-KROK, Z = X7(0) and ~ is a C'' curve in M almost surely transversal to Z,
then we have, see Proposition 9.4:

E#(yNZ) =207 (v).

Unlike for the length, there are several notions of the volume of a k dimensional
submanifold S C M in Finsler geometry, sece [APT04]. One of the most common is
the Holmes—Thompson volume, which is still defined in the semi Finsler case and we
denote it as volf, (S). It turns out that in the case in which the semi Finsler structure
F*X is defined by a scalar self-transverse z-KROK field X we can also prove a Crofton
formula for the Holmes-Thompson volume (Theorem 9.9):

E{#(SNZ NN Z)} = klbgvoll ™ (S),

where Z; are independent copies of Z = X~1(0) and S C M is any k dimensional
submanifold almost surely transversal to Z. Constructions of Finsler structures that
admit a Crofton formula are known for random hyperplanes in projective space,
see [Ber07, PF08, Sch01]. Moreover, a more general result very similar to Proposi-
tion 9.4 can be found in [APBlO, Theorem A] although the z-KROK hypotheses are
significantly less restrictive and the construction of the metric F'X is explicit (see

(9.2)).

1.3.6. Examples

With Theorem 10.1 we show that any random field Y €C>(M,R*) can be ap-
prozimated by a z-KROK random field, with the only condition being that E{.J,Y}
should be finite and continuous with respect to p € M. Such operation is obtained
by means of what can be described as a convolution with a constant field, that is, a

W 1n general the norm of a Finsler structure is also assumed to have some C? regularity that we
won’t assume here.
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random vector A € R*, provided that the latter has a continuous, bounded and non
vanishing density. In this case,

(1.14) X =Y — \is 2-KROK.

This result, while demonstrating the abundance of z-KROK fields, suggests that
they could be used to study more wild random fields via perturbative techniques.
The study of the behavior of the results obtained in this paper when A — 0 in (1.14)
will be object of future work by the authors.

A particular case of (1.14) is when Y = f is a deterministic smooth function, so
that Z = Y ~!()\) is a random level set of f. We discuss this example in § 10.1.

In § 10.3 we discuss the case when the law of the random field X is supported on
a finite dimensional linear subspace F C C*(M,R*) and has a density px: F —
[0, +00). This is the most typical situation in the existing literature (see § 1.1.1). It
includes especially the case of random eigenfunctions of elliptic operators, Riemann-
ian random waves and random band limited functions, not necessarily Gaussian. It
also naturally applies to random polynomials.

We show (see Proposition 10.7 and Proposition 10.8) that such X is always z-
KROK as long as F is ample, meaning that for any p € M the set {f(p): f € F}
spans the whole R¥ (i.e., F generates C*°(M,R*) as a C>(M)-module), and if the
density satisfies the integrability condition px(f) = O(||f||=4™%) as ¢ — oco.

1.4. Structure of the paper

§ 3 contains a brief survey on the theory of convex bodies and zonoids, with
emphasis on the formulas and the notations that are needed in the following sec-
tions. This section is essentially based on the monograph [Sch14] and on the recent
paper [BBLM22]. In § 4 we define the z-KROK hypotheses in details, discussing
alternative formulations and special cases. We give the definition of the zonoid sec-
tion in § 5 and the proof of Theorem C and Theorem B. In § 6.2 we establish the
Kac-Rice formula (Theorem 6.2) that we need to prove Theorem A. The latter is
divided into two statements, Theorem 7.1 and Theorem 7.7, both proved in § 7. In
§ 7.2 we report the full statements of Theorem D and Theorem E, which are obtained
as corollaries of Theorem 7.1. The subsequent sections cover the material discussed
in § 1.3 above, in particular, the proof of Theorem F is given in § 7.4.
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2. Notations

Here below, a list of the main notations used in this paper, for the reader’s
convenience.
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e We say that X is a random element (see [Bil99]) of the topological space

T if X is a measurable map X: Q — T, defined on some probability space
(Q, 6, P). In this case we will write

XET

and we denote by [X] = PX ! the Borel probability measure on T induced
by pushforward. We will use the following notation:

P{X € U} :=PX *(U)
to denote the probability that X € U, for some measurable subset U C T,

and
E{f(X)} = [ fnalx)).

to denote the integral of a measurable function f: T — R. Here, the integral
is meant in the usual sense of measure theory, for which we refer to [Bil95,
section 15], and takes value in R U {400, —00, 00 — 00}.

We call X a random variable, random vector or random map if T' is the real
line, a vector space or a space of continuous functions C(M, N), respectively.
Given topological spaces M and N, we write

X: M—23N,

to say that X is a random map, i.e., a random element of C(M, N). The
symbol winks at the fact that X can be seen as a function X: M x Q@ — N.
The sentence: “X has the property P almost surely” (abbreviated “a.s.”)
means that the set S = {t € T|t has the property P} contains a Borel set
of [X]-measure 1. It follows, in particular, that the set S is [X]-measurable,
i.e. it belongs to the o-algebra obtained from the completion of the measure
space (T, B(T), [X]).

o We write #(5) for the cardinality of the set S.

We use the symbol A @ B to say that objects A and B are in transverse
position, in the usual sense of differential topology (as in [Hir76]).

The space of C" functions between two manifolds M and N is denoted by
C"(M,N). We just write C"(M) in the case N = R. If £ — M is a vector
bundle, we denote the space of its C" sections by C"(M|E). In both cases,
we consider it to be a topological space endowed with the weak Whitney’s
topology (see [Hir76]).

We use I'(Z) for the space of continuous sections of a continuous fiber bundle
Z — M.

Given a topological space T', we denote by M(T') the topological vector space
of finite signed Borel measures, endowed with the weak-* topology induced
by the inclusion M(T') C Cy(T')*. We write M™(T') for the subset of positive
finite measures and Z(T) for that of probability measures, both considered
with the subspace topology, if not otherwise specified.

e If Visa vector space and z,y € V, we write [z,y] := {(1 — t)x + ty |t € [0, 1]}.

Moreover, we abbreviate

1
x = 5[—1‘,:6].
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2k+17.(.k

e We use by, for the k& dimensional volume of the unit ball in R* and s;, = o

for the k& dimensional volume of the unit sphere in R¥+1,

3. Zonoids

Throughout this section (V, (-,-)) is a (real) Euclidean space of dimension m, V*
its dual and S(V) is the unit sphere of V.

3.1. Basic definitions

A subset K of V' is convez if for every z,y € K, the segment [z,y] = {(1 — t)x +
ty|t € [0,1]} is contained in K. A convex body is a non empty compact convex subset.
If K C V is a convex body, its support function is the positively homogeneous
function hg : V* — R given by

hi(u) :=sup {{u,z) |z € K}.
The support function determines the convex body K, meaning that two convex
bodies K and K’ are equal if and only if hx = hgs, see [Schl4, Section 1.7.1].
Moreover, a function h : V* — R is the support function of a convex body in V
if and only if it is sublinear, that is if h(Au) = Ah(u) for all uw € V*, A > 0 and
h(u +v) < h(u) + h(v) for all u,v € V*; see [Sch14, Theorem 1.7.1].

The norm on V* induces a complete distance on the space of convex bodies of V'
called the Hausdorff distance [Haul4]. This is equivalent to the supremum distance

of the support functions, given for all K;, Ky C V convex bodies by (see[Schl4,
Lemma 1.8.14]):

(3.1) d(K1, K3) = sup {|hk, (u) = b, (u)] | [|u] =1}
The Minkowski sum of two convex bodies Ky, Ky C V is the convex body defined
as:
K+ Ky :={x; + 22|21 € Ky, 25 € Ko}
Finally we define for every A € R and convex body K, the convex body AK :=
{\z |z € K}.
The support function satisfy some useful properties that we summarize in the next

proposition. Those are direct consequences of the definition and for this reason we
omit the proof.

ProPOSITION 3.1. — Let K, L be convex bodies in a vector space V and let hg,
respectively hy be their support functions. We have the following.

(1) For allt,s > 0 we have hyxys;, = thx + shyp.
(2) If W is a vector space and T : V. — W is a linear map then hy k) = hy o T"
where T" : W* — V* is the transpose (or adjoint) of the map T.

We are interested in a particular class of convex bodies.

DEFINITION 3.2. — A zonotope is a finite Minkowski sum of segments. A zonoid
is a limit, in the Hausdortft distance, of zonotopes.
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Segments are always centrally symmetric and we can write [z,y] =z — y+3{z+y}
where we recall the notation defined in (2.1). It follows that zonotopes, and thus
zonoids are centrally symmetric. Moreover K is a zonotope if and only if there exist
T1, ..., Tn,e € V such that K = 1 4+ -+ + xy + 3{e}. This implies that for every
zonoid K there is a zonoid K with (—1)K = K and a vector e such that

1

DEFINITION 3.3. — The point e will be called the nigiro® of K and denoted
e(K). Moreover, for every zonoid K, we write K for the unique zonoid such that

K = K+ 3{e(K)}.
We write Z (V) for the space of zonoids of V' and Z,(V') for the space of centered
zonoids, i.e. ZH(V) :={K € Z(V)|(—1)K = K}. By the discussion above we have
ZV)=2%V)sV

In the sense of the monoid structure given by the Minkowski sum. Elements of Z4(V)
are called centered zonoids.

3.2. Zonoids and random vectors

If A is a random zonoid in V| that is a map from some probability space to Z(V'),
such that E|d(0,A)| < oo then we define the expected zonoid EA to be the convex
body with support function given for all u € V* by

It follows from a strong law of large number for compact sets from [AV75] that if
Ay, ..., A, areii.d. copies of A, then the random zonoid %(Al +---+A,) converges
almost surely as n — oo to EA. In particular the expected zonoid EA is indeed a
zonoid.

We will, in the following, consider mostly two examples. Let X €V be a random
vector such that E||X|| < co. We say that X is integrable and we consider E[0, X]
and EX. Their support function is given for all u € V* by

1
(3.2) hep,x)(w) = Emax{0, (u, X)}; hex(u) = §E\(u,X)]
Next, we show that they are translate of one another.

LEMMA 3.4. — Let X €V be integrable. We have
E[0, X] =EX + ; {EX}.

With the notation introduced above, this means that e(E[0, X]) = EX. In particular
E[0, X] = EX if and only if EX = 0.

(2) The nigiro e(K) is symmetric to the origin with respect to the center of K. In other words, as a
vector, it is twice the center of K.
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Proof. — It is enough to see that for every t € R we have max{0,¢} = (|t| + ¢).
Then use the expressions in (3.2) and the fact that kg = (-, ¢). O

These constructions behave well under linear mappings.
LEMMA 3.5. — Let X €V be integrable, let W be a finite dimensional Euclidean

space and let T : V. — W be a linear map. Then T(X) €W is integrable and we
have

E[0, T(X)] = TE[0, X] ET(X) = TEX

Proof. — By (3.2) we have hgprx)(u) = Emax{0, (u,T(X))} = hgpx)(T"(u)).
By Proposition 3.1-2 this is the support function of TE[0, X]. The other case is done

similarly. 0
Example 3.6. — Let xq, ..., zy € R™ and let X ER™ be the random vector
that is equal to Nx; with probability 1/N for ¢ = 1, ..., N. Then computing the
expression in (3.2), we find,
N N

i=1 i=1

Example 3.7. — Let £ ER™ be a standard Gaussian vector and let B,, be the

unit ball of R™. Then we have
1
E{ = —B,,.

3 V2
Indeed, since £ is O(m)-invariant, by Lemma 3.5, E{ must also be O(m)-invariant
and thus is a ball. To compute its radius, it is enough to compute the support

function at e;, the first vector of the standard basis of R™. Since (£,e;) ER is a
standard Gaussian variable, we obtain

hIEJ£<€1) IE| ¢, e1 2 \/—

Vitale in [Vit91, Theorem 3.1] shows that every zonoid can be obtained via the
above construction, i.e. for every K € Z(V) there is an integrable X €V and a
vector e € V such that K = EX + ${e}. However, the integrable random vector X
defining the zonoid K := EX is not unique. This defines an equivalence relation on
the integrable random vectors of a vector space known as the zonoid equivalence,
see [MSS14]. The following is [MSS14, Corollary 3.

PRrOPOSITION 3.8. — Let X,Y €V be integrable. Then EX = EY if and only if
for every one-homogeneous even measurable function f :V — R, we have:

Elf(X)]=E[fY)].
This shows that the following is well defined.

DEFINITION 3.9. — Let X € V be an integrable random vector and let K := EX.
Then the length of K is defined to be

U(K) :=E|X]|.

TOME 7 (2024)



918 L. MATHIS & M. STECCONI

This functional is actually something very well known, see [BBLM22, Theorem 5.2].

LEMMA 3.10. — The length of a zonoid is equal to its first intrinsic volume
(see (3.9) below).

Despite this result, we will continue to use the name length and the notation ¢
to emphasize that we are thinking of Definition 3.9. Since the first intrinsic vol-
ume is Minkowski linear and vanishes on zero dimensional bodies we also have,
by Lemma 3.4,

(3.3) ((E[0, X]) = E[|.X][.

Finally, there is a simple trick to express the Minkowski sum of two zonoids in
terms of random vectors. The proof is straightforward and thus omitted.

LEMMA 3.11 (Bernoulli trick). — Let X,, X1 ER™ be integrable and let € € {0, 1}
be a Bernoulli random variable of parameter t € [0, 1] independent of Xy and X7, that
is € = 0 with probability t and € = 1 with probability 1 —t. Let X; := eXo+ (1 —¢€) X;.
Then we have

E[0, X] = (1 — t)E[0, Xo] + tE[0, X1]; EX, = (1 - t)EX, + tEX).

3.3. Zonoids and measures: the classical viewpoint

It is most common to approach centered zonoids with even measures on the sphere.
We recall here this point of view and describe how this approach relates to Vitale’s
construction. The space of even signed measures on the unit sphere S(V') is denoted
by Meyen(S(V)) and the cone of non negative even measures by M7 (S(V)).

It is a classical result (see [Sch14, Theorem 3.5.3]) that for every centered zonoid
K € Z4(V) there is a unique px € M7, ., (S(V)) such that

even

(3.4) 2/ (u, 7)| dpge ().

The function hg is also called the cosine transform of py. We also denote by px the
measure on S(V*) defined by (3.4) with the scalar product replaced by the duality
pairing. If a centered zonoid is given by a random vector, it is possible to retrieve
the corresponding measure on the sphere.

PROPOSITION 3.12. — Let X €V be integrable and let K := EX. Then py is
the measure such that for every continuous function f : S(V) — R we have

35 [, fai =2 {1307 (57 ) L

Proof. — The function = — ||z||f( ‘x”) z+£0 1 a one homogeneous continuous

function on V. Thus by Proposition 3.8 the term on the right only depends on K.
To see that it satisfies (3.4) apply it to f = |(u, )| for any u € V*. O
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In particular, note that we have pg(S(V)) = ¢(K). More generally, if f:V — Ry
is measurable and one homogeneous, we get

(3.6) Ef(X)= [ fdux
S(V)
where X €V is integrable and K :=EX.

3.4. Zonoid calculus

In the recent paper [BBLM22] the first author together with P. Breiding P. Biir-
gisser and A. Lerario proved that multilinear maps between vector spaces give rise

to multilinear maps on the corresponding spaces of centered zonoids. The following
is [BBLM22, Theorem 4.1].

PROPOSITION 3.13. — Let M : Vi X --- x Vi, — W be a multilinear map between
finite dimensional vector spaces. There is a unique Minkowski multilinear continuous
map N

W= 25(Vi) x - x Z(Vy) = Z(V)
such that for all vy € Vi, ..., v, € V}, we have

—~

M(ﬂ,...,%):]\/l(vl,...,vk).

We extend the map M to general zonoids by setting for all K € Z5(V1), ...,
Ky € Z(Vy) and every ¢; € Vi, -+, ¢ € Vi

3.7) M (m + ;{01}, o Kt ;{ck}) — M (K, ..., Kk)+; (M(cr, ..., ).

One can check that this map is still Minkowski multilinear. Moreover, it behaves
well under the Vitale construction.

ProrPoOSITION 3.14. — Let M : Vi x --- x V), =& W be a multilinear map be-

tween finite dimensional vector spaces and let X; EVy, ..., Xy, €V} be integrable
and independents. We have
M (E&, ]E&) = IEM(Xl,...,Xk);M<E[O,X1], E[O,Xk])

=E[0, M (X, ..., Xp)].
Proof. — The first statement about centered zonoids is [BBLM22, Corollary 4.3].
The second one follows from it, Lemma 3.4 and (3.7). O
Consider the exterior powers A*V, 0 < k < m, where we recall that m = dim V.
There is a collection of bilinear maps By; : AFV x AV — AFTV given for all
w e AV, w' € AV by Bi(w,w') :=w A w'. We consider the bilinear map induced
on zonoids and if A € Z(A*V), A’ € Z(AV) we write
ANA = Bry(A A,

We will call this operation the wedge product of zonoids. Using Proposition 3.14 we
have for X and Y independent integrable random vectors:

(38) EXAEY =EXAY; E[0, X] AE[0,Y] = E[0, X AY].
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Remark 3.15. — Note that the wedge product on centered zonoids is commutative,
this follows from (3.8) and the fact that z = —z.

Finally, in the notation introduced in Definition 3.3, and using (3.7), we get that
for every zonoids K € Z(A*V), L € Z(A'V), we have

KANL=KANLe 2% (M) and (KAL) =e(K)Ae(L) € AV,

3.5. Mixed volume and inequalities

A fundamental result by Minkowski [Sch14, Theorem 5.1.7] states that, given
convex bodies K, ..., K,, C V, the function (¢1, ..., t;) = vol, (t1 K1+ - -+, K,y,)
is a polynomial in tq, ...%,, > 0. The coefficient of t; - - - t,,, is called the mized volume
of Ky, ..., K,, and will be denoted here by MV (K7, ..., K,,). It relates to the wedge
product of zonoids as follows.

ProposITION 3.16 ([BBLM22, Theorem 5.1]). — Let Ky, ..., K, € Z(V). We
have the following.

1

From Minkowski’s result, one can also build the intrinsic volumes of a convex body
K C V which are the coefficient (suitably normalized) of the Steiner polynomial
t — vol,,(K +tB(V)) where B(V) C V is the unit ball. In our context we define
the k™ intrinsic volume to be

(3:9) () = v (], ) — 4
m—k
where K k] denotes the convex body K repeated k times in the argument.
From the previous Proposition, one can deduce the following, which is [BBLM22,
Theorem 5.2] and will be used later in the proof of Corollary 7.3.

PROPOSITION 3.17. — Let K € Z(V). We have the following.

;le (K™) = Vi(K)

Moreover for all k > dim(K), K"t = 0.

Moreover the support function on simple vectors takes the following form which
will be used in Lemma 9.8 to link zonoid calculus to the notion of Holmes-Thompson
volume.

LEMMA 3.18. — Let K € Z,(V) be a centered zonoid and let uw = uy A--- Ay, €

A*V. We have
hK/\k(ul VANRIERIVA uk) = HUI A 2 A UkH k'VOlk(’/Tu<K))

where T, : V' — Span(uy, ..., u) denotes the orthogonal projection.
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Proof. — Let X €V be such that K = EX and let Xy, ..., X} be iid copies of X.
Then we have

1
A A

Eljma(X) A= A (Xl

2
_ A A Ak
= 5 14 (ﬂ'u(K) ) :
Finally, by Proposition 3.16, we have £(m,(K)"*) = k!vol(r,(K)) which concludes
the proof. O

3.5.1. Alexandrov—Fenchel and Brunn—Minkowski inequalities

One of the most important inequality of convex geometry (if not the most impor-
tant) involves the mixed volume and is known as the Alexandrov—Fenchel inequality
(AF), see [Sch14, Theorem 7.3.1].

PROPOSITION 3.19 (AF). — Let K3, ..., K,, CV be convex bodies and let us
denote by R, the tuple (K3, ..., K,,). For all convex bodies K, L C V we have

MV(K, L, &) > /MV(K, K, &) MV(L, L, R).

Another inequality bounds from below the volume of the Minkowski sum of two
convex bodies and is known as the Brunn—Minkowski inequality (BM). It has many
equivalent form and we chose to present here the multiplicative one, see [Schl4,

p. 372 (e)].

PROPOSITION 3.20 (BM). — Let Ky, K; C V' be convex bodies. For all t € [0, 1],
we have
vol,, (1 — ) Ko + tKy) = vol,,(Ko) " vol,,(K1)".

3.6. Grassmannian zonoids

The zonoids that will appear in the construction of the zonoid section below
(see Definition 5.1) belong to a particular subset of Z°(A*V). Recall that if V is
Euclidean then A*V inherits an Euclidean structure given for all v; A - -+ A vy, wy A
- Awy € ARV by

(U1 A= Avg,wy A -+ ANwg) = det ((v;, w;))

1<i,j<k"
Vectors of the form vy A --- A v, € APV are said to be simple.

We write G(k, V') for the Grassmannian of k—dimensional subspaces of V. Recall
that the Grassmannian embeds in the projective space of AFV via the Pliicker
embedding that sends £ € G(k,V) to [e; A -+ Aeg] € P(AFV) where ey, ..., e is a
basis of E. In particular the set of simple vectors in A*V can be viewed as the cone
over the Grassmannian and a measure on G(k, V) can be identified with an even
measure on S(V') supported on the simple vectors.
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For every E € G(k,V) we define the segment
E:=e A ANep C AV

where eq, ..., e, is an orthonormal basis of E.
DEFINITION 3.21. — A zonoid K € Z(A*V) is a Grassmannian zonotope if there
exists subspaces E, ..., E, € G(k,V) scalars A\, ..., \, = 0 and a simple vector

c=ci A+ ANy € ARV such that K = \MEy + -+ + M\ E, + %{c} A Grassmannian
zonoid is a limit of Grassmannian zonotopes. We denote the set of Grassmannian
zonoids in A¥V by G(k,V) C Z(A*V) and centered Grassmannian zonoids by
Go(k, V) :=G(k, V)N ZH(A*V).

Remark 3.22. — For k € {0,1,m — 1,m} where m := dimV, all zonoids are
Grassmannian.

The following lemma clarifies how to recognize Grassmannian zonoids when rep-
resented by random vectors or by measures. In particular, centered Grassmannian
zonoids in A*V correspond to positive measures on G(k, V).

LEMMA 3.23. — Let K € Zy(A*V). The following are equivalent.

(i) K € Go(k,V);

(ii) There is an integrable random vector X € A*V that is almost surely simple,
i.e. such that almost surely X = X1 A -+- A X}, (the vectors Xy, ..., Xy can
be dependent ), such that K = EX

(iii) The support of the measure ur € M (S(A*V)) is contained in the inter-

even

section of S(A*V') with the set of simple vectors, i.e. ux € MT(G(k,V)).

Proof. — The equivalence (ii) <= (iii) follows from Proposition 3.12. The equiv-
alence (i) <= (iii) follows from the fact that Hausdorff convergence of zonoids
corresponds to weak—k convergence of measures [BBLM22, Theorem 2.26(5)]. O

Remark 3.24. — As it will be clear from Definition 5.1, Lemma 3.23 (ii) implies
that the value at p € M of the zonoid section (x of a 2-KROK field X € CY(M,R¥)
is a Grassmannian zonoids: (x(p) € G(k,T,M) for all p € M.

Remark 3.25. — From (iii) we see that Go(k,V) = M*(G(k,V)).

It is not difficult, using (iii), to see that the Grassmannian zonoids are closed under
the Minkowski sum. Similarly, one can see using (ii) that they are also closed under
the wedge product.

LEMMA 3.26. — The wedge product, respectively the Minkowski sum, of two
Grassmannian zonoids is a Grassmannian zonoid.

The next lemma makes computations easier for Grassmannian zonoids and, for
instance, it can be used to compute directly the constant in the proof of Theorem 6.2.
We will use it in the proof of Lemma 6.6.

LEMMA 3.27. — Let C € G(k,R™) and let B, :== Brm be the unit ball of R™.

Then we have ]

“e) = (m — k)b

¢(CnBpm)

where by := voly(By).
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Proof. — Since the length is translation invariant, we can assume C'is centered. Let
C=EX;A---AXy, let Y ER™ be a Gaussian vector of mean 0 and variance /27
in such a way that B,, = EY and let Y, ..., Y}, be iid copies of Y independents
of Xy A--+ A Xg. Then using the independence of the random variables and the fact
that Y7 A --- AY,,_ is orthogonal invariant we have

C(CABY ™) =R Xy A AXp AYE A A Yok
=E[|XiA- - AXi||-Elles A ANexg AYT A= A Ykl
where eq, ..., e, denotes the standard basis of R™. We obtain
£(C A BYmH) = C) BIw(Yi) A A (V)

where 7 : R™ — R™~* is the orthogonal projection onto Span(egy1, ..., €,). Then
it remains only to see, using Proposition 3.17, that

Elxn(YD) A Ar(Yo_)| = ¢ (W(Bm)/\(mfk)>

=/ ((Bm_k)“m—’“))
= (m — k))'bm_k L]

Finally, we observe the following. Let f : G(k,V) — R be a measurable function
and denote also by f its (even and) homogeneous extension on the cone of simple
vectors. Then if K = EX; A--- A X is a Grassmannian zonoid with generating
measure pux € MT(G(k,V)), we get that (3.6) becomes:

(3.10) Ef(X0 A AXy) = /G(kv)fdm(.

3.7. Topology of zonoids

We conclude this introduction to zonoids with a short comment on zonoid bundles.
It will be useful to keep in mind this section in what follows, to understand the
continuity of the zonoid section (Definition 5.1). Let M be a manifold of dimension
m and let 7 : E — M be a topological vector bundle of rank k. The structure of
vector bundle is given by the trivialization maps xy : E|ly — U x R* which are
homeomorphisms that are linear isomorphism on the fibers.

We can define the zonoid bundle Z(E) whose fiber at a point p € M is defined
to be Z(E), := Z(E,) where E,, is the fiber of E at p, and whose bundle structure
is given by the collection of maps Xi : Z(FE)|ly — U x Z(RF¥) in particular the
topology on Z(F) is the smallest topology that makes all Yy homeomorphisms.
Recall that the space of zonoids 2°(R¥) is topologized by the Hausdorff distance,
see (3.1). Similarly one can define Z4(F), G(k, E), Go(k, E).

Given a fiber bundle 7 : F' — M we denote by I'(F) the space of continuous
sections of F, that is v € I'(F) if and only if v : M — F' is a continuous map such
that for every p € M, n(y(p)) = p. In particular a section ¢ € I'(Z(E)) is the choice
of a zonoid at each point p of the manifold M in the vector space £, such that this
zonoid depends continuously on the point p. We will call ¢ a zonoid section.
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We observe then that a section ¢ of the bundle Z(E) — M defines at each point
p € M a continuous positively homogeneous sublinear function h¢,) @ £, — R.

LEMMA 3.28. — ( is continuous if and only if the map h¢ : E* — R, (p,u) —
h¢y(u) is a continuous function on E*.

Proof. — 1t is sufficient to prove the statement locally, thus we assume F =
R™ x R*. Consider the space C(R¥) endowed with the compact-open topology. This
has the property that: h € C(R™ x RF) if and only if h; € C(R™,C(RF)), where
hy @ p — h(p,-). Therefore, the statement translates into proving that a sequence
of zonoids ¢,, C R¥ converges to a limit ¢ if and only if the corresponding sequence
of support functions h,,: R¥ — R converges to h := h¢ in C(R*) with respect to the
compact-open topology. Now, we recall that h, and h are positively homogeneous
functions, which implies that h,, — h if and only if the same convergence holds for
the restrictions to the sphere S¥~1. The compact-open topology of C(S*~1) coincides
with the one induced by the supremum norm, hence we conclude by (3.1). 0J

Lemma 3.28 will be used in § 5 to show the continuity of the zonoid section.

We conclude this section with some observations regarding the space of zonoid
sections, with the only scope of giving a more complete picture. In fact, it is easy to
turn the latter proof into a proof of the following statement. Linearity is meant with
respect to the Minkowski sum on the left and follows from Proposition 3.1.

PROPOSITION 3.29. — The assignment ¢ — h¢ defines a linear topological em-
bedding
h.:T(Z(FE)) — C(E"),
Remark 3.30. — The exact image of h. is not easy to determine, but it is certainly
contained in the subset of functions that are sublinear on fibers, see Section 3.

A further observation is that, as fiber bundles, we have Z(F) = Z,(F) @ E and
thus
(3.11) N(Z(E) 2T(Z(E) aT(E).

Therefore we can, as before, treat the nigiro (see Definition 3.3) of a zonoid and the
centered zonoid as separate continuous sections.

4. z-KROK hypotheses

Let (M,g) be a smooth Riemannian manifold of dimension m € N, possibly
non-compact. In this section we are going to describe a class of random functions
X : M—25RF for which Kac-Rice formula works well and it can be written in terms
of a field of zonoids as explained in Section 1.

DEFINITION 4.1 (2-KROK hypotheses). — Let X : M —<5RF be a random map.
We say that X is z-KROK if the following properties hold.

(1) X ECH(M,RF).
(2) Almost surely, 0 is a regular value of X.
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(3) For any p € M the probability [X(p)] on R¥ is absolutely continuous with
density denoted as px ) : RF — [0, +00).

(4) The function px: M x R — R given by px(p, ) = px()(x) is continuous at
(p,0) for all p € M.

(5) There exists a regular conditional probability u(p,z) € Z2(C*(M,RF)) of X
given X (p) (see § 4.1 below) such that the following holds. Let J, - u(p, x) €
MT(CY(M,RF)) be the measure defined by

By 1p.2)(B) = [ Jpf -d(plp.x)) ().
Then we ask that J, - u(p, z) is a finite measure and that the function
Ja- s M OxRY = MT(CH(M,RY))
(p,2) = Jp - p(p, @)
is continuous at (p,0) for all p € M.

These hypotheses are exactly what we need to apply the Kac—Rice formula to
express the expectation of quantities of the form:

(X) = [, ol X)dM(p)

where a: M x C'(M,R*) — R is a measurable function, see Theorem 6.2. They
are a variation of the KROK hypotheses introduced in [Ste22]: a series of hy-
potheses on pairs (X, W), where X: M — N is a random map and W C N is
a submanifold of codimension m = dim M. If (X, W) is KROK, then the measure
p(A) = E#(XH(W)NA) is computed by a generalized Kac-Rice formula, see [Ste22,
Theorem 2.2]. In this paper, we only consider the case when W = {0} ¢ N = R*
but we do not impose conditions on its codimension k.

The precise relation between the KROK hypotheses of [Ste22] and the z-KROK
hypotheses of Definition 4.1 is that X is z-KROK if and only if the pair (X, {0}) sat-
isfies all conditions KROK.(¢) for all £ € {i, ..., vii} \ {v} in [Ste22, Definition 2.1].
Indeed KROK (v) is a codimension assumption and it translates to our setting as
the condition: k = m, which is not required for X to be 2-KROK. The hypothesis
KROK (vii) is equivalent to z-KROK (5) by point (3) of Proposition 4.6 below, that
is a more precise version of [Ste22, Prop. 2.4]. See also Appendix A to compare with
the hypotheses that appear in the more standard statements of Kac-Rice formulas,

[AT07, AWO09].

Remark 4.2. — Although having a Riemannian metric g on M is useful to state
2-KROK .5, the notion does not depend on ¢: If X is 2-KROK on (M, g) then it is
2-KROK on (M, g) for any Riemannian metric g. This is easily seen by the fact that
the functions J, and J, » corresponding to the two metrics are related by an identity:
J, = @(p)J, for some smooth function ¢ € C>(M, (0, +00)).

(3)In the distributional sense, it is the multiplication of the measure u(p,x) with the function
Tyt f s Jof.
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Remark 4.3. — The hypothesis 2-KROK (2) can be verified in some cases using
the generalization of Bulinskaya Lemma proved in [AW09, Prop. 6.12]. This says that
if X €C?(M,R*) and the triple (p, X (p), d,X) has a joint density p: J*(M,R*) — R,
where J*(M,RF) is the first jet bundle, that is bounded on a compact neighborhood
of each point (p,0, A) € JY(M,R¥), then 2-KROK (2) holds.

4.0.1. A comment about the notation

The notation KROK, introduced in [Ste22], stands for Kac-Rice OK. Here, we add
the letter z for two reasons: to remind that we only care about the zeroes and to
indicate that some zonoid will appear. z-KROK is pronounced “skrok”; “zkrok” or
“zee krok”.

4.1. Remarks on 2-KROK (5)

Given a random element X €C!(M,R*) and a point p € M, a reqular conditional
probability™® of X given X (p) is a function

p(p, ) () RS x B(CH(M,RY)) — [0, 1],
(2, B) = n(p, 2)(B)

that satisfies the following two properties, see [Dud02] (The definition for any fixed
p as it depends only on the pair of random variables X and X (p)).
(a) For every B € B(C'(M,RF)), the function u(p,-)(B): R¥ — [0,1] is Borel
and for every V € B(RF), we have

(4.1) P{X € B;X(p) eV} = /Vu(p, ) (B)d[X (p)](x)

where recall that [X(p)] denotes the probability measure that is the law of
the random vector X (p) € R*.
(b) For all z € R¥, u(p, z) is a Borel probability measure on C!(M, R¥).

The fact that the space C'(M,R¥) is Polish ensures that, for every p € M, a
regular conditional probability measure p(p, -)(+) of X given X (p) exists (see [Dud02,
Theorem 10.2.2]) and it is unique up to [X(p)]-a.e. equivalence on R*. However,
strictly speaking, it is not a well defined function of p, although the notation can
mislead to think that.

According to the above definition, there are many different choices of measures
w(p,x) € P(CH(M,R¥)) with the property that u(p,-)(-) is a regular conditional
probability of X given X (p), for all fixed p € M. In our case such ambiguity may
be traumatic, since we will be interested in the value of u(p,z) at x = 0 which, by
2-KROK (3), is negligible for the measure [X (p)], i.e. P{X (p) = 0} = 0. Therefore,
it is essential to choose a family of regular conditional probabilities {f,}, e that
has at least some continuity property at (p, ) — (po,0). This is the motivation for
the hypothesis z-KROK (5).

1) See [Dud02] or [Cin1l]. In the latter the same object is called a regular version of the conditional
probability.
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4.2. Notation for conditioned random maps

We will use the notation of random elements, in the following sense. If X € C'(M,
R*) is 2-KROK, then for any (p,z) € M x R¥, we write

(X|X(p) = z)EC" (M, R¥)

for any random element representing the measure p(p, ), i.e. such that [X|X (p) = x|
= u(p, z). Hence (X|X(p) = x) is not a well defined random element but since in the
sequel everything will only depend on the law this will not be a problem. Moreover,
we will write

P(X € BIX(p) = r} = B{(X|X(p) = 1) € B} = u(p, )(B),
for every B C C'(M,RF) and

E{a(X)[X(p) = 2} := E{a((X[X(p) = 2))} = a(f)du(p, z)(f)-

C!(M,RF)

for every a: C'(M,R¥) — R measurable, whenever the integral, called expectation in

this context, makes sense. If X is z-KROK then the probability u(p,0) is unique, so

the notation [X|X(p) = ] is not ambiguous at = 0. More precisely, if u(p, z) and

i (p, x) are two regular conditional probabilities of X given X (p) satisfying z-KROK

(5) then pu(p,0) = 1/(p,0). For all the other x € R*, we will abuse the notation.
The following observation is often useful in computations.

Remark 4.4. — Let X €C*(M,R*) and let p € M. If d,X and X(p) are stochas-
tically independent, then the law of the random vector d,X is a regular conditional
probability of d,X given X (p), therefore we have that the two laws are equivalent:

[d,X] = [d,X|X(p) =], for [X(p)]-almost every = € R".
In particular, if X is 2-KROK, the continuity of u(p,z) at x = 0 yields
14,X] = [d, X| X (p) = 0]
Therefore, in this case the zonoid section at p is computed by:

Cx(p) =E{[0,d X" A+ AdyXF] b px) (0).
4.2.1. The notation makes sense

The Lemma below has the scope to clarify some doubts that often arise when
using the notation explained above.

LEMMA 4.5. — Let X ECY(M,R¥) and fix p € M. Let u(p,-)(-) be a regu-
lar conditional probability for X given X (p). Then pu(p,x) is supported on {f €
CY(M,R*): f(p) =z} for [X(p)]-a.e. x € R¥, that is, in the above notation,

]P’{X(p) =z

X(p) = w} =1, for[X(p)]-a.e xcR"
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Proof. — Let us fix p € M. Let V C R¥ be a Borel subset and define By := {f €
CY(M,R*)|f(p) € V}. Then, by Equation (4.1), we have that

| dX®)@) =P{X () € VY =F{X € By} = [ ulp.2)(Br)dlX(p)](a).

It follows that there is a Borel subset Ny C R*, with P{X (p) € Ny} = 1 such that
for every x € Ny, we have

ly(z) = p(p,=)(By) = P{X(p) € V|X(p) =z} .

Let {V,, },,en be a countable basis of the topology of N. Let B,, = By, C C'(M,R*) be
defined as above. Then N, Ny, := N’ C R” is still a full measure set for [X (p)]. Clearly,
we have that every singleton x € N, can be written as a countable intersection

{z} = ﬂ V..

{neN:zeV,}

Moreover, for every x € N’ and every n € N, we have that u(p, x)(B,) = 1y, ().
Therefore, if € N’, then we conclude by the continuity from above of the measure

p(p; x):
P{X(p) = o|X(p) =2} = p(p#) (B) = _inf  Ly(@)=1 O

{neN:zeV,}

4.3. Equivalent formulations of z-KROK (5)

We derive a more technical version of the hypothesis z-KROK (5). See also Ap-
pendix A.

PROPOSITION 4.6. — Let X : M—<R* be a random map satisfying z-KROK-
(1)-(4) and let u(p,-)(-) =: [X|X(p) = -|(:) be a regular conditional probability of X
given X (p) (See § 4.1). The following statements are equivalent:

(1) (z-KROK (5)) The function Jyr-p : M x RF — M+ (CH(M,R¥)) is continuous
at (p,0) for all p € M.

(2) For any bounded continuous function a € Cy(CH(M,R¥); R) and any conver-
gent sequence (p,,x,) — (p,0) in M x R* we have

E{a(X)J,, X | X(p,) = 2,} = E{a(X)J,X | X(p) =0}.
(3) For any bounded continuous function o € Cp(C*(M,R*) x M;R), the function
M xR* > (p,z) = E{a(X,p)J,X | X(p) = 0}

is finite and continuous at (p,0) for every p € M.

(4) For any sequence of continuous functions 3, — By € C(C*(M,R¥);R) that
converges in the compact-open topology and any sequence (py, x,) — (po,0)
converging in M x R* such that 3,(f) < CJ,, f for some C' > 0, we have that

(4.2) E {50 (X) [ X(pn) = 2n} = E{fo(X) [ X(po) = 0} .
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Proof. — (1) <= (2) by definition. Moreover, it is clear that (4) = (3) =
(2), so that it will be sufficient to show that (1) = (4). In [Ste22, Proposition 2.4]
it was proven that (1) = (3), but a slight modification of the same argument
allows to obtain the (apparently) stronger statement (4). We are going to repeat it
here, with some extra care, to prove the Proposition.

Assume (1) and let 3, pp, z, — 5o, Po, 0 as in the statement of (4). Observe that
for all g = 3, and p = py, if J,f =0, then B(f) = 0, so that

E{5(X) [ X(p) = «}

- C1(M,RF) B(f)du(p, x)(f)
Jpf

= B

C(M,RF)~{J,=0} Ipf
B(f)
e a2 de(Jp-u(p,w))(f)-

Notice that the last term makes sense because J, - pu(p, z)({J, = 0}) = 0.

Let E(p,z) == E{J,X|X(p) = x} be the total mass of the measure J, - u(p, z).
By z-KROK (5), the number E(p,0) > 0 is finite, though notice that it could be
zero (See Example 4.8). The hypothesis (1) implies that E(p,,x,) — E(p,0). If
E(po,0) = 0, then the limit (4.2) holds since

E{5.()| X(p) = 20 }| < CE ) > 0 =B {50(X) | X(on) = 0} .

Assume that E(pg,0) > 0, then we can assume that E(p,,x,) > 0 for all n € N. In
this case, the next sequence of probabilities converges:

Pn = E(pna l'n)ilejpn ’ N(pnal'n) — PO = E(p(), 0)71‘]100 ) ,U(po, O)

Thus by Skorohod’s Theorem (See [Bil99, Par05]) there exists a sequence of random
functions Y, Yy € C(M,R¥) defined on a common probability space such that Y, —
Yy in CH(M,R¥) almost surely. Then

B (X)X () = 2} = Blowss) [, 2 g)

du(p,z)(f) + B(f)du(p, z)(f)

/czl(M,Rk) N {J,=0}

C1(MR¥)
e [ B] s [0
_ o(f),
= 5o, 0) /CI(MRk) Jot )

=E{p(X) | X(p) = 0}.

Here the limit holds by dominated convergence, since 2 "( ; < C and 22! 7 Yf) — B E(Y;})
Pn PO
almost surely. O

To show that a given random field verifies z-KROK (5), it is often convenient to
check directly that it satisfies point (2) of Proposition 4.6 above, which is equivalent
to z-KROK-5 by definition. On the other hand, the 