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1. Introduction

In 1997 Goldman proved that the (pure) mapping class group of a closed orientable
surface X acts ergodically on the moduli space of flat principal G-bundles over X
when G is a compact connected Lie group whose simple factors are rank 1 [Gol97].
Goldman conjectured his theorem generalized to parabolic G-bundles over compact
orientable surfaces ¥, , of genus ¢ > 0 with n > 0 punctures (assuming n > 4 if
g = 0) for any compact connected Lie group G. This conjecture was established
in [PX02, PX03] when g > 2 and n > 0. The genus 0 and 1 cases are largely open
when G has simple factors of rank greater than 1. However, when G' = SU(3) and
g = 1 = n the conjecture was recently shown true [GLX20]. All existing proofs more
or less show that the Dehn twists are covered by Hamiltonian flows which generate an
ergodic group action. Recent work has been announced that the much smaller Torelli
subgroup is sufficient to establish ergodicity in the closed surface cases [Bou21].

It is natural to ask (as with the action of an irrational rotation on a torus) if a
single hyperbolic element in the mapping class group is sufficient to induce ergodicity.
In the case of G = SU(2), it was shown in Brown’s thesis [Bro96] that the answer is
no using KAM theory. There is a small gap in his proof that was recently observed
by C. Matheus. It is the purpose of this article to fill this gap and further establish
this phenomena also occurs in the case of G = SU(3) and g = 1 = n giving the
opportunity to utilize higher dimensional KAM theory.

In addition to giving a complete account of Brown’s theorem, we prove:

THEOREM 1.1 (Theorem 6.2). — Let MCSG be the mapping class group of the
once-punctured torus Y1, and let X, be the moduli space of flat parabolic SU(3)-
bundles over X, with parabolic data (. Then, there exists a hyperbolic element
M € MCSG and a choice of parabolic structure ¢ such that the action of M on X, is
non-ergodic.

The theorem is proved by brute force. Knowing the explicit structure of X, from
work of Lawton [FL09, Law07] we computationally demonstrate that the conditions
of KAM theory are satisfied. There are many subtle points to this computation
which we highlight along the way.

It is natural to ask if we can generalize this work to SU(n) for n > 4. Unfortunately,
we lack a sufficient computational understanding of the character varieties in these
more general cases to carry out our proof.

The rest of the article is organized as follows. In Section 2 we review the mod-
uli space of flat parabolic bundles from the point of view of character varieties. In
Section 3 we discuss the symplectic geometry of character varieties setting up the
context where KAM theory can be employed. In Section 4 we give a complete treat-
ment of Brown’s theorem filling in a gap in his original proof. This is accomplished
by invoking a theorem of Riissmann to make up for the gap. Section 5 concerns fixed
points of the cat map (our choice of hyperbolic element of the mapping class group)

() When g = 0 the conjecture is trivially true for n = 0,1, 2 since the moduli spaces are points,
and false for n = 3 since the mapping class group is trivial unless G has only rank 1 simple factors
when again the moduli space is a point.
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in preparation for the proof of our main theorem. In Section 6, we first illustrate the
proof of our main theorem in the context of Brown’s theorem. This allows the reader
to “warm up” to the ideas that will be used to prove our main theorem (which is
significantly more complicated). Thereafter, we prove the main theorem, outsourcing
computations to Mathematica notebooks we have made public on GitHub®. The
computations depend on precise formulations from KAM theory in the context of
symplectomorphisms. As these formulations are not explicitly in the literature, we
put them in Appendices A and B.

2. Character Varieties of the Punctured Torus
2.1. Character Varieties

Let G be a real reductive Lie group, and let I' be a finitely presentable group. The
set of homomorphisms Hom(T', G) admits a natural topology from I" and G as follows.

As T is finitely presentable, it admits a presentation I'p = (v, ..., 7 | w1, ..., ws)
where the w;’s are words in the generators. Then, the function ¢p : Hom(I'p, G) — G”
given by p — (p(m), ..., p(7)) is injective and so we declare a set U C Hom(I'p, G)

to be open if and only if tp(U) is open in tp(Hom(I'p, G)) C G™ with the subspace
topology. In fact, letting 1 € G be the identity, Hom(I'p, G) is cut out of the manifold
G" by the analytic equations {w;(g1, ...g-) =1 | 1 < i < s} making Hom(I'p, G)
an analytic subvariety of G".

Now if T'pr = (v],...,7. |wi, ..., wl) is a different presentation of I', there
exists an isomorphism of groups ® : I'p — I'ps given by v; — W, where W;’s are
words in the generators of I'p/. This homomorphism lifts to a homomorphism of free
groups ® : F. — F. defined likewise. Thus, we have a function between manifolds
d, : G — G givenby (g1, ..., o) = Wilgr, ..oy o)y oo s Wilgr, .., gm)); P, is
analytic since the group operations in GG are analytic. The same can be said for ®—1,.
Since these two analytic maps are bijective on the images of tp and ¢p/ respectively,
we conclude that @, : Hom(I'g, G) — Hom(I'p, G) given by ®.(p) = po ® is an
analytic isomorphism. In short, the structure of an analytic variety on Hom(I', G) is
independent of presentation (up to natural equivalence).

The group G acts (analytically) by conjugation on Hom(I', G). Define Hom(I', G)*
to be the subspace of homomorphisms with closed conjugation orbits, and let
X(I',G) :== Hom(I", G)*/G be the quotient space by conjugation. The space X(I", G)
is known as the G-character variety of I'.

In general, if T" is the fundamental group of a manifold M, X(I", G) corresponds
to a moduli space of flat principal G-bundles over M by associating to each bundle
its holonomy and considering two such bundles equivalent if their holonomies are
topologically indistinguishable.

In the case when G is compact, then X(I", G) is simply the quotient space Hom(T',
(G)/G. When G is complex reductive, then X(I', G) is homeomorphic to the geomet-
ric invariant theoretic quotient Hom(I', G) /G with the Euclidean topology (by [FL14,

(2) https: //github.com /seanlawton /Non-ergodicity-on-SU-2-SU-3(...).
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Theorem 2.1]), and homotopic to the non-Hausdorff quotient Hom(I", G)/G (by [FLR17,
Proposition 3.4]). More generally, when G is real reductive X(I', G) embeds into a
real affine space as a closed subspace and hence is Hausdorff [RS90].

When I' is the fundamental group of a genus 1 orientable surface with one boundary
component (a one-holed torus for short), I" is isomorphic to a rank 2 free group F5.
We now review the structure of the character varieties we concern ourselves with in
this case.

2.2. SL(2,C) and SU(2) Character Variety of I}

Let G = SL(2,C), K = SU(2), and F» = (a,b) a free group of rank 2. Let w € F
and tr,, : Hom(F3, G) — C be the conjugation invariant regular function defined by
try,(p) = tr(p(w)). Under the identification Hom(Fy, G) = G?, letting A := p(a) and
B := p(b), tr,(A, B) = tr(w(A, B)), where w(A, B) is the word w with a replaced
by A and b replaced by B.

In these terms, the Fricke-Vogt Theorem says that the coordinate ring C[X(F2, G)]
= Cltr,, try, trop) and so X(F,, G) = C3.

Now, X(F», K) naturally embeds into X(Fy, G) by Weyl’s unitary trick. For a
representation p : Fy — G to be in K = SU(2) it is necessary that the functions tr,,
take value in [—2,2] since a matrix in SU(2) is conjugate to one with eigenvalues
{e? e~} and so has trace equal to 2cos(f). Conversely, one can show that it
sufficient (up to conjugation) to demand that tr,, try, tre,, and trepe-15-1 = tr2 +tr? +
tr2, — trytrptry, — 2 take value in [—2,2]; see [FL0O9, Theorem 6.5]. The resulting
semi-algebraic space is a closed 3-ball in R? (Figure 2.1).

Figure 2.1. X(F5,5U(2))

2.3. SL(3,C) and SU(3) Character Variety of I,

The comparable problem for G = SL(3,C) and K = SU(3) was solved in [FLO09,
Law06, Law07], but is much harder. Here follows a summary. In this case, there
are more generators necessary. In particular, the coordinate ring C[X(F3, G)] is
(minimally) generated by the nine functions

{tra, tro—1, trp, trp-1, trap, tTa—1p-1, tgp—1, tT—1p, tTapa—1p-1} -
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These generators satisfy a single relation tr?, 1,1 — Ptrgp,-1,-1 + Q where P, Q €
Cltry, try—1, try, try—1, trap, tre—1p-1, trap-1, tre—1]. Consequently, X(Fy, G) is a hyper-
surface in CY that branched double-covers C8.

If we set © = tr,, y = trp, 2 = trogp, t = trgp-1,X = tro-1, Y = try-1, Z = try-1,-1,
and T = tr,-1,, then:

P=tT'—tXy—-TxY +2XyY +2X —aoyZ — XYz +yY +27 -3
and
Q=—2t%2Y + 2X 7 + Pyz + 3 + tTaX +tTyY +tT27 — 6tT
+taty + ta’Y? — ta X?y — ta XY Z — toyY 2 — 3twz + taZ?
+ X2 —tX Y + 3t Xy +tXY? + )’ Z +tY 22 —3tYZ + T?xz
— T’ Xy+T*YZ + T3 —T2?XY +T2*Z — TeXyz + Tay?
— TayY? + 3TaY + TX*P? + TX?Y —TXyYZ +TX2*
—3TX7Z —3Tyz+ TyZ* + TY?2 + 2* X%yY — 2* XyZ + 2%
—B3YyY 4+ 2?Y 2 + 23 — 2 X?Y 2 + 2 Xy*Y? — 2 XyP + 2 XyY
— 2 XY? 4+ aX2Z — 62X — xy®’Y 7 — 2ayz® + 3ayZ + xY?Z
— XY + X Z + X?Y?Z + X? + Xy?z — XyY?2 +3XY2
— XY 22+ P +yY2Z —6yY + Y3+ 22 — 622+ 723+ 0.
By [FL09], X(F5, G) is homotopic to X(Fy, K) and X(F3, K) is homeomorphic to
an 8-sphere S®. For representation taking values in SU(n), since A1 = A" in SU(n),

we have that tr,-1 = tr,, for any word w € F,. Thus, the real coordinate ring of
X(Fy, K) is generated by the real and imaginary parts of

{tra, try, trap, trap—1, trapa-15-17},
subject to the relations Re(tryp,-1,-1) = P/2 and

Im (trepe-1p-1) = +/Q — P2/4.
Note that both P, will be real polynomials as P is the sum

P = trapa-15-1 + tTpap-1a-1 = 2Re (trapq-14-1)
while @ is the product
Q = trapa-1p-1 * tlpap-10-1 = [tapa-15-1]"

and hence will simplify to real polynomials in the real and imaginary parts of

{try, try, trap, trap-1}.

TOME 7 (2024)
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3. Relative Character varieties

Let ¥, 4 be a compact connected orientable surface of genus ¢ > 0 withn > 0
boundary components; we assume that n > 2 if g = 0 since otherwise the surface is
simply-connected and the moduli spaces we will consider are trivial. Pick a base point
* in the interior of ¥, ;. The fundamental group of ¥, ; admits the presentation:

ﬁ[% bi]]f[lcj = 1> ,

=1

1 (Zng, *) = <a1, bi, ..., ag, by, 1, ..., Cy

where [z, y] = zyz~ 'y~ ! is the commutator.
For G compact or complex reductive, let X, ;(G) := X(m(X,,4), G). The dimension
(complex if G is complex reductive and real if G is compact) of X,, ;(G) is

—X(Xh,4) dim G + G, 4,

where (, , depends on the rank of G, g, and n (see [BHJL22, Lemma 2.2] for details).
When n > 0, for every 1 < ¢ < n define the boundary map

b, : X,4,(G) — X(Z,G)
by sending a representation class [p] to [p}, ]. Subsequently, we define
by = (b1, ..., b0,) 1 X,,(G) — (X(Z,G))".

Let 7 € b,,(X,,(G)) C (X(Z,G))" be a point in the image of the boundary
map and define £, := b, (7). The singular locus of X, 4(G) is a proper closed
sub-variety; denote its complement by X, ,(G). So X, 4(G) is a manifold that is
dense in X, ,(G). Since b,, , is dominant, its regular values are generic. Thus, at such

a point, £, = £, N X, 4(G) is a submanifold of dimension
d; == x(E4) dim G + ¢, , — n(Rank(G)).

It is shown in [Law09] that U.L, foliate X, ,(G) by symplectic submanifolds,
making X, ,(G) a Poisson manifold (real if G is compact and complex if G is
reductive). This structure continuously extends over all of X, ,(G) making it a
Poisson variety; a variety whose sheaf of regular functions is a sheaf of Poisson

algebras (see [BLR19] for details).

3.1. Symplectic Measure

On each symplectic leaf £, there is a symplectic volume by considering the (d,/2)"
exterior power of the 2-form w.

The group of automorphisms Aut(T") acts on Hom(T', G) by - p := poa~! for any
groups I" and G. This action descends to an action of Out(I') := Aut(I")/Inn(I") on
the G-conjugation quotient Hom(T', G)/G by [a] - [p] = [p o a™!]. By continuity, this
restricts to an action of Out(I') on X(I', G) when G is real reductive.

When I' = m1(%,4), we can define Out,, 4(I') < Out(I") to be the subgroup that
fixes the boundary curves (up to homotopy) in ¥, ;. Then Out,, ,(I") is isomorphic
to the mapping class group of >, ;, that is,

Ottty y(T) 2 MCG(E,.,).
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Since the mapping class group preserves the boundary curves and the underlying
surface, we obtain an action on £,. In [Hue95], it is shown that when G is compact,
this invariant measure is finite and so can be taken to be a probability measure.
Morally this follows since the symplectic form, and so the symplectic volume (in the
same measure class as Lebesgue measure), continuously extends over £., which is
compact, and so the induced measure is finite on £,. Since the singular locus is a
proper subvariety it has measure zero. Hence the restricted measure on the smooth
locus £, stays finite.

3.2. Relative Character Varieties of X; ;

Throughout this section we let I' = m1(X1) = Fy, = (a,b), and we let ¢! =
aba~b~! be the boundary homotopy class in X ;.

Recall that for G = SU(2), the character variety X(I', G) is homeomorphic to a
closed ball in R* (Figure 2.1). Let

ko=tr,=a> + 9% + 2> —ayz — 2.

The ball is parametrized by x = tr,, y = try, and 2z = try, subject to the conditions:
—2 < z,y,2,k < 2. The relative character varieties in this case are determined by
fixing the value of b;; = k. So each symplectic leaf is a 2-sphere as « is a height
function for the ball® . The value K = —2 is a point (degenerate 2-sphere) and the
other 2-spheres are all smooth except the level kK = 2 which is topologically still a
2-sphere (the boundary of Figure 2.1), but has 4 orbifold singularities at the four
central homomorphisms (415, +15), each locally homeomorphic to a cone over RP!.

Figure 3.1. k =—1.3

When G = SU(3), the character variety X(I", G) is homeomorphic to an 8-sphere
(topologically, but it is singular in the trace coordinates) by [FL09]. To understand
the relative character varieties in this case we need to study the boundary map. There
is one boundary ¢ but conjugacy classes are determined by two functions: tr, and

(3) See https://youtu.be/1Rdsxwr_dHI for a video of the symplectic foliation.

TOME 7 (2024)
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tr.-1. Since tr. = tr.-; we need only consider the real and imaginary parts of tr.-1 to
determine the boundary conjugacy class. From earlier, we know Re(tr.-:1) = P/2 and

Im(tr.-1) = £1/Q — P?/4 where P, (Q are the polynomials defining X(F3, SL(3,C))
which are real valued on X(F», SU(3)). So

b1 = (P/2,4/Q — P/4)

is the map X(I', G) — X(Z,SU(3)) where A := X(Z, SU(3)) is depicted in Figure 3.2.

Figure 3.2. The deltoid A := X(Z,SU(3)).

The fibres of b;; are the relative character varieties discussed earlier; denote
L = b11(¢,n) for any (¢,n) € X(Z,SU(3)). Note that ANR = [—1,3]. Let A°
and 0A be the interior and boundary of A, respectively.

We now consider the possibilities for these fibres.

PROPOSITION 3.1. — Let (¢,n) € A. Then:
1) £,y admits the structure of a normal projective variety over C.

(1) £

(2) L & Le¢

(3) S = X2 SU(3) = O

(4) 8( 3/2,3v3/2) = 2( 3/2,—-3v/3/2) = {*},

(5) £,y is a smooth 6-manifold if ((,n) € A° = ANR.
(6)

6) If (¢,n) € 0A — (ANRU{(-3/2,£3V3/2)}), then £¢, is a smooth
4-manifold.

(7) £(c,0) Is a singular 6 dimensional variety with 4 dimensional singular locus
if (¢,0) € A° N R. The singular locus consists of S(U(1) x U(2))-valued
representations.

(8) £(_1,0) is a singular 4 dimensional variety with a 2 dimensional singular locus

consisting of reducible representations whose commutator is diag(—1, —1,1).

Proof. — Giving a complex structure on ¥, ;, viewing the boundary as a puncture
(removing a point), produces the structure of a normal projective variety on £ ) =
bf&(( ,n) by identifying it (up to homeomorphism) with the moduli space of semi-
stable principal bundles on ¥ ; as in [BR89]. Under this identification, irreducible

ANNALES HENRI LEBESGUE
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representations correspond to the Zariski open subset of stable bundles. In all cases,
the smooth locus is exactly the irreducible representations.

Next, for any ((,n) € A, we have bf&({, n) = bf&(@, —n) since tr’_, — Ptr.1+Q = 0
has at most two solutions {¢ & in}. So we only need to analyze fibres by }(¢,7) with
n = 0.

To every pair ((,n) € A, there exists a unique conjugation class in SU(3) and such
a conjugation class is represented by a diagonal matrix. We refer to this diagonal
matrix (unique up to permutation of its eigenvalues) as the boundary matriz.

If the boundary matrix is central (corresponding to the three vertices in Figure 3.2),
there are two possibilities. By [ACG10],

L0 = X (22,8U(3)) = CP?,
otherwise we have
2(—3/2,3\/§/2) = S(_3/27_3\@/2) = {x}

is a point by [GLX20, Proposition 7.1].
Another way to realize £, is to first pick a boundary matrix C, that is, a matrix
so tr(C') = ¢ +in. Then:

Sen = {(A,B) €SUB) | [A,B]=C}/ {SeSU@) | SCs™ =C},

where the stabilizer {S € SU(3) | SCS~! = C} acts by diagonal conjugation.

The next case to consider is the opposite extreme: the boundary matrix has three
distinct eigenvalues. This case corresponds to fibres over A° — ANR. Each such fibre
£y consists of conjugacy classes of irreducible representations and so is smooth
since the conjugation action of PSU(3) is free on irreducible representations (by
Schur’s Lemma). The dimension is 6 since X(F3, SU(3)) is dimension 8 and we are
imposing two real conditions by fixing the boundary.

If (¢,n) € 0A — (ANRU{(—3/2,43v/3/2)}), then the boundary matrix is
diag (a, a, 1/a2>

with a? # 1 # a®. As with the previous case, we have only irreducible representations
and so £ ) is again smooth. But with a repeated eigenvalue, the stabilizer of the
boundary matrix is dimension 4 (as opposed to dimension 2 in the previous case).
Consequently, £, is a smooth 4-manifold.

((,m) € ANR if and only if the boundary matrix has 1 as an eigenvalue. There are
two cases not yet addressed: diag(1,—1,—1) and diag(1,a,1/a) with a # +1 (the
case with a = 1 is the identity matrix, already addressed above).

In both cases there are singularities (reducible representations) since 1 is an eigen-
value. In the first case, where the boundary matrix has an eigenvalue that is not
a root of unity, the singular locus is exactly S(U(1) x U(2))-valued representations.
The stabilizer of the boundary matrix has dimension 2. Consequently, £ o) has
dimension 6 with a 4 dimensional singular locus.

Lastly, £(_1,0) has dimension 4 with a 2 dimensional singular locus as the stabilizer
of the boundary matrix diag(1, —1, —1) has dimension 4. O

TOME 7 (2024)
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Remark 3.2. — Given that X(F,,SU(3)) is an 8-sphere, it is natural to think
that for ((,n) € A° — ANR, the space £, is a 6-sphere. However this is not
the case since £, admits the structure of a complete variety over C (of complex
dimension 3) which implies its second cohomology group is non-trivial (whereas it
would be trivial if it was a 6-sphere). This remark also shows that X(F3, SU(3)) does
not admit the structure of a complex complete variety (as it is an 8-sphere).

Remark 3.3. — The Poisson structure for X(F», SU(3)) can be obtained by restrict-
ing the Poisson structure on X(F3, SL(3,C)) obtained in [Law09] to X(Fs, SU(3)).
We have carried this process out in a Mathematica notebook. From this we can
calculate the bivector and the symplectic form on the smooth part of £, for any
boundary matrix. Unlike the case of SU(2), the formula for the symplectic form is
too complicated to write here, although the Mathematica notebook with the code
and formulae are on GitHub @,

4. Brown’s theorem revisited

Recall that the fundamental group of ¥ ; is a free group (a,b). Let «, 5 represent
curves in X;; whose homotopy classes are a, b respectively. The Dehn twists

(11 do (10
Ta—01an7ﬁ—11

about o and [ act via

To(@) = @, Ta(f) = Pa,  7s(a) = ab, 75(8) = 5.

In terms of the trace coordinates x = tr(p(a)), y = tr(p(b)) and z = tr(p(ab)) on

the SU(2)-character variety
X(F5,SU(2) = {(z,9,2) € [-2,2* | =2 < n(z,y,2) <2},

where k(z,y,2) = 22 + y* + 2% — xyz — 2. The actions of 7, and 75 are described by:

(41> Ta(CC,y,Z) = (iL‘,Z,.’L’Z - y) and Tgl(xaya Z) = (xy - Z,y,l')-

4.1. Brown’s theorem

The following statement is the main theorem of Brown [Bro98]:

THEOREM 4.1. — Let h be a hyperbolic element of SL(2,7Z). Then, there exists
—2 < ¢ < 2 such that h does not act ergodically on the level k~*(¢) of the SU(2)-
character variety of the once-punctured torus.

Roughly speaking, Brown establishes Theorem 4.1 along the following lines. One
starts by performing a blow up at the origin £~ !(—2) = {(0,0,0)} in order to think
of the action of h on X;;(SU(2)) as a one-parameter family h), —2 < £ < 2, of

(4) https: //github.com /seanlawton /Non-ergodicity-on-SU-2-and-SU-3(...).
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area-preserving maps of the 2-sphere such that h_y) is a finite order element of
SO(3). In this way, we have that h(, is a non-trivial one-parameter family going
from completely elliptic behaviour at ¢ = —2 to non-uniformly hyperbolic behaviour
at ¢ = 2. This scenario suggests that the conclusion of Theorem 4.1 can be derived
via KAM theory in the elliptic regime. In the sequel, we revisit Brown’s ideas leading
to Theorem 4.1 (with an special emphasis on its KAM theoretical aspects).

4.2. Blow up of the origin

The origin k7 1(—2) of the character variety X;;(SU(2)) can be blown up into a
sphere of directions S_». The action of SL(2,Z) on S_5 factors through an octahedral
subgroup of SO(3): this follows from the fact that (4.1) implies that the generators
7, and 73 of SL(2,7Z) act on S_, as

Ta|572(j57 Y, Z) = (jja z, _y)v TﬁillSq(:ta Y, Z) = <_27 Y, x)
In this way, each element h € SL(2,7Z) is related to a root of unity
Ao(h)eU(l)={weC||w =1}

of order < 4 coming from the eigenvalues of the derivative of h|g_, at any of its fixed
points.

Example 4.2. — The hyperbolic element (% 1) = 7,75 acts on S_5 via the element
(Z, 9, 2) — (2, =&, —y) of SO(3) of order 3.

4.3. Bifurcations of fixed points

A hyperbolic element h € SL(2,Z) induces a non-trivial polynomial automorphism
of R?® whose restriction to £7'([—2,2]) describes the action of h on X(F,, SU(2)). In
particular, the set L;, of fixed points of this polynomial automorphism in x~!([—2, 2])
is a semi-algebraic set of dimension less than 3.

One can exploit the fact that h acts on the level sets k= 1(£), £ € [-2,2], via
area-preserving maps, to compute the Zariski tangent space to Lj in order to verify
that Lj, is one-dimensional ([Bro98, Proposition 5.1]).

Moreover, this calculation of the Zariski tangent space can be combined with the
fact that any hyperbolic element h € SL(2,Z) has a discrete set of fixed points in
R?/Z? and, a fortiori, in k™1(2) = X(Z* SU(2)) to get that L; is transverse to &
except at its discrete subset of singular points and, hence, L, N x~1(¢) is discrete for
all —2 < ¢ < 2 ([Bro98, Proposition 5.2]).

Example 4.3. — The hyperbolic element 7,73 = (% 1) acts on the character variety
X(F,,SU(2)) via the polynomial automorphism
(2,9,2) = (2,29 — 7,22y — ) ~ )
by Equation (4.1). Thus, the corresponding set of fixed points is given by the equa-
tions
x=2z y=zy—=x, z==z(zy—x)—y
describing an embedded curve in R3.
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In general, the eigenvalues {\(p), A(p) ™'} of the derivative at p € Ly, of the action
of a hyperbolic element h € SL(2,Z) on k !(x(p)) can be continuously followed
along any irreducible component €, > p of Lj,.

Furthermore, it is not hard to check that A is not constant on Cj ([Bro98, Lem-
ma 5.3]). Indeed, this happens because there are only two cases: the first possibility
is that €, connects k~1(—2) and xk71(2) so that A varies from A_(h) € U(1) to the
unstable eigenvalue of h acting on R?/Z?; the second possibility is that €j, becomes
tangent to k! (¢) for some —2 < £ < 2 so that the Zariski tangent space computation
mentioned above reveals that A varies from 1 (at €, N x~!(¢)) to some value # 1 (at
any point of transverse intersection between €, and a level set of k).

4.4. Detecting Brjuno elliptic periodic points

The discussion of the previous two subsections allows us to show that some aspects
of the action of a hyperbolic element h € SL(2, Z) fit the assumptions of KAM theory.
Before entering into this matter, recall that e?™ € U(1) is Brjuno whenever  is
an irrational number whose continued fraction has partial convergents (pr/qx)ken
satisfying:

i log gr+1 < 00

k=1 gk
For our purposes, it is important to note that the Brjuno condition has full Lebesgue
measure on U(1). Indeed, the set of Diophantine irrationals is a proper subset of the
set of Brjuno irrationals and it is well known that already the set of Roth Diophantine
irrationals has full measure. We recall that by definition # is a Diophantine irrational
of exponent v > 0 if gy = O(g, ") for all k € N and it is a Roth irrational if it is
Diophantine of exponent v for all v > 0.

Let h € SL(2,Z) be a hyperbolic element. We have three possibilities for the
limiting eigenvalue A_5(h) € U(1): it is not real, it equals 1 or it equals —1.

If the limiting eigenvalue A_o(h) € U(1) is not real, then we take an irreducible
component €, intersecting the origin x~!(—2). Since A is not constant on €, we
conclude that A(C,) contains an open subset of U(1). Thus, we can find some
—2 < £ < 2 such that {p} = €,Nk~1(¢) has a Brjuno eigenvalue A(p), i.e., the action
of h on k~1(¢) has a Brjuno fixed point.

If the limiting eigenvalue is A _5(h) = 1, we use the Lefschetz fixed point theorem
on the sphere £1(¢) with ¢ close to —2 to locate an irreducible component €, of
Ly, such that {p;} = €, Nk~'(¢) is a fixed point of positive index of h|,-1(y for
¢ close to —2. On the other hand, it is known that an isolated fixed point of an
orientation-preserving surface homeomorphism which preserves area has index < 2.
Therefore, p, is a fixed point of h|,-1¢) of index 1 with multipliers A(p,), A(px) ™"
close to 1 whenever k is close to —2. Since a hyperbolic fixed point with positive
multipliers has index —1, it follows that p, is a fixed point with A(p,) € U(1) \ {1}
when ¢ is close to —2. In particular, A\(Cp) contains an open subset of U(1) and,
hence, we can find some —2 < ¢ < 2 such that p, has a Brjuno multiplier A(py).

If the limiting eigenvalue is A_»(h) = —1, then h? is a hyperbolic element with
limiting eigenvalue A_5(h?) = 1. From the previous paragraph, it follows that we
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can find some —2 < ¢ < 2 such that x~1(¢) contains a Brjuno elliptic fixed point of
h2|,€71(g).
In any event, the arguments above give the following result ([Bro98, Theorem 4.4]):

THEOREM 4.4. — Let h € SL(2,7Z) be a hyperbolic element. Then, there exists
—2 < ¢ < 2 such that h|,-1(y) has a periodic point of period one or two with a Brjuno
multiplier.

Remark 4.5. — 1t is natural to ask if one can avoid the above non-constructive
existence argument by explicitly computing a Brjuno fixed point given our concrete
setting. However, we expect (after unsuccessful attempts) that such a computation
is rather difficult and lengthy. One reason to expect this is that a way of finding a
Brjuno multiplier is to look for algebraic multipliers (by Roth’s Theorem [Rot55]),
but deciding whether analytic functions take algebraic values is, generally speaking,
a difficult problem.

4.5. Moser’s twist theorem & Riissmann’s stability theorem

At this point, the idea to derive Theorem 4.1 is to combine Theorem 4.4 with
KAM theory ensuring the stability of certain types of elliptic periodic points.

Recall that a periodic point is called stable whenever there are arbitrarily small
neighborhoods of its orbit which are invariant. In particular, the presence of a stable
periodic point implies the non-ergodicity of an area-preserving map.

A famous stability criterion for fixed points of area-preserving maps is Moser’s
twist theorem [Mos73]. This result can be stated as follows. Suppose that f is an area-
preserving C"-map, r > 4, having an elliptic fixed point at the origin (0,0) € R? with
multipliers {e?™ e=27} such that nf ¢ Z for n = 1,2,3, ..., r. After performing
an appropriate area-preserving change of variables (tangent to the identity at the
origin), one can put f into its Birkhoff normal form, i.e., f has the form:

( ¢ )H £ cos (go T (€% + 772)”) — 7sin (go T (€% + 772)”)
g £ sin (nio T (€2 + 772)") + 1cos (nio "o (82 + n2)">

where s = [r/2]—1, vo = 270, 71, ..., s are uniquely determined Birkhoff invariants
and h(&,n) denotes higher order terms. In Appendices A and B we will discuss the
Birkhoff normal form and its relation to KAM theory in more detail.

+ h(&,n)

THEOREM 4.6 (Moser twist theorem). — Let f be an area-preserving map as in
the previous paragraph. If v, # 0 for some 1 < n < s, then the origin (0,0) € R? is
a stable fixed point.

The nomenclature “twist map” comes from the condition that the “vertical” lines
0 = 0y, for constant 6, in an annulus (0,7] x S are sent by the map to lines that
“twist” always in the positive (or negative) direction around the annulus. When f has
the form f(r,8) = (r,0 + p(r)) in polar coordinates, where p is a smooth function,
then f is a twist map on (0,7 x St if and only if |/(r)| # 0 for all r € (0,7,]. In
particular, if v, # 0 for some n > 0 (called a twist condition), then there exists
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ro > 0 such that f is a twist map in the annulus (0, 7] x S* (see for instance [MF94,
§4)).

Example 4.7. — The Dehn twist 7, induces the polynomial automorphism

Ta(xv Y, Z) = (l’, Zy, T2 — y)
on X(Fy,SU(2)) = v 1([-2,2]). Each level set x71(¢), =2 < ¢ < 2, is a smooth
2-sphere which is swept out by the 7,-invariant ellipses &;,, obtained from the
intersections between x~!(¢) and the planes of the form {zy} x R?. Goldman [Gol97]
observed that, after an appropriate change of coordinates, each &, ,, becomes a circle
where 7, acts as a rotation by angle cos™!(x(/2). In particular, the restriction of 7,
to each level set x1(/) is a twist map near its fixed points (£v/2 + ¢,0,0).

In his original argument, Brown [Bro98] deduced Theorem 4.1 from (a weaker
version of) Theorem 4.4 and Moser’s twist theorem. However, Brown employed
Moser’s theorem with r = 4 while checking only the conditions on the multipliers of
the elliptic fixed point but not the twist condition v, # 0.

As it turns out, it is not obvious to check the twist condition in Brown’s setting
(especially because it is not satisfied at the sphere of directions S_5). We note that for
the cat map (defined in the next section) we do explicitly check the twist condition
in Section 6.1.

Fortunately, Riissmann [Riis02] discovered that a Brjuno elliptic fixed point of
a real-analytic area-preserving map is always stable (independently of the twist
condition):

THEOREM 4.8 (Rissmann). — Any Brjuno elliptic periodic point of a real-
analytic area-preserving map is stable.

Remark 4.9. — Riissmann obtained the previous result by showing that a real-
analytic area-preserving map with a Brjuno elliptic fixed point and vanishing Birkhoff
invariants (i.e., 7, = 0 for all n € N) is analytically linearizable. Note that the
analogue of this statement is false in the C'™° category (as a counterexample is given
by (r, ) — (r, 0+ p+e V7).

Consequently, at this stage, the proof of Theorem 4.1 is complete: it suffices to
put together Theorems 4.4 and 4.8.

5. Fixed points of the cat map

Let X1 be a surface of genus 1 with a boundary component 7. Recall its funda-
mental group is free of rank 2: Fy, = (a,b).
The cat map is M = (3 1) = 7,75, where

(11 do (10
Ta—01an75—11

are the Dehn twists about the curves a, 3 in ¥ ; corresponding to a, b respectively.
Also recall that

To(a) =a, 714(0)=Pa, Ts(a)=0ap, T13(8)=27.
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5.1. Fixed points on X(F5, SU(2))

In trace coordinates = = tr(p(a)), y = tr(p(b)) and z = tr(p(ad)), the SU(2)-
character variety of ¥, ; is described as:

X(F,SUQ2) = {(2,5,2) € [-2,2° | =2 <a? +9y* + 22 —ayz — 2 < 2}
Since 7, (z,y, 2) = (x,z,xz — y) and 7'5_1(35, y,2) = (xy — 2,y,x), we see that
M(z,y,2) = (z,2y — x,2(2y — ) — y).
Therefore, the fixed point locus of M on X(Fs, SU(2)) is described by the equations
r=2z, y=zy—r, z=2zzy—1z)—yY

in trace coordinates (only the first two equations are needed).

The intersection of the fixed point formulae above with X(F5, SU(2)) describes a
curve passing through the origin (0,0,0) and the point (2,2,2): this can be seen
using Mathematica.

The matrix counterparts of these fixed points can be easily found along the fol-
lowing lines. Let p(a) = A € SU(2) and p(b) = B € SU(2) such that x = 2z and
y = zy — x. Firstly, we can simultaneously conjugate A and B to write them as

A:(T()) and B:(“‘“)
07 v

where |r|*> = 1 = |u|? + |v|?. Since the trace of A is x = 2Re(r) := 2s, the trace of B
is y = 2Re(u) and the trace of
AB = ( S )
U TU

is z = 2Re(ru) = 2(Re(r)Re(u) — Im(r)Im(u)), the fixed point equations z = z and
Yy = 2y — x become
Re(r) = Re(r)Re(u) — Im(r)Im(u)
and
Re(u) = 2Re(r)Re(u) — Re(r).
Hence, if s = Re(r) # 1/2 and Im(r) # 0, then we can write
Re(u) = s/(2s — 1)

and

5 5 s 1—s
I = — 1 = . .
m(u) Im(r) (23 -1 > Im(r) 2s—1
Since the roles of r and 7 can be exchanged and |r|* = 1, we can assume that
Im(r) = v/1 — s2. Also, it seems that v can be taken arbitrarily within the circle

[v]? =1 — |ul?, so that we will choose v = /1 — |ul?.

In this way, we get that
A(s) = s+iv1—s? 0
o 0 s—iyv1—s?
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and B(s) :=

s . s(1—s) s \? s(1—s) ?

551 T ' 1)viss? -\~ (28—1) B ((281) \/182>
5 2
s s(1—s) s . s(l-s)
\/1 - (257—1> - ((23—1) \/1—32) 25-1  '(2s—1)vV1-s?
s . 3(173) 252
. 2s—1 + Z(2571)\/1fs2 —y1- 457 —3s+1
- 1 — 252 s _ s(1—s) ’
453 —3s+1 2s5—1 (2s—1)v1-s2

so that

ps(a) = A(s),  ps(b) = B(s)
describe a typical fixed point of the action of the cat map M on the character variety
X(F3,5U(2)).

Remark 5.1. — The trace of [A(s), B(s)] is 2(854_1?f3_;j;22+4s_1).

Note that the fixed point at the origin (0,0,0) in trace coordinates corresponds to

the Pauli matrices
i 0 0 —1
A(0) = ( 0 i ) and B(0) = < 1 0 )

at s = 0 and the parameter interval s € [—0.5405...,0.2597...] around s = 0 is
interesting (as we will see).

5.2. Fixed points on X(F;,SU(3))

The second symmetric power

PN a? ab v?
< d > = 2ac ad+0bc 2bd
¢ c? cd d?

produces a family p? of fixed points of the action of the cat map M on X(Fy, SU(3)).
The trace of [A(s)®?, B(s)®?] is

(2565 — 76857 + 704s° + 645° — 44851 + 19253 + 245% — 245 + 3)

(1 —2s)* '
This real-valued function (Figure 5.1) has a local extreme value 3 at s = 0. It
increases monotonically on [—0.5405. .., 0] and decreases monotonically on [0, 0.2597

...] to attain the value —1 at the non-zero extremities of these intervals. In other
words, the family p®? shows that the fixed points of the action of the cat map on
X(F»,SU(3)) cover the whole interval ANR = [—1, 3].

The matrices

-1 0
0
-1

0
A= 0 1
0 0
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/ “02 0.\/

Figure 5.1. tr([A(s)®?, B(s)®?]

and
0 0 1
B(0O)**=10 -1 0
1 0 0

generate a reducible representation py? in the level set
Li0 2 T?/W = CP?,
where 7' C SU(3) is a maximal torus and W is the Weyl group.

Remark 5.2. — In [BL22] it is shown that any hyperbolic element will act ergodi-
cally on character varieties of nilpotent groups. In particular, M acts ergodically on

£5.0) = CP2.

Remark 5.3. — Since the cat map M acts via the quotient of the diagonal action
of M on T?, we expect the spectrum of the action of M restricted to the level set
containing p2? to be close to

{(3++5) /2, (3-V5) /2, (3+V5) /2. (3 - V5) /2}

for s ~ 0. Numerical experiments have shown this in fact is the case (up to a phase
shift). It would be interesting to study the analogous spectrum for s far from zero
(i.e., for the trace of the commutator close to —1).

Remark 5.4. — Numerical experiments suggest that the spectrum of M varies
(along [—1,3]) from having an interval where M has an elliptic spectrum for ¢ ~ —1
(s &~ .25) to having 4 hyperbolic and 2 elliptic eigenvalues for £ =~ 3 (s ~ 0).

Remark 5.5. — We have checked (computationally) that there are no fixed points
of the cat map M along the arc of the boundary of A connecting 3 to 3w = 3e>7/3
(likewise along the arc connecting 3 to 3w). This observation motivated our study of
the spectrum of M along ANR = [—1,3].

Remark 5.6. — It is necessary that fixed points of M on £, have the form
(:EaXayayrraX)ya _Y) .
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This follows by solving, with respect to the unitary coordinates discussed in Section 2,
the equation

M- (z,X,y,Y,2, Z,t,T) = (2, X,y,Y, 2, Z,t,T)
where the left hand side simplifies to: (2, Z,t —2y — XY +yz - YZ, T — Xy+zY +
YetyZ o+tz—yz—ayz— XY 24y ~TZ+XyZ-YZ—aYZ-2Y 27 —yZ* — X+
Tz —Xyz—=Yo+aYe+ Y22+ tZ+yZ —ayZ — XYZ +2y2Z —YZ% y,-Y).

6. KAM theory on character varieties

For this section denote X := X(F,SU(3)) and ) := X(F,, SU(2)), and recall that
1 (211) = {a,b,c | ¢! = [a,b]) X F.

The natural actions of SL(2,Z) on X and Q) preserve the level sets of kx : X —
A and ky : Y — [—2,2] given by rx([p]) = tr(p(c™!)) and ky([0]) = tr(d(c))
respectively. We note that in an earlier section the maps xx, Ky were denoted by ;.

The level sets ky' (3¢*™/%) and ry'(—2) are singleton sets so the action of any
element in SL(2,Z) is trivially ergodic.

The level sets @31(2) and ky'(3) are respectively T3 /Wy and T%/Wx, where
Ty € SU(2) and Tx C SU(3) are maximal tori with respective Weyl groups Wy and
W. The action of SL(2,Z) on /4;51(2) and k' (3) factors through the diagonal action
on Ty and T%, and so the standard action on R?/Z? and R*/Z*. Tt follows that any
hyperbolic element of SL(2, Z) acts ergodically on 551(2) and k3’ (3). See [BL22] for
a more general discussion that includes these cases.

Our goal is to show that some hyperbolic elements of SL(2,Z), for example the
cat map (21), act non-ergodically on x3'(€) for & close to —1 despite the fact that
SL(2,7Z) acts ergodically on ry'(£) for all boundary values ¢ by [GLX20].

6.1. KAM theory on a SU(2)-character variety

Let us briefly recall the strategy of Brown to derive the analogous statement in
the SU(2) case which we discussed in Section 4. We can write

@:{($ay>z)€[—2,2]3 ‘ —2<x2+y2+22—xyz—2<2}

in trace coordinates (x,y, z), so that the elements of SL(2,7Z) acts via polynomial
automorphisms of R3. For example, the cat map (1) acts via (z,y,2) — (2, 2y —
x, z(zy—x) —y)). Furthermore, we can “blow up” (or, more precisely, take the sphere
of direction at) the point k=1 (—2) = {(0,0,0)} to get a 2-sphere {(z, ¥, ) | #*+9*+
#? = 1} where SL(2,Z) acts through a finite (octahedral) group (of order 24). For
example, the cat map (2 1) acts via the element (&, y, 2) — (2, —%, —¢) of order
3. In particular, a hyperbolic element o of SL(2,Z) determines an one-dimensional

semi-algebraic subset

FiX(O’) = {(xaya Z) € 2) | a(x,y, Z) - ([L’,y,Z) = 0}
of R? consisting of its fixed points. The derivative of U|n;)1(§)= at any point in Fix(o)N

k' (€), is the matrix o € SL(2, Z). The derivative of a|H;1(§), at any point in Fix(o)N
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nil(f ) for £ close to —2, is a matrix close to an element of finite order in the sphere
of directions. For example, the subset of fixed points of the action of (1) on ) is
the embedded line

{lr=z,y=zy—z,2=2(zy —2) —y} NY
and the derivatives of the actions of (1) on /{51(5) at Fix N /{51(5) vary from (21)
at £ = 2 to a 2 X 2 matrix of order 3 at £ = —2. Hence, a hyperbolic element o
of SL(2,7Z) “usually” produces a family of 2 x 2 matrices in SL(2,R). The family
consists of derivatives of the action on liil({) at Fix N /{51(5) whose spectra vary
from a pair of roots of unity (of orders < 24) at £ = —2 to {\, 1/A} where ) is a real
number with |A\| > 1. Hence, we can apply KAM theory (Moser twist theorem) at
those parameters ¢ where the spectrum is a pair of frequencies distinct from roots
of unity of orders < 6 to conclude the non-ergodicity of the action of o on /ﬁg}l(f ).
For example, this strategy works for the cat map (2 1) as we can (and do!) compute
the first Birkhoff invariant directly in Mathematica using the formulae at the end of
Appendix A. More precisely, we first compute the Birkhoff normal form of the cat map
at fixed points near ¢ = —2. Using the normal form (its third order approximation
is sufficient), we find the first Birkhoff invariant v; # 0 (by showing as # 0, see
Remark A.2), which shows via KAM theory that the cat map is acting non-ergodically.
This computation is available on GitHub® .

6.2. KAM theory on a SU(3)-character variety

In this section we outline the computational steps (implemented in Mathematica
and available on GitHub) taken to prove that the cat map M does not act ergodically
on the relative character varieties £, = k' (¢ +in) for M-fixed points ¢ + in near
—1 (on the real line in the deltoid A).

Here is an outline of the proof: (a) identify an elliptic fixed point in £, for all
¢ in an interval I; (b) verify there exist elliptic fixed points that are irrational (in
the terminology of [EFK13]) for some values of ¢ in I; (c) verify the non-planarity
of the corresponding Birkhoff normal forms; and (d) apply the KAM theorem to get
KAM tori. The existence of such invariant tori prevents ergodicity.

The first step is to compute the cat map itself. The map is polynomial in 9 variables
on X(Fy,SU(3)). Letting = +iX = try, y + 1Y = try, 2 +iZ = trg, t +iT = trg-1,
u+iU = trgpqe-1,-1 be unitary coordinates on X(Fy, SU(3)) discussed in Section 2, the
cat map takes the form (z, X,y,Y, 2, Z,t, T,U) — (2, Z,t —axy— XY +yz—-Y Z, T —
Xy+aY+Yz+yZ o+tz—yz—ayz— XY 24922 ~TZ+XyZ Y Z —aY Z-2Y 27 —
Y72, —X+T2—Xyz=Y z4aY 24Y 22+t Z+yZ—ayZ — XY Z+2yzZ =Y 7%y, =Y, U).

Since we have already seen (A(s), B(s)) are fixed by the cat map for all s € [—1, 3],
we have a line of fixed points of the cat map given by (z, X,y,Y, 2, Z,t,T,U) =

452

—1+4+48%2.0, -1+ ——
( + 457, 0, +(1—23)2’

452
0,—14+4s%0,—1+———0,0].
) + 87 ) +(1_28)27 7)

(5) https: //github.com /seanlawton /Non-ergodicity-on-SU-2-and-SU-3(...).
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For each s, the fixed point lies in L) = kx ' (¢) for £ =

((—3+45(3 — 652+ 45%)) (=1 + 45(1 + 2(=1+ 5)s(—1 + 25))) )
(1— 2s)* '

The above formula comes from u = ¢ = P/2. Note also that Q = ¢% and conse-
quently P2 — 4Q = 0. We will use this implicit equation below to determine the
third jet of the cat map in a chart. For s € [—1,3), these fixed points come from
irreducible representations in SU(2) composed with the second symmetric tensor
(also an irreducible representation). So they are irreducible representations and hence
are smooth points in £ o) for s € [—1,3). The moduli spaces £, are 6 dimensional
singular varieties, but their smooth loci are full measure on which SL(2,7Z) acts
smoothly.

We need to find a smooth chart of our elliptic fixed point and write the Taylor series
of the cat map (up to third order). Given the dimension of £ is 6, but naturally
described in terms of 8 variables, we need to eliminate (locally) two variables. We do
this in two steps. The first will be to use P/2 = ¢ to explicitly solve for one variable
and then we will use P? — 4@Q = 0 to implicitly solve for another. There are many
choices involved, and some but not all, lead to singular charts at our fixed points.
So we take care to avoid such choices.

Indeed, solving for ¢ in P/2 = ¢, we find:

16(s —1)s (8(s — 1)(s(4(s — 1)s — 1) + 3)s* + 3) 6
(1= 29) T2y
— T+ 2T(Xy —aY) — 2® (Y2 + 1) + 20(XyY +yz + Y Z)

t:xy—l—XY—(

1/2
—X2<y2+1)+2XyZ—2XYz—y2—Y2—22—Z2—|—3> .

Remark 6.1. — From the equation P/2 = ¢, there are exactly two such solutions
for any of the 8 variables we choose. The solution substitutions are smooth if and
only if the polynomial under the radical is non-zero. Along the line of fixed points
we are considering, the substitution for ¢t above (and also z) is in fact smooth (unlike
some others like for T or 7).

Using this expression for ¢ we can explicitly write the Taylor expansion (centered
at the fixed points) up to third order. For example, at s = .249 (¢ ~ —1), the third
order jet of t centered at the fixed point (determined again by s = .249) is:

—0.0158728 + 35.9596T2 — 27.4865(0.751996 + z) — 106566.72(0.751996 + z) +
27172.4(0.751996+1)2—8.05253 % 107(0.751996+1)3+1.14156T X —3383.7(0.751996-+
2)X + 35.9686 X2 — 106593.(0.751996 + ) X2 — 21.6578(0.0158728 + y) — 81099.4T
(0.0158728 + 1) + 41359.(0.751996 + x)(0.0158728 + 1) — 1.83843 x 108(0.751996 +
2)2(0.0158728 + y) — 2790.37°X (0.0158728 + y) — 81123.2X2(0.0158728 + y)
+15752.2(0.0158728 +1/)2 — 1.39954 x 108(0.751996 + 2)(0.0158728 + y/)? — 3.55259 x
107(0.0158728 + )® — 54.0829T'Y + 160490.7°(0.751996 + z)Y — 52.9413XY
+162822.(0.751996+2) XY +121973.7(0.0158728+1)Y +124071. X (0.0158728+1)Y +
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56.2946Y 2 —166991.(0.751996 +x)Y 2 —126961.(0.0158728 +1)Y 2 —27.4707(0.751996 +
z) — 106566.72(0.751996 + 2) + 54274.(0.751996 + 2)(0.751996 + z) — 2.41366 x
108(0.751996 + x)%(0.751996 + 2) — 3383.7X (0.751996 + 2) — 106593.X2(0.751996 +
2) + 41357.(0.0158728 + y)(0.751996 + 2) — 3.67527 x 105(0.751996 -+ )(0.0158728 +
y)(0.751996 4 2) — 1.39954  10%(0.0158728 4 4/)2(0.751996 + 2) + 160275.TY (0.751996 +
2) + 163034, XY (0.751996 + 2) — 166829.Y2(0.751996 + 2) + 27172.4(0.751996 + 2)2 —
2.41366 > 10%(0.751996 + 2)(0.751996 + 2)2 — 1.83843 x 108(0.0158728 +)(0.751996 +
2)% — 8.05253 x 107(0.751996 + 2)* + 1.14156 X Z — 3383.(0.751996 + )X Z
—2790.3X(0.0158728 4+ y)Z + 54.0829Y Z — 160490.(0.751996 + z)Y Z
—121973.(0.0158728 + )Y Z — 3383.X (0.751996 + 2)Z — 160275.Y (0.751996 + 2)Z
+35.9596.72% —106566.(0.751996+) 2% —81099.4(0.0158728 +1) Z% — 106566.(0.751996
+2)Z2.

To get the third jet for z we use H := (P/2)?*—Q = 0 implicitly. First we substitute
the third jet of ¢ into H making H a third order approximation in the 7 variables
x, X,y,Y, 2, Z,T. Then we calculate all partial derivatives of z implicitly at fixed
points in terms of s using H. We continue this until we have the third jet of z in
terms of only the 6 variables x, X, y, Y, Z, T up to third order centered at fixed points.
For example, at s = .249 the third order jet of z is:

—1.50399 + 1.28663T72 — x — 5.160297(0.751996 + ) + 2.67381(0.751996 + x)? —
10.7239(0.751996 + x )3 + 0.0844526 T X + 0.01671387°(0.751996 + ) X +1.22118 X2 —
4.71443(0.751996 + ) X? — 0.751996(0.0158728 + ) — 0.79941672(0.0158728 + y) +
2.0107(0.751996 + 2)(0.0158728 + ) + 2.78895(0.751996 + x)*(0.0158728 + y) —
6.310437 X (0.0158728 + ) — 2.56426 X 2(0.0158728 + y) + 0.673811(0.0158728 + /) +
5.45915(0.751996 + 2)(0.0158728 + y)? + 0.681032(0.0158728 + )3 — 1.93507TY +
14.68327°(0.751996 + x)Y — 1.8878 XY — 0.0867515(0.751996 + x) XY’
+0.9024157°(0.0158728 + y)Y + 3.0885X (0.0158728 + )Y + 1.94383Y"2
—13.0016(0.751996 + x)Y? — 2.78224(0.0158728 + y)Y? + 0.043608T Z
—0.5303297°(0.751996 + ) Z + 0.0387346 X Z — 0.160995(0.751996 + 2) X Z
+1.167417(0.0158728 + y) Z — 7.39926 X (0.0158728 + y)Z + 1.7915Y Z

— 14.4187(0.751996 + z)Y Z — 4.96467(0.0158728 + )Y Z + 1.22016 2>

— 5.07144(0.751996 + x)Z?% — 2.46712(0.0158728 + ) Z>.

To get a local representation of the cat map M at a fixed point (in terms of s) we
then substitute the third jet of ¢ to reduce to 7 variables, and then we substitute the
third jet of z to reduce to 6 variables. The resulting expression maps a smooth open
neighborhood of a fixed point (diffeomorphic to R®) into R®. We then project onto
R® by forgetting the variables we have eliminated (¢, z). This projection is smooth
(whenever the jets are defined) since the eliminated variables are locally a graph.

We experimentally find values of s between.239 and.249 (that is, ¢ near —1) where
the spectrum is elliptic and the chart is smooth. This implies there exists an interval
between.239 and.249 with the same properties by continuity [HMS87].

Now to apply KAM theory as described in Appendix B, we need to put the third
jet of the cat map in its Birkhoff normal form. So we first translate the codomain
and domain of our chart so the fixed points are at the origin (in both), and then
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diagonalize the jets (so the Jacobian is diagonal). This amounts to finding the matrix
C)p in Appendix B after doing a change of variables making the fixed points the origin.

Following the recipe in Appendix B we then make the formal change of coordinates
tangent to the identity. This amounts to making substitutions of the form x — xy —
&JFT’“ and X — Xy — 512_—1’71 etc. Once these substitutions have been made for all 6
variables in terms of &1, 7y, ..., &3, 7m3 we obtain the Birkhoff normal form of the cat
map (up to third order).

Once we have the Birkhoff normal form, we pick out the appropriate coefficients
from the jets to calculate coefficients of the Birkhoff normal form (Equation (B.3))
whose determinant detects “torsion”. We calculate this at fixed points finding it
non-zero and hence showing the twist condition holds.

For example, at s = .249, the relevant coefficients of the Birkhoff normal form are:
(ajp)i<ip<s =

0.00552244 — 0.0340402: 0.0107941 — 0.000895037% 1.27133 + 2.0689:
—0.200044 — 0.525768: —0.327311 — 0.329913:  —0.800469 — 0.841658: | ,
—4.01094 — 2.67688: —8.79221 — 8.77867: 250.545 + 281.496¢

whose determinant is —20.077 — 0.736551.

To complete the verification of the KAM criterion as per [EFK13, Theorem 1.4],
we check non-planarity (see the final subsection in Appendix B).

Although it suffices to verify an infinitesimal non-planarity condition at a single
point, to reduce the number of computations, we instead verify generic non-planarity
by checking that a certain determinant on four points of the curve is non-zero. This
ensures that the curve has four points not lying on a plane. Since the curve is analytic
we conclude that the zero set of the determinant of derivatives is discrete (hence has
no accumulation points). In short, since the curve is analytic and has four points
not contained in a plane, the point-wise infinitesimal non-planarity condition holds
at all but possibly finitely many points.

This is a numeric criterion which we verify directly in Mathematica using s values
of .239,.24,.241,.242. With this complete, we thus know that there is a positive
measure set of invariant tori and hence non-ergodicity.

The computations we have described above prove:

THEOREM 6.2. — Let M € SL(2,7Z) be the cat map. Then, there exists { € A
such that M does not act ergodically on k3 () C X(Fy,SU(3)).

Appendix A. Elliptic fixed points of surface diffeomorphisms

We follow the discussion of Birkhoff normal forms in [SM95, § 23].
Let 1 = f(z,y), y1 = g(x,y) be the coordinate functions of a real-analytic surface
diffeomorphism S with an elliptic fixed point at the origin (0,0). Let

flz,y)=ax+by+---, and g(x,y)=cr+dy+---

where (29) € SL(2,R) is a matrix with elliptic eigenvalues. Note: the “---” in the
expression for f, g stands for higher-order terms.
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Let us write z = x + iy and 2y = 1 + iy;, so that S becomes S(z) = z;. We want
to simplify the Taylor expansion of S via an appropriate change of variables

r=¢En) = +pn+-, y=vEn) =1E+on+---,

1 = ¢(&1,m), and y; = ¥(&,m). In other words, z = C(, z; = CG, ¢ = & + iy,
(=&+1im, and ad — By # 0.

A.1. Preliminary reduction

Take Cj € SL(2,C) such that

_ b A0
aen)a=(o0)

where ¢ = X and |A\| = ad — bc = 1. Note that the change of variables by Cjy converts
z1 = Sz into

(1 =Cylar =Gy lSCy¢ =T¢
where & = p(&,n) =X+ -+, m =q(§,n) = pn+ ---. Since S is real, we also have
that p(¢,7) = ¢(n, §).

A.2. Birkhoff normal forms

We want to build a (formal) change of coordinates C' tangent to the identity, say
r=0(n) =€+ h y=v(En) =0+ U,
k=2 k=2

where ¢, and 1y, are homogenous of degree k in ¢ and 7, such that U = C~!T'C has
the Birkhoff normal form

G=u&, m=vn, u=>Y ayln)k, v=> Bx(En)*.
k=0 k=0

Remark A.1. — As it is shown in §23 of Siegel-Moser’s book [SM95], if S preserves
area in the sense that f,g, — f,g- = 1, then the formal series defining C' as above is
unique (and, moreover, C' preserves area) whenever X is not a root of unity. In the
sequel, we will review the construction of C' in order to find the first few terms of
its Taylor expansion.

W

Remark A.2. — 1If we write u = e, v = e, w(w) = 3. Vw", where w = &,

the Birkhoff invariants 7, are real, and € = \, —7 < 7y < m, then

iiﬂ/wk
w=de it :/\(1+i71w+0(w2)),

so that the first Birkhoff invariant «; does not vanish if and only if as # 0.
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By definition, we want to solve the functional equations

¢(ug, vn) = p(@(&n), ¥(&n) and  P(ug,vn) = q(e(&,n), V(& n)).

By comparing the linear terms, we impose ag = A, By = . Also, we set oy = 5y, = 0
for each ¢ > 1 that is odd.

Assuming that ¢, 1y, ay_1, Bi—1, ¢ < k were determined for a certain k > 2 (for
example k = 2), let us determine ¢y, Vx, ag_1, Br_1-

By comparing the terms of degree k in our functional equations, we get that

Or(AE, i) + a1 (En) D2 = A (E,m) + -+ -
and
k(A& 1) + Brer (Em) D20 = i (&m) + -

Note: in the previous expressions “---” stands for homogeneous terms of degree k
already known.

k k
NeXt7 let us write gbk’(gv 77) = ak;fgkizne and wk (57 77) = bk;ﬁgkienga so that
=0 £=0

k
¢k(>\f7 ,1“7) - )\¢k(§7 77) = Z Qe ()\k_f,ue - )\) §k_£7lé
£=0

and
k
VRN, ) — pbn(€,m) = D bre (N1 — ) €50
=0

Since Ay = 1, one has \NF~‘pf — X = A(WF=271 —1) and Me—fpf —pp = A"L(AF2041 1),
Hence, if ) is not a “small” root of unity (so that A*=21 = 1 if and only if k = 2/F1),
then we can determine uniquely a1, Bx—1, agy for £ # %, and by, for { # %
from the previous two systems of equations.

Therefore, it remains only to determine ay,, and by, when k = 2h + 1 is odd.
Indeed, observe that the terms of degree < n — 1 of

G — Yy =0(&m) and  Pethy — Py — 1 =7(&n) — 1

do not contain powers of w = &n for n = 2 and, in general, this is also trivially true
for n + 1 when it is true for n even. Moreover, for k = 2h + 1, the coefficient of
wh = (&En)" in o(&,m) is (h+ 1)(apn — bepy1), so that we want

Ap;p = bk;thl-

Furthermore, the terms of degree k — 1 in 7(§,7n) are (¢)e + (¥ ), and a polynomial
whose coefficients are already known. In particular, the vanishing of the coefficient
of w" in 7 determines (h + 1)(agp + brny1), and we are done.

Remark A.3. — When S preserves area, the fact that we avoid powers of w = &n
in o(&¢,n) and 7(&,n) actually shows that the formal change of variables C' preserves

area (i.e., 7(&,m) = 1).
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A.3. Computation of the first Birkhoff invariant

Let us now determine a4y by explicitly working out the argument above.

We take k = 27 S0 that Qo = )\7 50 = M7 Q= 0 = 51 and ¢1(£77]> = é? w1(£7n) = 7]
We write the coordinates of T" as

p(&,m) = A+ p2;0§2 + p2aén +p2;2772 +
and
q(&,m) = pn + q208” + q2aén + qoon” + -+
The relevant functional equations become
G2 (A&, ) = Ao (€, 1) + P2:0&” + Paién + paan®

and
b2 (AE, ) = o (€,m) + 420€” + @2a€n + G2’
Thus, the resulting equations
@20 <>‘2 - )‘) &2+ ag1 (M — N)En + ags (M2 - )\) 1° = P20E” + P2aén + paoiy’
and
bao (A = A) € + by (A — p)n + baz (1% = 1) 1 = @2:0€% + @1€n + oo’

determine ¢o and 5.

NeXt? given that ap = )\7 50 =M, Q1 = 0= 617 ¢1(§777) = 57 wl(fﬂﬂ =1, and ¢27
1y were determined, we take k = 3 to get the functional equations

$3(NE, ) + aa(En)E =AGs(6,m) + [Pao(§ + da(&,m) + -+ )?
+ P2+ o2&+ )+ va(Em) + -+ 0)
+paa(n+ da(&m) + )]
+ p3:0E” + P31 &N + psaén” + paan’

and

Us(AE, i) + Ba(Emm =pbs(€,m) + |quo( + 62(&m) + -+ )
+ @21 (§+ d2(Em) + - )+ a(En) + -0 0)
o+ o)+
+ 43:08” + 430 €71 + q3260” + 331

By writing the identities for the coefficient of the term £27 in the first formula, we
have
AAp —1)ags + ag = 2pagags + p2i(bai + asp) + 2p22bao + P3a
where as, as; is given in terms of ps g, p21 and by, bey are given in terms of ¢,
g2, respectively. In fact,
R P2,0 a4 — P21
2,0 7>\()\_1) , Q21 7)\@_1)
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and
42,0 q2.1

boog=——, by =—"—.

TN T (v =1)
In conclusion, since A\u = 1, the above equations, while they are not sufficient to
determine ag 1, they do determine the coefficient o of the Birkhoff normal form:

2p22G20
AN — 1)

- 2p2op2,1

= 4 P21

Ap=1)  Ap(A=1)

(Ag2,1 + pp2,) + + p3,1-

Appendix B. Elliptic fixed points of symplectomorphisms

The subsequent discussion is based on the descriptions of Birkhoff normal forms
in [EFK13, Kri22, PM03] and [SM95].

Let f be a real-analytic symplectomorphism with an elliptic fixed point at the
origin 0 € R??, that is, the spectrum of D f(0) has the form

e 1< < d}

for some frequency vector w = (wy, ..., wy) € [0,1/2]%
We take Cj € SL(2d, C) such that

Cy'Df(0)Cy = diag ( .., e2miws emmivy ) :
and T = Cy' fCy has the form:

& pi(§m) = N& + 0a(E,m)  and  n; = q;(§,m) = pymy + O2(€,1m)

where \; = €™ ;= \;, for all j =1, ..., d and Oz(&,n) stand for higher-order
terms in & := (&, ..., &) and = (1, ..., Na).

B.1. Birkhoff normal form

We want to build a (formal) change of coordinates C' tangent to the identity:
Ty = ¢j(€7 77) = Sj + Z qb]}k:(&v 77) and Y = %(fa 77) =1 + Z %‘,k(fa 7])7
k=2 k=2

where ¢, and 1), are homogeneous of degree k in (£,7), such that C~'T'C' has the
Birkhoff normal form:
é-j — Ujfj and nj = V05,

Or. B e—iarj B

where u; = €', v; = , and

1
B(r) = 2m(w,r) + Z §bmn7“m7’n + O3(r)

is a (formal) power series on r = (rq, ..., rq), with r; := &;n; with the convention
that by, = bpm-
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Remark B.1. — For later use, note that u; = X\;j(1 + X bjxry + O2(r)) = Aj +
> o+ O2(r), where ajy, = i) ;bj. In order to compute the Birkhoff invariants (bj;)
and establish the desired twist condition (see Subsection B.3) it is therefore enough
to compute the coefficients (aj;) of the Birkhoff normal form (see Formula (B.3)
below).

Remark B.2. — Given a real-analytic function F of (£,7), we denote by

a17~~~7an|b17~~~7bm
Fk 5

k = n+4m, the normalized® coefficient of the ordered monomial &, - -+ &, My, - - - My,
in the Taylor expansion of F'; with the convention that & = ng = 1.

B.2. Computation of the first Birkhoff invariants

Let
ué = (ury, - .. uaa)
and similarly vn = (vim, ...vgng). By definition, we want to solve the functional
equations:

oj(u&,vn) = pj(d(&,n),(&,m)) and  P;(ué,vn) = q;(d(&,n), (&)

Let us first look at the terms of degree < 2. Let the symbol O3(§,n) stand for
terms of degree at least 3 in the vector (£, 7). Note that

¢ (uf U?]) - U]£] + Z ¢m nloumungmgn

m,n=1

+ Z ¢m|numvn€m77n + Z ¢0|m nvmvnnmnn + 03(57 77)

m,n=1 m,n=1

= \& 4 Z 75" N A

m,n=1

+ Z O Nl + Z G5 Lt i + O3(€, 1)

m,n=1 m,n=1

and

pi(D(E,m),D(E,m)) = N (€,m) + Z 215" b0 (€,1) b (€, )

m,n=1

©)In view of the symmetries given by permutations of the variables each coefficient of
an unordered monomial &g, -+ &, Mb, - - Mp,, should be normalized dividing it by the factor
nm!/ g1l pak, o1l o k! With pg 1, oo pak, and pp1 - pe g, the list of multiplicities of
ai, ...ap and by, ..., b,,, respectively.
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+ Z DY S (€00 (E,m) + Z PO (€, )0 (€, 1) + Os(€,7)

m,n=1 m,n=1

= Nj&j+ A ( > 0 0 B it + D)3 ”nmnn)

m,n=1
+ Z s + Z Pr i + Z Doy " it + O3(€, ).
m,n=1 m,n=1 m,n=1

Hence, we can determine ¢;o (resp., ¥;2) in terms of p; o (resp., g;2) provided that
the non-resonance conditions

)\' 7é )\m)\na Amﬂn; Mo oy,

are satisfied for all 1 < j,m,n < d. In fact we have the formulae:

m,n|0 mln 0jm,n
m,n Pj2 mln Pj2 0lm,n Pj2
B.1 wol0 _ Bz gmie _ Bi2 g SR = R
( ) ¢J72 )\m/\n )\j 92 )\m,un - )\j (b Hmtn — )\j
and similarly (or by complex conjugation):
0 T | g 0] 5"
B2) Yyt =—— =P and ¢y = ——
72 Hom fon, — [y 72 ,um)\n — My )\m)\n -

Next, to determine the Birkhoff invariants o, we consider the terms of degree 3.
Indeed, observe that since

Ui = </\i +>° CW&W) & and v = (Mi +) Oéif&ﬂé) Nis
¢ 7

the coefficient of £,.&;my in ¢;(ué, vn) is
k.j|k

Ak + (b ]
In fact, the functions u€ and vn contain only monomials of degree 1 and 3, hence
the quadratic part of ¢, does not contribute to the coefficients of £,&;n; (since it has
degree 3), the linear part of ¢;, equal to &;, contributes the coefficient of &.&;n; in
the product u;¢;, that is oy, and finally the cubic part of ¢; contributes only when

)\k GHE -

evaluated on the linear parts of u& and vn, hence it contributes the term gbfg ‘k/\k)\j [
The coefficient of &x&;nx in p;(¢(€,7), ¥ (€, n)) is

k]\k kn\() j|k nj\O k|k k|n j|k n|k 7j|0
+ Z (p5"0 Gz + D5 Uns

O\nk 0|k,n k,510 k.jlk
‘I‘Z(Pﬂ Djo2 )77/}71,2 +pi3 -

In fact, we have the following. The linear term of p; contributes the coefficient of

§kEjMk in Aj¢;, that is, the term A, ;g'k, the cubic terms of p; contribute only the
k.jlk

term p;’3", since the only linear term of ¢;(§,n) is & and of ¥;(§,7n) is 7, and all
other terms come from the quadratic part of p;.
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We analyze the contribution of py(¢(€,n), (€, m)) by distinguishing 3 cases; the
terms of the forms:

(D) P50 (€, M) (€. 1),
(1) 73" G (€, m)8n (€, ),
(IL1) P23 (€, m)¥n (€, ).

The ordered monomial £,€;n; can be written as product of two factors in the
following 4 ways (there are 3 permutations of £,&;n, which preserve the order of
&k€j, and the permutation £,&;m), can be written as product in 2 ways, see a) and c)
below):

a) & (i) s ) (Geme) - &5y ) (&&g) ey d) e+ (6E5) -

We recall that the only linear term of ¢; and 1); are respectively &; and 7;.
Therefore in case (I) we have that one term of the form a) for m = k and one of
the form b) for n = j, namely

m,j|0 | klk

kn|0 jlk .
2 and, respectively, pj2 m.2

and no terms of the form c) or d); in case (II) we have one term of the form a) for
m = k and one of the form ¢) for n = k, namely

mlk k5|0

k\n jlk .
2 Uno and, respectively, Pi2 Pma

and no terms of the form a) or b); finally, in case (III) we have one term of the form
¢) for n = k and one of the form d) for m = k, namely

Olm k| k,|0 - Olk.n, k.j[0
P2 Umo and, respectively, P2 Una

Since A\gpr = 1, we can express ay; (or equivalently b,,,) in terms of the third
orders jets of p; and g;. We have

d
k,n|0  jlk ,710 kk k k nk: k.10
i = Z (pj,”\ qul +p] n,j| ¢ | |nw3| | n7J2| )
(B.3) e

+ Z (p;)gbk O\k n) ¢k]|0 T 7]|k ‘

)

We recall that the coefﬁments of the homogeneous polynomials ¢, 2 and 1, » are given
in terms of the second order jets of p; and ¢; in formulas (B.1) and (B.2).

B.3. Twist conditions

By following the proof of [EFK13, Theorem 1.4], one sees that the KAM theorem
can be applied when the frequency vector w of D f(0) is irrational (in the sense that
its coordinates are rationally independent as in [EFK13]) and the Birkhoff normal
form B(r) = 2m(w, ) + 3 $bmnTmrn + Oa(r) satisfies the following twist condition:
the image of the frequency map

(r1, ..., 1q) — (w1 + > bimTm, - wd—i—Zbdmrm)

is not contained in a hyperplane.
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