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Abstract. — We study a nonlinear recombination model from population genetics as a
combinatorial version of the Kac–Boltzmann equation from kinetic theory. Following Kac’s
approach, the nonlinear model is approximated by a mean field linear evolution with a large
number of particles. In our setting, the latter takes the form of a generalized random trans-
position dynamics. Our main results establish a uniform in time propagation of chaos with
quantitative bounds, and a tight entropy production estimate for the generalized random trans-
positions, which holds uniformly in the number of particles. As a byproduct of our analysis we
obtain sharp estimates on the speed of convergence to stationarity for the nonlinear equation,
both in terms of relative entropy and total variation norm.

Résumé. — Nous étudions un modèle de recombinaison non linéaire issu de la génétique
des populations en tant que version combinatoire de l’équation de Kac–Boltzmann de la théorie
cinétique. En suivant l’approche de Kac, le modèle non linéaire est approché par une évolution
linéaire de champ moyen avec un grand nombre de particules. Dans notre cadre, ce dernier prend
la forme d’une dynamique généralisée de transpositions aléatoires. Nos principaux résultats
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1246 P. CAPUTO & D. PARISI

établissent une propagation du chaos uniforme dans le temps, avec des bornes quantitatives,
et une estimation de la production d’entropie pour les transpositions aléatoires généralisées,
qui est uniforme en le nombre de particules. En conséquence de notre analyse, nous obtenons
des estimations précises sur la vitesse de convergence à l’équilibre pour l’équation non linéaire,
tant en termes d’entropie relative que de norme de variation totale.

1. Introduction

Recombinations are one of the principal components in the analysis of stochas-
tic genetic algorithms [Lyu92, Nag13]. Nonlinear recombinations provide a simple
combinatorial setup for quadratic evolutions described by a Boltzmann-like equa-
tion [RRS98]. A particle is represented by a finite string of characters from some
finite alphabet and the binary collision mechanism is given by a recombination, that
is the transposition of a random portion of the two colliding strings. The model
belongs to the family of symmetric quadratic systems introduced in [RSW92]; see
also [CAS18] for the more general framework of reversible quadratic systems.

Following the strategy introduced by Mark Kac in his seminal 1956 paper [Kac56],
one can approximate the nonlinear evolution of one particle by a linear mean field
type Markov process involving a large number of particles. Roughly speaking, if one
has a good control of this approximation, together with a good control of the linear
particle system, then the difficulties due to the nonlinearity in the original process
can be overcome.

In the context of Boltzmann’s equation and its closely related kinetic models this
line of research has witnessed important progress in recent years [CCLR+10, CD22,
MM13, MMW15], see also [CGM08, DEGZ20, Lac23] for related results for mean
field diffusions of McKean–Vlasov type.

The combinatorial setup considered in the present paper appears to be less explored;
see however [BBCB23, PI88, Rez96] for the analysis of Boltzmann-like equations with
discrete velocities. One advantage of the combinatorial setting is that thanks to the
discrete setup one can avoid a number of technical assumptions, such as regularity and
moments constraints, on the various distributions considered. Moreover, and perhaps
more importantly, in contrast with the well studied case of the Kac–Boltzmann
equation [BGLR18, CCLR+10, Ein11, MM13], in our setup it is possible to obtain
tight entropy production estimates for the particle system which hold uniformly in
the number of particles. This provides a class of models for which the renowned Kac
program can be completed in a strong sense.

In the setting of nonlinear recombinations the linear particle system takes the form
of a generalized random transposition dynamics. This yields a natural generalization
of the mean field exchange dynamics that are commonly studied in the probabilistic
literature such as the Bernoulli–Laplace or the random transposition model [DS81].
The purpose of this paper is twofold. On one hand we establish uniform in time
propagation of chaos. On the other hand we prove tight estimates on the entropy
production of the linear system which hold uniformly in the number of particles. As
a corollary we obtain quantitative control on the convergence to stationarity for
the nonlinear model in terms of relative entropy. In particular, this extends some
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results previously obtained in [CAS18, RRS98] by direct analysis of the entropy in
the nonlinear recombination model. We now proceed with a detailed description of
the model and of our main results.

1.1. The nonlinear equation

Let Ω = ∏n
i=1 Xi be the set of n-vectors σ = (σ1, . . . , σn) where σi ∈ Xi, and the

Xi are given finite sets. We interpret σ as a particle. Thus, a particle is a string of n
characters each taken from a finite alphabet. A basic example is obtained by taking
Ω = {0, 1}n. Without loss of generality we will assume that each Xi has the form
Xi := {0, 1, 2, . . . , qi}, for some qi ∈ N. Given a subset A ⊂ [n], [n] = {1, . . . , n},
and σ ∈ Ω, σA denotes the A−component of σ, that is the string (σi, i ∈ A). If
(σ, η) ∈ Ω × Ω is a pair of particles, the recombination at A consists in exchanging
the A-component of σ with the A-component of η. This defines the map

(σ, η) 7→ (ηAσAc , σAηAc),

where ηAσAc denotes the element of Ω with entries ηi for i ∈ A and σi for i ∈ Ac =
[n] \ A. Let P(Ω) denote the set of probability measures on Ω. If the original pair
(σ, η) is obtained by sampling independently from p ∈ P(Ω), then the new particle
ηAσAc is distributed according to pA ⊗ pAc , the product of the two marginals of p
on the A and Ac components respectively. By choosing the set A ⊂ [n] according to
some distribution ν, one obtains the quadratic collision kernel

p 7→ Q(p) =
∑

A⊂[n]
ν(A) pA ⊗ pAc .

The nonlinear evolution is defined by the dynamical system ṗt = Q(pt) − pt, that is
d

dt
pt =

∑
A⊂[n]

ν(A) (pt,A ⊗ pt,Ac − pt)(1.1)

with the initial condition p0 = p ∈ P(Ω). Here pt ∈ P(Ω) is the distribution of
the particle at time t, pt,A denotes its marginal on A and ν is a given probability
measure over the subsets of [n]. The study of this model starts with the pioneering
work of Geiringer [Gei44]; see also [Mar17, RSW92, RRS98, SBB16] for more recent
accounts. It is well known that the Cauchy problem associated to (1.1) has a unique
solution for every initial distribution p ∈ P(Ω); see e.g. [SBB16]. Moreover, it is
not difficult to see that the evolution preserves the single site marginals, that is
pt,i = pi for all t ⩾ 0 and for all i ∈ [n]. We say that the recombination measure ν is
separating if for any i, j ∈ [n] there is a positive probability that the random set A
with distribution ν separates i and j. Equivalently, if r(ν) < 1 where

(1.2) r(ν) := max
i < j ∈ [n]

ν ({i, j} ⊂ A or {i, j} ⊂ Ac)

denotes the maximum over i < j of the probability that A does not separate i, j.
It is a classical fact that, under the assumption that ν is separating, the system
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converges to the stationary state given by the product of the marginals of the initial
state p; namely, if πi = pi denotes the marginal of p at site i, then
(1.3) π = ⊗n

i=1 πi

is the equilibrium distribution and one has the convergence pt → π, t → ∞, which
can be interpreted as the effect of repeated fragmentations of the initial state; see
e.g. [RRS98]. Some of our results will hold for arbitrary separating ν. In some other
cases we consider a slightly stronger assumption on ν. Two examples to which all our
results apply are the following distributions ν, which are commonly considered in the
genetic recombination literature. We refer to [CAS18, RRS98] for more examples.

(1) Uniform crossover : ν(A) = 1
2n , for all A ⊂ [n];

(2) One-point crossover : ν(A) = 1
n+1

∑n
i=0 1A=Ji

, where J0 = ∅, Ji = {1, . . . , i},
i ⩾ 1.

The quantitative analysis of the convergence to equilibrium pt → π, t → ∞ has
been initiated in [RRS98, RSW92], where a “mixing time” bound was obtained for
the discrete time version of the model. The decay to equilibrium in relative entropy
for the continuous time model was studied in [CAS18]. These results were obtained
by direct analysis of the nonlinear problem. In this paper we shall follow an entirely
different approach, inspired by Kac’s program from kinetic theory. As a byproduct
of our analysis, we shall obtain an alternative proof of the known results mentioned
above.

1.2. The particle system

Suppose there are N “particles”, described by variables η(j) ∈ Ω, j = 1, . . . , N .
That is, each particle is a single string from Ω and ηi(j) denotes the content of the
jth particle at site i ∈ [n]. We may picture η ∈ ΩN as a N ×n matrix such that each
row is a particle with n entries, and for each i ∈ [n], the ith column ηi represents the
content of site i for different particles.

Notice that N and n play two very different roles here. The number N of particles
will eventually be taken to +∞ to recover the non linear mean field limit, in accor-
dance with the general Kac program. The number n should be thought as a fixed,
possibly large quantity describing the size of a single particle space.

The Markov process is given by the following random pair-exchange process. Pairs
of particles {j, l}, 1 ⩽ j < l ⩽ N are chosen independently according to a Poisson
clock process with rate 1/N . When the pair {j, l} “rings”, then a set A ⊂ [n] is
chosen with probability ν(A) and the recombination

(η(l), η(j)) 7→
(
ηA(j)ηAc(l), ηA(l)ηAc(j)

)
(1.4)

is performed, that is the A-content is exchanged between particle j and particle l.
For all j, l ∈ [N ], A ⊂ [n], for all η ∈ ΩN , we write ηj,l,A for the new configuration
η′ ∈ Ω defined by

η′(k) = η(k), ∀ k ̸= j, l; η′(l) = ηA(j)ηAc(l), η′(j) = ηA(l)ηAc(j).(1.5)
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With this notation the pair configuration in the right hand side of (1.4) is (ηj,l,A(l),
ηj,l,A(j)). Define also f j,l,A(η) = f(ηj,l,A) for all f : ΩN → R. Then, the infinitesimal
generator of the continuous time Markov process is given by

LNf = 1
N

∑
1 ⩽ j < l ⩽ N

∑
A ⊂ [n]

ν(A)
(
f j,l,A − f

)
, f : ΩN → R.(1.6)

Any product measure µN on ΩN of the form µN = µ⊗N , where µ is itself a product
measure µ = µ1 ⊗ · · · ⊗ µn on Ω = ∏n

i=1 Xi, defines a reversible measure for the gen-
erator LN . Indeed, for such a measure one has the symmetry µN(ηj,l,A) = µN(η) for
all η ∈ ΩN and therefore LN is self-adjoint in L2(µN). The process is not irreducible
in the state space ΩN since the content at a site for one particle is always exchanged
with the content at the same site for another particle, and thus the number of parti-
cles with a given element x ∈ Xi at a given site i ∈ [n] is constant in time. To obtain
an irreducible process one must fix the densities ρi,x, i ∈ [n], x ∈ Xi defined by

ρi,x = 1
N

N∑
j=1

1(ηi(j) = x).

We call ρ = (ρi,x) the corresponding vector. Given a density vector ρ, consider the
space

(1.7) Ωρ :={
(η(1), . . . , η(N)) ∈ ΩN: ρi,x = 1

N

∑N
j=1 1(ηi(j) = x), ∀ i ∈ [n], x ∈ Xi

}
.

The set Ωρ is well defined and non-empty for every vector ρ = ρN such that ρi,x ∈
[0, 1], ∑x ∈ Xi

ρi,x = 1 for all i ∈ [n], and such that Nρi,x is an integer for all i, x. When
this holds we say that ρN is an admissible sequence. Under suitable assumptions on
the recombination measure ν, see Definition 1.7, for any given admissible ρN , the
Markov process with state space ΩρN

and generator LN is irreducible and converges
to the uniform distribution on ΩρN

. We will be interested in quantitative statements
about this convergence.

We often use the following procedure to construct admissible sequences. Fix a
given π = (πi,x) satisfying πi,x ∈ [0, 1] for all i, x and ∑x ∈ Xi

πi,x = 1 for all i ∈ [n].
Then we call ρπ = ρπ(π) the density defined by

ρπ
i,x := 1

N
⌊Nπi,x⌋ , i ∈ [n], x ∈ {1, . . . , qi},(1.8)

and we set ρπ
i,0 = 1 −∑qi

x=1 ρ
π
i,x. We remark that ρπ = ρπ

N is an admissible sequence
satisfying

ρπ
i,x = πi,x +O

(
1
N

)
for all i, x. Fixing the probability vector π = (πi,x) is equivalent to fixing the station-
ary measure (1.3) of the nonlinear evolution, and thus we use the same symbol for
them. From now on it is assumed that the densities πi, and thus the corresponding
product measure π as in (1.3), are fixed. Without loss of generality we restrict to the
case where πi,x ∈ (0, 1) for all i ∈ [n], x ∈ Xi since for each i we can otherwise discard
those letters x ∈ Xi such that πi,x is zero, and thus consider a new configuration
space such that π is everywhere positive.
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1.3. Chaos and the propagation of chaos

The chaos property is commonly defined as follows. A measure µN ∈ P(ΩN) is
symmetric if it is invariant under any permutation of the N particles. We write
PkµN ∈ P(Ωk) for the corresponding k-particle marginal.

Definition 1.1 (Kac’s chaos or “Boltzmann property”). — A sequence µN ∈
P(ΩN) of symmetric probabilities on ΩN is µ−chaotic, for a given µ ∈ P(Ω), if for
any k ∈ N one has the weak convergence

PkµN −→ µ⊗k , N → ∞.

A key step in implementing Kac’s program is to construct a correspondence between
probability measures on Ω and probability measures on ΩN . In our setting this can
be formulated as follows.

Definition 1.2 (Canonical tensor product). — Given a probability measure
p ∈ P(Ω) and an admissible sequence of density vectors ρN , we let

γ(p, ρN) := p⊗N ( · | ΩρN
)

be the tensor product of p conditioned on ΩρN
. When ρN is given by ρπ as in (1.8),

where the πi,x = p(σi = x) are the marginals of p, we use the notation γN(p) :=
γ(p, ρπ), and call it the canonical tensor product.

To avoid degeneracies we sometimes assume the following property.

Definition 1.3 (Irreducibility). — A probability measure p ∈ P(Ω) is called
irreducible if for any i ∈ [n], any x ∈ {1, . . . , qi}, there exists χ ∈ Ω such that
p(σi = x, σj = χj ∀ j ̸= i) > 0 and p(σi = 0, σj = χj ∀ j ̸= i) > 0.

If p is irreducible and the sequence ρN is sufficiently close to the marginals of
p, then the local central limit theorem guarantees that the k-particle marginals of
the symmetric measures γ(p, ρN) converge to the product p⊗k as N → ∞, that is
γ(p, ρN) is p-chaotic, see Theorem 2.6 for a precise statement. In particular, for the
canonical tensor product γN(p), we will see that∥∥∥PkγN(p) − p⊗k

∥∥∥
TV

⩽
C0 k

N
,(1.9)

for some constant C0 = C0(p), where ∥ · ∥TV denotes the total variation distance.
Clearly, our reference product measure π ∈ P(Ω) is irreducible. In fact, γ(π, ρN) is the
uniform probability measure on ΩρN

, for any admissible sequence ρN . In particular, it
follows that its k-particle marginals converge to π⊗k as N → ∞. One can also show
that γ(p, ρN) is entropically p-chaotic in the sense defined in [CCLR+10], namely
that on top of the convergence of marginals one also has

lim
N → ∞

1
N
HN

(
γ(p, ρN)

∣∣∣ γ(π, ρN)
)

= H (p |π) ,(1.10)

whereH(··),HN(· | ·) denote respectively the relative entropy for probability measures
on Ω and on ΩN , see Proposition 2.8 below. Let us recall the following standard
definition.
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Definition 1.4 (Propagation of chaos). — Let µN,t = µNe
tLN , t ⩾ 0, denote

the evolution of an initial symmetric distribution µN ∈ P(ΩN) under the Markov
process generated by LN . Suppose that µN is p-chaotic for some p ∈ P(Ω) and let
pt denote the evolution of the initial datum p under the nonlinear process (1.1). If
µN,t is pt-chaotic for all fixed t ⩾ 0, then we say that propagation of chaos holds. If
the weak convergence PkµN,t −→ p⊗k

t , N → ∞, holds uniformly in t ⩾ 0 we say that
propagation of chaos holds uniformly in time.

An adaptation of well known arguments, see e.g. [Kac56, Szn89], shows that the
propagation of chaos (at fixed times) holds in our setting. In fact, the proof of this
does not require the assumption that ν is separating.

1.4. Uniform in time propagation of chaos

Our first main result concerns the validity of propagation of chaos uniformly in
time, with quantitative bounds on the convergence as N → ∞.

Theorem 1.5. — Assume that ν is separating. The propagation of chaos holds
uniformly in time, that is for any p ∈ P(Ω), if µN is p−chaotic, then for all fixed
k ∈ N, as N → ∞,

PkµN,t −→ p⊗k
t , uniformly in t ⩾ 0,

where pt is the solution to the nonlinear equation (1.1) with initial datum p0 = p.
Moreover, if µN is the canonical tensor product µN = γN(p), and p ∈ P(Ω) is
irreducible, then ∥∥∥PkµN,t − p⊗k

t

∥∥∥
TV

⩽
C√
N
,(1.11)

for some constant C = C(k, p) > 0 independent of t, N .

Remark 1.6. — Concerning the dependency on N it may be that the optimal
decay in (1.11) is O(1/N) rather than O(1/

√
N). This seems natural in light of our

estimate (1.9) at time zero. Moreover, that would be in agreement with the recent
results in [Lac23], where the O(1/N) bound is obtained for a class of interacting
diffusion processes at fixed times. The value of the constant C in (1.11) can be in
principle obtained from our more detailed results in Theorem 3.1 below. However,
we have not tried to optimize the dependency of C on k, p.

There are by now several results for kinetic models and for mean field diffusions
establishing uniform in time propagation of chaos, see [CD22, DMG01, CGM08,
DEGZ20]. However, the adaptation to our setting of the different techniques used
in these works does not seem to be straightforward. The proof of Theorem 1.5 is
based on some new contractive estimates for the nonlinear model that allow us to
implement the main strategy developed in the groundbreaking work of Mischler and
Mouhot [MM13], see Section 3.
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1.5. Entropy production for generalized random transpositions

Our second main result is about quantitative estimates on the decay to equilibrium
for the particle system introduced above. The key feature is that these estimates
hold uniformly in the number of particles N . We shall actually derive such estimates
in the context of the generalized random transposition process defined as follows.

Let SN,n = Sn
N denote the n-fold product of the symmetric group SN of the

permutations of [N ] = {1, . . . , N}. Then η ∈ SN,n is a matrix ηi(j), i ∈ [n], j ∈
[N ], where each η(j) = (η1(j), . . . , ηn(j)) ∈ [N ]n is seen as a particle, and each
ηi = (ηi(1), . . . , ηi(N)) ∈ SN is a permutation of [N ]. Note that SN,n = Ωρ where
Ωρ is defined in (1.7) when we take the extreme case qi ≡ N − 1, ρi,x ≡ 1/N for all
i = 1, . . . , n.

The generalized random transposition (GRT) process is defined as the process
generated by the operator LN in this setup, namely the GRT process is the continuous
time Markov process with state space SN,n described as follows: every pair of particles
{η(l), η(j)} collides with rate 1/N independently, and when a collision occurs, a new
set A is sampled according to ν and the A-content of η(l), η(j) is exchanged.

This setting is convenient for proving functional inequalities since by restricting
to classes of functions with suitable symmetries we then recover all possible cases of
processes on ΩρN

with generator LN , for all admissible ρN , see Remark 1.9 below for
more details. As an example, consider the case qi ≡ 1 and suppose that N(ρN)i,1 = Ni

for some positive integers Ni, i = 1, . . . , n. Here the process generated by LN can be
seen as the GRT process restricted to functions f : SN,n 7→ R such that, for each i,
f only depends on (ηi(1), . . . , ηi(N)) through the unordered set {ηi(1), . . . , ηi(Ni)}.
This can be seen as a generalized Bernoulli–Laplace process [DSC96]. If no confusion
arises we continue to write LN for the generator of the GRT.

We remark that when n = 1, GRT is just the usual random transposition pro-
cess [DS81], and that when ν gives positive weight only to A ⊂ [n] such that |A| = 1,
it describes n independent random transposition processes. However, in the general
case, the recombination measure ν dynamically couples the permutations and the
GRT becomes a nontrivial generalization of the standard random transpositions.

In order to guarantee the irreducibility of the GRT process, we make the following
assumption on the recombination measure ν, which is easily seen to be stronger than
the separation assumption r(ν) < 1; see also Remark 1.10.

Definition 1.7. — We say that ν is strictly separating if for all i ∈ [n] there
exists A ⊂ [n] such that i ∈ A and such that both A and A \ {i} have positive
ν-probability.

Note that the uniform crossover and the one-point crossover are both strictly
separating. Let πN denote the uniform distribution on SN,n. The GRT process is
reversible with respect to πN and if the measure ν is strictly separating, then it is
also irreducible, and any initial distribution converges to πN as t → ∞. To quantify
this statement we consider the Dirichlet form of the GRT, defined by

ANNALES HENRI LEBESGUE



Nonlinear recombinations and generalized random transpositions 1253

(1.12) EN,n(f, g)

= 1
2N

∑
1 ⩽ j < l ⩽ N

∑
A ⊂ [n]

ν(A)
∑

η ∈ SN,n

πN(η)
(
f
(
ηj,l,A

)
− f(η)

) (
g
(
ηj,l,A

)
− g(η)

)
,

where f, g : SN,n 7→ R. The entropy production rate is measured by the constant

α(N, n) = inf
f > 0

EN,n(f, log f)
Ent(f) ,(1.13)

where the infimum is over f : SN,n 7→ R+ such that Ent(f) ̸= 0 and

Ent(f) = πN(f log f) − πN(f) log πN(f)

is the entropy of f w.r.t. πN . Equivalently, α(N, n) is the best constant α such that
the inequality

Ent
(
etLNf

)
⩽ e−αtEnt(f)(1.14)

holds for all functions f > 0; see e.g. [BT06, DSC96]. Note that when πN(f) = 1
then, for all t ⩾ 0, Ent(etLNf) coincides with the relative entropy HN(µN,t |πN)
where µN,t = (etLNf)πN .

We also consider the entropy production rate restricted to the set of symmetric
functions defined as follows. Let S denote the set of f : ΩN 7→ R such that

f(η) = 1
N !

∑
τ ∈ SN

f(τ ◦ η),

where the sum runs over all permutations τ ∈ SN and τ ◦η denotes the configuration
with particles exchanged according to τ , that is τ ◦ η(j) = η(τ(j)). From the point
of view of Kac’s program [Kac56], S is the relevant space of observables in the
particle system. We call αS(N, n) the constant defined as in (1.13), with the infimum
restricted to positive functions f ∈ S.

Our main results for the GRT process are the following estimates independent
of N .

Theorem 1.8. — Fix n ∈ N and assume that ν is strictly separating. Then there
exists α(ν) > 0 such that for any N ∈ N, N ⩾ 2,

(1.15) α(N, n) ⩾ α(ν).

Moreover, if ν is the one-point crossover, then

(1.16) α(N, n) ⩾ 1
4(n+ 1) ,

and if ν is the uniform crossover, then

(1.17) α(N, n) ⩾ 1
4n , αS(N, n) ⩾ 1

2(n+ 2) .
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Remark 1.9. — Consider the entropy production rate α(ΩρN
) for the process on

ΩρN
associated to any admissible density sequence ρN . The uniform distribution on

ΩρN
is the image of the probability πN (the uniform distribution on SN,n) under

a simple symmetrization procedure, and the quantity α(ΩρN
) can be defined as

in (1.13) by restricting to invariant classes of functions with suitable symmetries; see
e.g. [BCELM11, Section 4.2.3] for a version of this simple projection argument. The
estimates of Theorem 1.8 then immediately provide the lower bound
(1.18) α(ΩρN

) ⩾ α(N, n) ⩾ α(ν) ,
for any admissible density sequence ρN .

Remark 1.10. — The statement in Theorem 1.8 implies exponentially fast conver-
gence to stationarity for the GRT under the strict separation assumption, see (1.14).
In particular, it implies irreducibility. If the recombination measure ν is only assumed
to be separating, then the GRT process may fail to be irreducible. Therefore, some
assumption such as the strict separation defined above is necessary for the statement
in Theorem 1.8. For an example of non irreducible process with separating ν consider
N = 2, n = 4 and suppose ν(A) = 1

6 for all A ⊂ [4] with |A| = 2. Clearly, ν is sepa-
rating, but if we consider the initial configuration η with η(1) = 0000, η(2) = 1111,
then the number of 1’s in each particle remains even at all times.

The proof of Theorem 1.8 will be based on some new functional inequalities for
permutations which imply a modified logarithmic Sobolev inequality for the GRT.
We refer to Section 4.

Concerning upper bounds on the constant α(N, n) we establish an estimate valid
for arbitrary ν, which essentially shows that α(N, n) cannot be larger than 4/n for
n large, provided N is taken large enough, possibly depending on n.

Proposition 1.11. — For any n ∈ N, any distribution ν on [n],

(1.19) lim sup
N → ∞

α(N, n) ⩽ 4
n

+O
( 1
n2

)
.

In this sense, the bounds in (1.16) and (1.17) can be considered to be optimal.

1.6. Kac’s program completed

One of the main motivations behind Kac’s program is the derivation of quantitative
bounds on the speed of convergence to equilibrium for the nonlinear equation. In
our setting, as a corollary of our analysis we obtain the following relative entropy
estimates. We refer to [CCLR+10, Vil03] for a discussion of related entropy decay
estimates in the context of kinetic models. In particular, in our setup, one can say
that Cercignani’s conjecture holds true. See also [EFS20] for related results in a
discrete setting under positive curvature assumptions.

Theorem 1.12. — Assume that ν is strictly separating. For any p ∈ P(Ω), let
pt denote the solution of (1.1) with p0 = p and let π = ⊗n

i=1pi denote the associated
equilibrium. Then for all t ⩾ 0,

H (pt |π) ⩽ e−α(ν)tH (p |π) ,(1.20)
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where α(ν) > 0 is the constant in Theorem 1.8. In particular, α(ν) ⩾ 1/4(n+ 1) for
one-point crossover, and α(ν) ⩾ 1/2(n+ 2) for uniform crossover.

It is interesting to note that the constant α(ν) does not depend on the initial datum
p in any way. We point out that, in the case of the one-point crossover and uniform
crossover, the above estimates were already obtained in [CAS18] by direct analysis
of the entropy production functional of the nonlinear equation, with a slightly better
constant actually: α(ν) ⩾ 1/(n + 1) in both cases. Moreover, [CAS18] also shows
that the 1/n decay of the constant α(ν) in these cases is optimal up to a constant
independent of n. Besides extending the bounds of [CAS18] to all strictly separating
distribution ν, an interesting feature of Theorem 1.12 is that its proof takes a
completely different route. Namely, it is based on the implementation in our setting
of Kac’s original idea. More precisely, (1.20) is derived from the uniform control
on entropy production provided by Theorem 1.8, see also Remark 1.9, together
with the approximation, as N → ∞, of both H(p |π) and H(pt |π) in terms of the
corresponding entropies for the N -particle system.

We also obtain the following general bounds on the convergence to equilibrium for
the nonlinear chain. Recall the definition (1.2) of the constant r(ν) ∈ (0, 1).

Theorem 1.13. — Assume that ν is separating. For any p ∈ P(Ω), let pt denote
the solution of (1.1) with p0 = p and let π = ⊗n

i=1pi denote the associated equilibrium.
Then for all t ⩾ 0,

H (pt | π) ⩽
1
2 n(n− 1)H (p | π) e−D(ν) t,(1.21)

where D(ν) := 1 − r(ν). Moreover, for the total variation distance we have

∥pt − π∥TV ⩽ 1
2 n(n− 1) ∥p− π∥TV e

−D(ν) t.(1.22)

We note that an estimate similar to (1.22) was obtained in [RRS98] for a discrete
time version of the nonlinear process. To prove Theorem 1.13 we use a coupling
argument similar to that of [RRS98], together with an explicit construction of the
continuous time solution pt in terms of all possible collision histories, which goes
back to the pioneering works of Wild [Wil51] and McKean [McK66, McK67], see
also [CCG00]. It is interesting to note that in the case of uniform crossover one has
r(ν) = 1/2 and thus (1.21) provides an exponential decay which is much faster, as
n becomes large, than the one provided by (1.20). Moreover, as mentioned, the 1/n
rate is known to be optimal up to a constant independent of n for the estimate (1.20).
This mismatch can be explained by observing that, because of the possibly large
prefactor, (1.22) only provides information about the large time behavior while (1.20)
expresses a contraction property of the relative entropy at all times, and that some
particular initial distributions p may have a slow start in the relative entropy decay;
see Lemma 4.5 below for a concrete example.

Finally, we remark that the rate of exponential decay D(ν) = 1 − r(ν) in The-
orem 1.13 is optimal, in the sense that t−1 log ∥pt − π∥TV, as t → ∞, cannot be
smaller than −D(ν), see Remark 3.4. We refer to [DGR09] for a related result on
the optimal rate of decay in the context of Kac model.
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1.7. Organization of the paper

In Section 2 we present the main preliminary facts concerning the local central
limit theorem and its applications to the proof of chaos results. In Section 3 we prove
the uniform in time propagation of chaos stated in Theorem 1.5. This section also
contains the proof of Theorem 1.13. Section 4 is devoted to the proofs of Theorem 1.8,
Proposition 1.11, and Theorem 1.12. In the appendix we give the detailed proof of
the local central limit theorem statement used in the main text.

Acknowledgements

We would like to thank Arnaud Guillin, Cyril Labbé, Hubert Lacoin and Alistair
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2. Local Central Limit Theorem and Chaos

A probability measure p ∈ P(Ω) induces a probability µ on X := {0, 1}K where
K = ∑n

i=1 qi, via the map
σ ∈ Ω 7→ ξi,x = 1(σi = x) , i = 1, . . . , n ; x ∈ {1, . . . , qi}.(2.1)

That is, µ is the push forward of p by the above map. Note that we did not include
the indicator variable 1(σi = 0) since this is uniquely determined as the indicator of
the event ξi,x = 0 for all x ∈ {1, . . . , qi}. When qi = 1 for all i, then Ω = {0, 1}n can
be identified with X, σ with ξ, and µ with p.

2.1. Central limit theorem

The next results are concerned with the behavior of the sum of independent copies
ξ(1), . . . , ξ(N) of a random variable ξ with values in X and distribution µ ∈ P(X):

SN =
N∑

j=1
ξ(j).

Thus, SN is a random vector in {0, . . . , N}K . We use the notation ⟨t, s⟩ = ∑
i,x ti,xsi,x

if t and s are indexed by i = 1, . . . , n and x = 1, . . . , qi. We call V1 the covariance
matrix of µ,

V1(i, x; i′, x′) = µ(ξi,xξi′,x′) − µ(ξi,x)µ(ξi′,x′), i = 1, . . . , n , x = 1, . . . , qi

Thus V1 is a symmetric nonnegative definite K × K matrix. If detV1 ≠ 0 we say
that µ is nondegenerate. The central limit theorem asserts that if µ is nondegenerate,
then as N → ∞ one has the weak convergence

1√
N
V

−1/2
1

(
SN − µ⊗N(SN)

)
−→ N(0,1K) ,(2.2)
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where µ⊗N(SN) ∈ [0, N ]K is the mean of the vector SN under the product measure
µ⊗N , and 1K denotes the K ×K identity matrix, so that N(0,1K) is the standard
normal in K dimensions. Note that when µ is induced by a measure p ∈ P(Ω) as
described in (2.1), then µ⊗N(SN)i,x = Nπi,x for all i, x, where πi,x are the marginals
of p.

The statement (2.2) clearly requires that µ is nondegenerate. However, one can
obtain similar statements in the case of degenerate measures, provided one reduces
to the nondegenerate modes by eliminating the degenerate ones. More precisely, one
can take the eigenvectors of V1 with nonzero eigenvalues as the new variables. A
simple example is obtained if e.g. qi ≡ 1 and µ gives probability 1/2 to all 1’s and
probability 1/2 to all 0’s. Here one simply removes all variables but one.

2.2. Local central limit theorem

We will need a local version of the central limit theorem. For this we assume the
following stronger notion of nondegeneracy, which we refer to as irreducibility.

Definition 2.1. — A measure µ ∈ P(X) is called irreducible if for all i =
1, . . . , n, for all x ∈ {0, . . . , qi}, there exists ξ ∈ X such that µ(ξ) and µ(ξ(i,x)) are
both positive, where ξ(i,x) denotes the vector ξ with the (i, x)th coordinate flipped,
that is ξ(i,x)

j,y = ξj,y for all (j, y) ̸= (i, x), and ξ
(i,x)
i,x = 1 − ξi,x.

It is immediate to check that if p ∈ P(Ω) is irreducible in the sense of Definition 1.3
then the measure µ induced on X by p as in (2.1) is irreducible in the sense of
Definition 2.1.

Proposition 2.2. — Suppose µ ∈ P(X) is irreducible. Then there exists a finite
constant C = C(µ) such that for all N ∈ N,

max
MN

∣∣∣∣∣∣ µ⊗N (SN = MN) − e− 1
2 ⟨zN ,zN ⟩

(2πN)K/2
√

detV1

∣∣∣∣∣∣ ⩽ C

N (K+1)/2 ,(2.3)

where
zN := 1√

N
V

−1/2
1

(
MN − µ⊗N(SN)

)
,

and the maximum is over all possible values MN ∈ {0, . . . , N}K .

Noting that ΩρN
= {SN = MN} with MN = NρN , and that in this case

⟨zN , zN⟩ = N
〈
ρN − π, V −1

1 (ρN − π)
〉
,

the following is an immediate corollary of Proposition 2.2.

Corollary 2.3. — Suppose µ ∈ P(X) is irreducible, and let ρN be an admissible
sequence such that

⟨ρN − π, ρN − π⟩ = O(1/N),(2.4)
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where π = µ(ξ) is the vector of the expected values of µ. Then there exists a constant
c = c(µ) > 0 such that for N sufficiently large

µ⊗N (ΩρN
) ⩾

c

NK/2 .(2.5)

In particular,

lim
N → ∞

1
N

log µ⊗N (ΩρN
) = 0.(2.6)

We note that the condition (2.4) corresponds to “normal” fluctuations ⟨zN , zN⟩ =
O(1), and that the corollary applies, in particular, to the canonical sequence ρN = ρπ

defined in (1.8), since ⟨ρπ − π, ρπ − π⟩ = O(1/N2) in that case.
The proof of Proposition 2.2 will be given in the appendix. Here we pause for some

remarks on the assumptions we made, and then discuss the main applications to
chaos.

Lemma 2.4. — If µ is irreducible then it is nondegenerate. The converse does
not hold.

Proof. — If µ is degenerate, then for any fixed (i, x), the variable ξi,x can be written
µ-a.s. as a nontrivial linear combination of the other variables ξj,y, (j, y) ̸= (i, x).
In particular, the value of ξi,x is µ-a.s. determined by the other variables. But this
is not possible if µ is irreducible since by assumption there is always at least one
value of all the other variables for which both values ξi,x = 0, 1 happen with positive
µ probability. This proves the first assertion. To violate the converse, consider the
following example: n = 3, qi ≡ 1, so that X = {0, 1}3 and suppose that µ gives
probability 1/4 to the following four configurations 101, 110, 011, 000, and probability
0 to the four remaining configurations. Then one checks that V1 = 1

413. In particular,
µ is nondegenerate. However, µ is not irreducible since the condition in Definition 2.1
is violated at i = 1. □

Let us remark that some irreducibility assumption is necessary for the local CLT
statement in Proposition 2.2. Consider the same counterexample from the proof of
Lemma 2.4. In this case one checks easily that if the first component of SN is even,
then the sum of the remaining two components must be even as well. This shows that
the event SN = MN has probability zero for many admissible sequences such that
Corollary 2.3 would predict µ⊗N(SN = MN) > 0. Thus, Proposition 2.2 does not
hold for all nondegenerate µ. The next lemma elucidates the role of the irreducibility
assumption.

Lemma 2.5. — Suppose µ is irreducible. Then there exists a constant c = c(µ) > 0
such that the characteristic function ψ(t) = µ(ei⟨t,ξ⟩), t ∈ RK , satisfies

|ψ(t)| ⩽ e−c⟨t,t⟩ , for all t ∈ [−π, π]K .

Proof. — We write

|ψ(t)|2 =
∣∣∣µ [ei⟨t,ξ⟩

]∣∣∣2 = µ [cos⟨t, ξ⟩]2 + µ [sin⟨t, ξ⟩]2 =
∑

ξ, ξ′ ∈ X

µ(ξ)µ(ξ′) cos⟨t, ξ − ξ′⟩,
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where the last equation uses the identity cos(α− β) = sin(α) sin(β) + cos(α) cos(β).
If |θ| ⩽ π, then cos(θ) ⩽ 1 − 2θ2/π2, and therefore,

cos⟨t, ξ − ξ′⟩ ⩽

1 − 2⟨t,ξ−ξ′⟩2

π2 if |ξ − ξ′|1 = 1
1 if |ξ − ξ′|1 ̸= 1

where |ξ − ξ′|1 = ∑
i,x |ξi,x − ξ′

i,x|. Since |ξ − ξ′|1 = 1 iff ξ′ = ξ(i,x) for some i, x,

|ψ(t)|2 ⩽ 1 − 2
π2

∑
i,x

∑
ξ ∈ X

µ(ξ)µ
(
ξ(i,x)

)
t2i,x ⩽ 1 − 2c⟨t, t⟩,

where
c := 1

π2 inf
i,x

∑
ξ ∈ X

µ(ξ)µ
(
ξ(i,x)

)
.

The irreducibility of µ is equivalent to c > 0. Using x ⩽ e
1
2 (x2−1), x ∈ [0, 1], with

x = |ψ(t)|, we conclude
|ψ(t)| ⩽ e−c ⟨t,t⟩. □

We turn to the applications to Kac chaos and entropic chaos.

2.3. Kac chaos

Recall the definition of γ(p, ρN) and of the canonical tensor product γN(p) in
Definition 1.2.

Theorem 2.6. — Suppose p ∈ P(Ω) is irreducible and let ρN be an admissible
sequence such that

⟨ρN − π, ρN − π⟩ = O(1/N).(2.7)
Then for all k = 1, . . . , N ,∥∥∥Pkγ(p, ρN) − p⊗k

∥∥∥
TV

⩽
C k√
N
,(2.8)

for some constant C = C(p). Moreover, when ρN = ρπ, the canonical tensor product
γN(p) satisfies the stronger estimate∥∥∥PkγN(p) − p⊗k

∥∥∥
TV

⩽
C k

N
.(2.9)

Proof. — We prove (2.8) first, and then show how to obtain (2.9). Let ξ̂i,x(j) =
ξi,x(j) − (ρN)i,x. We use the shorthand notation γN = γ(p, ρN) and µN = p⊗N . For
any f : ΩN 7→ R we have

γN(f) − µN(f) =
µN(f(1ΩρN

− µN(ΩρN
))

µN(ΩρN
) ,(2.10)

Since ΩρN
= {SN = NρN}, using the Fourier transform we write

µN(ΩρN
) = 1

(2π)K

∫
[−π,π]K

dt µN

(
ei⟨t,ŜN⟩

)
,(2.11)
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where ŜN = ∑N
j=1 ξ̂(j). Set VN := NV1. The product structure of µN and the change

of variables s = V
1/2

N t =
√
NV

1/2
1 t imply

µN(ΩρN
) = 1

BN(2π)K

∫
QN,K

ds µN

(
e

i

〈
V

−1/2
N s,ξ̂(1)

〉)N

,(2.12)

where QN,K = V
1/2

N [−π, π]K and BN =
√

detVN = NK/2√detV1.
In the same way, for any f = f(ξ(1), . . . , ξ(k)), we have

(2.13) µN(f 1ΩρN
)

= 1
BN(2π)K

∫
QN,K

ds µN

(
e

i

〈
V

−1/2
N s,ξ̂(1)

〉)N−k

µN

(
f e

i

〈
V

−1/2
N s,Ŝk

〉)
.

In conclusion, we have

γN(f) − µN(f) =

∫
QN,K

dsψN(s)N−kµN

(
f ; ei

〈
V

−1/2
N s,Ŝk

〉)
∫

QN,K
dsψN(s)N

,(2.14)

where

ψN(s) = µN

(
e

i

〈
V

−1/2
N s,ξ̂(1)

〉)
,

and we use the notation µN(f ; g) = µN(fg) − µN(f)µN(g) for the covariance of
f, g. From Corollary 2.3 we known that (2.12) is at least cN−K/2, and thus the
denominator in (2.14) is at least some constant c′ > 0. Therefore, it suffices to show
that the numerator is bounded by∫

QN,K

ds |ψN(s)|N−k

∣∣∣∣∣µN

(
f ; ei

〈
V

−1/2
N s,Ŝk

〉)∣∣∣∣∣ ⩽ C |f |∞
k√
N
.(2.15)

From Lemma 2.5 we know that |ψN(s)| ⩽ e−a⟨s,s⟩/N for some constant a = a(p) > 0.
Notice that we can assume without loss of generality that k ⩽ N/2, since otherwise
the result (2.8) is trivial. Thus |ψN(s)|N−k ⩽ e−a⟨s,s⟩/2 and it is sufficient to show
that ∣∣∣∣∣µN

(
f ; ei

〈
V

−1/2
N s,Ŝk

〉)∣∣∣∣∣ ⩽ C |f |∞
k√
N

⟨s, s⟩,(2.16)

for all s ∈ QN,K . Recalling that |eiθ − 1| ⩽ |θ|, θ ∈ R, and using Schwarz’ inequality,∣∣∣∣∣µN

(
f ; ei

〈
V

−1/2
N s,Ŝk

〉)∣∣∣∣∣ ⩽ 1√
N

|f |∞ µN

(〈
V

−1/2
1 s, Ŝk

〉2
)
.(2.17)

Now we observe that

(2.18) µN

(〈
V

−1/2
1 s, Ŝk

〉2
)

= k2⟨V −1/2
1 s, π − ρN⟩2 + k⟨s, s⟩

⩽ k2
〈
s, V −1

1 s
〉

⟨π − ρN , π − ρN⟩ + k⟨s, s⟩ ⩽ Ck⟨s, s⟩,
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where we use µN(Ŝk) = k (π − ρN), the independence of the ξ̂(j), and ⟨π − ρN , π −
ρN⟩ ⩽ C/k which follows from the assumption ⟨π − ρN , π − ρN⟩ = O(1/N). This
proves (2.8).

To prove (2.9), note that it is sufficient to prove (2.16) with
√
N replaced by N in

the right hand side. For this, we are going to use the fact that ⟨π − ρN , π − ρN⟩ =
O(1/N2) when ρN = ρπ, see (1.8). Let us first consider the function f̃ = f−g, where

g(ξ(1), . . . , ξ(k)) = 1
k

〈
V −1

1 v, Ŝk

〉
, v = µN

(
f ; Ŝk

)
.(2.19)

The function g can be seen as a linear approximation of f . Notice that

µN

(
f − g ;

〈
V

−1/2
N s, Ŝk

〉)
= 0.(2.20)

Indeed, by independence µN((Ŝk)i,x; (Ŝk)j,y) = kV1(i, x; j, y), and therefore for all s,

µN

(
g ;
〈
V

−1/2
N s, Ŝk

〉)
=
〈
v, V

−1/2
N s

〉
= µN

(
f ;

〈
V

−1/2
N s, Ŝk

〉)
.(2.21)

Recalling that |eiθ − 1 − iθ| = |R(θ)| ⩽ 1
2θ

2, θ ∈ R, from (2.20) we have

(2.22)
∣∣∣∣∣µN

(
f − g ; ei

〈
V

−1/2
N s,Ŝk

〉)∣∣∣∣∣
2

⩽
1
N2 (Var(f) + Var(g))µN

(〈
V

−1/2
1 s, Ŝk

〉4
)
,

where we use the inequality |µN(f − g;R)|2 ⩽ 2(Var(f) + Var(g))µN(R2), and we
use Var for the variance w.r.t. µN . Next, observe that Var(f) ⩽ |f |2∞ and

Var(g) = 1
k

〈
V −1v, v

〉
⩽ C Var(f) ⩽ C|f |2∞.

We are going to show that

µN

(〈
V

−1/2
1 s, Ŝk

〉4
)

⩽ Ck2⟨s, s⟩2 .(2.23)

Suppose for a moment that (2.23) holds. Then we conclude that∣∣∣∣∣µN

(
f − g ; ei

〈
V

−1/2
N s,Ŝk

〉)∣∣∣∣∣ ⩽ C |f |∞
k

N
⟨s, s⟩.(2.24)

This proves |γN(f̃) − µN(f̃)| ⩽ C |f |∞ k/N . However, noting that γN(g) = 0, we
have

|γN(f) − µN(f)| ⩽
∣∣∣γN(f̃) − µN(f̃)

∣∣∣+ |µN(g)|.(2.25)

The desired conclusion |γN(f) − µN(f)| ⩽ C |f |∞ k/N then follows from

|µN(g)| ⩽
∣∣∣〈V −1

1 v, π − ρπ
〉∣∣∣

⩽
〈
V −1

1 v, V −1
1 v

〉1/2
⟨π − ρπ, π − ρπ⟩1/2 ⩽

C|f |∞k
N

,
(2.26)

where we use ⟨π − ρπ, π − ρπ⟩ = O(1/N2), and ⟨V −1
1 v, V −1

1 v⟩ ⩽ Ck|f |∞.
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Thus, it remains to prove (2.23). Notice that it is sufficient to prove

µN

(〈
Ŝk, Ŝk

〉2
)

⩽ Ck2 .(2.27)

We write ξ̃ = ξ̂ − µ(ξ̂) and S̃k = Ŝk − µN(Ŝk) for the corresponding sums. Then one
checks that

(2.28)
〈
Ŝk, Ŝk

〉2
⩽
〈
S̃k, S̃k

〉2

+ Ck
〈
S̃k, S̃k

〉3/2
⟨π − ρπ, π − ρπ⟩1/2 + Ck2

〈
S̃k, S̃k

〉
⟨π − ρπ, π − ρπ⟩

+ Ck3
〈
S̃k, S̃k

〉1/2
⟨π − ρπ, π − ρπ⟩3/2 + Ck4 ⟨π − ρπ, π − ρπ⟩2 .

Since ⟨π−ρπ, π−ρπ⟩ = O(1/N2) we can restrict to prove (2.27) for S̃k instead of Ŝk.
Since ξ̃ are centered the estimate follows easily by expanding ⟨S̃k, S̃k⟩2 and observing
that the dominant terms are of the form ⟨ξ̃(i), ξ̃(j)⟩2, and their contribution is of
order k2. □

We notice that the trick of replacing f by f − g in the proof of Theorem 2.6
allowed us to obtain the decay rate O(1/N) instead of O(1/

√
N). This idea was used

in [CAM02] for the proof of a related “equivalence of ensembles” result.

Corollary 2.7. — For any irreducible p ∈ P(Ω), if η ∈ ΩN is distributed
according to the canonical tensor product γN(p), letting λη = 1

N

∑N
j=1 δη(j) denote

the corresponding empirical measure,

E
[
∥p− λη∥TV

]
⩽

C√
N
,(2.29)

for some constant C = C(p). Moreover, the same estimate holds with
√
N replaced

by N1/4 if η is distributed according to γ(p, ρN), for any admissible sequence ρN

satisfying (2.4).

Proof. — We write

(2.30) E
[
∥p− λη∥TV

]

= 1
2
∑

σ ∈ Ω
E [|λη(σ) − p(σ)|] ⩽

1
2

∑
σ ∈ Ω

p(σ)E
[
(hη(σ) − 1)2

]1/2

,

where hη(σ) = λη(σ)
p(σ) and we have used Schwarz’ inequality for the product measure

p× E. Now,∑
σ

p(σ)E
[
(hη(σ) − 1)2

]
= −1 + 1

N
E
[

1
p(η(1))

]
+ N(N − 1)

N2 E
[

1η(1)=η(2)

p(η(1))

]
,(2.31)

where we use

E
[

1
p(η(1))

]
=
∑

σ

P(η(1) = σ)
p(σ) , E

[
1η(1)=η(2)

p(η(1))

]
=
∑

σ

P(η(1) = η(2) = σ)
p(σ) .
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Since E [1/p(η(1))] ⩽ 1/p∗, where p∗ = minσ: p(σ) > 0 p(σ) we see that the second
term in (2.31) is bounded by 1/(p∗N). Next, consider the function f(η(1), η(2)) =
1η(1)=η(2)/p(η(1)). Note that p⊗2(f) = 1. Then, Theorem 2.6 implies∣∣∣∣∣−1 +

∑
σ

P(η(1) = η(2) = σ)
p(σ)

∣∣∣∣∣ ⩽ C

p∗N
.

Since N(N − 1)/N2 = 1 − 1/N , we have shown that (2.31) is bounded by C/N
for some new constant C depending only on p. Together with (2.30) this concludes
the proof of (2.29). Finally, if instead η is distributed according to γ(p, ρN), for an
arbitrary admissible sequence ρN satisfying (2.4) we may repeat all the steps above
and use the first part of Theorem 2.6 to conclude that (2.31) this time is bounded
by C/

√
N , which implies the claimed bound with N1/4 in place of

√
N . □

2.4. Entropic chaos and Fisher chaos

The next result shows how to use the local CLT to obtain convergence of the
relative entropy of tensor products. Following [CCLR+10] we refer to this as entropic
chaos.

Proposition 2.8. — Suppose p ∈ P(Ω) is irreducible and let ρN be an admissible
sequence such that

⟨ρN − π, ρN − π⟩ = O(1/N).(2.32)
Then

lim
N → ∞

1
N
HN (γ(p, ρN) | γ(π, ρN)) = H (p |π) .(2.33)

Proof. — We write

HN (γ(p, ρN) | γ(π, ρN)) = γ(p, ρN)
[
log

(
p⊗N

π⊗N

)]
+ log

(
π⊗N(ΩρN

)
p⊗N(ΩρN

)

)
.(2.34)

From Corollary 2.3 we obtain

lim
N → ∞

1
N

log
(
π⊗N(ΩρN

)
p⊗N(ΩρN

)

)
= 0.(2.35)

By symmetry, the first term in (2.34) equals

N P1γ(p, ρN)
[
log

(
p

π

)]
.

Therefore the result follows from Theorem 2.6. □

Another consequence of the local CLT is the following upper semi-continuity
property, see [CCLR+10] for a similar statement in the kinetic setting.

Proposition 2.9. — For each N, let µ(N) be a symmetric probability on ΩρN

and let µk be a probability on Ωk such that
Pkµ

(N) −→ µk

TOME 7 (2024)



1264 P. CAPUTO & D. PARISI

weakly for some integer k. Then, for any admissible sequence satisfying (2.4),

H
(
µk

∣∣∣ π⊗k
)

k
⩽ lim inf

N → ∞

HN

(
µ(N)

∣∣∣ γ(π, ρN)
)

N
.(2.36)

Proof. — From Shearer inequality one has∑
A ∈ A

H
(
PAµ

(N)
∣∣∣PAπ

⊗N
)
⩽ n+(A)H

(
µ(N)

∣∣∣ π⊗N
)
,(2.37)

where A is any family of sets covering [N ] = {1, . . . , N}, n+(A) = maxj #{A ∈
A : A ∋ j}, and PAν denotes the marginal on the variables {η(j), j ∈ A} of a
probability ν ∈ P(ΩN), see Lemma 4.1 below for more details. If we take A = {A ⊂
[N ] : |A| = k}, then n+(A) =

(
N−1
k−1

)
. Moreover, by symmetry PAµ

(N) = Pkµ
(N) for

all A ∈ A. Since
(

N
k

)
/
(

N−1
k−1

)
= N/k, this proves

H
(
Pkµ

(N)
∣∣∣ π⊗k

)
⩽

k

N
H
(
µ(N)

∣∣∣ π⊗N
)
.(2.38)

See also [DMM01, Lemma 3.9], where (2.38) was derived with k
N

replaced by k
N

(1 +
O( k

N
)) in the right hand side. On the other hand,

HN

(
µ(N)

∣∣∣ π⊗N
)

= HN

(
µ(N)

∣∣∣ γ(π, ρN)
)

− log
(
π⊗N(ΩρN

)
)
.(2.39)

The left hand side of (2.38) converges by assumption to H
(
µk | π⊗k

)
. The desired

conclusion then follows from Corollary 2.3. □

Remark 2.10. — Both Proposition 2.8 and Proposition 2.9 hold with π replaced
by any irreducible p′ ∈ P(Ω) with the same marginals as π.

One can also establish the following analogue of the Fisher chaos property discussed
in [HM14]. Observe that if µN,t = µNe

tLN , for some µN ∈ P(ΩρN
), then

d

dt
H (µN,t | γ(π, ρN))|t=0+

= −DN(fN) ,(2.40)

where fN := µN/γ(π, ρN), and

DN(fN) = 1
2N

∑
j < l

∑
A

ν(A) γ(π, ρN)
[(
f j,l,A

N − fN

)
log f

j,l,A
N

fN

]
.(2.41)

Here we use the notation f j,l,A
N (η) = fN(ηj,l,A), where ηj,l,A is defined in (1.5). On

the other hand, for the nonlinear equation (1.1) one has
d

dt
H (pt | π)|t=0+

= −Dπ(f) ,(2.42)

where f := p/π, and

Dπ(f) = 1
2
∑
A

ν(A)π
[(
fAfAc − f

)
log f

AfAc

f

]
,(2.43)

where fA(σ) = pA(σ)/πA(σ) is the density of the marginal of p on A with respect
to π.
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Proposition 2.11. — Under the same assumptions of Proposition 2.8,

(2.44) lim
N → ∞

DN(fN)
N

= Dπ(f),

where fN := γ(p, ρN)/γ(π, ρN), and f := p/π.

Proof. — Since

DN(fN) = − 1
N

∑
j < l

∑
A

ν(A) γ(π, ρN)
[(
f j,l,A

N − fN

)
log fN

]
.(2.45)

and
Dπ(f) = −2

∑
A

ν(A) π
[(
fAfAc − f

)
log f

]
,(2.46)

it suffices to show that for every j, l ∈ [N ] and A ⊂ [n] one has

lim
N→+∞

∑
η ∈ ΩρN

γ(π, ρN)(η)
(
fN

(
ηj,l,A

)
− fN(η)

)
log (fN(η))

= 2
∑

σ ∈ Ω
(pA(σA)pAc (σAc) − p(σ)) log

(
p(σ)
π(σ)

)
.

Note that∑
η ∈ ΩρN

πN(η) (fN(ηj,l,A) − fN(η)) log (fN(η))

=
∑

η ∈ ΩρN

∏
ℓ̸=j,l p(η(l))
p⊗N (ΩρN

)
(
p
(
ηj,l,A(j)

)
p
(
ηj,l,A(l)

)

−p(η(l))p(η(j))) log
N∏

r=1

p(η(r))
π(η(r))

=
∑

η(l),η(j)

p⊗(N−2)
(
Ωη(j),η(l)

ρN

)
p⊗N (ΩρN

)
(
p
(
ηj,l,A(j)

)
p
(
ηj,l,A(l)

)

−p(η(l))p(η(j))) log p(η(l))p(η(j))
π(η(l))π(η(j)) ,

where Ωη(j),η(l)
ρN

is the event∑
ℓ ̸= j,l

1(ηi(ℓ) = x) = (N − 2)(ρ̃N)i,x , ∀ i, x(2.47)

and, for any fixed η(j), η(l), ρ̃N denotes the density

(ρ̃N)i,x = N

N − 2 (ρN)i,x − 1
N − 2 (1(ηi(j) = x) + 1(ηi(l) = x)) .

Therefore, it is sufficient to show that

p⊗(N−2)
(
Ωη(j),η(l)

ρN

)
p⊗N (ΩρN

) → 1,(2.48)
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for all i, j ∈ [N ], for all fixed values of η(j), η(l) ∈ Ω. We note that both ρN , ρ̃N

satisfy condition (2.4). Moreover, writing

zN =
√
N V

−1/2
1 (ρN − π) , z̃N =

√
N V

−1/2
1 (ρ̃N − π) ,

we see that
⟨zN , zN⟩ − ⟨z̃N , z̃N⟩ → 0 , N → ∞,

for all fixed values of η(j), η(l). The desired claim (2.48) then follows from Proposi-
tion 2.2. □

3. Uniform in time propagation of chaos

The main goal in this section is to prove Theorem 1.5. We first introduce some
notation. Let λη ∈ P(Ω) be the empirical measure λη := 1

N

∑N
i=1 δη(i), where η :=

(η(1), . . . , η(N)) ∈ ΩN . We consider the Wasserstein distance on P(Ω) associated
to the Hamming distance on Ω:

W (p, q) := inf
Γ ∈ Π(p,q)

∑
σ, σ′ ∈ Ω

Γ(σ, σ′)
n∑

i=1
1σi ̸=σ′

i
,(3.1)

where p, q ∈ P(Ω), and Π(p, q) denotes the set of all couplings Γ of p and q. We
remark that the total variation distance ∥p−q∥TV is defined as above with∑n

i=1 1σi ̸=σ′
i

replaced by 1σ ̸=σ′ and thus one has
∥p− q∥TV ⩽ W (p, q) ⩽ n ∥p− q∥TV.(3.2)

In contrast with the total variation distance, the distance W has a convenient
monotonicity along the evolution, see Lemma 3.8 and Remark 3.9 below. Recall the
definition of the non-separation probability r(ν) from (1.2).

Theorem 3.1. — Assume that µN ∈ P(ΩN) is p−chaotic and the measure ν is
separating. Then for all k ∈ N and any function of the form ϕk := ϕ1 ⊗ · · · ⊗ ϕk :
Ωk 7→ R, where ϕi : Ω 7→ R, and such that ∥ϕk∥∞ ⩽ 1, the following inequality holds

(3.3)
∣∣∣PkµN,t(ϕk) − p⊗k

t (ϕk)
∣∣∣

⩽
2k(k − 1)

N
+ 4k2n5

D(ν)N
(
1 − e−D(ν) t

)
+ 2k µN [W (p, λχN

)] ,

where χN ∈ ΩN has distribution µN , and D(ν) := 1 − r(ν).

The proof of Theorem 3.1 follows the steps of a general approach, the so called
“abstract theorem”, see [Grü71, MM13, MMW15], see also [CD22] for a review. In
our discrete setting many aspects of this approach take a simpler form, and no extra
assumption on the initial distribution is needed besides the p-chaoticity for some
p ∈ P(Ω). This general approach requires however several model-specific inputs. Our
main original contribution here consists in establishing the key estimates stated in
Theorem 3.2 and Theorem 3.5 below, where we prove new contraction inequalities for
both the non linear and the linearized evolutions associated to (1.1). Before proving
Theorem 3.1, let us show that it implies Theorem 1.5.
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3.1. Proof of Theorem 1.5

It is well known that
µN [W (p, λχN

)] → 0
if and only if µN is p-chaotic; see e.g. [CD22, Lemma 3.34]. This, combined with
the estimate from Theorem 3.1, proves the uniform in time propagation of chaos
asserted in Theorem 1.5. To prove the quantitative statement (1.11), it suffices to
show that when µN = γN(p, ρN), then

µN [W (p, λχN
)] ⩽

C1√
N
,(3.4)

where C1 is a constant depending on p and n. This statement follows from Corol-
lary 2.7 by noting that W (p, q) ⩽ n∥p − q∥TV, for any p, q ∈ P(Ω), see (3.2). We
remark that as in Corollary 2.7 one has the same estimate with

√
N replaced by N1/4

if instead of γN(p) we take γ(p, ρN) with an arbitrary admissible ρN satisfying (2.4).
We turn to the proof of Theorem 3.1. We start with some preliminary facts.

3.2. Wild sums and McKean trees

Given f, g : Ω → R, we adopt the notation

(f ◦ g)A := 1
2 (fA ⊗ gAc + gA ⊗ fAc) ,(3.5)

f ◦ g :=
∑

A ⊂ [n]
ν(A)(f ◦ g)A,(3.6)

where fA(σA) := ∑
σAc f(σAσAc). Then the nonlinear equation (1.1) is given by

d

dt
pt = pt ◦ pt − pt.(3.7)

The convolution product defined by f ◦ g is commutative and distributive, but not
associative. Following Wild’s original construction [Wil51] we write the solution
of (3.7) with initial datum p0 = p, as

pt = e−t
∞∑

k=1

(
1 − e−t

)k−1
p(k),(3.8)

where the {p(k)}k ⩾ 1 are probability measures on Ω defined inductively by

p(1) = p, p(k) = 1
k − 1

k−1∑
j=1

p(j) ◦ p(k−j) , k ⩾ 2.(3.9)

The validity of (3.8) can be easily checked by direct inspection, see e.g. the argument
after (3.50) below for a similar computation.

Moreover, following McKean [McK67], we may express p(k) as a weighted sum over
rooted binary trees γ with k leaves. We now recall the details of this construction,
and refer the reader to [CCG00] for further background. Let Γ(k) denote the set
of rooted binary trees with k leaves and call αk(γ), γ ∈ Γ(k), the probability over
Γ(k) obtained by the following procedure. Γ(1) = {γ1} is just the empty tree with
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p p p p

p ◦ p p ◦ p

(p ◦ p) ◦ (p ◦ p)

p p

p ◦ p p

p(p ◦ p) ◦ p

((p ◦ p) ◦ p) ◦ p

Figure 3.1. Two possible trees γ, γ′ ∈ Γ(4), and the corresponding distributions
Cγ(p) = (p ◦ p) ◦ (p ◦ p) and Cγ′(p) = ((p ◦ p) ◦ p) ◦ p.

only the root with α1(γ1) = 1, and Γ(2) = {γ2} where γ2 is the unique tree obtained
by adding two children to the root, with α2(γ2) = 1. Then, recursively, for k ⩾ 2,
for any γk−1 ∈ Γ(k − 1), consider all possible trees γi

k−1 ∈ Γ(k), i = 1, . . . , k − 1,
obtained by adding two children to the ith leaf of γk−1, and for any γ ∈ Γ(k), set

αk(γ) =
∑

γk−1 ∈ Γ(k−1)
αk−1(γk−1)

k−1∑
i=1

1
(
γ = γi

k−1

)
k − 1 .

This defines a probability αk on Γ(k), for any k ∈ N, and one checks, recursively,
that for all k ⩾ 2,

αk(γ) = 1
k − 1αj(γl)αk−j(γr),(3.10)

where γl and γr denote respectively the subtree of γ rooted at the left child of the
root and the subtree of γ rooted at the right child of the root, while j denotes the
number of leaves in γl. Then, by induction over k it follows that for all k ∈ N,

p(k) =
∑

γ ∈ Γ(k)
αk(γ)Cγ(p),(3.11)

where Cγ(p) ∈ P(Ω) is described as follows. Each internal node of γ represents a
collision and the tree γ describes the collision history. Then Cγ(p) represents the
distribution obtained at the root after all collisions from γ have been performed,
starting with the distribution p at each leaf of γ.

For example, if k = 3, there are only two trees γ, γ′ ∈ Γ(3), with α3(γ) = α3(γ′) =
1/2 and

Cγ(p) = (p ◦ p) ◦ p = p ◦ (p ◦ p) = Cγ′(p).(3.12)

We refer to Figure 3.1 for two examples of Cγ(p) for γ ∈ Γ(4).
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Since each collision is of the form q ◦ q′ for some q, q′ ∈ P(Ω) and since by (3.5)
one has

p ◦ q =
∑

A ⊂ [n]
ν̄(A) pA ⊗ qAc ,(3.13)

where ν̄(A) = 1
2(ν(A)+ν(Ac)), one can write the following expansion for the resulting

measure at the root:
Cγ(p) =

∑
A⃗ ∈ Vk−1

n

ν(A⃗)CA⃗
γ (p),(3.14)

where Vn is the set of subsets of [n], so that A⃗ ∈ Vk−1
n represents a pattern A⃗ =

(A1, . . . , Ak−1),

(3.15) ν(A⃗) =
k−1∏
i=1

ν̄(Ai)

and CA⃗
γ (p) ∈ P(Ω) is the distribution computed as follows. Each internal node vi,

i = 1, . . . , k − 1, in γ (in some fixed order) is associated with the set Ai, and we
attach the mark Ai to the edge connecting vi to its left child and the mark Ac

i to the
edge connecting vi to its right child in γ. In this way we obtain a tree γ with marks
on all its edges. Let di denote the depth of the ith leaf of γ (e.g. counting from the
leftmost leaf), and consider pVi(A⃗), the marginal of the measure p on the subset

Vi(A⃗) := ∩di
j=1A

i
j,(3.16)

where Ai
1, . . . , A

i
di

are the marks encountered along the edges of the unique path
from the root to the ith leaf. Then CA⃗

γ (p) is given by

CA⃗
γ (p) = pV1(A⃗) ⊗ · · · ⊗ pVk(A⃗).(3.17)

Note that some of the Vi(A⃗) may be empty. However, they form a partition of [n],
namely Vi(A⃗) ∩ Vj(A⃗) = ∅ for i ≠ j and ∪k

i=1Vi(A⃗) = [n], which can be seen as the
result of a fragmentation process

[n] → (A1, A
c
1) → (A1 ∩ A2, A1 ∩ Ac

2, A
c
1) → · · · →

(
V1(A⃗), · · · , Vk(A⃗)

)
.

As an example, in the case (3.12) we have A⃗ = (A1, A2), and

(p ◦ p) ◦ p =
∑

A1, A2 ⊂ [n]
ν̄(A1)ν̄(A2)pA1 ∩ A2 ⊗ pA1 ∩ Ac

2
⊗ pAc

1
.(3.18)

The proof of (3.11)-(3.14) can be easily done by induction, by splitting the tree
γ ∈ Γ(k) into the left and right subtrees γl, γr and using the relation (3.10), see the
proof of (3.53) below for a closely related explicit computation.

In conclusion, from (3.8), (3.11) and (3.14) we obtain the following representation
of the distribution pt as a convex combination of distributions CA⃗

γ (p):

pt =
∞∑

k=1
βt(k)

∑
γ ∈ Γ(k)

αk(γ)
∑

A⃗ ∈ Vk−1
n

ν(A⃗)CA⃗
γ (p),(3.19)
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where βt(k) := e−t(1 − e−t)k−1 is a probability on N for each t ⩾ 0, αk(γ) is a
probability on Γ(k) for all k, and ν(A⃗) is a probability on Vk−1

n for all k.

3.3. Contractive estimates for the nonlinear semigroup

It is convenient to use the notation St(p) = pt for the solution of (3.7) with initial
datum p0 = p, so that St+s = StSs = SsSt, for all s, t ⩾ 0. This defines the nonlinear
semigroup {St, t ⩾ 0}. We show a contraction property for St when the two initial
distributions p, q have the same marginals, that is pi = qi for all i ∈ [n].

Theorem 3.2. — For any probability measure p, q ∈ P(Ω) such that pi = qi for
all i ∈ [n], all t ⩾ 0,

∥St(p) − St(q)∥TV ⩽ 1
2 n(n− 1) ∥p− q∥TV e

−D(ν)t(3.20)
where D(ν) = 1 − r(ν).

Proof. — From (3.19) we write

St(p) − St(q) =
∞∑

k=1
βt(k)s(k),(3.21)

where
s(k) =

∑
γ ∈ Γ(k)

αk(γ)
∑

A⃗ ∈ Vk−1
n

ν(A⃗)
[
CA⃗

γ (p) − CA⃗
γ (q)

]
.(3.22)

We introduce some further notation in order to handle more explicitly the difference
of probability measures CA⃗

γ (p) − CA⃗
γ (q). For any given γ ∈ Γ(k), and A⃗ ∈ Vk−1

n ,
ϕ : Ω 7→ R, we may write

(3.23) ⟨CA⃗
γ (p) − CA⃗

γ (q), ϕ⟩

=
∑

(x,y) ∈ Ωk × Ωk

µ(x, y)
∑

z ∈ Ω
ϕ(z)

(
1
(
z = u(y, A⃗)

)
− 1

(
z = u(x, A⃗)

))
where x = (xi, i = 1, . . . , k) ∈ Ωk stands for the configurations sampled with q⊗k

over the leaves of γ, y = (yi, i = 1, . . . , k) ∈ Ωk stands for the configurations sampled
with p⊗k over the leaves of γ, and µ(x, y) = ∏k

i=1 µ1(xi, yi) denotes a coupling of these
two product measures, such that for every i = 1, . . . , k, µ1(xi, yi) is the optimal
coupling of (q, p):

∥p− q∥TV =
∑

(x,y) ∈ Ωk × Ωk

µ(x, y)1
(
xi ̸= yi

)
=

∑
xi,yi ∈ Ω

µ1
(
xi, yi

)
1
(
xi ̸= yi

)
.(3.24)

The notation u(x, A⃗) in (3.23) is defined as follows. Note that xi ∈ Ω is a vector
xi = (xi

1, . . . , x
i
n), for every i, with xi

ℓ ∈ {0, . . . , qℓ}, and write xi
A = (xi

ℓ)ℓ ∈ A for
the content of xi on A ⊂ [n]. With this notation, given x ∈ Ωk and A⃗ ∈ Vk−1

n ,
u(x, A⃗) ∈ Ω is defined as the unique configuration such that

u(x, A⃗)Vi(A⃗) = xi
Vi(A⃗)
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for every i = 1, . . . , k. In words, for each i ∈ [k], the content of the configuration
u(x, A⃗) on the set Vi(A⃗) ⊂ V is taken from the configuration xi at the ith leaf. The
validity of (3.23) is thus a consequence of (3.17).

Let ∂γ denote the set of leaves of γ. Notice that

1(z = u(x, A⃗)) =
∏

i ∈ ∂γ

1(zVi(A⃗) = xi
Vi(A⃗))

Let F = F (A⃗, γ) ⊂ ∂γ denote the set of leaves i ∈ ∂γ such that |Vi(A⃗)| > 1, and
write

1(z = u(x, A⃗)) = wF (x, z, A⃗)wF c(x, z, A⃗) ,
where for any S ⊂ ∂γ we write

(3.25) wS(x, z, A⃗) =
∏
i ∈ S

1(zVi(A⃗) = xi
Vi(A⃗)).

We write X = (X i)i=1, ..., k and Y = (Y i)i=1, ..., k for the random variables with
distribution q⊗k and p⊗k respectively. Using the fact that µ is a product over the
leaves, and the fact that p, q have the same marginals, for fixed z ∈ Ω we have

µ
[
wF c

(
X, z, A⃗

)]
=
∑
(x,y)

µ(x, y)
∏

i ∈ F c

1
(
zVi(A⃗) = xi

Vi(A⃗)

)
=
∑
(x,y)

µ(x, y)
∏

i ∈ F c

1
(
zVi(A⃗) = yi

Vi(A⃗)

)
= µ

[
wF c(Y, z, A⃗)

]
,

(3.26)

and
µ
[
w∂γ

(
Y, z, A⃗

)]
=
∑
(x,y)

µ(x, y)1
(
z = u(y, A⃗)

)
= µ

[
wF c

(
X, z, A⃗

)]
µ
[
wF

(
Y, z, A⃗

)]
.

(3.27)

With this notation we rewrite (3.23) as

(3.28)
〈
CA⃗

γ (p) − CA⃗
γ (q), ϕ

〉
=
∑

z ∈ Ω
ϕ(z)

[
µ[w∂γ

(
Y, z, A⃗

)
] − µ[w∂γ

(
X, z, A⃗

)]
,

=
∑

z ∈ Ω
ϕ(z)µ

[
wF c

(
X, z, A⃗

)]
µ
[
wF

(
Y, z, A⃗

)
− wF

(
X, z, A⃗

)]
.

Note that wF (Y, z, A⃗)] ̸= wF (X, z, A⃗) implies that there exists i ∈ F such that
X i ̸= Y i. Therefore, from (3.24) we see that

(3.29)
∑

z ∈ Ω
µ
[
wF c

(
X, z, A⃗

)] ∣∣∣µ [wF

(
Y, z, A⃗

)
− wF

(
X, z, A⃗

)]∣∣∣
⩽

∑
i ∈ F

∑
z ∈ Ω

µ
[
wF c

(
X, z, A⃗

)]
µ
[∣∣∣wF

(
Y, z, A⃗

)
− wF

(
X, z, A⃗

)∣∣∣1 (X i ̸= Y i
)]

⩽ 2
∑
i ∈ F

µ
[
X i ̸= Y i

]
= 2|F | ∥p− q∥TV.
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Therefore, we have shown that (3.22) satisfies∣∣∣〈s(k), ϕ
〉∣∣∣ ⩽ 2 ∥ϕ∥∞ ∥p− q∥TV

∑
γ ∈ Γ(k)

αk(γ)
∑

A⃗ ∈ Vk−1
n

ν(A⃗) |F |.(3.30)

To estimate (3.30), let us call Aj = Aj(γ) the set of A⃗ ∈ Vk−1
n such that |Vj(A⃗)| ⩾ 2,

and let A = ∪k
j=1Aj. If A⃗ /∈ A then all sets Vj(A⃗) are either empty or a single site

and therefore |F | = 0. Moreover, |F | = ∑k
j=1 1(Aj). Therefore we write

∑
A⃗ ∈ Vk−1

n

ν(A⃗) |F | =
k∑

j=1
ν(Aj).(3.31)

To estimate the probability ν(Aj), observe that the event Aj implies that there
exists i1 < i2 ∈ [n] such that {i1, i2} ∈ Vj(A⃗). Moreover, recalling (3.16),

ν
(
{i1, i2} ∈ Vj(A⃗)

)
= ν

(
{i1, i2} ∈ ∩dj

l=1A
j
l

)
= ν̄ ({i1, i2} ∈ A)dj ⩽

(
r(ν)

2

)dj

,

where we use the fact that for any i1 < i2, the probability under ν̄ that {i1, i2} ∈ A
is bounded by r(ν)/2. Indeed, conditionally on not being separated the probability
that both i1, i2 belong to A under ν̄ is 1/2 by symmetry. A union bound then shows
that

ν(Aj) ⩽ 1
2 n(n− 1)

(
r(ν)

2

)dj

.

In conclusion, if we define

ω(γ) :=
k∑

j=1

(
r(ν)

2

)dj

,(3.32)

we obtain, for all k ∈ N,∣∣∣〈s(k), ϕ
〉∣∣∣ ⩽ n(n− 1) ∥ϕ∥∞ ∥p− q∥TV

∑
γ ∈ Γ(k)

αk(γ)ω(γ).(3.33)

From [CCG00, Lemma 1.4], one has, for all ε > 0,∑
γ ∈ Γ(k)

αk(γ)ω(γ) ⩽ Bεe
−aε log k.(3.34)

with aε = (1 − r(ν))/(1 + ε) and Bε = Bε(r(ν), ε). One could use this estimate
to obtain an almost optimal decay rate aε. However, here we obtain the optimal
exponential decay rate by computing the expectation of ω(γ).

Lemma 3.3. — For any t ⩾ 0,

(3.35)
∞∑

k=1
βt(k)

∑
γ ∈ Γ(k)

αk(γ)ω(γ) = e−(1−r(ν))t.

Assuming the validity of (3.35), and using ∥µ − µ′∥TV = 1
2 maxf : ∥f∥∞ ⩽ 1 |µ(f) −

µ′(f)|, from (3.21) and (3.33) we obtain
∥St(p) − St(q)∥TV ⩽ 1

2 n(n− 1) ∥p− q∥TV e
−(1−r(ν))t,(3.36)
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which concludes the proof of Theorem 3.2.
It remains to prove (3.35). For any γ ∈ ∪∞

k=1Γ(k), define Pt(γ) = βt(k)αk(γ), where
k is such that γ ∈ Γ(k). Notice that for any γ ∈ ∪∞

k=1Γ(k),

(3.37) Pt(γ) = 1γ=∅ e
−t + 1γ ̸=∅

∫ t

0
e−sPt−s(γl)Pt−s(γr)ds,

where ∅ denotes the empty tree with one leaf (given by the root), while for γ ̸= ∅
we write γl, γr for the left and right subtrees. Indeed, for γ = ∅ (3.37) is immediate,
while for γ ̸= ∅, supposing γ ∈ Γ(k), and recalling (3.10) one has

Pt(γ) = e−t
(
1 − e−t

)k−1
αk(γ) = e−t

∫ t

0
e−(t−s)

(
1 − e−(t−s)

)k−2
(k − 1)αk(γ)ds

=
∫ t

0
e−se−2(t−s)

(
1 − e−(t−s)

)k−2
αj(γl)αk−j(γr)ds =

∫ t

0
e−sPt−s(γl)Pt−s(γr)ds.

To prove Lemma 3.3, note that the left hand side of (3.35) is given by ∑γ Pt(γ)ω(γ).
Using (3.37) and ω(∅) = 1, we see that

ζ(t) : =
∑

γ

Pt(γ)ω(γ) = e−t + r(ν)
2

∑
γ ̸=∅

∫ t

0
e−sPt−s(γl)Pt−s(γr)(ω(γl) + ω(γr))ds

= e−t + r(ν)
∑

γ

∫ t

0
e−sPt−s(γ)ω(γ)ds = e−t + r(ν)

∫ t

0
e−sζ(t− s)ds.

Differentiating, and integrating by parts the resulting expression one finds ζ̇(t) =
−(1 − r(ν))ζ(t). Since ζ(0) = 1 we obtain ζ(t) = e−(1−r(ν))t, t ⩾ 0. □

With a similar argument we obtain Theorem 1.13.
Proof of Theorem 1.13. — The statement about the total variation distance is

contained in Theorem 3.2. To prove the statement (1.21) about the relative entropy,
we observe that by (3.14), (3.19), and convexity of the relative entropy,

H (pt |π) ⩽
∞∑

k=1
βt(k)

∑
γ ∈ Γ(k)

αk(γ)
∑

A⃗ ∈ Vk−1
n

ν(A⃗)H
(
CA⃗

γ (p)
∣∣∣ π) .(3.38)

Since π is a product measure, using (3.17) we see that for any γ ∈ Γ(k),

H
(
CA⃗

γ (p)
∣∣∣ π) =

k∑
j=1

H
(
pVj(A⃗)

∣∣∣ πVj(A⃗)

)
=

∑
j:|Vj(A⃗)| > 1

H
(
pVj(A⃗)

∣∣∣ πVj(A⃗)

)
,(3.39)

where use the fact that if |Vj(A⃗)| = 1 then H(pVj(A⃗) |πVj(A⃗)) = 0 since p, π have the
same marginals. Furthermore, the monotonicity property of entropy implies that

H
(
pVj(A⃗)

∣∣∣ πVj(A⃗)

)
⩽ H (p | π) .(3.40)

Therefore, repeating the argument in (3.33)-(3.35) we obtain

□(3.41) H (pt | π) ⩽
1
2 n(n− 1)H (p |π) e−(1−r(ν)) t.
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Remark 3.4. — The constant D(ν) = 1 − r(ν) in Theorem 1.13 is optimal in the
sense that, for any recombination measure ν, there are initial distributions p with
the same marginals as π such that

lim inf
t → ∞

1
t

log ∥pt − π∥TV ⩾ −D(ν).(3.42)

To see this, pick i1, i2 ∈ [n] such that r(ν) = Prν (A does not separate i1 and i2),
see (1.2). For simplicity, take Ω = {0, 1}n, π uniform over Ω and p = 1

2δ0 + 1
2δ1.

Consider the event {σi1 = σi2}, and let Bt denote the event that i1 and i2 are not
separated by the fragmentation process at time t. From (3.19) we write pt as an
average over the fragmentation process and note that conditionally on the event
Bt one has pt(σi1 = σi2 | Bt) = 1, while conditionally on the event Bc

t one has
pt(σi1 = σi2 | Bc

t ) = 1/2. Moreover π(σi1 = σi2) = 1/2 and therefore
∥pt − π∥TV ⩾ pt(σi1 = σi2) − π(σi1 = σi2) = P(Bt) + 1

2P(Bc
t ) − 1

2 = 1
2P(Bt).

On the other hand, with the notation from (3.32) and (3.35),
P(Bt) =

∑
γ

Pt(γ)ω(γ) = e−D(ν) t,

which implies (3.42).

3.4. Contraction for the linearized equation

Consider the symmetric bilinear form Q̂(f, g) defined by

(3.43) Q̂(f, g)(η)

= 1
2
∑
A,σ

ν(A)
(
f(σAηAc)g(ηAσAc) + g(σAηAc)f(ηAσAc) − f(σ)g(η) − g(σ)f(η)

)
,

where η ∈ Ω, f, g : Ω 7→ R, and the sum extends to all A ⊂ [n] and σ ∈ Ω. If
p ∈ P(Ω), then Q̂(p, p) = Q(p), where

Q(p) =
∑
A

ν(A)(pA ⊗ pAc − p)

is the generator associated to (1.1), that is the non linear semigroup {St, t ⩾ 0}
satisfies S0(p) = p and ∂tSt(p) = Q(St(p)), t ⩾ 0. Next, consider the differential
equation

∂tht = 2Q̂(qt, ht), h0 = h,(3.44)
where qt = St(q) for some fixed q ∈ P(Ω). Note that it is linear in h. We write its
unique solution as

ht = S̄t(q)(h),
that is S̄t(q)(h) verifies ∂tS̄t(q)(h) = 2Q̂(qt, S̄t(q)(h)), S̄0(q)(h) = h and

S̄t(q)(S̄s(q)(h)) = S̄s(q)(S̄t(q)(h)) = S̄t+s(q)(h).
Our main result concerning the linearized equation reads as follows.
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Theorem 3.5. — For all p, q ∈ P(Ω) such that pi = qi for all i ∈ [n], and
ϕ : Ω 7→ R, for all t > 0,

(3.45)
〈
S̄t(q)(p− q), ϕ

〉
⩽ n(n− 1)∥ϕ∥∞e

−D(ν) t ∥p− q∥TV,

(3.46)
〈
St(p) − St(q) − S̄t(q)(p− q), ϕ

〉
⩽

1
16 n

3(n− 1)(n− 2)∥ϕ∥∞e
−D(ν) t ∥p− q∥2

TV,

where D(ν) = 1 − r(ν).

The proof of Theorem 3.5 requires several steps. We start by giving an explicit
representation of the solution S̄t(q)(p− q) to (3.44) when h = p− q. To this end let
us define, for any k ⩾ 2, γ ∈ Γ(k), the distribution Cγ,p(q) as the measure defined
in (3.14) with the only difference that we take the distribution p instead of q at the
rightmost leaf of γ, all other leafs remaining with the distribution q. Formally,

Cγ,p(q) =
∑

A⃗ ∈ Vk−1
n

ν(A⃗)CA⃗
γ,p(q), CA⃗

γ,p(q) = qV1(A⃗) ⊗ · · · ⊗ qVk−1(A⃗) ⊗ pVk(A⃗).(3.47)

In what follows we denote by dr(γ) the depth of the rightmost leaf in γ.

Lemma 3.6. — For all p, q ∈ P(Ω), t ⩾ 0,

S̄t(q)(p− q) =
∞∑

k=1
βt(k)

∑
γ ∈ Γ(k)

αk(γ) (Cγ,p(q) − Cγ(q)) 2dr(γ).(3.48)

Proof. — Fix p, q ∈ P(Ω). If ht = S̄t(q)(p), then

∂t

∑
σ

ht(σ) = 2
∑

σ

Q̂(qt, ht)(σ) = 0.

Thus ∑σ ht(σ) = 1, and 2Q̂(qt, ht) = 2qt ◦ ht − qt − ht. Therefore ht satisfies

ht = qe−t +
∫ t

0
e−(t−s) (2qs ◦ hs − qs) ds.(3.49)

By linearity, S̄t(q)(p− q) = S̄t(q)(p) − S̄t(q)(q) satisfies S̄t(q)(p− q) = ut − vt, where

ut = pe−t +
∫ t

0
e−(t−s)2qs ◦ usds, vt = qe−t +

∫ t

0
e−(t−s)2qs ◦ vsds.(3.50)

Wild’s construction then shows that

ut = e−t
∞∑

k=1

(
1 − e−t

)k−1
u(k), vt = e−t

∞∑
k=1

(
1 − e−t

)k−1
v(k),(3.51)

where u(1) = p, v(1) = q, and for k ⩾ 2,

u(k) = 1
k − 1

k−1∑
j=1

2q(j) ◦ u(k−j) , v(k) = 1
k − 1

k−1∑
j=1

2q(j) ◦ v(k−j).
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respectively, and q(j) is defined by (3.9) with p replaced by q. To check that this
representation of the solution holds, let ut be defined by (3.51). Then∫ t

0
e−(t−s)2qs ◦ usds =

∞∑
ℓ,k=1

∫ t

0
βs(k)βs(ℓ)e−(t−s)2q(ℓ) ◦ u(k)ds

=
∑
ℓ < k

∫ t

0
e−2s

(
1 − e−s

)k−2
e−(t−s)2q(ℓ) ◦ u(k−ℓ)ds

=
∑

k ⩾ 2

∫ t

0
(k − 1)e−s

(
1 − e−s

)k−2
e−tu(k)ds

=
∑

k ⩾ 2

(
1 − e−t

)k−1
e−tu(k) = ut − e−tu(1) = ut − e−tp.

(3.52)

Thus ut solves (3.50). The same applies to vt. This proves (3.51).
Next, we prove that

u(k) =
∑

γ ∈ Γ(k)
αk(γ)Cγ,p(q)2dr(γ) , v(k) =

∑
γ ∈ Γ(k)

αk(γ)Cγ(q)2dr(γ)(3.53)

for all k ⩾ 2. Let us prove this by using induction over k. If k = 2 then u(2) = 2q◦p and
thus the claimed identity holds. If the formula holds for j ⩽ k − 1, then using (3.14)
and (3.10),

u(k) = 1
k − 1

k−1∑
j=1

2q(j) ◦ u(k−j)

= 1
k − 1

k−1∑
j=1

∑
γl ∈ Γ(j)

γr ∈ Γ(k−j)

αj(γl)αk−j(γr)Cγl
(q) ◦ Cγr,p(q)2dr(γr)+1

=
∑

γ ∈ Γ(k)
αk(γ)Cγ,p(q)2dr(γ).

This proves the identity (3.53) for u, and the same argument proves the one for v.
The identities (3.51) and (3.53) imply (3.48). □

Next, for any k ⩾ 2, γ ∈ Γ(k), j ∈ [k], we define

Cγ,p,j(q) =
∑

A⃗ ∈ Vk−1
n

ν(A⃗)CA⃗
γ,p,j(q) , CA⃗

γ,p,j(q) := pVj(A⃗) ⊗ℓ̸=j qVℓ(A⃗),(3.54)

which denotes the distribution obtained from the tree γ ∈ Γ(k) when all leaves are
given the distribution q except for the jth leaf which takes the distribution p. When
j = k, that is j is the rightmost leaf, then we have Cγ,p,k(q) = Cγ,p(q).

Lemma 3.7. — For any k ⩾ 2, for all p, q:

∑
γ ∈ Γ(k)

αk(γ)2drCγ,p(q) =
k∑

j=1

∑
γ ∈ Γ(k)

αk(γ)Cγ,p,j(q) .(3.55)
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Proof. — By symmetry, it holds for k = 2, since in this case (3.55) says 2q ◦ p =
q ◦ p+ p ◦ q. Assume that (3.55) holds for all j ⩽ k − 1. Then

(3.56)
∑

γ ∈ Γ(k)
αk(γ)2dr(γ)Cγ,p(q)

= 2
k − 1

k−1∑
j=1

∑
γ ∈ Γ(j)

αj(γ)Cγ(q) ◦

 ∑
γ′ ∈ Γ(k−j)

αk−j(γ′)2dr(γ′)Cγ′,p(q)


= 2
k − 1

k−1∑
j=1

∑
γ ∈ Γ(j)

αj(γ)Cγ(q) ◦

k−j∑
i=1

∑
γ′ ∈ Γ(k−j)

αk−j(γ′)Cγ′,p,i(q)


= 2
∑

γ ∈ Γ(k)
αk(γ)

k∑
i=j(γ)+1

Cγ,p,i(q),

where j(γ) is the number of leaves in the left subtree of γ, and we have used (3.10).
By symmetry,

∑
γ ∈ Γ(k)

αk(γ)
k∑

i=j(γ)+1
Cγ,p,i(q) =

∑
γ ∈ Γ(k)

αk(γ)
j(γ)∑
i=1

Cγ,p,i(q) .(3.57)

Therefore,

(3.58) 2
∑

γ ∈ Γ(k)
αk(γ)

k∑
i=j(γ)+1

Cγ,p,i(q)

=
∑

γ ∈ Γ(k)
αk(γ)

j(γ)∑
i=1

Cγ,p,i(q) +
∑

γ ∈ Γ(k)
αk(γ)

k∑
i=j(γ)+1

Cγ,p,i(q)

=
k∑

i=1

∑
γ ∈ Γ(k)

αk(γ)Cγ,p,i(q).

The desired identity follows from (3.56) and (3.58). □

We can now turn to the proof Theorem of 3.5.
Proof of (3.45). — From Lemma 3.6 and Lemma 3.7, we write

S̄t(q)(p− q) =
∞∑

k=1
βt(k) s̄(k),(3.59)

where

s̄(k) =
k∑

j=1

∑
γ ∈ Γ(k)

αk(γ)
∑

A⃗ ∈ Vk−1
n

ν(A⃗)
[
CA⃗

γ,p,j(q) − CA⃗
γ (q)

]
.(3.60)

Let Aj denote the set of A⃗ ∈ Vk−1
n such that |Vj(A⃗)| ⩾ 2. Since p, q have the same

marginals, arguing as in the proof of Theorem 3.2, we obtain, or all ϕ : Ω 7→ R,∣∣∣〈CA⃗
γ,p,j(q) − CA⃗

γ (q), ϕ
〉∣∣∣ ⩽ 2∥ϕ∥∞∥p− q∥TV 1(Aj) .(3.61)
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Therefore, as in (3.33) we obtain∣∣∣〈s̄(k), ϕ
〉∣∣∣ ⩽ n(n− 1) ∥ϕ∥∞ ∥p− q∥TV

∑
γ ∈ Γ(k)

αk(γ)ω(γ).(3.62)

From (3.59) and Lemma 3.3 we conclude the proof of (3.45). □

Proof of (3.46). — The proof of (3.46) requires a bit more work. Let us define

rt := St(p) − St(q) − S̄t(q)(p− q).

From Lemma 3.6 and Lemma 3.7 we see that

rt =
∞∑

k=1
βt(k)r(k),(3.63)

where

r(k) =
∑

γ ∈ Γ(k)
αk(γ)

[
Cγ(p) − Cγ(q) −

k∑
i=1

(Cγ,p,i(q) − Cγ(q))
]
,(3.64)

We are going to prove that for any ϕ : Ω 7→ R,〈
r(k), ϕ

〉
⩽ 1

16 n
3(n− 1)(n− 2)∥ϕ∥∞∥p− q∥2

TV
∑

γ ∈ Γ(k)
αk(γ)ω(γ).(3.65)

By the argument in (3.36) and Lemma 3.3 this is sufficient to end the proof.
With the notation from the proof of Theorem 3.2 we write

(3.66)
〈
r(k), ϕ

〉
=

∑
γ ∈ Γ(k)

αk(γ)
∑

(x,y) ∈ Ωk×Ωk

∑
A⃗ ∈ Vk−1

n

µ(x, y)ν(A⃗)

×
∑

z ∈ Ω
ϕ(z)

(
1
(
z = u(y, A⃗)

)
− 1

(
z = u(x, A⃗)

)

−
k∑

i=1

(
1
(
z = u(x, y, A⃗, i

)
− 1

(
z = u(x, A⃗)

)))
,

where we call u(x, y, A⃗, j) the unique configuration in Ω such that

u(x, y, A⃗, j)Vj(A⃗) = yj

Vj(A⃗) , u(x, y, A⃗, j)Vi(A⃗) = xi
Vi(A⃗) , for every i ̸= j.

That is, u(x, y, A⃗, j) coincides with u(x, A⃗) except that on Vj(A⃗) its content (if not
empty) is taken from yj. It follows that

1
(
z = u(x, A⃗)

)
=

∏
i ∈ ∂γ

1
(
zVi(A⃗) = xi

Vi(A⃗)

)
,

1
(
z = u

(
x, y, A⃗, j

))
= 1

(
zVj(A⃗) = yj

Vj(A⃗)

) ∏
i ∈ ∂γ: i ̸=j

1
(
zVi(A⃗) = xi

Vi(A⃗)

)
,

where ∂γ denotes the set of leaves of γ.
As in the proof of Theorem 3.2, we let F = F (A⃗, γ) ⊂ ∂γ denote the set of leaves

i ∈ ∂γ such that |Vi(A⃗)| > 1, and recall that since µ is a product over the leaves,
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and p, q have the same marginals one has the identities (3.26) and (3.27). With this
notation we rewrite (3.66) as

(3.67)
〈
r(k), ϕ

〉
=

∑
γ ∈ Γ(k)

αk(γ)
∑

A⃗ ∈ Vk−1
n

ν(A⃗)
∑

z ∈ Ω
ϕ(z)

×
[
µ
[
w∂γ

(
Y, z, A⃗

)]
− µ

[
w∂γ

(
X, z, A⃗

)]
−

k∑
i=1

(
µ
[
w∂γ

(
X(i, y), z, A⃗

)]
− µ

[
w∂γ

(
X, z, A⃗

)])]
,

where X(i, y) ∈ Ωk denotes the vector whose ith component is Y i while all other
components are Xj. Moreover, for a given choice of γ, A⃗, z, the square bracket
in (3.67) is also equal to

(3.68) µ
[
w∂γ

(
Y, z, A⃗

)]
− µ

[
w∂γ

(
X, z, A⃗

)]
−

k∑
i=1

(
µ
[
w∂γ

(
X(i, y), z, A⃗

)]
− µ

[
w∂γ

(
X, z, A⃗

)])
= µ

[
wF c

(
X, z, A⃗

)]
µ
[
wF

(
Y, z, A⃗

)
− wF

(
X, z, A⃗

)
−
∑
i ∈ F

(
wF

(
X(i, y), z, A⃗

)
− wF

(
X, z, A⃗

))]
.

In particular, if γ, A⃗ are such that F = F (γ, A⃗) = ∅, then (3.68) vanishes. Moreover,
(3.68) vanishes also when F is a single leaf. Indeed, if e.g. F = {j}, then

(3.69) wF

(
Y, z, A⃗

)
− wF

(
X, z, A⃗

)
−
∑
i ∈ F

(
wF

(
X(i, y), z, A⃗

)
− wF

(
X, z, A⃗

))
= wF

(
Y, z, A⃗

)
− wF

(
X(j, y), z, A⃗

)
= 0.

Thus, we may restrict to the case of |F | > 1. Therefore,∣∣∣〈r(k), ϕ
〉∣∣∣ ⩽ ∥ϕ∥∞

∑
γ ∈ Γ(k)

αk(γ)
∑

A⃗ ∈ Vk−1
n

ν(A⃗)1(|F | > 1)µ
[
Γ
(
γ, A⃗,X, Y

)]
,(3.70)

where we use the notation

(3.71) Γ
(
γ, A⃗,X, Y

)
=
∑

z ∈ Ω
wF c

(
X, z, A⃗

) ∣∣∣wF

(
Y, z, A⃗

)
− wF

(
X, z, A⃗

)

−
∑
i ∈ F

(
wF

(
X(i, y), z, A⃗

)
− wF

(
X, z, A⃗

))∣∣∣∣∣ .
Clearly, if X = Y the expression within absolute values above vanishes. Moreover,
the same applies if (X, Y ) is such that X i = Y i for all i ∈ F except one leaf j ∈ F
where Xj ̸= Y j. Indeed, in this case X(i, y) = X for all i ∈ F , i ̸= j, and X(j, y) = Y .
Given X, Y we write E = E(X, Y ) ⊂ F for the set of leaves i ∈ F where X i ̸= Y i.
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Then

(3.72) Γ
(
γ, A⃗,X, Y

)
=
∑

z

wEc∪F c

(
X, z, A⃗

)
∣∣∣∣∣wE

(
Y, z, A⃗

)
− wE

(
X, z, A⃗

)
−
∑
i ∈ E

(
wE

(
X(i, y), z, A⃗

)
− wE

(
X, z, A⃗

))∣∣∣∣∣
⩽
∑

z

wEc

(
X, z, A⃗

) ∣∣∣∣∣wE

(
Y, z, A⃗

)
−
∑
i ∈ E

wE

(
X(i, y), z, A⃗

)∣∣∣∣∣
1(|E| > 1) + (|E| − 1)1(|E| > 1)

⩽ (|E| + 1)1(|E| > 1) + (|E| − 1)1(|E| > 1)
= 2|E|1(|E| > 1) ⩽ 2|F |1(|E| > 1).

Next, we use |F | ⩽ n/2, since ∪i∈FVi(A⃗) ⊂ [n] and |Vi(A⃗)| ⩾ 2 for all i ∈ F . Since µ
is a product over leaves and on each leaf it satisfies (3.24), a union bound over the
set of pairs in F shows that

µ [|E| > 1] ⩽ 1
2 |F |(|F | − 1)∥p− q∥2

TV.(3.73)
Therefore, ∣∣∣〈r(k), ϕ

〉∣∣∣ ⩽ ∥ϕ∥∞∥p− q∥2
TV

∑
γ ∈ Γ(k)

αk(γ)ν
(
|F |2(|F | − 1)

)
.(3.74)

Next, observe that |F | ⩽ n/2, since ∪i ∈ FVi(A⃗) ⊂ [n] and |Vi(A⃗)| ⩾ 2 for all i ∈ F .
Thus, if |F | > 1 one has |F |2(|F | − 1) ⩽ n2(n− 2)/8. Summarizing,∣∣∣〈r(k), ϕ

〉∣∣∣ ⩽ 1
8 n

2(n− 2) ∥ϕ∥∞ ∥p− q∥2
TV

∑
γ ∈ Γ(k)

αk(γ)ν(|F | > 1).(3.75)

For a given tree γ, the argument in (3.33) shows that

ν(|F | > 1) ⩽ ν(|F | ⩾ 1) ⩽ 1
2 n(n− 1)

k∑
i=1

(
r(ν)

2

)di(γ)

= 1
2 n(n− 1) ω(γ),

where we use the fact that the event F ⩾ 1 coincides with ∪k
i=1Ai from the proof

of (3.33). This ends the proof of (3.65), which completes the proof of (3.46). □

3.5. Monotonicity of W along the nonlinear evolution

Before proving Theorem 3.1, we show that the distance W appearing in that state-
ment is monotone along the semigroup. We refer to [Tan78] for a similar argument
in the case of kinetic models. It will be convenient to work with a more symmetric
version of (3.14). Since p ◦ q = ∑

A ν̄(A)(p ◦ q)A we may rewrite (3.14) as

Cγ(p) =
∑

A⃗ ∈ Vk−1
n

ν(A⃗)ĈA⃗
γ (p)(3.76)

where ν(A⃗) is defined as in (3.15), and ĈA⃗
γ (p) represents the symmetric convolutions

associated to the sampled sets (A1, . . . , Ak−1). In other words, ĈA⃗
γ (p) is defined
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recursively by the following relations. If γ ∈ Γ(k) then, decomposing γ into the left
and right subtrees γl, γr as in (3.10), one has

ĈA⃗
γ (p) =

(
ĈA⃗l

γl
(p) ◦ ĈA⃗r

γr
(p)
)A1

(3.77)

where A1 is the set attached to the root, and

A⃗l := (A2, . . . , Aj) , A⃗r := (Aj+1, . . . , Ak−1)

are the sets associated to the left and right subtrees respectively. For example, in
the case where Cγ(p) = ((p ◦ p) ◦ p) ◦ p as in Figure 3.1, one has

Cγ(p) =
∑

A1,A2,A3 ⊂ [n]
ν̄(A1)ν̄(A2)ν̄(A3)ĈA1,A2,A3

γ (p)(3.78)

where ĈA1,A2,A3
γ (p) = (((p ◦ p)A3 ◦ p)A2) ◦ p)A1 . Therefore, as in (3.19) one obtains

the decomposition

pt =
∞∑

k=1
βt(k)

∑
γ ∈ Γ(k)

αk(γ)
∑

A⃗ ∈ Vk−1
n

ν(A⃗) ĈA⃗
γ (p).(3.79)

Lemma 3.8. — For any p, q ∈ P(Ω), any k ∈ N, any γ ∈ Γ(k), and any A⃗ ∈ Vk−1
n ,

one has

W
(
ĈA⃗

γ (p), ĈA⃗
γ (q)

)
⩽ W (p, q) .(3.80)

In particular, W (St(p), St(q)) ⩽ W (p, q) for any t ⩾ 0.

Proof. — First we show

W ((p1 ◦ p2), (q1 ◦ q2)) ⩽ 1
2 W (p1, q1) + 1

2 W (p2, q2)(3.81)

for all p1, p2, q1, q2 ∈ P(Ω). For a fixed A ⊂ [n] and configurations x1, x2 ∈ Ω we
define

Πx1,x2,A(z) := 1
2

(
1(zA = x1,A, zAc = x2,Ac) + 1(zA = x2,A, zAc = x1,Ac)

)
, z ∈ Ω.

Now we choose {X1, Y1}, {X2, Y2} random variables such that
• E[d(X1, Y1)] = W (p1, q1),E[d(X2, Y2)] = W (p2, q2).
• Xi is distributed with pi and Yi is distributed with qi, i = 1, 2.
• {X1, Y1} and {X2, Y2} are independent.

Note that

E [ΠX1,X2,A] = (p1 ◦ p2)A .(3.82)

Now, given x1, x2, y1, y2 ∈ Ω and A ⊂ [n], we consider the following probability
measure

π(z1, z2) := 1
2

(
1(z1,A = x1,A, z1,Ac = x2,Ac , z2,A = y1,A, z2,Ac = y2,Ac)

+ 1(z1,A = x2,A, z1,Ac = x1,Ac , z2,A = y2,A, z2,Ac = y1,Ac)
)
.
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Note that this is a coupling of Πx1,x2,A and Πy1,y2,A. Therefore

(3.83) W (Πx1,x2,A,Πy1,y2,A) ⩽
∑
z1,z2

π(z1, z2)d(z1, z2)

= 1
2

(
d(x1,Ax2,Ac , y1,Ay2,Ac) + d(x2,Ax1,Ac , y2,Ay1,Ac)

)
= 1

2

(
d(x1, y1) + d(x2, y2)

)
.

Moreover, by convexity
W ((p1 ◦ p2), (q1 ◦ q2)) ⩽

∑
A ⊂ [n]

ν(A)W
(
(p1 ◦ p2)A, (q1 ◦ q2)A

)
(3.84)

and, for each A ⊂ [n],

(3.85) W
(
(p1 ◦ p2)A, (q1 ◦ q2)A

)
⩽ E [W (ΠX1,X2,A,ΠY1,Y2,A)] = 1

2 W (p1, q1) + 1
2 W (p2, q2).

Combining the last two inequalities we obtain (3.81).
We now prove (3.80) by induction over k ⩾ 1. Clearly, k = 1 is trivial. The case

k = 2 follows by (3.85). Suppose that (3.80) holds for any j ⩽ k − 1, γ ∈ Γ(j),
A⃗ ∈ Vj−1

n and let A1 be the set attached to the root of γ. If γ ∈ Γ(k) then we
decompose γ into the left and right subtrees γl, γr as in (3.10), so that

ĈA⃗
γ (p) =

(
ĈA⃗l

γl
(p) ◦ ĈA⃗r

γr
(p)
)A1

ĈA⃗
γ (q) =

(
ĈA⃗l

γl
(q) ◦ ĈA⃗r

γr
(q)
)A1

.

where A⃗l := (A2, . . . , Aj) and A⃗r := (Aj+1, . . . , Ak−1), and j is the number of leaves
of γl. Then, using (3.85) again and the inductive hypothesis we have

W
(
ĈA⃗

γ (p), ĈA⃗
γ (q)

)
= W

((
ĈA⃗l

γl
(p) ◦ ĈA⃗r

γr
(p)
)A1

,
(
ĈA⃗l

γl
(q) ◦ ĈA⃗r

γr
(q)
)A1

)
⩽ 1

2 W
(
ĈA⃗l

γl
(p), ĈA⃗l

γl
(q)
)

+ 1
2 W

(
ĈA⃗r

γr
(p), ĈA⃗r

γr
(q)
)
⩽ W (p, q).

This proves (3.80).
By (3.76) and convexity,

W (Cγ(p), Cγ(q)) ⩽ W (p, q).(3.86)
Finally, using the expression (3.79) for St(p) = pt, again by convexity we obtain

W (St(p), St(q)) ⩽ W (p, q),
for all t ⩾ 0. □

Remark 3.9. — We note that (3.81) shows in particular that
W (p ◦ p, q ◦ q) ⩽ W (p, q) .(3.87)

This monotonicity is not satisfied by the total variation distance. For example let us
consider Ω = {0, 1}2, p := 1(1,1), q := 1

2(1(1,1) + 1(0,0)) and suppose ν is the uniform
crossover. Then one can check that p ◦ p = 1(1,1) and q ◦ q = 3

8(1(1,1) + 1(0,0)) +
1
8(1(1,0) + 1(0,1)), and therefore ∥p ◦ p− q ◦ q∥TV = 5

8 >
1
2 = ∥p− q∥TV.
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3.6. Proof of Theorem 3.1

For k ∈ N, the moment measures F k,N
t ∈ P(Ωk) and F̄ k,N

t ∈ P(Ωk) are defined by

F k,N
t =

∑
η ∈ ΩN

µN,t(η)(λη)⊗k, F̄ k,N
t =

∑
η ∈ ΩN

µN(η)(Stλη)⊗k.(3.88)

By the triangular inequality we have∣∣∣PkµN,t(ϕk) − p⊗k
t (ϕk)

∣∣∣ ⩽ T1 + T2 + T3 ,(3.89)

where

(3.90)
T1 :=

∣∣∣PkµN,t(ϕk) − F k,N
t (ϕk)

∣∣∣ , T2 :=
∣∣∣F k,N

t (ϕk) − F̄ k,N
t (ϕk)

∣∣∣ ,
T3 :=

∣∣∣F̄ k,N
t (ϕk) − p⊗k

t (ϕk)
∣∣∣ .

We are going to estimate each term separately.
The term T1 can be estimated by using a simple combinatorial argument, and one

obtains

T1 ⩽
2k(k − 1)

N
∥ϕk∥∞.(3.91)

Since the proof is identical to that in [CD22, Lemma 3.11] we omit the details.
The last term T3 is estimated using the initial chaos. Note that

p⊗k
t (ϕk) − F̄ k,N

t (ϕk) =
∑

η ∈ ΩN

µN(η)
(

k∏
i=1

〈
St(p), ϕi

〉
−

k∏
i=1

〈
St(λη), ϕi

〉)
.(3.92)

Using ∏k
i=1 ai −∏k

i=1 bi = ∑k
i=1(

∏
1 ⩽ j < i aj)(ai − bi)(

∏
i < j ⩽ k bj), we obtain

T3 ⩽
∑

η ∈ ΩN

µN(η)
k∑

i=1

 ∏
1 ⩽ j < i

∣∣∣〈St(p), ϕj
〉∣∣∣


∣∣∣〈St(p) − St(λη), ϕi
〉∣∣∣
 ∏

i < j ⩽ k

∣∣∣〈St(λη), ϕj
〉∣∣∣


⩽ 2k∥ϕk∥∞ µN

[
W
(
St(p), St(λχN )

)]
⩽ 2k∥ϕk∥∞ µN

[
W
(
p, λχN

)]
,

where χN has distribution µN , and we have used
|⟨µ− µ′, f⟩| ⩽ 2∥f∥∞∥µ− µ′∥TV ⩽ 2∥f∥∞W (µ, µ′),(3.93)

for any µ, µ′ ∈ P(Ω), f : Ω 7→ R, and the monotonicity from Lemma 3.8.
The estimate of the second term T2 is more delicate. Here we use the contraction

proved in Theorem 3.2 and Theorem 3.5. Define, for s ∈ [0, t],

Ψk
s =

∑
η ∈ ΩN

µN,t−s(η)(Ss(λη))⊗k.

Then Ψk
s ∈ P(Ωk) for all s ∈ [0, t], and

F k,N
t (ϕk) = Ψk

0(ϕk) , F̄ k,N
t (ϕk) = Ψk

t (ϕk).
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Therefore,

F̄ k,N
t (ϕk) − F k,N

t (ϕk) =
∫ t

0
∂s

[
Ψk

s(ϕk)
]
ds .(3.94)

Now,

(3.95) ∂s

[
Ψk

s(ϕk)
]

=
∑

η ∈ ΩN

(∂sµN,t−s(η))(Ss(λη))⊗k(ϕk) +
∑

η ∈ ΩN

µN,t−s(η)∂s(Ss(λη))⊗k(ϕk)

= −
∑

η ∈ ΩN

µN,t−s(η)LN

k∏
ℓ=1

〈
Ss(λη), ϕℓ

〉

+
∑

η ∈ ΩN

µN,t−s(η)
k∑

i=1

〈
Q(Ss(λη)), ϕi

〉∏
ℓ̸=i

〈
Ss(λη, ϕ

ℓ
〉
.

Next, we show that

Q(Ss(λη)) = 1
N

∑
i < j

∑
A

ν(A)S̄s(λη)
(
ληi,j,A − λη

)
.(3.96)

Consider the linearized equation (3.44). Taking q ∈ P(Ω) and h = Q(q) one has that
the solution ht = S̄t(q)(h) satisfies ht = Q (St(q)), that is

S̄t(q)(Q(q)) = Q (St(q)) , t ⩾ 0,(3.97)

for all q ∈ P(Ω). To see this note that for all t ⩾ 0,∑
σ ∈ Ω

St(q)(σ) = 1 ,
∑

σ ∈ Ω
Q(St(q))(σ) = 0 ,

and therefore

∂tQ (St(q)) (σ′)

=
∑

A ⊂ [n]
σ ∈ Ω

ν(A)
(
Q(St(q))(σAcσ′

A)St(q)(σAσ
′
Ac)

+ St(q)(σAcσ′
A)Q(St(q))(σAσ

′
Ac) −Q(St(q))(σ′)St(q)(σ)

)

=
∑

A ⊂ [n]
σ ∈ Ω

ν(A)
(
Q(St(q))(σAcσ′

A)St(q)(σAσ
′
Ac) + St(q))(σAcσ′

A)Q(St(q))(σAσ
′
Ac)

−Q(St(q))(σ′)St(q)(σ) −Q(St(q))(σ)St(q)(σ′)
)

2Q̂(St(q), Q(St(q)))(σ′).

This proves (3.97). If q = λη for some η ∈ ΩN , then

Q(λη) =
∑
A

ν(A) ((λη)A ⊗ (λη)Ac − λη) .(3.98)
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Moreover, for any A ⊂ [n],

(λη)A ⊗ (λη)Ac − λη = 1
2N2

N∑
i,j=1

(
1ηi,j,A(i) + 1ηi,j,A(j) − 1η(i) − 1η(j)

)
= 1
N

∑
i < j

(
ληi,j,A − λη

)
.

(3.99)

It follows that

Q(λη) = 1
N

∑
i < j

∑
A

ν(A)(ληi,j,A − λη).(3.100)

Thus, using (3.97) and the linearity of S̄s(λη)(·) we obtain (3.96).
On the other hand,

(3.101) LN

k∏
ℓ=1

〈
Ss(λη), ϕℓ

〉

= 1
N

∑
i < j

∑
A

ν(A)
(

k∏
ℓ=1

〈
Ss(ληi,j,A), ϕℓ

〉
−

k∏
ℓ=1

〈
Ss(λη), ϕℓ

〉)
.

Suppose we can show that

(3.102)
∣∣∣∣∣

k∏
ℓ=1

〈
Ss(ληi,j,A), ϕℓ

〉
−

k∏
ℓ=1

〈
Ss(λη), ϕℓ

〉

−
k∑

u=1

〈
S̄s(λη)(ληi,j,A − λη), ϕu

〉 ∏
ℓ ̸=u

〈
Ss(λη, ϕ

ℓ
〉∣∣∣∣∣∣ ⩽ Ks,

for some function Ks, s ∈ [0,∞), independent of η, i, j, A. Then by (3.95) and (3.96)
we would have T2 ⩽ N

2
∫ t

0 Ksds. Thus the proof will be completed by proving (3.102)
for a suitable Ks.

Observe that

(3.103)
k∏

ℓ=1
aℓ −

k∏
ℓ=1

bℓ −
k∑

u=1
cu

∏
j ̸= u

bj

=
k∑

u=1

 ∏
1 ⩽ j < u

aj

 (au − bu) −

 ∏
1 ⩽ j < u

bj

 cu

 ∏
j > u

bj

=
k∑

u=1
(au − bu − cu)

∏
j ̸= u

bj +
k∑

u=1

 ∏
1 ⩽ j < u

aj

−

 ∏
1 ⩽ j < u

bj

 (au − bu)
∏

j > u

bj

=
k∑

u=1
(au − bu − cu)

∏
j ̸= u

bj +
k∑

u=1

u−1∑
v=1

∏
j < v

aj

 ∏
v < j < u

bj

 (av − bv)(au − bu)
∏

j > u

bj.

Define aℓ = ⟨Ss(ληi,j,A), ϕℓ⟩, bℓ = ⟨Ss(λη), ϕℓ⟩, and cℓ = ⟨S̄s(λη)(ληi,j,A − λη), ϕℓ⟩.
Noticing that

∥ληi,j,A − λη∥TV ⩽
2
N
,(3.104)
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and that ληi,j,A , λη have the same marginals, it follows from Theorem 3.5 that

|au − bu − cu| ⩽ n5 ∥ϕu∥∞e
−D(ν) s 4

N2 .(3.105)

Moreover, Theorem 3.2 shows that for all u, v,

|av − bv||au − bu| ⩽ n4 ∥ϕv∥∞ ∥ϕu∥∞e
−2D(ν) s 4

N2 .(3.106)

These bounds hold uniformly in η ∈ ΩN , 1 ⩽ i < j ⩽ n,A ⊂ [n]. This proves (3.102)
with

Ks = ke−D(ν) s
(
n5 + (k − 1)n4e−D(ν) s

) ∥ϕk∥∞

N2 .(3.107)

Therefore,

T2 ⩽
N

2

∫ t

0
Ks ⩽

k2n5

D(ν)N ∥ϕk∥∞
(
1 − e−D(ν) t

)
.(3.108)

The proof of Theorem 3.1 is complete.

4. Relative entropy decay

The goal of this section is to prove Theorem 1.8, Proposition 1.11, and Theo-
rem 1.12. We start by setting up a convenient notation and by gathering some
preliminary ingredients of the proof. To simplify our notation we write µ = πN for
the uniform distribution over SN,n. For any A ⊂ [n], f : SN,n 7→ R, we are going to
use the notation

µAf = µ (f | ηAc) ,
where µ(· | ηAc) denotes the conditional expectation given the variables

ηAc := {ηi(j), i ∈ Ac, j = 1, . . . , N}.

The function µAf thus depends on η only through the variables ηAc . When A = [n]
we have the global expectation µ[n]f = µ(f). With this notation, µA is the orthogonal
projection, in L2(SN,n, µ), onto the space of functions that do not depend on the A-
component of η ∈ SN,n. Notice the relations µ(f) = µ(µAf), and µB(f) = µB(µAf),
for all A ⊂ B ⊂ [n]. We also use the notation EntA(f) for the entropy of f : SN,n 7→
R+ with respect to µA, that is

(4.1) EntA(f) = µA [f log(f/µAf)] .

Thus EntA(f) is a function that depends on η through the variables ηAc only. Its
expectation satisfies

(4.2) µ [EntA(f)] = Ent(f) − Ent[µAf ] ,

where Ent(f) = Ent[n](f) = µ [f log(f/µ(f))]. In our setting the well known Shearer
inequality can be formulated as follows.
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Lemma 4.1. — For any distribution ν on subsets of [n], for any f : SN,n 7→ R+,
(4.3)

∑
A⊂[n]

ν(A)µ [EntA(f)] ⩾ γ(ν) Ent(f) ,

where γ(ν) = mini ∈ [n]
∑

A: A ∋ i ν(A).
Proof. — Reasoning as in [CAS18, Proposition 4.3], the estimate is a consequence

of the product structure of µ and the weighted version of the classical Shearer
inequality for Shannon entropy. We refer e.g. to [CHV20] for a proof of the latter. □

When A = {i}, a single site, we write µi for µ{i} and Enti for Ent{i}. An immediate
consequence of Lemma 4.1 is the following well known tensorization property:

(4.4) Ent(f) ⩽
n∑

i=1
µ [Enti(f)] .

4.1. The case n = 1

A key ingredient of our proof is the control of the base case n = 1. Here the
problem reduces to standard random transpositions and one can use a well known
bound that was first derived in [Goe04, GQ03]. In our setting it can be summarized
as follows, see [GQ03, Theorem 1] or [Goe04, Corollary 3.1] for a proof. Note that
for n = 1 we have SN,n = SN .

Lemma 4.2. — for all N ⩾ 2, for all g : SN 7→ R+, for any i = 1, . . . , n,∑
τ ∈ SN

g(τ) log(g(τ)/ḡ) ⩽ 1
N

∑
j<ℓ

∑
τ ∈ SN

(
g(τ j,ℓ) − g(τ)

)
log g(τ

j,ℓ)
g(τ) ,

where ḡ = 1
N !
∑

τ ∈ SN
g(τ), and τ j,ℓ denotes τ composed with the transposition at

{j, ℓ}.
The proof of Theorem 1.8 is based on Lemma 4.1, Lemma 4.2 and the following

analysis of the entropy associated to partial random permutations of the particle
configuration, which is the main novelty in this section.

4.2. Permutation entropies

For any A ⊂ [n], g : SN,n 7→ R, define PAg : SN,n 7→ R, as

PAg(η) = 1
N !

∑
τ ∈ SN

g((τη)A ηAc),(4.5)

where τη := τ ◦ η denotes the element of SN,n obtained from η by permuting the
particle labels according to τ :

(τη)(j) = η(τ(j)).
The linear operator PA is the orthogonal projection, in L2(SN,n, µ), onto the space of
functions that are symmetric w.r.t. permutations restricted to the subset A. When
A = {i} we write P{i} = Pi, and note that Pig = µ(g | η{i}c) = µig for all i. Note
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also that PA, PB do not commute for general A,B ⊂ [n], but if A ∩ B = ∅ then
PAPB = PBPA. Moreover, one easily checks that if A ⊂ B ⊂ [n], then

PAPB = PB\APA = PAPB\A = PBPA, A ⊂ B.(4.6)

Also, observe that the orthogonal projection µA defined above satisfies

µA =
∏
i∈A

Pi.(4.7)

Notice that P[n]g = g iff g ∈ S, and that in this case

PAg = PAcg = PAPAcg = PAcPAg , g ∈ S.(4.8)

For any fixed f ⩾ 0, and A ⊂ [n], define

ϕ(A; f) = µ [f log(f/PAf)] .(4.9)

The function ϕ is a suitable conditional entropy of f on A. Namely, ϕ(A; f) is the
expected value with respect to µ of the entropy

PA [f log(f/PAf)] .

In particular, ϕ(A; f) ⩾ 0. We call ϕ(A; f) the permutation entropy of f on A. When
there is no risk of confusion we write simply ϕ(A) for ϕ(A; f). In general, one has

Lemma 4.3. — Fix a function f ⩾ 0. For any i ∈ [n], ϕ({i}) = µ[Enti(f)], and
for all A ⊂ [n]:

(4.10) ϕ(A) = µ [EntA(f)] − µ [EntA(PAf)] .

Moreover, for all A ⊂ [n]

(4.11) ϕ(A) ⩽ 2EA(f, log f),

where

EA(f, log f) = 1
2

1
N

∑
j < ℓ

µ

[(
f j,ℓ,A − f

)
log f

j,ℓ,A

f

]
.(4.12)

Proof. — If A = {i}, then PAf = µif and therefore ϕ({i}) = µ [Enti(f)]. In
general, for any A,

µ [EntA(f)] = µ [f log(f/µAf)]
= µ [f log(f/PAf)] + µ [f log(PAf/µAf)] .

The second term above satisfies

µ [f log(PAf/µAf)] = µ [PAf log(PAf/µAPAf)] = µ [EntA(PAf)] ,

where we have used that µBPA = µB for any A ⊂ B ⊂ [n] since PA is an orthogonal
projection. This proves (4.10).
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To prove (4.11), observe that for any A ⊂ [n], f ⩾ 0, any fixed η ∈ SN,n, taking
g(τ) := f((τ ◦ η)AηAc), one has ḡ = PAf , and therefore by Lemma 4.2,

PA [f log(f/PAf)] (η) = 1
N !

∑
τ ∈ SN

g(τ) log(g(τ)/ḡ)

⩽
1
N

∑
j < ℓ

1
N !

∑
τ ∈ SN

(
f
(
(τ j,ℓη)AηAc

)
− f ((τη)AηAc)

)
log

f
(
(τ j,ℓη)AηAc

)
f ((τη)AηAc)

= 1
N

∑
j < ℓ

PA

[(
f j,ℓ,A − f

)
log f

j,ℓ,A

f

]
(η).

Taking the expectation and using µPA = µ one obtains (4.11). □

Next, we compare the permutation entropy ϕ(A) with the usual entropy µ[EntA(f)].
The previous lemma in particular shows that ϕ(A) ⩽ µ[EntA(f)]. The next lemma
allows us to give a bound in the opposite direction. Notice that such a bound
needs some care since if e.g. f ∈ S is not a constant then ϕ([n]; f) = 0 while
µ[Ent[n](f)] = Ent(f) ̸= 0.

Lemma 4.4. — Fix A ⊂ [n] such that 0 ⩽ |A| ⩽ n− 1, and V ⊂ Ac. Then,
(4.13) ϕ(A) +

∑
i ∈ V

ϕ(A ∪ {i}) ⩾ µ [EntV f ] .

Proof. — Write V = {x1, . . . , xk} ⊂ [n], k = |V |, and define A0 = A, and Ai =
A ∪ {xi}, i = 1, . . . , k. In general PAi

and PAj
do not commute for i, j = 1, . . . , k,

but using (4.6) one has PA0PAi
= PA0Pxi

= PAµxi
and for any ℓ = 1, . . . , k,

P ℓ := PA0PA1 · · ·PAℓ
= PA

ℓ∏
i=1

µxi
=
(

ℓ∏
i=1

µxi

)
PA =

ℓ∏
i=0

PAi
,

where the last identity holds regardless of the order of the multiplications. In other
words, the operators PAi

commute thanks to the presence of PA0 . In particular,
P k = PAµV = µV PA.

Consider the entropy

µ

[
f log f

P kf

]
= µ

[
f log f

µV f

]
+ µ

[
f log µV f

PAµV f

]
.(4.14)

The first term is µ [EntV f ]. The second term satisfies

µ

[
f log µV f

PAµV f

]
= µ

[
µV f log µV f

µV PAf

]
= ϕ(A;µV f) ⩾ 0.(4.15)

On the other hand,

log f

P kf
= log f

PA0f
+ log PA0f

PA0PA1f
+ · · · + log

PA0PA1 · · ·PAk−1f

PA0PA1 · · ·PAk
f
,

and therefore

µ

[
f log f

P kf

]
= ϕ(A; f) +

k−1∑
ℓ=0

µ

[
f log P ℓf

P ℓ+1f

]
.(4.16)
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Next, we show that

(4.17) µ

[
f log P ℓf

P ℓ+1f

]
⩽ ϕ (Aℓ+1; f) ,

for all ℓ = 0, . . . , k − 1. Combined with (4.14)-(4.16), this implies the desired
conclusion:
(4.18) ϕ(A) +

∑
i ∈ V

ϕ(A ∪ {i}) ⩾ µ [EntV f ] + ϕ(A;µV f) ⩾ µ [EntV f ] .

It remains to prove (4.17). We first observe that

(4.19) µ

[
f log P ℓf

P ℓ+1f

]
= µ

[
P ℓf log P ℓf

P ℓ+1f

]
= ϕ

(
Aℓ+1;P ℓf

)
.

The well known variational principle for the relative entropy implies that for any
B ⊂ [n]

PB

(
f log f

PBf

)
⩾ PB(fg) ,

for any function g such that PB(eg) = 1. Choosing g = log P ℓf
PBP ℓf

shows that

PB

(
f log f

PBf

)
⩾ PB

(
f log P ℓf

PBP ℓf

)
.

Taking the expectation one finds

ϕ(B; f) ⩾ µ

[
f log P ℓf

PBP ℓf

]
.

If PB, P
ℓ commute, then

µ

[
f log P ℓf

PBP ℓf

]
= µ

[
f log P ℓf

P ℓPBf

]
= µ

[
P ℓf log P ℓf

P ℓPBf

]
= ϕ

(
B;P ℓf

)
.

Therefore,
ϕ(B; f) ⩾ ϕ

(
B;P ℓf

)
,

whenever PB, P
ℓ commute. Taking B = Aℓ+1, and using the fact that PAℓ+1 and

P ℓ commute, one obtains ϕ
(
Aℓ+1;P ℓf

)
⩽ ϕ (Aℓ+1; f). Together with (4.19), this

implies (4.17). □

4.3. Proof of Theorem 1.8

From the strict separation assumption, it follows that for some δ(ν) > 0,

EN,n(f, log f) ⩾ δ(ν)
n

n∑
i=1

(
EAi

(f, log f) + EAi\{i}(f, log f)
)
,

where, for every i, Ai ⊂ [n] is such that Ai ∋ i and min{ν(Ai), ν(Ai \ {i})} ⩾ δ(ν).
Therefore, from Lemma 4.3,

(4.20) EN,n(f, log f) ⩾ δ(ν)
2n

n∑
i=1

(ϕ(Ai) + ϕ(Ai \ {i})) .
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Lemma 4.4 then implies

(4.21) EN,n(f, log f) ⩾ δ(ν)
2n

n∑
i=1

µ [Entif ] .

Using (4.4) it follows that α(N, n) ⩾ δ(ν)/2n. This proves the bound (1.15) with
α(ν) = δ(ν)/2n.

To prove the lower bound for one-point crossover, notice that the above argument
can be repeated but this time we can directly estimate

EN,n(f, log f) ⩾ 1
4

1
n+ 1

n∑
i=1

(ϕ(Ji) + ϕ(Ji−1)) ⩾
1

4(n+ 1)

n∑
i=1

µ [Entif ] ,

where J0 = ∅, and Ji = {1, . . . , i}, i ⩾ 1. The lower bound α(N, n) ⩾ 1/4(n + 1)
thus follows again by the tensorization (4.4).

Next, we prove the lower bound for the case of uniform crossover ν(A) = 2−n for
all A ⊂ [n]. From Lemma 4.3

EN,n(f, log f) = 2−n
∑
A

EA(f, log f) ⩾ 2−n−1∑
A

ϕ(A).

By Lemma 4.4,
n∑

i=1

∑
A

ϕ(A)1(i ∈ A)

=
n∑

i=1

∑
A: |A| ⩽ n−1

ϕ(A ∪ {i})1(i /∈ A) ⩾
∑

A: |A| ⩽ n−1
(µ [EntAcf ] − ϕ(A)) .

Therefore, ∑
A

ϕ(A) = 1
n

n∑
i=1

∑
A

ϕ(A)(1(i /∈ A) + 1(i ∈ A))

⩾
1
n

∑
A

|Ac|ϕ(A) + 1
n

∑
A: |A| ⩽ n−1

(µ [EntAcf ] − ϕ(A))

= 1
n

∑
A: |A| ⩽ n−1

(|Ac| − 1)ϕ(A) + 1
n

∑
A

µ [EntAcf ] .

(4.22)

In particular,

2−n−1∑
A

ϕ(A) ⩾ 2−n

2n
∑
A

µ [EntAcf ] .

From Lemma 4.1 it follows that

2−n−1∑
A

ϕ(A) ⩾ 1
4nEntf.

This proves the desired bound α(N, n) ⩾ 1
4n

.
Finally, in the case of symmetric functions one has ϕ(A) = ϕ(Ac) for all A ⊂ [n],

see (4.8). Therefore, the previous computation now shows that∑
A

ϕ(A) ⩾ 2
n

∑
A

µ [EntAcf ] − 2
n

∑
A

ϕ(A).
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Rearranging terms yields the bound αS(N, n) ⩾ 1
2(n+2) . This concludes the proof of

Theorem 1.8.

4.4. Proof of Proposition 1.11

The proof of the upper bound on α(N, n) is based on Proposition 2.11, Proposi-
tion 2.8, and the following entropy production estimate for the nonlinear equation
that was derived in [CAS18].

Lemma 4.5. — Let Ω = {0, 1}n, and let p = p(n) ∈ P(Ω) be defined as
p = w2δ1 + (1 − w)2δ0 + 2w(1 − w) U ,

where w = 2−n and U is the uniform distribution on Ω, and δ1 and δ0 denote the
Dirac mass at the “all one” and “all zero” configuration respectively. Then, taking
f = p/π, with π = ⊗n

i=1pi, one has

(4.23) Dπ(f)
Entπf

⩽
4
n

+O
( 1
n2

)
.

Proof. — See [CAS18, Proposition 4.7]. □
To prove Proposition 1.11 we take Ω = {0, 1}n, and p as in Lemma 4.5. Note that

p has marginals equal to Bernoulli Be(w). Take ρN such that (2.4) holds with π the
product of Bernoulli Be(w), and write fN = γ(p, ρN)/γ(π, ρN). Recall that

(4.24) α(N, n) ⩽ α(ΩρN
) ⩽ E(fN , log fN)

EntfN

,

where EntfN = HN(γ(p, ρN) | γ(π, ρN)). Clearly, p is irreducible. From Proposi-
tion 2.11 and Proposition 2.8,

(4.25) lim sup
N → ∞

α(N, n) ⩽ Dπ(f)
Entπf

⩽
4
n

+O
( 1
n2

)
.

4.5. Proof of Theorem 1.12

Let p ∈ P(Ω) be an arbitrary initial value for the Boltzmann equation and let π =
⊗ipi denote the corresponding equilibrium. In order to ensure that p be irreducible
we write

p(ε) = ε π + (1 − ε) p
with ε ∈ (0, 1) to be taken to zero eventually. Clearly, p, p(ε), π have the same
marginals. Let ρN be an admissible sequence such that (2.4) holds. Let p

(ε)
N =

γ(p(ε), ρN) and πN = γ(π, ρN) and define p(ε)
N,t = p

(ε)
N etLN . The propagation of chaos

at fixed time t implies that the hypothesis of Proposition 2.9 apply to µ(N) = p
(ε)
N,t.

Therefore,

H
(
p

(ε)
t

∣∣∣ π) ⩽ lim inf
N → ∞

HN

(
p

(ε)
N,t

∣∣∣ πN

)
N

,(4.26)
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where p(ε)
t is the solution to the nonlinear equation with initial datum p(ε). Theo-

rem 1.8 implies that

HN

(
p

(ε)
N,t

∣∣∣ πN

)
⩽ e−α(ν) tHN

(
p

(ε)
N

∣∣∣ πN

)
.(4.27)

Then an application of Proposition 2.8 shows that for all ε > 0, t ⩾ 0, one has

H
(
p

(ε)
t

∣∣∣ π) ⩽ e−α(ν) tH
(
p(ε)

∣∣∣ π) .(4.28)

The conclusion follows by taking ε → 0+. Indeed, p(ε) → p and, by (3.20) we know
that p(ε)

t → pt, so that H(p(ε) | π) → H(p |π), and H(p(ε)
t |π) → H(pt | π). We note

that we can use the entropy production for symmetric functions here, so that for
instance in the case of uniform crossover we may take α(ν) ⩾ 1/2(n+ 2).

Appendix A. Proof of Proposition 2.2

In order to prove Proposition 2.2 we adapt to our multivariate setting some classical
estimates, see e.g. [Chu00, Pet22]. For the sake of clarity we give a self-contained
proof. Recall the notation from Section 2. In particular, |t| =

√
⟨t, t⟩ denotes the

vector norm of t ∈ RK , and the random variable ξ = (ξi,x) with distribution µ ∈ P(X)
takes values in X = {0, 1}K , and has covariance matrix V1. The next lemma only
requires the nondegeneracy of µ, that is det(V1) ̸= 0. The proof of Proposition 2.2
however requires the irreducibility of µ in order to apply Lemma 2.5.

Lemma A.1. — Let µ ∈ P(X) be nondegenerate. For any t ∈ RK , define

ϕN(t) := µ

(
e

i

〈
V

−1/2
N t, ξ̄

〉)N

,

where

ξ̄i,x := ξi,x − µ [ξi,x] , VN = NV1, and LN := 1√
N
µ
[∣∣∣V −1/2

1 ξ̄
∣∣∣3] .

Then ∣∣∣ϕN(t) − e− 1
2 ⟨t,t⟩

∣∣∣ ⩽ 16LN |t|3e− 1
3 ⟨t,t⟩ , |t| ⩽ 1

4LN

.(A.1)

Proof. — We split the proof into two. First, let us suppose that 1
4LN

⩾ |t| ⩾ 1
2L

− 1
3

N .
If one has

|ϕN(t)|2 ⩽ e− 2
3 ⟨t,t⟩(A.2)

then ∣∣∣ϕN(t) − e− 1
2 ⟨t,t⟩

∣∣∣ ⩽ |ϕN(t)| + e− 1
2 ⟨t,t⟩ ⩽ 2e− 1

3 ⟨t,t⟩ ⩽ 16LN |t|3e− 1
3 ⟨t,t⟩.(A.3)

We now show (A.2). Let ϕ(t) := µ
[
ei⟨t,ξ̄⟩

]
. Define Ψ := Ψ1 − Ψ2, where Ψ1 and Ψ2

are independent and identically distributed as ξ̄, so that the characteristic function
of Ψ is |ϕ(t)|2, and its covariance matrix is 2V1. Next we use
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R(x) = eix −
(

1 + ix− x2

2

)
, |R(x)| ⩽ min

{
|x|2, |x|3

6

}
,(A.4)

for all x ∈ R. By substituting x = ⟨t,Ψ⟩ in (A.4) and taking the expectation,

(A.5) |ϕ(t)|2 = 1 − 1
2µ

[
(⟨t,Ψ⟩)2

]
+ µ [R (⟨t,Ψ⟩)] ⩽ 1 − ⟨t, V1t⟩ + 1

6µ
[
|⟨t,Ψ⟩|3

]
.

Then, by using the fact that (1 + x)N ⩽ eNx for all x, that V −1/2
N is self-adjoint, and

the Cauchy–Schwarz inequality,

|ϕN(t)|2 =
∣∣∣ϕ (V −1/2

N t
)∣∣∣2N

⩽
(

1 − 1
N

⟨t, t⟩ + 1
6µ

[∣∣∣〈t, V −1/2
N Ψ

〉∣∣∣3])N

⩽
(

1 − 1
N

⟨t, t⟩ + 8
6 |t|3µ

[∣∣∣V −1/2
N ξ̄

∣∣∣3])N

⩽ exp
{

−⟨t, t⟩ + 8
6LN |t|3

}
⩽ e− 2

3 ⟨t,t⟩,

(A.6)

thus (A.1) is proved if 1
4LN

⩾ |t| ⩾ 1
2L

− 1
3

N .

Next, suppose that |t| < 1
2L

− 1
3

N . Define τN := LN

N
. One has

1
2 > L

1
3
N |t| > τ

1
3

N |t| = µ
[∣∣∣V −1/2

1 ξ̄
∣∣∣3] 1

3 |t|√
N

⩾ µ
[∣∣∣V −1/2

1 ξ̄
∣∣∣2] 1

2 |t|√
N

⩾
|t|√
N
,(A.7)

where the last inequality follows from

µ
[∣∣∣V −1/2

1 ξ̄
∣∣∣2] 1

2
=
(
µ
[〈
V

−1/2
1 ξ̄, V

−1/2
1 ξ̄

〉]) 1
2 =

√
K ⩾ 1.(A.8)

From (A.4) and the inequalities (A.7), using again the Cauchy–Schwarz inequality
we can write

(A.9)
∣∣∣ϕ (V −1/2

N t
)

− 1
∣∣∣

=
∣∣∣∣− 1

2N ⟨t, t⟩ + µ
[
R
(〈
t, V

−1/2
N ξ̄

〉)]∣∣∣∣ ⩽ 1
2N ⟨t, t⟩ + τN

|t|3

6 <
1
8 + 1

48 <
1
4 .

For all |z| < 1 the following inequality holds:

|log(z + 1) − z| ⩽
|z|2

2(1 − |z|)(A.10)
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Then, by using, in order, (A.10), (A.9), |a+ b|2 ⩽ 2(|a|2 + |b|2) and (A.7),

(A.11)
∣∣∣log ϕ

(
V

−1/2
N t

)
−
(
ϕ
(
V

−1/2
N t

)
− 1

)∣∣∣
⩽

∣∣∣ϕ (V −1/2
N t

)
− 1

∣∣∣2
2
(
1 −

∣∣∣ϕ (V −1/2
N t

)
− 1

∣∣∣) < 2
3
∣∣∣ϕ (V −1/2

N t
)

− 1
∣∣∣2

= 2
3

∣∣∣∣− 1
2N ⟨t, t⟩ + µ

[
R
(〈
t, V

−1/2
N ξ̄

〉)]∣∣∣∣2 ⩽
4
3

(
|t|4

4N2 + τ 2
N

36 |t|6
)

⩽
4
3

(
τN√
N

|t|4

4 + τ 2
N

36 |t|6
)

⩽
4
3

( 1
2 · 4 + 1

36 · 8

)
τN |t|3 = 37

216τN |t|3 < 1
5τN |t|3.

By the triangular inequality we have

(A.12)
∣∣∣∣log ϕ

(
V

−1/2
N t

)
+ 1

2N ⟨t, t⟩
∣∣∣∣ ⩽ ∣∣∣log ϕ

(
V

−1/2
N t

)
−
(
ϕ
(
V

−1/2
N t

)
− 1

)∣∣∣
+
∣∣∣∣(ϕ (V −1/2

N t
)

− 1
)

+ 1
2N ⟨t, t⟩

∣∣∣∣ ⩽ 1
5τN |t|3 + 1

6τN |t|3 ⩽
1
2τN |t|3.

Using the inequality |ez − 1| ⩽ |z|e|z|, z ∈ C, and (A.7),

(A.13)
∣∣∣∣ϕN(t)e

|t|2
2 − 1

∣∣∣∣ ⩽ ∣∣∣∣log ϕN(t)e
|t|2

2

∣∣∣∣ exp
(∣∣∣∣log ϕN(t)e

|t|2
2

∣∣∣∣)
= N

∣∣∣∣log ϕ
(
V

−1/2
N t

)
+ 1

2N ⟨t, t⟩
∣∣∣∣ exp

(
N
∣∣∣∣log ϕ

(
V

−1/2
N t

)
+ 1

2N ⟨t, t⟩
∣∣∣∣)

⩽
1
2LN |t|3e

1
2 LN |t|3 ⩽

1
2LN |t|3e

1
16 < |t|3LN ,

so that (A.1) is proved. □

Proof of Proposition 2.2. — xSet zN := 1√
N
V

−1/2
1 (MN − µ⊗N(SN)). Using

the Fourier transform as in the proof of Theorem 2.6 and the identity∫
RK

e−i⟨s,zN ⟩− ⟨s,s⟩
2 ds = (2π)K

2 e− ⟨zN ,zN ⟩
2 ,(A.14)

one has

(A.15)

∣∣∣∣∣∣µ⊗N (SN = MN) − e− 1
2 ⟨zN ,zN ⟩

(2πN)K
2

√
detV1

∣∣∣∣∣∣
= 1
BN(2π)K

∣∣∣∣∣
∫

QN,K

e−i⟨s,zN ⟩ϕN(s)ds−
∫
RK

e−i⟨s,zN ⟩− 1
2 ⟨s,s⟩ds

∣∣∣∣∣
⩽

1
BN(2π)K

(∫
AN

∣∣∣ϕN(s) − e− 1
2 ⟨s,s⟩

∣∣∣ ds+
∫

QN,K\AN

|ϕN(s)| ds+
∫

Ac
N

e− 1
2 ⟨s,s⟩ds

)
,

where BN :=
√

detVN = NK/2√detV1, QN,K := V
1/2

N [−π, π]K , and AN := {s ∈ RK :
|s| ⩽ 1

4LN
}. We are going to show that the three terms in the parenthesis above are

bounded by C/
√
N .
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Let us define
τ := µ

[∣∣∣V −1/2
1 ξ̄

∣∣∣3] .
For the first term in (A.15) we use Lemma A.1:∫

AN

∣∣∣∣ϕN(s) − e− ⟨s,s⟩
2

∣∣∣∣ ds ⩽ 16LN

∫
AN

|s|3e− ⟨s,s⟩
3

⩽ 16LN

∫
RK

|s|3e− ⟨s,s⟩
3 = C1√

N
,

(A.16)

where C1 := 16 τ
∫
RK |s|3e− <s,s>

3 . For the second term in (A.15) we use Lemma 2.5:∫
QN,K\AN

|ϕN(s)| ds = BN

∫
[−π,π)K\Bτ

|ϕ(t)|Ndt ⩽ BN(2π)Ke− CN
16τ2 ,(A.17)

where C is defined as in that lemma and Bτ := {t ∈ RK : |t| ⩽ 1
4τ

}. Therefore,
(A.17) is bounded by C2/

√
N for a suitable constant C2. Finally, to bound the last

term in (A.15), using L−1
N ⩾ c

√
N for some constant c > 0, a simple estimate on the

gaussian integral shows that ∫
|s|> 1

4LN

e− <s,s>
2 ds ⩽

C3√
N
,(A.18)

for some constant C3. □
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