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HEAT KERNELS ARE NOT
UNIFORM EXPANDERS
LES NOYAUX DE LA CHALEUR NE
FORMENT PAS UNE FAMILLE
D’EXPANSEURS

Abstract. — We study infinite analogues of expander graphs, namely graphs whose sub-
graphs weighted by heat kernels form an expander family. Our main result is that there does
not exist any infinite expander in this sense. This proves the analogue for random walks of Ben-
jamini’s conjecture that there is no infinite graph whose metric balls are uniformly expanders.
The proof relies on a study of stationary random graphs, in particular proving non-expansion
of heat kernels in that setting. A key result is that any stationary random graph is stationary
hyperfinite, which is a new property of independent interest.

Résumé. — Notre résultat principal est qu’il n’existe aucun graphe infini dont l’ensemble
des sous-graphes pondérés par des noyaux de la chaleur forment une famille d’expanseurs.
Cela prouve une analogue, pour les marches aléatoires, de la conjecture de Benjamini selon
laquelle il n’existe pas de graphe infini dont les boules métriques sont une famille d’expanseurs.
La démonstration repose sur l’étude de graphes aléatoires stationnaires, en particulier la
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démonstration de la non-expansion des noyaux de la chaleur dans ce cadre. Un résultat clé est
que tout graphe aléatoire stationnaire est stationnaire hyperfini, ce qui est une notion nouvelle,
d’un intérêt indépendant.

1. Introduction
A sequence of finite graphs (Gn)n of uniformly bounded degrees is an expander

sequence if |Gn| → ∞ and there exists ε > 0 such that every A ⊂ Gn with |A| ⩽ |Gn|/2
satisfies |∂A| ⩾ ε|A|.(1) Expander graphs are therefore sparse robust networks, which
makes them of great utility in applications. One therefore wonders whether instead
of a sequence, there is a single infinite graph that is sparse yet robust?

More precisely, Benjamini defined an infinite, connected, bounded degree graph G
to be an expander at all scales if there exists ε > 0 such that every ball B ⊂ G and
subset A ⊂ G with |A ∩B| ⩽ |B|/2 satisfy |∂A ∩B| ⩾ ε|A ∩B|, and conjectured:

Conjecture 1.1 (Benjamini [Ben04]). — Expanders at all scales do not exist.
See also [Ben98] for an earlier statement for Cayley graphs and [Ben13] for a

variant for families of finite graphs.
Explicit expander graphs were first constructed as finite quotients of Cayley graphs

of groups Γ with Property (T) (or (τ)) by Margulis [Mar73]. In this case, the
Cayley graph of Γ is the pointed Gromov–Hausdorff limit of expander graphs, but
nevertheless sometimes (and conjecturally, always) is not an expander at all scales
(it can even be a tree).

Since expander graphs do not admit coarse embeddings into Hilbert spaces (Gro-
mov [Gro03]), any graph that can be coarsely embedded into Hilbert space is not
an expander at all scales. In particular, graphs with metric property A (see [NY08])
are never expanders at all scales ([Yu00]).

Property A holds for Cayley graphs of exact groups (Ozawa [Oza06]), which in-
cludes e.g. linear groups and hyperbolic groups. Without homogeneity of the un-
derlying graphs, much less is known: Even if one tries to construct the graph in an
algebraic manner, say as a Schreier graph. Indeed, up to double cover, any connected
regular graph can be realized up to double cover as a Schreier graph [Lee22].

Our main purpose is to study the analogue of Conjecture 1.1 that replaces metric
balls by distributions of random walks to measure robustness. Let G be a connected
rooted graph of bounded degree with a vertex x. We will write µn

x for the distribution
of the nth step of the simple random walk starting at x (i.e. the heat kernel).

Definition 1.2. — Let h > 0. We say the heat kernel on a rooted graph (G, o)
is h-expanding if for every n and A ⊂ G with µn

o (A) ⩽ 1
2 , we have

(1.1) µn
o (∂A) ⩾ h µn

o (A).
We say that the heat kernel on a rooted graph (G, o) is expanding if there exists
h > 0 such that it is h-expanding. Similarly we say that the heat kernels on an
(unrooted) graph G are expanding if there exists h > 0 such that for any choice of
root o ∈ G the heat kernel on (G, o) is h-expanding.
(1) Here ∂ denotes the inner vertex boundary.
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Remark 1.3. — Expansion of the heat kernel is analogous to expanding at all
scales: For a bounded degree graph G, consider the family of measures µp,r (for p ∈ G
and r > 0) given by the uniform distribution on the ball B(p; r). Then G is an
expander at all scales precisely when there exists h > 0 such that for every p ∈ G,
r > 0 and A ⊂ G with µp,r(A) ⩽ 1

2 , we have
µp,r(∂A) ⩾ h µp,r(A).

Our main result is the heat kernel analogue of Conjecture 1.1:
Theorem 1.4. — Let G be an infinite, connected, bounded degree graph. Then

the heat kernel on G is not expanding.

This leads to the following interesting question. Let H (n, d) be the supremum
of the expansion constants of heat kernels up to time n on all infinite connected
graphs of degree at most d. Note that 0 ⩽ H (n, d) ⩽ 1, and H (n, d) is decreasing
as a function of n. By a simple diagonal argument applied to graphs maximizing
H (n, d), Theorem 1.4 applied to the limiting graph implies that H (n, d) → 0 as
n→∞.

Question 1.5. — What is the rate of decay of H (n, d) as n→∞?

We do not know whether the analogue of Theorem 1.4 holds for rooted graphs,
especially since the rooted version of Benjamini’s conjecture is false:

Example 1.6 (A rooted expander at all scales). — Fix a prime p and an expander
family of p-congruence quotients {Gk}k of a finitely generated linear group Γ. Let G
be the graph with vertex set ⊔kGk and edges given by those in {Gk}k as well as an
edge between x ∈ Gk and its image in Gk−1. Using that a definite proportion of the
points of ∪k ⩽nGk is contained in Gn, it is not hard to see that the family of metric
balls centered at a fixed vertex o ∈ G are expanding. See Section 6 for a proof.

In the above example, the probability that the kth step of the random walk on
(G, o) lies in Gn tends to 0 as k →∞, uniformly in n, so the subsets ∪k ⩽nGk have
small boundary as measured by the heat kernel, which proves its non-expansion. So
we pose the following:

Question 1.7. — Does there exist a bounded degree rooted graph (G, o) with
expanding heat kernel?

Since we do not know how to establish non-expansion of the heat kernel for any
given root, a key idea in the proof of Theorem 1.4 is to sample the root randomly
on G. This leads us to study random walks on random graphs.

Stationary random graphs

First defined and studied by Benjamini–Curien [BC12], a stationary random graph
is a random rooted graph whose distribution is invariant under re-rooting at a
uniformly random neighbor of the root (see Section 3 for details). We establish
non-expansion of heat kernels on stationary random graphs:
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Theorem 1.8. — Let (G, o) be an infinite stationary random graph of bounded
degree. Then the heat kernel on (G, o) is non-expanding almost surely.

The proof relies on a number of results on the general structure of stationary ran-
dom graphs that could be of independent interest: First, we establish a connection
with the theory of measured equivalence relations. Indeed, given a measured equiva-
lence relation, any graphing of it yields a random graph and in fact any stationary
random graph is obtained in this way (see Section 3.2 for details). This allows us
to use Poisson boundaries for stationary random graphs and their amenability. The
construction of these boundaries is originally due to Kaimanovich in the even more
general setting of invariant Markov operators on measured groupoids [Kai05]. Using
the equivalence of amenability and hyperfiniteness for non-singular equivalence re-
lations, we deduce that any stationary random graph is stationary hyperfinite (see
Definition 3.8 and Corollary 4.4). Note this is in sharp contrast with the behavior of
unimodular random graphs, introduced in [AL07], where hyperfiniteness often fails,
e.g. for trees (see Example 3.3). Stationary hyperfiniteness of stationary random
graphs is the key ingredient in the proof of Theorem 1.8. In fact, we prove a stronger
statement about hyperfiniteness of certain sequences of weighted graphs.

The notion of hyperfiniteness for families (Gi)i of finite graphs was introduced
by Elek in [Ele07]. Informally, this means that each Gi can be cut into uniformly
bounded pieces with small boundaries by removing an arbitrarily small proportion
of vertices. Hyperfiniteness is strictly stronger than non-expansion and in many ways
is the correct analogue of amenability in the graph setting. The strengthened version
of Conjecture 1.1 asserts that any bounded degree graph contains a sequence of balls
that is hyperfinite.

Hyperfiniteness can be similarly defined for sequences of weighted graphs
(see [ET11]). Our Corollary 4.4 can then be rephrased as follows: for any stationary
random graph (G, o), the sequence of graphs (G, o) weighted by µn

o is hyperfinite. To
deduce Theorem 1.8, we use hyperfiniteness of the sequence to show that with large
probability, one has a partition into finite pieces with small boundary. From these
partitions we assemble large sets with small boundary that witness non-expansion
of the heat kernels.

1.1. Outline of the paper

We start by recalling the construction of the Poisson boundary of a group, which
enables us to prove Main Theorem 1.4 in the special case of Cayley graphs (Section 2).
Next, we discuss stationary random graphs and graphings (Section 3). In Section 4
we use the amenability of Poisson boundaries of stationary random graphs to deduce
that any stationary random graph is stationary hyperfinite. Finally, in Section 5,
we prove our main theorems, first for stationary random graphs (Theorem 1.8) and
then for bounded degree graphs (Theorem 1.4).
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2. Amenability, Poisson boundaries and random walks on
groups

2.1. Zimmer amenability of non-singular equivalence relations

Zimmer [Zim78] originally defined amenability for non-singular group actions.
We present his definition adopted to the context of non-singular countable mea-
sured equivalence relations (see [Ada90] and [CFW81]). Such a relation consists of a
(X, ν,R) where (X, ν) is a σ-finite measure space and R is a measurable subset of
X ×X which is an equivalence relation and for almost every x ∈ X the class [x]R
is countable. The non-singularity of the relation is expressed by the condition that
every measurable bijective map ϕ : X → X such that (x, ϕ(x)) ∈ R for almost every
x ∈ X is measure class preserving. We endow R with a measure νR by integrating
the counting measure on the fibers of the projection onto the first coordinate. Alter-
natively, if we integrate along the second coordinate, the resulting measure is of the
same class.

Zimmer’s amenability is a fixed point condition in compact convex invariant sets
for isometric actions on Banach spaces: Let E be a separable Banach space and let
Isom(E) be the group of isometries equipped with the strong operator topology. Let
(X, ν,R) be countable non-singular equivalence relation. A map α : R → Isom(E)
is a measurable cocycle if it is measurable, α(x, x) = 1 and α(z, y)α(y, x) = α(z, x)
for almost every x ∈ X and every y, z ∈ [x]R (equivalently for νR-almost every
(x, y), (y, z) ∈ R). Any cocycle α : R → Isom(E) induces a dual cocycle α∗ : R →
Isom(E∗) given by α∗(y, x)(φ)(v) = φ(α(x, y)v) for v ∈ E. A Borel field of compact
convex sets {Ax}x ∈ X of E∗ is called α∗-invariant if α∗(y, x)Ax = Ay for νR-almost
every pair (x, y) ∈ R.

We say that (X, ν,R) is amenable if for every separable Banach space E, measur-
able cocycle α : R → Isom(E), and invariant Borel field {Ax}x ∈ X of E∗ as above,
there exists an invariant Borel section, i.e. an invariant Borel map φ : X → E∗ such
that φ(x) ∈ Ax for almost every x ∈ X and α∗(y, x)φ(x) = φ(y) for νR-almost every
(x, y) ∈ R. Similarly, we say that a measure-class preserving action of a countable
group G on (X, ν) is amenable if for any E, Borel field {Ax}x ∈ X of E∗ as above
and any measurable cocycle α : G×X → Isom(E), there exists a G-invariant mea-
surable section φ : X → E∗, i.e. φ satisfies φ(x) ∈ Ax for almost every x ∈ X and
α(g, x)φ(x) = φ(gx) for ν-almost every x ∈ X and every g ∈ G. When the action of
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G is essentially free the amenability of the group action and the orbit equivalence
relation are equivalent.

The amenability of a non-singular equivalence relation can be related to the notion
of hyperfiniteness. A non-singular countable measured equivalence relation (X, ν,R)
is hyperfinite if there exists a sequence of finite equivalence relations En ⊂ R such
that R = ⋃

n ∈N En.

Theorem 2.1 (Connes–Feldman–Weiss [CFW81]). — A non-singular countable
measured equivalence relation is amenable if and only if it is hyperfinite.

2.2. Poisson boundary

We start by recalling a few basic facts about Poisson boundaries. Let G be a
countable group and let µ be a probability measure on G such that supp(µ) generates
G. The path space is the product space GN. Let us write Pµ for the measure on GN

obtained as push-forward of µN via the map
(x1, x2, . . .) 7→ (1, x1, x1x2, . . .).

We define the shift operator T : GN → GN as T ((xi)i ∈N) = (xi+1)i ∈N. The shift
operator commutes with the action of G by left-multiplication. The Poisson boundary
(P, τ) is the quotient of the space (GN,Pµ) by the σ-algebra of T -invariant sets. Since
the support of µ generates G, one can easily verify that the induced action of G
on (P, τ) is non-singular and that the measure τ is µ-stationary. It is a theorem of
Zimmer [Zim78] that the action of G on the Poisson boundary is amenable (in the
sense of [Zim78]). We reproduce the sketch of Zimmer’s proof for completeness. The
key ingredient of Zimmer’s argument is the following lemma.

Lemma 2.2 (Zimmer [Zim78, Theorem 3.3]). — Let (X, ν1) be a probability
measure space with a non-singular amenable action of the group G1 ×G2 such that
G2 is amenable. Let A be the σ-algebra of G2 invariant sets on X. Then the quotient
of (X, ν1) by A is a non-singular amenable G1-space.

Actually, Zimmer uses a version of Lemma 2.2 where G2 = N is not a group, but a
semigroup generated by a single transformation (see [Zim78, Section 5] for details).
In order to use this to prove amenability of the Poisson boundary of G, we must
first replace Pµ with a quasi-invariant measure which makes the left G-action on
GN amenable. For any probability measure ν on G the convolution ν ∗ Pµ is the
push-forward of the measure ν×µN via the map (g, x1, x2, . . .) 7→ (g, gx1, gx1x2, . . .).
We claim that as soon as ν has full support on G, the action G ↷ (GN, ν ∗ Pµ) is
non-singular and amenable. Non-singularity is obvious because ν has full support,
and to prove amenability, note that the projection onto the first coordinate (GN, ν ∗
Pµ) → (G, ν) is a G-equivariant measure-preserving map and G acts amenably on
(G, ν) [Zim84, 4.3.2]. Therefore, by [Zim78, Theorem 2.4] the action G ↷ (GN, ν ∗Pµ)
is amenable.

Let A be the algebra of T -invariant sets on GN. The quotient of (GN, ν ∗ Pµ) by A
is (P, ν ∗ τ). By the variant of Lemma 2.2 for G2 = N, the G-action on (P, ν ∗ τ) is
amenable. It remains to produce ν with full support such that ν ∗ τ = τ , for which
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we can take the sum of convolutions ν := ∑
n⩾ 1

1
2n µ∗n. This concludes the proof of

the amenability of G ↷ (P, τ).
We will need one more well-known property of (P, τ), namely an ergodic theorem

for the random walk:

Lemma 2.3. — For any f ∈ L∞(P, τ) and τ -a.e. x ∈ P , we have

lim
n → ∞

∫
G

f(gx) dµ∗n(g) =
∫

P
f(y) dτ(y).

We provide a short proof:
Proof. — Let f̃ be the pullback of f to GN. The lemma will follow once we show

that for Pµ-almost every trajectory (xi)i ∈N, we have

lim
n → ∞

∫
G

f̃((gxi)i ∈N)dµ∗n(g) = E(f̃).

Because f̃ is shift-invariant, we can rewrite the left-hand side as

(2.1) lim
n → ∞

∫
Gn

f̃(1, g1, g1g2, . . . , g1 . . . gn, g1 . . . gnx1, g1 . . . gnx2, . . .)dµ(g1) . . . dµ(gn).
By the martingale convergence theorem, we have that for Pµ-almost every trajectory
(yi)i ∈N ∈ GN:

f̃ ((yi)i ∈N) = lim
n → ∞

E
(
f̃((y′

i)i ∈N | y′
i = yi for i ⩽ n)

)
.

Since the expected value on the right depends only on y1, . . . , yn we will write
Ef̃(y1, . . . , yn) := E(f̃((y′

i)i ∈N) | y′
i = yi for i ⩽ n)). Using (2.1) we now can deduce

that for almost every trajectory (xi)i ∈N we have

lim
n → ∞

∫
G

f̃ ((gxi)i ∈N) dµ∗n(g) = lim
n → ∞

Ef̃ (1, g1, . . . , g1g2 . . . gn) dµ(g1) . . . dµ(gn)

=E(f̃).
□

2.3. Global non-expansion of heat kernels on groups

We are now able to prove the main result in the special case of Cayley graphs of
finitely generated groups.

Theorem 2.4. — Let G be a finitely generated group and µ a finitely supported
measure on G whose support generates G as a semigroup. Then the heat kernels on
G with distribution µ are not expanding.

Proof of Theorem 2.4. — Let (P, τ) be the Poisson boundary of (G, µ). By the
above results of Zimmer [Zim78], the action of G on (P, τ) is nonsingular, ergodic,
and amenable. The idea of the proof is that amenability of the Poisson boundary
implies there exist medium-size sets in P that are nearly invariant under the G-action.
This allows us to define sets in G that are nearly invariant under the random walk.
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The above idea works well as long as the Poisson boundary is nontrivial, so let us
first consider the case that (P, τ) is trivial. Then G is amenable, so for every ε > 0
there exists a Følner set Fε such that |∂Fε| ⩽ ε|Fε|. Using the random walk starting
at e ∈ G, we have for every n:∑

g ∈ G

µn
e (gFε) = |Fε| and

∑
g ∈ G

µn
e (∂gFε) = |∂Fε| ⩽ ε|Fε|.

It follows that for every n there exists gn such that µn
e (∂gnFε) ⩽ ε µn

e (gnFε). In
Lemma 5.2 we establish a dispersion property of random walks, immediately implying
that for sufficiently large n (depending on ε), we have µn

e (gnFε) ⩽ 1
2 . This proves

that heat kernels on G are not ε-expanding.
The remaining case is that (P, τ) is nontrivial. By amenability, G ↷ (P, τ) is orbit

equivalent to a Z-action [CFW81]. Note that non-trivial Poisson boundaries are
purely nonatomic because their atomic part would be stationary and hence invariant
by the maximum principle (see also [Kai05, Corollary 3.3.1]). The stationarity of
τ would then imply that all gp have the same mass as p, which contradicts the
finiteness of τ . A result of Jones-Schmidt [JS87] then shows that there exists an
almost invariant sequence {Sn}n of subsets of P , i.e. we have τ(γSn∆Sn) → 0 for
any γ ∈ supp(µ). It follows that τ(∂Sn)→ 0. Further, Jones–Schmidt in fact show
we can choose Sn with τ(Sn) = 1

2 ([JS87, Lemma 2.3]).
For p ∈ P and n ⩾ 1, define

An(p) := {γ ∈ G | γp ∈ Sn}.
We claim that for a.e. p, these sets An are nearly invariant under the random walk.
Indeed, by Lemma 2.3, we have for almost every p ∈ P :

lim
k→∞

µk(An(p)) =
∫

G
1Sn(γp)µk(γ)

=
∫

P
1Sn(p)dτ(p)

= τ(Sn),
where we used Lemma 2.3 on the second line. Similarly one sees µk(∂An(p))→ τ(∂Sn)
as k →∞ for every n ⩾ 1 and a.e. p. □

3. Stationary random graphs and graphings

3.1. Stationary random graphs

Let d ∈ N and let M⩽ d be the moduli space of rooted isomorphism classes of
connected rooted graphs of degree bounded by d. We allow multiple edges and
loops. The spaceM⩽ d is equipped with the following metric. For any rooted graphs
(G1, o1), (G2, o2) we put

d
(
(G1, o1), (G2, o2)

)
:= 2−r where r = inf {n ∈ N |BG1(o1, n) ̸∼= BG2(o2, n)} .

This metric induces the Gromov–Hausdorff topology on M⩽ d. For a rooted graph
(G, o) ∈Md, write (Xn)n ∈N for the simple random walk on G starting at the root.
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Definition 3.1 (Benjamini–Curien [BC12]). — A stationary random graph is
a random Md-valued variable (G, o) such that (G, o) and (G, Xn) have the same
distribution.

For example, a Cayley graph rooted at any vertex is a stationary random graph.
We have the following definition of stationary hyperfiniteness for stationary random
graphs:

Definition 3.2. — A stationary random graph (G, o) is stationary hyperfinite
if for every ε > 0, there exists a stationary random subset S ⊂ G with P(o ∈ S) ⩽ ε
and such that G\S is a union of finite connected components almost surely.

This should be compared with classical hyperfiniteness of unimodular random
graphs, where S is required to be unimodular, see [Sch11]. In particular, we warn
that a unimodular random graph may be stationary hyperfinite yet not hyperfinite
as a unimodular random graph:

Example 3.3. — For d > 1, the 2d-regular rooted tree (T2d, o) is a unimodular
random graph that is not hyperfinite, but it is stationary hyperfinite because a union
of concentric horospheres with a sparse sequence of radii, centered at a random point
of the boundary, will partition T2d into finite components.

More precisely, identify T2d with the Cayley graph of the free group Fd on d
generators and let b : ∂T×Fd → Z be a Busemann cocycle (it is unique up to additive
constant). Choose α ∈ R irrational and let λ be the Lebesgue measure on T := Z\R.
Consider the system (∂T ⋉ T, ν × λ) with the action (ξ, θ)γ = (ξγ, θ + αb(ξ, γ))
for γ ∈ Fd. Let Eε = ∂T × [0, ε) and put Sε = {γ ∈ Fd | xγ ∈ Eε} where x is
(ν × µ)-random. We have P(o ∈ Sε) = ε and it is easy to verify that Sε is always
a union of concentric horospheres with bounded gaps so that T2d \ Sε is a union of
finite connected components. Since ν × λ is Fd-stationary, Sε is the intersection of
Eε with the orbit of a random point in a stationary Fd-system (where we identified
this rooted orbit with a copy of Fd), so its distribution is stationary under the action
of Fd. In particular, it is a stationary random subset of T2d.

3.2. Stationary graphings

One way to produce random graphs is to realize them as equivalence classes in
some non-singular measured equivalence relation (X, ν,R) where edges are given
by a finite graphing (φi)∈ I generating R. Thanks to this point of view we will be
able to attack our problem using the theory of non-singular measured equivalence
relations.

Let (X, ν) be a probability measure space and let φi : Xi → X be a finite
family of non-singular measurable maps defined on subsets Ui of X. The triple
(X, ν, (φi)i ∈ I) is called a graphing. We assume that (φi)i ∈ I is symmetric, i.e. for
each i ∈ I the map φ−1

i : φi(Ui)→ Ui is also in the set (φi)i ∈ I . Let R be the orbit
equivalence relation generated by maps (φi)i ∈ I . For x ∈ X define its degree as
deg(x) := |{i ∈ I | x ∈ Ui}|. Intuitively deg(x) is the number of arrows emanating
from x.
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In this section, all graphings and equivalence relations are assumed to be countable.
A measured graphing yields a random graph in the following way: For every x ∈ X,

let Gx be the graph with vertex set given by the equivalence class [x]R and place
an edge between y, z ∈ [x]R whenever z = φi(y) for some i ∈ I (multiple edges
are allowed). The graphs Gx have degrees bounded by |I| and are undirected since
(φi)i ∈ I is symmetric. If we choose a ν-random point x, the resulting graph Gx is a
random rooted graph.

The properties of Gx will depend on the graphing. For example, if the graphing
consists of measure preserving maps then the resulting random graph is unimodular
(see [AL07]). We are mainly interested in stationary graphs. Those will be realized
as equivalence relations in stationary graphings.

Definition 3.4. — A finite graphing (X, ν, (φi)i ∈ I) is stationary if for every
f ∈ L∞(X, ν) we have∫

X
f(x)dν(x) =

∫
X

 1
deg(x)

∑
x ∈ Ui

f(φi(x))
 dν(x).

If (X, ν, (φi)i ∈ I) is a stationary graphing then Gx is a stationary random graph.
Conversely, any stationary random graph arises in this way:

Lemma 3.5. — For every stationary random graph (G, o) there exists a stationary
graphing (X, ν, (φi)i ∈ I) such that (G, o) = (Gx, x) in distribution.

Proof. — The proof is the same as Lovasz’s result that unimodular random graphs
can be realized by unimodular graphings [Lov12, Theorem 18.37] (see also the proof
of [AGV14, Proposition 14]), but with σ being a stationary distribution on the space
of rooted graphs. □

The random walk on a finite measured graphing (X, ν, (φi)i ∈ I) is the sequence of
random variables (Xn)n⩾ 0 where X0 is a ν-random point of X and for all n ⩾ 1 we
have

P (Xn = y |Xn−1 = x) = 1
deg(x) |{i ∈ I |φi(x) = y}| .

For a stationary graphing each step Xn will have the same distribution ν.
We prove that for any measured equivalence relation, its “tautological bundle”

is amenable. Let (X, ν,R) be a non-singular measured equivalence relation. The
tautological bundle is the pair ([X], [ν]) where [X] is the set R ⊂ X ×X equipped
with measure [ν] :=

∫
X(δx × cx) dν(x) where cx is the counting measure on the

equivalence class [x]R. Points in the space [X] are pairs (x, y) where x ∈ X and
y ∈ [x]R.

Lemma 3.6. — Let R′ be the equivalence relation on [X] generated by (x1, y) ∼
(x2, y) for x1, x2 ∈ [y]R. Then R′ is non-singular and amenable as an equivalence
relation.

Proof. — We will prove that R′ is non-singular and hyperfinite, so amenability will
follow by Connes–Feldman–Weiss’ Theorem 2.1. Recall that a measured equivalence
relation is hyperfinite if it is the union of finite measured equivalence relations (see
Section 2.1). Let (φi)i ∈N be a countable graphing generating R. For each x ∈ X,
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equip the graph Gx with a path metric d[x], declaring the length of the edge (x, φi(x))
to be i. This ensures that the balls in Gx are finite.

For r > 0, let Er be the equivalence relation on [X] generated by (x1, y) ∼ (x2, y)
for x1, x2 ∈ [y]R such that d[y](y, x1), d[y](y, x2) ⩽ r. The balls in Gy are finite for
every y ∈ X, so the classes of Er are finite. On the other hand, for every pair
x1, x2 ∈ [y]R there exists r > 0 such that x1, x2 are in the r-ball centered at y. We
conclude that R′ = ∪r>0Er, so R′ is indeed hyperfinite. □

The following lemma is an easy consequence of hyperfiniteness.

Lemma 3.7. — Let (X, ν, (φi)i ∈ I) be a finite symmetric graphing generating a
non-singular amenable measured equivalence relation R. Then for every ε > 0 there
exists M ∈ N and a subset Z ⊂ X such that ν(Z) ⩾ 1 − ε and the equivalence
relation E on Z generated by the restrictions of (φi)i ∈ I satisfies |[z]E | ⩽ M for
ν-almost all z ∈ Z.

Proof. — By Connes–Feldman–Weiss’ Theorem 2.1, there exists an increasing
sequence of finite measured equivalence subrelations En ⊂ R such that R = ⋃

n ∈N En.
Set

Zn := {x ∈ X |φi(x) ∈ [x]En for all i ∈ I} .

Clearly Zn ⊂ Zn+1 and ⋃
n ∈N Zn = X modulo a null set. Choose n such that

ν(Zn) ⩾ 1 − ε/2. The function Zn ∋ z 7→ |[z]En| ∈ N is measurable, so there exists
M ∈ N such that ν({z ∈ Zn | |[z]En| ⩽ M}) ⩾ 1−ε. Set Z := {z ∈ Zn | |[z]En| ⩽ M}
and let E be the equivalence relation on Z generated by the restrictions of (φi)i ∈ I .
Clearly [z]E ⊂ [z]En , so every class of E has at most M elements. □

Finally, we discuss hyperfiniteness for stationary graphings.

Definition 3.8. — A symmetric stationary graphing (X, ν, (φi)i ∈ I) is hyperfi-
nite if the measured equivalence relation generated by (φi)i ∈ I is hyperfinite.

We have the following relationship between stationary hyperfiniteness of a station-
ary random graph and hyperfiniteness of stationary graphings:

Lemma 3.9. — A stationary random graph (G, o) of bounded degree is stationary
hyperfinite if and only if there exists a finite, symmetric, hyperfinite, stationary
graphing (X, ν, (φ)i ∈ I) such that (G, o) = (Gx, x) in distribution.

Proof. — Suppose first (X, ν, (φi)i ∈ I) is hyperfinite. Let ε > 0, choose Z ⊂ X as in
Lemma 3.7 and set S := X\Z. In particular, ν(S) ⩽ ε and R has finite equivalence
classes on the complement of P , so (Gx, x) is stationary hyperfinite.

Conversely, suppose (G, o) is stationary hyperfinite. and choose stationary random
subsets Sn such that P(o ∈ Sn) ⩽ 1

n
and G\Sn is a union of finite components almost

surely. For technical reasons assume that Sn have no symmetries a.s. meaning that
(G, o, Sn) ̸= (G, o′, Sn) for any two choices of the root o and o′. This can be always
arranged by adding to Sn a small intensity Bernoulli percolation on G.

We will construct a hyperfinite, stationary graphing realizing the stationary random
graph (G, o) on a suitable moduli space of decorated graphs: Let Y 1, Y ∞ be the
space of connected, rooted graphs of degree at most d decorated with a subset or a
sequence of subsets respectively. We represent elements of Y 1 as (H, o, A) whereH is a
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connected (deterministic) graph of degree at most d with root o and A ⊂ H. Similarly
we represent elements of Y ∞ as (H, o, (Ai)∈N) where Ai ⊂ H for i ∈ N. The standard
graphing on Md (re-rooting to a neighbor) lifts to symmetric graphings on Y 1 and
Y ∞ which correspond to re-rooting a decorated graph to a neighbor of the root,
which we will also call the standard graphing. Write R∞ for the re-rooting relation
on Y ∞. For i ∈ N, let πi : Y ∞ → Y 1 be the projection (H, o, (Aj)j ∈N) 7→ (H, o, Ai),
and note that πi is equivariant with respect to the standard graphings. Write µi

for the distribution of (G, o, Si) in Y 1. Since Si is a stationary random subset, µi is
a stationary probability measure on Y 1. Moreover, since Si has no symmetries a.s.
we have (G, o) = (Gx, x) in distribution for µi-random x ∈ Y 1. Finally, let µ be any
stationary coupling of (µi)i ∈N on Y ∞, i.e. a stationary probability measure on Y ∞

such that (πi)∗(µ) = µi for all i. Any weak-* limit of ergodic averages of the random
walk starting at a (∏i µi)-random point is such a coupling almost surely.

We claim that (Y ∞, µ) with the re-rooting equivalence relation is hyperfinite.
Indeed, let Zn := {(H, o, (Ai)i ∈N) | o ̸∈ An} ⊂ Y ∞. If x = (H, o, (Ai)i ∈N) then
(Gx, x, [x]∩Zn) = (H, o,H\An). But the distribution of the triple (H, o, An) is given
by µi so for µ-random x we have (Gx, x, [x] ∩ Zn) = (G, o,G \ Sn) in distribution.
Since (G \ Sn) is a union of finite connected components a.s., we deduce that the
relation En on Y ∞ generated by the standard graphing restricted to Zn is finite a.s.
Finally, we have µ(Zn) = P(o ̸∈ Sn) ⩾ 1− 1

n
, so R∞ = ⋃ En modulo a null set. We

deduce that (Y ∞, µ,R∞) with the standard graphing is hyperfinite. □

4. Poisson boundaries of stationary graphings

We recall the notion of Poisson boundary of a stationary graphing (X, ν, (φi)i ∈ I),
due to Kaimanovich [Kai05]. Kaimanovich’s construction is more general and applies
in the context of measured groupoids. Afterwards, we use this to obtain stationary
hyperfiniteness of stationary random graphs.

We recall Kaimanovich’s construction of Poisson boundaries: As in the classical
case of groups, it is the quotient of a path space by the shift operator, but in our
case the paths traverse different graphs depending on the initial point, so that the
path space is a bundle over X. We summarize its properties:

Proposition 4.1 (Kaimanovich [Kai05]). — Let (X, ν,R) be a non-singular
measured equivalence relation. Let (φi)i ∈ I be a finite symmetric stationary graphing
generating R. Then there exists a space (P (X), ν̃) with a stationary graphing (φ̃i)i ∈ I

and a measurable map π : (P (X), ν̃)→ (X, ν) such that
(1) π∗(ν̃) = ν,
(2) π ◦ φ̃i = φi ◦ π for all i ∈ I,
(3) The equivalence relation R̃ generated by (φ̃i)i ∈ I is amenable.

Remark 4.2. — In [Kai05], amenability is defined using the existence of invariant
means. It is well-known this is equivalent to amenability in the sense of Zimmer that
we use here.
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Since we need an explicit description of the Poisson boundary for the proof of
Corollary 4.4 below, we review its construction in the setting of Proposition 4.1. For
a bounded degree graph G, define its path space

Path(G) := {(vn)n ∈N ⊂ G | vn+1 ∼ vn} .

We endow the space Path(G) with the topology induced from GN. The shift operator
T acts on Path(G) by T ((vn)n ∈N) := (vn+1)n ∈N. Write Ca0,a1, ..., am for the cylinder
{(vn)n ∈N | vi = ai for i = 0, . . . , m}. Equip Path(G) with the measure Po defined
by Po(Ca0, ..., am) := 0 if a0 ≠ o and Po(Ca0, ..., am) := ∏m−1

i=0 deg(ai)−1 otherwise. This
is the probability measure associated to the simple random walk on G starting at
the root o. For k ⩾ 1 we define Pk

o := T k
∗ Po, which is the distribution of the kth step

of the random walk starting at the root o.
The total path space Path(X) is defined as

Path(X) :=
{
(x, (xn)n ∈N) ∈ X ×XN

∣∣∣xn ∼ xn+1 in Gx for n ∈ N
}

.

We think of Path(X) as a fiber bundle over X whose fiber over x ∈ X is given by
Path(Gx). The probability measure Pk on Path(X) is given by the integral:(

Path(X),Pk
)

:=
∫

X

(
Path(Gx),Pk

x

)
dν(x).

We think of a point in the space Path(X) as a pair (x, (xn)n ∈N) where x ∈ X and
(xn)n ∈N is a trajectory in Path(Gx). The natural projection map π : Path(X)→ X
given by π(x, (vn)n ∈N) := x satisfies π∗P0 = ν. The shift operator T on Path(X) is
defined fiberwise: T (x, (xn)n ∈N) := (x, (xn+1)n ∈N), so in particular π ◦ T = π.

Let A be the σ-algebra of T -invariant Borel subsets of Path(X). Define the Poisson
boundary (P (X), ν̃) as the Mackey point realization of the quotient of (Path(X),P0)
by A, i.e. P (X) is a standard Borel space and there is a map Path(X) → P (X)
inducing a σ-algebra isomorphism B(P (X))→ A (see [Mac62] for the existence of the
Mackey point realization). This construction mirrors the one used by Zimmer [Zim78]
to show amenability of the Poisson boundary of a group. Since T preserves the fibers
of the projection map π : Path(X)→ X, we see π factors through P (X). This gives
a map π : P (X) → X such that π∗ν̃ = ν. The maps φ̃i commute with T so they
descend to maps φ̃i on P (X). We have π ◦ φ̃i = φi ◦ π. This proves Properties (1)
and (2) in Proposition 4.1. Property (3), i.e. amenability, will then follow from
amenability of the tautological bundle and the following lemma that the quotient of
an amenable equivalence relation by a single transformation is amenable, which is
the analogue of Zimmer’s [Zim78, Theorem 3.3] (see Lemma 2.2).

Lemma 4.3. — Let (X, ν) be a standard Borel probability measure space with
a non-singular amenable equivalence relation R and suppose T : X → X is a non-
singular measurable map that preserves a graphing of R. Then the quotient relation
R on the space of T -ergodic components T \\X is amenable.

Since the proof is essentially identical to the proof of Lemma 2.2, we omit it here.
One only needs to substitute equivalence relations for group actions in all relevant
definitions (such as cocycles), see e.g. [Kec93, Proposition 3.3] for details.
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To prove (3), let R0,R1 be the equivalence relations on Path(X) and P (X) respec-
tively that are generated by (φ̃i)i ∈ I . Set P′ := ∑∞

k=0 2−k−1Pk. We will show that R0
is a non-singular amenable equivalence relation on (Path(X),P′). Let ([X], [ν],R′)
be the “tautological bundle” over (X, ν) as defined immediately prior to Lemma 3.6.
The map

Path(X) −→ [X]
(x, (xn)n ∈N) 7→ (x, x0)

that forgets the trajectory except the initial point, is non-singular(2) and maps equiva-
lence classes of R0 to those of R′. Hence, ([X], [ν],R′) is a factor of (Path(X),P,R0).
Since it is amenable by Lemma 3.6, (Path(X),P′,R0) is an amenable equivalence
relation by [Zim78, Theorem 2.4].

The quotient of (Path(X),P′,R0) by A is still the space (P (X), ν̃,R1). By
Lemma 4.3, amenability passes to quotients by a single transformation, so we deduce
that R1 is an amenable equivalence relation.

Corollary 4.4. — Every stationary random graph of bounded degree is a sta-
tionary hyperfinite stationary random graph.

Proof. — Let (G, o) be a stationary random graph of degree at most d. Let
(X, ν, (φi)i ∈ I) be a stationary graphing with |I| ⩽ 2d such that (G, o) = (Gx, x) in
distribution. Let (P (X), ν̃, (φ̃i)i ∈ I) be the Poisson boundary constructed in Propo-
sition 4.1 and write R̃ for the equivalence relation generated by (φ̃i)i ∈ I . Finally
let (Hy, y) be the stationary random graph associated to the stationary graphing
(P (X), ν̃, (φ̃i)i ∈ I). The equivalence relation R̃ is amenable by Proposition 4.1, and
hence hyperfinite by Connes–Feldman–Weiss’ Theorem 2.1. We deduce that (Hy, y)
is a stationary hyperfinite stationary random graph.

It remains to prove that (Hy, y) = (Gx, x) in distribution. The map π from Propo-
sition 4.1 induces a graph cover π : (Hy, y)→ (Gπ(y), π(y)). The definition of maps φ̃i

on the path space Path(X) (before taking the quotient by the σ-algebra A) immedi-
ately implies that π : (Hy, y)→ (Gπ(y), π(y)) is a graph isomorphism. Since π∗(ν̃) = ν
we infer that (Hy, y) = (Gx, x) in distribution. □

We remark that Corollary 4.4 does not contradict the fact that there are non-
hyperfinite unimodular random graphs. Even if the stationary random graph (G, o)
is unimodular, the graphing that shows stationary hyperfiniteness is not necessarily
measure-preserving.

(2)The random walk explores the entire graph so any starting point x0 is achieved with positive
probability.
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5. Proof of the Main Theorem

5.1. Proof for stationary random graphs

Proof of Theorem 1.8. — Let (G, o) be an infinite connected stationary random
graph of degree at most d and let ε > 0. For technical reasons we require

√
(d + 1)ε ⩽

1/10. By Corollary 4.4 there exists a stationary graphing (X, ν, (φi)i ∈ I) such that the
relation generated by (φi)i ∈ I is hyperfinite and (G, o) = (Gx, x) in distribution. By
Lemma 3.7 there exists a subset Z of X and a constant M > 0 such that ν(Z) ⩾ 1−ε
and the classes of the equivalence relation on Z generated by (φi)i ∈ I are of size at
most M . For x ∈ X set Fx := [x]R ∩ Z and Ex := Gx \ Fx. Then Fx is a subgraph
of Gx such that P(x ∈ Fx) = ν(Z) ⩾ 1 − ε and each connected component of Fx

has at most M vertices. Recall that µn
x is the distribution of the nth step of a simple

random walk on (Gx, x). By stationarity we have∫
µn

x(∂Fx ∪ Ex) dν(x) =
∫
P(Xn ∈ ∂Fx) dν(x) + P(x ∈ Ex),

where as before Xn is the nth step of the random walk associated to µ. We estimate
the first term on the right-hand side as follows:

P(Xn ∈ ∂Fx) = P (Xn ∈ ∂Fx and Xn+1 ∈ Ex)
P (Xn+1 ∈ Ex |Xn ∈ ∂Fx)

⩽
P(Xn+1 ∈ Ex)

d−1

= dP(x ∈ Ex),
where on the second line, we estimated the denominator using that any point in
∂Fx has an edge with endpoint in Ex and that the degree is bounded by d, and
on the final line we used stationarity again. Combining these estimates and using
P(x ∈ Ex) ⩽ ε, we have ∫

µn
x(∂Fx ∪ Ex) dν(x) ⩽ (d + 1)ε,

so that by Fatou’s lemma∫
lim inf
n → ∞

µn
x(∂Fx) dν(x) ⩽ (d + 1)ε.

It follows that the set Xε := {x ∈ X | lim inf
n → ∞

µn
x(∂Fx) ⩽

√
(d + 1)ε} has large mass:

(5.1) ν(Xε) ⩾ 1−
√

(d + 1)ε.

Claim 5.1. — For every x ∈ Xε the heat kernels on (Gx, x) are not (6
√

(d + 1)ε)-
expanding.

Proof. — Let x ∈ Xε. In Lemma 5.2 below, we establish a uniform flattening
property for the random walk on Gx, which implies there exists n ∈ N such that for
every v ∈ Gx we have

(5.2) µn
x({v}) ⩽

√
(d + 1)ε
3M

.
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Since x ∈ Xε, by increasing n if necessary, we can also ensure that µn
x(∂Fx ∪ Ex) ⩽

2
√

(d + 1)ε. The last inequality implies that µn
x(Ex) ⩽ 2

√
(d + 1)ε so µn

x(Fx) ⩾ 1−
2
√

(d + 1)ε > 2/3. Let us enumerate the connected components of Fx as C1, C2, . . . .

Let k be the smallest integer such that ∑k
i=1 µn

x(Ci) ⩾ 1/2 and define Sx := ⋃k−1
i=1 Ci.

By (5.2) we have

1
2 ⩾ µn

x(Sx) ⩾ 1
2 − µn

x(Ck) ⩾ 1
2 −M

√
(d + 1)ε
3M

>
1
3 .

On the other hand ∂Sx ⊂ ∂Fx so µn
x(∂Sx) ⩽ µn

x(∂Fx) ⩽ 2
√

(d + 1)ε. Hence,

µn
x(∂Sx)

µn
x(Sx) < 6

√
(d + 1)ε.

This proves the claim. □

To prove the theorem, set X0 := lim infm → ∞ Xm−4 . By (5.1), the Borel-Cantelli
lemma applies to the complement of X0 and shows that ν(X0) = 1. Further by
Claim 5.1 we know that for every x ∈ X0 the heat kernels on (Gx, x) are not
expanding. This completes the proof since (G, o) = (Gx, x) in distribution. □

In the above proof of Theorem 1.8, we needed uniform flattening of random walks
on infinite graphs. This is well-known to experts, see e.g. [PT22, Lemma 3.2] for the
proof of a stronger estimate for regular graphs. Since we could not locate a proof in
full generality in the literature, we provide one here for completeness.

Lemma 5.2. — Let (G, o) be a infinite bounded degree connected rooted graph.
Let (Xn)n ∈N be the simple random walk on G starting at o. Then

lim
n → ∞

max
v ∈ G

P(Xn = v) = 0.

Proof. — Let d be the maximal degree of G. Let cn = maxv ∈ G
P(Xn=v)

deg(v) and write
c := lim supn → ∞ cn. We need to show that c = 0. Suppose to the contrary that c > 0.
Our first observation is that for any n ∈ N we have

(5.3) P(Xn+1 = v)
deg(v) = 1

deg(v)
∑

w ∼ v

P(Xn = w)
deg(w) ,

so cn+1 ⩽ cn. In particular we have cn ⩾ c for every n ∈ N. Choose m ∈ N such
that (m− 1)c > 1 and n > m such that cn ⩽ (1 + d−2m)c. Let v0 ∈ G be such that
P(Xn+2m = v0) = cn+2m and choose vertices v1, . . . , vm such that d(v0, vi) = 2i for
i = 1, . . . , m. Let W2m be the set of walks of length 2m starting at v0. We have
|W2m| ⩽ d2m and for each i there is at least one walk that ends in vi. For each walk
w = (w0, w1, . . . , w2m) we write deg(w) := ∏2m−1

i=0 deg(wi). Applying formula (5.3)
2m times, we get

c ⩽
P(Xn+2m = v0)

deg(v0)
=

∑
w ∈ W2m

P(Xn = w2m)
deg(w) deg(w2m)
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Choose walks wi, i = 1, . . . , m such that wi
2m = vi. Considering these separately, we

compute

c ⩽
∑

w ∈ W2m \{w1, ..., wm}

cn

deg(w) +
m∑

i=1

P(Xn = vi)
deg(wi) deg(vi)

A simple inductive argument shows that ∑w ∈ W2m

1
deg(w) = 1. Hence

c ⩽ cn

(
1−

m∑
i=1

1
deg(wi)

)
+

m∑
i=1

P(Xn = vi)
deg(wi) deg(vi)

.

Rearranging and using cn ⩽ (1 + d−2m)c, we have
m∑

i=1

1
deg(wi)

(
cn −

P(Xn = vi)
deg(vi)

)
⩽ cn − c ⩽ d−2mc.

Since the terms in the sum on the left-hand side are nonnegative and deg(wi) ⩽ d2m

for all i, multiplying both sides by d2m shows
m∑

i=1

(
cn −

P(Xn = vi)
deg(vi)

)
⩽ c.

Since m was chosen such that mc− c > 1, we obtain
m∑

i=1

P(Xn = vi)
deg vi

⩾ mcn − c ⩾ mc− c > 1.

This contradicts ∑v ∈ G P(Xn = v) = 1. □

5.2. Proof for bounded degree graphs

Proof of Theorem 1.4. — We argue by contradiction, so suppose G is a connected
infinite graph of degree at most d such that the heat kernels of G are ε-expanding.

Lemma 5.3. — Let (on)n ∈N be a sequence of vertices of G such that (G, on)
converges to (G ′, o) in Gromov–Hausdorff topology. Then the heat kernels on (G ′, o)
are ε-expanding.

Proof. — Let m ∈ N and let S be a subset of vertices of G ′. We need to prove
that either µm

o (S) ⩾ 1
2 or µm

o (∂S) ⩾ εµm
o (S). Since (G, on) converge to (G ′, o), for

sufficiently large n the rooted graphs BG(on, m) and BG′(o, m) are isomorphic. Choose
n0 such that this holds and fix a root-preserving isomorphism ι : BG(on0 , m) →
BG′(o, m), and put S0 := ι−1(S ∩BG′(o, m)). Then µm

o (S) = µm
on0

(S0) and µm
o (∂S) =

µm
on0

(∂S0) because the distribution of first m steps of a random walk depends only
on the m-neighborhood of the root. Because the heat kernels on G are ε-expanding,
we will have either µm

o (S) ⩾ 1
2 or µm

o (∂S) ⩾ εµm
o (S). □

We will now construct a stationary random graph (G ′′, o) which is almost surely
ε-expanding. Fix any initial root o ∈ G and consider the sequence of probability
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measures {νN}N onM⩽ d supported on graphs isomorphic to G with root distributed
according to the first N steps of the random walk on G starting at o, i.e.

νN := 1
N

N−1∑
k=0

∫
G

δG,v dµk
o(v).

If we choose a νN -random graph and move the root to a random neighbor, the
distribution of the resulting graph is the same average with k replaced by k + 1.
It follows that any weak-* limit ν of νN is the distribution of a stationary random
graph supported on Gromov–Hausdorff limits of rooted graphs isomorphic to G. By
Lemma 5.3, the limit ν is almost surely ε-expanding, but this contradicts Theorem 1.8.

□

6. A rooted expander at all scales

In this section, we prove the claim stated in Example 1.6 that the graph given
there is a rooted expander at all scales. Recall that this graph is obtained by fixing
a prime p, and an expander family of p-congruence quotients {Gk}k ⩾ 0 of a finitely
generated linear group Γ, where G0 = 1 is trivial. Fix a finite generating set of Γ,
which projects to a finite generating set of Gk for all k ⩾ 0. We also use Gk to
denote the Cayley graph of Gk with this finite generating set. Let G be the graph
with vertex set ⊔kGk and edges given by those in {Gk}k as well as an edge between
x ∈ Gk and its image in Gk−1. Let the root o be the vertex that corresponds to G0.

Proposition 6.1. — G is a rooted expander at all scales.
Proof. — Note that by removing edges between vertices in the same level Gk for

all k, we obtain a tree in which every vertex has degree greater than 1. Such a tree
is a (classical) h-expander for some h > 0, i.e. for any finite subset A ⊆ G, we have
|∂A| ⩾ h|A|. It follows that this is also true for G.

The ball B(o, n) is given by ∪0⩽ k ⩽nGk. Suppose now A ⊆ B(o, n) for some n ⩾ 1
and |A| ⩽ |B(o, n)|/2. Set Ak := A ∩Gk. To estimate the expansion ratio |∂A|/|A|,
we consider two cases depending on whether A concentrates in Gn or not:

Case 1. |An| ⩽ h|A|/2. — Then the boundaries ∂A and ∂GA of A as measured in
B(o, n) and G differ by at most h|A|/2 vertices. Hence

|∂A| ⩾ |∂GA| − h

2 |A| ⩾
h

2 |A|.

Case 2. |An| > h|A|/2. — : If |An| ⩽ 3|Gn|/4, expansion follows from expansion
in Gn. If |An| ⩾ 3|Gn|/4, let m be largest such that |Am| ⩽ 2|Gm|/3.

Claim 6.2. — r = n−m is bounded (independently of A).
Proof. — It suffices to show that there exists r ⩾ 1 such that

(6.1) |B(o, n)−B(o, n− r)| ⩾ 3
4 |B(o, n)|

since if Ak ⩾ 2/3|Gk| for all n− r ⩽ k ⩽ n, then A contains more than half of the
vertices of B(o, n), and hence we must have m ⩾ n− r.
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To obtain Equation (6.1), note that since Gk are congruence quotients, there exists
d (which is the dimension of the corresponding p-adic Lie group lim←−Gk) such that
|Gk| ≍ pdk, so that |B(o, n)| ≍ pd(n+1), and

|B(o, n)| − |B(o, m)| ≍ pdn − pdm.

Setting this equal to 3pdn/4 and solving for m, the result follows. □

Therefore for at least (3/4 − 2/3)|Gn| vertices in An, there is a path of length
at most r starting at such a vertex and ending outside of A. Every one of these
vertices contributes to ∂A, with at most pdr vertices yielding the same contribution.
It follows that

|∂A| ⩾ 1
12p−dr|Gn|.

Since |Gn| ≳ |B(o, n)|, it follows that |∂A| ≳ |A|. □
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