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1. Introduction
The main purpose of this work is to investigate the a priori regularity estimates

for solutions to kinetic Fokker–Planck equations when supplemented with one of
the following boundary conditions: inflow injection, diffuse reflection, and specular
reflection. Of concern is the equation of the hypoelliptic form
(1.1) (∂t + v · ∇x) f = ∇v · (A∇vf) +B · ∇vf + cf + s,

for an unknown function f = f(z) with z := (t, x, v) ∈ (0, T ) × Ω ×Rd, where T > 0,
Ω is a bounded domain in Rd, and the d× d real symmetric matrix A = A(z), the
d-dimensional vector B = B(z) and the scalar functions c = c(z), s = s(z) are given.
We are always under the assumption that there is some constant Λ > 1 such that in
(0, T ) × Ω × Rd,

(1.2)

 Λ−1|ξ|2 ⩽ Aξ · ξ ⩽ Λ|ξ|2 for any ξ ∈ Rd,

|B| + |c| ⩽ Λ.

1.1. Main results

Before stating the results, let us first make the notion of boundary conditions
precise.

1.1.1. Phase boundaries

For x ∈ ∂Ω, the unit outward normal vector of ∂Ω at x is denoted by nx. Let
O := Ω × Rd denote the phase domain. We split the phase boundary Γ := ∂Ω × Rd

into the outgoing part Γ+, incoming part Γ−, and grazing (characteristic) part Γ0,
which are defined by

Γ± :=
{
(x, v) ∈ ∂Ω × Rd : ±nx · v > 0

}
,

Γ0 :=
{
(x, v) ∈ ∂Ω × Rd : nx · v = 0

}
.

We denote by γf the trace of a (weak) solution f : O → R to (1.1) at the boundary
set Γ, and γ±f := γf1Γ± . It will be shown in § 2 that our notion of solutions always
admits suitable trace at boundaries. For t ∈ (0, T ], we abbreviate

Σ±
t := [0, t] × Γ±,

Σt := [0, t] × Γ,
Ot := (0, t) × O.

1.1.2. Inflow boundary condition

Given a function g : Σ−
T → R as the boundary data, we impose the condition, with

the notation of the single-valued operator G for convenience,
f(t, x, v) = Gf := g(t, x, v) in Σ−

T .

In particular, the case g = 0 corresponds to the so-called absorbing boundary condi-
tion.
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1.1.3. Nonlocal reflection boundary condition

The nonlocal boundary condition of a generalized diffuse reflection type to be
concerned with is as follows,

f(t, x, v) = Nf := M(t, x, v)
∫
Rd
f(t, x, v′)(nx · v′)+ dv′ in Σ−

T ,

where the function M ∈ Cβ(ΣT ) with β ∈ (0, 1) is given, and satisfies that for any
q ⩾ 0, there exists some constant Λq > 0 such that
(1.3) ∥⟨v⟩qM∥L∞(ΣT ) + [M]Cβ(ΣT ) ⩽ Λq.

Here the bracket ⟨·⟩ := (1 + | · |2)1/2, and Cβ with β ∈ (0, 1) denotes the classical
Hölder space with exponent β. When M has a form of the boundary Maxwellian, that
is M = (2π)− d−1

2 Θ− d+1
2 e− |v|2

2Θ for some (uniformly positive and bounded) boundary
temperature function Θ : [0, T ]×∂Ω → R+, the operator N is called diffuse reflection.

1.1.4. Specular reflection boundary condition

The boundary condition with respect to the specular reflection operator R reads
f(t, x, v) = Rf := f

(
t, x, v − 2(nx · v)nx

)
in Σ−

T .

1.1.5. Statement of the main theorem

Our results provide well-posedness and Hölder a priori bounds for solutions of (1.1)
supplemented with one of the above three boundary conditions.

Theorem 1.1. — Let the domain Ω be bounded with ∂Ω ∈ C1,1, and let B ∈
{G,N,R} be the boundary operator. Assume that (1.2) and (1.3) hold.

(Well-posedness) For any m ⩾ 0, we have some constant l > 0 depending only on d,m
such that, for any given functions fin, s, g satisfying ⟨v⟩lfin ∈ L∞(O), ⟨v⟩ls, ⟨v⟩lg ∈
L∞(OT ), there exists a unique bounded weak solution f to (1.1) such that f |t=0 =
fin and γ−f = Bf , and such that for some constant C > 0 depending only on
d, T,Λ,m,Ω,M, we have

∥⟨v⟩mf∥L∞(OT ) ⩽ C
( ∥∥∥⟨v⟩ls

∥∥∥
L∞(OT )

+
∥∥∥⟨v⟩lfin

∥∥∥
L∞(O)

+ B
)
,

where B = ∥⟨v⟩lg∥L∞(Σ−
T ) when B = G, and B = 0 when B ∈ {N,R}.

(Hölder regularity) If additionally fin ∈ Cβ(O) and g ∈ Cβ(Σ−
T ) with β ∈ (0, 1], and

the compatibility condition γ−fin = γ−Bfin holds, then there are some constants
α ∈ (0, 1) and C ′ > 0 depending only on d, T,Λ,m, β,Ω,M such that

∥⟨v⟩mf∥L∞(OT ) + [f ]Cα(OT )

⩽ C ′
( ∥∥∥⟨v⟩ls

∥∥∥
L∞(OT )

+
∥∥∥⟨v⟩lfin

∥∥∥
L∞(O)

+ [fin]Cβ(O) + B′
)
,

where B′ = ∥⟨v⟩lg∥L∞(Σ−
T ) + [g]Cβ(Σ−

T ) when B = G, and B′ = 0 when B ∈ {N,R}.
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Remark 1.2. — The theorem consists in Propositions 3.11, 4.3, 5.2. The estimates
can be localized; see Propositions 3.7, 4.2, 5.1. More precisely, under the same
assumption as in the above theorem, we have the following local-in-time estimates
written in a unified way with the abbreviation Oτ

t := [max{0, τ − t}, τ ] × O for
τ, t ∈ (0, T ]. For any m > 0, there exist some constants l, C > 0 such that for any
τ ∈ (0, T ], we have

∥⟨v⟩mf∥L∞(Oτ
1 ) ⩽ C

( ∥∥∥⟨v⟩lf
∥∥∥

L2(Oτ
2 )

+
∥∥∥⟨v⟩ls

∥∥∥
L∞(Oτ

2 )
+
∥∥∥⟨v⟩lf

∥∥∥
L∞({t=0} ∩ Oτ

2) + Bτ

)
,

where Bτ = ∥⟨v⟩lg∥L∞(Σ−
T ∩ Oτ

2 ) when B = G, and Bτ = 0 when B ∈ {N,R}; and

∥⟨v⟩mf∥L∞(Oτ
1 ) + [f ]Cα(Oτ

1 )

⩽ C
( ∥∥∥⟨v⟩lf

∥∥∥
L2(Oτ

2 )
+
∥∥∥⟨v⟩ls

∥∥∥
L∞(Oτ

2 )
+ [f ]Cβ({t=0} ∩ Oτ

2) + B′
τ

)
,

where B′
τ = ∥⟨v⟩lg∥L∞(Σ−

T ∩ Oτ
2 ) + [g]Cβ(Σ−

T ∩ Oτ
2 ) when B = G, and B′

τ = 0 when
B ∈ {N,R}.

1.2. Backgrounds and related work

1.2.1. Kinetic boundary value problems

As a formulation of stochastic processes, the equation (1.1) appears naturally in
the Langevin theory of Brownian motion; see the review [Cha43]. It describes the
system constituted of a large number of interacting particles in the phase space,
arising from the study of plasma physics and galactic dynamics for instance. The
solution f(t, x, v) to (1.1) is interpreted as the density evolution of particles at time
t occupying the phase state of position x and velocity v.

When the interacting particles are confined in a bounded domain, the equation
has to be supplemented with physically relevant boundary conditions that take into
account how particles behave at the boundary; see [CIP94, Max79]. As its name
suggests, the inflow boundary condition means that the density of the particles flow-
ing inward the domain is prescribed. We can see from this viewpoint that boundary
conditions are free from prescriptions whenever the particles exit from the boundary.
The reflection boundary conditions take the form of balance relations between the
densities at the incoming and outgoing boundaries. The diffuse reflection as a nonlo-
cal model describes that the striking particles are thermalized and then re-emitted
inside the domain according to the boundary state. The interaction of particles with
perfect solid boundaries is modeled by the specular reflection, meaning that particles
are re-emitted elastically with postcollisional angles equal to the precollisional angles,
as if light rays are reflected by a perfect mirror in optics. Despite the importance
of the treatment of boundary conditions in the study of boundary value problems,
limited results on boundary regularity for (1.1) are known.

The assumption (1.2) without requirement of regularity is a bridge to the nonlin-
earity of various collisional kinetic models such as the Landau equation proposed
in [Lan36]. Combining Theorem 1.1 with the result of interior estimates in [HS20],
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we know that any bounded positive solution to the Landau equation is smooth inside
and Hölder continuous up to the boundary in a general bounded domain, where its
boundary regularity cannot be improved in some sense as we will discuss in § 1.2.4
below. In contrast, the Boltzmann equation with angular cutoff has different regular-
izing effects; its regularity property in convex domains was investigated in [GKTT17],
and discontinuities of the solutions were shown to be created at nonconvex parts of
the boundary and propagate inside the domain along characteristics in [Kim11].

1.2.2. Trace problem in kinetic equations

It is of importance to make sense for the trace of solutions when dealing with
boundary value problems. In the kinetic setting, the transport part ∂t + v · ∇x of
equations is hyperbolic and therefore lacks regularity. Even if exploiting the velocity
diffusion in (1.1), fully characterizing the traces remains challenging, especially within
the functional spaces where the solutions of (1.1) exist, except in the one-dimensional
case (d = 1) as demonstrated in [BG68, Theorem 1]. Variational frameworks for (1.1)
in a general bounded domain have not been well-developed; see [AAMN24] for some
discussions and references. Nevertheless, the equation itself can be additionally used
to circumvent this tricky issue.

Some progress has been made since the earlier fundamental work on the trace
problem, such as [Bar70, Ces85] for transport equations, and [Ham92] for the Boltz-
mann equation. Through regularization method based on the theory of renormalized
solutions developed in [DL89], general treatments for the traces with the aid of
Green’s renormalization formula for solutions to a large class of kinetic equations
were studied in [Mis00, Mis10].

We will exploit the regularization method related to a renormalization technique,
in combination with the classical energy method for parabolic equations, to develop
the weak theory of initial-boundary value problems for (1.1) under the L2-framework
in § 2. The renormalization formula established in § 2.1 plays a role not only in
deducing the uniqueness of solutions to (1.1), but also in shedding light on the
trace for general bounded solutions. In § 2.2, we construct solutions to the inflow
boundary problems by solving a sequence of approximating parabolic equations,
and then derive solutions to the specular reflection boundary problems through an
iterative scheme of inflow problems.

1.2.3. Hypoellipticity

Let us discuss here (and also in § 1.2.4) the equation (1.1) with smooth coefficients
in (0, T ) × Ω × V, for some open sets Ω,V ⊂ Rd. The main part of (1.1) subject
to (1.2) can be written as Hörmander’s summation form (of type II)

L := X0 +
∑d

i=1 X
∗
i Xi = ∂t + v · ∇x − ∇v · (A∇v·),

where the vector fields X0 := ∂t + v · ∇x and (X1, X2, . . . , Xd)T :=
√
A∇v with the

formal adjoint X∗
i for Xi. As a basic observation, the commutator [∇v, X0] = ∇x. The

notion of hypoellipticity refers that the Lie algebra generated by the system {Xi}d
i=0
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span the full tangent space. An anisotropic diffusion in the operator L was first
noticed by Kolmogorov in [Kol34] through the explicit calculation of its fundamental
solution. It was then shown by Hörmander in [Hör67] that the hypoelliptic structure
of L ensures a (interior) regularization effect that the smoothness of L f implies
the smoothness of f .

1.2.4. Characteristic points

It is a classical difficulty when concerned with the regularity up to the boundary for
solutions to degenerate elliptic equations, especially due to the presence of character-
istic points. A boundary point associated to L is called characteristic if every vector
field Xi with 0 ⩽ i ⩽ d is tangent to the boundary at this point. The boundary points
of the phase domain Ω×V is thus classified as Ω×∂V , {(x, v) ∈ ∂Ω×V : ±nx ·v > 0},
and the characteristic portion {(x, v) ∈ ∂Ω × V : nx · v = 0}. When V = Rd, charac-
teristic set coincides with Γ0.

As a historical remark, on the one hand, there have been several results on the issue
of boundary regularity for degenerate elliptic equations since [Fic56, Kel51], where
the phenomena of loss of boundary conditions resulting from the degeneracy was
noticed. The study of boundary regularity near certain non-characteristic points in a
general setting can be found in [KN65, OR73]. On the other hand, it was discovered
that the loss of regularity occurs for some particular hypoelliptic problem (of type
I) at characteristic points. Indeed, an explicit solution to the Dirichlet problem
associated with the Kohn Laplacian acting on the Heisenberg group was constructed
in [Jer81], which was shown to be vanishing on the boundary and not better than
Hölder continuous. However, none of the above results address full boundary issues
for L .

Under the assumption of a simple structure with constant coefficients for the
operator L , the concern of continuity for solutions associated with the absorbing
boundary condition was analyzed in [HJV14], based on the barrier argument and the
study of self-similar behaviors of solutions. Despite the lack of a complete description
in [HJV14], by following their argument, one is able to obtain a solution to (1.1)
equipped with constant coefficients and the absorbing boundary condition, that is
at most in a Hölder class near the characteristic point. Its elaboration is presented
in Appendix A.

1.2.5. De Giorgi’s technique

One of the main parts of the proof for the regularity result in § 3 relies primarily on
the technique pioneered by De Giorgi in [DG57] for elliptic equations with bounded
measurable coefficients. Its basic idea is to build up an oscillation decay of solutions
at the unit scale; as a consequence of the scaling-translation invariance of equations,
the oscillation control holds at each scale and hence yields interior Hölder estimates
for solutions. Based on its hypoelliptic nature, the counterpart of regularization effect
for L with rough coefficients was first obtained in [Zha11]. An alternative approach
with more comprehensive descriptions of properties for subsolutions to (1.1) was
proposed in [GIMV19].
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For the elliptic case, the boundary estimate of solutions depends on certain geo-
metric condition on domains. The interior regularity result extended to boundary for
domains satisfying the exterior cone condition is well-known; see for instance [GT01].
Indeed, the combination of the cone condition and the Hölder continuous boundary
data implies the same oscillation decay at each scale as in the interior case. In a
similar manner, for (1.1), on the portions of boundary where the values are specified,
that is Γ−, one can deduce the boundary estimate from the interior regularization
mechanism.

1.2.6. Extension method

The regularity of inflow boundary problems for (1.1) is fully treated in § 3. To
overcome the difficulty of regularity due to the loss of boundary conditions on Γ+
and the characteristic set Γ0, we develop an extension method that reduces the
singular boundary problems to a manageable scope. The proper extension across
the boundary portion Γ+ ∪ Γ0 is guaranteed by the existence result of general inflow
problems established in § 2. This will lead to modified boundary value problems
with fully specified boundary conditions. Provided that the inflow data is Hölder
continuous, the treatment of oscillation controls on the boundary yields Hölder
estimates for the extended solutions.

The formulation of the nonlocal reflection boundary condition is essentially the
same as the one of inflow problems. Although the incoming data is self-induced,
we will show in § 4 that the macroscopic boundary quantity Nf with the solution
f to (1.1) is actually Hölder continuous. The regularity estimate in such nonlocal
reflection boundary problems is then obtained from the result of the inflow injection
case in § 3. Moreover, the boundary a priori estimate is also used in § 4 to show the
existence and uniqueness for this kind of reflection boundary problems.

As for specular reflection boundary problems, the boundary regularity for solutions
is proved in § 5 through a mirror extension method studied in [GHJO20, Nie18],
with the aid of the trace result obtained in § 2. There have been some development
in certain special cases of (1.1) in [DGY22, GHJO20]. Their key observation is that
the solution can be extended through this extension trick outside of the domain
continuously even near the characteristic set, which gives a direct reduction to
interior issues. A similar mirror extension trick has been widely used in the Neumann
problem for elliptic equations; see for instance [Tro87, Section 2.4.3], [DK87, Proof
of Theorem 2.5], [Nie18, Section 9.1.8].

1.3. Notations

1.3.1. Boundary conventions

We recall that the phase domain O = Ω × Rd and the phase boundary Γ =
∂Ω × Rd = Γ+ ∪ Γ0 ∪ Γ−. Let the time-space domain ΩT := [0, T ] × Ω, and nt,x be
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the unit outward normal vector of ∂ΩT , and dσt,x be the surface measure on ∂ΩT .
We define the measure dµ on ∂OT by

dµ := |nt,x · (1, v)| dσt,x dv.

We abbreviate the effective initial-boundary portion Γe of the domain (0, T )×Ω×Rd

by

Γe : =
(
{0} × Ω × Rd

)
∪ ([0, T ] × Γ−)

=
(
{0} × O

)
∪ Σ−

T ,

where the initial-boundary condition for (1.1) can only be specified.

1.3.2. Invariant transformation

For z0 = (t0, x0, v0) ∈ R1+2d and r > 0, we define the transformation Tz0,r :
R1+2d → R1+2d by the prescription:

Tz0,r :
(
t̃, x̃, ṽ

)
7−→ (t, x, v) :=

(
t0 + r2t̃, x0 + r3x̃+ r2t̃v0, v0 + rṽ

)
.

We abbreviate the cylinder centered at the origin of radius r > 0 as Qr := (−r2, 0] ×
Br3(0) ×Br(0). The general cylinder centered at z0 with radius r is defined by
Qr(z0) := {Tz0,r(z̃) : z̃ ∈ Q1}

=
{
(t, x, v) : t0 − r2 < t ⩽ t0, |x− x0 − (t− t0)v0| < r3, |v − v0| < r

}
.

Loosely speaking, (1.1) is invariant under the transformation, as the composition
f ◦ Tz0,r of a solution f to (1.1) in Qr(z0) will solve an equation with the same
structure in Q1.

As a technical remark, (1.1) is not really translation invariant around the boundary,
since the transformation Tz0,r typically does not preserve the formulation of boundary
conditions. Consequently, we avoid using the normal kinetic Hölder spaces, as it
always necessitates more careful attention to the quantitative analysis involving
velocity weights; see § 3.

1.3.3. Other notations

Throughout the article, BR(ζ) with R > 0, ζ ∈ RN and N ∈ N+ denotes the
Euclidean ball in RN centered at ζ with radius R > 0.

Let ed ∈ Rd be the dth coordinate vector.
We write the positive part a+ := max{a, 0} and negative part a− := max{−a, 0}

for any real-valued function a.
We will also use the weighted Lp space: Lp(U,w) = {u : ∥|u|pw∥L1(U) < ∞} for

the measurable set U and the weight function w.
A constant C is called universal if it depends only on d, T,Λ,m, β,Ω, p, q,m, l, ω, ϵ

specified in context. The symbol X ≲ Y designates X ⩽ CY for some universal
constant C > 0, and the symbol X ≈ Y means that X ≲ Y and Y ≲ X.
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1.4. Organization of the paper

The outline of the article is as follows. In § 2, we study the well-posedness of
weak solutions to the equation with the inflow and specular reflection boundary
conditions. §§ 3, 4, 5 are devoted to the study of the regularity issues in the inflow,
nonlocal reflection and specular reflection boundary problems, respectively. The well-
posedness result with the nonlocal reflection boundary condition is also derived in
§ 4. We finally present in Appendix A an example showing that the Hölder class is
optimal near the boundary even for classical solutions.

Acknowledgements

The author is indebted to François Golse, Cyril Imbert and Stéphane Mischler for
helpful discussions.

2. Theory of weak solutions
This section is devoted to the theory of weak solutions to initial-boundary problems

of the kinetic Fokker–Planck type equation in bounded domains. We find that neither
the results nor the arguments known in the literature are complete.

Let T > 0 and D be a domain in Rd
x × Rd

v. Assume that the boundary ∂D is
C0,1 and consists only of the portions: the boundary ∂xD with respect to x and
the boundary ∂vD with respect to v. The boundary ∂vD can be empty, for instance
D = O = Ω × Rd; and if D = Ω × V for Ω,V ⊂ Rd, then ∂xD = ∂Ω × V and
∂vD = Ω × ∂V . We abbreviate Dt := (0, t) × D for t ∈ (0, T ]. The component of the
unit outward normal vector at x ∈ ∂xD in Rd

x is denoted by nx. We recall that the
initial-boundary condition can only be specified on the effective boundary portionL of DT , which is defined by

L :=
(
{0} × D

)
∪
(
(0, T ) × {(x, v) ∈ ∂xD : nx · v < 0}

)
∪
(
(0, T ) × ∂vD

)
.

In this section, we consider a larger class of equations
(2.1) (∂t + v · ∇x)f = ∇v · (A∇vf) +B · ∇vf + cf + ∇v ·G1 +G0 in DT ,

where G1, G0 ∈ L2(DT ) are given, and the measurable coefficients A,B, c satisfy the
condition (1.2) in DT .

Let us now make the notion of weak solutions precise.
Definition 2.1. — A pair of functions

(f, γxf) ∈ C0
(
[0, T ];L2(D)

)
× L2

loc ([0, T ] × ∂xD, |nx · v|)

is said to be a weak solution to (2.1) in DT , if ∇vf ∈ L2(DT ), and for any t ∈ (0, T ]
and φ ∈ C1

c (Dt) with φ = 0 on [0, t] × ∂vD, we have

(2.2)
∫

{t}×D
fφ−

∫
{0}×D

fφ+
∫

[0,t]×∂xD
(nx · v)γxfφ−

∫
Dt

f (∂t + v · ∇x)φ

=
∫

Dt

(−A∇vf · ∇vφ+ φB · ∇vf + cfφ−G1 · ∇vφ+G0φ) .
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Remark 2.2. — For a given f in the above definition, the function γxf satisfy-
ing (2.2) is unique, which is named as the trace of f on [0, T ] × ∂xD. Because of
this uniqueness, we will sometimes refer to f as the weak solution to (2.1) below for
simplicity, which actually indicates the pair of functions (f, γxf).

Remark 2.3. — As discussed in § 1.2.2, due to the lack of development of bounded
trace operators from{

f ∈ L2
t,x

(
([0, T ] × Ω;H1

v

(
Rd
))

: (∂t + v · ∇x)f ∈ L2
t,x

(
[0, T ] × Ω;H−1

v

(
Rd
))}

to
{
f ∈ L2

loc

(
[0, T ] × ∂Ω × Rd, |nx · v|

)}
,

we always have to make our notion of weak solutions stronger, which involves a pair
of functions (f, γf).

Remark 2.4. — In the following §§ 3, 4, 5, we will demonstrate that the solution
f to (1.1) is (Hölder) continuous up to the boundary of the domain, contingent upon
suitable assumptions, as shown in Theorem 1.1. Given the uniqueness of the trace,
the trivial restriction of the continuous function f on the boundary is naturally
consistent with its trace γxf defined above.

2.1. Renormalization formula and uniqueness of weak solutions

To establish the uniqueness of weak solutions to (2.1) by energy estimates combined
with a Grönwall-type argument, we have to approximate the weak solution not only
in Dt but also on its boundary ∂Dt. The argument of regularizing approximation
stemmed from a renormalization technique is patterned after that of [Mis10]. In this
subsection, we deal with the case that the phase domain D is a product space of
domains Ω,V ⊂ Rd so that ∂xD = ∂Ω × V and ∂vD = Ω × ∂V .

Lemma 2.5 (renormalization formula). — Let (f, γxf) be a weak solution to (2.1)
in DT with D = Ω × V, for the domains Ω,V ⊂ Rd and the boundaries ∂Ω ∈
C0,1, ∂V ∈ C0,1. Then, for any χ ∈ C1,1(R) such that χ′(f) = 0 on [0, T ] × Ω × ∂V
and χ(ι) = O(ι2), χ′′(ι) = O(1) as |ι| → ∞, and any φ ∈ C1

c (Dt) with t ∈ (0, T ], we
have

(2.3)
∫

{t} × D
χ(f)φ−

∫
{0} × D

χ(f)φ+
∫

[0,t] × ∂Ω × V
(nx · v)χ(γxf)φ

=
∫

Dt

[
χ(f)(∂t + v · ∇x)φ− A∇vχ(f) · ∇vφ− φχ′′(f)(A∇vf +G1) · ∇vf

+ φB · ∇vχ(f) + cfχ′(f)φ− χ′(f)G1 · ∇vφ+ χ′(f)G0φ
]
.

Besides, provided that the weak solution f is bounded in DT , the trace γxf satisfies
∥γxf∥L∞([0,T ] × ∂xD) ⩽ ∥f∥L∞(DT ).

Proof. — We show the formula (2.3) by an approximation argument only in the
space variable for the sake of simplicity, as the approximation in other variables is
standard. Let {ρk}k ∈N+ ⊂ C∞

c (Rd) be a mollifier sequence such that
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ρ1 ⩾ 0, supp ρ1 ⊂ B1,
∫
Rd
ρ1(x) dx = 1 and ρk(x) = kdρ1(kx).

We take the domain Ωδ ⊂ Rd with C1,1-boundary, where the (small) parameter
δ > 0 is intended to regularize and approximate Ω as δ → 0. Define the unit vector
nδ

x := |∇x dist(x, ∂Ωδ)|−1∇x dist(x, ∂Ωδ).
For a function h ∈ L2(Ω), we define the convolution-translation regularization,

(2.4) h⋆k(y) :=
∫

Ω
h(x)ρk

(
y − 2k−1nδ

y − x
)

dx for any y ∈ Ω.

Since the weak solution f satisfies f ∈ C0([0, t];L2(D)) and ∇vf ∈ L2(Dt), for fixed
small δ, as k → ∞, we have

(2.5) f⋆k → f in C0
(
[0, t];L2(D)

)
,

∇vf⋆k → ∇vf, (A∇vf)⋆k → A∇vf, (B · ∇vf)⋆k → B · ∇vf in L2(Dt),
(cf)⋆k → cf, (G1)⋆k → G1, (G0)⋆k → G0 in L2(Dt),

where we remark that these convergences depend only on the exterior cone condition
of Ω (see for instance [BLD01, Theorem 2.4]), and hence they are independent of δ.
For any fixed y ∈ Ω and ϕ ∈ C1

c (Dt) such that ϕ = 0 on [0, T ] × Ω × ∂V, we pick
the test function ϕ(t, y, v)ρk

(
y− 2k−1nδ

y − x
)

for (2.1). Observing that this function
vanishes on [0, t] × ∂D, we derive

(2.6)
∫

{t} × D
f⋆kϕ−

∫
{0} × D

f⋆kϕ−
∫

t,y,v
f⋆k∂tϕ−

∫
t,y,v

vf⋆k · ∇yϕ+ rk

=
∫

t,y,v

[
− (A∇vf +G1)⋆k · ∇vϕ+ ϕ(B · ∇vf)⋆k + (cf)⋆kϕ+ (G0)⋆kϕ

]
,

where the remainder term rk is defined by

rk :=
∫

t,y,v
vf⋆k · ∇yϕ−

∫
t,x,y,v

ϕ(t, y, v)f(t, x, v)(v · ∇x)ρk

(
y − 2k−1nδ

y − x
)
.

To acquire the equation satisfied by f⋆k, we use integration by parts to get

rk =
∫

[0,t] × ∂Ω × V
(ny · v)f⋆k(t, y, v)ϕ(t, y, v)

−
∫

t,x,y,v
ϕ(t, y, v)f(t, x, v)(v · ∇y + v · ∇x)ρk

(
y − 2k−1nδ

y − x
)
.

By the smoothness of nδ
y, and Young’s inequality, we deduce that for fixed δ, as

k → ∞,∫
x
f(t, x, v)(v · ∇y + v · ∇x)ρk

(
y − 2k−1nδ

y − x
)

= −k−1
∫

x
f(t, x, v)

(
∇y ⊗ nδ

y

)
v · (∇yρk)

(
y − 2k−1nδ

y − x
)

→ 0 in L2
loc(DT ).

Combining this with (2.5), we are able to pass to the limit in (2.6) except for the
boundary term. Indeed, we conclude that, there are some functionsR1k, R0k ∈ L2(DT )
such that R1k, R0k → 0 in L2(DT ) as k → 0, and
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(2.7) (∂t + v · ∇x)f⋆k = ∇v · (A∇vf⋆k +R1k +G1) +B · ∇vf⋆k + cf⋆k +G0 +R0k.

Consider the test function ϕ = χ′(f⋆k)φ, where χ ∈ C1,1(R) such that χ′(f) = 0 on
[0, T ] × Ω × ∂V and χ(ι) = O(ι2), χ′′(ι) = O(1) as |ι| → ∞, and φ ∈ C1

c (Dt). As
k → ∞, we derive the renormalization formula

(2.8)
∫

{t} × D
χ(f)φ−

∫
{0} × D

χ(f)φ+ lim
k→∞

∫
[0,t] × ∂Ω × V

(nx · v)χ(f⋆k)φ

=
∫

Dt

[
χ(f)(∂t + v · ∇x)φ− A∇vχ(f) · ∇vφ− φχ′′(f)(A∇vf +G1) · ∇vf

+ φB · ∇vχ(f) + cfχ′(f)φ− χ′(f)G1 · ∇vφ+G0χ
′(f)φ

]
.

It thus suffices to show the convergence from γxf⋆k to γxf . To this end, we integrate
the equation satisfied by f⋆j − f⋆k (see (2.7)) against nδ

x · v ηR(v)(f⋆j − f⋆k), where
the cut-off function ηR(v) ∈ C∞

c (B2R) valued in [0, 1] satisfies ηR|BR
≡ 1 with the

constant R > 0. Then, for any fixed δ, R > 0, the passage to limit j, k → ∞ yields
that

(2.9) lim
j,k→∞

∫
[0,T ] × ∂Ω × V

[
(nx · v)2 +

(
nδ

x − nx

)
· v (nx · v)

]
(f⋆j − f⋆k)2 ηR = 0.

Let us now additionally assume that f ∈ L∞(DT ). Then, for any t ∈ (0, T ], we
have

∥f⋆k∥L∞(∂Dt) ⩽ ∥f⋆k∥L∞(DT ) ⩽ ∥f∥L∞(DT ).

After extracting a subsequence in k → ∞, there is some function f∂ ∈ L∞(∂Dt) such
that

(2.10) f⋆k
∗
⇀ f∂ in L∞(∂Dt),

∥f∂∥L∞(∂Dt) ⩽ lim infk→∞ ∥f⋆k∥L∞(∂Dt) ⩽ ∥f∥L∞(DT ).

Hence, for any fixed δ > 0, (nx · v)(f⋆j − f⋆k)2 is weakly convergent in L1
loc([0, T ] ×

∂Ω × V) as j, k → ∞. We also notice that (nδ
x − nx) · v is locally bounded and

converges to 0 almost everywhere in [0, T ] × ∂Ω × V as δ → 0. We thus conclude the
convergence of (nx · v)f⋆k in L2

loc([0, T ] × ∂Ω × V) by sending j, k → ∞ and δ → 0
in (2.9). Together with (2.10), choosing the constant R such that {v : φ ≠ 0} ⊂ BR,
the formula (2.8) is recast as (2.3). We point out that f∂ coincides with γxf on
[0, T ] × ∂xD owing to the uniqueness of the trace.

Finally, one can remove the assumption that f ∈ L∞(DT ) by applying the
monotony argument presented in [Mis10, Proof of Theorem 4.5]. The proof of
Lemma 2.5 is complete. □

We are also able to get the uniqueness result to weak solutions when D = O =
Ω ×Rd, even if the boundedness of their traces in L2(ΣT , |nx · v|) is not known. Here
we recall that Σt = [0, t] × Γ = [0, t] × ∂Ω × Rd and Σ±

t = [0, t] × Γ±.

Corollary 2.6 (uniqueness). — Let (f1, γf1) and (f2, γf2) be two weak solutions
to (2.1) in OT = (0, T ) × Ω × Rd such that f1 = f2 on {0} × O with ∂Ω ∈ C0,1.
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Then, f1 = f2 in OT , provided that either their traces γf1 and γf2 coincide on Σ−
T ,

or both of γf1 and γf2 satisfy the specular reflection boundary condition.

Proof. — By subtraction, it suffices to consider the weak solution f := f1 − f2
to (2.1) in OT with |G1| = G0 = f |{0}×O = 0. Let R > 0, and ηR(v) ∈ C∞

c (B2R) be
a radial function valued in [0, 1] such that ηR|BR

≡ 1. In view of Lemma 2.5, we pick
χ(ι) = ι2 and φ = ηR in the formula (2.3), where the boundary term reads

(2.11)
∫

Σt

(nx · v)(γf)2ηR.

If f |Σ−
T

= 0, then (2.11) is nonnegative. If the specular reflection boundary condition
holds for f1, f2, then so do f 2ηR; and thus (2.11) vanishes. Hence, as R → ∞, we
deduce that ∫

{t}×O
f 2 ⩽ 2

∫
Ot

(
−A∇vf · ∇vf + fB · ∇vf + cf 2

)
.

By the Cauchy–Schwarz inequality and Grönwall’s inequality, we have f = 0 in OT ,
and hence the uniqueness follows. The proof is thus complete. □

2.2. Existence of weak solutions

2.2.1. Inflow boundary value problems

The proof of the existence result for inflow problems of (2.1) is inspired from [Boy05]
which adopted the idea of vanishing viscosity associated with an appropriate bound-
ary condition for transport equations. Let us stress that our notion of weak solution
(see Definition 2.1) is characterized by a pair of functions (f, γxf), and therefore, it
is always necessary to demonstrate the existence of these two functions satisfying
the weak formulation (2.2).

Lemma 2.7. — Suppose that the boundary ∂D of the domain D ⊂ Rd
x ×Rd

v is C0,1

and consists only of the boundary ∂xD with respect to x and the boundary ∂vD with
respect to v. Let the function g : DT → R be such that g,∇vg, (∂t+v ·∇x)g ∈ L2(DT ),
g|t=0 ∈ L2(D) and g|[0,T ]×∂xD ∈ L2([0, T ] × ∂xD, (nx · v)−). Then, there exists a
weak solution (f, γxf) to (2.1) in DT associated with f = g on L, meaning that
f |t=0 = g|t=0 and γxf |{[0,T ] × ∂xD: nx·v < 0} = g|{[0,T ] × ∂xD: nx·v < 0}.

Proof. — Without loss of generality, we assume g = 0; otherwise, we consider
the function f − g. Let us fix ε ∈ (0, 1) and consider the weak solution fε to the
initial-boundary problem for parabolic equation,

(∂t + v · ∇x)fε = ε∆xfε + ∇v · (A∇vfε)
+B · ∇vfε + cfε + ∇v ·G1 +G0 in DT ,

fε = 0 on ({0} × D) ∪ ([0, T ] × ∂vD),
εnx · ∇xfε + (nx · v)−fε = 0 on [0, T ] × ∂xD.
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One may refer to [LSU68, III. § 5] for the classical existence result of the above
problem. In the weak formulation, for any φ ∈ C1(Dt) with t ∈ (0, T ] such that
φ = 0 on [0, t] × ∂vD,

(2.12)
∫

{t} × D
fεφ+

∫
[0,t] × ∂xD

(nx · v)+fεφ−
∫

Dt

fε (∂t + v · ∇x)φ

=
∫

Dt

(−A∇vfε · ∇vφ− ε∇xfε · ∇xφ+ φB · ∇vfε + cfεφ−G1 · ∇vφ+G0φ) .

The energy estimate is derived by choosing the solution fε itself for testing, and
applying the Cauchy–Schwarz inequality and Grönwall’s inequality, which reads

sup
t ∈ [0,T ]

∫
{t} × D

f 2
ε +

∫
[0,T ]×∂xD

|nx · v| f 2
ε +

∫
DT

(
|∇vfε|2 + ε |∇xfε|2

)
≲
∫

DT

(
|G1|2 +G2

0

)
.

Similarly, for εk := k−4 and k ∈ N+, choosing test function fεk
− fεk+1 in the weak

formulations satisfied by fεk
and fεk+1 yields that

sup
t ∈ [0,T ]

∫
{t} × D

(
fεk

− fεk+1

)2

+
∫

[0,T ] × ∂xD
|nx · v|

(
fεk

− fεk+1

)2
+
∫

DT

∣∣∣∇v

(
fεk

− fεk+1

)∣∣∣2
+
∫

DT

∣∣∣∇x

(√
εkfεk

− √
εk+1fεk+1

)∣∣∣2 ≲ (√εk − √
εk+1)2

∫
DT

|∇xfεk
|
∣∣∣∇xfεk+1

∣∣∣
⩽ (√εk − √

εk+1)2 √
εkεk+1

−1
∫

DT

(
εk |∇xfεk

|2 + εk+1

∣∣∣∇xfεk+1

∣∣∣2) ,
where (√εk − √

εk+1)2√εkεk+1
−1 = k−2(k2 + 1)−1 tends to zero as k → ∞. Hence,

there is some function f ∈ C0([0, T ];L2(D)) satisfying ∇vf ∈ L2 (DT ) and f |t=0 =
f |[0,T ]×∂vD = 0, and some function γxf ∈ L2((0, T );L2(∂xD, |nx ·v| dx dv)), such that
as ε = εk → 0,

fε → f in C0
(
[0, T ];L2(D)

)
,

∇vfε → ∇vf, ε∇xfε → 0 in L2(DT ),

fε → γxf in L2
(
(0, T );L2 (∂xD, |nx · v|)

)
.

(2.13)

Sending ε → 0 in (2.12), we deduce that the weak formulation (2.2) holds for the
limiting function f .

Now we have to show that γxf |{nx·v < 0} = 0. To this end, we rewrite (2.12) and its
limit in L2(DT ) as

div (fε, vfε − ε∇xfε, −A∇vfε −G1) = B · ∇vfε + cfε +G0

→ B · ∇vf + cf +G0 = div (f, vf, −A∇vf −G1) .

It implies the convergence in H−1/2(∂DT ) that
nz · (fε, vfε − ε∇xfε, −A∇vfε −G1) → nz · (f, vf, −A∇vf −G1) ,
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where nz ∈ R1+2d is the unit outward normal vector at z ∈ ∂DT . Combining this
with the boundary condition of fε on [0, T ] × ∂xD and the limiting process of γxf
above, we arrive at γxf |{nx·v < 0} = 0. This completes the proof of Lemma 2.7. □

Furthermore, one is able to show that the weak solution constructed above satisfies
the renormalization formula and thus the maximum principle.

Lemma 2.8. — Let (f, γxf) be the weak solution constructed in Lemma 2.7. Then,
for any convex χ ∈ C1,1(R) such that χ′(f) = 0 on [0, T ] × ∂vD and χ(ι) = O(ι2) as
|ι| → ∞, and any nonnegative φ ∈ C1

c (Dt) with t ∈ (0, T ], we have

(2.14)
∫

{t} × D
χ(f)φ−

∫
{0} × D

χ(f)φ−
∫

[0,t]×∂xD
(nx · v)χ(γxf)φ

⩽
∫

Dt

[
χ(f)(∂t + v · ∇x)φ− A∇vχ(f) · ∇vφ− φχ′′(f)(A∇vf +G1) · ∇vf

+ φB · ∇vχ(f) + cfχ′(f)φ− χ′(f)G1 · ∇vφ+ χ′(f)G0φ
]
.

In particular, if additionally g ∈ L∞(L), then
(2.15) ∥f∥C0([0,T ];L2(D)) ≲ ∥G1∥L2(DT ) + ∥G0∥L2(DT ) + ∥g∥L∞(

L
);

moreover, if G1 = 0 and G0 ∈ L∞(DT ), then we have the maximum principle that
(2.16) ∥γxf∥L∞([0,T ]×∂xD) ⩽ ∥f∥L∞(DT ) ≲ ∥G0∥L∞(DT ) + ∥g∥L∞(

L
).

Proof. — Based on the same approximation mechanism of f through fε as in
the proof of Lemma 2.7 above, the renormalization formula for the solution fε of
the parabolic equation (see its weak formulation (2.12)) is given by choosing the
test function χ′(fε)φ, with χ ∈ C1,1(R) such that χ′(f) = 0 on [0, T ] × ∂vD and
χ(ι) = O(ι2), χ′′(ι) = O(1) as |ι| → ∞, and φ ∈ C1

c (Dt). More precisely, we have∫
{t} × D

χ(fε)φ−
∫

{0} × D
χ(fε)φ+

∫
[0,t]×∂xD

(nx · v)χ(fε)φ

=
∫

Dt

[
χ(fε)(∂t + v · ∇x)φ− A∇vχ(fε) · ∇vφ− ε∇xχ(fε) · ∇xφ

− χ′′(fε)φ(A∇vfε +G1) · ∇vfε − εχ′′(fε)φ |∇xfε|2

+ φB · ∇vχ(fε) + cfεχ
′(fε)φ− χ′(fε)G1 · ∇vφ+ χ′(fε)G0φ

]
.

Provided that χ is convex and φ is nonnegative, the passage to limit ε → 0 with the
aid of (2.13) then implies (2.14).

To show the estimates (2.15) and (2.16), we may assume c ⩽ 0; otherwise, we
consider the equation solved by eΛtf . Let the constant M := ∥g∥L∞(

L
). Taking

χ(ι) := (ι−M)2
+ and φ = 1 in (2.14), and applying the Cauchy–Schwarz inequality,

we get∫
{t} × D

(f −M)2
+ ⩽ 2

∫
Dt

[−χ′′(f) (A∇vf +G1) · ∇vf + χ′(f)B · ∇vf ]

+ 2
∫

Dt

[cfχ′(f) + χ′(f)G0] ≲
∫

Dt

[
(f −M)2

+ + |G1|2 +G2
0

]
,
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where we also used the fact that cfχ′(f) ⩽ 2c (f − M)2
+ to produce the second

inequality. By Grönwall’s inequality, we obtain
∥(f −M)+∥2

C0([0,T ];L2(D)) ≲ ∥G1∥2
L2(DT ) + ∥G0∥2

L2(DT ).

In particular, when |G1| = G0 = 0, it turns out that (f −M)+ = 0 in DT . These two
consequences provide the upper bounds for f in L2(DT ) and in L∞(DT ), respectively.
Choosing the function (−f −M)+ for testing with a reduction to nonnegative c, we
then arrive at (2.15), and also get (2.16) in the case that G0 = 0.

As far as (2.16) with general G0 ∈ L∞(DT ) is concerned, one may consider the
equation solved by the function ±f − et∥G0∥L∞(DT ). We finally remark that the
estimate about the trace γxf in (2.16) can be achieved by the same approximation
argument as in the proof of Lemma 2.5; see (2.10). This concludes the proof of
Lemma 2.8. □

Corollary 2.9. — Let ∂Ω ∈ C0,1, and the function g ∈ L2(Γe, dµ). Then, there
exists a unique weak solution (f, γf) to (2.1) in OT = (0, T ) × Ω × Rd associated
with γf = g on Γe, meaning that f |t=0 = g|t=0 and γf |Σ−

T
= g|Σ−

T
; and it satisfies

(2.17) ∥f∥C0([0,T ];L2(O)) + ∥∇vf∥L2(OT ) + ∥f∥L2(∂OT ,dµ)

≲ ∥G1∥L2(OT ) + ∥G0∥L2(OT ) + ∥g∥L2(Γe,dµ).

Here we abbreviate the trace of f on ∂OT by f itself. Besides, if additionally G1 = 0,
G0 ∈ L∞(DT ), and g ∈ L∞(Γe), then we have
(2.18) ∥γxf∥L∞(ΣT ) ⩽ ∥f∥L∞(OT ) ≲ ∥G0∥L∞(OT ) + ∥g∥L∞(Γe).

Proof. — The existence of weak solutions follows from the same argument as in the
proof of Lemma 2.7, provided that g is regular in the sense that g ∈ L2(ΩT ;H1(Rd))
and (∂t + v · ∇x)g ∈ L2(OT ). On account of this, we pick an approximating sequence
of compactly supported smooth functions gj such that gj → g in L2(Γe, dµ). Let fj

be a weak solution to (2.1) in OT associated with fj = gj on Γe. In view of Lemma 2.5
or Lemma 2.8, by taking χ(ι) = ι2 and φ = 1 in the renormalization formula (2.3)
or (2.14), and using the Cauchy–Schwarz inequality and Grönwall’s inequality, we
have

sup
t ∈ [0,T ]

∫
{t}×O

f 2
j +

∫
ΣT

|nx · v|f 2
j +

∫
OT

|∇vfj|2 ≲
∫

OT

(
G2

1 +G2
0

)
+
∫

Γe

g2
j dµ,

which is the estimate (2.17) for fj. As a consequence of the linear structure of the
equation, we also have

sup
t ∈ [0,T ]

∫
{t}×O

(fj+1 − fj)2 +
∫

Σt

|nx · v| (fj+1 − fj)2 +
∫

Ot

|∇v (fj+1 − fj)|2

≲
∫

Γe

(gj+1 − gj)2 dµ.

Sending j → ∞, we acquire a limiting function f of fj such that f |∂Ot ∈ L2(∂Ot, dµ)
and f |Γe = g; furthermore, it is a weak solution to (2.1) in OT and satisfies (2.17).
The uniqueness of weak solutions and the estimate (2.18) are direct consequences of
Corollary 2.6 and Lemma 2.8, respectively. The proof is thus complete. □
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2.2.2. Specular reflection boundary value problems

Based on the existence result in § 2.2.1 above, we construct through an iterative
method patterned after [Car98], whose argument also works for a certain class of
elastic reflection boundary problems but is of limited use for general diffuse reflection
boundary problems.

Let us recall the specular reflection operator Rf(t, x, v) = f(t, x, v − 2(nx · v)nx)
for (t, x, v) ∈ ΣT .

Lemma 2.10. — Let ∂Ω ∈ C0,1, G1, G0 ∈ L2(OT ), and fin ∈ L2(O) with OT =
(0, T ) × O and O = Ω × Rd. For any constant a ∈ [0, 1), there exists a unique weak
solution (f, γf) to (2.1) associated with the initial-boundary condition f |t=0 = fin
in O and γ−f = aRf in Σ−

T ; furthermore, it satisfies

(2.19) ∥f∥C0([0,T ];L2(O)) + ∥∇vf∥L2(OT ) + (1 − a)∥f∥L2(∂OT ,dµ)

≲ ∥G1∥L2(OT ) + ∥G0∥L2(OT ) + ∥fin∥L2(O).

Proof. — We may assume that c ⩽ −C0 for a fixed constant C0 > 0; otherwise,
we consider the equation solved by e(Λ+C0)tf . In view of Corollary 2.9, we acquire a
sequence of weak solutions {fn}n ∈N to (2.1) through the iterative scheme of inflow
boundary value problems associated with

fn|t=0 = fin and γ−fn+1 = aRfn for n ∈ N, γ−f0 = 0.
By the definition of the reflection operator, we have

(2.20)
∫

ΣT

(nx · v)−f
2
n =

∫
ΣT

(nx · v)− (aRfn−1)2 = a2
∫

ΣT

(nx · v)+f
2
n−1.

Taking χ(ι) = ι2 and φ = 1 in the renormalization formula (2.3) of Lemma 2.5, and
using the Cauchy–Schwarz inequality, we obtain∫

{t} × O
f 2

n −
∫

O
f 2

in +
∫

Σt

(nx · v) f 2
n

= 2
∫

Ot

(
−A∇vfn · ∇vfn + fnB · ∇vfn + cf 2

n −G1 · ∇vfn +G0fn

)
⩽ 2

∫
Ot

[
− 1

2Λ |∇vfn|2 +
(
Λ3 + c+ 1

)
f 2

n + |G1|2 +G2
0

]
.

It follows by picking C0 := 1 + Λ3 that

(2.21) sup
t ∈ [0,T ]

∫
{t} × O

f 2
n +

∫
OT

|∇vfn|2 ≲
∫

OT

(
|G1|2 +G2

0

)
+
∫

O
f 2

in +
∫

ΣT

(nx · v)−f
2
n,

and
(2.22)

∫
ΣT

(nx · v)+ f
2
n ⩽

∫
OT

(
|G1|2 +G2

0

)
+
∫

O
f 2

in +
∫

ΣT

(nx · v)− f
2
n.

Applying (2.20) and (2.22) iteratively yields that∫
ΣT

(nx · v)+f
2
n ⩽

n∑
i=0

a2i
∫

OT

(
|G1|2 +G2

0

)
+

n∑
i=0

a2i
∫

O
f 2

in

⩽
1

1 − a2

∫
OT

(
|G1|2 +G2

0

)
+ 1

1 − a2

∫
O
f 2

in.

(2.23)
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Similarly, the function fn − fn−1 solves (2.1) associated with |G1| = G0 = 0,
(fn − fn−1) |t=0 = 0 and γ− (fn+1 − fn) = aR (fn − fn−1) for n ∈ N+,

we thus obtain

sup
t
∫

[0,T ]

∫
{t} × O

(fn − fn−1)2 +
∫

OT

|∇v (fn − fn−1)|2 +
∫

ΣT

|nx · v| (fn − fn−1)2

≲
∫

ΣT

(nx · v)− (fn − fn−1)2 ⩽ a2n
∫

ΣT

(nx · v)− (f1 − f0)2 .

Therefore, sending n → ∞, we derive a limiting function f of fn, which solves (2.1) as-
sociated with f |t=0 = fin and γ−f = aRf . We point out that (2.19) is a consequence
of the estimates (2.21) and (2.23) under the limit process n → ∞. The uniqueness
of weak solutions follows from the same argument of the proof in Corollary 2.6. This
finishes the proof of Lemma 2.10. □

One disadvantage in the above argument is the lack of information on the trace of
solutions as a → 1. With the aid of the trace result from Lemma 2.5, we achieve the
well-posedness for (2.1) under the reflection boundary condition γ−f = aRf for the
full range a ∈ [0, 1].

Corollary 2.11. — Let ∂Ω ∈ C0,1, G1 = 0, G0 ∈ L2 ∩ L∞(OT ), and fin ∈
L2 ∩ L∞(O) with OT = (0, T ) × O and O = Ω × Rd. For any constant a ∈ [0, 1],
there exists a unique weak solution (f, γf) to (2.1) in OT associated with f |t=0 = fin
in O and γ−f = aRf in Σ−

T ; furthermore, it satisfies

(2.24) ∥f∥C0([0,T ];L2(OT )) + ∥∇vf∥L2(OT ) ≲ ∥G0∥L2(OT ) + ∥fin∥L2(O),

∥γf∥L∞(ΣT ) ⩽ ∥f∥L∞(OT ) ≲ ∥G0∥L∞(OT ) + ∥fin∥L∞(O).

Proof. — We may assume that c and G0 are nonpositive in OT ; otherwise, we
consider the equation solved by eΛtf − e(1+Λ)t∥G0∥L∞(OT ). Based on the proof of
Lemma 2.10 with the boundedness estimate given by Lemma 2.8, for any a ∈ [0, 1),
there exists a unique bounded weak solution fa to (2.1) in OT associated with
fa|t=0 = fin and γ−fa = aRfa. In the light of Lemma 2.5, we take χ(ι) = (ι−M)2

+
and φ = 1 in the formula (2.3), for the constant M := ∥fin∥L∞(O). Taking the
boundary condition into account, applying Cauchy–Schwarz inequality and the fact
that fa(fa −M)+ ⩾ (fa −M)2

+, we obtain∫
{t} × O

(fa −M)2
+ ⩽

∫
{t} × O

(fa −M)2
+ +

∫
Σt

(nx · v) (fa −M)2
+

⩽ 2
∫

Ot

[
(fa −M)2

+ + cfa (fa −M)+

]
≲
∫

Ot

(fa −M)2
+ .

By Grönwall’s inequality, we acquire the upper bound that ∥(fa)+∥L∞(OT ) ⩽ M .
Similarly, by taking χ(ι) = (−ι − M)2

+ with a reduction to nonnegative c and G0,
we get the lower bound that ∥(fa)−∥L∞(OT ) ⩽ M . Together with Lemma 2.10 and
Lemma 2.5, we arrive at the estimates (2.24) for fa with a ∈ [0, 1).

It remains to deal with the case a = 1. Let us first assume that ∇vA, G0ϕ, finϕ
are bounded, where ϕ := ⟨v⟩q for some (large) constant q > 0 to be determined. It
is straightforward to check that the functions
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F := fϕ,

G′
1 := −2Af∇vϕ,

G′
0 := fA : D2

vϕ+ f (∇vA−B) · ∇vϕ+G0ϕ

verify

(∂t + v · ∇x)F = ∇v · (A∇vF ) +B · ∇vF + cF + ∇v ·G′
1 +G′

0 in OT .

Noticing that ∇vϕ = qv⟨v⟩−2ϕ and D2
vϕ = q(q − 1)v ⊗ v⟨v⟩−4ϕ + qId⟨v⟩−2ϕ, the

functions ∇v ·G′
1 and G′

0 are recast as

∇v ·G′
1 = 4qA : v ⊗ v

⟨v⟩4 F − 2q tr(A) + 2q∇vA · v
⟨v⟩2 F − 2qAv

⟨v⟩2 · ∇vF,

G′
0 = q(q − 1)A : v ⊗ v

⟨v⟩4 F + q tr(A) + q(∇vA−B) · v
⟨v⟩2 F +G0ϕ.

It thus turns out that the function F solves

(2.25) (∂t + v · ∇x)F = ∇v · (A∇vF ) +B′ · ∇vF + c′F +G0ϕ in OT ,

where the new bounded coefficients B′, c′ are defined by

B′ := B − 2qAv
⟨v⟩2 ,

c′ := c+ q(q + 3)A : v ⊗ v

⟨v⟩4 − q tr(A) + q(∇vA+B) · v
⟨v⟩2 .

In the same manner as before, for fixed a ∈ [0, 1), we derive the solution Fa to (2.25)
associated with Fa|t=0 = finϕ and γ−Fa = aRFa, which satisfies (2.24) with G0
and fin replaced by G0ϕ and finϕ. Equivalently, we obtain the solution fa to (2.1)
associated with fa|t=0 = fin and γ−fa = aRfa, satisfying (2.24) and

(2.26) ∥γfa⟨v⟩∥L2(ΣT ) ≲ ∥γfaϕ∥L∞(ΣT ) ≲ ∥G0ϕ∥L∞(OT ) + ∥finϕ∥L∞(O),

where we may choose q = d + 3 for the first inequality above. Now we argue by
approximation. Let ai ∈ [0, 1) for i = 1, 2, and fai

be the solution to (2.25) associated
with fai

|t=0 = fin and γ−fai
= aiRfai

, which satisfies (2.26). Picking χ(ι) = ι2 and
φ = 1 in the renormalization formula (2.3) satisfied by fai

, as well as using the
Cauchy–Schwarz inequality, yields that
∫

{t} × O
(fa1 − fa2)2 +

∫
Σt

(nx · v) (fa1 − fa2)2 +
∫

Ot

|∇v (fa1 − fa2)|2

≲
∫

Ot

(fa1 − fa2)2 .
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We also observe that the boundary term above can be written as∫
Σt

(nx · v) (fa1 − fa2)2

=
∫

Σ+
t

(nx · v)
[
(fa1 − fa2)2 − (a1fa1 − a2fa2)2

]
=
∫

Σ+
t

(nx · v)
[(

1 − a2
1

)
(fa1 − fa2)2 − 2a1(a1 − a2)fa1 (fa1 − fa2) − (a1 − a2)2f 2

a2

]
.

Owing to the boundedness estimate (2.26) for fa1 , fa2 , the above boundary term
tends to zero as a1, a2 → 1. We then deduce that the limiting function f of fa as
a → 1 satisfies (2.24) and solves (2.25) associated with f |t=0 = fin and γ−f = Rf .

Next, we have to remove the additional boundedness assumptions on ∇vA, G0ϕ,
finϕ. To this end, we approximate A, G0, fin by Aj, Gj

0, f j
in in the sense that Aj → A

pointwisely, (Gj
0, f

j
in) → (G0, fin) strongly in L2 and in the weak-* topology of

L∞ as j → ∞, where Aj, Gj
0, f j

in enjoy the same assumptions as A, G0, fin, and
additionally ∇vA

j, Gj
0ϕ, f j

inϕ are bounded for each j. It produces f j satisfies (2.24)
and solves (2.1), with A and G0 replaced by Aj and Gj

0, associated with f j|t=0 = f j
in

and γ−f
j = Rf j. It follows that g := f j1 − f j2 verifies

(∂t + v · ∇x) g =

∇v ·
(
Aj1∇vg

)
+B · ∇vg + cg + ∇v ·

((
Aj1 − Aj2

)
∇vf

j2
)

+Gj1
0 −Gj2

0 .

Let the constant R ⩾ 1, and ηR(v) ∈ C∞
c (B2R) be a radial function valued in [0, 1]

such that ηR|BR
≡ 1. Applying the renormalization formula (2.3) satisfied by g with

χ(ι) = ι2 and φ = ηR, and using the Cauchy–Schwarz inequality, we have∫
{t}×O

g2ηR +
∫

Σt

(nx · v)g2ηR +
∫

Ot

|∇vg|2 ηR

≲
∫

Ot

(
g2 +

∣∣∣Gj1
0 −Gj2

0

∣∣∣2 +
∣∣∣Aj1 − Aj2

∣∣∣2 ∣∣∣∇vf
j2
∣∣∣2)+

∫
O

(
f j1

in − f j2
in

)2
ηR.

Here we point out that
∫

Σt
(nx · v)g2ηR = 0 by the boundary conditions on f j1 , f j2 .

In view of the boundedness estimates (2.24) for f j1 , f j2 , we are able to send R → ∞.
Then, by extracting subsequences in j1, j2 → ∞, we know that the limiting function
f of f j as j → 1 satisfies (2.24) and solves (2.25) associated with f |t=0 = fin and
γ−f = Rf . Finally, the uniqueness of weak solutions follows from Corollary 2.6. The
proof is now complete. □

3. Regularity for inflow boundary problems

We prove in this section the regularity of solutions to (1.1) associated with the
inflow boundary condition. Throughout this section we assume that Ω is a bounded
domain in Rd with ∂Ω ∈ C1,1.

Let us first introduce the notion of subsolution we will use intensively.
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Definition 3.1. — Let D be a domain in R2d. We say a function f is a subsolution
to (1.1) in DT = (0, T ) × D, if it satisfies f ∈ C0([0, T ];L2(D)) and ∇vf ∈ L2(DT ),
and for any convex nondecreasing χ ∈ C0,1(R) such that χ(ι) = O(ι2) as |ι| → ∞,
and any nonnegative φ ∈ C1

c (DT ), we have

0 ⩽∫
DT

[
χ(f)(∂t + v · ∇x)φ− A∇vχ(f) · ∇vφ+ φB · ∇vχ(f) + cfχ′(f)φ+ sχ′(f)φ

]
.

Remark 3.2. — Suppose the boundary ∂D ∈ C0,1 consists only of finite boundary
portions with respect to x and v. In view of Lemma 2.8, one can check by approxi-
mation that if f is a weak solution to (1.1) in DT with nonpositive value on ∂DT ,
then after zero extension outside of DT , the function f+ is a subsolution to (1.1) in
R1+2d with the source term s replaced by s1f > 0.

3.1. Preliminary estimates

This subsection is devoted to some a priori estimates serving as building blocks
in the sequel. Let us first prove the basic energy estimate for weak solutions in the
presence of spatial boundaries.

Lemma 3.3 (local energy estimate). — For any weak solution f to (1.1) in OT ,
and any function η ∈ C1

c ([0, T ] × Ω ×B2(v0)) valued in [0, 1] with v0 ∈ Rd, we have∫
OT

|∇vf |2 η2 ≲
(
1 + ∥η∥2

C1

) ∫
supp η

(
⟨v0⟩f 2 + s2

)
+
∫

Γe

f 2η2 dµ.

Proof. — In view of the renormalization formula (2.3) in Lemma 2.5, picking
χ(ι) = ι2 and φ = η2 yields that∫

{T } × O
f 2η2 −

∫
{0}×O

f 2η2 +
∫

ΣT

(nx · v)f 2η2 + 2
∫

OT

η2A∇vf · ∇vf

= 2
∫

OT

[
−2fηA∇vf · ∇vη + fη2B · ∇vf + cf 2η2 + sfη2 + f 2η(∂t + v · ∇x)η

]
.

It then turns out that∫
OT

|∇vf |2 η2 ≲
∫

OT

(
|f | |∇vf | η |∇vη| + |f | |∇vf | η2 + f 2η2 + |s||f |η2

)
+
∫

OT

f 2η |(∂t + v · ∇x) η| +
∫

Γe

f 2η2 dµ.

Applying the Cauchy–Schwarz inequality, we obtain∫
OT

|∇vf |2 η2 ≲
∫

OT

[
f 2 |∇vη|2 + f 2η2 + s2η2 + f 2η |(∂t + v · ∇x) η|

]
+
∫

Γe

f 2η2 dµ,

which implies the desired result. □
We then state three lemmas known in the literature. One of the main results

in [GIMV19] is the following interior regularity estimate for solutions to (1.1);
see [GIMV19, Theorem 1.4]. We have at our disposal its scaled version as follows.
Here we recall some notations presented in § 1.3.2 and § 1.3.3. For z0 = (t0, x0, v0),
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Qr(z0) = {(t, x, v) : t0 − r2 < t ⩽ t0, |x − x0 − (t − t0)v0| < r3, |v − v0| < r}.
A constant is said to be universal if it depends only on d, T,Λ,m, β,Ω, p, q,m, l, ω, ϵ
appearing below.

Lemma 3.4 (interior Hölder estimate). — There exists a universal constant α ∈
(0, 1) such that for any constants 0 < r < R ⩽ 1, and any weak solution f to (1.1)
in QR(z0) with z0 ∈ R1+2d, we have

(R − r)α[f ]Cα(Qr(z0)) ≲ ∥f∥L∞(QR(z0)) + ∥s∥L∞(QR(z0)).

The proof of such Hölder estimate essentially relies on the following two lemmas
for subsolutions, that is, the local boundedness estimate [GIMV19, Theorem 3.1]
and the oscillation reduction [GIMV19, Lemma 4.5]. The local boundedness estimate
from Lp to L∞ can be rephrased as follows.

Lemma 3.5 (local boundedness). — Let the constant p > 0. For any constant
0 < r < R ⩽ 1, and any subsolution f to (1.1) in QR(z0) with z0 ∈ R1+2d, we have

∥f+∥L∞(Qr(z0)) ≲ (R − r)−(2+4d)/p∥f+∥Lp(QR(z0)) + ∥s∥L∞(QR(z0)).

The oscillation reduction states that if a subsolution is far away from its upper
bound in a subset occupying some non-negligible space with a certain time lag, then
it cannot get close to this bound in a localized region.

Lemma 3.6 (oscillation reduction). — Let the constant ω ∈ (0, 1), and the coef-
ficient c = 0. Then, there exist some (small) universal constants λ, ϱ, θ ∈ (0, 1) such
that for any subsolution f to (1.1) with f ⩽ 1 and |s| ⩽ λ in Q1 satisfying∣∣∣{f ⩽ 0} ∩Q−

2ϱ

∣∣∣ ⩾ ω
∣∣∣Q−

2ϱ

∣∣∣ ,
for the shifted cylinder Q−

2ϱ := Q2ϱ (−1/2, 0, 0) ⊂ Q1, we have

f ⩽ 1 − θ in Qϱ.

3.2. Local estimates

The following proposition lies at the core of our results.

Proposition 3.7. — Assume that the constants p ⩾ 2 and β, ϵ ∈ (0, 1], and
the functions s ∈ L∞(OT ) and g ∈ L2(Γe, dµ) ∩ L∞(Γe). Let f be a weak solution
to (1.1) in OT such that f = g on Γe. Then, for any z0 = (t0, x0, v0) ∈ OT , we have

(3.1) ∥f∥L∞(OT ∩ B1(z0)) ≲ ⟨v0⟩max{1/2,(2+4d)/p}∥f∥Lp(OT ∩ B2(z0))

+ ∥s∥L∞(OT ∩ B2(z0)) + ∥g∥L2(Γe ∩ B2(z0),dµ) + ∥g∥L∞(Γe ∩ B2(z0));

if additionally g ∈ Cβ(Γe), then there is some universal constant α ∈ (0, 1) such that

(3.2) [f ]Cα(OT ∩ B1(z0))

≲ ⟨v0⟩1/2+ϵ∥f∥L∞(OT ∩ B2(z0)) + ⟨v0⟩ϵ∥s∥L∞(OT ∩ B2(z0)) + [g]Cβ(Γe ∩ B2(z0)).
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Remark 3.8. — Based on the similar derivation of the estimate (3.1), we also have

∥f∥L∞(OT ∩ B1(z0)) ≲ ⟨v0⟩2d∥f∥L∞
t L2

x,v(OT ∩ B2(z0)) + ∥s∥L∞(OT ∩ B2(z0)) =
+ ∥g∥L2(Γe ∩ B2(z0),dµ) + ∥g∥L∞(Γe ∩ B2(z0)).

Before starting the proof, let us first set up an appropriate coordinate system,
inspired by the one used in [GHJO20].

Lemma 3.9. — Let ∂Ω ∈ C1,1 and x0 ∈ ∂Ω. There exists some constant R ∈ (0, 1]
depending only on d and ∂Ω, and some neighborhood U of x0, and some C1,1-function
ψ : (−R,R)d−1 → R such that the map P : (−R,R)d → U , defined by
(3.3) P (y̌, yd) := m(y̌) + ydn(y̌),
is a diffeomorphism from (−R,R)d to U , and from (−R,R)d−1 × (−R, 0) to U ∩ Ω,
where

y̌ := (y1, . . . , yd−1) ∈ (−R,R)d−1, yd ∈ (−R,R),
and the maps m,n : (−R,R)d−1 → Rd are defined by

m(y̌) := (y̌, ψ(y̌))T ,

n(y̌) := |(Dψ(y̌), 1)|−1 (−Dψ(y̌), 1)T .

Proof. — In a local coordinate system, we can characterize the boundary portion
of ∂Ω near x0 by means of the epigraph of a function ψ ∈ C1,1 defined on (−R,R)d−1

for some (small) constant R ∈ (0, 1]. We now have to check that the map P is
well-defined. Denoting by P ′ the Jacobian matrix of P , we know that
(3.4) P ′ = (Dm + ydDn; n) .
Since ψ ∈ C1,1, provided that |yd| is small, the determinant of P ′ is

det(P ′) = |(Dψ, 1)|−1 det
(
Id−1 −(Dψ)T

Dψ 1

)
+O(yd)

= |(Dψ, 1)| +O(yd).
(3.5)

Hence, by taking R small enough (depending only on d and ∥ψ∥C1,1), we have
(3.6) κ−1 ⩽ det(P ′) ⩽ κ in (−R,R)d,

for some constant κ > 1 depending only on d and ∥Dψ∥L∞ . It follows from the
inverse function theorem that the diffeomorphism P : (−R,R)d → U , with the
neighborhood U of x0, exists as asserted. □

We first remark that based on the interior Hölder estimate in Lemma 3.4 and the
propagation of Hölder estimate forward in time [Zhu21, Corollary 4.6], it actually
suffices to derive the estimate near the phase boundary. Armed with the way of
boundary flattening presented in the above lemma, we are able to reduce general
boundary problems to a one-dimensional space framework (Step 1). After setting up
the transformed boundary value problem and using some approximation argument
if necessary, we will extend the transformed equation across the singular set Γ0 and
the portion Γ+ where boundary conditions are lost; and this extension is shown to
be continuous (Step 2). The new problem, with fully prescribed boundary conditions,
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can be addressed though the analysis of properties for subsolutions with the aid
of Lemmas 3.5, 3.6 (Step 3). We then proceed with delicate oscillation estimates,
as certain coefficients of the transformed equation tend to be unbounded when the
velocity variable goes to infinity (Step 4). Finally, we remove the approximation
assumption in the concluding step (Step 5).

Let us now turn to the proof in detail.
Proof of Proposition 3.7. — The proof will proceed in five steps.
Step 1. Localization and boundary flattening. — Let Q,Q0 be two open neigh-

borhoods of the point (x0, v0) ∈ Γ such that Q ⊂ U ×B1(v0) and U ×B1(v0) ⊂ Q0,
for U given by Lemma 3.9. Take two fixed cut-off functions ϕ ∈ C∞

c (U × B1(v0))
and η ∈ C∞

c (Q0) both valued in [0, 1] such that ϕ|Q ≡ 1 and η|U×B1(v0) ≡ 1. A direct
computation yields that the function F := fϕ satisfies
(3.7) (∂t + v · ∇x)F = ∇v · (A∇vF ) +B · ∇vF + cF + ∇v ·G1 +G0 in OT ,

where G1, G0 are given by
G1 := −Af∇vϕ,

G0 := − (A∇vf +Bf) · ∇vϕ+ fv · ∇xϕ+ sϕ.

In particular, G1, G0 ∈ L2(OT ) are compactly supported in
U := [0, T ] × (U ∩ Ω) ×B1(v0),

and the localized equation (3.7) coincides with the original one (1.1) in U∩((0, T )×Q).
Applying the local energy estimate given by Lemma 3.3 with η picked above, we
have
(3.8) ∥G1∥L2(U) + ∥G0∥L2(U) ≲ ⟨v0⟩1/2∥f∥L2(U) + ∥s∥L2(U) + ∥g∥L2(U ∩ Γe,dµ).

Let us abbreviate z = (t, x, v) and z = (t, y, w). Consider the function F with
respect to z and the transformation S : U → W := S(U) defined by the prescriptions:

(3.9)
F := det(∂z/∂z)F ◦ S−1,

S−1 : z= (t, y, w) 7−→ z = (t, x, v) := (t, P (y), P ′(y)w) .

The Jacobian matrix ∂(x,v)
∂(y,w) = ( P ′ 0

Dyv P ′ ), thus det(∂z/∂z) = (det(P ′))2 depends only
on the variable y and is nondegenerate in (−R,R)d due to Lemma 3.9. Indeed, it
follows from (3.6) that for some universal constant κ > 1,

κ−2 ⩽ det(∂z/∂z) ⩽ κ2 for any y ∈ (−R,R)d.

This shows that F is well-defined in W . Moreover, F is supported in U so that F is
supported in W .

Regarding to the boundary condition, it now suffices to consider the data on U ∩Σ−
T .

Let yd := y · ed and wd := w · ed. Notice that for any x ∈ ∂Ω, the outward normal
vector nx = n(y̌). Using (3.4) and the identity (Dm)T n = 0, we have

nx · v = nT (Dm; n) · w = ed · w = wd on {yd = 0},
which also means that

{±nx · v < 0, z ∈ U ∩ ΣT } ⇐⇒ {±wd < 0, yd = 0, z ∈ W} .
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Therefore, the prescribed boundary value g for F on U ∩ Σ−
T implies the prescribed

value g := det(∂z/∂z) (gϕ) ◦ S−1 for F on the boundary portion {z ∈ W : yd =
0, wd < 0}.

To derive the equation of F , we take φ ∈ C1
c (W) and φ := φ ◦ S. By a change of

variables, we have

v · ∇xφ = P ′w ·
(
P ′−T ∇y

)
φ+ P ′w ·

(
(Dxw)T ∇w

)
φ

= w · ∇yφ+ (Dxw)v · ∇wφ.

It then follows that∫
U ∩ ({t}×O)

Fφ−
∫

U ∩ ({0} × O)
Fφ+

∫
U ∩ ΣT

(nx · v)Fφ−
∫

U
F (∂t + v · ∇x)φ

=
∫

W ∩ S({t} × O)
Fφ−

∫
W ∩ S({0} × O)

Fφ+
∫

W ∩ {yd=0}
wdFφ−

∫
W
F (∂t + w · ∇y)φ

+
∫

W

[
φ
(
(Dxw)v

)
◦ S−1 · ∇wF + ∇w ·

[(
(Dxw)v

)
◦ S−1

]
Fφ

]
,

where we notice by its definition that∥∥∥((Dxw)v
)

◦ S−1
∥∥∥

L∞(W)
+
∥∥∥∇w ·

[(
(Dxw)v

)
◦ S−1

]∥∥∥
L∞(W)

≲ ⟨v0⟩2.(3.10)

In addition,∫
U

(
− A∇vF · ∇vφ+ φB · ∇vF + cFφ−G1 · ∇vφ+G0φ

)
=
∫

W

[
−
(
P ′−1AP ′−T

)
◦ S−1∇wF · ∇wφ+ φ

(
P ′−TB

)
◦ S−1 · ∇wF

+c ◦ S−1Fφ−
(
P ′−TG1

)
◦ S−1 · ∇wφ+G0 ◦ S−1φ

]
.

In brief, (3.7) is equivalent to the following equation

(3.11) (∂t + w · ∇y)F = ∇w ·
(
A∇wF

)
+B · ∇wF + cF + ∇w ·G1 +G0 in W ,

where the new coefficients are defined in W by

A :=P ′−1
(
A ◦ S−1

)
P ′−T ,

B :=P ′−T
(
B ◦ S−1

)
− ((Dxw)v) ◦ S−1,

c := c ◦ S−1− ∇w ·
[
((Dxw)v) ◦ S−1

]
,

G1 := det(∂z/∂z)P ′−TG1 ◦ S−1,

G0 := det(∂z/∂z)G0 ◦ S−1.

Step 2. Extension procedure. — Consider the extended domain

W♮ := W ∪
{
z ∈ S([0, T ] × U ×B1(v0)) : wd ⩾ 0

}
,

and its effective boundary portion

∂effW♮ := ∂W♮ ∩
(
{yd = 0, wd ⩽ 0} ∪ {yd > 0, wd = 0} ∪ {t = 0}

)
.
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We denote by ∂yW♮ and ∂wW♮ the boundary portions of ∂W♮ with respect to y and w,
respectively. Extend the coefficients A,B, c,G1, G0 as A♮, B♮, c♮, G♮

1, G
♮
0, respectively,

by setting them in W♮\W as
A♮ :=P ′−1P ′−T ,

B♮ := − ((Dxw)v) ◦ S−1,

c♮ := − ∇w ·
[
((Dxw)v) ◦ S−1

]
,∣∣∣G♮

1

∣∣∣ = G♮
0 := 0.

Taking note of (3.8) and (3.10), we see that G♮
1, G

♮
0 ∈ L2(W♮), and there is some

universal constant K > 1 such that all the eigenvalues of A♮ lie in [K−1, K], and
|B♮|, |c♮| are bounded by K⟨v0⟩2.

As shown in Figure 3.1, this step is devoted to the extension of the solution F from
the dark region to the checkerboard area, whose boundary value is prescribed as g on
the black border lines (a section of the effective boundary ∂effW♮) and is identically
zero near the gray border lines (due to the localization). This procedure relies on
the existence result presented in Lemma 2.7 which will not be applied directly, since
the result is valid only for some certain regular boundary data. On account of this,
we assume g ∈ C1(OT ), which will be removed in the final step.

Figure 3.1. The solid dark region is a section of W. The corresponding section
of W♮ consists of regions with dark color and checkerboard pattern.

Based on the assumption that g ∈ C1(OT ), by taking y̌ := (y1, . . . , yd−1) and
extending

g♮(z) := g(z) = det(∂z/∂z) (gϕ) ◦ S−1(z) in {yd ⩽ 0},
g♮(z) := det(∂z/∂z) g ◦ S−1(t, y̌, 0, w)ϕ ◦ S−1(z) in {yd > 0},

the function g is extended to a Lipschitz function g♮ ∈ R1+2d. In view of (3.11) and
Lemma 2.7, we get a weak solution F ♮ ∈ L2(W♮) by means of solving the problem

(∂t + w · ∇y)F ♮ = ∇w ·
(
A♮∇wF

♮
)

+B♮ · ∇wF
♮ + c♮F ♮ + ∇w ·G♮

1 +G♮
0 in W♮
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associated with the boundary condition

F ♮ = g♮ on ∂effW♮,

F ♮ = 0 on
(
∂yW♮\{yd = 0}

)
∪
(
∂wW♮\{wd = 0}

)
.

(3.12)

Taking the localization ϕ|Q ≡ 1 into account, we achieve in W♮ ∩ S((0, T ) × Q) the
equation

(3.13) (∂t + w · ∇y)F ♮ = ∇w ·
(
A♮∇wF

♮
)

+B♮ · ∇wF
♮ + c♮F ♮ + s♮

associated with (3.12), where we set the new source term s♮ := det(∂z/∂z) s ◦ S−1

in W which is extended identically zero outside of W .
Step 3. Step 3. Local boundedness estimate. — We now observe that the function

F ♮ ◦ S in turn solves the following equation in S−1(W♮),

(3.14) (∂t + v · ∇x)
(
F ♮ ◦ S

)
= ∇v ·

(
A∇v

(
F ♮ ◦ S

) )
+B · ∇v

(
F ♮ ◦ S

)
+ cF ♮ ◦ S + ∇v ·G1 +G0,

where A := A, B := B, c := c, G1 := G1, G0 := G0 in U ; meanwhile, A := Id, and
B, c, G1, G0 are identically zero in S−1(W♮\W).

By virtue of Lemma 2.8 and the estimate (3.8), we have

(3.15)
∥∥∥F ♮ ◦ S

∥∥∥
L2(S−1(W♮))

≲ ∥G1∥L2(W) + ∥G0∥L2(W) +
∥∥∥g♮
∥∥∥

L∞(W ∩ S(Γe))

≲ ⟨v0⟩1/2∥f∥L2(U) + ∥s∥L2(U) + ∥g∥L2(U ∩ Γe,dµ) + ∥g∥L∞(U ∩ Γe).

By setting

F :=
(
F ♮ ◦ S −M

)
+

with M :=
∥∥∥g♮ ◦ S

∥∥∥
L∞(U ∩ Γe)

,

the function F vanishes on the boundary portion S−1(∂effW♮). As a consequence
of the zero extension for F to the region ((0, T ) × U × B1(v0))\S−1(W♮), and the
localization property from ϕ, the function F becomes a subsolution verifying

(∂t + v · ∇x)F ⩽ ∇v ·
(
A∇vF

)
+B · ∇vF + |c|F + |c|M + s in (−1, T ) × Q.

In this manner, every boundary point reduces to the interior one. Let us take
z0 ∈ ΣT ∪ ({0} × O), and pick the constant R0 ∈ (0, 1] such that R0 ≈ ⟨v0⟩−1 and
Q2R0(z0) ⊂ (−1, T ] × Q. Applying Lemma 3.5, along with (3.15), we derive the
boundedness of F ♮ ◦ S from above that

supQR0 (z0) F
♮ ◦ S ⩽ supQR0 (z0) F +M

≲
∥∥∥F ♮ ◦ S

∥∥∥
L2(S−1(W♮)) + ∥s∥L∞(U) +M

≲ ⟨v0⟩1/2∥f∥L2(U) + ∥s∥L∞(U) + ∥g∥L2(U ∩ Γe,dµ) +M.
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Similarly as regards the zero extension for the function
(
− F ♮ ◦ S −M

)
+

, we have
the boundedness of F ♮ ◦ S from below. Hence, for any z0 ∈ ΣT ∪ ({0} × O),

(3.16) ∥f∥L∞(U ∩ QR0 (z0))
⩽
∥∥∥F ♮ ◦ S

∥∥∥
L∞(QR0 (z0))

≲ ⟨v0⟩1/2∥f∥L2(U) + ∥s∥L∞(U) + ∥g∥L2(U ∩ Γe,dµ) + ∥g∥L∞(U ∩ Γe),

where we use the fact that F ♮ ◦ S coincides with the original solution f in U owing
to the uniqueness result given in Corollary 2.6.

Recalling that R0 ≈ ⟨v0⟩−1 and combining (3.16) with Lemma 3.5 applied to f
in the interior region {z ∈ OT : dist(z,ΣT ∪ ({0} × O)) ⩾ R0}, we obtain the
estimate (3.1) as claimed.

Step 4. Zooming in and oscillation decay. — Let us set z0 := S(z0) = (t0, P−1(x0),
P ′−1(x0)v0) for z0 ∈ ΣT , and pick the constant r0 ∈ (0, 1] such that r0 ≈ ⟨v0⟩−2

and Qr0(z0) ⊂ S(QR0(z0)), where we recall that Q2R0(z0) ⊂ (−1, T ] × Q. Taking
z := Tz0,r(z̃) with z̃ := (t̃, ỹ, w̃) ∈ Q1 and fixed r ∈ (0, r0], and regarding to (3.13),
we deduce that the equation

(∂t̃ + w̃ · ∇ỹ) F̃ = ∇w̃ ·
(
Ã∇w̃F̃

)
+ B̃ · ∇w̃F̃ + c̃F̃ + s̃

holds in the defective region Q1\{z̃ : yd > 0, wd < 0, or t < 0}, where we defined

F̃ := F ♮ ◦ Tz0,r,

Ã := A♮ ◦ Tz0,r,

B̃ := rB♮ ◦ Tz0,r,

c̃ := r2c♮ ◦ Tz0,r,

s̃ := r2s♮ ◦ Tz0,r.

Due to the choice of r0, the functions |B̃|, |c̃|, |s̃| are bounded by a universal constant.
For r ∈ (0, r0], we define

Mr := sup{z̃ ∈ Q1: Tz0,r(z̃) ∈ S(Γe)} F̃ .

After extending the function (F̃ −Mr)+ by zero to the region {z̃ ∈ Q1 : yd > 0, wd <
0, or t < 0}, and normalizing it through

Fr :=
(

supQ1

(
F̃ −Mr

)
+

+ λ−1∥s̃′∥L∞(Q1)
)−1(

F̃ −Mr

)
+

with s̃′ := c̃F̃ + s̃,

it turns out that the function Fr is valued in [0, 1] over Q1 and satisfies

(3.17) (∂t̃ + w̃ · ∇ỹ)Fr ⩽ ∇w̃ ·
(
Ã∇w̃Fr

)
+ B̃ · ∇w̃Fr + λ in Q1,

where the universal constant λ ∈ (0, 1) is provided in Lemma 3.6.
For (x0, v0) ∈ Γ0 ∪ Γ−, that is, P−1(x0) · ed = 0 and P ′−1(x0)v0 · ed ⩽ 0, we have

yd = r3ỹ · ed + r2t̃P ′−1(x0)v0 · ed ⩾ 0,
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whenever ỹ · ed ⩾ 0 and t̃ ⩽ 0. According to the definition of Fr, for any σ, τ ∈ (0, 1)
such that Qσ(−τ, 0, 0) ⊂ Q1, we derive

|{Fr = 0} ∩Qσ(−τ, 0, 0)| ⩾ 1
4 |Qσ(−τ, 0, 0)| .

Intuitively, Fr is extended as a subsolution to the light gray area, and thus vanishes
at least a quarter of Q1; see Figure 3.1. Applying Lemma 3.6 with ω = 1/4 to the
subsolution Fr of (3.17) then yields that there exist some constants θ, ϱ ∈ (0, 1) such
that Fr ⩽ 1 − θ in Qϱ, which is recast as the decrease estimate of supremum that

F̃ −Mr ⩽ (1 − θ) supQ1 F̃ − (1 − θ)Mr + λ−1 ∥s̃′∥L∞(Q1) in Qϱ.

Similarly as regards the setting (mr − F̃ )+ with mr := inf{z̃ ∈ Q1: Tz0,r(z̃) ∈ S(Γe)} F̃ , we
have the increase estimate of infimum that

mr − F̃ ⩽ −(1 − θ) infQ1 F̃ + (1 − θ)mr + λ−1∥s̃′∥L∞(Q1) in Qϱ.

Adding them together, we obtain the oscillation decay
oscQϱF̃ ⩽ (1 − θ) oscQ1F̃ + θ (Mr −mr) + 2λ−1∥s̃′∥L∞(Q1)

⩽ (1 − θ) oscQ1F̃ + θ osc{z̃ ∈ Q1: Tz0,r(z̃) ∈ S(Γe)}F̃ + 2λ−1 ∥s̃′∥L∞(Q1) .

Rescaling back, it reads for any r ∈ (0, r0],

oscQϱr(z0)F
♮ ⩽ (1 − θ) oscQr(z0)F

♮

+ θ oscQr(z0) ∩ S(Γe)g
♮ + 2λ−1r2

(
Λ
∥∥∥F ♮

∥∥∥
L∞(Qr(z0))

+
∥∥∥s♮
∥∥∥

L∞(Qr(z0))

)
.

According to the standard iterative procedure (see for instance [GT01, Section 8.10]),
there is some universal constant α ∈ (0, 1) such that for any r ∈ (0, r0],

oscQr(z0)F
♮ ≲ r−α

0 rα
∥∥∥F ♮

∥∥∥
L∞(Qr0 (z0)) + rα

∥∥∥s♮
∥∥∥

L∞(Qr0 (z0))
+ oscQ√

r0r(z0) ∩ S(Γe)g

≲ r−α
0 rα

∥∥∥F ♮
∥∥∥

L∞(Qr0 (z0)) + rα∥s∥L∞(U) + rβ/6[g]Cβ(W ∩ S(Γe)).
(3.18)

For (x0, v0) ∈ Γ+, that is, P−1(x0) · ed = 0 and wd := P ′−1(x0)v0 · ed > 0, these
boundary points for the solution F ♮ of (3.13) reduce to the interior ones directly, for
the reason that the interior estimate given by Lemma 3.4 is applicable for solutions
to (3.13) in the region W♮ ∩ S((0, T ) × Q). More precisely, we have, for any z0 ∈ Σ+

T

and r ∈ (0, r0/2],

(3.19) oscQr(z0)F
♮ ≲ max

{
r−α

0 , w−α
d

}
rα
∥∥∥F ♮

∥∥∥
L∞(Qr0 (z0)) + rα∥s∥L∞(U).

Applying (3.18) and (3.19) in the cases r0 > wd and r0 ⩽ wd, respectively, we see
that the Hölder estimate (3.18) holds for any z0 = S(z0) with z0 ∈ Σ+

T . We remark
that the estimate around the initial point z0 ∈ {0} × O also holds through the same
zero extension argument; see [Zhu21, Corollary 4.6].

We now translate the Hölder estimates for F ♮ into the ones for f . Let us abbreviate
B−

r (z0) := (t0 − r, t0] ×Br(x0) ×Br(v0). Since the transformation S and its inverse
are bounded, for any r ∈ (0, r0], we have B−

νr3(z0) ⊂ Qr(z0) ⊂ B−
ν−1r(z0), for some

universal constant ν ∈ (0, 1). Recalling the definitions of F ♮ and F with the fact (3.5),
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we conclude that there is some constant r1 ∈ (0, 1] such that r1 ≈ r0 ≈ ⟨v0⟩−2, and
for any z0 ∈ ΣT ∪ ({0} × O) and r ∈ (0, r1],

oscU ∩ B−
r3 (z0)f ≲ r−α

1 rα
∥∥∥F ♮ ◦ S

∥∥∥
L∞(QR0 (z0)) + rα∥s∥L∞(U) + rβ/6[g]Cβ(U ∩ Γe).

Gathering this with (3.16) and picking the constant α ∈ (0, β/6] yield that

(3.20) r−αoscU ∩ B−
r3 (z0)f ≲ ⟨v0⟩1/2r−α

1 ∥f∥L∞(U) + r−α
1 ∥s∥L∞(U) + rβ/6−α[g]Cβ(U ∩ Γe).

Together with the interior Hölder estimate in Lemma 3.4, we know that the weak
solution f is Hölder continuous in OT . Indeed, for any z0 ∈ {z ∈ OT : dist(z,ΣT ∪
({0} × O)) ⩾ r1},

(3.21) rα
1 [f ]Cα(B−

νr1 (z0)) ≲ ∥f∥L∞(B−
r1 (z0)) + ∥s∥L∞(B−

r1 (z0)),

where we used the same notation of the (universal) constants α, ν ∈ (0, 1). Now that
r1 ≈ ⟨v0⟩−2, we conclude from the above two estimates that for any z0 ∈ OT and
r ∈ (0, 1],

[f ]Cα/3(OT ∩ B−
1 (z0)) ≲

⟨v0⟩1/2+2α∥f∥L∞(OT ∩ B−
2 (z0)) + ⟨v0⟩2α∥s∥L∞(OT ∩ B−

2 (z0)) + ⟨v0⟩2α−β/3[g]Cβ(Γe ∩ B−
2 (z0))

which implies (3.2).
Step 5. Approximation. — We have to remove the additional assumptions used in

the previous steps that the boundary data g is continuously differentiable. To this
end, we approximate g by a sequence of smooth functions {gj}j ∈N, which preserves
the same regularity as g on Γe. For each j ∈ N, we acquire a continuous weak
solution fj to (1.1). It follows that (3.20) and (3.21) hold for fj, whose right hand
sides are bounded independently of j. With the aid of the maximum principle given
by Lemma 2.8, we have

∥fi − fj∥L∞(OT ) ≲ ∥gi − gj∥L∞(Γe) → 0 as i, j → ∞.

After passing to a subsequence, the passage j → ∞ yields a bounded limiting
function f∞ of fj. By the same argument as in the proof of Corollary 2.9, we know
that f∞ = f is the unique weak solution to (1.1) in OT associated with f = g on Γe.
In particular, when g is continuous on Γe, f is globally continuous over OT . The
proof of Proposition 3.7 is now complete. □

3.3. Global estimates

Lemma 3.10. — Let the constants p ⩾ 1, q ⩾ 0, and the function f be a bounded
weak solution to (1.1) in OT with ⟨v⟩qs ∈ L2(OT ) and ⟨v⟩qf |Γe ∈ L2(Γe, dµ). Then,

∥⟨v⟩qfp∥C0([0,T ];L2(O)) + ∥⟨v⟩q∇v (fp)∥L2(OT ) + ∥⟨v⟩qfp∥L2(∂OT ,dµ)

≲ ∥⟨v⟩qsp∥L2(OT ) + ∥⟨v⟩qfp∥L2(Γe,dµ) .
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Proof. — It is straightforward to check that F := fϕ and S := sϕ with ϕ = ϕ(v)
verifies

(∂t + v · ∇x)F = ∇v · (A∇vF ) +B · ∇vF + cF + ∇v ·G1 +G0 in OT ,

provided that f is a weak solution to (1.1) in OT , where G1 and G0 are given by
G1 := −Af∇vϕ,

G0 := − (A∇vf +Bf) · ∇vϕ+ S.

Let ϕ := ⟨v⟩q. By noticing that ∇vϕ = qv
⟨v⟩2ϕ, we acquire

f∇vϕ = qv

⟨v⟩2F,

qv

⟨v⟩2 ⊗ ∇vF = ∇vϕ⊗ ∇vf + qv

⟨v⟩2 ⊗ qv

⟨v⟩2F,

so that G1 and G0 are recast as

G1 = −qAv

⟨v⟩2F,

G0 = −qAv

⟨v⟩2 · ∇vF + q2Av · v
⟨v⟩4 F − qB · v

⟨v⟩2 F + S.

According to the uniqueness of weak solutions, it is equivalent to consider the
equation
(3.22) (∂t + v · ∇x)F = ∇v · (A∇vF +B′F ) + (B +B′) · ∇vF + c′F + S in OT ,

where the new coefficients B′ and c′, defined by

B′ := −qAv

⟨v⟩2 ,

c′ := c+ q2Av · v
⟨v⟩4 − qB · v

⟨v⟩2 ,

are bounded by a universal constant. By a similar version of Corollary 2.9, we have

(3.23) ∥F p∥C0([0,T ];L2({t}×O))

+ ∥∇v (F p)∥L2(OT ) + ∥F p∥L2(∂OT ,dµ) ≲ ∥Sp∥L2(OT ) + ∥F p∥L2(Γe,dµ) ,

Indeed, taking χ(ι) = ι2p and φ = 1 in the renormalization formula for (3.22) (see
an analogue in Lemma 2.5) yields that∫

{t}×O
F 2p −

∫
{0}×O

F 2p +
∫

Σt

nx · vF 2p + 2p(2p− 1)
∫

Ot

AF 2p−2∇vF · ∇vF

= 2p
∫

Ot

[
(B + 2B′ − 2pB′)F 2p−1∇vF + c′F 2p + SF 2p−1

]
.

The claim then follows from the Cauchy–Schwarz inequality and Grönwall’s inequal-
ity. Replacing q by q/p in (3.23) implies the desired result. □

The following global estimates are direct consequences of Proposition 3.7, with
Remark 3.8, and Lemma 3.10.
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Proposition 3.11. — Let the constants q ⩾ 2d, β ∈ (0, 1], and the functions
s and g satisfy ⟨v⟩qs ∈ L2(OT ), ⟨v⟩q−2ds ∈ L∞(OT ), ⟨v⟩qg ∈ L2(Γe, dµ), ⟨v⟩q−2dg ∈
L∞(Γe). Then, there exists a unique weak solution f to (1.1) in OT associated with
f = g on Γe, which satisfies∥∥∥⟨v⟩q−2df

∥∥∥
L∞(OT )

≲

∥⟨v⟩qs∥L2(OT ) +
∥∥∥⟨v⟩q−2ds

∥∥∥
L∞(OT )

+ ∥⟨v⟩qg∥L2(Γe,dµ) +
∥∥∥⟨v⟩q−2dg

∥∥∥
L∞(Γe)

.

If additionally q > 1/2 + 2d and g ∈ Cβ(Γe), then there is some universal constant
α ∈ (0, 1) such that∥∥∥⟨v⟩q−2df

∥∥∥
L∞(OT )

+ [f ]Cα(OT ) ≲

∥⟨v⟩qs∥L2(OT ) +
∥∥∥⟨v⟩q−2ds

∥∥∥
L∞(OT )

+ ∥⟨v⟩qg∥L2(Γe,dµ) +
∥∥∥⟨v⟩q−2dg

∥∥∥
L∞(Γe)

+ [g]Cβ(Γe).

4. Nonlocal reflection boundary problems

This section is devoted to the regularity for solutions to nonlocal reflection bound-
ary problems of (1.1). Let us recall the reflection operator

Nf(t, x, v) := M(t, x, v)
∫
Rd
f(t, x, v′)(nx · v′)+ dv′ in Σ−

T ,

for M satisfying (1.3). The proof is patterned after the argument from the previous
section. We always assume that Ω is a bounded C1,1-domain in Rd.

4.1. A priori estimates

Due to the same regularization procedure as the one used to deal with the inflow
injection case, it is actually sufficient to prove the following lemma about the Hölder
regularity of the macroscopic boundary quantity.

We notice that the solution to (1.1) with reflection boundary conditions lacks
prescribed boundary data. We can first only get regularity around the outgoing
boundary Γ+, which exhibits singular estimates up to the grazing set Γ0; for instance,
the right hand side of (4.5) below will approach infinity as r0 → 0. Fortunately, the
weight nx · v appearing in the nonlocal reflection operator N will contribute to
reconciling these estimates. This observation leads to the following lemma, which
shows the regularity of Nf for f solving (1.1).

Lemma 4.1. — Let the constants p = 2 + 4d, q > 1 + d, and the functions s, fin
satisfy ⟨v⟩qs ∈ L∞(OT ), ⟨v⟩qfin ∈ L∞(O). Then, for any weak solution f to (1.1)
in OT such that f |t=0 = fin in O and ⟨v⟩q+1/2f ∈ Lp(OT ), the quantity Υ = Υ[f ],
defined by

Υ[f ](t, x) :=
∫
Rd
f(t, x, v)(nx · v)+ dv, (t, x) ∈ [0, T ] × ∂Ω,
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satisfies that for any τ ∈ (0, T ] with Iτ
t := [max{0, τ − t}, τ ], we have

(4.1) ∥Υ∥L∞(Iτ
1 × ∂Ω)

≲
∥∥∥⟨v⟩q+1f

∥∥∥
Lp(Iτ

2 × O) + ∥⟨v⟩qs∥L∞(Iτ
2 × O) + ∥⟨v⟩qf∥L∞({t=0} ∩ (Iτ

2 × O)) ;

if additionally fin ∈ Cβ(O), then there is some universal constant α ∈ (0, 1) such
that

(4.2) [Υ]Cα(Iτ
1 ×∂Ω) ≲ ∥⟨v⟩qf∥L∞(Iτ

2 × O) + ∥⟨v⟩qs∥L∞(Iτ
2 × O) + [f ]Cβ({t=0} ∩ (Iτ

2 × O)).

Proof. — We use the notation for the boundary flattening introduced in Lemma 3.9.
Recall that the diffeomorphism P : (−R,R)d−1 × (−R, 0] → U ∩ Ω, y 7→ x, with the
constant R ∈ (0, 1], is defined in (3.3); the transformation S : (t, x, v) 7→ (t, y, w) is
defined in (3.9). Let us set

f := f ◦ S−1 in OT .

For ξ = (t, y̌, 0) ∈ [0, T ] × (−R,R)d−1 × {0}, the quantity Υ can be expressed as

Υ(t, P (y̌, 0)) = |(Dψ(y̌), 1)|
∫

{wd > 0}
f(ξ, w)wd dw.

We thus have to acquire the regularity of the integrand above, which is expected
due to the presence of the weight wd. For fixed constant τ ∈ (0, T ], we abbreviate
the sets

Z := Iτ
2 × (U ∩ Ω) × Rd,

Ξ := Iτ
1 × (−R/4, R/4)d−1 × {0},

Π := Iτ
3/2 × (−R/2, R/2)d−1 × (−R/2, 0] × Rd.

For yd = 0 and wd ⩾ 1, we are away from the grazing set. By using the facts that
q > 1 + d and the boundedness of S and S−1, and applying Proposition 3.7 with
p = 2 + 4d, we deduce that

(4.3) sup
ξ ∈ Ξ

∫
{wd⩾1}

∣∣∣f(ξ, w)
∣∣∣wd dw ≲ sup

(ξ,w) ∈ Π,wd ⩾ 1

∣∣∣⟨w⟩qf(ξ, w)
∣∣∣

≲
∥∥∥⟨v⟩q+1f

∥∥∥
Lp(Z)

+ ∥⟨v⟩qs∥L∞(Z) + ∥⟨v⟩qf∥L∞({t=0} ∩ Z) ;

moreover, there is some universal constant α ∈ (0, 1) such that

(4.4) sup
ξ ̸= ξ′ ∈ Ξ

∫
{wd ⩾ 1}

|ξ − ξ′|−α
∣∣∣f(ξ, w) − f(ξ′, w)

∣∣∣wd dw

≲ ∥⟨v⟩qf∥L∞(Z) + ∥⟨v⟩qs∥L∞(Z) + [f ]Cβ({t=0} ∩ Z).

It now suffices to derive the regularity of f(ξ, w), with the weight wd, near the
grazing set, that is, yd = 0 and wd ∈ (0, 1). To this end, we consider an arbitrary
fixed point ẑ := (ξ̂, ŵ) ∈ Ξ × Rd with ŵd := ŵ · ed ∈ (0, 1). Based on the proof of
Proposition 3.7 (see the derivation of the estimates (3.16), (3.19) and (3.20)) with
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the dilation argument, for r0 := ŵd/(2⟨ŵ⟩2), we know the local boundedness estimate
from Lp to L∞ with p = 2 + 4d that

(4.5)
∥∥∥f∥∥∥

L∞(Π ∩ Qr0 (ẑ)) ≲ ⟨ŵ⟩1/2r−1
0

∥∥∥f∥∥∥
Lp(Π ∩ Q2r0 (ẑ))

+
∥∥∥s ◦ S−1

∥∥∥
L∞(Π ∩ Q2r0 (ẑ)) +

∥∥∥f ◦ S−1
∥∥∥

L∞({t=0} ∩ Π ∩ Q2r0 (ẑ)).

and there is some universal constant α ∈ (0, 1/3) such that for any r ∈ (0, r0],

(4.6) r−3α osc
(ξ,w) ∈ Π ∩ Qr(ẑ)

f(ξ, w) ≲ ⟨ŵ⟩1/2r−3α
1

∥∥∥f∥∥∥
L∞(Π ∩ Q2r(ẑ))

+ r−3α
1

∥∥∥s ◦ S−1
∥∥∥

L∞(Π ∩ Q2r(ẑ))
+
[
f ◦ S−1

]
Cβ({t=0} ∩ Π ∩ Q2r(ẑ))

.

It turns out from (4.5) and the arbitrariness of ẑ ∈ Ξ ×
{
ŵ ∈ Rd : ŵd ∈ (0, 1)

}
that

sup
ξ ∈ Ξ

∫
{ŵd∈(0,1)}

∣∣∣f(ξ, w)
∣∣∣wd dw ≲ sup

(ξ,w) ∈ Π,wd ∈ (0,1)

∣∣∣⟨w⟩q−2f(ξ, w)wd

∣∣∣
≲
∥∥∥⟨v⟩q+1/2f

∥∥∥
Lp(Z)

+
∥∥∥⟨v⟩q−2s

∥∥∥
L∞(Z)

+
∥∥∥⟨v⟩q−2f

∥∥∥
L∞({t=0} ∩ Z)

.

Combining this with (4.3) then yields the boundedness estimate (4.1) for Υ.
To obtain the Hölder estimate for Υ, we apply (4.6) so that for any w ∈ Rd with

wd ∈ (0, 1) and r1 := wd/(2⟨w⟩2), and any ξ, ξ′ ∈ Ξ such that 0 < |ξ − ξ′| ⩽ νr3
1,

⟨w⟩q−2 |ξ − ξ′|−α
∣∣∣f(ξ, w) − f(ξ′, w)

∣∣∣wd

≲ sup
(ξ,w) ∈ Π,wd ∈ (0,2)

∣∣∣⟨w⟩q−3/2+6αf(ξ, w)w1−3α
d

∣∣∣+ ∥∥∥⟨v⟩q−2+6αs
∥∥∥

L∞(Z)
+ [f ]Cβ({t=0} ∩ Z),

where the constant ν ∈ (0, 1) is universal. In addition, it is straightforward to check
that for any wd ∈ (0, 1) and |ξ − ξ′| > νr3

1,

⟨w⟩q−2 |ξ − ξ′|−α
∣∣∣f(ξ, w) − f(ξ′, w)

∣∣∣wd ≲ sup
(ξ,w) ∈ Π,wd ∈ (0,1)

∣∣∣⟨w⟩q−2+6αf(ξ, w)w1−3α
d

∣∣∣.
Gathering the above two estimates and supposing α ⩽ 1/6, we have

sup
ξ ̸= ξ′ ∈ Ξ

∫
{ŵd∈(0,1)}

|ξ − ξ′|−α
∣∣∣f(ξ, w) − f(ξ′, w)

∣∣∣wd dw

≲
∥∥∥⟨v⟩q−1/2f

∥∥∥
L∞(Z)

+
∥∥∥⟨v⟩q−1s

∥∥∥
L∞(Z)

+ [f ]Cβ({t=0} ∩ Z).

Together with (4.4), we arrive at (4.2). This concludes the proof of Lemma 4.1. □

The following local-in-time estimate is an immediate consequence of Proposition 3.7
and Lemma 4.1. Indeed, assisted by Lemma 4.1, we see that the nonlocal reflection
boundary problem is essentially the same as the inflow case.

Proposition 4.2. — Assume that the constants q > 1+d, β ∈ (0, 1], m ⩾ 0, and
the functions s, fin satisfy ⟨v⟩m+qs ∈ L∞(OT ), ⟨v⟩m+qfin ∈ L∞(O). Let f be a weak
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solution to (1.1) in OT associated with f |t=0 = fin in O and γ−f = Nf in Σ−
T , and

⟨v⟩m+(1+2d)(q+1)f ∈ L2(OT ). Then, for any τ ∈ (0, T ] with Iτ
t := [max{0, τ − t}, τ ],

(4.7)
∥∥∥⟨v⟩mf

∥∥∥
L∞(Iτ

1 × O)
≲
∥∥∥⟨v⟩m+(1+2d)(q+1)f

∥∥∥
L2(Iτ

2 × O)
+
∥∥∥⟨v⟩m+qs

∥∥∥
L∞(Iτ

2 × O) +
∥∥∥⟨v⟩m+qf

∥∥∥
L∞({t=0} ∩ (Iτ

2 × O));

if additionally fin ∈ Cβ(O) satisfies the compatibility condition γ−fin = γ−Nfin,
then there is some universal constant α ∈ (0, 1) such that
(4.8) [f ]Cα(Iτ

1 × O) ≲ ∥⟨v⟩qf∥L∞(Iτ
2 × O) + ∥⟨v⟩qs∥L∞(Iτ

2 × O) + [f ]Cβ({t=0} ∩ (Iτ
2 × O)).

Proof. — The combination of Proposition 3.7 and Lemma 4.1 implies that for the
constant p := 2 + 4d and for any τ ∈ (0, T ], we have∥∥∥⟨v⟩mf

∥∥∥
L∞(Iτ

1 × O) ≲
∥∥∥⟨v⟩m+q+1f

∥∥∥
Lp(Iτ

2 × O)
+ ∥⟨v⟩m+qs∥L∞(Iτ

2 × O) + ∥⟨v⟩m+qf∥L∞({t=0} ∩ (Iτ
2 × O)).

To derive the estimate from L2 to L∞, we write∥∥∥⟨v⟩m+q+1f
∥∥∥

Lp(Iτ
2 × O) ⩽

∥∥∥⟨v⟩mf
∥∥∥(p−2)/p

L∞(Iτ
2 × O)

∥∥∥⟨v⟩m+(q+1)p/2f
∥∥∥2/p

L2(Iτ
2 × O)

≲ ϵ∥⟨v⟩mf∥L∞(Iτ
2 × O) + ϵ−2/(p−2)

∥∥∥⟨v⟩m+(q+1)p/2f
∥∥∥

L2(Iτ
2 × O).

By choosing ϵ > 0 sufficiently small, we obtain for some universal constant C > 0,∥∥∥⟨v⟩mf
∥∥∥

L∞(Iτ
1 × O) ⩽

1
2 ∥⟨v⟩mf∥L∞(Iτ

2 × O) + C
∥∥∥⟨v⟩m+(q+1)p/2f

∥∥∥
L2(Iτ

2 × O)
+ C

∥∥∥⟨v⟩m+qs
∥∥∥

L∞(Iτ
2 × O) + C

∥∥∥⟨v⟩m+qf
∥∥∥

L∞({t=0}∩(Iτ
2 × O)).

Notice that Iτ
2 = Iτ

1 for τ ∈ (0, 1], and Iτ
2 = Iτ

1 ∪ Iτ−1
1 for τ ∈ [1, T ]. We thus

conclude that for any τ ∈ (0, T ],∥∥∥⟨v⟩mf
∥∥∥

L∞(Iτ
1 × O) ≲

∥∥∥⟨v⟩m+(q+1)p/2f
∥∥∥

L2(Iτ
2 × O)

+
∥∥∥⟨v⟩m+qs

∥∥∥
L∞(Iτ

2 × O) +
∥∥∥⟨v⟩m+qf

∥∥∥
L∞({t=0}∩(Iτ

2 × O)),

which is exactly (4.7) as asserted.
Besides, the Hölder estimate (4.8) is given by Proposition 3.7 and Lemma 4.1

directly. We point out that the compatibility condition γ−fin = γ−Nfin plays a
role in verifying the Hölder continuity of f |Γe near the initial time. The proof is
complete. □

4.2. Well-posedness result

Proposition 4.3. — Let the constants q > d + 2, β ∈ (0, 1], m ⩾ q, l >
m+(1+2d)q+d/2, and the functions s, fin satisfy ⟨v⟩ls ∈ L∞(OT ), ⟨v⟩lfin ∈ L∞(O).
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Then, there exists a unique bounded weak solution f to (1.1) in OT associated with
f |t=0 = fin in O and γ−f = Nf in Σ−

T , which satisfies

(4.9) ∥⟨v⟩mf∥L∞(OT ) +
∥∥∥⟨v⟩m+(1+2d)qf

∥∥∥
C0([0,T ];L2(O))

≲
∥∥∥⟨v⟩ls

∥∥∥
L∞(OT )

+
∥∥∥⟨v⟩lfin

∥∥∥
L∞(O)

;

if additionally fin ∈ Cβ(O) satisfies γ−fin = γ−Nfin, then there is some universal
constant α ∈ (0, 1) such that

(4.10) [f ]Cα(OT ) ≲
∥∥∥⟨v⟩ls

∥∥∥
L∞(OT )

+
∥∥∥⟨v⟩lfin

∥∥∥
L∞(O)

+ [fin]Cβ(O).

Remark 4.4. — The range of the constants q, l above are not optimal.

Proof. — The proof is based on the following iterative scheme of inflow boundary
problems. By Corollary 2.9, we assume that fn solves (1.1) in Ik × O, for the time
interval Ik := [kτ, (k + 1)τ ] ∩ [0, T ] with k ∈ N,

fn|t=0 = fin and γ−fn+1 = Nfn for n ∈ N, γ−f0 = 0,

where the constant τ ∈ (0, 1] is to be determined. Let us abbreviate Ok := Ik × O.
In addition, we set I−1 := {0} and O−1 := {0} × O for convenience.

We first have to establish a priori estimates for fn. For the constants p := 2 + 4d,
q > 2 + d, q1 > q + d/p, applying Lemma 3.10 implies that

∥⟨v⟩qfn+1∥C0(Ik;Lp(O)) + ∥⟨v⟩qfn+1∥Lp(Ik × Γ,|nx·v|)

≲ ∥⟨v⟩q1s∥L∞(Ok) + ∥⟨v⟩qfn+1∥Lp({kτ} × O) + ∥⟨v⟩qNfn∥Lp(Ik × Γ−,|nx·v|) .

By the definition of the operator N and Lemma 4.1, we have

(4.11) ∥⟨v⟩qNfn∥Lp(Ik × Γ−,|nx·v|) ≲ τ 1/p
∥∥∥⟨v⟩q1+1/pM

∥∥∥
L∞(Ik × Γ)

∥Υ[fn]∥L∞(Ik × ∂Ω)

≲ τ 1/p
∥∥∥⟨v⟩qfn

∥∥∥
C0(Ik∪Ik−1;Lp(O))

+ τ 1/p ∥⟨v⟩qs∥L∞((Ik∪Ik−1) × O)

+ τ 1/p ∥⟨v⟩qfn∥L∞({t=0} ∩ Ok−1) .

Combining the above two estimates and choosing τ sufficiently small yields that for
some universal constant C > 0,

(4.12) ∥⟨v⟩qfn+1∥C0(Ik;Lp(O)) + ∥⟨v⟩qfn+1∥Lp(Ik × Γ,|nx·v|)

⩽ C ∥⟨v⟩q1s∥L∞(OT ) + C ∥⟨v⟩qfn+1∥Lp({kτ} × O) + 1
2 ∥⟨v⟩qfn∥C0(Ik;Lp(O))

+ ∥⟨v⟩qfn∥C0(Ik−1;Lp(O)) + ∥⟨v⟩qfn∥L∞({t=0} ∩ Ok−1) .

In order to derive the convergence for fn, we observe that the function fn+1 − fn

also solves (1.1) in Ik × O associated with s = 0,

(fn − fn−1)|t=0 = 0 and γ−(fn+1 − fn) = N(fn − fn−1) for n ∈ N+.
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It then follows from (4.12) that

(4.13) ∥⟨v⟩q (fn+1 − fn)∥C0(Ik;Lp(O)) + ∥⟨v⟩q (fn+1 − fn)∥Lp(Ik × Γ,|nx·v|)

⩽ C ∥⟨v⟩q (fn+1 − fn)∥Lp({kτ} × O) + 1
2 ∥⟨v⟩q (fn − fn−1)∥C0(Ik;Lp(O))

+ ∥⟨v⟩q (fn − fn−1)∥C0(Ik−1;Lp(O)) .

Besides, with the aid of the energy estimate given by Lemma 3.10 (with p = 1 and
q = 0), as well as (4.11), we have

(4.14) ∥∇v(fn+1 − fn)∥L2(Ok)
≲ ∥N(fn+1 − fn)∥L2(Ik × Γ−,|nx·v|)+ ∥fn+1 − fn∥L2({kτ}×O)

≲ ∥⟨v⟩q(fn − fn−1)∥C0(Ik;Lp(O)) + ∥⟨v⟩q (fn+1 − fn)∥Lp({kτ}×O) .

In particular, from (4.13) and (4.14) with k = 0, we obtain by an iteration

(4.15) ∥∇v(fn+1 − fn)∥L2(O0) ≲ ∥⟨v⟩q(fn+1 − fn)∥C0(I0;Lp(O))

⩽
1
2 ∥⟨v⟩q(fn − fn−1)∥C0(I0;Lp(O)) ⩽

1
2n

∥⟨v⟩q(f1 − f0)∥C0(I0;Lp(O)) .

Thanks to (4.12), the right hand side tends to zero as n → ∞. We conclude the
convergence of fn in C0(I0;Lp(O, ⟨v⟩pq)) and in L2(I0 × Ω;H1(Rd)). We remark
that the boundary identity γ−f = Nf as the limit of γ−fn−1 = Nfn on I0 × Γ−
make sense, owing to (4.13). To proceed the convergence of fn in O1, we gather the
estimates (4.13), (4.14), (4.15) to see that

∥∇v(fn+1 − fn)∥L2(O1)

≲ ∥⟨v⟩q(fn − fn−1)∥C0(I1;Lp(O)) + ∥⟨v⟩q(fn+1 − fn)∥Lp({τ}×O)

⩽
1
2 ∥⟨v⟩q (fn−1 − fn−2)∥C0(I1;Lp(O)) + C

2n
∥⟨v⟩q(f1 − f0)∥C0(I0;Lp(O)) .

By iterating and sending n → ∞, we acquire the solution f to (1.1) in (I1 ∪ I0) × O.
The global solution to (1.1) in OT is then constructed by applying such arguments
repeatedly.

Next, by Lemma 3.10 and Proposition 4.2, we get the global boundedness estimate

∥⟨v⟩mf∥L∞(OT ) +
∥∥∥⟨v⟩m+(1+2d)qf

∥∥∥
C0([0,T ];L2(O))

≲
∥∥∥⟨v⟩m+(1+2d)qs

∥∥∥
L2(OT )

+
∥∥∥⟨v⟩m+(1+2d)qfin

∥∥∥
L2(O)

+
∥∥∥⟨v⟩m+qs

∥∥∥
L∞(OT )

+
∥∥∥⟨v⟩m+qfin

∥∥∥
L∞(O)

,

which implies (4.9) with the constant l > m + (1 + 2d)q + d/2. The global Hölder
estimate (4.10) is also given by Proposition 4.2.

Let us finally show the uniqueness for the weak solution f to (1.1) in OT with
s = fin = 0 and γ−f = Nf . Using Lemma 3.10 and Proposition 4.2 yields that for
any t ∈ (0, T ],
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∥∥∥⟨v⟩(2+2d)qf
∥∥∥

C0([0,t];L2(O))
≲
∥∥∥⟨v⟩(2+2d)qNf

∥∥∥
L2(Σ−

t ,|nx·v|)
≲
∥∥∥⟨v⟩(2+2d)q+(1+d)/2M

∥∥∥
L∞(Σt)

∥⟨v⟩qf∥L∞(Σt)

≲
∥∥∥⟨v⟩(2+2d)qf

∥∥∥
L2(Ot)

.

By Grönwall’s inequality, we get f = 0 in OT so that see the uniqueness of solutions
in the class C0([0, T ];L2(O, ⟨v⟩(4+4d)q)). This finishes the proof. □

5. Specular reflection boundary problems

Building upon the mirror extension technique developed in [GHJO20, Nie18], we
demonstrate the regularity for the specular reflection boundary problems, with the
proof in a similar spirit to that presented in [GHJO20]. The solution to (1.1) can be
extended outside of the domain directly as a solution to a modified equation. The
treatment of this type of boundary condition is thus simpler than the cases that we
have already addressed. As in the previous two sections, we still assume that Ω is a
bounded C1,1-domain in Rd.

Proposition 5.1. — Assume that the constants β, ϵ ∈ (0, 1], and the functions
s ∈ L∞(OT ), fin ∈ L∞(O). Let f be a weak solution to (1.1) in OT associated with
f |t=0 = fin in O and γ−f = Rf in Σ−

T . Then, for any z0 = (t0, x0, v0) ∈ OT , we have

∥f∥L∞(OT ∩ sB1(z0))

≲ ⟨v0⟩1+2d∥f∥L2(OT ∩ B2(z0)) + ∥s∥L∞(OT ∩ B2(z0)) + ∥f∥L∞({t=0} ∩ B2(z0));
if additionally fin ∈ Cβ(O) satisfies the compatibility condition γ−fin = γ−Rfin,
then there is some universal constant α ∈ (0, 1) such that

[f ]Cα(OT ∩ B1(z0))

≲ ⟨v0⟩ϵ∥f∥L∞(OT ∩ B2(z0)) + ⟨v0⟩ϵ∥s∥L∞(OT ∩ B2(z0)) + [f ]Cβ({t=0} ∩ B2(z0)).

Proof. — We first point out that the results of existence and uniqueness for the
weak solution f have been proved in Corollary 2.11; moreover, we know that the trace
γf is well-defined in L∞(ΣT ). Let us now reduce the regularity estimate near z0 ∈ ΣT

to the interior one by means of the mirror extension technique. Recall the coordinates
z = (t, x, v) ∈ [0, T ] × U × B1(v0), and the transformation S : z 7→ z = (t, y, w)
defined in (3.9); see also Lemma 3.9. Let

U := [0, T ] × (U ∩ Ω) ×B1(v0),
Y := S ([0, T ] × U ×B1(v0)) .

To extend the solution f of z ∈ U , we define the function f̂ of z ∈ Y by
f̂ := det(∂z/∂z) f ◦ S−1 in Y ∩ {yd ⩽ 0},
f̂ := det(∂z/∂z) f ◦ S−1◦ Rm in Y ∩ {yd > 0},
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where we set the mirror reflection operator

Rm(t, y, w) := (t, y̌,−yd, w̌,−wd) .

Regarding to the boundary condition, by recalling (3.4) and the identity (Dm)T n
= 0, we have, for any y̌ ∈ (−R,R)d−1 and w = (w̌, wd) ∈ Rd−1 × R,

P ′(y̌, 0)(w̌,−wd) = (Dm; n)(w̌,−wd)T = Dm w̌ − wdn

= Rx(Dm w̌ + wdn) = Rx(P ′(y̌, 0)w),

where the specular reflection operator Rx on ∂Ω is defined by Rxu := u−2(nx ·u)nx

for any u ∈ Rd. Together with the boundary condition for f , we obtain

f ◦ S−1◦ Rm(z) = f (t, P (y̌, 0), P ′(y̌, 0)(w̌,−wd))
= f(t, x,Rxv) = f (t, x, v) = f ◦ S−1(z),

(5.1)

which roughly means that f̂ is continuous across Y ∩ {yd = 0}.
We are now able to perform the same derivation as for (3.11) in Step 1 of Subsec-

tion 3.2. Indeed, it turns out that for any φ ∈ C1
c (Y),∫

Y ∩ {yd < 0} ∩ ({t}×O)
f̂ φ −

∫
Y ∩ {yd < 0} ∩ ({0}×O)

f̂ φ +
∫

Y ∩ {yd=0}
wd f̂ φ

=
∫

Y ∩ {yd < 0}

[
f̂(∂t + w · ∇y) − A∇wf̂ · ∇w +B · ∇wf̂ + c f̂ + s

]
φ,

where the coefficients A,B, c, s are defined in the region Y ∩ {yd ⩽ 0} by

A := P ′−1
(
A ◦ S−1

)
P ′−T ,

B := P ′−TB ◦ S−1− ((Dxw)v) ◦ S−1,

c := c ◦ S−1− ∇w ·
[
((Dxw)v) ◦ S−1

]
,

s := det(∂z/∂z) s ◦ S−1.

On account of this, applying change of variables twice with the relation that Rm ◦
Rm = id, as well as using the boundary condition (5.1), yields that∫

Y ∩ {yd > 0} ∩ ({t}×O)
f̂ φ −

∫
Y ∩ {yd > 0}∩({0}×O)

f̂ φ −
∫

Y ∩ {yd=0}
wd f̂φ

=
∫

Y ∩ {yd < 0} ∩ ({t}×O)
f̂ φ ◦ Rm

−
∫

Y ∩ {yd < 0} ∩ ({0}×O)
f̂ φ ◦ Rm +

∫
Y ∩ {yd=0}

wd f̂ φ ◦ Rm

=
∫

Y ∩ {yd < 0}

[
f̂ (∂t + w · ∇y) − A∇wf̂ · ∇w +B · ∇wf̂ + c f̂ + s

]
φ ◦ Rm

=
∫

Y ∩ {yd > 0}

[
f̂ (∂t + w · ∇y) − Â∇wf̂ · ∇w + B̂ · ∇wf̂ + ĉ f̂ + ŝ

]
φ,
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where with the notation of the d × d diagonal matrix J := diag(1, . . . , 1,−1), we
extended the coefficients A,B, c, s as Â, B̂, ĉ, ŝ to the region Y ∩ {yd > 0} by setting

Â := J
(
A ◦ Rm

)
J,

B̂ := JB ◦ Rm,

ĉ := c ◦ Rm,

ŝ := s ◦ Rm.

In view of the above two formulations valid in Y ∩ {yd < 0} and Y ∩ {yd > 0}, we
conclude
(5.2) (∂t + w · ∇y) f̂ = ∇w ·

(
Â∇wf̂

)
+ B̂ · ∇wf̂ + ĉ f̂ + ŝ in Y .

By definition, it is readily checked that∥∥∥((Dxw)v) ◦ S−1
∥∥∥

L∞(Y)
+
∥∥∥∇w ·

[
((Dxw)v) ◦ S−1

]∥∥∥
L∞(Y)

≲ ⟨v0⟩2.

We thus see that all the eigenvalues of Â lie in [K−1, K], and |B̂|, |ĉ| are bounded by
K⟨v0⟩2, for some universal constant K > 1.

We next sketch the remaining part of the proof. As with the previous inflow
problems, we have to take care of the coefficients of lower order terms. To derive the
equation with coefficients bounded independent of ⟨v0⟩, we consider the constant
r0 ≈ ⟨v0⟩−2 such that Q2r0(z0) ⊂ U . Then, the function F̂ := f̂ ◦ Tz0,r0 with z0 :=
S(z0) solves the same type equation as (5.2) in Q2; see the same argument as in
Step 4 of § 3.2. Using the interior estimate given by Lemma 3.4 yields the Hölder
estimate of f̂ in Br0(z0) for any z0 ∈ ΣT ∪ ({0} × O), which in turn gives the same
regularity for f . Combining this with Lemma 3.4 applied to f in the interior region
{z ∈ OT : dist(z,ΣT ∪ ({0} × O)) ⩾ r0}, we obtain the Hölder estimate of f in OT .
We finally remark that the treatment around the initial point z0 ∈ {0} × O is the
same as the one in Step 4 of § 3.2; see also [Zhu21, Corollary 4.6]. The Cβ-Hölder
regularity of f̂ |t=0 requires the conditions fin ∈ Cβ(O) and γ−fin = γ−Rfin. This
completes the proof of Proposition 5.1. □

By the same derivations as Lemma 3.10 and Proposition 3.11 for the inflow bound-
ary problems, we have the following global estimates for specular reflection boundary
problems.

Proposition 5.2. — Let the constants q > 0, β ∈ (0, 1], and the functions s and
fin satisfy ⟨v⟩qs ∈ L2(OT ) and ⟨v⟩qfin ∈ L2(O). Then, there exists a unique weak
solution f to (1.1) in OT associated with f |t=0 = fin in O and γ−f = Rf in Σ−

T ,
which satisfies

∥⟨v⟩qf∥C0([0,T ];L2(O)) + ∥⟨v⟩q∇vf∥L2(OT ) ≲ ∥⟨v⟩qs∥L2(OT ) .

Furthermore, if q ⩾ 2d, ⟨v⟩q−2ds ∈ L∞(OT ) and ⟨v⟩q−2dfin ∈ L∞(O), then∥∥∥⟨v⟩q−2df
∥∥∥

L∞(OT )
≲ ∥⟨v⟩qs∥L2(OT )

+
∥∥∥⟨v⟩q−2ds

∥∥∥
L∞(OT )

+ ∥⟨v⟩qfin∥L2(O) +
∥∥∥⟨v⟩q−2dfin

∥∥∥
L∞(O)

;
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and if q > 2d and fin ∈ Cβ(O) with γ−fin = γ−Rfin, then there is some universal
constant α ∈ (0, 1) such that∥∥∥⟨v⟩q−2df

∥∥∥
L∞(OT )

+ [f ]Cα(OT ) ≲ ∥⟨v⟩qs∥L2(OT ) +
∥∥∥⟨v⟩q−2ds

∥∥∥
L∞(OT )

+ ∥⟨v⟩qfin∥L2(O) +
∥∥∥⟨v⟩q−2dfin

∥∥∥
L∞(O)

+ [fin]Cβ(O).

Appendix A. Optimality of the Hölder class

We show the optimality of the Hölder class for classical solutions to (1.1) with
constant coefficients and the absorbing boundary condition. Through the description
in [HJV14, Claim 3.7], we make the construction here for the sake of completeness.

Consider the steady Fokker–Planck equation
(A.1) v∂xf(x, v) = ∂2

vf(x, v), (x, v) ∈ R+ × R,
with the absorbing boundary condition on {x = 0, v > 0}, that is, f(0, v) = 0 for
v > 0.

The goal is to construct the solution of the type f(x, v) = x
1
6 Ψ(τ) with τ = − v3

9x
,

for the ansatz Ψ : R → R. Plugging it into (A.1) yields so-called Kummer’s equation

τΨ′′(τ) +
(2

3 − τ
)

Ψ′(τ) + 1
6Ψ(τ) = 0,

whose two linearly independent solutions are M(−1
6 ,

2
3 , τ) and τ

1
3M(1

6 ,
4
3 , τ), for

Kummer’s function M ; see [WG89, Chapter 6]. Then, Tricomi’s function Ψ(τ) =
Ψ(−1

6 ,
2
3 , τ) is given by their linear combination,

(A.2) Ψ(τ) :=
Γ
(

1
3

)
Γ
(

1
6

)M(
−1

6 ,
2
3 , τ

)
+

Γ
(
−1

3

)
Γ
(
−1

6

) τ 1
3M

(1
6 ,

4
3 , τ

)
,

where Γ(·) is the Gamma function. We have to use the asymptotic expansion of M,Ψ
when |τ | → ∞; see for instance [WG89, Section 6.6]. On the one hand, for τ → −∞,

M
(

−1
6 ,

2
3 , τ

)
=

Γ
(

2
3

)
Γ
(

5
6

) |τ |
1
6
[
1 +O

(
|τ |−1

)]
,

τ
1
3M

(1
6 ,

4
3 , τ

)
= −

Γ
(

4
3

)
Γ
(

7
6

) |τ |
1
6
[
1 +O

(
|τ |−1

)]
.

Since Γ(1
3)Γ(2

3) = −Γ(−1
3)Γ(4

3) and Γ(1
6)Γ(5

6) = −Γ(−1
6)Γ(7

6), we see that the leading
terms cancel out for τ → −∞ so that Ψ(τ) = O(|τ |− 5

6 ), which implies

f(x, v) = O
(
xv− 5

2
)
, for x−1v3 → ∞.

In particular, f(0, v) = 0 for v > 0. On the other hand, for τ → ∞, the asymptotic
expansion of Tricomi’s function Ψ directly yields

Ψ(τ) = |τ |
1
6
[
1 +O

(
|τ |−1

)]
,
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and hence
f(x, v) = 3− 1

3 |v|
1
2 +O

(
xv− 5

2
)
, for x−1v3 → −∞.

Besides, Kummer’s functions M(−1
6 ,

2
3 , ·) and M(1

6 ,
4
3 , ·) are analytic on R. It then

follows from (A.2) that the solution f(x, v) = x
1
6 Ψ(− v3

9x
) is analytic for x > 0 and

v ∈ R. It also turns out that for any x → 0+ and v → 0 such that x−1v3 is bounded,
we have f(x, v) = O(x 1

6 ); more precisely, supposing − v3

9x
→ c0, then

f(x, v) = x
1
6 Ψ(c0) + o

(
x

1
6
)
.

Therefore, we conclude that the solution f(x, v) to (A.1) is not of the class Cαx,αv
x,v

near the boundary {x = 0} for any αx >
1
6 or αv >

1
2 .
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