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1. Introduction

Extremal length is a conformal invariant that plays an important role in complex
analysis [Ahl10, Jen58, KPT22], complex dynamics [KL09, McM95, Mil06, Thu20],
and Teichmüller theory [Ahl06, Ker80, Min96]. It can be used to define the notion of
quasiconformality, upon which the Teichmüller distance between Riemann surfaces
is based. In turn, a formula of Kerckhoff [Ker80, Theorem 4] shows that Teichmüller
distance is determined by extremal lengths of (homotopy classes of) essential simple
closed curves, as opposed to all families of curves.

The extremal length systole of a Riemann surface X is defined as the infimum
of the extremal lengths of all essential closed curves in X. This function fits into
the framework of generalized systoles (infima of collections of “length” functions)
developed by Bavard in [Bav97] and [Bav05]. In contrast with the hyperbolic systole,
the extremal length systole has not been studied much so far.

For flat tori, we will see that the extremal length systole agrees with the systolic
ratio, from which it follows that the regular hexagonal torus uniquely maximizes the
extremal length systole in genus one (c.f. Loewner’s torus inequality [Pu52]).

In [MGP19], the last two authors of the present paper conjectured that the Bolza
surface maximizes the extremal length systole in genus two. This surface, which can
be obtained as a double branched cover of the regular octahedron branched over the
vertices, is the most natural candidate since it maximizes several other invariants in
genus two such as the hyperbolic systole [Jen84], the kissing number [Sch94b], and
the number of automorphisms [KW99, Section 3.2]. The maximizer of the systolic
ratio among all non-positively curved surfaces of genus two is also in the conformal
class of the Bolza surface [KS06] and the same is true for one of the maximizers of
the first positive eigenvalue of the Laplacian among all Riemannian surfaces of genus
two with a fixed area [JLN+05, NS19].

Here we make partial progress toward the aforementioned conjecture, by showing
that the Bolza surface is a strict local maximizer for the extremal length systole.

Theorem 1.1. — The extremal length systole of Riemann surfaces of genus two
attains a strict local maximum at the Bolza surface, where it takes the value

√
2.

Once the curves with minimal extremal length have been identified, the proof that
the Bolza surface is a strict local maximizer boils down to a calculation. Indeed,
there is a sufficient criterion for generalized systoles to attain a strict local maximum
at a point in terms of the derivatives of the lengths of the shortest curves [Bav97,
Proposition 2.1], generalizing Voronoi’s characterization of extreme lattices in terms
of eutaxy and perfection.

The crux of the proof is thus to identify the curves with minimal extremal length.
This is not a trivial task because extremal length is hard to compute exactly in
general, although it is fairly easy to estimate. In this particular case, we are able to
calculate the extremal length of certain curves by finding branched coverings from
the Bolza surface to rectangular pillowcases, where extremal length is expressed in
terms of elliptic integrals. We then show that all other curves are longer by using
a piecewise Euclidean metric to estimate their extremal length. The last step is
to compute the first derivative of the extremal length of each shortest curve as
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The extremal length systole of the Bolza surface 1411

we deform the complex structure. These derivatives are encoded by the associated
quadratic differentials thanks to Gardiner’s formula [Gar84].

The value of
√

2 for the extremal length systole of the Bolza surface came as a
surprise to us. Indeed, we initially expressed it as the ratio of elliptic integrals∫ 1

0

x + 1 +
√

2√
x(1 − x4)

dx

/∫ ∞

1

x + 1 +
√

2√
x(x4 − 1)

dx

and numerical calculations suggested that it coincided with the square root of two,
which we proved. We later found that this follows from a pair of identities between
elliptic integrals called the Landen transformations. The flip side is that we appear
to have discovered a new geometric proof of these identities.

The other surprising phenomenon is that the curves with minimal extremal length
on the Bolza surface correspond to the second shortest curves on the punctured
octahedron rather than the first. What is going on is that extremal length is not
preserved under double branched covers; it is either multiplied or divided by two
depending on the type of curve. While there are twelve shortest curves on the
Bolza surface, there are only four on the punctured octahedron. In particular, the
punctured octahedron is not perfect. Thus, either the punctured octahedron is not a
local maximizer or Voronoi’s criterion fails for the extremal length systole. We think
the second option is more likely.

To conclude this introduction, we note that the proof that the Bolza surface
maximizes the hyperbolic systole in genus two [Jen84] (see also [Bav92b]) rests on
two ingredients: the fact that every genus two surface is hyperelliptic, and a bound
of Böröczky on the density of sphere packings in the hyperbolic plane. A similar
approach is used in [KS06] to determine the optimal systolic ratio among locally
CAT(0) metrics. While we use the first ingredient in the proof of Theorem 1.1, the
second ingredient is not available because the extremal length systole is calculated
using a different metric for each closed curve. Schmutz’s proof that the Bolza surface
is the unique local maximizer for the hyperbolic systole [Sch93, Theorem 5.3] is
similarly very geometric and does not seem applicable for extremal length. New
ideas would therefore be required to remove the word “local” from the statement of
Theorem 1.1.

Organization

We define extremal length and illustrate how to compute it using Beurling’s
criterion in Section 2. In Section 3, we show that with the exception of the thrice-
punctured sphere, the extremal length systole is only achieved by simple closed
curves. Section 4 explains how extremal length behaves under branched coverings. In
Section 5, we use elliptic integrals to compute the extremal length of various curves
on the punctured octahedron. We then prove lower bounds on the extremal length of
all other curves in Section 6 to determine the extremal length systole of the punctured
octahedron and the Bolza surface. We prove that the Bolza surface is a strict local
maximizer in Section 7. Our geometric proof of the Landen transformations is given
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1412 M. FORTIER BOURQUE, D. MARTÍNEZ-GRANADO & F. VARGAS PALLETE

in Appendix A, and Appendix B contains upper bounds for the extremal length
systole of six-times-punctured prisms and antiprisms.

2. Extremal length

2.1. Extremal length

A conformal metric on a Riemann surface X is a Borel-measurable map ρ : TX →
R⩾ 0 such that ρ(λv) = |λ|ρ(v) for every v ∈ TX and every λ ∈ C. This gives a choice
of scale at every point in X, with respect to which we can measure length or area.
We denote the set of conformal metrics of finite positive area on X by Conf(X).

Given a conformal metric ρ and a map γ from a 1-manifold I to X, we define

lengthρ(γ) :=
∫

γ
ρ =

∫
I

ρ(γ′(t)) dt

if γ is locally rectifiable and lengthρ(γ) = ∞ otherwise. If Γ is a set of maps from
1-manifolds to X, then we set ℓρ(Γ) := inf{lengthρ(γ) : γ ∈ Γ}. Finally, the extremal
length of Γ is

EL(Γ) := EL(Γ, X) := sup
ρ ∈ Conf(X)

ℓρ(Γ)2

areaρ(X) .

This powerful conformal invariant was introduced by Ahlfors and Beurling in
[AB50]. The standard reference on this topic is [Ahl10, Chapter 4].

Typically, one takes Γ to be the homotopy class [γ] of a map γ from a 1-manifold
to X. In this case, we will often abuse notation and write EL(γ) or EL(γ, X) instead
of EL([γ]) or EL([γ], X). Similarly, we may write ℓρ(γ) instead of ℓρ([γ]).

2.2. The extremal length systole

A closed curve in a Riemann surface X is the continuous image of a circle. It is
simple if it is embedded, and essential if it cannot be homotoped to a point or into
an arbitrarily small neighborhood of a puncture. The sets of homotopy classes of
essential closed curves and of essential simple closed curves in X will be denoted by
C(X) and S(X) respectively.

Definition 2.1. — The extremal length systole of a Riemann surface X is
defined as

sysEL(X) := inf
c ∈ C(X)

EL(c, X).

The reason for restricting to essential closed curves is that the extremal length of
any inessential closed curve is equal to zero. We will see in Section 3 that if X is
different from the thrice-punctured sphere, then we can replace C(X) by S(X) in
Definition 2.1 without affecting the resulting value.
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The extremal length systole of the Bolza surface 1413

2.3. Beurling’s criterion

For there to be any hope of computing the extremal length systole of a Riemann
surface, we should first be able to compute the extremal length of some essential
closed curves. The definition of extremal length makes it easy to find lower bounds for
it: any conformal metric of finite positive area provides a lower bound. To determine
its exact value is harder; all known examples use the following criterion [Ahl10,
Theorem 4-4] (c.f. [Gro83, Section 5.5] or [Bav92a]), which encapsulates the length-
area method.

Theorem 2.2 (Beurling’s criterion). — Let Γ be a set of maps from 1-manifolds
to a Riemann surface X. Suppose that ρ ∈ Conf(X) is such that there is a nonempty
subset Γ0 ⊆ Γ of shortest curves, meaning that lengthρ(γ) = ℓρ(Γ) for every γ ∈ Γ0,
and that the implication

(2.1)
∫

γ
fρ ⩾ 0 for all γ ∈ Γ0 =⇒

∫
X

fρ2 ⩾ 0

holds for every Borel-measurable function f on X. Then EL(Γ) = ℓρ(Γ)2/ areaρ(X).

A conformal metric ρ such that EL(Γ) = ℓρ(Γ)2/ areaρ(X) as in Beurling’s criterion
is said to be extremal for Γ. Extremal metrics always exist in a weak sense [Rod74,
Theorem 12] (c.f. [Gro83, Theorem 5.6.C’]), though we will not use this. By a
convexity argument, if an extremal metric exists, then it is unique (in the sense of
equality almost everywhere) up to scaling [Jen58, Theorem 2.2].

In practice, one often finds a measure µ on the set Γ0 and a constant k > 0 such
that

(2.2) k
∫

X
fρ2 =

∫
Γ0

(∫
γ

fρ
)

dµ(γ)

for every Borel-measurable function f , which obviously implies Equation (2.1). In
that case, we will say that Γ0 sweeps out X evenly.

For example, if the curves in Γ0 form an immersed foliation with transverse measure
µ given by integration of ρ perpendicularly to the curves, then Equation (2.2) holds
if almost every point in X appears k times along curves in Γ0, counting multiplicity.
This is what happens in Examples 2.3 to 2.6 below. Another example is given
in [Ahl10, Section 4-8], where it is shown that the spherical metric on a closed
hemisphere is extremal for the set Γ of all arcs joining pairs of opposite points on the
boundary equator. In that case, Γ0 is the set of all halves of great circles contained
in the hemisphere, which can be parametrized as S1 × [0, π/2) via one endpoint of
the half-circle and the angle it makes with the equator. If µ denotes the product
measure on S1 × [0, π/2) (where S1 has length 2π), then Equation (2.2) holds with
k = π2/2.

2.4. Examples

Here are some examples of extremal metrics.
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Example 2.3. — If X is a Riemann surface with a finitely generated fundamental
group and c is the homotopy class of an essential simple closed curve in X, then
the extremal metric for c is equal to

√
|q| for an integrable holomorphic quadratic

differential q all of whose regular horizontal trajectories belong to c, and this quadratic
differential is unique up to scaling [Jen57]. In simpler terms, the extremal metric
looks like a Euclidean cylinder with some parts of its boundary glued together via
isometries. If the metric ρ =

√
|q| is scaled so that the height of the cylinder is 1,

then ℓρ(c) = areaρ(X) so that the extremal length of c is equal to either of these
two quantities (the circumference or the area of the cylinder).

We refer the reader to [Str84] for background on quadratic differentials. Given the
existence of q, the fact that

√
|q| is extremal follows from Beurling’s criterion since

the regular horizontal trajectories of q have minimal length in their homotopy class
and integration against |q| is the same as iterated integration along the horizontal
trajectories, then against the transverse measure.

The above result is true more generally if c is the homotopy class of a simple multi-
curve with weights [Ren76]. The Heights Theorem of Hubbard and Masur further
generalizes the existence and uniqueness of q to equivalence classes of measured
foliations [HM79] (see also [MS84]) and this can be used to define the extremal
length of such things.

For closed curves that are not simple, very little is known about the extremal
metric. The investigations in [Cal96, HZ20, NZ22] suggest that it might have positive
curvature in general. Here are three examples of non-simple closed curves on the
thrice-punctured sphere for which the extremal metric is flat but does not come from
a quadratic differential.

(a) A figure-eight
(b) A curve with two self-
intersections

(c) A curve with three self-
intersections

Figure 2.1. Some extremal metrics on the thrice-punctured sphere

Example 2.4. — Take two copies of a Euclidean isosceles right triangle, glue them
along their boundary, and puncture the resulting surface at the three vertices. Then
the resulting metric ρ is extremal for the figure-eight curve γ which winds once
around each of the two acute vertices (see Figure 2.1(a)). If the short sides of the
triangle have length 1, then the surface has area 1 and ℓρ(γ) = 2 so that EL(γ) = 4.

Example 2.5. — The metric from Example 2.4 is also extremal for the curve γ
with two self-intersections depicted in Figure 2.1(b). This curve satisfies ℓρ(γ) = 2

√
2

so that EL(γ) = 8.
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The extremal length systole of the Bolza surface 1415

The next example is closely related to [Ahl10, Example 4-2].

Example 2.6. — Take two copies of a Euclidean equilateral triangle, glue them
along their boundary, and puncture the resulting surface at the three vertices. Then
the resulting metric ρ is extremal for the curve γ depicted in Figure 2.1(c). If the
side length of the triangle is equal to 1, then the area of the surface is equal to

√
3/2

and ℓρ(γ) = 3, so that EL(γ) = 6
√

3.

In each case, the proof is an application of Beurling’s criterion. The first observation
is that any closed geodesic in a locally CAT(0) space (which these surfaces are)
minimizes length in its homotopy class. Thus, the closed geodesics depicted in
Figure 2.1 have minimal length in their homotopy class. Furthermore, in each case
the set Γ0 of closed geodesics homotopic to γ sweeps out the surface evenly.

To prove this, we use the fact that in each example there is an isometric immersion
π from an open Euclidean cylinder C to the surface X that sends closed geodesics
in C to closed geodesics in the desired homotopy class on X. These immersions
can be obtained by folding along the dashed lines in Figure 2.2. We observe that
the immersion is 2-to-1 almost everywhere in the first two cases and 3-to-1 almost
everywhere in the third case (only the edges of the double triangle get covered fewer
times). Therefore, if f is a measurable function on X, then

deg(π)
∫

X
fρ2 =

∫
C

(f ◦ π) (π∗ρ)2 =
∫

y

(∫
αy

(f ◦ π) (π∗ρ)
)

dy =
∫

y

(∫
π(αy)

fρ

)
dy

where αy is the closed geodesic at height y in C, which shows that Equation (2.2)
holds.

(a) A 2-to-1 immersion (b) Another 2-to-1 immersion

(c) A 3-to-1 immersion

Figure 2.2. Isometric immersions from cylinders to double triangles.

2.5. Pulling curves tight

In order to apply Beurling’s criterion, or even to obtain a lower bound for extremal
length given a metric ρ, the first step is to determine the infimum ℓρ(Γ). A useful
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trick for this is to pull curves tight. This is a straightforward procedure if the surface
is compact, but it leads to slight complications in the presence of punctures.

Proposition 2.7. — Let X be a closed Riemann surface equipped with a con-
formal metric ρ whose induced distance is compatible with the topology on X, let
X = X \ P where P ⊂ X is a finite set, and let c be the homotopy class of an
essential closed curve in X. Then there is a closed curve γ in X such that γ is the
limit of a sequence (γn) of curves in c, the restriction γ ∩ X is locally geodesic, and
lengthρ(γ) = ℓρ(c). If c is the homotopy class of an essential simple closed curve,
then the approximating curves γn can be chosen to be simple. Furthermore, if ρ is
piecewise Euclidean with finitely many cone points, then γ can be chosen to pass
through some cone point in X or some points in P , unless X is a flat torus.

This is a well-known fact at least for metrics coming from quadratic differentials
(see [Str84, Chapter V], [Min92, Section 4] or [DLR10, Section 2.4]), but we could
not track down a proof in the case where X has punctures. Here we will apply the
lemma to polyhedra punctured at the vertices. It is worth pointing out that even
when c contains simple closed curves, the length-minimizer γ need not be simple; it
can have tangential self-intersections.

Proof. — Take any sequence (γn) ⊂ c of curves parametrized proportionally to arc
length such that lengthρ(γn) tends to the infimum ℓρ(c) as n → ∞. Since these are
uniformly Lipschitz maps from the circle into X, which is compact, we can apply the
Arzelà–Ascoli theorem to extract a subsequence that converges uniformly to a closed
curve γ in X. We also have lengthρ(γ) ⩽ ℓρ(c) since γ is ℓρ(c)-Lipschitz (i.e., length
is lower semi-continuous under uniform convergence). Note that γ is not reduced to
a point since c is essential.

If γ ∩ X is not locally geodesic, then we can shorten γn by a definite amount
whenever n is large enough while staying in the same homotopy class, contradicting
the hypothesis that lengthρ(γn) → ℓρ(c) as n → ∞.

To prove the reverse inequality ℓρ(c) ⩽ lengthρ(γ), the idea is to reconstruct a
sequence of curves αn in c from γ. We can choose αn to follow γ except where γ hits
the set P . At each of these occurrences, we take αn to stop a little bit before hitting
the given point p ∈ P , wind around p a certain number of times along a small circle
centered at p, then continue along γ where γ crosses that circle a second time. Once
we have fixed a small enough radius at each of the points in P , there is a unique
way to choose the winding around each puncture so that αn belongs to c. Indeed,
the intersection of a small neighborhood of γ with X deformation retracts onto the
union of circles and segments of γ where we allow αn to travel. By letting the radii of
the circles tend to 0 as n → ∞, we obtain that lengthρ(αn) → lengthρ(γ) as n → ∞
since the amount of winding around each puncture stays fixed but the circumference
of each circle tends to zero.

Suppose that c contains simple closed curves. We can assume that γn only has
transverse self-intersections for otherwise we can perturb it so that this holds, without
increasing its length by more than any positive amount we choose. Let k be the
number of self-intersections of γn. If γn is not simple, then it must bound a monogon
or a bigon in X [HS85, Theorem 2.7]. By erasing the monogon or by pushing the
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The extremal length systole of the Bolza surface 1417

bigon off to its shorter side, we obtain a curve γ′
n which has fewer self-intersections

and is not longer than γn by more than any positive amount we choose, say 1/(kn).
After a finite number of steps, we obtain a simple closed curve βn in c which is not
longer than γn by more than 1/n. It follows that limn→∞ lengthρ(βn) = ℓρ(c). We
could therefore have chosen (βn) from the start (perhaps ending up with a different
limit γ after passing to a subsequence).

For the last part of the proof, we assume that ρ is piecewise Euclidean with cone
points. Let Q be the set of cone points in X and suppose that γ is contained in
X \Q. In particular, γ is in X so that it is a closed geodesic by the second paragraph
of this proof. The fact that X \ Q is locally Euclidean and orientable allows us to
push γ parallel to itself by using the geodesic flow in the normal direction. Let γt be
the geodesic obtained after pushing γ by distance t ∈ R to the left (where negative
t means pushing to the right). This is well-defined if t is close enough to 0, but if we
bump into Q or P , then it is not possible to continue. Let T be the supremum of
the set of s > 0 such that γt is defined for all t ∈ (−s, s).

Suppose that T < ∞. By the same argument as in the first paragraph, subsequences
of γtn converge to limiting curves γ±T in X as tn → ±T . At least one of these two
curves must pass though Q or P , otherwise the flow could be continued and γt would
be defined on a larger interval. Thus, we can replace γ by one of γT or γ−T .

If T = ∞, then there is a local isometry from S1 × R to X \ Q. Since the domain
is complete and the range is connected, this local isometry is a covering map [BH99,
Proposition I.3.28]. But the cylinder S1 × R only covers itself, tori, or Klein bottles.
The only one of these which is orientable and whose completion is compact is the
torus. □

2.6. Systolic ratio

Besides the homotopy class of an essential closed curve in a Riemann surface X,
there is another set of curves Γ whose extremal length one might want to compute,
namely, the set Γall of all essential closed curves in X.

Given a conformal metric ρ on X, the systole of (X, ρ) is
sys(X, ρ) := ℓρ(Γall) = inf

γ ∈ Γall
lengthρ(γ)

and
SR(X, ρ) := sys(X, ρ)2

areaρ(X)
is its systolic ratio. By definition, the extremal length of Γall is equal to

EL(Γall, X) = sup
ρ ∈ Conf(X)

ℓρ(Γall)2

areaρ(X) = sup
ρ ∈ Conf(X)

SR(X, ρ) =: SR(X),

that is, to the optimal systolic ratio in the conformal class of X. The isosystolic
problem consists in maximizing the optimal systolic ratio over all conformal classes
on a given manifold.

Extremal metrics for the isosystolic problem are known for the torus [Pu52], the
projective plane [Pu52] and the Klein bottle [Bav86, Bav88]. When the conformal
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class is fixed, there are two further examples of optimal metrics known in genus
three [Cal96, Section 7] and a one-parameter family in genus five [WZ94, Section 6].

We emphasize that the extremal length systole

sysEL(X) = inf
c ∈ C(X)

EL(c, X) = inf
c ∈ C(X)

sup
ρ ∈ Conf(X)

ℓρ(c)2

areaρ(X)
is different from the optimal systolic ratio

SR(X) = sup
ρ ∈ Conf(X)

ℓρ(Γall)2

areaρ(X) = sup
ρ ∈ Conf(X)

inf
c ∈ C(X)

ℓρ(c)2

areaρ(X) .

The maximin-minimax principle (which says that
sup

x
inf

y
F (x, y) ⩽ inf

y
sup

x
F (x, y)

for any function F ) yields the inequality
(2.3) SR(X) ⩽ sysEL(X).

If X is a torus, then equality holds in (2.3). This is because the extremal metric
(for extremal length) is the same for all homotopy classes of curves. Indeed, every
essential closed curve γ in a torus is homotopic to a power αk of a simple closed
curve α. By Example 2.3, the extremal metric for α (and hence γ) is realized by
a holomorphic quadratic differential q on X. The resulting metric is just the flat
metric ρ on X because q does not have any singularities (the space of holomorphic
quadratic differentials on X is 1-dimensional). It follows that any homotopy class c
with minimal ρ-length realizes the extremal length systole, giving

SR(X) ⩾ SR(X, ρ) = ℓρ(c)2

areaρ(X) = EL(c, X) ⩾ sysEL(X),

and hence SR(X) = sysEL(X).
By Loewner’s torus inequality [Pu52], SR(X) is strictly maximized at the regular

hexagonal torus, where it takes the value 2/
√

3. In fact, it is easy to see that this is
the only local maximum (see below). Thus, the same holds for the extremal length
systole.

Corollary 2.8. — The extremal length systole of tori attains a unique (strict)
local maximum at the regular hexagonal torus, where it takes the value 2/

√
3.

The proof of Loewner’s torus inequality is quite straightforward once we know that
the optimal metric is flat. Indeed, the moduli space of flat tori up to similarity is
equal to the modular surface H/ PSL(2,Z). The standard fundamental domain for
the action of PSL(2,Z) on H is

F = {z ∈ H : | Re z| ⩽ 1/2 and |z| ⩾ 1} .

For any τ ∈ F , it is easy to see that the shortest non-zero vectors in the lattice
Z + τZ have length 1. This means that the systolic ratio of the torus C/(Z + τZ) is
the reciprocal of its area, or 1/ Im τ . This quantity is only locally maximized at the
corners {eπi/3, e2πi/3} of F , both of which represent the regular hexagonal torus.
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The equality SR(X) = sysEL(X) also holds for the projective plane because there
is only one homotopy class of primitive essential closed curves in that case.

However, if X is the thrice-punctured sphere, then
(2.4) SR(X) = 2

√
3 < 4 = sysEL(X).

We explain the first equality here while the second one will be shown in Corollary 3.3.

Proposition 2.9. — The Euclidean metric on the double equilateral triangle
punctured at the vertices is optimal for the systolic ratio, giving SR(X) = 2

√
3 for

the thrice-punctured sphere.

Proof. — This is the metric ρ described in Example 2.6. The shortest curves are
not those depicted in Figure 2.1(c) though, they are figure-eight curves of length

√
3.

To prove that every essential curve in X has length at least
√

3, we use Proposi-
tion 2.7 to get a closed curve γ into the metric completion X (the unpunctured double
equilateral triangle) such that γ is a limit of curves in c, satisfies lengthρ(γ) ⩽ ℓρ(c),
and γ passes through a vertex v of X.

The curve γ must also intersect the edge opposite to v, for otherwise the curves in
c close enough to γ could be homotoped into a neighborhood of v, contradicting the
assumption that they are essential. As the distance from v to the opposite edge is√

3/2, we obtain
ℓρ(c) ⩾ lengthρ(γ) ⩾

√
3.

It remains to show that X is swept out evenly by shortest essential closed curves.
This is best seen by observing that there is a covering map from the regular hexagonal
torus Y punctured at three points to X (see Figure 2.3). The shortest essential closed
curves in Y have length

√
3, and those that do not pass through one of the three

punctures project to shortest essential closed curves in X. These are organised in
three parallel families, each of which foliates Y minus three closed geodesics. By
picking any one of these parallel families, we obtain an isometric immersion π from
a union U of 3 open Euclidean cylinders to X which is 3-to-1 almost everywhere and
maps each simple closed geodesic in U to a shortest essential closed curve in X. As
before, we obtain

3
∫

X
fρ2 =

∫
U

(f ◦ π) (π∗ρ)2 =
∫

y

(∫
αy

(f ◦ π) π∗ρ

)
dy =

∫
y

(∫
π(αy)

fρ

)
dy

for any measurable function f on X, where y is a height coordinate in U and αy is
the closed geodesic at height y.

By Beurling’s criterion, ρ is extremal for the set of curves Γall, so that

SR(X) = EL(Γall, X) = ℓρ(Γall)2

areaρ(X) =
√

32

√
3/2

= 2
√

3. □

Similarly, if X is the Bolza surface, then

(2.5) SR(X) ⩽ π

3 <
√

2 = sysEL(X)

where the first inequality is from [KS06, Theorem 5.1] and the equality on the
right-hand side will be shown in Corollary 6.3.
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Figure 2.3. Degree 3 cover from the hexagonal torus to the double triangle. None
of the three homotopy classes of figure-eights sweeps out the double triangle
evenly by itself, but together they do.

3. Systoles are simple

In this section, we show that we can restrict to simple closed curves in the definition
of the extremal length systole (except in the case where no such curve is essential).
For the systole with respect to a fixed metric, this is an easy surgery argument, but
since the extremal lengths of different curves are computed using different metrics,
the argument is more subtle for the extremal length systole. As the statement is
obvious for tori, we restrict to hyperbolic surfaces in this section.

We start by showing that the infimum in the definition of extremal length systole
is achieved. This statement will also be used in Section 7 to show that the extremal
length systole is a generalized systole in the sense of Bavard.

Lemma 3.1. — Let X be a hyperbolic surface of finite area. For any L > 0, there
are at most finitely many homotopy classes c of essential closed curves in X such
that EL(c, X) ⩽ L. In particular, there is a homotopy class c ∈ C(X) such that
EL(c, X) = sysEL(X).

Proof. — In the complete hyperbolic metric ρ on X, every homotopy class c ∈ C(X)
contains a unique closed geodesic and for any B > 0, there are at most finitely
many closed geodesics of hyperbolic length at most B (since this set is discrete and
compact). By definition of extremal length, we have EL(c, X) ⩾ ℓρ(c)2/ areaρ(X).
Thus, an upper bound on extremal length implies an upper bound on hyperbolic
length, which restricts to finitely many homotopy classes. The infimum is therefore
a minimum. □

We proceed to show that the extremal length systole is only realized by essential
closed curves with the minimum number of self-intersections possible.

Theorem 3.2. — Let X be a hyperbolic surface of finite area. Then any essential
closed curve γ in X such that EL(γ, X) = sysEL(X) is simple unless X is the thrice-
punctured sphere, in which case the figure-eight curves are the ones with minimal
extremal length.

Proof. — Let γ be an essential closed curve in X that is not homotopic to a simple
closed curve or to a figure-eight on the thrice-punctured sphere. Our goal is to find
an essential closed curve α with strictly smaller extremal length than γ.
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There are two ways to perform surgery on γ at an essential self-intersection which
we call smoothings. These are obtained by cutting the circle at two preimages of
the intersection point and regluing in the two other possible ways (see [MGT21,
Definition 2.16]). As such, the smoothings of γ have the same image as γ and the
same length with respect to any metric. One of the two smoothings is a pair of curves
and the other one is a single curve.

Suppose first that all three components of the two smoothings of γ at some essential
self-intersection x ∈ γ are inessential. Consider the smoothing γ′ of γ at x which
has two components. By assumption, each component of γ′ can be homotoped into
a puncture of X (it cannot be homotopic to a point since the self-intersection at x
is essential). It can therefore be homotoped to a power of a simple loop from x that
encloses the puncture. Thus, up to homotopy, we may assume that the image of γ
is homeomorphic to a figure-eight curve bounding two punctures. Since the other
smoothing γ′′ of γ at x is also inessential, the third component of X \ γ must be a
punctured disk, so that X is the thrice-punctured sphere. This also implies that the
two components of γ′ are simple, because the fundamental group of X is the free
group on the two simple loops a and b forming the figure-eight, and the only words
homotopic to the third puncture are conjugate to powers of ab. If γ ∼ ambn, then its
other smoothing γ′′ is amb−n, which is conjugate to a power of ab only if m = ±1 and
n = ∓1. We conclude that γ is homotopic to a figure-eight on the thrice-punctured
sphere, contrary to our assumption.

It follows that at least one of the two smoothings of γ has an essential component
β. Then EL(β) ⩽ EL(γ) since ℓρ(β) ⩽ ℓρ(γ) for every conformal metric ρ on X.
This is because any curve c homotopic to γ has a smoothing with one component b
homotopic to β (see [NC01, Lemma 2.1] or [MGT21, Lemma 2.17]) and b is at most
as long as c with respect to ρ.

If β still has essential self-intersections, then we can repeat the above process of
smoothing and keeping an essential component until we are left with a curve α for
which this is no longer possible. Then α is either simple or a figure-eight on the
thrice-punctured sphere, and we have EL(α) ⩽ EL(γ). The tricky part is to prove
that the inequality is strict. In either case, we know what the extremal metric ρ
for α looks like. Since α was obtained from γ after repeated smoothings, we have
ℓρ(α) ⩽ ℓρ(γ). If ℓρ(α) < ℓρ(γ), then EL(α) < EL(γ) as required. Otherwise, we
need to modify the metric ρ.

Assume that α is simple. By Example 2.3, the extremal metric ρ comes from an
integrable holomorphic quadratic differential q on X. In this metric, the punctures
are at a finite distance away, so that the metric completion X is a closed surface.
By Proposition 2.7, the curve γ can be pulled tight to a curve γ∗ in X such that
lengthρ(γ∗) = ℓρ(γ). If γ∗ is a regular closed geodesic in X (that does not pass
through cone points), then it must be a power of a simple closed curve (necessarily
homotopic to α) because its slope with respect to q is constant. As we assumed that
γ was not simple, we have that γ is homotopic to a proper power αk with k > 1. We
thus have ℓρ(γ) = kℓρ(α) > ℓρ(α) so that EL(α) < EL(γ).
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On the other hand, if every length-minimizer γ∗ for the homotopy class [γ] passes
through a cone point or a puncture, then there are only finitely many possible length-
minimizers for [γ], as there are only finitely many geodesic segments of length at
most L between the points in this finite set (for any L > 0). In fact, the length-
minimizer is unique in this case, but we will not need this. All we need to use is
that there is a compact set K ⊂ X with nonempty interior that is disjoint from
every length-minimizer. Then every curve homotopic to γ that passes through K
is longer than ℓρ(γ) by a definite amount, for otherwise the compactness argument
from the proof of Proposition 2.7 would yield a length-minimizer passing through
K. We can therefore decrease ρ by a small amount in K without affecting ℓρ(γ), but
thereby decreasing the area of ρ. This improved metric shows that EL(γ) > EL(α),
as required.

Next, suppose that α is a figure-eight on the thrice-punctured sphere. Then the
extremal metric ρ for α is the double of an isosceles right triangle as described in
Example 2.4 (scaled to have edge lengths 1 and

√
2). If the homotopy class of γ

does not contain any closed geodesics in X, then we can apply the same trick as
above to reduce ρ in a set K away from all the length-minimizers to obtain the strict
inequality EL(γ) > EL(α).

The only case left is if [γ] contains closed geodesics in X. In contrast with the
case of simple closed curves, the metric ρ comes from a quartic differential rather
than a quadratic differential, so that its closed geodesics can self-intersect (at right
angles). However, we can still prove that ℓρ(γ) > ℓρ(α). Suppose on the contrary
that ℓρ(γ) = ℓρ(α). Let γ∗ ⊂ X be a closed geodesic homotopic to γ and let γ† ⊂ X
be a curve obtained by pushing γ∗ to one side until it passes through a puncture,
as in the proof of Proposition 2.7. Consider the covering map from R2 \ Z2 → X
coming from the regular tiling by of the plane by isosceles right triangles. We can
lift γ† under this covering to an arc in the plane with endpoints in Z2. Since γ† is
a limit of closed geodesics, that lift must be a straight line segment I. Its length
is therefore equal to

√
m2 + n2 for some integers m and n. The only way to obtain

ℓρ(α) = 2 is if one of m or n is zero, meaning that I is parallel to one of the coordinate
axes. Since any closed geodesic in X elevates to a straight line in R2 \ Z2, the deck
transformation corresponding to γ∗ must be a translation. Furthermore, as γ∗ is
parallel to γ† and of the same length, that translation is by distance 2 along one of
the coordinate axes. It follows that γ∗ is a figure-eight in X (see Figure 2.2(a) and
Figure 2.1(a)). This contradicts our initial hypothesis that γ was not homotopic to
a figure-eight on the thrice-punctured sphere. We conclude that ℓρ(γ) > ℓρ(α) and
hence EL(γ) > EL(α). □

We obtain the extremal length systole of the thrice-punctured sphere as a bonus.

Corollary 3.3. — The extremal length systole of the thrice-punctured sphere
is equal to 4.

Proof. — Theorem 3.2 shows that the figure-eight curves have minimal extremal
length and Example 2.4 shows that the extremal length of these curves is equal
to 4. □
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4. Branched coverings
A Riemann surface is hyperelliptic if it admits a holomorphic map of degree two

onto the Riemann sphere. On a surface of genus g, such a holomorphic map has 2g+2
critical points, called the Weierstrass points, and the same number of critical values.
The conformal automorphism that swaps the two preimages of any non-critical value
and fixes the Weierstrass points is called the hyperelliptic involution.

Every closed Riemann surface of genus two is hyperelliptic, hence arises as a double
branched cover of the Riemann sphere branched over six points. As the next lemma
shows, extremal length behaves well under branched coverings. This will allow us to
reduce computations of extremal length on surfaces of genus two to computations
on six-times-punctured spheres.

Lemma 4.1. — Let f : X → Y be a holomorphic map of degree d between
Riemann surfaces with finitely generated fundamental groups, let Q ⊂ Y be a finite
set containing the critical values of f , and let P ⊂ f−1(Q) be such that f−1(Q) \ P
is a subset of the critical points of f . Then

EL
(
f−1(γ), X \ P

)
= d · EL(γ, Y \ Q)

for any simple closed curve γ in Y \ Q.
Typically, we will take Q to be the set of critical values of f and P to be the empty

set, provided that f−1(Q) only consists of critical points. This is the case if d = 2
since each point in Q has only one (double) preimage.

Proof of Lemma 4.1. — By Jenkins’s theorem [Jen57], there is a unique integrable
holomorphic quadratic differential q on Y \ Q whose regular trajectories are all
homotopic to γ and form a cylinder C of height 1. With this normalization, the
extremal length EL(γ, Y \ Q) is equal to the area

∫
Y \Q |q| of the cylinder.

The pull-back differential f ∗q is holomorphic on X \ P since simple poles pull-
back to regular points or zeros at branch points. Since f : X \ f−1(Q) → Y \ Q
is a covering map, f−1(C) is a union of cylinders of height 1, the union of whose
core curves is homotopic to f−1(γ) relative to f−1(Q), hence relative to P as well.
Moreover, f−1(C) contains all the regular horizontal trajectories of f ∗q.

By Renelt’s theorem [Ren76], the extremal metric for f−1(γ) is given by
√

|f ∗q|
so that

EL
(
f−1(γ), X \ P

)
=
∫

X\P
|f ∗q| = d

∫
Y \Q

|q| = d · EL(γ, Y \ Q),

as required. □
Note that in the above lemma, the inverse image f−1(γ) is not necessarily connected;

it may have up to d connected components. It may also happen that some components
of f−1(γ) are homotopic to each other. In the case where Y \Q is a punctured sphere
and d = 2, the number of components of f−1(γ) and whether these components are
homotopic to each other are determined by how γ separates the punctures.

Definition 4.2. — Let 2 ⩽ m ⩽ n be integers. An (m, n)-curve on a sphere
with (m + n) punctures is a simple closed curve that separates m punctures from n
punctures.
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Lemma 4.3. — Let f : X → Ĉ be a holomorphic map of degree two from a closed
Riemann surface to the Riemann sphere, let Q ⊂ Ĉ be its set of critical values and
let γ ⊂ Ĉ \ Q be an (m, n)-curve. Then f−1(γ) is connected if and only if both m
and n are odd, in which case, f−1(γ) is separating. If m and n are even, then the
two components of f−1(γ) are individually non-separating, and they are homotopic
to each other if and only if m = 2.

Proof. — Recall that m+n = |Q| = 2g+2 where g is the genus of X, so that m and
n have the same parity. The curve γ separates the Riemann sphere into a disk Dm

with m critical values and a disk Dn with n critical values. The Riemann–Hurwitz
formula gives χ(f−1(Dm)) = 2 − m and χ(f−1(Dn)) = 2 − n. On the other hand, if
f−1(Dm) has genus gm and b boundary components, then χ(f−1(Dm)) = 2−2gm − b.
In particular, b is odd if and only if m (and n) is. Since b is equal to either 1 or 2,
we have that f−1(γ) is connected if and only if m and n are odd. Since every simple
closed curve on the sphere is separating, so is its full preimage under f .

Assume that m and n are even. Then f−1(γ) has two connected components.
Similarly, X \ f−1(γ) has exactly two connected components, namely f−1(Dm) and
f−1(Dn). These surfaces are connected because each one is a branched cover of
degree two of a disk with non-trivial branching. In particular, given a point in
each component of f−1(γ), there is a path in f−1(Dm) between them and another
such path in f−1(Dn). The concatenation of these two paths gives a closed curve
intersecting each component C of f−1(γ) only once and transversely, which implies
that C is non-separating.

Suppose that the two components of f−1(γ) are homotopic to each other. Then
these two components bound a cylinder, necessarily equal to one of f−1(Dm) or
f−1(Dn). As the Euler characteristic of a cylinder is equal to 0, one of m or n
must be equal to 2. Since we assumed that 2 ⩽ m ⩽ n, we conclude that m = 2.
Conversely, if m = 2, then f−1(Dm) must be homeomorphic to a cylinder since it
has two boundary components and Euler characteristic zero. This implies that the
two components of f−1(γ) are homotopic to each other. □

Before stating the consequences of the above lemmas for surfaces of genus two, let
us see what they mean for surfaces of genus one. Every torus X is hyperelliptic (or
rather elliptic). The elliptic involution has 4 critical points with 4 distinct images,
the critical values. Let f : X → Ĉ be the quotient by the elliptic involution and
let Q be its set of critical values. Since any essential simple closed curve γ in Ĉ \ Q
is a (2, 2)-curve, Lemma 4.3 tells us that its preimage f−1(γ) has two components,
both of which are homotopic to a given curve α ⊂ X. Conversely, every essential
simple closed curve α in X can be homotoped off of P , after which it projects to
some (2, 2)-curve γ in Ĉ \ Q.

By Lemma 4.1 applied with P = ∅, we obtain

22 EL(α, X) = EL(2α, X) = EL
(
f−1(γ), X

)
= 2 EL

(
γ, Ĉ \ Q

)
,

or EL(γ, Ĉ \ Q) = 2 EL(α, X). By 2α we mean 2 copies of the curve α, and the first
equality holds because ℓρ(2α) = 2ℓρ(α) for every conformal metric ρ.
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By Theorem 3.2, the extremal length systole is always achieved by simple closed
curves. We conclude that the extremal length systole of a four-times-punctured
sphere is equal to twice the extremal length systole of the elliptic double cover
branched over the four punctures. Since the quotient of the regular hexagonal torus
by the elliptic involution is isometric to the regular tetrahedron, Corollary 2.8 implies
the following.

Corollary 4.4. — The extremal length systole of four-times-punctured spheres
attains a unique (strict) local maximum at the regular tetrahedron punctured at its
vertices, where it takes the value 4/

√
3.

For surfaces of genus two, it is still true that every homotopy class of simple closed
curve is preserved by the hyperelliptic involution [HS89]. However, the situation is
a bit more complicated as there are two types of curves. The extremal length of an
essential simple closed curve on a surface of genus two is equal to either twice or
half the extremal length of some curve on the sphere punctured at the images of the
Weierstrass points, depending on the type of curve.

Proposition 4.5. — Let X be a closed Riemann surface of genus two, let f :
X → Ĉ be a holomorphic map of degree two, let Q be the set of critical values
of f , and let α be an essential simple closed curve in X. Then α is separating if
and only if it is homotopic to f−1(β) for some (3, 3)-curve β on Y := Ĉ \ Q, in
which case EL(α, X) = 2 EL(β, Y ). Similarly, α is non-separating if and only if it is
homotopic to either component of f−1(β) for some (2, 4)-curve β on Ĉ \ Q, in which
case EL(α, X) = EL(β, Y )/2.

Proof. — Let J : X → X be the hyperelliptic involution and let α∗ be the geodesic
representative of α with respect to the hyperbolic metric on X.

If α is separating, then each component of X \α∗ is a one-holed torus preserved by
J , because J preserves α∗ together with its orientation. If C is one such component,
then f(C) is a disk and the Riemann–Hurwitz formula tells us that

−1 = χ(C) = 2 −
∣∣∣f−1(Q) ∩ C

∣∣∣
so that C contains 3 critical points of f and hence f(C) contains 3 critical values. This
shows that f(α∗) is a (3, 3)-curve. More precisely, f(α∗) = β2 for some (3, 3)-curve
β since α∗ covers its image by degree two. As α is homotopic to α∗, we have

EL(α, X) = EL (α∗, X) = EL(f−1(β), X) = 2 EL(β, Y )
according to Lemma 4.1.

If α is non-separating, then the isometry J sends α∗ to itself in an orientation-
reversing manner, so that α∗ passes through two Weierstrass points. Let ε > 0 be
small enough so that the ε-neighborhood of α∗ in X is an annulus A that contains
only these two Weierstrass points. Then J maps A to itself and exchanges its two
boundary components. Let β be the image of either boundary component by f . Since
f(A) = A/J is a disk containing two critical values, β is a (2, 4)-curve on Ĉ \ Q.
Furthermore, f−1(β) = ∂A is a union of two curves homotopic to α. By Lemma 4.1,
we have

22 EL(α, X) = EL(2α, X) = EL
(
f−1(β), X

)
= 2 EL(β, Y ).
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The converse statements follow from Lemma 4.3, which tells us that the preimage
of a (3, 3)-curve is connected and separating, while the preimage of a (2, 4)-curve
has two homotopic non-separating components. □

It is perhaps more intuitive to think in terms of embedded cylinders. The inverse
image of a (3, 3)-cylinder in Ĉ \ Q has twice the circumference and the same height,
while the inverse image of a (2, 4)-cylinder C consists in two parallel copies of C, so
the circumference stays the same but the total height is multiplied by two.

5. From the octahedron to pillowcases

The Bolza surface B can be defined as the one-point compactification of the
algebraic curve {

(x, y) ∈ C2 : y2 = x
(
x4 − 1

)}
.

In these coordinates, the hyperelliptic involution takes the form (x, y) 7→ (x, −y) and
the corresponding quotient map is realized by the projection (x, y) 7→ x, which has
critical values {0, ±1, ±i, ∞}. By Proposition 4.5, calculating extremal lengths on B
is equivalent to calculating extremal lengths on O := Ĉ \ {0, ±1, ±i, ∞}, where Ĉ is
the Riemann sphere. This surface is conformally equivalent to the unit sphere S2 in
R3 punctured where the coordinate axes intersect it, as well as to the surface of the
regular octahedron punctured at its vertices. Under the stereographic projection, the
three great circles obtained by intersecting a coordinate plane in R3 with S2 map
to the two coordinate axes and the unit circle in C. We will refer to the vertices,
edges, and faces of this cell division below. They correspond to the vertices, edges,
and faces on the surface of the regular octahedron.

For certain simple closed curves in O, we are able to explicitly compute their ex-
tremal length. We do this by finding branched covers from O to four-times-punctured
spheres, where extremal length is calculated using elliptic integrals. We will then
prove lower bounds for the extremal length of other curves in the next section by
using the Euclidean metric on the regular octahedron.

5.1. The curves

We distinguish four kinds of curves in O:
• A baseball curve is a simple closed curve that separates a pair of consecutive

edges (adjacent edges that do not belong to a common face) from another
such pair. There are six baseball curves up to homotopy.

• An edge curve is a simple closed curve that separates an edge from the five
edges that are not adjacent to it. There are twelve edge curves up to homotopy,
one for each edge.

• An altitude curve is a simple closed curve that surrounds the union of the
altitudes in two adjacent faces (dropped from the vertices not on the common
edge). There are twelve altitude curves up to homotopy, one dual to each
edge.
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• A face curve is a simple closed curve that separates two opposite faces. There
are four face curves up to homotopy, one for each pair of opposite faces.

An example of each is depicted in Figure 5.1. The baseball curves are named like
so because of the resemblance with the stitching pattern of a baseball. From now on,
we will identify closed curves with their homotopy classes in order to avoid repeating
the phrase “up to homotopy” all the time.

(a) A baseball curve (b) An edge curve (c) An altitude curve (d) A face curve

Figure 5.1. Some curves on the punctured octahedron.

Observe that for any of the four kinds of curves we have distinguished, and any
two curves of that kind, there is a conformal automorphism of O sending one curve
to the other. Thus, all curves of a given kind have the same extremal length.

We have singled out these particular kinds of curves because for any curve α of
any of these four kinds, there is a non-trivial conformal automorphism h of O (of
order 2 or 3) that sends α to itself. If we quotient O by the cyclic group generated
by h, we obtain a holomorphic branched cover f onto the Riemann sphere minus
some punctures. By construction, f sends α to a power of a simple closed curve β in
this punctured sphere, so we can use Lemma 4.1 to relate the two extremal lengths.

We find the holomorphic map f for one representative of each kind of curve in the
next subsections, and use this to compute their extremal length. There is also a fifth
kind of curve (with 3-fold symmetry) whose extremal length we can compute exactly
(see the end of Subsection 5.6) but which is more difficult to describe in words and
has a much larger extremal length than the others.

5.2. The baseball curves

We begin with the baseball curves, as this case is the simplest. Strictly speaking,
we will not need this calculation to determine the extremal length systole of O or B.
We only use it to illustrate the method outlined above.

Proposition 5.1. — The extremal length of any baseball curve in O is equal
to 4.

Proof. — The baseball curve α depicted in Figure 5.1(a) is invariant by the rotation
z 7→ −z. To quotient by this involution, we apply the squaring map f(z) = z2. This
defines covering map f : O → Ĉ \ {−1, 0, 1, ∞} of degree two that sends γ to β2,
where β is a simple closed curve separating [0, 1] from [−∞, −1].

TOME 7 (2024)



1428 M. FORTIER BOURQUE, D. MARTÍNEZ-GRANADO & F. VARGAS PALLETE

It is easy to see that Ĉ \ {−1, 0, 1, ∞} is conformally equivalent to a square
pillowcase, that is, to the double of a Euclidean square punctured at the vertices.
Indeed, the closed upper half-plane with vertices at {−1, 0, 1, ∞} is conformally
equivalent to a square because it has four-fold symmetry with respect to the point i
(the conformal map is given by the Schwarz–Christoffel formula). Doubling across
the boundary gives the desired result.

Let ρ be the Euclidean metric on W = Ĉ \ {−1, 0, 1, ∞} coming from the square
pillowcase of side length 1. Then ρ is extremal for β. Indeed, the closed geodesics that
go across the squares parallel to the sides have minimal length in their homotopy class
because the metric is locally CAT(0) (this can also be shown using Proposition 2.7).
The double square is clearly swept out evenly by these closed geodesics homotopic
to β (this is just Fubini integration on each square). By Beurling’s criterion, ρ is
extremal, so that

EL(β, W ) = ℓρ(β)2

areaρ(W ) = 22

2 = 2

and hence EL(α, O) = EL(f−1(β), O) = 2 EL(β, W ) = 4 by Lemma 4.1. □

Here we got lucky because Ĉ \ {−1, 0, 1, ∞} is particularly symmetric. For the
other kinds of curves, we will follow a similar approach of finding branched covers
onto four-times-punctured spheres, but these will be rectangular rather than square.
Their flat metric can be calculated using elliptic integrals, which we briefly discuss
now.

5.3. Elliptic integrals

For k ∈ (0, 1), the complete elliptic integral of the first kind is defined as

K(k) =
∫ 1

0

dt√
(1 − t2)(1 − k2t2)

.

The variable k is called the modulus. The complementary modulus is k′ =
√

1 − k2

and the complementary integral is K ′(k) := K(k′). This terminology can be explained
by Equation (5.1), taken from [WW96, p. 501], in the proof below.

Lemma 5.2. — For any k ∈ (0, 1), the extremal length of the simple closed curve
separating the interval (−1, 1) from ±1/k in Ĉ\{±1, ±1/k} is equal to 4K(k)/K ′(k).

Proof. — Fix some ζ0 in the closed upper half-plane H ∪ {∞}. Then the Schwarz-
Christoffel transformation

ζ 7→
∫ ζ

ζ0

dz√
(1 − z2) (1 − k2z2)

sends H∪{∞} to some rectangle R(k) in C with sides parallel to the coordinate axes,
maps {±1, ±1/k} to the vertices, and is conformal in the interior [Ahl78, p. 238–240].

The width of R(k) is equal to

W (k) =
∫ 1

−1

dt√
(1 − t2) (1 − k2t2)

= 2
∫ 1

0

dt√
(1 − t2) (1 − k2t2)

= 2K(k)
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and its height is equal to

H(k) =
∫ 1/k

1

dt√
(t2 − 1) (1 − k2t2)

.

The change of variable t =
√

1 − (k′)2s2/k or equivalently s =
√

1 − k2t2/k′ shows
that

(5.1)
∫ 1/k

1

dt√
(t2 − 1) (1 − k2t2)

=
∫ 1

0

ds√
(1 − s2) (1 − (k′)2s2)

= K(k′) = K ′(k).

Let P (k) be the pillowcase obtained by doubling R(k) across its boundary and
puncturing at the vertices. Then P (k) is foliated by closed horizontal geodesics of
length 2W (k) = 4K(k) and its height is equal to H(k) = K ′(k). By Beurling’s
criterion (or Example 2.3), the flat metric on P (k) is extremal for the homotopy
class of these curves. The extremal length is therefore equal to 2W (k)/H(k) =
4K(k)/K ′(k). □

Note that the elliptic double cover of Ĉ\{±1, ±1/k} is a torus with periods 4K(k)
and i2K ′(k). For this reason, the integrals K(k) and K ′(k) are often called quarter-
or half-periods.

Elliptic integrals satisfy several identities that can be used to compute them
efficiently. We will require the upward Landen transformation

(5.2) K(k) = 1
1 + k

K

(
2
√

k

1 + k

)
and the downward Landen transformation

(5.3) K ′(k) = 2
1 + k

K

(
1 − k

1 + k

)
,

which are valid for every k ∈ (0, 1) [BB87, Theorem 1.2]. If we define

k∗ := 2
√

k/(1 + k),

then it is elementary to check that (k∗)′ = (1 − k)/(1 + k). Upon dividing the two
Landen transformations, we thus obtain the multiplication rule

(5.4) K(k)
K ′(k) = 1

2
K(k∗)
K ′(k∗) ,

which is actually what we are going to use.

5.4. The edge curves

We are now able to compute the extremal length of the edge curves.

Proposition 5.3. — The extremal length of any edge curve in O is equal to
2
√

2.
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Proof. — We first apply a “rotation” of angle −π/4 around the points ±i to better
display the symmetries of the edge curve in Figure 5.1(b). This is done with the
Möbius transformation

M(z) = cos(π/8)z − sin(π/8)
sin(π/8)z + cos(π/8) =

√
2 +

√
2z −

√
2 −

√
2√

2 −
√

2z +
√

2 +
√

2
,

which fixes ±i and sends −1, 0, 1, and ∞ to
−
(√

2 + 1
)

, −
(√

2 − 1
)

,
√

2 − 1, and
√

2 + 1

respectively. The transformation M also sends the edge curve surrounding [0, 1] to
a curve α surrounding the interval[

−
(√

2 − 1
)

,
√

2 − 1
]

in Z := Ĉ \
{
±i, ±

(√
2 − 1

)
, ±

(√
2 + 1

)}
.

Now that everything is symmetric about the origin, we apply the squaring map
f(z) = z2. This sends the punctures to −1, 3 − 2

√
2 and 3 + 2

√
2, and has critical

values at 0 and ∞. Moreover, it maps α to β2 where β is a curve surrounding the
interval [0, 3 − 2

√
2].

We will compute the extremal length of β in W := Ĉ \ {−1, 0, 3 − 2
√

2, 3 + 2
√

2}.
This turns out to be the same as the extremal length of β in W \ {∞}. Indeed, the
quadratic differential q realizing the extremal length of β in W has two singular
horizontal trajectories: the interval (0, 3−2

√
2) and (−∞, −1)∪{∞}∪(3+2

√
2, +∞).

So the regular horizontal trajectories of q are homotopic to β whether we puncture
at ∞ or not.

To express the extremal length of β as a ratio of elliptic integrals, we first map
the punctures {−1, 0, 3 − 2

√
2, 3 + 2

√
2} to {±1, ±1/k} for some k ∈ (0, 1) via

a Möbius transformation T . We begin by applying z 7→ 1/z to get the points
{−1, 3 − 2

√
2, 3 + 2

√
2, ∞}. We then translate by 1 and scale by 1/(4 − 2

√
2) to end

up with {
0, 1,

4 + 2
√

2
4 − 2

√
2

=
(√

2 + 1
)2

, ∞
}

.

After these transformations, the curve β separates [0, 1] from the other two punctures.
The Möbius transformation g sending −1, 1, and −1/k to 0, 1 and ∞ respectively

is given by
g(z) = k + 1

2

(
z + 1
kz + 1

)
.

For it to send 1/k to (
√

2 + 1)2, we must have(√
2 + 1

)2
= g(1/k) = k + 1

2

( 1
k

+ 1
2

)
=
(

1 + k

2
√

k

)2

= 1
(k∗)2 ,

which is equivalent to
k∗ = 1√

2 + 1
=

√
2 − 1.

Also note that

(k∗)′ =
√

1 − (k∗)2 =
√

1 −
(√

2 − 1
)2

=
√

2
√

2 − 2.
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By Lemma 5.2, the extremal length of β is equal to 4K(k)/K ′(k), and the multi-
plication rule (5.4) equates this with 2K(k∗)/K ′(k∗).

One computes that

(k∗)∗ = 2
√

k∗

1 + k∗ =
√

2
√

2 − 2 = (k∗)′ and hence ((k∗)∗)′ = k∗.

The multiplication rule applied to k∗ then yields

2K(k∗)
K ′(k∗) = K((k∗)∗)

K ′((k∗)∗) = K ′(k∗)
K(k∗) ,

so that K ′(k∗)/K(k∗) =
√

2 and EL(β, W ) =
√

2.
By Lemma 4.1, the extremal length of the edge curves is then

EL(α, Z) = EL
(
f−1(β), Z

)
= 2 EL(β, W \ {∞}) = 2 EL(β, W ) = 2

√
2. □

Remark 5.4. — Given a positive integer n, the unique kn ∈ (0, 1) such that
K ′(kn)/K(kn) =

√
n is called a singular modulus [BB87, p. 139]. In the above

proof, we showed the well-known fact that k2 =
√

2 − 1. The square pillowcase from
Proposition 5.1 corresponds to the first singular modulus k1 = 1/

√
2.

We will need to refer to the quadratic differentials realizing the extremal length of
the edge curves later on to compute their derivative as we deform O. The quadratic
differential associated to the edge curve surrounding [0, 1] in O can be recovered by
pulling back the quadratic differential

dz2

(1 − z2)(1 − k2z2) ,

which realizes the extremal length on the quotient pillowcase (see Lemma 5.2), under
the branched cover T ◦ f ◦ M from the above proof. The result is equal to

(5.5) q =

(
z + 1 +

√
2
)2

z(1 − z4) dz2

up to a positive constant. We leave the details of this calculation to the diligent
reader.

A less computationally intensive approach is to check that q is invariant under
the reflection across the real axis as well as the inversion J in the circle of radius√

2 centered at −1. The invariance of q under complex conjugation holds because
the coefficients of q are real. Since J(z) = h(z) where h(z) = (1 − z)/(1 + z),
the invariance of q under J follows from its invariance under h, which is a calculation:
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−h∗q =

(
h(z) + 1 +

√
2
)2

h(z) (h(z)4 − 1) (h′(z))2dz2

=

(
h(z) + 1 +

√
2
)2

h(z)(h(z)4 − 1)

(
−2

(1 + z)2

)2

dz2

=
4
(
(1 − z) +

(
1 +

√
2
)

(1 + z)
)2

(1 + z)(1 − z) ((1 − z)4 − (1 + z)4)dz2

=
8
(
z + 1 +

√
2
)2

(1 − z2) (−8z − 8z3)dz2

=

(
z + 1 +

√
2
)2

z (z4 − 1) dz2 = −q.

Figure 5.2. Horizontal trajectories for the quadratic differential realizing the
extremal length of an edge curve.

From these symmetries and by checking the sign of q at certain tangent vectors,
it follows that the union of the critical horizontal trajectories of q is equal to

(−∞, −1] ∪
{
−1 −

√
2eiθ : θ ∈ [−3π/4, 3π/4]

}
∪ [0, 1].

The complement of this locus is homeomorphic to a cylinder, which forces the regular
horizontal trajectories of q to be closed and homotopic to each other. By the result
of Jenkins cited in Example 2.3, q is the extremal quadratic differential for the edge
curve around [0, 1]. A plot of the horizontal trajectories of q is shown in Figure 5.2.
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5.5. The altitude curves

The extremal length of the altitude curves can be calculated similarly as for the
edge curves. We will not use this result; we only include it because it is one of the
few examples where we can compute the extremal length.

Proposition 5.5. — The extremal length of any altitude curve in O is equal to
4K(u)/K(u′) ∈

[
5.8768721265012 ± 1.18 · 10−14

]
,

where u =
√

2+
√

2
2 and u′ =

√
2−

√
2

2 .

Proof. — We use the same model Z = Ĉ \ {±i, ±(
√

2 − 1), ±(
√

2 + 1)} as for the
edge curves, and take the altitude curve α to surround the vertical line segment
between i and −i.

Upon squaring, the punctures map to −1, 3 − 2
√

2 and 3 + 2
√

2. However, we also
need to puncture at the critical values 0 and ∞. The curve α maps to β2 where β is
a simple closed curve surrounding [−1, 0]. The critical trajectories for the quadratic
differential associated to β on W = C \ {−1, 0, 3 − 2

√
2} are equal to [−1, 0] and

[3 − 2
√

2, +∞]. Since 3 + 2
√

2 lies along one of these trajectories, this puncture does
not affect extremal length.

We translate by 1 to map the punctures of W to 0, 1, 4−2
√

2 and ∞. The Möbius
transformation sending −1 to 0, 1 to 1 and −1/k to ∞ is equal to

g(z) = k + 1
2

(
z + 1
kz + 1

)
.

For it to send 1/k to 4 − 2
√

2 we need to have

4 − 2
√

2 = g(1/k) =
(

1 + k

2
√

k

)2

= 1
(k∗)2 ,

which can rewrite as k∗ =
√

1
4−2

√
2 =

√
2+

√
2

2 . The complementary modulus is

(k∗)′ =
√

1 − (k∗)2 =

√
2 −

√
2

2 .

By Lemma 4.1, the above remark about the superfluous puncture, Lemma 5.2,
and the multiplication rule (5.4), we obtain

EL(α, Z) = EL
(
f−1(β), Z

)
= 2 EL

(
β, W \

{
3 + 2

√
2
})

= 2 EL(β, W ) = 8K(k)
K ′(k) = 4K(k∗)

K ′(k∗) .

To compute elliptic integrals numerically, computer algebra systems use the arith-
metic-geometric mean M via the formula K(a) = π/(2M(1, a′)) [BB87, Theo-
rem 1.1]. The ratio of two complementary integral then becomes K(a)/K ′(a) =
M(1, a)/M(1, a′). The C library Arb for arbitrary-precision interval arithmetic de-
veloped by Fredrik Johansson [Joh17] contains an implementation of M , which
provides certified error bounds for its calculation. The Arb package is available in
SageMath [SgMat20], where the command
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4*CBF(sqrt(2+sqrt(2))/2).agm1()/CBF(sqrt(2-sqrt(2))/2).agm1()
certifies that 4K(k∗)/K ′(k∗) belongs to the interval [5.8768721265012 ± 1.18 · 10−14].

□

5.6. The face curves

We finish with the face curves, which have the smallest extremal length of the lot.

Proposition 5.6. — The extremal length of any face curve in O is equal to
6K(v)/K(v′) ∈

[
2.79957467136936 ± 8.4 · 10−15

]
,

where v = 1/
√

27 + 15
√

3 and v′ = 1/
√

27 − 15
√

3.

Proof. — We start by applying a Möbius transformation M to display the three-
fold symmetry of the face curves. We do this by sending 0, 1 and i to the third
roots of unity. Writing the explicit formula for M is a bit messy, so we do some
trigonometry instead in order to determine where M sends the other vertices of O.
The key observation is that M sends the coordinate axes and the unit circle to three
congruent circles that pairwise intersect orthogonally at one of the three third roots
of unity.

0 c = 1 +
√
31

p

π
4

π
3

π
12

π
3

π
6

π
6

π
12

e
2πi
3

Figure 5.3. Three congruent circles intersecting at right angles.
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Among the centers of these three circles, let c be the one that lies on the real axis.
By looking at the angles in Figure 5.3, we see that the triangle with vertices 1, e2πi/3

and c is isosceles, so that c = 1 +
√

3. Now consider the triangle ∆ with vertices at
0, c, and the intersection point p = reiπ/3 between two of the circles. The interior
angles of ∆ at 0, p, and c are equal to π/3, π/4 and 5π/12 respectively. By the law
of sines, we have

r =

(
1 +

√
3
)

sin
(

π
4

) sin
(5π

12

)

=

(
1 +

√
3
)

sin(π
4 )

(
cos

(
π

6

)
sin

(
π

4

)
+ sin

(
π

6

)
cos

(
π

4

))

=

(
1 +

√
3
)2

2 = 2 +
√

3.

It follows that

Z = M(O) = Ĉ \
{
1, e2πi/3, e−2πi/3, −

(
2 +

√
3
)

,
(
2 +

√
3
)

eπi/3,
(
2 +

√
3
)

e−πi/3
}

.

By construction, M sends the homotopy class of the face curve depicted in Fig-
ure 5.1(d) to the homotopy class of the circle α of radius 2 centered at the origin.

The cubing map f(z) = z3 quotients out the three-fold symmetry. It maps the
punctures to 1 and −(2 +

√
3)3 and has critical values at 0 and ∞. We thus let

W = C \ {−(2 +
√

3)3, 0, 1}. The curve f(α) is equal to β3 where β separates [0, 1]
from the other two punctures.

In order to express EL(β, W ) as a ratio of elliptic integrals, we apply another
Möbius transformation to send 0, 1 and ∞ to −1, 1 and 1/k respectively, for some
k ∈ (0, 1). The inverse of the required transformation is

g(z) = 1 − k

2

( 1 + z

1 − kz

)
.

Since we want g to map −1/k to −(2 +
√

3)3, we obtain the equation

−
(
2 +

√
3
)3

= g(−1/k) =
(

1 − k

2

)(
1 − 1

k

2

)
= −

(
1 − k

2
√

k

)2

,

or
1 − k

2
√

k
=
(
2 +

√
3
)3/2

.

Observe that

1
((k∗)′)2 =

(
1 + k

1 − k

)2

= 1 +
(

2
√

k

1 − k

)2

= 1 + 1(
2 +

√
3
)3 = 1 +

(
2 −

√
3
)3

= 27 − 15
√

3
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so that
(k∗)2 = 1 − ((k∗)′)2

= 1 − 1
1 +

(
2 −

√
3
)3 =

(
2 −

√
3
)3

1 +
(
2 −

√
3
)3 = 1

1 +
(
2 +

√
3
)3 = 1

27 + 15
√

3
.

By Lemma 4.1, Lemma 5.2, and the multiplication rule (5.4), we obtain

EL(α, Z) = EL
(
f−1(β), Z

)
= 3 EL(β, W ) = 12K(k)

K ′(k) = 6K(k∗)
K ′(k∗) .

The command
6*CBF(1/sqrt(27+15*sqrt(3))).agm1()/CBF(1/sqrt(27-15*sqrt(3))).agm1()
in SageMath certifies that 6K(k∗)/K ′(k∗) belongs to the interval stated. □

Although we will not use this, we note that the quadratic differential realizing the
extremal length of the face curve α surrounding the cube roots of unity in

Ĉ \
{
1, e2πi/3, e−2πi/3, −

(
2 +

√
3
)

,
(
2 +

√
3
)

eπi/3,
(
2 +

√
3
)

e−πi/3
}

is
q = z

(1 − z3)
(

z3 +
(
2 +

√
3
)3
)dz2.

Indeed, this differential is invariant under rotations by e2πi/3 and is positive along(
−∞, −2 −

√
3
)

∪ (0, 1).
This implies that the set of critical horizontal trajectories is a tripod joining the
origin to 1, e2πi/3, e−2πi/3 together with a ray from each of the other three punctures
out to infinity. Since the complement of the set of critical horizontal trajectories
is homeomorphic to an annulus, all other horizontal trajectories are closed and
homotopic to each other.

By a similar argument, the regular vertical trajectories of q are all homotopic to a
simple closed curve γ intersecting the face curve α six times. The equality case in
Minsky’s inequality [Min93, Lemma 5.1] then yields

EL(γ) = 62/ EL(α) = 6K(v′)/K(v) ∈
[
12.8590961934912 ± 6.81 · 10−14

]
.

Some horizontal and vertical trajectories of q are shown in Figure 5.4.

6. Geodesics on the regular octahedron

In this section, we prove lower bounds on the extremal length of all simple closed
curves on the punctured octahedron O other than those for which we could compute
it explicitly. We do this by using the conformal metric ρ coming from the surface of
the regular octahedron, scaled so that the edges have length 1 and hence the total
area is equal to 2

√
3. This metric, which we call the flat metric, is in the conformal

class of O. Indeed, any of the curvilinear faces of O can be mapped conformally onto
an equilateral face of the regular octahedron via the Riemann mapping theorem, and
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Figure 5.4. Horizontal (blue) and vertical (red) trajectories for the quadratic
differential realizing the extremal length of a face curve

the mapping can be extended to all of O by repeated Schwarz reflection across the
sides.

The first step is to obtain lower bounds on the infimal length ℓρ(c) for various
homotopy classes of simple closed curves in O.

Lemma 6.1. — Let c be a homotopy class of simple closed curves in O. If ℓρ(c) = 2,
then c is an edge curve. If ℓρ(c) = 3, then c is a face curve. Otherwise, ℓρ(c) ⩾ 2

√
3.

Proof. — Since ρ is locally Euclidean and its completion O is compact, Proposi-
tion 2.7 tells us that there is a closed curve γ ⊂ O which is a limit of a sequence of
simple closed curves γn in c with limn→∞ lengthρ(γn) = ℓρ(c), passes through at least
one vertex, and is geodesic away from the vertices. The curve γ is thus a sequence
of saddle connections on the regular octahedron.

Suppose first that γ passes through only one vertex of O. Since γ is geodesic away
from that vertex, if it self-intersects, then the intersection must be transverse. It
follows that γn is not simple if n is large enough, contrary to our assumption. We
deduce that γ is simple. However, there does not exist a simple geodesic loop from a
vertex to itself on the regular octahedron [Fuc16, Theorem 3.1]. Therefore, γ passes
through at least two vertices.

Note that the distance between adjacent vertices is equal to 1 and the distance
between opposite vertices is equal to

√
3. In particular, if γ passes through two

opposite vertices, then its length is at least 2
√

3. We can thus assume that γ passes
through two or three pairwise adjacent vertices and no other vertices.
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If γ passes through two adjacent vertices, then its length is at least 2 with equality
only if it traces an edge twice. In that case, c is the homotopy class of the associated
edge curve because a small neighborhood of the edge in O is a twice punctured disk,
and the only essential simple closed curve in such a surface is the boundary curve.

By inspecting the planar development of the regular octahedron, we see that the
second shortest geodesic segment between two adjacent vertices has length

√
7 as

depicted in Figure 6.1 (this is the shortest vector length in the hexagonal lattice
after 0, 1,

√
3, and 2). Thus, if γ passes through only two adjacent vertices and has

length larger than 2, then it has length at least 1 +
√

7 > 2
√

3.

Figure 6.1. The second shortest saddle connection between adjacent vertices on
the octahedron

The final case to consider is if γ passes through three adjacent vertices. Then its
length is at least 3, with equality only if γ traces the boundary of a triangle. In this
case, c has to be a face curve. Indeed, the approximating curve γn can bypass each
vertex by circling either inside or outside the triangle, but if it passes inside, then γn

can be shortened by a definite amount within c, contradicting the hypothesis that
lengthρ(γn) tends to the infimum ℓρ(c).

By the above argument, the next shortest closed curve that passes through only
three adjacent vertices and is otherwise geodesic has length at least 1 + 1 +

√
7 >

2
√

3. □
From this, we easily deduce that the essential simple closed curves in O with the

first and second smallest extremal length are the face curves and the edge curves.
Corollary 6.2. — The first and second smallest extremal lengths of essential

simple closed curves in O are 6K(v)/K ′(v) and 2
√

2, where v = 1/
√

27 + 15
√

3, and
these are realized by the face curves and the edge curves respectively.

Proof. — The extremal lengths of the face and edge curves were determined in
Propositions 5.6 and 5.3. Note that 6K(v)/K ′(v) < 2.799575 < 2.828427 < 2

√
2.

Let c be any other homotopy class of essential simple closed curve in O and let ρ
be the flat metric on O. By Lemma 6.1, we have ℓρ(c) ⩾ 2

√
3 so that

EL(c, O) ⩾ ℓρ(c)
areaρ(O) ⩾

(
2
√

3
)2

2
√

3
= 2

√
3 > 2

√
2. □

An interesting consequence is that [FP15, Proposition 3.3]—stating that if two
shortest closest geodesics on a hyperbolic surface intersect twice, then one of them
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must bound a pair of punctures—is false for the extremal length systole. Indeed,
any two distinct face curves intersect twice and they are all (3, 3)-curves. Given two
distinct faces curves f1 and f2, observe that their smoothing with two components
is a union of two edge curves e1 and e2. Despite the fact that
(6.1) ℓρ(e1) + ℓρ(e2) = ℓρ(e1 ∪ e2) ⩽ ℓρ(f1 ∪ f2) = ℓρ(f1) + ℓρ(f2)
for every conformal metric ρ and hence EL(e1 ∪ e2) ⩽ EL(f1 ∪ f2) [MGT21, Lem-
ma 4.16], we do not have minj EL(ej) ⩽ maxk EL(fk). In other words, the smoothing
argument from the proof of Theorem 3.2 does not work for pairs of shortest closed
curves. By Equation (6.1), the edge curves are shorter than the face curves for any
conformal metric ρ invariant under the automorphisms of O, such as the hyperbolic
metric. In the hyperbolic metric on O, the shortest closed geodesics are the edge
curves and furthermore O globally maximizes the hyperbolic systole in its moduli
space. This is true more generally for principal congruence covers of the modular
surface (see [Sch94a, Theorem 13] and [Ada98, Theorem 7.2]).

We then apply Corollary 6.2 to determine the extremal length systole of the Bolza
surface.

Corollary 6.3. — The extremal length systole of the Bolza surface B is equal
to

√
2, and the only simple closed curves with this extremal length are lifts of edge

curves in O.
Proof. — By Theorem 3.2, the extremal length systole is realized by essential

simple closed curves, so we may restrict our attention to these.
Let f : B → O be the quotient by the hyperelliptic involution. If α is a non-

separating curve in B, then α is homotopic to one component of f−1(β) for some
(2, 4)-curve in O and EL(α, B) = EL(β, O)/2 according to Proposition 4.5. If β
is an edge curve, then we get EL(α, B) =

√
2. Otherwise, EL(β, O) > 2

√
2 by

Corollary 6.2, so that EL(α, B) >
√

2.
If α is a separating curve in B, then Proposition 4.5 tells us that α is homotopic

to f−1(β) for some (3, 3)-curve β in O and EL(α, B) = 2 EL(β, O). By Corollary 6.2,
we have EL(β, O) ⩾ 6K(v)/K ′(v) > 2.799574 with v as above, so that

EL(α, B) ⩾ 12K(v)/K ′(v) > 5.599148 >
√

2,

as required. □

7. Derivatives

In this section, we prove that the extremal length systole of genus two surfaces
attains a strict local maximum at the Bolza surface B.

7.1. Generalized systoles

Let M be a smooth connected manifold, let I be an arbitrary set and for each
α ∈ I, let Lα : M → R be a C1 function. If for every x ∈ M and B ∈ R, there is a
neighborhood U of x such that the set
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{α ∈ I : Lα(y) ⩽ B for some y ∈ U}
is finite, then the infimum

µ(x) = inf
α ∈ I

Lα(x)

is called a generalized systole [Bav05, p. 210–211]. The local finiteness condition is
to ensure that µ is locally the minimum of finitely many continuous functions, hence
continuous. As mentioned in the introduction, the extremal length systole fits into
this framework.

Lemma 7.1. — The extremal length systole sysEL, as a function on the Teich-
müller space T (S) of a surface S of finite type, is a generalized systole in the sense
of Bavard.

Proof. — First of all, the Teichmüller space T (S) is a connected complex manifold.
If S is the thrice-punctured sphere, then T (S) is a point and there is nothing to

show except that for every B > 0, there are only finitely many essential closed curves
with extremal length at most B, which was proved in Lemma 3.1.

Otherwise, the extremal length systole is only achieved by simple closed curves
according to Theorem 3.2, so we might as well restrict to these when taking the
infimum. The extremal length of such a curve is C1 on T (S) [GM91, Proposition 4.2].

The last thing to do is to improve the pointwise finiteness of Lemma 3.1 to a
local one. To this end, recall that the logarithm of extremal length is Lipschitz with
respect to the Teichmüller distance d. More precisely, we have

EL(α, X) ⩽ e2d(X,Y ) EL(α, Y )
for every α ∈ S(S) and every X, Y ∈ T (S) (see e.g. [Ker80]). This implies the
required local finiteness, as an upper bound for EL(α, Y ) in a ball centered at X
implies an upper bound on EL(α, X), hence restricts α to a finite subset of S(S). □

This implies that sysEL is continuous on Teichmüller space and therefore on moduli
space. Since extremal length and hyperbolic length tend to zero together [Mas85,
Corollary 2], Mumford’s compactness criterion implies that sysEL attains its maxi-
mum.

7.2. Perfection and eutaxy

Given x ∈ M , we denote by Ix the set of α ∈ I such that Lα(x) = µ(x). Bavard’s
definition of eutaxy and perfection [Bav05, Définition 1.2] is easily seen to be equiv-
alent to the following, which we find easier to state.

Definition 7.2. — A point x ∈ M is eutactic if for every tangent vector v ∈
TxM , the following implication holds: if dLα(v) ⩾ 0 for all α ∈ Ix, then dLα(v) = 0
for all α ∈ Ix.

Definition 7.3. — A point x ∈ M is perfect if for every v ∈ TxM , the following
implication holds: if dLα(v) = 0 for all α ∈ Ix, then v = 0.
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If x ∈ M is perfect and eutactic, then for every v ∈ TxM \ {0} there is some
α ∈ Ix such that dLα(v) < 0, and it follows easily that µ attains a strict local
maximum at x [Bav97, Proposition 2.1]. Bavard proved that the converse holds if
the functions Lα are convexoidal (i.e., convex up to reparametrization) along the
geodesics for a connection on M [Bav97, Proposition 2.3], thereby generalizing a
theorem of Voronoi on the systole of flat tori [Vor08] and its analogue for hyperbolic
surfaces [Sch93]. Akrout further proved that generalized systoles obtained from
convex length functions are topologically Morse, with singularities equal to the
eutactic points and index equal to the rank of the linear map (dLα)α ∈ Ix [Akr03].

We do not know if there exists a connection on Teichmüller space with respect to
which the extremal length functions are convexoidal; they are not convexoidal along
Teichmüller geodesics [FBR18] or horocycles [FB23]. However, all we need here is the
easy direction of Bavard’s result, namely, that perfection and eutaxy are sufficient
to have a local maximum.

7.3. Triangular surfaces

A Riemann surface X is triangular or quasiplatonic if any of the following equiva-
lent conditions hold [Wol06, Theorem 4]:

• the quotient of X by its group of conformal automorphisms is isomorphic to
a sphere with three cone points (as an orbifold);

• X ∼= H/Γ where Γ is a normal subgroup of a triangle rotation group;
• X is an isolated fixed point of a finite subgroup of the mapping class group

acting on Teichmüller space.
Bavard showed that if the collection of length functions {Lα : α ∈ I} is invariant

under a finite group G acting by isometries on M , then any isolated fixed point
of G is eutactic [Bav05, Corollaire 1.3]. Since the set of extremal length functions
is invariant under the action of the mapping class group (which acts by isometries
on Teichmüller space), we conclude that any triangular surface is eutactic for the
extremal length systole (c.f. [Bav05, p. 255]).

7.4. The Bolza surface

It is clear that the punctured octahedron O is quasiplatonic. The same is true
for the Bolza surface B since any conformal automorphism of O lifts to B in two
different ways (related by the hyperelliptic involution). In fact, O and B are Platonic
in the sense that they admit tilings by regular polygons (triangles in this case) such
that their group of conformal and anti-conformal automorphisms acts transitively
on the flags of these tiling (triples consisting of a vertex, an edge, and a face, each
contained in the next). The surfaces O and B are therefore eutactic for the extremal
length systole.

To prove that sysEL attains a strict local maximum at B, all we have left to show
is that B is perfect, which amounts to proving that a certain linear map is injec-
tive. We can do this calculation at the level of six-times-punctured spheres. Indeed,
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the hyperelliptic involution induces a diffeomorphism Φ : T (S2,0) → T (S0,6) from
the space of closed surfaces of genus two to the space of six-times-punctured spheres.

Recall from Corollary 6.3 that the curves in B with the smallest extremal lengths
are lifts of edge curves in O (this is the set Ix in the notation of generalized systoles).
Let f : B → O be the quotient by the hyperelliptic involution. For ease of notation,
we will write ELα(Z) instead of EL(α, Z). If β ⊂ O is an edge curve, α is either
component of f−1(β), and Z is any surface in T (S2,0), then ELα(Z) = ELβ(Φ(Z))/2
according to Proposition 4.5. It follows that d ELα(v) = d ELβ(dΦ(v))/2 for every
tangent vector v ∈ TBT (S2,0). Since dΦ is a bijection, to prove that B is perfect, it
thus suffices to show that if d ELβ(w) = 0 for every edge curve β ⊂ O, then w = 0.

7.5. Gardiner’s formula

The tangent space TXT (S) to Teichmüller space at a surface X is isomorphic to a
quotient of the space of essentially bounded Beltrami differentials (or (−1, 1)-forms)
on X, while the cotangent space T ∗

XT (S) can be identified with the set of integrable
holomorphic quadratic differentials (or (2, 0)-forms) on X. We can define a bilinear
pairing TXT (S) × T ∗

XT (S) → C between these objects by sending any pair (µ, q) to
the integral of the (1, 1)-form µq over X.

Given an essential simple closed curve α ⊂ X, recall that there is a holomorphic
quadratic differential qα all of whose regular horizontal trajectories are homotopic to
α, and that qα is unique up to scaling. Gardiner’s formula [Gar84, Theorem 8] says
that the logarithmic derivative of the extremal length of α in the direction of µ is

d ELα(µ)
ELα(X) = 2

∥qα∥
Re

∫
X

µqα.

for every µ ∈ TXT (S), where ∥qα∥ =
∫

X |qα| is the area of the induced conformal
metric.

7.6. Punctured spheres

The Teichmüller space T (S0,p) of a punctured sphere admits local coordinates
to Cp−3. Indeed, if we map three of the punctures to 0, 1 and ∞ with a Möbius
transformation, then the location of the remaining p − 3 punctures determines the
surface locally (i.e., up to the action of the mapping class group). From this point
of view, the tangent space TXT (S0,p) is naturally isomorphic to Cp−3, whereby we
attach a complex number V (zj) to each puncture zj of X other than 0, 1, and ∞.

The two points of view can be reconciled by extending V to a smooth vector field
on Ĉ that vanishes at 0, 1, and ∞. The Beltrami form µ = ∂V then represents
the same infinitesimal deformation as the one obtained by flowing the punctures
along V [Ahl61, Equation (1.5)]. Furthermore, the pairing of this deformation with
an integrable holomorphic quadratic differential q on X is given by∫

X
µq = −π

p∑
j=1

Reszj

(
q · V (zj)

∂

∂z

)
,
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where the sum is taken over all the punctures of X [FB18, Lemma 8.2]. Note
that the product of a quadratic differential with a vector field is a 1-form (locally,
dz2 · ∂

∂z
= dz). The residue of a 1-form ω at a point zj is defined in the usual way as

Reszj
(ω) = 1

2πi

∮
γ ω where γ is a small counterclockwise loop around zj.

Combined with Gardiner’s formula, this yields

(7.1) d ELα(µ)
ELα(X) = − 2π

∥qα∥
Re

p∑
j=1

Reszj

(
qα · V (zj)

∂

∂z

)

for any essential simple closed curve α in a punctured sphere X and any choice
V : Ĉ \ X → C of tangent vectors at the punctures.

7.7. The edge curves

A real basis B = {b1, . . . , b6} for the tangent space TOT (S0,6) is given by the
vectors ∂

∂z
and −i ∂

∂z
at each of the three punctures i, −1, and −i. For each edge

curve β ∈ E , to compute the derivatives d ELβ(bj) we first need to write down a
formula for the associated quadratic differential qβ.

Recall from Subsection 5.4 that the quadratic differential for the edge curve β0,1
surrounding the edge [0, 1] is

q =

(
z + 1 +

√
2
)2

z (1 − z4) dz2 =

(
z + 1 +

√
2
)2

z(1 − z)(1 + z)(i − z)(i + z)dz2.

The residue of q in the direction of ∂
∂z

at each of i, −1, and −i is equal to

−
(

1 +
√

2
2

)
(1 + i), −1

2 , and −
(

1 +
√

2
2

)
(1 − i)

respectively. Note that Re(Resa(q · −i ∂
∂z

)) = Im(Resa(q · ∂
∂z

)) at any point a. Up to
a constant, the logarithmic derivative of ELβ0,1 with respect to the basis B is thus
given by

−∥q∥
2π

d ELβ0,1

ELβ0,1(O) =
(

−1 −
√

2
2 ,

−1 −
√

2
2 , −1

2 , 0,
−1 −

√
2

2 ,
1 +

√
2

2

)
according to Equation (7.1).

To compute the quadratic differential qβ associated to a given edge curve β ∈ E , it
suffices to find a Möbius transformation g : O → O that sends β to β0,1. The desired
quadratic differential is then the pullback g∗q. The required Möbius transformations
for the 12 edge curves are z, iz, −z, −iz, −(z−i)/(z+i), −i(z−i)/(z+i), (z−i)/(z+i),
i(z − i)/(z + i), 1/z, i/z, −1/z, and −i/z. For each of these, we calculated the
pullback differential and the residues at i, −1, and −i using Maple [Map] (which
we found was better than other computer algebra systems at cancelling factors on
the denominator to compute residues) to avoid calculation mistakes. The resulting
matrix for −∥qβ∥

π

d ELβ(bj)
ELβ(O) , where β ranges over the edge curves and bj ranges over the

basis vectors, is
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−1 −
√

2 −1 −
√

2 −1 0 −1 −
√

2 1 +
√

2
0 −1 −1 −

√
2 −1 −

√
2 0 −3 − 2

√
2

1 +
√

2 −1 −
√

2 3 + 2
√

2 0 1 +
√

2 1 +
√

2
0 3 + 2

√
2 −1 −

√
2 1 +

√
2 0 1

0 3 + 2
√

2 −1 −
√

2 1 +
√

2 0 1
−3 − 2

√
2 0 0 −3 − 2

√
2 1 0

0 −3 − 2
√

2 1 +
√

2 1 +
√

2 0 −1
3 + 2

√
2 0 0 1 −1 0

−1 −
√

2 1 +
√

2 1 0 −1 −
√

2 −1 −
√

2
0 −3 − 2

√
2 1 +

√
2 1 +

√
2 0 −1

1 +
√

2 1 +
√

2 −3 − 2
√

2 0 1 +
√

2 −1 −
√

2
0 1 1 +

√
2 −1 −

√
2 0 3 + 2

√
2



.

As can be checked either by hand or in any computer algebra system, the above
matrix has full rank. Its transpose is therefore injective, proving that the Bolza
surface is perfect.

We saw earlier that the Bolza surface is also eutactic. Hence, it is a strict local
maximum for sysEL by [Bav97, Proposition 2.1]. Together with Corollary 6.3, this
proves Theorem 1.1.

7.8. The face curves

By Corollary 6.2, the extremal length systole of O is realized by the face curves,
of which there are only four. It follows that O is not perfect, since the dimension
of TOT (S0,6) is equal to 6. If extremal length was convexoidal, then we could con-
clude that O is not a local maximizer for the extremal length systole by [Bav97,
Proposition 2.3].

Since O is eutactic, there does not exist a tangent vector in the direction of which
the extremal length of each face curve has a positive derivative. To determine if O is
a local maximizer for sysEL would therefore require estimating extremal length up to
order two. [LS17, Theorem 1.1] shows that the sum of the second derivative of the
extremal length of a curve along the Weil–Petersson geodesics in two directions v
and iv is positive, but this could still allow one of them to be negative.

A potentially interesting deformation for disproving local maximality would be
to twist two opposite faces with respect to each other and push them towards each
other (at a slower rate). This should correspond to the direction iv where v is the
gradient of the extremal length of the associated face curve. The extremal length
systole of the square pillowcase (or the square torus) can be increased in that way.
If such a deformation increased the extremal length systole of the octahedron, then
one would expect to reach a local maximum once the opposite faces are aligned,
that is, at a right triangular prism with equilateral base. However, the numerical
calculations carried out in Appendix B indicate that all such prisms have extremal
length systole at most 2.6236 < sysEL(O). Furthermore, the regular octahedron is an
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antiprism like the regular tetrahedron, which maximizes the extremal length systole
in its moduli space by Corollary 4.4.

We therefore conjecture that O maximizes the extremal length systole among
all six-times-punctured spheres. This would imply that Voronoi’s criterion fails for
the extremal length systole and hence that extremal length is not convexoidal with
respect to any connection on Teichmüller space.

Appendix A. A geometric proof of the Landen
transformations

There are many known proofs of the Landen transformations [MM08]. Although
the proof we give below can be reformulated as a change of variable, it at least
explains where the latter comes from.

Theorem A.1. — For any k ∈ (0, 1), we have

K(k) = 1
1 + k

K(k∗) and K ′(k) = 2
1 + k

K ′(k∗)

where k∗ = 2
√

k/(1 + k).
Proof. — We start by proving the multiplication rule

2K(k)/K ′(k) = K(k∗)/K ′(k∗).
Recall that Ĉ \ {−1/k∗, −1, 1, 1/k∗} is conformally equivalent to a rectangular

pillowcase P (k∗) of width 2K(k∗) and height K ′(k∗) punctured at the vertices.
Indeed, the Schwarz–Christoffel transformation

T (ζ) =
∫ ζ

0

dz√
(1 − z2)(1 − (k∗)2z2)

sends the upper half-plane to a rectangle R(k∗) of those dimensions, with −1/k∗,
−1, 1, and 1/k∗ mapping to the vertices. The conformal homeomorphisms between
Ĉ\{−1/k∗, −1, 1, 1/k∗} and P (k∗) is then obtained by doubling. By symmetry, T (0)
is the midpoint of the bottom side of P (k∗) and T (∞) is the midpoint of the top
side.

Clearly, T conjugates the action of z 7→ −z on Ĉ \ {−1/k∗, −1, 1, 1/k∗} with the
rotation J of angle π around the vertical axis through T (0) and T (∞) if we think
of P (k∗) as sitting upright in R3 (see Figure A.1). That is, J swaps the front and
back faces of P (k∗) and preserves the bottom and top edges.

To quotient by the action of z 7→ −z, we apply the squaring map and puncture at
the critical values, resulting in Ĉ\ {0, 1, 1/(k∗)2, ∞}. On the other hand, quotienting
P (k∗) by J gives a pillowcase Q(k∗) of half the width K(k∗) and the same height
K ′(k∗). The transformation T descends to a conformal map between these two
objects.

Observe that the Möbius transformation

g(z) =
(

1 + k

2

)
1 + z

1 + kz
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P (k∗) Q(k∗)

Figure A.1. The hyperelliptic involution J of the pillowcase P (k∗) and the quo-
tient Q(k∗)

sends −1/k, −1, 1, and 1/k to ∞, 0, 1, and 1/(k∗)2 respectively. Another Schwarz-
Christoffel transformation sends Ĉ \ {−1/k, −1, 1, 1/k} to a pillowcase P (k) of
width 2K(k) and height K ′(k). Since the pillowcase representation of a four-times-
punctured sphere is unique up to scaling, we have that P (k) and Q(k∗) have the
same aspect ratio. That is,

2K(k)/K ′(k) = K(k∗)/K ′(k∗).
This implies that K(k) = λ(k)K(k∗) and K ′(k) = 2λ(k)K ′(k∗) for some λ(k) > 0.

To determine this scaling factor, define

q = dz2

(1 − z2)(1 − (k∗)2z2) , ω = dz2

4z(1 − z)(1 − (k∗)2z) ,

and τ = dz2

(1 − z2)(1 − k2z2) .

If f(z) = z2, then f ∗ω = q and similarly g∗ω =
(

1+k
2

)2
τ (these elementary calcula-

tions are left to the reader).
We then have

K(k∗) =
∫ 1

0

√
q =

∫ 1

0

√
f ∗ω =

∫ 1

0

√
ω

and

K(k) =
∫ 1

0

√
τ = 2

1 + k

∫ 1

0

√
g∗ω = 1

1 + k

∫ 1

−1

√
g∗ω

= 1
1 + k

∫ 1

0

√
ω = 1

1 + k
K(k∗).

It follows that K ′(k) = (2K(k)/K(k∗))K ′(k∗) = 2K ′(k∗)/(1 + k). □

Appendix B. Prisms and antiprisms

In this section, we obtain upper bounds on the extremal length systole of six-times-
punctured spheres with D3-symmetry. These estimates indicate that the regular
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octahedron has maximal extremal length systole among all prisms and antiprisms,
which leads us to think that it is the global maximizer despite not being perfect.

B.1. Antiprisms

Within the 1-parameter family of antiprisms

Ar = Ĉ \
{
1, e2πi/3, e−2πi/3, −r, reπi/3, re−πi/3

}
where r ⩾ 1, it is easy to see that the regular octahedron O ∼= A2+

√
3 locally

maximizes the extremal length systole. Indeed, the extremal length of the central
face curve surrounding the cube roots of unity in Ar has a strictly negative derivative
in the ∂/∂r direction, because this pushes the three punctures furthest away from
the origin exactly in the direction where the residue of the associated quadratic
differential is positive (the “horizontal” direction at these poles). Alternatively, this
can be shown by applying the cubing map as in the proof of Proposition 5.6 to get
that the extremal length is exactly 6K(1/

√
1 + r3)/K ′(1/

√
1 + r3). This ratio has a

strictly negative derivative. Since O is eutactic, the derivative of the extremal length
of the other face curves at r = 2 +

√
3 must be negative in the direction −∂/∂r (by

rotational symmetry, the three other face curves have the same extremal length).
Thus, the directional derivative of the extremal length systole is negative in both
directions ∂/∂r and −∂/∂r at the regular octahedron.

The other remarkable surface in the family of antiprisms is A1, which is conformally
equivalent to the double of a regular hexagon.

Proposition B.1. — The extremal length systole of A1 is at most

4K(w)/K ′(w) ∈
[
2.34031875460627 ± 5.71 · 10−15

]
where w = 2 −

√
3.

Proof. — We begin by applying the Cayley transform z 7→ i(z − i)/(z + i) to send
the unit circle to the real line. The image of A1 is Ĉ \ {±(2 −

√
3), ±1, ±(2 +

√
3)}.

Then scale by (2+
√

3) to obtain Z = Ĉ\{±1, ±(2+
√

3), ±(2+
√

3)2}. To compute the
extremal length of the curve α surrounding [−1, 1], we apply the squaring map f(z) =
z2 and puncture at its critical values to obtain Ĉ \ {0, 1, (2 +

√
3)2, (2 +

√
3)4, ∞}.

Then f(α) = β2 for the simple closed curve β surrounding [0, 1]. Furthermore, the
extremal length of β is the same in

Ĉ \
{

0, 1,
(
2 +

√
3
)2

,
(
2 +

√
3
)4

, ∞
}

as in W = Ĉ \ {0, 1, (2 +
√

3)2, ∞} because (2 +
√

3)4 lies on one of the critical
horizontal trajectories of the extremal differential on W .

By the proof of Theorem A.1, there is a Möbius transformation sending 0, 1,
(2 +

√
3)2, and ∞ to −1, 1, 1/k, and −1/k for the unique k ∈ (0, 1) such that

1/(k∗)2 = (2 +
√

3)2. This gives k∗ = 1/(2 +
√

3) = 2 −
√

3. Then
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EL(α, Z) = EL
(
f−1(β), Z

)
= 2 EL

(
β, W \

{(
2 +

√
3
)4
})

= 2 EL(β, W ) = 8K(k)
K ′(k) = 4K(k∗)

K ′(k∗) .

This last ratio belongs to the interval [2.34031875460627 ± 5.71 · 10−15]. □

In particular, sysEL(A1) < sysEL(O). With similar techniques as in Section 6, it
is possible to show that the shortest curves in A1 are the six “edge curves” whose
extremal length was computed in the above proposition. As r increases, we believe
that their extremal length increases until at some point three face curves become
shorter. Then sysEL(Ar) keeps increasing until r reaches 2+

√
3 where the fourth face

curve has the same extremal length of the others. After that point, the central face
curve becomes shortest and its extremal length decreases to zero as r → ∞. That is,
we conjecture that r 7→ sysEL(Ar) attains a unique local maximum at r = 2 +

√
3.

B.2. Prisms

The next interesting family of six-times-punctured spheres are the right trian-
gular prisms with equilateral base punctured at their vertices. Every such prism is
conformally equivalent to

Pr := Ĉ \
{
1, e2πi/3, e−2πi/3, r, re2πi/3, re−2πi/3

}
.

for some r > 1.
We start with a rigorous upper bound for the extremal length systole of Pr.

Proposition B.2. — The inequality sysEL(Pr) ⩽ 2
√

3 ≈ 3.464102 holds for
every r > 1.

Proof. — Let α be the circle of radius
√

r in Pr and let β = β0 ∪ β1 ∪ β2 where
each βj surrounds the two punctures on the ray at angle 2π

3 j from the positive real
axis. The cubing map f(z) = z3 sends Pr to Ĉ \ {0, 1, r3, ∞} after puncturing at the
critical values. Furthermore f(α) = γ3 and f(β) = 3δ where γ and δ surround [0, 1]
and [1, r3] respectively.

Let W and H be the width and height of the pillowcase representation of
Ĉ \

{
0, 1, r3, ∞

}
where [0, 1] is horizontal. Then EL(γ) = 2W/H and EL(δ) = 2H/W , so that

EL(γ) EL(δ) = 4.

By Lemma 4.1, we have EL(α) = 3 EL(γ). Furthermore, we claim that EL(β0) ⩽
EL(δ). This is because the cylinder C of circumference 2H and height W for δ lifts
under f to a cylinder homotopic to β0 (or any βj). By monotonicity of extremal
length under inclusion, we have EL(β0) ⩽ EL(C) = EL(δ).

We thus have
EL(α) EL(β0) ⩽ 3 EL(γ) EL(δ) = 12,
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from which it follows that
sysEL(Pr) ⩽ min(EL(α), EL(β0)) ⩽

√
12 = 2

√
3. □

The upper bound from Proposition B.2 can be improved to
(B.1) sysEL(Pr) ≲ 2.6236 < 2.799 < sysEL(O)
for all r > 0 using numerical calculations, as we now explain.

Let x = EL(α, Pr). One can show that x = 6K(r−3/2)/K ′(r−3/2), so that the map
r 7→ x is a strictly decreasing diffeomorphism from (0, ∞) to itself. To obtain this
formula, the idea is to apply the cubing map f(z) = z3 and to puncture at 0 and
∞. Then f maps α to γ3 where γ is a simple closed curve surrounding the interval
[0, 1] in Ĉ \ {0, 1, r3, ∞}. By Lemma 5.2, the extremal metric for γ is a rectangular
pillowcase. Therefore, the extremal metric ρ for α is the triple branched cover of
this pillowcase branched over two punctures that lie above each other. This means
that ρ looks like the 2-sided surface of the cartesian product between a tripod and
an interval (see Figure B.1). If we scale the metric so that the height is equal to
1, then each leg of the tripod has length x/6, so that the total circumference is x.
The cylinder C evoked in the proof of Proposition B.2 simply goes around one of
the pages of this open book in the vertical direction. To get a better estimate for
EL(β0), it suffices to find a larger embedded annulus in the same homotopy class.
We construct one using the flat metric ρ.

x/6

1/2

x/6

1/2

Lx

Ax

(Pr, ρ)

x/3

2 1

x/6

η β0

Figure B.1. The polygon Lx, the annulus Ax, and the flat metric ρ on Pr. The
embedding A◦

x ↪→ Pr is obtained by folding the flaps at the top and bottom of
the open annulus A◦

x along the dotted lines.

Consider the polygon Lx ⊂ C with vertices at 0, x/3, x/3 + i, x/6 + i, x/6 + i/2,
and i/2, as depicted in Figure B.1. Reflect Lx across the real axis, then double the
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resulting T -shape across the two pairs of sides that form an interior angle of 3π/2.
The resulting object Ax is a topological annulus. Geometrically, it is equal to the
cylinder C from before glued onto an x/3 by 2 rectangle via a vertical slit in the
center. The interior A◦

x embeds isometrically into Pr equipped with the metric ρ
(see Figure B.1), with its core curve mapping to β0. By monotonicity of extremal
length under inclusion, we have EL(β0, Pr) ⩽ EL(β0, A◦

x). Furthermore, a symmetry
argument implies that EL(β0, A◦

x) = 4 EL(η, Lx) where η is the set of all arcs joining
the bottom side of Lx to the pair of sides forming an interior angle of 3π/2. We thus
obtain

sysEL(Pr) ⩽ min
(

EL(α, Pr), EL(β0, Pr)
)
⩽ min

(
x, 4 EL(η, Lx)

)
.

Figure B.2. Numerical estimates for sysEL(Pr)

This last extremal length EL(η, Lx) can be calculated by finding a conformal map
from Lx onto a rectangle Rx, with the “sides” of Lx joined by η mapping to the
vertical sides of Rx. We carried out this computation for one thousand equally spaced
values of x in the interval [2, 3.4] using the Schwarz–Christoffel Toolbox [Dri] for
MATLAB [The18]. The resulting bounds for sysEL(Pr) are shown in Figure B.2.
Note that EL(η, Lx) is strictly decreasing in x, so the maximum of the upper bound
min(x, 4 EL(η, Lx)) is achieved where x = 4 EL(η, Lx), which occurs around x ≈
2.6236 according to our numerical calculations.
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Although the Schwarz–Christoffel Toolbox does not come with certified error
bounds, it is quite reliable especially for the range of polygons we consider, where
crowding of vertices does not occur. One could turn this into a rigorous upper bound
using similar methods as in [FBR18, Section 6].
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[Bav05] , Théorie de Voronŏı géométrique. Propriétés de finitude pour les familles de
réseaux et analogues, Bull. Soc. Math. Fr. 133 (2005), no. 2, 205–257. ↑1410, 1440, 1441

[BB87] Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM. A study in analytic
number theory and computational complexity, Canadian Mathematical Society Series of
Monographs and Advanced Texts – A Wiley-Interscience Publication, John Wiley &
Sons, 1987. ↑1429, 1431, 1433

[BH99] Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature,
Grundlehren der Mathematischen Wissenschaften, vol. 319, Springer, 1999. ↑1417

TOME 7 (2024)



1452 M. FORTIER BOURQUE, D. MARTÍNEZ-GRANADO & F. VARGAS PALLETE

[Cal96] Eugenio Calabi, Extremal isosystolic metrics for compact surfaces, Actes de la Table
Ronde de Géométrie Différentielle (Luminy, 1992), Séminaires et Congrès, vol. 1, Société
Mathématique de France, 1996, pp. 167–204. ↑1414, 1418

[DLR10] Moon Duchin, Christopher J. Leininger, and Kasra Rafi, Length spectra and degeneration
of flat metrics, Invent. Math. 182 (2010), no. 2, 231–277. ↑1416

[Dri] Toby Dricoll, The Schwarz–Christoffel Toolbox for MATLAB, (version 3.1.2), https:
//tobydriscoll.net/project/sc-toolbox/. ↑1450

[FB18] Maxime Fortier Bourque, The holomorphic couch theorem, Invent. Math. 212 (2018),
no. 2, 319–406. ↑1443

[FB23] , A divergent horocycle in the horofunction compactification of the Teichmüller
metric, Ann. Inst. Fourier 73 (2023), no. 5, 1885–1902. ↑1441

[FBR18] Maxime Fortier Bourque and Kasra Rafi, Non-convex balls in the Teichmüller metric,
J. Differ. Geom. 110 (2018), no. 3, 379–412. ↑1441, 1451

[FP15] Federica Fanoni and Hugo Parlier, Systoles and kissing numbers of finite area hyperbolic
surfaces, Algebr. Geom. Topol. 15 (2015), no. 6, 3409–3433. ↑1438

[Fuc16] Dmitry Fuchs, Geodesics on regular polyhedra with endpoints at the vertices, Arnold
Math. J. 2 (2016), no. 2, 201–211. ↑1437

[Gar84] Frederick P. Gardiner, Measured foliations and the minimal norm property for quadratic
differentials, Acta Math. 152 (1984), no. 1-2, 57–76. ↑1411, 1442

[GM91] Frederick P. Gardiner and Howard Masur, Extremal length geometry of Teichmüller
space, Complex Variables, Theory Appl. 16 (1991), no. 2-3, 209–237. ↑1440

[Gro83] Mikhael Gromov, Filling Riemannian manifolds, J. Differ. Geom. 18 (1983), no. 1,
1–147. ↑1413

[HM79] John Hubbard and Howard Masur, Quadratic differentials and foliations, Acta Math.
142 (1979), 221–274. ↑1414

[HS85] Joel Hass and Peter Scott, Intersections of curves on surfaces, Isr. J. Math. 51 (1985),
no. 1-2, 90–120. ↑1416

[HS89] Andrew Haas and Perry Susskind, The geometry of the hyperelliptic involution in genus
two, Proc. Am. Math. Soc. 105 (1989), no. 1, 159–165. ↑1425

[HZ20] Matthew Headrick and Barton Zwiebach, Minimal-area metrics on the Swiss cross and
punctured torus, Commun. Math. Phys. 377 (2020), no. 3, 2287–2343. ↑1414

[Jen57] James A. Jenkins, On the existence of certain general extremal metrics, Ann. Math. 66
(1957), 440–453. ↑1414, 1423

[Jen58] , Univalent functions and conformal mapping, Ergebnisse der Mathematik und
ihrer Grenzgebiete, vol. 18, Springer-Verlag, 1958. ↑1410, 1413

[Jen84] Felix Jenni, Über den ersten Eigenwert des Laplace-Operators auf ausgewählten Beispie-
len kompakter Riemannscher Flächen, Comment. Math. Helv. 59 (1984), no. 2, 193–203.
↑1410, 1411

[JLN+05] Dmitry Jakobson, Michael Levitin, Nikolai Nadirashvili, Nilima Nigam, and Iosif
Polterovich, How large can the first eigenvalue be on a surface of genus two?, Int.
Math. Res. Not. (2005), no. 63, 3967–3985. ↑1410

[Joh17] Fredrik Johansson, Arb: efficient arbitrary-precision midpoint-radius interval arithmetic,
IEEE Trans. Comput. 66 (2017), no. 8, 1281–1292. ↑1433

[Ker80] Steven P. Kerckhoff, The asymptotic geometry of Teichmüller space, Topology 19 (1980),
23–41. ↑1410, 1440

[KL09] Jeremy Kahn and Mikahil Lyubich, The quasi-additivity law in conformal geometry,
Ann. Math. 169 (2009), no. 2, 561–593. ↑1410

ANNALES HENRI LEBESGUE

https://tobydriscoll.net/project/sc-toolbox/
https://tobydriscoll.net/project/sc-toolbox/


The extremal length systole of the Bolza surface 1453

[KPT22] Jeremy Kahn, Kevin M. Pilgrim, and Dylan P. Thurston, Conformal surface embeddings
and extremal length, Groups Geom. Dyn. 16 (2022), no. 2, 403–435. ↑1410

[KS06] Mikhail G. Katz and Stéphane Sabourau, An optimal systolic inequality for CAT(0)
metrics in genus two, Pac. J. Math. 227 (2006), no. 1, 95–107. ↑1410, 1411, 1419

[KW99] Hermann Karcher and Matthias Weber, The geometry of Klein’s Riemann surface, The
eightfold way. The beauty of Klein’s quartic curve, Mathematical Sciences Research
Institute Publications, vol. 35, Cambridge University Press, 1999, pp. 9–49. ↑1410

[LS17] Lixin Liu and Weixu Su, Variation of extremal length functions on Teichmüller space,
Int. Math. Res. Not. (2017), no. 21, 6411–6443. ↑1444

[Map] a division of Waterloo Maple Inc. Maplesoft. ↑1443
[Mas85] Bernard Maskit, Comparison of hyperbolic and extremal lengths, Ann. Acad. Sci. Fenn.,

Math. 10 (1985), 381–386. ↑1440
[McM95] Curtis T. McMullen, Complex dynamics and renormalization, Annals of Mathematics

Studies, vol. 135, Princeton University Press, 1995. ↑1410
[MGP19] Dídac Martínez-Granado and Franco Vargas Pallete, Comparing hyperbolic and extremal

lengths for shortest curves, preprint, 2019, https://arxiv.org/abs/1911.09078. ↑1410
[MGT21] Dídac Martínez-Granado and Dylan P. Thurston, From curves to currents, Forum Math.

Sigma 9 (2021), article no. e77. ↑1421, 1439
[Mil06] John Milnor, Dynamics in one complex variable, third ed., Annals of Mathematics

Studies, vol. 160, Princeton University Press, 2006. ↑1410
[Min92] Yair N. Minsky, Harmonic maps, length, and energy in Teichmüller space, J. Differ.

Geom. 35 (1992), no. 1, 151–217. ↑1416
[Min93] , Teichmüller geodesics and ends of hyperbolic 3-manifolds, Topology 32 (1993),

no. 3, 625–647. ↑1436
[Min96] , Extremal length estimates and product regions in Teichmüller space, Duke Math.

J. 83 (1996), no. 2, 249–286. ↑1410
[MM08] Dante V. Manna and Victor H. Moll, Landen survey, Probability, geometry and inte-

grable systems, Mathematical Sciences Research Institute Publications, vol. 55, Cam-
bridge University Press, 2008, pp. 287–319. ↑1445

[MS84] Albert Marden and Kurt Strebel, The Heights theorem for quadratic differentials on
Riemann surfaces, Acta Math. 153 (1984), 153–211. ↑1414

[NC01] Max Neumann-Coto, A characterization of shortest geodesics on surfaces, Algebr. Geom.
Topol. 1 (2001), no. 1, 349–368. ↑1421

[NS19] Shin Nayatani and Toshihiro Shoda, Metrics on a closed surface of genus two which
maximize the first eigenvalue of the Laplacian, C. R. Math. Acad. Sci. Paris 357 (2019),
no. 1, 84–98. ↑1410

[NZ22] Usman Naseer and Barton Zwiebach, Extremal isosystolic metrics with multiple bands
of crossing geodesics, Adv. Theor. Math. Phys. 26 (2022), no. 5, 1273–1346. ↑1414

[Pu52] Pao M. Pu, Some inequalities in certain nonorientable Riemannian manifolds, Pac. J.
Math. 2 (1952), 55–71. ↑1410, 1417, 1418

[Ren76] Heinrich Renelt, Konstruktion gewisser quadratischer Differentiale mit Hilfe von Dirich-
letintegralen, Math. Nachr. 73 (1976), 125–142. ↑1414, 1423

[Rod74] Burton Rodin, The method of extremal length, Bull. Am. Math. Soc. 80 (1974), 587–606.
↑1413

[Sch93] Paul Schmutz, Riemann surfaces with shortest geodesic of maximal length, Geom. Funct.
Anal. 3 (1993), no. 6, 564–631. ↑1411, 1441

[Sch94a] , Congruence subgroups and maximal Riemann surfaces, J. Geom. Anal. 4 (1994),
no. 2, 207–218. ↑1439

TOME 7 (2024)

https://arxiv.org/abs/1911.09078


1454 M. FORTIER BOURQUE, D. MARTÍNEZ-GRANADO & F. VARGAS PALLETE

[Sch94b] , Systoles on Riemann surfaces, Manuscr. Math. 85 (1994), no. 3-4, 429–447.
↑1410

[SgMat20] The Sage Developers, SageMath, the Sage Mathematics Software System, 2020, (Version
9.0), https://www.sagemath.org. ↑1433

[Str84] Kurt Strebel, Quadratic differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete.
3. Folge, vol. 5, Springer, 1984. ↑1414, 1416

[The18] The Mathworks, Inc., Matlab, 2018, version 9.4.0.813654 (R2018a). ↑1450
[Thu20] Dylan P. Thurston, A positive characterization of rational maps, Ann. Math. 192 (2020),

no. 1, 1–46. ↑1410
[Vor08] Georges Voronoi, Nouvelles applications des paramètres continus à la théorie des formes

quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques posi-
tives parfaites, J. Reine Angew. Math. 133 (1908), 97–178. ↑1441

[Wol06] Jürgen Wolfart, ABC for polynomials, dessins d’enfants and uniformization – A survey,
Elementare und analytische Zahlentheorie, Schr. Wiss. Ges. Johann Wolfgang Goethe
Univ. Frankfurt am Main, vol. 20, Franz Steiner Verlag Stuttgart, 2006, pp. 313–345.
↑1441

[WW96] Edmund T. Whittaker and George N. Watson, A course of modern analysis. An in-
troduction to the general theory of infinite processes and of analytic functions with an
account of the principal transcendental functions, Cambridge Mathematical Library,
Cambridge University Press, 1996, reprint of the fourth (1927) edition. ↑1428

[WZ94] Michael Wolf and Barton Zwiebach, The plumbing of minimal area surfaces, J. Geom.
Phys. 15 (1994), no. 1, 23–56. ↑1418

Manuscript received on 25th June 2024,
accepted on 22nd August 2024.

Recommended by Editors C. Sorger and V. Colin.
Published under license CC BY 4.0.

eISSN: 2644-9463
This journal is a member of Centre Mersenne.

Maxime FORTIER BOURQUE
Département de mathématiques
et de statistique,
Université de Montréal,
2920, Chemin de la Tour,
Montréal (QC), H3T 1J4 (Canada)
maxime.fortier.bourque@umontreal.ca

Dídac MARTÍNEZ-GRANADO
Department of Mathematics
University of Luxembourg
Av. de la Fonte 6,
Esch-sur-Alzette, L-4364 (Luxembourg)
didac.martinezgranado@uni.lu

ANNALES HENRI LEBESGUE

https://www.sagemath.org
https://creativecommons.org/licenses/by/4.0/
http://www.centre-mersenne.org/
http://ahl.centre-mersenne.org/
mailto:maxime.fortier.bourque@umontreal.ca
mailto:didac.martinezgranado@uni.lu


The extremal length systole of the Bolza surface 1455

Franco VARGAS PALLETE
Institut des Hautes Études Scientifiques
Bures-sur-Yvette (France)
vargaspallete@ihes.fr

TOME 7 (2024)

mailto:vargaspallete@ihes.fr

	1. Introduction
	Organization

	2. Extremal length
	2.1. Extremal length
	2.2. The extremal length systole
	2.3. Beurling's criterion
	2.4. Examples
	2.5. Pulling curves tight
	2.6. Systolic ratio

	3. Systoles are simple
	4. Branched coverings
	5. From the octahedron to pillowcases
	5.1. The curves
	5.2. The baseball curves
	5.3. Elliptic integrals
	5.4. The edge curves
	5.5. The altitude curves
	5.6. The face curves

	6. Geodesics on the regular octahedron
	7. Derivatives
	7.1. Generalized systoles
	7.2. Perfection and eutaxy
	7.3. Triangular surfaces
	7.4. The Bolza surface
	7.5. Gardiner's formula
	7.6. Punctured spheres
	7.7. The edge curves
	7.8. The face curves

	Appendix A. A geometric proof of the Landen transformations
	Appendix B. Prisms and antiprisms
	B.1. Antiprisms
	B.2. Prisms
	Acknowledgments

	References

