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Abstract. — In this article, the Hodge decomposition for any degree of differential forms
is investigated on the whole space Rn and the half-space Rn

+ on different scales of function
spaces namely the homogeneous and inhomogeneous Besov and Sobolev spaces, Ḣs,p, Ḃs

p,q, Hs,p

and Bs
p,q, for p ∈ (1, +∞), s ∈ (−1 + 1

p , 1
p ). The bounded holomorphic functional calculus, and

other functional analytic properties, of Hodge Laplacians is also investigated in the half-space,
and yields similar results for Hodge–Stokes and other related operators via the proven Hodge
decomposition. As consequences, the homogeneous operator and interpolation theory revisited
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by Danchin, Hieber, Mucha and Tolksdorf is applied to homogeneous function spaces subject
to boundary conditions and leads to various maximal regularity results with global-in-time
estimates that could be of use in fluid dynamics. Moreover, the bond between the Hodge Lapla-
cian and the Hodge decomposition will even enable us to state the Hodge decomposition for
higher order Sobolev and Besov spaces with additional compatibility conditions, for regularity
index s ∈ (−1 + 1

p , 2 + 1
p ). In order to make sense of all those properties in desired function

spaces, we also give appropriate meaning of partial traces on the boundary in the appendix.
“La raison d’être” of this paper lies in the fact that the chosen realization of homogeneous

function spaces is suitable for non-linear and boundary value problems, but requires a careful
approach to reprove results that are already morally known.

Résumé. — Dans cet article, la décomposition de Hodge pour tout degré de formes dif-
férentielles est étudiée sur l’espace entier Rn et le demi-espace Rn

+ pour différentes familles
d’espaces de fonctions, à savoir les espaces de Besov et de Sobolev homogènes et inhomogènes,
Ḣs,p, Ḃs

p,q, Hs,p et Bs
p,q, pour toutp ∈ (1, +∞) et s ∈ (−1 + 1

p , 1
p ). Le calcul fonctionnel holo-

morphe borné ainsi que d’autres propriétés des Laplaciens de Hodge sont également étudiés
dans le demi-espace, ce qui donne des résultats similaires pour les opérateurs de Hodge–Stokes
et d’autres opérateurs qui lui sont liés, via la décomposition de Hodge qui est démontrée en
amont. En conséquence, la théorie des opérateurs et la théorie de l’interpolation dans leur
version homogène, revisitées par Danchin, Hieber, Mucha et Tolksdorf, sont appliquées aux
espaces de fonctions homogènes soumis à des conditions au bord. Cela conduit à divers ré-
sultats de régularité maximale avec des estimations globales en temps, pouvant être utiles en
dynamique des fluides. De plus, le lien entre le Laplacien de Hodge et la décomposition de
Hodge nous permettra même d’énoncer la décomposition de Hodge pour des espaces de Sobolev
et de Besov d’ordre supérieur avec des conditions de compatibilité supplémentaires, pour des
indices de régularité s ∈ (−1 + 1

p , 2 + 1
p ). Afin de donner un sens à toutes ces propriétés dans

les espaces fonctionnels souhaités, nous donnons également une signification appropriée aux
traces partielles sur le bord en annexe.

La raison d’être de cet article réside dans le fait que la réalisation choisie des espaces de
fonctions homogènes est adaptée aux problèmes non linéaires et aux problèmes avec condi-
tions au bord, mais nécessite une approche minutieuse pour redémontrer des résultats déjà
moralement connus.
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3.2. Maximal regularity for Hodge Laplacians and related operators 1521
3.3. Maximal regularity for the Stokes system with Navier-slip boundary conditions 1523
Appendix A. Partial traces of differential forms 1525
References 1530

1. Introduction

1.1. Motivations and interests

1.1.1. One Laplacian to rule (almost) them all: the differential form formalism and
the Hodge decomposition

The study of incompressible fluid dynamics, and in particular the treatment of
Navier–Stokes equations, relies mostly on the Helmholtz decomposition of a vector
field in appropriate function spaces. The Helmholtz decomposition of vector field
u : Ω −→ Cn is given by a vector field v : Ω −→ Cn and a function q : Ω −→ C,
such that

u = v +∇q and div v = 0
(
with possibly v · ν|∂Ω = 0

)
.

This point is central since the incompressibility condition for the velocity of a fluid
u is carried over by the condition div u = 0.

In the interest of the Navier–Stokes and related equations, one wants the above
decomposition to hold topologically in an appropriate normed vector space of func-
tions(1) with uniqueness (up to a constant for q). It is indeed true in L2(Ω,Cn), since
P, the usual Helmholtz–Leray projector on divergence free vector fields with null
normal trace at the boundary, i.e. such that

P : L2 (Ω,Cn) −→ L2
σ(Ω) =

{
u ∈ L2 (Ω,Cn)

∣∣∣ div u = 0, u · ν|∂Ω = 0
}
,

is well-defined, linear, bounded, and unique by construction of the orthogonal pro-
jector on a closed subspace of a Hilbert space, here L2

σ(Ω) ⊂ L2(Ω,Cn). It gives
the classical orthogonal and topological Helmholtz decomposition, see [Soh01, Chap-
ter 2, Section 2.5],

L2 (Ω,Cn) = L2
σ(Ω)

⊥
⊕∇H1,2(Ω,C),

for any (bounded) Lipschitz domain Ω, see [Soh01, Lemma 2.5.3]. Here H1,2(Ω,C) is
the standard L2-Sobolev space of order 1 on Ω.

(1) From here the divergence will be understood in the distributional sense.

TOME 7 (2024)



1460 A. GAUDIN

The L2-theory for the Helmholtz decomposition on a domain Ω relies mostly on
pure Hilbertian operator theory. However, the question about the Lp-theory, p ̸= 2,
i.e. to know if

Lp (Ω,Cn) = Lpσ(Ω)⊕∇H1,p(Ω,C),(1.1)
(or even the Sobolev or Besov counterpart) is actually a harder question, which falls
generally in the field of harmonic analysis. The underlying range of Lebesgue and
Sobolev exponents for which such decomposition holds will generally depend on the
regularity of the boundary and the geometry of the domain Ω.

The Lp setting has been widely studied, we mention the work of Fabes, Mendez
and Mitrea, [FMM98, Theorem 12.2], where the result has been proven for bounded
Lipschitz domains: (1.1) holds whenever p ∈ (3/2 − ε, 3 + ε). The work of Sohr
and Simader [SS92, Theorem 1.4] yields (1.1) for C1 bounded and exterior domains,
allowing p ∈ (1,+∞). For general unbounded domains, when p ̸= 2, the decom-
position (1.1) may fail: see the counterexample by Bogovskiı [Bog86, Section 2].
Tolksdorf has shown in his PhD dissertation [Tol17, Theorem 5.1.10] that (1.1) is
true for all p ∈ ( 2n

(2n+1)−ε,
2n

(2n−1) +ε), provided Ω is a special Lipschitz domain, ε > 0
depending on Ω. We also mention the works of Farwig, Kozono and Sohr where the
decomposition is investigated in a more exotic setting in [FKS05, FKS07] for general
uniform C1 unbounded domains.

Our interest here is the case of the half-space Rn
+, where the Helmholtz decom-

position is mainly known to be true on Lp(Rn
+,Cn) for all p ∈ (1,+∞), see [Gal11,

Remark III.1.2]: we aim to generalize this result to the scale of inhomogeneous, and
homogeneous Sobolev and Besov spaces on the half-space. To be more precise, we
want to investigate decompositions of the type

(1.2) Ḣs,p
(
Rn

+,Cn
)

= Ḣs,p
σ

(
Rn

+,Cn
)
⊕∇Ḣs+1,p (Rn

+,Cn),
and similarly for Besov spaces, and their inhomogeneous counterparts, provided
s ∈ R, p ∈ (1,+∞).

In the scale of inhomogeneous and homogeneous Besov and Sobolev spaces on
bounded and exterior C2,1 domains the Helmholtz decomposition was shown by
Fujiwara and Yamazaki [FY06, Theorem 3.1]: the Helmholtz decomposition holds
on Hs,p(Ω,Cn) and Bs

p,q(Ω,Cn), p ∈ (1,+∞), s ∈ (−1 + 1/p, 1/p), q ∈ [1,+∞], even
allowing p = 1,+∞ in case of Besov spaces. We also mention the work of Monniaux
and Mitrea [MM08, Proposition 2.16] on bounded Lipschitz domain where the result
is true for (inhomogeneous) Sobolev spaces that lie near the family (Hs,2)|s|<1/2.

It has been notified in several works, e.g. see [GHT13, Introduction], [MS18, Sec-
tion 4], that the following Laplace operator acting on vector fields,

(1.3) −∆Hu := −∆u = curl curl u−∇div u, and
[
u · ν|∂Ω = 0, ν × curl u|∂Ω = 0

]
called the(2) Hodge Laplacian, has a strong bond with, and respects, the Helmholtz
decomposition in the sense that for all u in the domain of above Laplacian, Pu also
lies in, and we have
(2) In fact, this is a Hodge Laplacian, the one with normal boundary conditions, we do not make
the distinction here for introductory purposes.
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Hodge decompositions and maximal regularity for Hodge Laplacians on the half-space 1461

−P∆u = curl curl u = −∆Pu, and
[
Pu · ν|∂Ω = 0, ν × curl Pu|∂Ω = 0

]
.

Therefore, since the Hodge Laplacian and the Helmholtz–Leray projector seem to
copy the corresponding behavior of the whole space, it seems reasonable to infer that
(1.4) P = I +∇div (−∆H)−1,

where div drives a boundary condition ν · u|∂Ω = 0.
But, the above use of curl operators restricts us to the three dimensional case. We

can avoid such trouble, by means of the differential forms formalism, so that (1.3)
becomes

(1.5) −∆Hu := −∆u = (d∗d + dd∗)u = (d + d∗)2 u,

and
[
ν ⌟ u|∂Ω = 0, ν ⌟ du|∂Ω = 0

]
where d : Λk −→ Λk+1 is the exterior derivative, defined on the complexified
exterior algebra of Rn, Λ = Λ0 ⊕ Λ1 ⊕ . . .⊕ Λn, and satisfies d2 = 0. The operator
d∗ : Λk −→ Λk−1 is the formal dual operator of d, satisfying also (d∗)2 = 0 so that
on R3, we can make the identifications

d|Λ1 = curl , d|Λ0 = ∇,
d∗

|Λ2 = curl , d∗
|Λ1 = −div ,

ν ⌟ ()|Λ1 = ν · (), ν ⌟ ()|Λ2 = ν × ().
The curl operator drives a boundary condition ν × u|∂Ω = 0.

Notice this definition still makes sense for differential forms of any degree, in
arbitrary dimension. One would check that (1.5) reduce to the Neumann Laplacian
in the case of 0-forms identified with scalar-valued functions.

Going back to the case of vector fields, instead of (1.4), the above formalism and
the fact that d and d∗ are nilpotent, and then commutes (at least formally) with ∆H,
we may infer the next formula, similar to the one mentioned in [ACDH04, Section 5]:

P = I− dd∗(−∆H)−1 = I− d(−∆H)−1/2d∗(−∆H)−1/2.(1.6)
Under the use of the differential forms formalism, the desired Helmholtz decomposi-
tion (1.2) becomes, for 0 ⩽ k ⩽ n different degrees of differential forms,

Ḣs,p
(
Rn

+,Λk
)

= Ḣs,p
n,σ

(
Rn

+,Λk
)
⊕ dḢs+1,p (Rn

+,Λk−1)(1.7)

which is called the Hodge decomposition instead of the Helmholtz decomposition.
Here, the space Ḣs,p

n,σ(Rn
+,Λk) stands for k-differential forms u whose coefficients lie

in Ḣs,p(Rn
+,C), and such that d∗u = 0, and ν ⌟ u|∂Rn

+
= 0.

The Hodge decomposition for differential forms is treated by Schwarz [Sch95,
Theorem 2.4.2, Theorem 2.4.14] on smooth compact Riemannian manifold M with
smooth boundary where the decomposition is stated on Hk,p(M), k ∈ N, p ∈ (1,+∞).
For the case of Ω a bounded Lipschitz domain of Rn, we refer to the work of Monniaux
and McIntosh [MM18, Theorem 4.3, Theorem 7.1] where the Hodge decomposition
is proved to be true on Lp(Ω,Λ) for all p ∈ ( 2n

(2n+1) − ε, 2n
(2n−1) + ε) where ε > 0

TOME 7 (2024)



1462 A. GAUDIN

depends on Ω. The bounded holomorphic functional calculus of the Hodge Laplacian
is also proved for the same range of indices. One may also consult the work of
Mitrea and Monniaux, and Hofmann, Mitrea and Monniaux, [MM09b, HMM11], for
the treatment of the Hodge Laplacian on bounded Lipschitz domains of compact
Riemannian manifolds, where functional analytic properties like analyticity of the
generated semigroup, or boundedness of associated Riesz transforms are investigated.

One may wonder about the superficiality of proving an identity like (1.7) for gen-
eral differential forms, instead of vector fields (differential forms of degree 1, n− 1)
only. In fact, the differential forms formalism has shown its efficiency, allowing to
treat some partial differential equations initially restricted to the three-dimensional
setting in arbitrary dimension. See for instance [Mon21, Den22], where the magne-
tohydrodynamical (MHD) system is treated, so that either the triplet Λ1,Λ2,Λ3 or
the triplet Λn−3,Λn−2,Λn−1 are involved. Indeed, the magnetic field is in fact not an
effective vector field but a 2-form, identified, when n = 3, with a vector field. We also
mention that reformulation using differential forms for this kind of systems allows
looking at vorticity-like formulation of the Navier-Stokes (and related) equations, it
is also purely intrinsic so that one can perform a similar treatment on manifolds.

To reach our goal, the idea will be to prove that the formula (1.6) holds on
L2(Rn

+,Λ), yielding an operator for which we can also prove its boundedness on
Sobolev and Besov spaces, so that we are able to obtain the next theorem.

Theorem 1.1 (see Theorem 2.33 & Corollary 3.14). — Let p ∈ (1,+∞), s ∈
(−1 + 1/p, 1/p), and let k ∈ [[0, n]]. It holds that

(1) The (generalized) Helmholtz–Leray projector is well-defined and bounded as
an operator

P : Ḣs,p
(
Rn

+,Λk
)
−→ Ḣs,p

n,σ

(
Rn

+,Λk
)
.

Moreover, the following identity is true

P = I− d(−∆H)− 1
2 d∗(−∆H)− 1

2 .

(2) The following Hodge decomposition holds

Ḣs,p
(
Rn

+,Λk
)

= Ḣs,p
n,σ

(
Rn

+,Λk
)
⊕ Ḣs,p

γ

(
Rn

+,Λk
)
.

Moreover, the result remains true if we replace
• Ḣs,p by Ḃs

p,q, q ∈ [1,+∞];
• (Ḣ, Ḃ) by (H,B).

The symbol Xγ stands for the range of I− P in X.(3)

The way we reach Theorem 1.1 through intermediate results and proofs is so that
we recover many different properties of the Hodge Laplacian as well as its bounded
holomorphic functional calculus on Sobolev and Besov spaces almost for free. This
is due to the particular structure of the boundary of Rn

+, and the properties of the

(3)The subscript (or exponent in case of Besov spaces) γ is a legacy of the writing of G spaces as
spaces of gradients of scalar functions in the case of vector fields.
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Laplacian on the whole space Rn. This, above Theorem 1.1, and the fact that one
can define the Hodge–Stokes operator as

u ∈ Ḋs
p(AH) = PḊs

p(∆H) and AHu := −∆Hu = d∗du,
will yield automatically

Theorem 1.2 (see Theorem 2.35). — Let p ∈ (1,+∞), s ∈ (−1 + 1/p, 1/p). For
all µ ∈ (0, π), the operator AH admits a bounded (H∞(Σµ)-)holomorphic functional
calculus on Ḣs,p

n,σ(Rn
+,Λ). Moreover, the result remains true if we replace

• Ḣs,p by Ḃs
p,q, q ∈ [1,+∞];

• (Ḣ, Ḃ) by (H,B).
We mention that our strategy is not morally so different from the one presented

in [GHT13, Beginning of Section 4], identifying some Neumann and Dirichlet bound-
ary conditions on various components. However, the treatment of boundary values is
done in a more careful way, adapted with the scales of homogeneous function spaces,
thanks to a weak-strong correspondence of (partial) traces by means of appropriate
results in the Appendix A.

1.1.2. Global-in-time estimates in Lq-maximal regularity: the role of homogeneous
function spaces and their interpolation

Another tool which is central in the study of parabolic equations and also for a
large class of fluid dynamics problems is the Lq-maximal regularity.

The general problem of global in time Lq-maximal regularity is: for a closed operator
(D(A), A) on a Banach space X, let us consider the evolution equation{

∂tu(t) + Au(t) = f(t), t ∈ (0,+∞),
u(0) = 0.(1.8)

Provided q ∈ [1,+∞] and f ∈ Lq((0,+∞), X), can we solve uniquely (1.8), with an
a priori estimate

∥(∂tu,Au)∥Lq((0,+∞),X) ≲ ∥f∥Lq((0,+∞),X) ?(1.9)
When X is a UMD Banach space (i.e. a space such that the Hilbert transform is

bounded on Lr(R, X) for one (or equivalently all) r ∈ (1,+∞)), the problem has been
extensively studied in [Ama95, Chapter III, Section 4], [DHP03] and [KW04]. It has
been proved in this case, that the truthfulness of (1.9) for q ∈ (1,+∞) is equivalent
to the R-boundedness of the resolvent A of angle ϕR

A < π
2 , i.e. if σ(A) ⊂ Σϕ, and for

some π
2 > µ > ϕ, the set {

λ(λI− A)−1
}
λ∈C\Σµ

is R-bounded, and ϕR
A is the infimum on all such µ. More precisely, for some µ ∈

(ϕ, π2 ), for all (λj)j ∈N ⊂ C \ Σµ, all (fj)j ∈N ⊂ X, we have for all N ∈ N∥∥∥∥∥∥
N∑
j=0

rj(·)λj (λjI− A)−1 fj

∥∥∥∥∥∥
L2((0,1),X)

≲X,A,µ

∥∥∥∥∥∥
N∑
j=0

rj(·)fj

∥∥∥∥∥∥
L2((0,1),X)

,
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1464 A. GAUDIN

where (rj)j ∈N is the Rademacher system of functions, and the implicit constant is
independent of N . This result was initially due to Weis, see [Wei01, Theorem 4.2].
For a wide review of the concept of R-boundedness and its applications to maximal
regularity, we refer to, e.g., [DHP03, KW04] and [DK07].

It has been shown in many cases that Stokes operators satisfy the Lq-maximal
regularity on Lpσ(Ω), for various classes of open sets Ω for p, q ∈ (1,+∞), with various
boundary conditions and this has been widely used to treat various fluid dynamics
problems, mainly Navier–Stokes equations. See for instance, and the list is far from
being exhaustive, [GS91, HM13, HNPS16, Hie20, MM09a, Mon13, Mon21, Tol18,
TW20].

Getting back to the abstract problem (1.8), when X is UMD, q ∈ (1,+∞)
and A is invertible, i.e., 0 ∈ ρ(A), it is known that the solution u belongs to
C0

0(R+, (X,D(A))1−1/q,q) with the estimate
∥u∥L∞(R+,(X,D(A))1−1/q,q) ≲A,q ∥f∥Lq(R+,X),(1.10)

where (·, ·)θ,r, (θ, r) ∈ (0, 1)× [1,+∞], stands for the real interpolation functor; check
for instance [Ama95, Chapter III, Theorem 4.10.2].

If 0 ∈ σ(A), one only has u ∈ C0(R+, (X,D(A))1−1/q,q), with for each T < +∞,
∥u∥L∞([0,T ),(X,D(A))1−1/q,q) ≲A,q,T ∥f∥Lq(R+,X),(1.11)

where the implicit constant blows up as T goes to +∞. Notice that this is the case
for the (negative) Laplacian A = −∆ on X = Lp(Rn), p ∈ (1,+∞), which is quite
inconvenient, see [Gau24a, Section 1] and the references therein for more details.

Another issue is that one cannot reach L1 and L∞-maximal regularity estimates
through above theory, but one may recover such kind of results if X is replaced by a
real interpolation space between X and D(A), say Y θ

r := (X,D(A))θ,r (θ, r) ∈ (0, 1)×
[1,+∞]. Indeed, a theorem of Da Prato and Grisvard, see [DPG75, Theorem 4.15],
gives us that, provided either

• 0 ∈ ρ(A) and T ∈ (0,+∞],
• 0 ∈ σ(A) and T ∈ (0,+∞),

for q ∈ [1,+∞), θ ∈ (0, 1), the solution u to (1.8) belongs to C0
b([0, T ], Y 1+θ−1/q

q ) and
satisfies

∥u∥
L∞
(

[0,T ],Y 1+θ−1/q
q

) ≲A,q(,T ) ∥(∂tu,Au)∥Lq((0,T ),Y θ
q ) ≲A,q(,T ) ∥f∥Lq((0,T ),Y θ

q ).(1.12)

If one wants to recover global in time estimates in (1.12) by means of [DPG75,
Theorem 4.15], we have to assume that A is invertible, hence 0 ∈ ρ(A). However,
for q = 1 similar estimates have been shown for several non-invertible operators and
were of major importance to achieve existence in critical function spaces for some
fluid dynamic problems like global well-posedness of Navier–Stokes equations, even
for inhomogeneous flows, or free boundary problems, see for instance [Che99, DM09,
DM15, OS16, OS21, OS22].

While the work of Ogawa and Shimizu [OS22] provides a powerful framework for
many applications, we are mainly restricted to a specific class of second order elliptic
operators with “smooth enough” coefficients. A different and more abstract approach
was brought by the recent work of Danchin, Hieber, Mucha and Tolksdorf [DHMT21],
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where the idea was to give a homogeneous version of the Da Prato–Grisvard theo-
rem [DPG75, Theorem 4.15], in the sense that (1.12) holds with implicit constant
uniform with respect to the time variable even when 0 ∈ σ(A). But further assump-
tions have to be made, mainly the injectivity of A on X. Their idea was to replace
the real interpolation space Y θ

q = (X,D(A))θ,q in (1.12) by(
X,D(Å)

)
θ,q

where D(Å) is called the homogeneous domain of A and stands morally for the
closure of D(A) with respect to the (semi-)norm ∥A · ∥X . Such kind of investigation
was already started by Haak, Haase, and Kuntsmann in [HHK06], then developped
in Haase’s book [Haa06, Chapter 6], but the completion is considered instead of the
closure.

If A is a non-degenerate elliptic operator of order 2m equal to its principal part,
densely defined on X = Lp(Rn), such that D(A) = H2m,p(Rn), we should have
D(Å) = Ḣ2m,p(Rn) which encounter no trouble of definition, if one consider the
construction of homogeneous Sobolev and Besov spaces as equivalence classes of
tempered distributions up to a polynomial, see [Haa06, Chapter 8, Section 3], [Tri83,
Chapter 5]. In this case, we obtain

(X,D(A))θ,q = B2mθ
p,q (Rn) and

(
X,D(Å)

)
θ,q

= Ḃ2mθ
p,q (Rn) .

However, if one wants to consider a similar problem on a domain, here the half-space
Rn

+, with some boundary conditions, with the definition of homogeneous function
spaces as class of tempered distributions up to a polynomial, it is not clear that
we can make a proper meaning of boundary conditions or traces. To overcome
such difficulties, a construction of homogeneous Sobolev spaces Ḣs,p(Rn

+) and a
review of homogeneous Besov spaces on Rn

+ allowing to check interpolation between
homogeneous spaces, and to recover boundary conditions in some cases, is done
in [DHMT21, Chapters 3 & 4] continued in [Gau24b]. This construction is based
on, and consistent with, the one of homogeneous Besov spaces on the whole space
achieved in [BCD11, Chapter 2]. This leads in some cases to non-complete normed
vector spaces as D(Å) could be if one wants to consider it as the (moral) closure of
D(A) in an appropriate subspace of Ḣ2m,p(Rn

+), which may be not complete. That
is why the construction of the homogeneous domain of A, its real interpolation
spaces with X, and the homogeneous Da Prato–Grisvard theorem from [DHMT21,
Chapter 2] are interesting: they allow D(Å) to be a non-complete normed vector
space(4) . This could be necessary if one wants to deal with boundary conditions. One
can even recover the construction given in [Haa06, Chapter 6] when the completion
is used instead of the closure to construct the homogeneous domain.

We also mention that the homogeneous operator and interpolation theory revisited
by Danchin, Hieber, Mucha, and Tolksdorf in [DHMT21, Chapter 2] also gives a way
to circumvent the lack of global-in-time estimates in the usual Lq-maximal regularity

(4)We notice that real interpolation of non-complete vector space makes sense, see [BL76, Chapter 3]
where completeness is not needed to deal with the K-method.
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framework, for the trace estimate issue (1.11). This has been done by the author in
a previous paper, see [Gau24a, Sections 1, 2& 4].

Finally, if one applies the homogeneous interpolation and then the homogeneous
Da Prato-Grisvard theorem as done in [DHMT21, Chapters 2, 3 & 4], choosing
X ⊂ Lp(Rn

+) to be a closed subspace, and D(A) to be a closed subset of H2m,p(Rn
+),

it would lead to L1
t (Ḃ2mθ

p,1 )-maximal regularity results with θ ∈ (0, 1). Proceeding this
way disallow to obtain L1

t (Ḃ0
p,1) or L1

t (Ḃα
p,1)-maximal regularity results, for α < 0. Our

idea is to replace the use of Lp(Rn
+) as a ground space by Ḣs,p(Rn

+), with p ∈ (1,+∞),
s ∈ (−1 + 1/p, 1/p), so that we may expect to realize A on Ḣs,p(Rn

+) with domain

D(A) ⊂ Ḣs,p
(
Rn

+

)
∩ Ḣs+2m,p

(
Rn

+

)
.

Therefore, for s ∈ (−1 + 1/p, 1/p) and θ ∈ (0, 1), it seems reasonable to expect
L1
t (Ḃs+2mθ

p,1 )-maximal regularity results, and then recover maximal regularity for some
non-positive index of regularity.

To reach such realizations of A on homogeneous Sobolev spaces of fractional
order on the whole space or on the half-space, we are going to use the construction
started [DHMT21, Chapter 3], and continued in [Gau24b, Sections 2 & 3]. The
Appendix A is dedicated to the meaning of partial traces in such function spaces
to ensure that one can realize operators with boundary conditions on Ḣs,p(Rn

+),
provided s ∈ (−1 + 1/p, 1/p), see also [Gau24b, Section 4] for usual trace results.
We will also provide additional tools that will be useful to compute homogeneous
interpolation spaces in presence of boundary conditions, as in Section 3.

In our case, considering first the Hodge Laplacian, then the Hodge–Stokes operator,
we will be able to apply the homogeneous Da Prato–Grisvard theorem [DHMT21,
Theorem 2.20], as well as the usual Lq-maximal regularity for UMD Banach spaces
or [Gau24a, Theorem 4.7], to reach various maximal regularity results as the next
one.

Theorem 1.3 (see Theorems 3.17, 3.18, 3.19 & 3.22). — Let p ∈ (1,+∞), q ∈
[1,+∞), s ∈ (−1 + 1/p, 1/p+ 2/q), s, s+ 2− 2/q /∈ N+ 1

p
, such that (Cs+2−2/q,p,q)(5)

is satisfied and let T ∈ (0,+∞].
For any

f ∈ Lq
(
(0, T ), Ḃs,σ

p,q,H

(
Rn

+,Λ
))
, u0 ∈ Ḃ

2+s− 2
q
,σ

p,q,H

(
Rn

+,Λ
)
,

there exists a unique mild solution

u ∈ C0
b

(
[0, T ], Ḃ

2+s− 2
q
,σ

p,q,H

(
Rn

+,Λ
) )

(5)The condition (C·,·,·) is here to ensure the completeness of considered function spaces. See (Cs,p,q)
below.
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to

(HSS) (6)



∂tu−∆u = f, on (0, T )× Rn
+,

d∗u = 0, on (0, T )× Rn
+,

ν ⌟ du|∂Rn
+

= 0, on (0, T )× ∂Rn
+,

ν ⌟ u|∂Rn
+

= 0, on (0, T )× ∂Rn
+,

u(0) = u0, in Ḃ
2+s− 2

q
p,q (Rn

+,Λ),
with the estimate

∥u∥
L∞
(

[0,T ],Ḃ
2+s− 2

q
p,q (Rn

+)
) +

∥∥∥(∂tu,∇2u
)∥∥∥

Lq((0,T ),Ḃs
p,q(Rn

+))
≲p,q,s,n ∥f∥Lq((0,T ),Ḃs

p,q(Rn
+)) + ∥u0∥

Ḃ
2+s− 2

q
p,q (Rn

+)
.

In the case q = +∞, if we assume in addition u0 ∈ Ḋs
p(A2

H), we have∥∥∥(∂tu,∇2u
)∥∥∥

L∞([0,T ],Ḃs
p,∞(Rn

+)) ≲p,s,n ∥f∥L∞((0,T ),Ḃs
p,∞(Rn

+)) + ∥AHu0∥Ḃs
p,∞(Rn

+).

1.2. Notations, definitions, and usual concepts

Throughout this paper the dimension will be n ⩾ 2, and N will be the set of
non-negative integers. For a, b ∈ R with a ⩽ b, we write [[a, b]] := [a, b] ∩ Z.

For two real numbers A,B ∈ R, A ≲a,b,c B means that there exists a constant
C > 0 depending on a, b, c such that A ⩽ CB. When both A ≲a,b,c B and B ≲a,b,c A
are true, we simply write A ∼a,b,c B. When the number of indices is overloaded, we
allow ourselves to write A ≲d,e,f

a,b,c B instead of A ≲a,b,c,d,e,f B.

1.2.1. Smooth and measurable functions

Denote by S(Rn,C) the space of complex valued Schwartz function, and S′(Rn,C)
its dual called the space of tempered distributions. The Fourier transform on S′(Rn,C)
is written F, and is pointwise defined for any f ∈ L1(Rn,C) by

Ff(ξ) :=
∫
Rn
f(x) e−ix·ξ dx, ξ ∈ Rn.

Additionally, for p ∈ [1 +∞], we will write p′ = p
p−1 its Hölder conjugate.

For any m ∈ N, the map ∇m : S′(Rn,C) −→ S′(Rn,Cnm) is defined as ∇mu :=
(∂αu)|α|=m. We denote by(

et∆
)
t⩾ 0

and
(
e−t(−∆)

1
2
)
t⩾ 0

respectively the heat and Poisson semigroup on Rn. We also introduce operators ∇′

and ∆′ which are respectively the gradient and the Laplacian on Rn−1 identified with
the n− 1 first variables of Rn, i.e. ∇′ = (∂x1 , . . . , ∂xn−1) and ∆′ = ∂2

x1 + . . .+ ∂2
xn−1 .

(6) For introductory purpose, the notations here are either not precise enough or quite redundant.
For instance, the condition d∗u = 0 already implies the boundary condition ν ⌟ u|∂Rn

+
= 0.
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When Ω is an open set of Rn, C∞
c (Ω,C) is the set of smooth compactly supported

function in Ω, and D′(Ω,C) is its topological dual. For p ∈ [1,+∞), Lp(Ω,C) is the
normed vector space of complex valued (Lebesgue-) measurable functions whose pth

power is integrable with respect to the Lebesgue measure, S(Ω,C) (resp. S0(Ω,C),
C∞
c (Ω,C)) stands for functions which are restrictions on Ω of elements of S(Rn,C)

(resp. S0(Rn,C), C∞
c (Rn,C)). Unless the contrary is explicitly stated, we will al-

ways identify Lp(Ω,C) (resp. C∞
c (Ω,C)) as the subspace of functions in Lp(Rn,C)

(resp. C∞
c (Rn,C)) supported in Ω (resp. in Ω) through the extension by 0 outside

Ω. L∞(Ω,C) stands for the space of essentially bounded (Lebesgue-) measurable
functions.

For s ∈ R, p ∈ [1,+∞), ℓps(Z,C), stands for the normed vector space of p-summable
sequences of complex numbers with respect to the counting measure 2kspdk; ℓ∞

s (Z,C)
stands for sequences (xk)k∈Z such that (2ksxk)k∈Z is bounded. More generally, when
X is a Banach space, for p ∈ [1,+∞], one may also consider Lp(Ω, X) which stands
for the space of (Bochner-)measurable functions u : Ω −→ X, such that t 7→
∥u(t)∥X ∈ Lp(Ω,R), similarly one may consider ℓps(Z, X).

1.2.2. (Bi)Sectorial operators on Banach spaces

We introduce the following subsets of the complex plane
Σµ := { z ∈ C∗ : |arg(z)| < µ } , if µ ∈ (0, π),

Sµ := (−Σµ) ∪ Σµ, if µ ∈
(

0, π2

)
,

we also define Σ0 := (0,+∞), S0 := R \ {0}, and later we are going to consider Σµ,
and Sµ their closure.

An operator (D(A), A) on a Banach space X, over the field of complex numbers,
is said to be ω-sectorial if for a fixed ω ∈ (0, π) both conditions are satisfied

(1) σ(A) ⊂ Σω, where σ(A) stands for the spectrum of A;
(2) For all µ ∈ (ω, π), supλ∈C\Σµ

∥λ(λI− A)−1∥X→X < +∞.
Similarly, (D(A), A) is said to be ω-bisectorial, for a fixed ω ∈ (0, π2 ), if σ(A) ⊂ Sω,
and for all µ ∈ (ω, π2 ), supλ∈C\Sµ

∥λ(λI− A)−1∥X→X < +∞.
The following two propositions are classical and well-known. It will be of paramount

importance throughout the present work.
Proposition 1.4 ([Haa06, Proposition 2.1.1]). — Let (D(A), A) be a sectorial

operator on a Banach space X. Then the following assertions hold.
(1) If k ∈ N, and x ∈ D(A), then

lim
t→+∞

tk(tI + A)−kx = x and lim
t→+∞

Ak(tI + A)−kx = 0.

(2) If k ∈ N, and x ∈ R(A), then
lim
t→0

tk(tI + A)−kx = 0 and lim
t→0

Ak(tI + A)−kx = x.

In particular, N(A) ∩ R(A) = {0}, so that X = R(A) implies that A is
injective.
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(3) For every k ∈ N, D(Ak) ∩ R(Ak) is dense in D(A) ∩ R(A).
(4) If X is reflexive, then A is densely defined and induces a topological decom-

position
X = N(A)⊕ R(A).

The presentation of the preceding statement follows [Ege15, Proposition 3.2.2],
where a similar assertion is made for bisectorial operators, with suitable adjust-
ments. For the next proposition, we refer to [Haa06, Proposition 3.4.1], one may also
see [ABHN11, Proposition 3.7.2, Theorem 3.7.11].

Proposition 1.5. — Let (D(A), A) be an ω-sectorial operator on a Banach
space X, with ω ∈ [0, π2 ). There exists a unique holomorphic family of operators
(T (z))z ∈ Σ π

2 −ω∪{0} such that the following assertions hold:
(1) For all ϕ ∈ (ω, π2 ), (T (z))z ∈ Σ π

2 −ϕ∪{0} is a family of uniformly bounded opera-
tors such that
T (0) = I and T (z + z′) = T (z)T (z′) for all z, z′ ∈ Σπ

2 −ω ∪ {0}.

(2) If x ∈ D(A) ∩ R(A), then for each ψ ∈ (0, π2 − ω),
T (z)x −−−−−−→

|z|→0
| arg(z)|⩽ψ

x and T (z)x −−−−−−→
|z|→+∞

| arg(z)|⩽ψ

0.

(3) If x ∈ X, then T (z)x ∈ D(An), for all z ∈ Σπ
2 −ω, n ∈ N, and the map

z 7−→ T (z)x is holomorphic on Σπ
2 −ω with derivatives of order k ∈ N,

T (k)(z)x = (−A)kT (z)x for all z ∈ Σπ
2 −ω.

(4) For α ∈ C+, z ∈ Σπ
2 −ϕ, with ϕ ∈ (ω, π2 ), one has

∥AαT (z)∥X→X ≲A,ϕ,α
1
|z|ℜα

.

Therefore, one writes e−zA := T (z) for all z ∈ Σπ
2 −ω ∪ {0}, and (e−zA)z ∈ Σ π

2 −ω∪{0} is
called the (holomorphic) C0-semigroup with generator −A.

Provided µ ∈ (0, π), we denote by H∞(Σµ), the set of bounded holomorphic
functions on Σµ, the same goes with Sµ instead of Σµ, for µ ∈ [0, π2 ).

If (D(A), A) is ω-(bi)sectorial with ω ∈ [0, π) (resp. [0, π2 )), for µ ∈ (ω, π) (resp.
(ω, π2 )) we say that A admits a bounded (or H∞(Σµ)- (resp. H∞(Sµ)-)) holomorphic
functional calculus on X (of angle µ), if for θ ∈ (ω, µ), there exists a constant Kθ,
such that for all f ∈ H∞(Σθ) (resp. H∞(Sθ)), we have that

∥f(A)∥X→X ⩽ Kθ∥f∥L∞ .

For all x ∈ D(A) ∩ R(A), f(A)x is defined by the following convergent integral,

f(A)x = 1
2iπ

∫
∂Σθ

f(z)(zI− A)−1x dz,(1.13)

and the same goes with ∂Sθ instead of ∂Σθ for the bisectorial case, both boundaries
being oriented counterclockwise.
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We also say that A has bounded imaginary powers (BIP) of type θA if f(z) = zis

plugged in (1.13) yields a bounded linear operator for all s ∈ R, and

θA := inf
{
ω ⩾ 0

∣∣∣∣∣ sup
s∈R

e−ω|s|
∥∥∥Ais∥∥∥

X→X
< +∞

}
.

Notice that if A has a bounded holomorphic functional calculus then it has bounded
imaginary powers.

The functional calculus of sectorial operators is widely reviewed in several references
but we mention here Haase’s book [Haa06]. However, there are only few references
known to the author that deal with a systematic treatment of bisectorial operators,
Duelli and Weis as well as Egert did such a treatment see [DW05] and [Ege15,
Chapter 3].

1.2.3. Interpolation of normed vector spaces

Let (X, ∥·∥X) and (Y, ∥·∥Y ) be two normed vector spaces. We write X ↪→ Y to say
that X embeds continuously in Y . Now let us recall briefly basics of interpolation
theory. If there exists a Hausdorff topological vector space Z, such that X, Y ⊂ Z,
then X ∩ Y and X + Y are normed vector spaces with their canonical norms, and
one can define the K-functional of z ∈ X + Y , for any t > 0 by

K(t, z,X, Y ) := inf
(x,y) ∈X×Y,
z=x+y

(∥x∥X + t ∥y∥Y ) .

This allows us to construct, for any θ ∈ (0, 1), q ∈ [1,+∞], the real interpolation
spaces between X and Y with indexes θ, q as

(X, Y )θ,q :=
{
x ∈ X + Y

∣∣∣ t 7−→ t−θK(t, x,X, Y ) ∈ Lq∗(R+)
}
,

where Lq∗(R+) := Lq((0,+∞), dt/t).
The interested reader could check [BL76, Lun18, Tri78] for more information about

interpolation theory and its applications.

1.2.4. Sobolev and Besov spaces on Rn

To deal with Sobolev and Besov spaces on the whole space, we need to introduce
Littlewood–Paley decomposition given by ϕ ∈ C∞

c (Rn), radial, real-valued, non-
negative, such that

• supp ϕ ⊂ B(0, 4/3);
• ϕ|B(0,3/4) = 1;

so we define the following functions for any j ∈ Z for all ξ ∈ Rn,

ϕj(ξ) := ϕ
(
2−jξ

)
, ψj(ξ) := ϕj(ξ/2)− ϕj(ξ),

and the family (ψj)j ∈Z has the following properties
• supp (ψj) ⊂ { ξ ∈ Rn | 3 · 2j−2 ⩽ |ξ| ⩽ 2j+3/3 };
• ∀ ξ ∈ Rn \ {0}, ∑N

j=−M ψj(ξ) −−−−−−→
N,M→+∞

1.
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Such a family (ϕ, (ψj)j ∈Z) is called a Littlewood–Paley family. Now, we consider the
two following families of operators associated with their Fourier multipliers:

• The homogeneous family of Littlewood–Paley dyadic decomposition operators
(∆̇j)j ∈Z, where

∆̇j := F−1ψjF,

• The inhomogeneous family of Littlewood–Paley dyadic decomposition opera-
tors (∆k)k∈Z, where

∆−1 := F−1ϕF,

∆k := ∆̇k for any k ⩾ 0, and ∆k := 0 for any k ⩽ −2.
One may notice, as a direct application of Young’s inequality for the convolution,
that they are all uniformly bounded families of operators on Lp(Rn), p ∈ [1,+∞].

Both families of operators lead for s ∈ R, p, q ∈ [1,+∞], u ∈ S′(Rn), to the
following quantities,

∥u∥Bs
p,q(Rn) =

∥∥∥∥(2ks ∥∆ku∥Lp(Rn)

)
k∈Z

∥∥∥∥
ℓq(Z)

and ∥u∥Ḃs
p,q(Rn) =

∥∥∥∥(2js∥∆̇ju∥Lp(Rn)
)
j ∈Z

∥∥∥∥
ℓq(Z)

,

respectively named the inhomogeneous and homogeneous Besov norms, but the
homogeneous norm is not really a norm since ∥u∥Ḃs

p,q(Rn) = 0 does not imply that
u = 0. Thus, following [BCD11, Chapter 2] and [DHMT21, Chapter 3], we introduce
a subspace of tempered distributions such that ∥ · ∥Ḃs

p,q(Rn) is point-separating, say

S′
h(Rn) :=

{
u ∈ S′(Rn)

∣∣∣∣∀ Θ ∈ C∞
c (Rn), ∥Θ(λD)u∥L∞(Rn) −−−−→λ→+∞

0
}

,

where for λ > 0, Θ(λD)u = F−1Θ(λ·)Fu. Notice that S′
h(Rn) does not contain any

non-zero polynomials, and for any p ∈ [1,+∞), Lp(Rn) ⊂ S′
h(Rn).

One can also define the following quantities called the inhomogeneous and homo-
geneous Sobolev spaces’ potential norms

∥u∥Hs,p(Rn) :=
∥∥∥(I−∆) s

2u
∥∥∥

Lp(Rn)
and ∥u∥Ḣs,p(Rn) :=

∥∥∥∥∥∥
∑
j ∈Z

(−∆) s
2 ∆̇ju

∥∥∥∥∥∥
Lp(Rn)

,

where (−∆) s
2 is understood on u ∈ S′

h(Rn) by the action on its dyadic decomposition,
i.e.

(−∆) s
2 ∆̇ju := F−1|ξ|sF∆̇ju,

which gives a family of C∞ functions with at most polynomial growth.
Hence for any p, q ∈ [1,+∞], s ∈ R, we define
• the inhomogeneous and homogeneous Sobolev (Bessel and Riesz potential)

spaces,
Hs,p(Rn) =

{
u ∈ S′(Rn)

∣∣∣ ∥u∥Hs,p(Rn) < +∞
}
,

Ḣs,p(Rn) =
{
u ∈ S′

h(Rn)
∣∣∣ ∥u∥Ḣs,p(Rn) < +∞

}
;
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• and the inhomogeneous and homogeneous Besov spaces,

Bs
p,q(Rn) =

{
u ∈ S′(Rn)

∣∣∣ ∥u∥Bs
p,q(Rn) < +∞

}
,

Ḃs
p,q(Rn) =

{
u ∈ S′

h(Rn)
∣∣∣ ∥u∥Ḃs

p,q(Rn) < +∞
}

;

which are all normed vector spaces.
The treatment of homogeneous Besov spaces Ḃs

p,q(Rn), s ∈ R, p, q ∈ [1,+∞],
defined on S′

h(Rn) has been done in an extensive manner in [BCD11, Chapter 2].
The corresponding construction for homogeneous Sobolev spaces Ḣs,p(Rn), s ∈ R,
p ∈ (1,+∞) has been achieved after wise, see [BCD11, Chapter 1] only for the case
p = 2, [DHMT21, Chapter 3] only for the case s ∈ N, and [Gau24b, Section 2] for
the case s ∈ R.

The following subspace of Schwartz functions, say
S0(Rn) := {u ∈ S(Rn) | 0 /∈ supp (Ff) } ,

is a nice dense subspace in Lp(Rn), Hs,p(Rn), Ḣs,p(Rn), Bs
p,q(Rn) and Ḃs

p,q(Rn), for
all p ∈ (1,+∞), q ∈ [1,+∞), s ∈ R

The inhomogeneous spaces Lp(Rn), Hs,p(Rn), and Bs
p,q(Rn) are all complete for all

p, q ∈ [1,+∞], s ∈ R, but in this setting homogeneous spaces are no longer always
complete (see [BCD11, Proposition 1.34, Remark 2.26]). Indeed, it can be shown
(see [BCD11, Theorem 2.25]) that homogeneous Besov spaces Ḃs

p,q(Rn) are complete
whenever (s, p, q) ∈ R× (1,+∞)× [1,+∞] satisfies

(Cs,p,q)
[
s <

n

p

]
or

[
q = 1 and s ⩽

n

p

]
,

From now, and until the end of this paper, we write (Cs,p) for the statement (Cs,p,p).
One may show that, similarly, Ḣs,p(Rn) is complete whenever (Cs,p) is satisfied,
see [Gau24b, Proposition 2.2].

We recall that all s > 0, (p, q) ∈ (1,+∞)× [1,+∞], we have Lp(Rn) ∩ Ḣs,p(Rn) =
Hs,p(Rn), and Lp(Rn) ∩ Ḃs

p,q(Rn) = Bs
p,q(Rn) with equivalent norms, see [BL76, The-

orem 6.3.2] for more details.
According to [BL76, Section 6.4], for all s ∈ R, p, q ∈ (1,+∞)× [1,+∞], Hs,p(Rn)

and Bs
p,q(Rn) are both complete, and moreover, they are reflexive when q ̸= 1,+∞,

and we have

(Hs,p(Rn))′ = H−s,p′(Rn),
(
Bs
p,q(Rn)

)′
= B−s

p′,q′(Rn),(1.14) (
Bsp,∞(Rn)

)′
= B−s

p′,1(Rn),
(
Bs
p,1(Rn)

)′
= B−s

p′,∞(Rn).(1.15)

We recall also the usual real interpolation identities,

(Hs0,p(Rn),Hs1,p(Rn))θ,q = Bs
p,q(Rn),

(
Bs0
p,q0(Rn),Bs1

p,q1(Rn)
)
θ,q

= Bs
p,q(Rn),

whenever (p, q0, q1, q) ∈ [1,+∞]× [1,+∞]3(p ̸= 1,+∞, when dealing with Sobolev
(Bessel potential) spaces), θ ∈ (0, 1), s0 ̸= s1 two real numbers, such that

s := (1− θ)s0 + θs1,
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see [BL76, Theorem 6.4.5]. A similar statement is available for homogeneous function
spaces.

Proposition 1.6 ([Gau24b, Theorem 2.6]). — Let (p, q, q0, q1) ∈ (1,+∞) ×
[1,+∞]3, s0, s1 ∈ R, such that s0 ̸= s1, and set

s := (1− θ)s0 + θs1.

Assuming (Cs0,p) (resp. (Cs0,p,q0)), we get the following(
Ḣs0,p(Rn), Ḣs1,p(Rn)

)
θ,q

=
(
Ḃs0
p,q0(Rn), Ḃs1

p,q1(Rn)
)
θ,q

= Ḃs
p,q(Rn).(1.16)

If moreover, one consider p0, p1 ∈ (1,+∞), and assume that (Cs0,p0) and (Cs1,p1) are
true then also is (Cs,pθ

) and[
Ḣs0,p0(Rn), Ḣs1,p1(Rn)

]
θ

= Ḣs,pθ(Rn),(1.17)

and if (Cs0,p0,q0) and (Cs1,p1,q1) are satisfied then (Cs,pθ,qθ
) is also satisfied with[

Ḃs0
p0,q0(Rn), Ḃs1

p1,q1(Rn)
]
θ

= Ḃs
pθ,qθ

(Rn),(1.18)

where 1
pθ

:= 1−θ
p0

+ θ
p1

and qθ defined similarly.

Proposition 1.7 ([Gau24b, Proposition 2.9]). — For all p ∈ (1,+∞), q ∈
[1,+∞], for all s ∈ (−1 + 1

p
, 1
p
), for all u ∈ Ḣs,p(Rn) (resp. Ḃs

p,q(Rn)),∥∥∥1Rn
+
u
∥∥∥

Ḣs,p(Rn)
≲s,p,n ∥u∥Ḣs,p(Rn)

(
resp. ∥1Rn

+
u∥Ḃs

p,q(Rn) ≲s,p,n ∥u∥Ḃs
p,q(Rn)

)
.

The same results still holds with (H,B) instead of (Ḣ, Ḃ).

1.2.5. Homogeneous Sobolev and Besov spaces on Rn
+

Let s ∈ R, p ∈ (1,+∞), q ∈ [1,+∞]. Then for any X ∈ {Bs
p,q, Ḃs

p,q,Hs,p, Ḣs,p}, we
define

X(Rn
+) := X(Rn)|Rn

+
,

with the usual quotient norm

∥u∥X(Rn
+) := inf

ũ∈ X(Rn),
ũ|Rn

+
=u .

∥ũ∥X(Rn).

A direct consequence of the definition of those spaces is the density of S0(Rn
+) ⊂ S(Rn

+)
in each of them, and also the completeness and reflexivity when their counterpart
on Rn also have the corresponding property. We can also define,

X0
(
Rn

+

)
:=
{
u ∈ X (Rn)

∣∣∣ supp u ⊂ Rn
+

}
,

with natural induced norm ∥u∥X0(Rn
+) := ∥u∥X(Rn).

We have
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• density results [Gau24b, Proposition 3.9, Corollary 3.12]:
for p ∈ (1,+∞), q ∈ [1,+∞), s > −1 + 1

p
, when (Cs,p) is satisfied for Sobolev

spaces and (Cs,p,q) in the case of Besov spaces,

Ḣs,p
0

(
Rn

+

)
= C∞

c (Rn
+)∥·∥Ḣs,p(Rn) , and Ḃs

p,q,0

(
Rn

+

)
= C∞

c (Rn
+)∥·∥Ḃs

p,q(Rn) ;(1.19)

• duality results, [Gau24b, Propositions 3.11 & 3.23]:
for all p ∈ (1,+∞), q ∈ (1,+∞], s > −1 + 1

p
, when (Cs,p) is satisfied for

Sobolev spaces and (Cs,p,q) in the case of Besov spaces,(
Ḣs,p

(
Rn

+

))′
=Ḣ−s,p′

0

(
Rn

+

)
,
(
Ḃ−s
p′,q′

(
Rn

+

))′
= Ḃs

p,q,0

(
Rn

+

)
,(1.20) (

Ḣs,p
0

(
Rn

+

))′
=Ḣ−s,p′ (Rn

+

)
,
(
Ḃ−s
p′,q′,0

(
Rn

+

))′
= Ḃs

p,q

(
Rn

+

)
.(1.21)

• intersections are well-defined and complete [Gau24b, Lemma 2.5, Propo-
sition 3.3, Proposition 3.20]:
for p0, p1 ∈ (1,+∞), q0, q1 ∈ [1,+∞], sj > −1 + 1

pj
, j ∈ {0, 1}, when (Cs0,p0)

is satisfied for Sobolev spaces, or (Cs0,p0,q0) in the case of Besov spaces, we
have that

Ḣs0,p0
(
Rn

+

)
∩ Ḣs1,p1

(
Rn

+

)
= [Ḣs0,p0 ∩ Ḣs1,p1 ]

(
Rn

+

)
,(1.22)

Ḃs0
p0,q0

(
Rn

+

)
∩ Ḃs1

p1,q1

(
Rn

+

)
=
[
Ḃs0
p0,q0 ∩ Ḃs1

p1,q1

] (
Rn

+

)
;(1.23)

so that each space is complete. Moreover, it admits S0(Rn
+) as dense subspace

whenever q0, q1 < +∞.
• interpolation results, [Gau24b, Propositions 3.17 & 3.22]:

if (ḣ, ḃ) ∈ {(Ḣ, Ḃ), (Ḣ0, Ḃ·,·,0)}, with (p, q, q0, q1) ∈ (1,+∞)× [1,+∞]3 (p, pj ̸=
1,+∞ is assumed, when dealing with Sobolev (Riesz potential) spaces), θ ∈
(0, 1), sj, s > −1 + 1/pj, j ∈ {0, 1}, with s > −1 + 1/p, where s0, s1, s are
three real numbers, with

s = (1− θ)s0 + θs1,

such that (Cs,p,q) is satisfied. Then, one has(
ḣs0,p

(
Rn

+

)
, ḣs1,p

(
Rn

+

))
θ,q

= ḃsp,q
(
Rn

+

)
,(

ḃs0
p,q0

(
Rn

+

)
, ḃs1

p,q1

(
Rn

+

))
θ,q

= ḃsp,q
(
Rn

+

)
.

(1.24)

Note that, due to Proposition 1.7, we have for free the following equalities of
homogeneous Sobolev and Besov spaces, with equivalent norms, for all p ∈ (1,+∞),
q ∈ [1,+∞], s ∈ (−1 + 1

p
, 1
p
),

Ḣs,p
(
Rn

+

)
= Ḣs,p

0

(
Rn

+

)
, Ḃs

p,q

(
Rn

+

)
= Ḃs

p,q,0

(
Rn

+

)
.(1.25)

We also provide an additional interpolation inequality.

Lemma 1.8. — Let 1 < p0, p1 < +∞, s0, s1 ∈ R, such that sj > −1 + 1/pj,
j ∈ {0, 1}, and (Cs0,p0) is satisfied. For θ ∈ (0, 1), we set s := (1 − θ)s0 + θs1,
1/p := (1− θ)/p0 + θ/p1.
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Then, for all u ∈ Ḣs0,p0(Rn
+)∩ Ḣs1,p1(Rn

+), we have u ∈ Ḣs,p(Rn
+), with the estimate

∥u∥Ḣs,p(Rn
+) ≲s,p,n,θ ∥u∥(1−θ)

Ḣs0,p0(Rn
+)∥u∥

θ
Ḣs1,p1(Rn

+).

A similar result holds for Besov spaces, replacing (Ḣs0,p0 , Ḣs1,p1) and the condition
(Cs0,p0) by (Ḃs0

p0,q0 , Ḃ
s1
p1,q1) and the condition (Cs0,p0,q0).

Proof. — Let u ∈ Ḣs0,p0(Rn
+) ∩ Ḣs1,p1(Rn

+), then the extension operator E from
[Gau24b, Corollary 3.4], is such that Eu ∈ Ḣs0,p0(Rn) ∩ Ḣs1,p1(Rn). Therefore,
by [Gau24b, Proposition 2.2 (vii), Corollary 3.4] and the definition of function
spaces by restriction, one obtains

∥u∥Ḣs,p(Rn
+) ⩽ ∥Eu∥Ḣs,p(Rn) ≲s,p,n,θ ∥Eu∥(1−θ)

Ḣs0,p0 (Rn)∥Eu∥
θ
Ḣs1,p1 (Rn)

≲s,p,n,θ ∥u∥(1−θ)
Ḣs0,p0(Rn

+)∥u∥
θ
Ḣs1,p1(Rn

+).

This ends the proof. □

1.2.6. Operators on Sobolev and Besov spaces

We introduce domains for an operator A acting on Sobolev or Besov spaces,
denoting

• Ds
p(A) (resp. Ḋs

p(A)) its domain on Hs,p (resp. Ḣs,p);
• Ds

p,q(A) (resp. Ḋs
p,q(A)) its domain on Bs

p,q (resp. Ḃs
p,q);

• Dp(A) = D0
p(A) = Ḋ0

p(A) its domain on Lp.
Similarly, Ns

p(A), Ns
p,q(A) will stand for its nullspace on Hs,p and Bs

p,q, and range
spaces will be given respectively by Rs

p(A) and Rs
p,q(A). We replace N and R by Ṅ

and Ṙ for their corresponding sets on homogeneous function spaces.
If the operator A has different realizations depending on various function spaces

and on the considered open set, we may write its domain D(A,Ω), and similarly for
its nullspace N and range space R. We omit the open set Ω if there is no possible
confusion.
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2. Hodge Laplacians, Hodge decompositions and
Hodge–Stokes operators

This section is dedicated to the study of Hodge Laplacians, the Hodge decomposi-
tion and Hodge–Stokes operators, on Sobolev and Besov spaces on Rn and Rn

+.
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We will first introduce here the formalism of differential forms in the Euclidean
setting. Resolvent estimates for the Hodge Laplacian and Hodge–Stokes like oper-
ators on the whole space will follow from standard Fourier and Harmonic analysis,
from which we will deduce the related Hodge decomposition on Rn as well as the
boundedness of holomorphic functional calculus for each operator.

Secondly, we are going to give all corresponding similar results for the Hodge
Laplacians, the Hodge decomposition and Hodge–Stokes operators on the half-space
Rn

+. Those results are going to be built from what happens on the whole space Rn,
mimicking the behavior of Dirichlet and Neumann Laplacians on the half-space,
see [Gau24b, Section 5].

2.1. Differential forms on Euclidean space, and corresponding function
spaces

Here Ω stands for a domain of Rn with at least, if not empty, Lipschitz boundary.
The open set Ω will be specified later on to be either, the whole space Rn or the
half-space Rn

+. Recall briefly that ∂Rn = ∅, and ∂Rn
+ = Rn−1 × {0}. We also recall

that the outer normal unit at ∂Rn
+ is ν = −en, where (ek)k∈ [[1,n]] is the canonical basis

of Rn, identified with its dual basis denoted by (dxk)k∈ [[1,n]], where dxk(ej) = 1{k}(j),
(k, j) ∈ [[1, n]]2.

Following [MM18, Mon21], we introduce the exterior derivative d := ∇∧ =∑n
k=1 ∂xk

ek∧ and the interior derivative (or coderivative) δ := −∇⌟ = −∑n
k=1 ∂xk

ek⌟
acting on differential forms on a domain Ω ⊂ Rn, i.e. acting on functions defined on
Ω which take values in the complexified exterior algebra Λ = Λ0 ⊕ Λ1 ⊕ · · · ⊕ Λn of
Rn. We allow us a slight abuse of notation: here we will not distinguish vectors of
Rn, vector fields, and 1-differential forms.

We also recall that for k ∈ [[0, n]], u ∈ Λk can be uniquely determined by (uI)I ∈ Ik
n
∈

C(n
k) such that

u =
∑
I ∈ Ik

n

uI dxI ,

where Ikn = {(ℓj)j ∈ [[1,k]] ∈ [[1, n]]k | ℓj < ℓj+1}, with ∥Ikn∥ =
(
n
k

)
, and uI and dxI

stands respectively for uℓ1ℓ2...ℓk and dxℓ1 ∧ dxℓ2 ∧ . . . ∧ dxℓk whenever I = (ℓj)j ∈ [[1,k]].
One may also notice that such representation of k-differential forms with increasing

index is possible due to symmetry properties (i.e. dxℓ ∧ dxk = −dxk ∧ dxℓ for all
k, ℓ ∈ [[1, n]]).

In particular, remark that Λ0 ≃ C, the space of complex scalars, and more generally
Λk ≃ C(n

k), so that Λ ≃ C2n . We also set Λℓ = {0} if ℓ < 0 or ℓ > n.
On the exterior algebra Λ, the basic operations are

(i) the exterior product ∧ : Λk × Λℓ → Λk+ℓ,
(ii) the interior product ⌟ : Λk × Λℓ → Λℓ−k,
(iii) the Hodge star operator ⋆ : Λℓ → Λn−ℓ,
(iv) the inner product ⟨·, ·⟩ : Λℓ × Λℓ → C.
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If a ∈ Λ1, u ∈ Λℓ and v ∈ Λℓ+1, then

⟨a ∧ u, v⟩ = ⟨u, a⌟v⟩.

For more details, we refer to, e.g., [AM04, Section 2] and [CM10, Section 3], noting
that both papers contain some historical background (and being careful that δ has
the opposite sign in [AM04]). One may also consult [DC94] for an introduction from
the euclidean setting point of view, and [Jos11, Section 1-3] for basic and usual
properties in the more general Riemannian setting(7) . We recall the relation between
d and δ via the Hodge star operator:

⋆δu = (−1)ℓd(⋆u) and ⋆ du = (−1)ℓ−1δ(⋆u) for an ℓ-form u.

In dimension n = 3, this gives (see [CM10]) for a vector a ∈ R3 identified with a
1-form

• u scalar, interpreted as 0 -form: a ∧ u = ua, a⌟u = 0;
• u scalar, interpreted as 3 -form: a ∧ u = 0, a⌟u = ua;
• u vector, interpreted as 1 -form: a ∧ u = a× u, a⌟u = a · u;
• u vector, interpreted as 2 -form: a ∧ u = a · u, a⌟u = −a× u.

From now and until the end of the present paper, if p ∈ (1,+∞), q ∈ [1,+∞],
s ∈ R, k ∈ [[0, n]] and Xs ∈ {Hs,p, Ḣs,p, Bs

p,q, Ḃs
p,q}, then Xs(Ω,Λk) stands for

k-differential forms whose coefficients lie in Xs(Ω), i.e. Xs(Ω,Λk) ≃ Xs(Ω,C(n
k)).

One may also consider similarly Xs
0(Ω,Λk).

Operators d and δ are differential operators such that d2 = d◦d = 0 and δ2 = δ ◦ δ
= 0, and each of them are bounded seen as linear operators Xs(Ω,Λ) −→ Xs−1(Ω,Λ).

We recall the following integration by parts formula, for all u, v ∈ S(Ω,Λ),
∫

Ω
⟨du(x), v(x)⟩dx =

∫
Ω
⟨u(x), δv(x)⟩dx+

∫
∂Ω
⟨u(x), ν⌟v(x)⟩dσx,(2.1) ∫

Ω
⟨δu(x), v(x)⟩dx =

∫
Ω
⟨u(x), dv(x)⟩dx+

∫
∂Ω
⟨u(x), ν ∧ v(x)⟩dσx,(2.2)

which are true since we are in the Euclidean setting and where ν is the outer unit
normal identified as a 1-form. More generally, for all T ∈ D′(Ω,Λk) ≃ D′(Ω,C(n

k)),
k ∈ [[0, n]], we define

〈
dT, ϕ

〉
Ω

:=
〈
T, δϕ

〉
Ω

for all ϕ ∈ C∞
c

(
Ω,Λk+1

)
,〈

δT, ψ
〉

Ω
:=
〈
T, dψ

〉
Ω

for all ψ ∈ C∞
c

(
Ω,Λk−1

)
.

(7) Notice that the Riemannian setting presented by Jost deals with compact manifold but a lot of
computations remain true in their full generality, due to local behavior of each operation (Hodge
star operator, exterior and interior products etc.)
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In particular, one may see those operators as unbounded ones and introduce their
respective domains on Lp(Ω,Λk), k ∈ [[0, n]], denoted by Dp(d,Λk) and Dp(δ,Λk)
defined as

Dp

(
d,Λk

)
:=
{
u ∈ Lp

(
Ω,Λk

) ∣∣∣ du ∈ Lp
(
Ω,Λk+1

)}
and Dp

(
δ,Λk

)
:=
{
u ∈ Lp

(
Ω,Λk

) ∣∣∣ δu ∈ Lp
(
Ω,Λk−1

)}
,

as well as their ranges

Rp

(
d,Λk

)
:=
{
v ∈ Lp

(
Ω,Λk

) ∣∣∣ v = du, u ∈ Dp

(
d,Λk−1

)}
and Rp

(
δ,Λk

)
:=
{
v ∈ Lp

(
Ω,Λk

) ∣∣∣ v = δu, u ∈ Dp

(
d,Λk+1

)}
.

We can introduce their corresponding counterparts on homogeneous Sobolev spaces
scales, Ḋs

p(d,Λk) on Ḣs,p, the same goes for inhomogeneous Sobolev spaces Ds
p(d,Λk)

on Hs,p. The same goes with the interior derivative δ instead of d. One may proceed
in a similar fashion considering their domains on inhomogeneous and homogeneous
Besov spaces.

As a sequence of (densely defined but not necessarily closed) unbounded operators,
we get:

d : Xs(Ω,Λ0) −→ Xs(Ω,Λ1) −→ Xs(Ω,Λ2) −→ . . . −→ Xs(Ω,Λn−1) −→ Xs(Ω,Λn) −→ 0
0 ←− Xs(Ω,Λ0) ←− Xs(Ω,Λ1) ←− Xs(Ω,Λ2) ←− . . . ←− Xs(Ω,Λn−1) ←− Xs(Ω,Λn) : δ.

In dimension n = 3, one can specialize, by means of the identification Λk ≃ C(3
k), as

d : Xs(Ω,C) ∇−→ Xs(Ω,C3) curl−→ Xs(Ω,C3) div−→ Xs(Ω,C) −→ 0
0 ←− Xs(Ω,C) −div←− Xs(Ω,C3) curl←− Xs(Ω,C3) −∇←− Xs(Ω,C) : δ.

Thus for arbitrary dimension n, the operator d restricted to its action on Xs(Ω,Λ1),
with value in Xs−1(Ω,Λ2), and δ restricted to its action on Xs(Ω,Λn−1), with value in
Xs−1(Ω,Λn−2), are fair consistent generalizations of the curl operator on R3. Since
in dimension n higher than 4, n − 1 ̸= 2, we also have to distinguish their dual
operators: the operator d restricted to its action on Xs(Ω,Λn−2) and the operator δ
restricted to its action on Xs(Ω,Λ2) which are fair consistent generalizations of the
dual operator tcurl (usually fully identified with the curl operator) on R3.

We can use (2.1) and (2.2) to consider adjoints of d and δ in the sense of maxi-
mal adjoint operators in the Hilbert space L2(Ω,Λ), so that we will see later, e.g.
Lemma 2.11, that they have the following exact description of their domains

D2
(
d∗,Λk

)
=
{
u ∈ d2

(
δ,Λk

) ∣∣∣ ν⌟u|∂Ω = 0
}

and D2
(
δ∗,Λk

)
=
{
u ∈ d2

(
d,Λk

) ∣∣∣ ν ∧ u|∂Ω = 0
}
.

One can also see those adjoint operators through the following L2-closures of un-
bounded operators,(

D2
(
d∗,Λk

)
, d∗

)
= (C∞

c (Ω,Λk) , δ) and
(
D2
(
δ∗,Λk

)
, δ∗
)

= (C∞
c (Ω,Λk) , d).
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Definition 2.1. —
(i) The Hodge–Dirac operator on Ω with tangential boundary condi-

tions is defined as

Dt := δ∗ + δ.

Its square denoted by−∆H,t := D2
t = δ∗δ+δδ∗, is called the (negative) Hodge

Laplacian with relative boundary conditions (also called generalised
Dirichlet boundary conditions)

ν ∧ u|∂Ω = 0, and ν ∧ δu|∂Ω = 0.

The restriction to scalar functions u : Ω −→ Λ0 gives −∆H,tu = δδ∗u =
−∆Du, where −∆D is the Dirichlet Laplacian.

(ii) The Hodge–Dirac operator on Ω with normal boundary conditions
is defined as

Dn := d + d∗.

Its square denoted by −∆H,n := D2
n = dd∗ + d∗d, is called the (negative)

Hodge Laplacian with absolute boundary conditions (also called gen-
eralised Neumann boundary conditions)

ν ⌟ u|∂Ω = 0, and ν ⌟ du|∂Ω = 0.

The restriction to scalar functions u : Ω −→ Λ0 gives −∆H,nu = d∗du =
−∆Nu, where −∆N is the Neumann Laplacian.

Notation 2.2. — When it does not matter (d, D·,−∆H) will stand either for
(δ,Dt,−∆H,t) or (d, Dn,−∆H,n), just writing

−∆H = D2
· = dd∗ + d∗d.

Remark 2.3. — We make three independent remarks:
• The exterior and interior derivatives, as well as the Hodge–Dirac operators

are a priori unbounded operators only defined on the biggest space L2(Ω,Λ).
However, throughout this paper we will use some semantic distortion referring
to Hodge–Dirac operators as “unbounded operators on L2(Ω,Λk)”, k ∈ [[0, n]],
by their natural restriction to differential forms of degree k, such as

Dn : D2
(
Dn,Λk

)
−→ L2

(
Ω,Λk−1

)
⊕ L2

(
Ω,Λk+1

)
= L2

(
Ω,Λk−1 ⊕ Λk+1

)
⊂ L2(Ω,Λ),

and similarly for Dt, even if the range is not a subset of L2(Ω,Λk). This
misuse will remain also for other function spaces that could replace L2. More
generally, for m ∈ [[0, n]], for 0 ⩽ k0 < k1 < . . . < km ⩽ n, we always use the
canonical identification

C∞
c

(
Ω,Λk0 ⊕ . . .⊕ Λkm

)
↪→ C∞

c (Ω,Λ) and D′
(
Ω,Λk0 ⊕ . . .⊕ Λkm

)
↪→ D′(Ω,Λ)

with identically zero coefficients on remaining indices.
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• We recall here that, if Ω ⊂ R3 is an open set with, say at least, Lipschitz
boundary, one has formally for u with value in Λ1 ≃ C3 or Λ2 ≃ C3,

−∆H,tu = −∆H,nu = curl curl u−∇div u
with either one of the following couple of boundary conditions[

u · ν|∂Ω = 0, ν × curl u|∂Ω = 0
]

or
[
u× ν|∂Ω = 0, (div u)ν|∂Ω = 0

]
.

• In the case of Ω = Rn, notice that no boundary value comes in, hence d∗ = δ,
δ∗ = d, so that

D· = Dt = Dn = (d + δ),
and −∆H = −∆H,t = −∆H,n = (d + δ)2 = dδ + δd.

Definition 2.4. —
(i) The orthogonal projector defined on L2(Ω,Λk) onto N2(d∗,Λk) is denoted by

P and called the generalized Helmholtz–Leray (or Leray) projector.
(ii) The (bounded) orthogonal projector defined on L2(Ω,Λk) onto N2(δ,Λk) is

denoted by Q.
(iii) For p ∈ (1,+∞), s ∈ R and k ∈ [[0, n]], we say that Hs,p(Ω,Λk) admits a

Hodge decomposition if (Ds
p(d,Λk), d), (Ds

p(δ,Λk), δ) and their respective
adjoints are closable and

Hs,p
(
Ω,Λk

)
= Ns

p

(
d,Λk

)
⊕ Rs

p (d∗,Λk),

= Rs
p (d,Λk)⊕ Ns

p

(
d∗,Λk

)
,

(Hs
p)

holds in the topological sense. We keep the same definition of the Hodge
decomposition on other function spaces replacing (Hs,p,Ds

p,Rs
p,Ns

p) by either
(Ḣs,p, Ḋs

p, Ṙs
p, Ṅs

p), (Bs
p,q, dsp,q,Rs

p,q,Ns
p,q), or even by (Ḃs

p,q, Ḋs
p,q, Ṙs

p,q, Ṅs
p,q), with

q ∈ [1,+∞].

One can notice that in the case of vector fields (identified with 1-forms, i.e.
L2(Ω,Λ1) ≃ L2(Ω,Cn)), we can identify P as the usual Helmholtz–Leray projec-
tor on divergence free vector fields with null normal trace at the boundary

P : L2 (Ω,Cn) −→ L2
σ(Ω) =

{
u ∈ L2 (Ω,Cn)

∣∣∣ div u = 0, u · ν|∂Ω = 0
}
.

It gives the following classical orthogonal, topological, Hodge decomposition, see
[Soh01, Chapter 2, Section 2.5],

L2 (Ω,Cn) = L2
σ(Ω)

⊥
⊕ ∇Ḣ1(Ω,C),

for any sufficiently nice domains Ω, say for instance with uniform Lipschitz boundary,
see [Soh01, Lemma 2.5.3].

Before investigating the Hodge decomposition and the functional analytic proper-
ties of the Hodge Laplacian on differential forms on function spaces in Rn

+, we want
to know a bit more about the whole space case. In the next subsection, devoted to
the whole space, we gather well known facts and results which lack explicit references
in the literature to the best of author’s knowledge.
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2.2. The case of the whole space

On the whole space Rn the action of the Laplacian and the Hodge decomposition
for vector fields is well known in the literature on usual spaces as Lebesgue spaces
Lp(Rn,Cn), p ∈ (1,+∞), and so is the case of inhomogeneous and homogeneous
Sobolev and Besov spaces. Our main goal here is to extend and summarize those
results with the formalism of differential forms.

To do so, we introduce an extension of the Fourier transform to differential forms
whose coefficients lie in the space of complex valued Schwartz functions S(Rn,C), or
in the space of tempered distribution S′(Rn,C).

• For all u ∈ L1(Rn,Λk) ≃ L1(Rn,C(n
k)), k ∈ [[0, n]], we define

Fu :=
∑
I ∈ Ik

n

FuI dξI ∈ C0
0

(
Rn,Λk

)
.

Hence, as in the scalar valued case, the Fourier transform F induces a topo-
logical automorphism of S(Rn,Λk) ≃ S(Rn,C(n

k)).
• For k ∈ [[0, n]], we write S′(Rn,Λk) := (S(Rn,Λk))′ ≃ S′(Rn,C(n

k)). Similarly,
the Fourier transform F is an automorphism of S′(Rn,Λk).
• For all T ∈ S′(Rn,Λk), k ∈ [[0, n]], we define〈

dT, ϕ
〉
Rn

:=
〈
T, δϕ

〉
Rn

for all ϕ ∈ S
(
Rn,Λk+1

)
,〈

δT, ψ
〉
Rn

:=
〈
T, dψ

〉
Rn

for all ψ ∈ S
(
Rn,Λk−1

)
.

The following lemma is straightforward and fundamental for our analysis.

Lemma 2.5. — For all u ∈ S(Rn,Λk), k ∈ [[0, n]], for all ξ ∈ Rn,

F[du](ξ) = iξ ∧ Fu(ξ) and F[δu](ξ) = −iξ ⌟ Fu(ξ).

Remark 2.6. — This is somewhat consistent, when n = 3, with formulas like

F[curl u](ξ) = iξ × Fu(ξ) and F[div u](ξ) = iξ · Fu(ξ), u ∈ S
(
R3,C3

)
, ξ ∈ R3.

From there, the identity for all differential forms u of degree k, and all vector
v ∈ Rn,

v ∧ (v ⌟ u) + v ⌟ (v ∧ u) = |v|2 u,

with the use of Lemma 2.5 yields with Remark 2.3 that, for all u ∈ S′(Rn,Λk),
k ∈ [[0, n]],

F[−∆Hu](ξ) = F[(δd + dδ)u](ξ) = iξ ∧ (−iξ ⌟ u) +−iξ ⌟ (iξ ∧ u)
= |ξ|2 · Fu(ξ) = F[−∆u](ξ).

Hence, the Hodge Laplacian on the whole space is nothing but the scalar Laplacian
applied separately to each component of a differential form so that its properties are
carried over by the scalar Laplacian. We state then a very well known result adapted
to our setting.
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Before the statement, we recall that, for 1 < p, p̃ < +∞, 1 ⩽ q, q̃ ⩽ +∞, s, α ∈ R,
the intersection spaces[

Ḣs,p ∩ Ḣα,p̃
]

(Rn,Λ) ,
[
Ḃs
p,q ∩ Ḃα

p̃,q̃

]
(Rn,Λ) ⊂ S′

h (Rn,Λ)

are complete whenever (Cs,p) is satisfied for Sobolev spaces, and when (Cs,p,q) is
satisfied for Besov spaces. See [Gau24b, Lemma 2.5] and [BCD11, Proposition 2.17].

Theorem 2.7. — Let p, p̃ ∈ (1,+∞), q, q̃ ∈ [1,+∞], s, α ∈ R, and k ∈ [[0, n]].
The Hodge Laplacian is an injective operator on S′

h(Rn,Λk), and satisfies the following
properties

(i) For f ∈ S′
h(Rn,Λk), consider the problem

−∆u = f in Rn.

(a) If f ∈ [Ḣs,p ∩ Ḣα,p̃](Rn,Λk), and (Cs+2,p) is satisfied, then there exists a
unique solution u ∈ [Ḣs+2,p ∩ Ḣα+2,p̃](Rn,Λk) with the estimates,

∥dδu∥Ḣs,p(Rn) + ∥δdu∥Ḣs,p(Rn) ≲p,n,s

∥∥∥∇2u
∥∥∥

Ḣs,p(Rn)
≲p,n,s ∥f∥Ḣs,p(Rn),

∥dδu∥Ḣα,p̃(Rn) + ∥δdu∥Ḣα,p̃(Rn) ≲p̃,n,α

∥∥∥∇2u
∥∥∥

Ḣα,p̃(Rn)
≲p̃,n,α ∥f∥Ḣα,p̃(Rn).

In particular, −∆ : [Ḣs+2,p ∩ Ḣα+2,p̃](Rn,Λk) −→ [Ḣs,p ∩ Ḣα,p̃](Rn,Λk) is
an isomorphism of Banach spaces.

(b) The result still holds if we replace (Ḣs,p, Ḣα,p̃, Ḣs+2,p, Ḣα+2,p̃) by the Besov
spaces (Ḃs

p,q, Ḃα
p̃,q̃, Ḃs+2

p,q , Ḃα+2
p̃,q̃ ).

(ii) For µ ∈ [0, π), λ ∈ Σµ, f ∈ S′(Rn,Λk), consider the problem

λu−∆u = f in Rn.

(a) If f ∈ Ḣs,p(Rn,Λk), then the resolvent problem above admits a unique
solution u ∈ [Ḣs,p ∩ Ḣs+2,p](Rn,Λk) with the estimates,

|λ| ∥u∥Ḣs,p(Rn) + |λ| 12∥∇u∥Ḣs,p(Rn) +
∥∥∥∇2u

∥∥∥
Ḣs,p(Rn)

≲p,n,s,µ ∥f∥Ḣs,p(Rn),

|λ|
1
2∥(d + δ)u∥Ḣs,p(Rn) + ∥dδu∥Ḣs,p(Rn) + ∥δdu∥Ḣs,p(Rn) ≲p,n,s,µ ∥f∥Ḣs,p(Rn).

In particular, λI − ∆ : [Ḣs,p ∩ Ḣs+2,p](Rn,Λk) −→ Ḣs,p(Rn,Λk) is an
isomorphism of Banach spaces whenever (Cs,p) is satisfied.
Furthermore, the result still holds, replacing (Ḣs,p, Ḣs,p ∩ Ḣs+2,p) by
(Hs,p,Hs+2,p) without any restriction on (s, p).

(b) The result above still holds replacing (Ḣs,p, Ḣs,p ∩ Ḣs+2,p) and (Cs,p) by
(Ḃs

p,q, Ḃs
p,q∩ Ḃs+2

p,q ) and (Cs,p,q), or even by (Bs
p,q,Bs+2

p,q ) without any restric-
tion on (s, p, q).

(iii) For any µ ∈ (0, π), the operator −∆ admits a H∞(Σµ)-functional calculus on
the function spaces: [Ḣs,p ∩ Ḣα,p̃](Rn,Λk), (Cs,p) being satisfied, Ḃs

p,q(Rn,Λk),
(Cs,p,q) being satisfied, and on both Hs,p(Rn,Λk) and Bs

p,q(Rn,Λk) without any
restriction on (s, p, q).
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Proof. —
Step 1: the scalar Laplacian is injective on S′

h(Rn,C). For f ∈ S′(Rn,C), let u,
v ∈ S′

h(Rn,C), such that

∀ ϕ ∈ S(Rn,C),
〈
u,−∆ϕ

〉
Rn

=
〈
f, ϕ

〉
Rn

=
〈
v,−∆ϕ

〉
Rn
.

Therefore, it follows that w := u− v ∈ S′
h(Rn,C) satisfies

∀ ϕ ∈ S(Rn,C),
〈
w,−∆ϕ

〉
Rn

= 0.

Hence, one may apply the Fourier transform, to obtain
∀ ϕ ∈ S(Rn,C),

〈
Fw, |·|2 F−1ϕ

〉
Rn

= 0,

so in particular, for test function in the form ϕ := F[ ψ
∥·∥2 ], with ψ ∈ C∞

c (Rn \ {0},C)
(notice that one can see that F[ ψ|·|2 ] ∈ S(Rn,C)), we deduce

∀ ψ ∈ C∞
c (Rn \ {0},C),

〈
Fw,ψ

〉
Rn

= 0.

Following the proof of [DHMT21, Lemma 3.6], we conclude that w = 0 (since
w ∈ S′

h(Rn,C) and S′
h(Rn,C) does not contain any polynomial), so u = v in S′(Rn,C).

Step 2: • For the point (i), it suffices to follow [DM15, Lemma 3.1.1]: In Step 1,
we have proved uniqueness of solution in S′

h(Rn,Λ), therefore it suffices to construct
a solution. For f ∈ S0(Rn,Λ), the solution is given by

u = F−1
[
ξ 7→ Ff(ξ)

|ξ|2

]
.

We have the estimates∥∥∥∇2u
∥∥∥

Ḣs,p(Rn)
≲p,n,s ∥f∥Ḣs,p(Rn) and ∥∇2u∥Ḣα,p̃(Rn) ≲p̃,n,α ∥f∥Ḣα,p̃(Rn).

Since [Ḣs,p ∩ Ḣα,p̃](Rn,Λ), [Ḣs+2,p ∩ Ḣα+2,p̃](Rn,Λ) ⊂ S′
h(Rn,Λ) are both complete

with S0(Rn,Λ) as a dense subspace, see [Gau24b, Lemma 2.5], the result still holds
for all f ∈ [Ḣs,p ∩ Ḣα,p̃](Rn,Λ).

For the case of Besov spaces, we have to proceed a bit differently, since q and q̃
may take the value +∞. First, when q < +∞, as before, we can proceed by density
of S0(Rn,Λ). When q = +∞ the result follows from real interpolation. Thus, when
(Cs+2,p,q) is satisfied, we have an isomorphism

−∆ : Ḃs+2
p,q (Rn,Λ) −→ Ḃs

p,q(Rn,Λ).

Now, let f ∈ Ḃs
p,q(Rn,Λ) ∩ Ḃα

p̃,q̃(Rn,Λ) ⊂ S′
h(Rn), then there exists a unique u ∈

Ḃs+2
p,q (Rn,Λ) ⊂ S′

h(Rn) such that
−∆u = f.

We want to show that u ∈ Ḃα+2
p̃,q̃ (Rn,Λ). Since f ∈ Ḃα

p̃,q̃(Rn,Λ), applying the
Littlewood–Paley decomposition and Bernstein’s inequality [BCD11, Lemma 2.1],
one obtains

22j
∥∥∥∆̇ju

∥∥∥
Lp̃(Rn)

∼p̃,n
∥∥∥∆̇j[∆u]

∥∥∥
Lp̃(Rn)

=
∥∥∥∆̇jf

∥∥∥
Lp̃(Rn)

.
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Finally, taking the ℓq̃α(Z)-norm on both sides yields
∥u∥Ḃα+2

p̃,q̃ (Rn) ∼p̃,n,α ∥f∥Ḃα
p̃,q̃(Rn).

• For the point (ii), see [ABHN11, Example 3.7.6, Theorem 3.7.11] which imply
that for µ ∈ [0, π), all p ∈ [1,+∞], all λ ∈ Σµ, all f ∈ Lp(Rn,Λ),∥∥∥λ(λI−∆)−1f

∥∥∥
Lp(Rn)

≲p,n,µ ∥f∥Lp(Rn).

We also have (λI−∆)−1C0
0(Rn,Λ) ⊂ C0

0(Rn,Λ). Moreover, it is not difficult to show
that

f 7−→
[
ξ 7→ f(ξ)

λ+ |ξ|2

]
maps continuously S(Rn,Λ) into itself boundedly. Therefore, the conjugation by the
Fourier transform implies that

(λI−∆)−1 : S(Rn,Λ) −→ S(Rn,Λ)
is well-defined and bounded, and by duality so is

(λI−∆)−1 : S′(Rn,Λ) −→ S′(Rn,Λ).
Finally, we also have (λI−∆)−1S′

h(Rn,Λ) ⊂ S′
h(Rn,Λ). Indeed, for u ∈ S′

h(Rn,Λ),
Θ ∈ C∞

c (Rn), we have∥∥∥Θ(ζD)(λI−∆)−1u
∥∥∥

L∞(Rn)

=
∥∥∥(λI−∆)−1Θ(ζD)u

∥∥∥
L∞(Rn)

≲n,µ
1
|λ|
∥Θ(ζD)u∥L∞(Rn) −−−−→

ζ→+∞
0.

The estimates are then direct consequences of the Lp-ones. Let f ∈ Ḣs,p(Rn,Λ),
we have u := (λI−∆)−1f ∈ S′

h(Rn), and by the Fatou Lemma

∥u∥Ḣs,p(Rn) ⩽ lim inf
N→+∞

∥∥∥∥∥∥
N∑

j=−N
(−∆) s

2 ∆̇ju

∥∥∥∥∥∥
Lp(Rn)

⩽ lim inf
N→+∞

∥∥∥∥∥∥
N∑

j=−N
(λI−∆)−1(−∆) s

2 ∆̇jf

∥∥∥∥∥∥
Lp(Rn)

≲p,n,µ
1
|λ|

lim inf
N→+∞

∥∥∥∥∥∥
N∑

j=−N
(−∆) s

2 ∆̇jf

∥∥∥∥∥∥
Lp(Rn)

≲p,n,µ
1
|λ|
∥f∥Ḣs,p(Rn).

For the remaining estimates in the case of homogeneous Sobolev spaces, one may
proceed similarly. Note that we only took advantage of the completeness of Lebesgue
spaces up to now.

For Besov spaces, we have by Bernstein’s inequality [BCD11, Lemma 2.1],∥∥∥∆̇ju
∥∥∥

Lp(Rn)
=
∥∥∥(λI−∆)−1∆̇jf

∥∥∥
Lp(Rn)

≲p,n,µ
1
|λ|

∥∥∥∆̇jf
∥∥∥

Lp(Rn)
,
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but, we also have

22j
∥∥∥∆̇ju

∥∥∥
Lp(Rn)

∼p,n
∥∥∥∆̇j[∆u]

∥∥∥
Lp(Rn)

=
∥∥∥∆(λI−∆)−1∆̇jf

∥∥∥
Lp(Rn)

≲p,n,µ

∥∥∥∆̇jf
∥∥∥

Lp(Rn)
.

Therefore, taking the ℓqs(Z)-norms yields the desired estimates
|λ|∥u∥Ḃs

p,q(Rn) ≲p,n,µ ∥f∥Ḃs
p,q(Rn) and ∥u∥Ḃs+2

p,q (Rn) ≲p,n,µ ∥f∥Ḃs
p,q(Rn).

The remaining estimates follow the same lines.
• For the point (iii), the result on Lp(Rn,C) is a consequence of a more general

one which is [Haa06, Proposition 8.3.4]. □

Similarly, thanks again to standard Fourier analysis, we can introduce appropriate
differential form-valued versions of Riesz transforms for the Hodge Laplacian. Their
boundedness on appropriate function spaces are again carried over by their scalar
analogue, and a direct consequence will be an explicit formula for our generalized
Leray projector P on Rn.

To do so, we notice that one can write associated Fourier symbols, thanks to
Lemma 2.5, to obtain

d(−∆)− 1
2 =

n∑
k=1

Rkek ∧ and δ(−∆)− 1
2 = −

n∑
k=1

Rkek ⌟

where for k ∈ [[1, n]], Rk is the kth Riesz transform on Rn given by the Fourier symbol
ξ 7→ iξk

|ξ| , which is well known to be bounded on Lp(Rn,C), 1 < p < +∞, see [Ste70,
Chapter 2, Theorem 1 & Chapter 3, Section 1]. Therefore, the next proposition
follows naturally.

Proposition 2.8. — Let p, p̃ ∈ (1,+∞), q, q̃ ∈ [1,+∞], s, α ∈ R, and let
k ∈ [[0, n]]. The operators

d(−∆)− 1
2 , δ(−∆)− 1

2 , dδ(−∆)−1 and δd(−∆)−1

are all well-defined bounded linear operators,
• On [Ḣs,p ∩ Ḣα,p̃](Rn,Λ), and on [Ḃs

p,q ∩ Ḃα
p̃,q̃](Rn,Λ), (Cs,p) being satisfied in

case of Sobolev spaces, (Cs,p,q) in the case of Besov spaces. Moreover, we have
decoupled estimates,

∥Tu∥Xs(Rn) ≲p,n,s ∥u∥Xs(Rn)

and
∥Tu∥Xα(Rn) ≲p,n,α ∥u∥Xα(Rn), u ∈ [Xs ∩ Xα]

(
Rn,Λk

)
,

where (Xs,Xα) ∈ {(Ḣs,p, Ḣα,p̃), (Ḃs
p,q, Ḃα

p̃,q̃)} and T denotes any of the operators
above.
• On Hs,p(Rn,Λ), and on Bs

p,q(Rn,Λ), without any restriction on (s, p, q).
Moreover, the following identity holds(

d(−∆)− 1
2 + δ(−∆)− 1

2
)2

= I.
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Theorem 2.9. — Let p ∈ (1,+∞), q ∈ [1,+∞], s ∈ R, and let k ∈ [[0, n]]. The
following hold

(i) The following equality is true, whenever (Cs,p) is satisfied,

Ṅs
p

(
d,Rn,Λk

)
= Ṙs

p (d,Rn,Λk)
∥·∥Ḣs,p(Rn)

,

and still holds replacing d by δ.
(ii) The (generalized) Helmholtz–Leray projector is well-defined and bounded as

a linear map

P : Ḣs,p
(
Rn,Λk

)
−→ Ṅs

p

(
δ,Rn,Λk

)
,

whenever (Cs,p) is satisfied. Moreover, the following identity is true

P = I− d(−∆)−1δ.

(iii) The following Hodge decomposition holds whenever (Cs,p) is satisfied,

Ḣs,p
(
Rn,Λk

)
= Ṅs

p

(
δ,Rn,Λk

)
⊕ Ṅs

p

(
d,Rn,Λk

)
.

Everything above still holds replacing (Ḣs,p, Ṅs
p, Ṙs

p) by either (Ḃs
p,q, Ṅs

p,q, Ṙs
p,q), (Cs,p,q)

being satisfied, (Hs,p,Ns
p,Rs

p) or (Bs
p,q,Ns

p,q,Rs
p,q) without any restriction on (s, p, q).

In case of Besov spaces with q = +∞, the density result of point (i) only holds in
the weak∗ sense.

Remark 2.10. — On Λ1-valued functions identified with vector fields one recovers
the usual well known formula, i.e.

P = I +∇(−∆)−1div .

Proof. —
Step 1: The orthogonal projector P is originally defined only as an operator

P : L2
(
Rn,Λk

)
−→ N2

(
δ,Rn,Λk

)
.

We claim that P is equal to the operator formally given by

P̃ := I− d(−∆)−1δ.

The proof is standard, and works as in the case of vector fields, and then is left to
the reader.

Step 2: Previous step and Proposition 2.8 give that P is bounded Ḣs,p(Rn,Λk).
For u ∈ Ḣs,p(Rn,Λk), v ∈ S(Rn), we regularize with the resolvent, to compute〈

Pu, dv
〉
Rn

= lim
λ→0+

〈
u, dv

〉
Rn
−
〈
d(λI−∆)−1δu, dv

〉
Rn

= lim
λ→0+

〈
u, dv

〉
Rn
−
〈
u, (λI−∆)−1dδdv

〉
Rn

= lim
λ→0+

〈
u, dv

〉
Rn
−
〈
u, (λI−∆)−1(−∆)dv

〉
Rn

=
〈
u, dv

〉
Rn
−
〈
u, dv

〉
Rn

= 0.
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Hence PḢs,p(Rn,Λk) ⊂ Ṅs
p(δ,Rn,Λk), and we even have P|Ṅs

p(δ,Rn,Λk)
= I, so that

PḢs,p
(
Rn,Λk

)
= Ṅs

p

(
δ,Rn,Λk

)
.

Similarly, [I− P]Ḣs,p(Rn,Λk) ⊂ Ṅs
p(d,Rn,Λk), and [I− P]|Ṅs

p(d,Rn,Λk)
= I, which comes

from
[I− P]u = lim

λ→0+
d(λI−∆)−1δu, u ∈ Ḣs,p

(
Rn,Λk

)
.

This also gives Ṅs
p

(
d,Rn,Λk

)
= Ṙs

p (d,Rn,Λk)
∥·∥Ḣs,p(Rn) .

The proof is straightforward the same for other function spaces. □

2.3. The case of the half-space Rn
+

2.3.1. L2-theory for Hodge Laplacians and the Hodge decomposition

The following lemma is fundamental for the analysis of the L2 theory of the Hodge
Laplacian when one has explicit access to the boundary, and, moreover, several
proofs presented here do not depend on the open set Ω, here Ω = Rn

+, and remain
valid as long as integration by parts formulas (2.1) and (2.2) and partial trace results
for vector fields are available.

Lemma 2.11. — Let k ∈ [[0, n]]. We set

D2
(
δ,Rn

+,Λk
)

:=
{
u ∈ D2

(
δ,Rn

+,Λk
) ∣∣∣∣ ν ⌟ u|∂Rn

+
= 0

}
,

D2
(
d,Rn

+,Λk
)

:=
{
u ∈ D2

(
d,Rn

+,Λk
) ∣∣∣∣ ν ∧ u|∂Rn

+
= 0

}
.

The operator (d2(d,Rn
+,Λk), d) is an unbounded densely defined closed operator,

with adjoint (
D2
(
d∗,Rn

+,Λk+1
)
, d∗

)
=
(
D2
(
δ,Rn

+,Λk+1
)
, δ
)
.(2.3)

Similarly, (d2(δ,Rn
+,Λk), δ) is an unbounded densely defined closed operator, with

adjoint (
D2
(
δ∗,Rn

+,Λk−1
)
, δ∗
)

=
(
D2
(
d,Rn

+,Λk−1
)
, d
)
.(2.4)

Proof. — Closedness is straightforward by Theorem A.1, and the fact that both
are densely defined is straightforward since the space C∞

c (Rn
+,Λk) is contained in

both domains. We just prove the duality identity (2.3), the proof of (2.4) is similar.
Let u ∈ D2(δ,Rn

+,Λk), then for all v ∈ S0(Rn
+,Λk), we can use Theorem A.1, to

obtain that 〈
v, δu

〉
Rn

+
=
〈
dv, u

〉
Rn

+
.

Thus, by Cauchy–Schwarz inequality∣∣∣〈dv, u〉
Rn

+

∣∣∣ ⩽ ∥δu∥L2(Rn
+)∥v∥L2(Rn

+).
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Hence, v 7→ ⟨dv, u⟩Rn
+

extends uniquely as a bounded linear functional on L2(Rn
+,Λk),

so that necessarily (D2(δ,Rn
+,Λk), δ) ⊂ (D2(d∗,Rn

+,Λk+1), d∗).
For the reverse inclusion, let u ∈ D2(d∗,Rn

+,Λk+1), for all v ∈ D2(d,Rn
+,Λk), we

have 〈
v, d∗u

〉
Rn

+
=
〈
dv, u

〉
Rn

+
.

In particular, for v ∈ C∞
c (Rn

+,Λk), it yields that〈
v, d∗u

〉
Rn

+
=
〈
dv, u

〉
Rn

+
=
〈
v, δu

〉
Rn

+
.

Hence, d∗u = δu in D′(Rn
+,Λk), then in L2(Rn

+,Λk), so that for all v ∈ D2(d,Rn
+,Λk),〈

v, δu
〉
Rn

+
=
〈
dv, u

〉
Rn

+
.

From above equality, we apply Theorem A.1 to check ν ⌟ u|∂Rn
+

= 0 and deduce(
D2
(
d∗,Rn

+,Λk+1
)
, d∗

)
⊂
(
D2
(
δ,Rn

+,Λk+1
)
, δ
)
,

the proof being therefore complete. □

In particular, since (D2(d∗,Rn
+,Λk), d∗) and (d2(δ,Rn

+,Λk), δ) are closed operators,
both

N2
(
δ,Rn

+,Λk
)

and N2
(
d∗,Rn

+,Λk
)

are closed subspaces of L2(Rn
+,Λk). Thus, the following orthogonal projections are

well-defined and bounded
P : L2

(
Rn

+,Λk
)
−→ N2

(
d∗,Rn

+,Λk
)
, [I− P] : L2

(
Rn

+,Λk
)
−→ R2 (d,Rn

+,Λk),
Q : L2

(
Rn

+,Λk
)
−→ N2

(
δ,Rn

+,Λk
)
, [I−Q] : L2

(
Rn

+,Λk
)
−→ R2 (δ∗,Rn

+,Λk),

which induce topological Hodge decompositions

L2
(
Rn

+,Λk
)

= R2 (d,Rn
+,Λk)

⊥
⊕ N2

(
d∗,Rn

+,Λk
)
,

= R2 (δ∗,Rn
+,Λk)

⊥
⊕ N2

(
δ,Rn

+,Λk
)
.

(H2)

Lemma 2.12. — For k ∈ [[0, n]], the following Hodge–Dirac operators(
D2
(
Dn,Rn

+,Λk
)
, Dn

)
=
(
D2
(
d,Rn

+,Λk
)
∩D2

(
d∗,Rn

+,Λk
)
, d + d∗

)
,(

D2
(
Dt,Rn

+,Λk
)
, Dt

)
=
(
D2
(
δ∗,Rn

+,Λk
)
∩D2

(
δ,Rn

+,Λk
)
, δ∗ + δ

)
,

are both densely defined closed operators on L2(Rn
+,Λk).

Proof. — Let (uj)j ∈N ⊂ D2(d,Rn
+,Λk)∩D2(d∗,Rn

+,Λk), and (u, v) ∈ L2(Rn
+,Λk)×

L2(Rn
+,Λ) such that it satisfies

uj −−−−→
j→+∞

u and Dnuj −−−−→
j→+∞

v in L2
(
Rn

+

)
.
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By the Hodge decomposition (H2), there exists a unique couple of elements (v0, v1) ∈
R2(d,Rn

+,Λ)×N2(d∗,Rn
+,Λ) such that v = v0 + v1. Since uj goes to u in L2(Rn

+,Λk),
by continuity of involved projectors, and uniqueness of decomposition, it follows that

duj −−−−→
j→+∞

v0 and d∗uj −−−−→
j→+∞

v1 in L2
(
Rn

+,Λ
)
.

But (uj)j ∈N converges to u in L2(Rn
+,Λk), so in particular in distributional sense,

thus necessarily (v0, v1) = (du, d∗u) and v = Dnu, i.e. (D2(Dn,Rn
+,Λk), Dn) is closed

on L2(Rn
+,Λk). The proof ends here since one can reproduce all above arguments for

(D2(Dt,Rn
+,Λk), Dt). □

Proposition 2.13. — The Hodge–Dirac operator (D2(D·,Rn
+,Λ), D·) is an injec-

tive self-adjoint 0-bisectorial operator on L2(Rn
+,Λ) so that it satisfies the following

bound, for all θ ∈ (0, π2 ),

∀ µ ∈ C \ Sθ,
∥∥∥µ(µI +D·)−1

∥∥∥
L2(Rn

+)→L2(Rn
+) ⩽

1
sin(θ) .(2.5)

Moreover, it admits a bounded (H∞(Sθ)-)functional calculus on L2(Rn
+,Λ) with

bound 1, i.e., for all f ∈ H∞(Sθ), u ∈ L2(Rn
+,Λ),

∥f(D·)u∥L2(Rn
+) ⩽ ∥f∥L∞(Sθ) ∥u∥L2(Rn

+) .(2.6)

Remark 2.14. — Proposition 2.13 does not depend on the fact Ω = Rn
+. See [MM18,

Section 2] where the same result is stated for bounded (even weak-)Lipschitz domains.

Proof. — The resolvent bound (2.5) is usual since (D2(D·), D·) is self-adjoint by
construction, see [Haa06, Proposition C.4.2]. The fact that it admits a bounded
holomorphic functional calculus follows from [McI86, Section 10]. □

For k ∈ [[0, n]], the Hodge Laplacian (D(∆H,Rn
+,Λk),−∆H) can be realized on

L2(Rn
+,Λk) by means of densely defined, symmetric, accretive, continuous, closed,

sesquilinear forms on L2(Rn
+,Λk), for

aH : D2
(
aH,Λk

)2
∋ (u, v) 7−→

∫
Rn

+

⟨du(x), dv(x)⟩dx+
∫
Rn

+

⟨δu(x), δv(x)⟩dx(2.7)

with D2(aH,n,Λk) = D2(d,Λk) ∩ D2(d∗,Λk), D2(aH,t) = D2(δ∗,Λk) ∩ D2(δ,Λk), so
that it is easy to see that both are closed, densely defined, non-negative self-adjoint
operators on L2(Rn

+,Λk). See [Ouh05, Chapter 1] for more details about realization of
operators via sesquilinear forms on a Hilbert space. The next theorem is a standard
consequence.

Theorem 2.15. — Let k ∈ [[0, n]]. The operator (D2(∆H,Rn
+,Λk),−∆H) is an

injective non-negative self-adjoint and 0-sectorial operator on L2(Rn
+,Λk), which

admits a H∞(Σθ)-functional calculus for all θ ∈ (0, π).
Moreover, the following hold

(i) D2(∆H,Rn
+,Λk) is a closed subspace of H2,2(Rn

+,Λ);
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(ii) Provided µ ∈ [0, π), for λ ∈ Σµ, f ∈ L2(Rn
+,Λk), then u := (λI − ∆H)−1f

satisfies

|λ| ∥u∥L2(Rn
+) + |λ| 12∥D·u∥L2(Rn

+) + ∥∆u∥L2(Rn
+) ≲µ ∥f∥L2(Rn

+);(2.8)

|λ| ∥u∥L2(Rn
+) + |λ| 12∥∇u∥L2(Rn

+) + ∥∇2u∥L2(Rn
+) ≲n,µ ∥f∥L2(Rn

+);(2.9)

(iii) The following resolvent identity holds for all µ ∈ [0, π), λ ∈ Σµ, f ∈
L2(Rn

+,Λk),

EH(λI−∆H)−1f = (λI−∆)−1EHf.

(For the definition of EH, see (2.10) below.)

Remark 2.16. — In above Theorem 2.15, points (i) and (iii), as well as the esti-
mate (2.9) of point (ii) are the only points that rely on the fact that the considered
open set is Ω = Rn

+, but mainly the point (iii) is used to deduce the previous ones.
The beginning of the statement, as well as (2.8), does not rely on any particular
structure, and remains true on any open set Ω.

Every other result below, in the present subsection about L2-theory of Hodge
Laplacians and the Hodge decomposition, remain true on general domains Ω as long
as one can show that the Hodge Laplacian is injective.

Before proving Theorem 2.15, following [Gau24b, Section 5] for J ∈ {D,N}, we
introduce the following extension operator defined for any measurable function u on
Rn

+, for almost every x = (x′, xn) ∈ Rn:

EDu(x′, xn) :=

u(x′, xn), if (x′, xn) ∈ Rn−1 × R+,

−u(x′,−xn), if (x′, xn) ∈ Rn−1 × R∗
−;

ENu(x′, xn) :=

u(x′, xn), if (x′, xn) ∈ Rn−1 × R+,

u(x′,−xn), if (x′, xn) ∈ Rn−1 × R∗
−.

Now, we specify the definition of the extension operators EH,j, j ∈ {n, t}, on measur-
able functions u : Rn

+ −→ Λk, provided k ∈ [[0, n]], I ∈ Ikn,

(EH,nu)I :=

EDuI , if n ∈ I,
ENuI , if n /∈ I;

and (EH,tu)I :=

ENuI , if n ∈ I,
EDuI , if n /∈ I;

(2.10)

For u : Rn
+ −→ Λk, we also set

ũj := [EH,ju]|Rn
−
.

By construction, for j ∈ {n, t}, s ∈ (−1+1/p, 1/p), p ∈ (1,+∞), the Proposition 1.7
leads to the boundedness of

EH,j : Ḣs,p
(
Rn

+,Λ
)
−→ Ḣs,p(Rn,Λ).(2.11)

The same result holds replacing Ḣs,p by either Hs,p, Bs
p,q, or even by Ḃs

p,q, q ∈ [1,+∞].
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Lemma 2.17. — For all u ∈ D2(d,Rn
+,Λk) (resp. D2(d∗,Rn

+,Λk)), we have

EH,nu ∈ D2
(
d,Rn,Λk

) (
resp. D2

(
δ,Rn,Λk

))
with the formula

dEH,nu = EH,ndu (resp. δEH,nu = EH,nd∗u) .

Proof. — Let u ∈ D2(d,Rn
+,Λk), for v ∈ S(Rn,Λk+1),〈

EH,nu, δv
〉
Rn

=
〈
u, δv

〉
Rn

+
+
〈
ũn, δv

〉
Rn

−

=
〈
du, v

〉
Rn

+
+
〈
(−en) ∧ u, v

〉
∂Rn

+
+
〈
d̃un, v

〉
Rn

−
+
〈
(en) ∧ ũn, v

〉
∂Rn

−

=
〈
du, v

〉
Rn

+
+
〈
d̃un, v

〉
Rn

−

=
〈
EH,ndu, v

〉
Rn
.

Which holds, since (en) ∧ ũn(·, 0) = (en) ∧ u(·, 0).
Now, if u ∈ D2(d∗,Rn

+,Λk), for v ∈ S(Rn,Λk−1),〈
EH,nu, dv

〉
Rn

=
〈
u, dv

〉
Rn

+
+
〈
ũn, dv

〉
Rn

−

=
〈
δu, v

〉
Rn

+
+
〈
(−en) ⌟ u, v

〉
∂Rn

+
+
〈
δ̃un, v

〉
Rn

−
+
〈
(en) ⌟ ũn, v

〉
∂Rn

−

=
〈
δu, v

〉
Rn

+
+
〈
δ̃un, v

〉
Rn

−

=
〈
EH,nd∗u, v

〉
Rn
.

Which holds, since (en) ⌟ ũn(·, 0) = −(en) ⌟ u(·, 0) = 0. □

Proof of Theorem 2.15. — By the realization of the Hodge Laplacian by means of
the sesquilinear form (2.7), we have (D2(∆H,Rn

+,Λk),−∆H) = (D2(D2
· ,Rn

+,Λk), D2
· ).

Thus, as the square of a self-adjoint 0-bisectorial operator, the Hodge Laplacian is
a non-negative self-adjoint 0-sectorial operator on L2(Rn

+,Λk), and it also admits a
bounded holomorphic functional calculus, see for instance [Ege15, Theorem 3.2.20].
In particular, (2.8) in point (ii) holds.

For now, we only consider the case (D2(∆H,n,Rn
+,Λk),−∆H,n), the proof could be

achieved in similar fashion for (D2(∆H,t,Rn
+,Λk),−∆H,t).

For λ ∈ Σµ, µ ∈ (0, π), f ∈ L2(Rn
+,Λk), we set U := (λI−∆)−1EHf ∈ H2,2(Rn,Λk).

By construction, as in the proof of [Gau24b, Proposition 5.1], for I ∈ Ikn we have
UI |∂Rn

+
= 0, provided n ∈ I,

∂xnUI |∂Rn
+

= 0, provided n /∈ I.

Therefore, we obtain first,
ν ⌟ u|∂Rn

+
= −en ⌟ u|∂Rn

+
= (−1)k

∑
1⩽ ℓ1 < ...< ℓk−1 <n

uℓ1ℓ2...ℓk−1n(·, 0) dxℓ1 ∧ . . . ∧ dxℓk−1

= (−1)k
∑

I′ ∈ Ik−1
n−1

uI′,n(·, 0) dxI′ = 0.
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Similarly, we get that
ν ⌟ du|∂Rn

+
= −en ⌟ du|∂Rn

+

= −
n−1∑
j=1

∑
1⩽ ℓ1 < ...< ℓk−1 <n

∂xj
uℓ1...ℓk−1n(·, 0) dxj ∧ dxℓ1 ∧ . . . ∧ dxℓk−1

−
∑

1⩽ ℓ1 < ...< ℓk−1 <ℓk <n

∂xnuℓ1...ℓk(·, 0) dxℓ1 ∧ . . . ∧ dxℓk

= 0.

From above calculations, we deduce that u := U|Rn
+

is such that u ∈ H2,2(Rn
+,Λk) ∩

D2(∆H,n,Rn
+,Λk), and

λu−∆u = f in Rn
+.

Hence, by uniqueness (λI−∆H)−1f = [(λI−∆)−1EHf ]Rn
+
. One may conclude following

the lines of the proof of [Gau24b, Proposition 5.1], using Lemma 2.17. □

Lemma 2.18. — Provided k ∈ [[0, n]], µ ∈ (0, π), λ ∈ Σµ, the following commuta-
tion identities hold,

(1) P(λI−∆H,n)−1f = (λI−∆H,n)−1Pf , for all f ∈ L2(Rn
+,Λk);

(2) d(λI−∆H,n)−1f = (λI−∆H,n)−1df , for all f ∈ D2(d,Rn
+,Λk);

(3) d∗(λI−∆H,n)−1f = (λI−∆H,n)−1d∗f , for all f ∈ D2(d∗,Rn
+,Λk).

Every above identities still hold replacing (n,P, d, d∗) by (t,Q, δ∗, δ).

Remark 2.19. — Lemma 2.18 does not depend on the domain Ω = Rn
+ since

its proof only relies on the use of the sesquilinear form associated with the Hodge
Laplacian.

Proof. —
Step 0: For u ∈ D2(Dn,Rn

+,Λk), we have Pu ∈ D2(Dn,Rn
+,Λk). Indeed, by def-

inition Pu ∈ N2(d∗,Rn
+,Λk). Hence, it remains to prove Pu ∈ D2(d,Rn

+,Λk). For
φ ∈ C∞

c (Rn
+,Λ), we have〈

Pu, δφ
〉
Rn

+
=
〈
Pu, d∗φ

〉
Rn

+
=
〈
u,Pd∗φ

〉
Rn

+
=
〈
u, d∗φ

〉
Rn

+
=
〈
du, φ

〉
Rn

+
.

Therefore, dPu = du in D′(Rn
+,Λ), hence dPu ∈ L2(Rn

+,Λ).
Now, for all u, v ∈ D2(Dn,Rn

+,Λ), since dPw = dw and d∗Pw = 0 for w ∈ {u, v},
we have

aH,n(Pu, v) =
〈
dPu, dv

〉
Rn

+
+
〈
d∗Pu, d∗v

〉
Rn

+

=
〈
du, dv

〉
Rn

+

=
〈
du, dPv

〉
Rn

+

=
〈
du, dPv

〉
Rn

+
+
〈
d∗u, d∗Pv

〉
Rn

+

= aH,n(u,Pv).
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Step 1: Let µ ∈ (0, π), λ ∈ Σµ, and f ∈ L2(Rn
+,Λk), we set u := (λI−∆H,n)−1f ,

then for all v ∈ D2(Dn,Rn
+,Λ),

λ
〈
Pu, v

〉
Rn

+
+ aH,n(Pu, v) = λ

〈
u,Pv

〉
Rn

+
+ aH,n(u,Pv)

=
〈
f,Pv

〉
Rn

+

=
〈
Pf, v

〉
Rn

+
.

Hence, by uniqueness of the solution to the resolvent problem in L2(Rn
+,Λ), we

deduce Pu = (λI−∆H,n)−1Pf .
Step 2: We use the same notations as the ones introduced in Step 1, but we

assume that f ∈ D2(d,Rn
+,Λk). For all v ∈ D2(∆H,n,Rn

+,Λ), since d2 = 0, as well as
(d∗)2 = 0, 〈

df, v
〉
Rn

+
=
〈
f, d∗v

〉
Rn

+

= λ
〈
u, d∗v

〉
Rn

+
+ aH,n(u, d∗v)

= λ
〈
u, d∗v

〉
Rn

+
+
〈
du, dd∗v

〉
Rn

+
+
〈
d∗u, (d∗)2v

〉
Rn

+

= λ
〈
du, v

〉
Rn

+
+
〈
d∗du, d∗v

〉
Rn

+

= λ
〈
du, v

〉
Rn

+
+
〈
ddu, dv

〉
Rn

+
+
〈
d∗du, d∗v

〉
Rn

+

= λ
〈
du, v

〉
Rn

+
+ aH,n(du, v).

Since the continuous embedding D2(∆H,n,Rn
+,Λ) ↪→ D2(Dn,Rn

+,Λ) is dense, the
equality above still holds for all v ∈ D2(Dn,Rn

+,Λ). Hence, by uniqueness of the
solution to the resolvent problem in L2(Rn

+,Λ), we obtain du = (λI − ∆H,n)−1df .
The proof ends here since all remaining results can be proven similarly. □

Lemma 2.20. — Let k ∈ [[0, n]], following operators

d(−∆H,n)− 1
2 : L2

(
Rn

+,Λk
)
−→ N2

(
d,Rn

+,Λk+1
)

;

d∗(−∆H,n)− 1
2 : L2

(
Rn

+,Λk
)
−→ N2

(
d∗,Rn

+,Λk−1
)

;

are well-defined bounded linear operators on L2(Rn
+,Λ), and are each-other’s adjoint.

Moreover, for all u ∈ L2(Rn
+,Λk), we have∥∥∥d(−∆H,n)− 1

2u− d(λI−∆H,n)− 1
2u
∥∥∥

L2(Rn
+)∥∥∥d∗ (−∆H,n)− 1

2 u− d∗(λI−∆H,n)− 1
2u
∥∥∥

L2(Rn
+)

 −−−→λ→0+
0.

Everything still holds replacing (n, d, d∗) by (t, δ∗, δ).

Proof. — We prove the L2(Rn
+,Λ)-boundedness of d(−∆H,n)− 1

2 and compute its
adjoint.
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• We recall that the Hodge Laplacian is 0-sectorial and injective over L2(Rn
+,Λk),

so that by Proposition 1.4,

D2
(
(−∆H,n)1/2 ,Rn

+,Λk
)
∩ R2

(
(−∆H,n)1/2 ,Rn

+,Λk
)∥·∥

L2(Rn
+) = L2

(
Rn

+,Λk
)
.

We use the bounded holomorphic functional calculus of Dn on L2(Rn
+,Λ) provided

by Proposition 2.13. By means of fλ : z 7→ z√
λ+z2 , and the boundedness of P, we

have, for all λ ⩾ 0, and all u ∈ L2(Rn
+,Λk),

∥fλ(Dn)u∥2
L2(Rn

+) =
∥∥∥Dn(λI−∆H,n)− 1

2u
∥∥∥2

L2(Rn
+)

=
∥∥∥d(λI−∆H,n)− 1

2u
∥∥∥2

L2(Rn
+) +

∥∥∥d∗ (λI−∆H,n)− 1
2 u
∥∥∥2

L2(Rn
+)

⩽ ∥u∥2
L2(Rn

+).

• We did the abuse of notation f0(Dn) = Dn(−∆H,n)− 1
2 . We clarify this point and

show that for all u ∈ L2(Rn
+,Λk),∥∥∥d (−∆H,n)− 1

2 u− d (λI−∆H,n)− 1
2 u
∥∥∥

L2(Rn
+)∥∥∥d∗ (−∆H,n)− 1

2 u− d∗ (λI−∆H,n)− 1
2 u
∥∥∥

L2(Rn
+)

 −−−→λ→0+
0.

We start with an element v ∈ D2((−∆H,n)1/2,Λk)∩R2((−∆H,n)1/2,Λk), so one can
write v = (−∆H,n)1/2w for w ∈ D2(∆H,n,Λk), and we obtain by Lemma 2.18:∥∥∥d (λI−∆H,n)− 1

2 v − dw
∥∥∥2

L2(Rn
+) +

∥∥∥d∗ (λI−∆H,n)− 1
2 v − d∗w

∥∥∥2

L2(Rn
+)

=
∥∥∥(−∆H,n)

1
2 (λI−∆H,n)− 1

2 dw − dw
∥∥∥2

L2(Rn
+)

+
∥∥∥(−∆H,n)

1
2 (λI−∆H,n)− 1

2 d∗w − d∗w
∥∥∥2

L2(Rn
+)

=
∥∥∥(−∆H,n)

1
2 (λI−∆H,n)− 1

2 Dnw −Dnw
∥∥∥2

L2(Rn
+)

=
∥∥∥(−∆H,n)

1
2 (λI−∆H,n)− 1

2 (−∆H,n)
1
2 w − (−∆H,n)

1
2 w

∥∥∥2

L2(Rn
+)

=
∥∥∥(−∆H,n)

1
2 (λI−∆H,n)− 1

2 v − v
∥∥∥2

L2(Rn
+)

But thanks to [Haa06, Theorem 5.2.6], originally due to an idea of McIntosh [McI86],
one has the representation formulas

v = 1√
π

∫ +∞

0
(−∆H,n)

1
2 et∆H,nv

dt√
t
,

and

(−∆H,n)
1
2 (λI−∆H,n)− 1

2 v = 1√
π

∫ +∞

0
(−∆H,n)

1
2 e−tλet∆H,nv

dt√
t
.
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Since v ∈ D2((−∆H,n)1/2,Λk) ∩ R2((−∆H,n)1/2,Λk) the integrals are absolutely con-
vergent, and we can also apply the Dominated Convergence Theorem, so that

(2.12)
∥∥∥d (λI−∆H,n)− 1

2 v − dw
∥∥∥2

L2(Rn
+) +

∥∥∥d∗ (λI−∆H,n)− 1
2 v − d∗w

∥∥∥2

L2(Rn
+)

=
∥∥∥(−∆H,n)

1
2 (λI−∆H,n)− 1

2 v − v
∥∥∥2

L2(Rn
+) −−−→λ→0+

0.

Now, recalling that the Hodge Laplacian is injective, we can write

Dnw = Dn (−∆H,n)− 1
2 v = f0(Dn)v,

so we obtain

∥f0(Dn)v∥2
L2(Rn

+) =
∥∥∥d (−∆H,n)− 1

2 v
∥∥∥2

L2(Rn
+) +

∥∥∥d∗ (−∆H,n)− 1
2 v
∥∥∥2

L2(Rn
+) ⩽ ∥v∥2

L2(Rn
+).

Since D2((−∆H,n)1/2,Λk) ∩ R2((−∆H,n)1/2,Λk) is dense in L2(Rn
+,Λk), everything

coincides by uniqueness of continuous extensions.
It remains to relax the convergence to all u ∈ L2(Rn

+,Λk). For u ∈ L2(Rn
+,Λk),

ε > 0, there exists ũ ∈ D2((−∆H,n)1/2,Λk) ∩ R2((−∆H,n)1/2,Λk) such that

∥u− ũ∥L2(Rn
+) < ε.

We deduce for λ > 0,∥∥∥d (−∆H,n)− 1
2 u− d (λI−∆H,n)− 1

2 u
∥∥∥

L2(Rn
+)

⩽
∥∥∥d (−∆H,n)− 1

2 u− d (−∆H,n)− 1
2 ũ
∥∥∥

L2(Rn
+)

+
∥∥∥d (−∆H,n)− 1

2 ũ− d (λI−∆H,n)− 1
2 ũ
∥∥∥

L2(Rn
+)

+
∥∥∥d (λI−∆H,n)− 1

2 ũ− d (λI−∆H,n)− 1
2 u
∥∥∥

L2(Rn
+)

< 2ε+
∥∥∥d (−∆H,n)− 1

2 ũ− d (λI−∆H,n)− 1
2 ũ
∥∥∥

L2(Rn
+) .

So that, for λ large enough, since ũ ∈ D2((−∆H,n)1/2,Λk) ∩ R2((−∆H,n)1/2,Λk), we
use (2.12) to reach the inequality∥∥∥d (−∆H,n)− 1

2 u− d (λI−∆H,n)− 1
2 u
∥∥∥

L2(Rn
+) < 3ε.

We proceed similarly for d∗(−∆H,n)− 1
2 .

• Now, we compute the adjoint. The adjoint of d(λI −∆H,n)− 1
2 , provided λ > 0,

is (λI − ∆H,n)− 1
2 d∗ = d∗(λI − ∆H,n)− 1

2 up to a dense subset of L2(Rn
+,Λ) (here

D2(d∗,Rn
+,Λ)), thanks to Lemma 2.18. By previous steps, we can pass to the limit

as λ goes to 0 in the L2 inner product yielding the identity(
d (−∆H,n)− 1

2
)∗

= d∗ (−∆H,n)− 1
2 . □

We can summarize with the next theorem.
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Theorem 2.21. — Let k ∈ [[0, n]], the following assertions are true
(1) The following equality holds

N2
(
d,Rn

+,Λk
)

= R2 (d,Rn
+,Λk)

∥·∥
L2(Rn

+) ,

and still holds replacing d by d∗.
(2) The (generalized) Helmholtz–Leray projector

P : L2
(
Rn

+,Λk
)
−→ N2

(
d∗,Rn

+,Λk
)

satisfies the identity

P = I− d(−∆H,n)− 1
2 d∗(−∆H,n)− 1

2 .

(3) The following Hodge decomposition holds

L2
(
Rn

+,Λk
)

= N2
(
d∗,Rn

+,Λk
) ⊥
⊕ N2

(
d,Rn

+,Λk
)
.

Moreover, the result remains true if we replace (n, d, d∗,P) by (t, δ∗, δ,Q).

Remark 2.22. — The Theorem 2.21 and the whole construction of this section
mainly depends on the injectivity of the Laplacian: the construction is done via
resolvent approximation, abstract functional calculus provided by the Hilbertian
structure of L2(Rn

+,Λ) and the self-adjointness of the Laplacian. Therefore, a such
construction does not depend on the open set Ω = Rn

+.
To be more precise, the above Theorem 2.21 should remain true for all open sets

Ω, say at least Lipschitz, that admit no non-zero harmonic forms. In the case of a
bounded domain: the theorem remains true whenever all its Betti numbers vanish.

Proof. —
Step 1: Identity for P. — From boundedness of the operators from Lemma 2.20,

we deduce that the new operator P defined for all f ∈ L2(Rn
+,Λ) by

Pf := f − d(−∆H,n)− 1
2 d∗(−∆H,n)− 1

2f,

is well-defined and bounded on L2(Rn
+,Λ). We are going to check that P is an

orthogonal projector, hence, firstly, a projector. By Proposition 1.4 and Lemma 2.20,
we have

P2
f = Pf − d (−∆H,n)− 1

2 d∗ (−∆H,n)− 1
2 Pf

= Pf − d (−∆H,n)− 1
2 d∗ (−∆H,n)− 1

2 f +
[
d (−∆H,n)− 1

2 d∗ (−∆H,n)− 1
2
]2
f

= lim
λ→0

(
Pf − d∗d (λI−∆H,n)−1 f +

[
d∗d (λI−∆H,n)−1

]2
f
)

= lim
λ→0

(
Pf − λd∗d (λI−∆H,n)−2 f

)
= Pf.

By construction and by Lemma 2.20, P is self-adjoint, hence orthogonal.
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For all f ∈ D2(d∗,Rn
+,Λ), by Proposition 1.4, Lemma 2.18 and Lemma 2.20, since

(d∗)2 = 0,

d∗Pf = lim
λ→0

(
d∗f − d∗d (λI−∆H,n)− 1

2 d∗ (λI−∆H,n)− 1
2 f
)

= lim
λ→0

(
d∗f + ∆H,n (λI−∆H,n)−1 d∗f

)
= (d∗f − d∗f) = 0.

Thus, since the embedding D2(d∗,Rn
+,Λ) ↪→ L2(Rn

+,Λ) is dense, it follows that

R2
(
P,Rn

+,Λ
)
⊂ N2

(
d∗,Rn

+,Λ
)
.

For all f ∈ N2(d∗,Rn
+,Λ),

Pf = lim
λ→0

(
f − d (λI−∆H,n)− 1

2 d∗ (λI−∆H,n)− 1
2 f
)

= lim
λ→0

(
f − d (λI−∆H,n)−1 d∗f

)
= (f + 0) = f.

Hence, P|N2(d∗,Rn
+,Λ) = I.

By construction, we also have

R2
(
I− P,Rn

+,Λ
)

= R2
(
d (−∆H,n)− 1

2 d∗ (−∆H,n)− 1
2 ,Rn

+,Λ
)
⊂ R2 (d,Rn

+,Λ);

so that by uniqueness of the orthogonal projection on N2(d∗,Rn
+,Λ), P = P.

Step 2: We notice first that the inclusion R2(d,Rn
+,Λk)∥·∥L2(Rn

+) ⊂ N2(d,Rn
+,Λk)

is true.
Now, for the reverse inclusion let f ∈ N2(d,Rn

+,Λk), we have
f = lim

λ→0
−∆H,n(λI−∆H,n)−1f = lim

λ→0
dd∗(λI−∆H,n)−1f(= [I− P]f).

By construction, for all λ > 0, we have dd∗(λI−∆H,n)−1f ∈ R2(d,Rn
+,Λk), so that

the reverse inclusion N2(d,Rn
+,Λk) ⊂ R2(d,Rn

+,Λk)∥·∥L2(Rn
+) holds. □

2.3.2. Ḣs,p and Ḃs
p,q-theory for Hodge Laplacians and the Hodge decomposition

We start this new subsection claiming about closedness of the exterior and interior
derivatives with and without 0 boundary conditions. The two following lemmas are
straightforward.

Lemma 2.23. — Let p ∈ (1,+∞), s ∈ (−1 + 1/p, 1/p), k ∈ [[0, n]]. With the same
notations as in Lemma 2.11, the operators(

Ḋs
p

(
d,Rn

+,Λk
)
, d
)

and
(
Ḋs
p

(
δ,Rn

+,Λk
)
, δ
)

are densely defined closed operators on Ḣs,p(Rn
+,Λk).

Moreover,
• the result still holds replacing (Ḣs,p, Ḋs

p) by either (Hs,p,Ds
p), (Bs

p,q,Ds
p,q) or

(Ḃs
p,q, Ḋs

p,q), with q ∈ [1,+∞);
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• in case of (Bs
p,∞,Ds

p,∞) and (Ḃs
p,∞, Ḋs

p,∞) above operators are only weak∗

densely defined, strongly closed operators;
• all the above results remain true exchanging the roles of d and δ.

Lemma 2.24. — Let p ∈ (1,+∞), s ∈ (−1 + 1/p, 1/p). With the same notations
as in Lemma 2.11, the dual operator of (Ḋs

p(d,Rn
+,Λ), d) on Ḣs,p(Rn

+,Λ), is(
Ḋ−s
p′

(
d∗,Rn

+,Λ
)
, d∗

)
=
(
Ḋ−s
p′

(
δ,Rn

+,Λ
)
, δ
)

as an operator on Ḣ−s,p′(Rn
+,Λ).

Moreover,
• the result still holds replacing (Ḣs,p, Ḋs

p, Ḣ−s,p′
, ḋ−s

p′ ) by (Ḃs
p,q, Ḋs

p,q, Ḃ−s
p′,q′ , ḋ−s

p′,q′)
with q ∈ [1,+∞);
• we may replace (Ḋ, Ḣ, Ḃ) by (D,H,B);
• all the above results remain true exchanging the roles of d and δ.

Remark 2.25. — Notice that talking about Ds
p(d,Rn

+,Λ) in above lemmas, with
respect to notation introduced in Lemma 2.11, in particular the involved 0-boundary
condition, actually makes sense, thanks to Theorem A.2.

Before we start our investigation of Hodge Laplacians and the Hodge decomposition,
we need to show the closedness of Hodge–Dirac operators. In order to verify such a
property, the next result will be of paramount importance, to reproduce the behavior
obtained in the L2 setting on other scales of function spaces. We mention that many
results presented here will strongly depend on the fact that the considered open set
is Rn

+ (mainly Lemma 2.26, and point (ii) of Theorem 2.29 which are widely used to
construct other results of the present section).

The proof of the next lemma is identical to the one of Lemma 2.17.

Lemma 2.26. — Let p ∈ (1,+∞), s ∈ (−1 + 1/p, 1/p), k ∈ [[0, n]]. For all
u ∈ Ḋs

p(d,Rn
+,Λk) (resp. Ḋs

p(d∗,Rn
+,Λk)) we have

EH,nu ∈ Ḋs
p

(
d,Rn,Λk

) (
resp. Ḋs

p

(
δ,Rn,Λk

))
with formulas

dEH,nu = EH,ndu (resp. δEH,nu = EH,nd∗u) .
Moreover,
• the result still holds replacing Ḋs

p by Ḋs
p,q with q ∈ [1,+∞];

• we may replace Ḋ by D;
• all the above results remain true exchanging the roles of d and δ, and replacing
n by t.

Proposition 2.27. — Let p ∈ (1,+∞), s ∈ (−1 + 1/p, 1/p), k ∈ [[0, n]]. The
Hodge–Dirac operator(

Ḋs
p

(
Dn,Rn

+,Λk
)
, Dn

)
=
(
Ḋs
p

(
d,Rn

+,Λk
)
∩ Ḋs

p

(
d∗,Rn

+,Λk
)
, d + d∗

)
is a densely defined closed operator on Ḣs,p(Rn

+,Λk).
Moreover,
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• the result still holds replacing (Ḣs,p, Ḋs
p) by either (Hs,p,Ds

p), (Bs
p,q,Ds

p,q) or
(Ḃs

p,q, Ḋs
p,q), with q ∈ [1,+∞);

• in case of (Bs
p,∞,Ds

p,∞) and (Ḃs
p,∞, Ḋs

p,∞) above Hodge–Dirac operator is only
weak∗ densely defined, and strongly closed;
• all above results remain true replacing (n, d) by (t, δ).

Proof. — Let (uj)j ∈N ⊂ Ḋs
p(d,Rn

+,Λk)∩Ḋs
p(d∗,Rn

+,Λk), and (u, v) ∈ Ḣs,p(Rn
+,Λk)×

Ḣs,p(Rn
+,Λ) satisfying

uj −−−−→
j→+∞

u and Dnuj −−−−→
j→+∞

v in Ḣs,p
(
Rn

+,Λ
)
.

We set for all j ∈ N, Uj := EH,nuj, U := EH,nu. By Lemma 2.26, we have for all
j ∈ Z Uj ∈ Ḋs

p(d,Rn,Λk) ∩ Ḋs
p(δ,Rn,Λk)

DUj = EH,nDnuj.

We also have,
DUj −−−−→

j→+∞
V := EH,nv in Ḣs,p(Rn,Λ).

By the Hodge decomposition on Rn, check Theorem 2.9, there exists a unique couple
(V0, V1) ∈ Ṙs

p(d,Rn,Λ)× Ṅs
p(δ,Rn,Λ) such that V = V0 + V1. Since Uj goes to U in

Ḣs,p(Rn,Λk), by continuity of involved projectors, and uniqueness of decomposition,
it follows that

dUj −−−−→
j→+∞

V0 and δUj −−−−→
j→+∞

V1 in Ḣs,p (Rn,Λ) .

In particular, if we set vℓ := Vℓ|Rn
+

for ℓ ∈ {0, 1}, we necessarily have by restriction

duj −−−−→
j→+∞

v0 and δuj −−−−→
j→+∞

v1 in Ḣs,p
(
Rn

+,Λ
)
.

But (uj)j ∈N converge to u in Ḣs,p(Rn
+,Λk), so in particular in distributional sense.

Thus, necessarily (v0, v1) = (du, δu) and v = Du. By continuity of trace provided by
Theorem A.1, we also have ν⌟u|∂Rn

+
= 0, i.e. (Ḋs

p(Dn,Rn
+,Λk), Dn) is a closed operator

on Ḣs,p(Rn
+,Λk). The proof ends here, since one can reproduce all above arguments

for (Ḋs
p(Dt,Rn

+,Λk), Dt), and also for all other kind of function spaces. □
The next result about closedness of Hodge Laplacian admits a similar proof.
Proposition 2.28. — Let p ∈ (1,+∞), s ∈ (−1 + 1/p, 1/p), k ∈ [[0, n]]. The

Hodge Laplacian(
Ḋs
p

(
∆H,n,Rn

+,Λk
)
,−∆H,n

)
=
(
Ḋs
p

(
D2

n,Rn
+,Λk

)
, D2

n

)
is a densely defined closed injective operator on Ḣs,p(Rn

+,Λk). The following formula
holds for all u ∈ Ḋs

p(∆H,n,Rn
+,Λk),
−∆EH,nu = EH,n [−∆H,nu] .

Moreover,
• the result still holds replacing (Ḣs,p, Ḋs

p) by either (Hs,p,Ds
p), (Bs

p,q,Ds
p,q) or

(Ḃs
p,q, Ḋs

p,q), with q ∈ [1,+∞);
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• in case of (Bs
p,∞,Ds

p,∞) and (Ḃs
p,∞, Ḋs

p,∞) the Hodge Laplacian is only weak∗

densely defined, and strongly closed;
• all above results remain true replacing n by t.

From there, the whole context has been established in order to be able to claim
the next theorem.

Theorem 2.29. — Let p ∈ (1,+∞), q ∈ [1,+∞], s ∈ (−1 + 1/p, 1/p), and
k ∈ [[0, n]].

(i) For µ ∈ [0, π), λ ∈ Σµ, if f ∈ Ḣs,p(Rn
+,Λk) then the following resolvent

problem

λu−∆Hu = f in Rn
+,

admits a unique solution u ∈ Ḋs
p(∆H,Rn

+,Λk) ⊂ [Ḣs,p ∩ Ḣs+2,p](Rn
+,Λk) with

estimates,

|λ| ∥u∥Ḣs,p(Rn
+) + |λ| 12∥∇u∥Ḣs,p(Rn

+) +
∥∥∥∇2u

∥∥∥
Ḣs,p(Rn

+) ≲p,n,s,µ ∥f∥Ḣs,p(Rn
+),

|λ|
1
2 ∥(d + δ)u∥Ḣs,p(Rn

+) + ∥dδu∥Ḣs,p(Rn
+) + ∥δdu∥Ḣs,p(Rn

+) ≲p,n,s,µ ∥f∥Ḣs,p(Rn
+).

In particular, λI−∆H : Ḋs
p(∆H,Rn

+,Λk) −→ Ḣs,p(Rn
+,Λk) is an isomorphism

of Banach spaces.
Furthermore, the result still holds replacing (Ḣs,p, Ḣs,p ∩ Ḣs+2,p, Ḋs

p) by
(Hs,p,Hs+2,p,Ds

p), (Ḃs
p,q, Ḃs

p,q ∩ Ḃs+2
p,q , Ḋs

p,q), or even by (Bs
p,q,Bs+2

p,q ,Ds
p,q).

(ii) For any µ ∈ (0, π), the operator −∆H admits a H∞(Σµ)-functional calculus
on function spaces: Ḣs,p(Rn

+,Λk), Ḃs
p,q(Rn

+,Λk), Hs,p(Rn
+,Λk) and Bs

p,q(Rn
+,Λk).

Moreover, the following resolvent identity holds on any previously mentioned
function spaces,

EH(λI−∆H)−1 = (λI−∆)−1EH.

Proof. — For µ ∈ [0, π), λ ∈ Σµ, if f ∈ Ḣs,p(Rn
+,Λk), we have by Theorem 2.7

and (2.11):

(λI−∆)−1EHf ∈
[
Ḣs,p ∩ Ḣs+2,p

] (
Rn,Λk

)
.

Thus, the definition of function spaces by restriction yields u := [(λI−∆)−1EHf ]|Rn
+
∈

[Ḣs,p ∩ Ḣs+2,p](Rn
+,Λk) and it satisfies

λu−∆u = f in Rn
+,

so that by the definition of function spaces by restriction, Theorem 2.7, and the
boundedness properties of EH (2.11), we also have the estimates

|λ| ∥u∥Ḣs,p(Rn
+) + |λ| 12∥∇u∥Ḣs,p(Rn

+) +
∥∥∥∇2u

∥∥∥
Ḣs,p(Rn

+) ≲p,n,s,µ ∥f∥Ḣs,p(Rn
+),

|λ|
1
2∥(d + δ)u∥Ḣs,p(Rn

+) + ∥dδu∥Ḣs,p(Rn
+) + ∥δdu∥Ḣs,p(Rn

+) ≲p,n,s,µ ∥f∥Ḣs,p(Rn
+).
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By density of [L2 ∩ Ḣs,p](Rn
+,Λk) in Ḣs,p(Rn

+,Λk), one may use Theorem 2.15 and
continuity of traces provided by Theorem A.2 to show that necessarily ν ⌟ u|∂Rn

+
= 0

and ν ⌟ du|∂Rn
+

= 0 (or resp. ν ∧ u|∂Rn
+

= 0 and ν ∧ δu|∂Rn
+

= 0). Hence

u ∈ Ḋs
p

(
∆H,Rn

+,Λk
)
.

Now assume v ∈ Ḋs
p(∆H,Rn

+,Λk) satisfies
λv −∆Hv = f in Rn

+.

We apply Proposition 2.28 to claim that V := EHv must satisfy
λV −∆V = EHf in Rn.

Thus, necessarily EH(λI−∆H)−1f = (λI−∆)−1EHf .
This resolvent identity leads to the construction of bounded (H∞(Σµ)-)holomorphic

functional calculus, given by the following identity for all Ψ ∈ H∞(Σµ), µ ∈ (0, π):
EHΨ(−∆H) = Ψ(−∆)EH.

The result for homogeneous Besov spaces Ḃs
p,q, q < +∞, and other similar in-

homogeneous function spaces may be achieved in a similar manner. The case of
inhomogeneous and homogeneous Besov spaces with q = +∞ follows from real
interpolation. □

The goal for now is to prove the Hodge decomposition. The idea is to prove that
the representation formula of P (resp. Q) proved in Lemma 2.20 still makes sense on
Ḣs,p(Rn

+,Λ), Ḃs
p,q(Rn

+,Λ), and their inhomogeneous counterparts. To do so, we adapt
Lemma 2.18 in the present setting.

Lemma 2.30. — Let p ∈ (1,+∞), s ∈ (−1 + 1/p, 1/p), µ ∈ [0, π), λ ∈ Σµ, t ⩾ 0,
k ∈ [[0, n]]. The following commutation identities hold,

(1) d(λI−∆H,n)−1f = (λI−∆H,n)−1df , for all f ∈ Ḋs
p(d,Rn

+,Λk);
(2) d∗(λI−∆H,n)−1f = (λI−∆H,n)−1d∗f , for all f ∈ Ḋs

p(d∗,Rn
+,Λk);

(3) det∆H,nf = et∆H,ndf , for all f ∈ Ḋs
p(d,Rn

+,Λk);
(4) d∗et∆H,nf = et∆H,nd∗f , for all f ∈ Ḋs

p(d∗,Rn
+,Λk).

Every above identities still hold replacing (n, d, d∗) by (t, δ∗, δ), and ḋsp by either dsp,
dsp,q or even by ḋsp,q, with q ∈ [1,+∞].

Proof. — Let f ∈ Ḋs
p(d,Rn

+,Λk) ⊂ Ḣs,p(Rn
+,Λk), then by Theorem 2.29 there exists

a unique u ∈ Ḋs
p(∆H,n,Rn

+,Λk) ⊂ Ḋs
p(Dn,Rn

+,Λk) ⊂ Ḋs
p(d,Rn

+,Λk) such that
λu−∆H,nu = f.

Since u, f ∈ Ḋs
p(d,Rn

+,Λk), we deduce that ∆H,nu ∈ Ḋs
p(d,Rn

+,Λk) and we use d2 = 0
to deduce

λdu−∆H,ndu = df.

Thus, we obtain that du ∈ Ḣs,p(Rn
+,Λk+1) is a solution of the equation
λv −∆H,nv = df.
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Thus, uniqueness of the solution yields du = (λI−∆H,n)−1df . If it holds for resolvents,
then it holds for semigroups, since we have the Cauchy integral formula, provided
θ ∈ (π2 , π) and t > 0 are fixed,

et∆H,n = 1
2πi

∫
γt

etλ(λI−∆H,n)−1dλ,

where γt = −γ− + γ0 + γ+ is the path given by

γ± :
[
t−1,+∞

)
→ C, γ±(s) := se±iθ and γ0 : [−θ, θ]→ C, γ0(s) := t−1eis.

□

Proposition 2.31. — Let p ∈ (1,+∞), s ∈ (−1 + 1/p, 1/p), k ∈ [[0, n]]. For any
λ ⩾ 0, following operators are well-defined and uniformly bounded with respect to λ

d (λI−∆H,n)− 1
2 : Ḣs,p

(
Rn

+,Λk
)
−→ Ṅs

p

(
d,Rn

+,Λk+1
)

;

d∗ (λI−∆H,n)− 1
2 : Ḣs,p

(
Rn

+,Λk
)
−→ Ṅs

p

(
d∗,Rn

+,Λk−1
)
.

Moreover, the following identities also hold for all λ > 0:
• d(λI−∆H,n)− 1

2f = (λI−∆H,n)− 1
2 df , for all f ∈ Ḋs

p(d,Rn
+,Λk);

• d∗(λI−∆H,n)− 1
2f = (λI−∆H,n)− 1

2 d∗f , for all f ∈ Ḋs
p(d∗,Rn

+,Λk).
Everything still holds replacing (n, d, d∗) by (t, δ∗, δ), and replacing (Ḣs,p, Ṅs

p) by
either (Ḃs

p,q, Ṅs
p,q), (Hs,p,Ns

p) or even by (Bs
p,q,Ns

p,q) with q ∈ [1,+∞].

Proof. — For λ ⩾ 0, we introduce the representation formula,

(λI−∆H,n)− 1
2f = 1√

π

∫ +∞

0
e−τλeτ∆H,nf

dτ√
τ
.(2.13)

This representation formula makes sense thanks to holomorphic functional calculus,
and the integral is absolutely convergent for every for f ∈ Ṙs

p(∆H,n,Rn
+,Λk).

We use the definition of function spaces by restriction and the bounded holomorphic
functional calculus, with the identity provided by point (ii) of Theorem 2.29, i.e.
EH,ne

τ∆H,n = eτ∆EH,n, to obtain∥∥∥d (λI−∆H,n)− 1
2 f
∥∥∥

Ḣs,p(Rn
+) +

∥∥∥d∗ (λI−∆H,n)− 1
2 f
∥∥∥

Ḣs,p(Rn
+)

≲k,n

∥∥∥∇(λI−∆)− 1
2 EH,nf

∥∥∥
Ḣs,p(Rn)

≲n,k,s,p ∥f∥Ḣs,p(Rn
+).

Therefore, the boundedness follows by density of Ṙs
p(∆H,n,Rn

+,Λk) in Ḣs,p(Rn
+,Λk).

Commutations relations when λ > 0 follow from Lemma 2.30 and the representation
formula (2.13). The boundedness on the Besov scale follows from real interpolation.

□

According to more convenient and usual notations with respect to the field of
partial differential equations we set new symbols.
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Notation 2.32. — We introduce the following notations

Hs,p
n,σ := Ns

p (d∗) , Hs,p
γ := Ns

p(d) and Hs,p
σ := Ns

p(δ), Hs,p
t,γ := Ns

p (δ∗) ;
Bs,σ
p,q,n := Ns

p,q(d∗), Bs,γ
p,q := Ns

p,q(d) and Bs,σ
p,q := Ns

p(δ), Bs,γ
p,q,t := Ns

p,q (δ∗) .

Then we are able to obtain the following result.

Theorem 2.33. — Let p ∈ (1,+∞), q ∈ [1,+∞], s ∈ (−1 + 1/p, 1/p), and let
k ∈ [[0, n]]. It holds that

(i) The following equality holds,

Ṅs
p

(
d,Rn

+,Λk
)

= Ṙs
p (d,Rn

+,Λk)
∥·∥

Ḣs,p(Rn
+) ,

and still holds replacing d by d∗.
(ii) The (generalized) Helmholtz–Leray projector is well-defined and bounded as

a linear operator

P : Ḣs,p
(
Rn

+,Λk
)
−→ Ḣs,p

n,σ

(
Rn

+,Λk
)
.

Moreover, the following identity is true

P = I− d (−∆H,n)− 1
2 d∗ (−∆H,n)− 1

2 .

(iii) The following Hodge decomposition holds

Ḣs,p
(
Rn

+,Λk
)

= Ḣs,p
n,σ

(
Rn

+,Λk
)
⊕ Ḣs,p

γ

(
Rn

+,Λk
)
.

Moreover, the result remains true if we replace
• Ḣs,p by Ḃs

p,q;
• (Ḣ, Ḃ) by (H,B);
• (n, d, d∗,P, σ, γ) by (t, δ∗, δ,Q, γ, σ).

In case of Besov spaces with q = +∞, the density result of point (i) only holds in
the weak∗ sense.

Proof. — One may reproduce the proofs of Theorem 2.21, thanks to Proposi-
tion 2.31 above. □

The following corollary is a direct consequence of the given expression for the
Helmholtz–Leray projection in Theorem 2.33.

Corollary 2.34. — Let p ∈ (1,+∞), s ∈ (−1 + 1/p, 1/p), µ ∈ [0, π), λ ∈ Σµ,
k ∈ [[0, n]]. The following commutation identities hold for all f ∈ Ḣs,p(Rn

+,Λk), for
all t ⩾ 0,

(λI−∆H,n)−1 Pf = P (λI−∆H,n)−1 f,

et∆H,nPf = Pet∆H,nf.

Above identity still holds replacing (n,P) by (t,Q), and Ḣs,p by either Hs,p, Bs
p,q or

even by Ḃs
p,q, with q ∈ [1,+∞].
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2.3.3. Hodge–Stokes and Hodge–Maxwell operators

The present subsection is about discussing properties of Hodge–Stokes and Hodge–
Maxwell operators. First, one can define Hodge–Stokes operator ’s domain, for
all p ∈ (1,+∞), s ∈ (−1 + 1/p, 1/p), k ∈ [[0, n]], by

Ḋs
p

(
AH,n,Rn

+,Λk
)

:= Ḣs,p
n,σ

(
Rn

+,Λk
)
∩ Ḋs

p

(
∆H,n,Rn

+,Λk
)
,(2.14)

and for all u ∈ Ḋs
p(AH,n,Rn

+,Λk)

AH,nu := d∗du = −P∆u = −∆Pu = −∆u.(2.15)

Above operator AH,n is called the Hodge–Stokes operator with absolute bound-
ary conditions which is a closed densely defined operator on Ḣs,p

n,σ(Rn
+,Λk).

Similarly one can treat the case of Hodge–Maxwell operators,

(2.16) Ḋs
p

(
MH,n,Rn

+,Λk
)

:= Ḣs,p
γ

(
Rn

+,Λk
)
∩ Ḋs

p

(
∆H,n,Rn

+,Λk
)
,

and for all u ∈ Ḋs
p(MH,n,Rn

+,Λk)

(2.17) MH,nu := dd∗u = −[I− P]∆u = −∆[I− P]u = −∆u.

The operator MH,n defined as above is called the Hodge–Maxwell operator with
perfectly conductive wall boundary conditions which is a closed densely
defined operator on Ḣs,p

γ (Rn
+,Λk).

Similarly, one may replace (n, d,P) by (t, δ,Q), respectively in, (2.14) and (2.15),
and in (2.16) and (2.17). This leads to the construction of(

Ḋs
p

(
AH,t,Rn

+,Λk
)
,AH,t

)
and

(
Ḋs
p

(
MH,t,Rn

+,Λk
)
,MH,t

)
(2.18)

called respectively the Hodge–Stokes operator with relative boundary condi-
tions and the Hodge–Maxwell operator with relative boundary conditions
which are both closed densely defined operator on Ḣs,p

σ (Rn
+,Λk) and Ḣs,p

t,γ (Rn
+,Λk),

respectively.
Those Hodge–Stokes and Hodge–Maxwell operator are still meaningful on other

function spaces replacing (Ḣs,p, Ḋs
p) by (Ḃs

p,q, Ḋs
p,q), then (Ḣ, Ḃ, Ḋ) by (H,B,D).

Notice again the exception of Besov spaces, homogeneous and inhomogeneous,
where the domains of any Hodge–Stokes and Hodge–Maxwell operators are only
weak∗ dense in the case q = +∞.

With the above definitions, Theorem 2.29, Corollary 2.34 and Theorem 2.33, we
obtain for free the next theorem.

Theorem 2.35. — Let p ∈ (1,+∞), s ∈ (−1 + 1/p, 1/p). For all µ ∈ (0, π),
the operator AH,n (resp. MH,n) admits a H∞(Σµ)-functional calculus on Ḣs,p

n,σ(Rn
+,Λ)

(resp. Ḣs,p
γ (Rn

+,Λ)).
Moreover, the result remains true if we replace

• Ḣs,p by Ḃs
p,q, q ∈ [1,+∞];

• (Ḣ, Ḃ) by (H,B);
• (n, σ, γ,A,M) by (t, γ, σ,M,A).
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3. Lq-maximal regularity with global-in-time estimates

In order to motivate the results in next Sections 3.1 and 3.2, we provide short
reminders about recent advances for maximal regularity in the Sobolev framework
provided by [DHMT21, Chapter 2] and [Gau24a]. We are going to follow the presen-
tation from [Gau24a, Section 2].

First, let us consider (D(A), A) a densely defined closed operator on a Banach
space X. We recall, see [ABHN11, Theorem 3.7.11], that the two following assertions
are equivalent:

(1) A is ω-sectorial on X, with ω ∈ [0, π2 );
(2) −A generates a bounded holomorphic semigroup on X, denoted by

(e−tA)t⩾ 0.
Thus, provided that A is ω-sectorial on X for some ω ∈ [0, π2 ), for T ∈ (0,+∞],

we look at the following abstract Cauchy problem,{
∂tu(t) + Au(t) = f(t) , 0 < t < T

u(0) = u0,
(ACP)

where f ∈ L1
loc((0, T ), X), u0 ∈ Y , Y being some normed vector space depending on

X and D(A).
We want to look at global-in-time maximal regularity results for (ACP). To obtain

estimates that are uniform in time, we require the involved function spaces to
be homogeneous. This keypoint was captured in the work of Danchin, Hieber,
Mucha and Tolksdorf [DHMT21, Chapter 2] to build a homogeneous version of the
Da Prato–Grisvard theorem for injective sectorial operators under some additional
assumptions on A. We are going to present briefly their construction to motivate
the next section.

Before that, we introduce two quantities for v ∈ X + D(A),

∥v∥D̊A(θ,q) :=
(∫ +∞

0

∥∥∥t1−θAe−tAv
∥∥∥q
X

dt
t

) 1
q

, and ∥v∥DA(θ,q) := ∥v∥X + ∥v∥D̊A(θ,q),

where θ ∈ (0, 1), q ∈ [1,+∞], with the special case

∥v∥D̊A(θ,∞) := sup
t> 0

∥∥∥t1−θAe−tAv
∥∥∥
X
.

This leads to the construction of the vector space

DA(θ, q) :=
{
v ∈ X | ∥v∥D̊A(θ,q) < +∞

}
.

The vector space DA(θ, q) is known to be a Banach space under the norm ∥ · ∥DA(θ,q)
and, moreover, it satisfies the following equality with equivalence of norms

DA(θ, q) = (X,D(A))θ,q,(3.1)

see [Haa06, Theorem 6.2.9]. If moreover, 0 ∈ ρ(A) it has been proved, [Haa06,
Corollary 6.5.5], that ∥ · ∥D̊A(θ,q) and ∥ · ∥DA(θ,q) are two equivalent norms on DA(θ, q).
So we restrict ourselves to the case of injective operators.
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Assumption 3.1. — The operator (D(A), A) is injective on X, and there exists
a normed vector space (Y, ∥ · ∥Y ), such that D(A) ⊂ Y , and for all x ∈ D(A),

∥Ax∥X ∼X,Y,A ∥x∥Y .(3.2)

The idea is to construct a homogeneous version of A denoted Å, defining first its
domain

D(Å) :=
{
y ∈ Y

∣∣∣∣∃ (xn)n∈N ⊂ D(A), ∥y − xn∥Y −→n→+∞
0
}
.

So that, for all y ∈ d(Å), X being complete, it is meaning full to set

Åy := lim
n→+∞

Axn.

Constructed this way, the operator Å is then injective on D(Å). We notice that
D(Å), endowed with the norm ∥Å · ∥X , is a normed vector space, but not necessarily
complete. We also need the existence of a Hausdorff topological vector space Z, such
that X, Y ⊂ Z, and to consider the following assumption.

Assumption 3.2. — The operator (D(A), A) and the normed vector space Y are
such that

X ∩D(Å) = D(A).(3.3)

As a consequence of all above assumptions, we can extend naturally, see [DHMT21,
Remark 2.7], (e−tA)t⩾ 0 to a C0-semigroup,

e−tA : X + D(Å) −→ X + D(Å), t ⩾ 0,

so that, one can fully make sense of the following vector space,

D̊A(θ, q) :=
{
v ∈ X + D(Å)

∣∣∣ ∥v∥D̊A(θ,q) < +∞
}
.

Similarly to what happens for DA(θ, q) in (3.1), it has been proved in [DHMT21,
Proposition 2.12], that the following equality holds with equivalence of norms,

D̊A(θ, q) =
(
X,D(Å)

)
θ,q
,(3.4)

but the possible lack of completeness of D(Å) implies that D̊A(θ, q) is not necessarily
complete. This has consequences on how to consider the forcing term f in (ACP),
choosing f ∈ Lq((0, T ),DA(θ, q)) instead of f ∈ Lq((0, T ), D̊A(θ, q)) to avoid defini-
tion issues, the latter choice being possible when D̊A(θ, q) is a Banach space.

Theorem 3.3 ([DHMT21, Theorem 2.20]). — Let ω ∈ [0, π2 ), (d(A), A) an
ω-sectorial operator on a Banach space X such that Assumptions 3.1 and 3.2 are
satisfied. Let q ∈ [1,+∞), θ ∈ (0, 1

q
), θq := θ + 1− 1/q, and let T ∈ (0,+∞].

For f ∈ Lq((0, T ),DA(θ, q)) and u0 ∈ D̊A(θq, q), the problem (ACP) admits an
unique mild solution

u ∈ C0
b

(
[0, T ], D̊A (θq, q)

)
,
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such that ∂tu, Au ∈ Lq((0, T ), D̊A(θ, q)) with estimates,

(3.5) ∥u∥L∞([0,T ],D̊A(θq ,q)) + ∥(∂tu,Au)∥Lq((0,T ),D̊A(θ,q))
≲A ∥f∥Lq((0,T ),D̊A(θ,q)) + ∥u0∥D̊A(θq ,q).

In case q = +∞, we assume in addition that u0 ∈ D(A2) and then for each θ ∈ (0, 1),
∥(∂tu,Au)∥L∞([0,T ],D̊A(θ,∞)) ≲A ∥f∥L∞((0,T ),DA(θ,∞)) + ∥Au0∥D̊A(θ,∞).(3.6)

One also have the following result.
Theorem 3.4 ([Gau24a, Theorem 4.7]). — Let ω ∈ [0, π2 ), (d(A), A) an ω-

sectorial operator on a UMD Banach space X, such that it has BIP on X of type θA <
π
2 , and satisfies assumptions (3.1) and (3.2). Let q ∈ (1,+∞), α ∈ (−1 + 1/q, 1/q)
and T ∈ (0,+∞]. We set αq := 1 + α− 1/q.

For f ∈ Ḣα,q((0, T ), X), u0 ∈ D̊A(αq, q), the problem (ACP) admits a unique mild
solution u ∈ C0

b([0, T ], D̊A(αq, q)) such that ∂tu, Au ∈ Ḣα,q((0, T ), X) with estimate
∥u∥L∞([0,T ],D̊A(αq ,q)) ≲A,q,α ∥(∂tu,Au)∥Ḣα,q((0,T ),X)

≲A,q,α ∥f∥Ḣα,q((0,T ),X) + ∥u0∥D̊A(αq ,q).
(3.7)

Moreover, if u0 ∈ DA(αq, q) for all β ∈ [0, 1],∥∥∥(−∂t)βA1−βu
∥∥∥

Ḣα,q((0,T ),X)
≲A,q,α ∥f∥Ḣα,q((0,T ),X) + ∥u0∥D̊A(αq ,q).(3.8)

Remark 3.5. —
• In Theorem 3.4, Assumptions 3.1 and 3.2 are assumed here in order to ensure

that D̊A(θ, q) is a well-defined, even if not complete, normed vector space.
The estimate (3.8) still holds for u0 ∈ D̊A(1 +α− 1/q, q) whenever this space
is complete.
• If u0 = 0, the estimate (3.8) remains valid if we replace the operator (−∂t)1−β

by (∂t)1−β.
• If one asks instead the initial data u0 to be in the smaller, but complete, space
DA(θ, q) then one can drop Assumptions 3.1 and 3.2, and the estimate (3.7)
still holds.

Before going further, we want to simplify notations. From now on, we will only
consider function spaces on Rn

+ and no longer on Rn, so that we drop the mention
of the open set in the domains of operators, we also drop the mention of degree of
differential forms, except when it is necessary. Any discussion involving Dirichlet and
Neumann Laplacians will always contain the implicit information that their domains
are made of scalar valued functions, whereas talking about Hodge Laplacians and
their derived operators will always contain the implicit information we are talking
about general differential forms valued functions of any degree, unless it is explicitly
stated.

A first aim of this section is about to give an explicit description of homogeneous
interpolation spaces, provided θ ∈ (0, 1), q ∈ [1,+∞],(

X,D(Å)
)
θ,q

= D̊A(θ, q),(3.9)
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where X = Ḣs,p, Ḃs
p,r and A ∈ {−∆H,AH,MH}, with p ∈ (1,+∞), −1 + 1/p <

s < 1/p, r ∈ [1,+∞). The main task here will be to compute the space (3.9)
above, provided A = −∆H. Indeed, for the related Hodge–Stokes operator, due to
the commutation relations between the Hodge Laplacian and its Helmholtz–Leray
projections, see (2.15), (2.17) and Corollary 2.34, we should have (at least formally
or up to a dense subset)

D̊
s,p
AH,n

(θ, q) =
(
Ḣs,p

n,σ

(
Rn

+

)
, Ḋs

p

(
ÅH,n

))
θ,q

= P
(
Ḣs,p

(
Rn

+

)
, Ḋs

p

(
∆̊H,n

))
θ,q

= PD̊s,p
−∆H,n

(θ, q).

Obviously similar identities can be obtained with (t,Q) instead of (n,P), but also
for the Hodge–Maxwell operators up to appropriate changes.

Secondly, we will aim to recover global-in-time Lq-maximal regularity estimates for
the abstract Cauchy problem (ACP), provided T ∈ (0,+∞], A ∈ {−∆H,AH,MH},
so that we will apply Theorems 3.3 and 3.4.

3.1. Interpolation of homogeneous Ḣs,p-domains of operators

We start this section claiming that one can reduce the problem to the computation
of interpolation spaces

D̊
s,p
−∆D

(θ, q) and D̊
s,p
−∆N

(θ, q).

We recall here for convenience that −∆D and −∆N stands respectively for the
(negative) Dirichlet and the Neumann Laplacian on the half-space for which a wide
review of their properties in homogeneous function spaces was achieved by the author,
see [Gau24b, Section 5].

Lemma 3.6. — Let p ∈ (1,+∞), s ∈ (−1 + 1/p, 1/p), k ∈ [[0, n]]. For all u ∈
Ḋs
p(∆H,n,Λk), we have

∆H,nu =
∑

I ∈ Ik
n−1

∆NuI dxI +
∑

I′ ∈ Ik−1
n−1

∆DuI′,n dxI′ ∧ dxn.

We also have estimates,

∥δdu∥Ḣs,p(Rn
+) + ∥dδu∥Ḣs,p(Rn

+)
∼p,s,n

∑
I ∈ Ik

n−1

∥∆NuI∥Ḣs,p(Rn
+) +

∑
I′ ∈ Ik−1

n−1

∥∆DuI′,n∥Ḣs,p(Rn
+)

∼p,s,n
∥∥∥∇2u

∥∥∥
Ḣs,p(Rn

+)
∼p,s,n ∥u∥Ḣs+2,p(Rn

+).

The result still holds replacing (n,N ,D) by (t,D,N ).
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Proof. — The results combine [Gau24b, Propositions 5.4 & 5.6], formula (2.10),
Proposition 2.28 and Theorem 2.29. Indeed, we have the consequence, that for
u ∈ [Ḣs,p ∩ Ḣs+2,p](Rn

+,Λk),

u ∈ Ḋs
p

(
∆H,n,Λk

)
⇔

uI ∈ Ḋs
p(∆D), if n ∈ I,

uI ∈ Ḋs
p(∆N ), if n /∈ I.

By the identity provided by Proposition 2.28,

EH,n∆H,nu = ∆EH,nu,

and the boundedness properties of EH,n, (2.11), we deduce by the definition of
function spaces by restriction

∥u∥Ḣs+2,p(Rn
+) ⩽ ∥EH,nu∥Ḣs+2,p(Rn) = ∥∆EH,nu∥Ḣs,p(Rn)

= ∥EH,n∆H,nu∥Ḣs,p(Rn) ≲p,s,n ∥∆H,nu∥Ḣs,p(Rn
+) .

Now, we close the estimates in two different ways

∥∆H,nu∥Ḣs,p(Rn
+) ⩽


∑

I ∈ Ik
n−1

∥∆NuI∥Ḣs,p(Rn
+) + ∑

I′ ∈ Ik−1
n−1

∥∆DuI′,n∥Ḣs,p(Rn
+) ,

∥δdu∥Ḣs,p(Rn
+) + ∥dδu∥Ḣs,p(Rn

+),

≲p,s,n

∥∥∥∇2u
∥∥∥

Ḣs,p(Rn
+) .

This ends the proof of the Lemma 3.6. □

And for the same reasons, one has more generally,

Lemma 3.7. — Let p ∈ (1,+∞), s ∈ (−1 + 1/p, 1/p), α ∈ [0, 2], such that
s+ α ̸= 1/p, 1 + 1/p. For all u ∈ Ḋs

p((−∆H)α
2 ,Λ), we have∥∥∥(−∆H)α

2 u
∥∥∥

Ḣs,p(Rn
+) ∼p,s,α,n ∥u∥Ḣs+α,p(Rn

+) ∼p,s,α,n
∥∥∥(−∆H)

s+α
2 u

∥∥∥
Lp(Rn

+) .

We recall that, in particular, ∆H,n|Λ0
= ∆N and ∆H,t|Λ0

= ∆D.

In general, explicit description for interpolation spaces with boundary condition
may be quite tedious. We mention the work of Guidetti [Gui91a, Gui91b], where such
investigation is done. Guidetti’s results were used to make an extensive treatment
of elliptic boundary value problem with general Lopatinskii–Shapiro boundary con-
ditions in inhomogeneous Besov spaces on the half-space and on bounded domains
with smooth boundary.

Thanks to Lemmas 3.6 and 3.7, the current work will be reduced to Dirichlet and
Neumann boundary conditions in the homogeneous case which is unknown to the
author’s knowledge yet.
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For p ∈ (1,+∞), q ∈ [1,+∞], s ∈ (−1+1/p, 2+1/p), such that (Cs,p,q) is satisfied,
we set:

Ḃs
p,q,D

(
Rn

+

)
:=


Ḃs
p,q

(
Rn

+

)
, if

(
s < 1

p

)
,{

u ∈ Ḃs
p,q

(
Rn

+

) ∣∣∣∣u|∂Rn
+

= 0
}
, if

(
s > 1

p

)
or

(
s = 1

p
, q = 1

)
,

Ḃs
p,q,N

(
Rn

+

)
:=


Ḃs
p,q

(
Rn

+

)
, if

(
s < 1 + 1

p

)
,{

u ∈ Ḃs
p,q

(
Rn

+

) ∣∣∣∣ ∂νu|∂Rn
+

= 0
}
, if

(
s > 1 + 1

p

)
or

(
s = 1 + 1

p
, q = 1

)
.

and similarly if (Cs,p) is satisfied, we also set:

Ḣs,p
D

(
Rn

+

)
:=


Ḣs,p

(
Rn

+

)
, if s < 1

p
,{

u ∈ Ḣs,p
(
Rn

+

) ∣∣∣∣u|∂Rn
+

= 0
}

if s > 1
p
,

Ḣs,p
N

(
Rn

+

)
:=


Ḣs,p

(
Rn

+

)
, if s < 1 + 1

p
,{

u ∈ Ḣs,p
(
Rn

+

) ∣∣∣∣ ∂νu|∂Rn
+

= 0
}
, if s > 1 + 1

p
.

And then, for J ∈ {D,N}, we introduce the following subspace

YJ :=
⋂

s∈ (−1+1/p,1/p)
p∈ (1,+∞)
q ∈ [1,+∞]

[
Ds
p ∩ Ḋs

p ∩Ds
p,q ∩ Ḋs

p,q

]
(∆J ).

Proposition 3.8. — Let p ∈ (1,+∞), q ∈ [1,+∞), s ∈ (−1 + 1/p, 2 + 1/p),
such that (Cs,p,q) is satisfied, we have that

Ḃs
p,q,J

(
Rn

+

)
= YJ

∥·∥
Ḃs

p,q(Rn
+) ,

whenever
• J = D, s ̸= 1/p, 1 + 1/p;
• J = N , s ̸= 1 + 1/p.

When q = +∞, we still have weak∗ density.

Proof. — We recall that for all p̃ ∈ (1,+∞), q̃ ∈ [1,+∞), s̃ ∈ R, we have that

Ḃs̃
p̃,q̃

(
Rn

+

)
= S0

(
Rn

+

)∥·∥
Ḃs̃

p̃,q̃(Rn
+) .

• First, assume that s ∈ (1 + 1/p, 2 + 1/p), for u ∈ Ḃs
p,q,J (Rn

+), we set f :=
−∆Ju ∈ Ḃs−2

p,q (Rn
+). For (fj)j ∈N ⊂ S0(Rn

+) such that

fj −−−−→
j→+∞

f, in Ḃs−2
p,q

(
Rn

+

)
.

Since it is not clear that uj := (−∆J )−1fj is an element of YJ , we set for all
λ > 0,

uλ,j := (λI−∆J )−1fj ∈ YJ
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where belonging to the space YJ is a consequence of [Gau24b, Proposi-
tions 5.4 & 5.6]. For µ, λ > 0, by [Gau24b, Propositions 5.7 & 5.8] and
Proposition 1.4, we have

∥uj,λ − uj,µ∥Ḃs
p,q(Rn

+)
≲s,p,q,n

∥∥∥−∆J (λI−∆J )−1 fj + ∆J (µI−∆J )−1 fj
∥∥∥

Ḃs−2
p,q (Rn

+)
≲s,p,q,n

∥∥∥−∆J (λI−∆J )−1 fj − fj
∥∥∥

Ḃs−2
p,q (Rn

+)
+
∥∥∥fj + ∆J (µI−∆J )−1 fj

∥∥∥
Ḃs−2

p,q (Rn
+) −−−→λ,µ→0

0.

By uniqueness of the solution for the Neumann (resp. Dirichlet) problem pro-
vided by [Gau24b, Proposition 5.8] (resp. [Gau24b, Proposition 5.7]), (uµ,j)µ>0
is a Cauchy net that admits a limit that must be the unique solution uj. Since
as j tends to infinity, uj = (−∆J )−1fj converges to u = (−∆J )−1f , it follows
that for any ε > 0, one can find j and λ large enough so that
∥u− uj,λ∥Ḃs

p,q(Rn
+) ⩽ ∥u− uj∥Ḃs

p,q(Rn
+) + ∥uj − uj,λ∥Ḃs

p,q(Rn
+) < 2ε.

This concludes the case s ∈ (1 + 1/p, 2 + 1/p).
• For s ∈ (1/p, 1 + 1/p), we consider first the case J = N . Again, for u ∈

Ḃs
p,q,N (Rn

+) = Ḃs
p,q(Rn

+), we can introduce (uj)j ∈N ⊂ S0(Rn
+) such that

uj
Ḃs

p,q−−−−→
j→+∞

u,

and we set for all τ > 0,
uτ,j := (I− τ∆J )−1uj ∈ YJ

where belonging to the space YJ is a consequence of [Gau24b, Proposi-
tions 5.4 & 5.6]. It is direct to see that

uτ,j −−→
τ→0

uj −−−−→
j→+∞

u in Ḃs
p,q(Rn

+).

This argument still works for s ∈ (−1 + 1/p, 1 + 1/p), when J = N .
For the case J = D, since Ḃs

p,q,D(Rn
+) = Ḃs

p,q,0(Rn
+) and C∞

c (Rn
+) ⊂ YD, the

result follows from [Gau24b, Lemma 3.16].
• Finally, when s ∈ (−1 + 1/p, 1/p), we notice that Ḃs

p,q,J (Rn
+) = Ḃs

p,q,0(Rn
+) =

Ḃs
p,q(Rn

+). Since C∞
c (Rn

+) ⊂ YJ , the result follows from [Gau24b, Corol-
lary 3.18]. □

The next result has a similar proof and is left to the reader.

Proposition 3.9. — Let p ∈ (1,+∞), s0, s1 ∈ (1/p, 2 + 1/p), J ∈ {D,N} such
that (Cs0,p) is satisfied, we have[

Ḣs0,p
J ∩ Ḣs1,p

] (
Rn

+

)
= YJ

∥·∥[Ḣs0,p∩Ḣs1,p](Rn
+) ,

whenever 1/p < s0, s1 < 2 + 1/p, except for s = 1 + 1/p when J = N .

The next lemma is inspired from [Gui91b, Lemma 2.4].
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Lemma 3.10. — Let pj ∈ (1,+∞), qj ∈ [1,+∞), and sj > 1/pj, for j ∈ {0, 1}.
Let T be the map

T : f 7−→
[
(x′, xn) 7→ e−xn(−∆′)

1
2 f(x′)

]
.

(i) Assume sj ∈ (1/pj, 1 + 2/pj), for j ∈ {0, 1}. Then the operator defined
formally by

PDu := u− T
[
u|∂Rn

+

]
,

is such that
(a) If (Cs0,p0) is satisfied, then PD : [Ḣs0,p0 ∩ Ḣs1,p1 ](Rn

+) −→ [Ḣs0,p0
D ∩

Ḣs1,p1 ](Rn
+) is a well-defined linear and bounded projection. For all

u ∈ [Ḣs0,p0 ∩ Ḣs1,p1 ](Rn
+) the following estimate is true

∥PDu∥Ḣsj ,pj (Rn
+) ≲pj ,sj ,n ∥u∥Ḣsj ,pj (Rn

+), j ∈ {0, 1}.

(b) If instead (Cs0,p0,q0) is satisfied, then the above statement still holds with
(Ḃs0

p0,q0 , Ḃ
s1
p1,q1) replacing (Ḣs0,p0 , Ḣs1,p1).

We also have that PD : Ḃs0
p0,∞(Rn

+) −→ Ḃs0
p0,∞,D(Rn

+) is also well-defined
linear and bounded.

(ii) Assume sj ∈ (1 + 1/pj, 1 + 2/pj), for j ∈ {0, 1}. Then the operator defined
formally by

PNu := u+ (−∆′)− 1
2T

[
∂xnu|∂Rn

+

]
,

satisfies points (ia) and (ib) with N instead of D.

Proof. — This a direct consequence of [Gau24b, Proposition B.2, Corollary B.3].
□

Proposition 3.11. — Let p ∈ (1,+∞), s ∈ (−1 + 1/p, 1/p), J ∈ {D,N ,H},
then (Ḋs

p(∆J ),−∆J ) satisfies Assumptions 3.1 and 3.2. In other words, −∆J is
injective on Ḣs,p(Rn

+), and we can define

Ḋs
p

(
∆̊J

)
:=
{
u ∈ Ḣs+2,p

(
Rn

+

) ∣∣∣∣ ∃ (uj)j ∈N ⊂ Ḋs
p(∆J ), ∥u− uj∥Ḣs+2,p(Rn

+) −−−−→j→+∞
0
}

such that it also satisfies
Ḣs,p

(
Rn

+

)
∩ Ḋs

p

(
∆̊J

)
= Ḋs

p(∆J ).(3.10)

The result holds with either AH,n (resp. MH,n) on Ḣs,p
n,σ(Rn

+) (resp. Ḣs,p
γ (Rn

+)), and
similarly replacing (n, σ, γ,A,M) by (t, γ, σ,M,A).

Proof. — We only show (3.10). The following inclusion is clear

Ḋs
p(∆J ) ⊂ Ḣs,p

(
Rn

+

)
∩ Ḋs

p

(
∆̊J

)
.

Now, let u ∈ Ḣs,p(Rn
+) ∩ Ḋs

p(∆̊J ), by definition and Lemma 3.6, we obtain

u ∈ Ḣs,p
(
Rn

+

)
∩ Ḣs+2,p

(
Rn

+

)
.
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It suffices to show that u has appropriate boundary conditions. We assume here that
J = D, other cases would be achieved similarly. Let (uj)j ∈N ⊂ Ḋs

p(∆D), such that
∥u− uj∥Ḣs+2,p(Rn

+) −−−−→j→+∞
0.

Since u−uj ∈ Ḣs,p(Rn
+)∩ Ḣs+2,p(Rn

+), one may apply [Gau24b, Proposition 4.6], and
use uj |∂Rn

+
= 0 to obtain∥∥∥u|∂Rn

+

∥∥∥
Ḃs+2−1/p

p,p (Rn−1)
≲s,p,n ∥u− uj∥Ḣs+2,p(Rn

+) −−−−→j→+∞
0.

Therefore u|∂Rn
+

= 0 so that u ∈ Ḋs
p(∆D). □

The Proposition 3.11 tells us that, for all p ∈ (1,+∞), s ∈ (−1 + 1/p, 1/p), it
makes sense to consider the semigroup,

et∆H : Ḣs,p
(
Rn

+

)
+ Ḋs

p

(
∆̊H

)
−→ Ḣs,p

(
Rn

+

)
+ Ḋs

p

(
∆̊H

)
,

thanks to [DHMT21, Chapter 2, Section 1].
For convenience of notations, and for later use, one may think about Lemma 3.6,

we also set for all p ∈ (1,+∞), q ∈ [1,+∞], s ∈ (−1+1/p, 2+1/p), such that (Cs,p,q)
is satisfied, and for k ∈ [[0, n]],

(3.11) Ḃs
p,q,Hn

(
Rn

+,Λk
)

:=

Ḃs
p,q

(
Rn

+,Λk
)
, s < 1

p
,{

u ∈ Ḃs
p,q

(
Rn

+,Λk
) ∣∣∣∣ en ⌟ u|∂Rn

+
= 0

}
, 0 < s− 1

p
< 1,{

u ∈ Ḃs
p,q

(
Rn

+,Λk
) ∣∣∣∣ en ⌟ (u, du)|∂Rn

+
= (0, 0)

}
, 1 < s− 1

p
< 2.

It is not difficult to see from point (iii) of Theorem A.2, that,

Ḃs
p,q,Hn

(Rn
+,Λk) ≃ Ḃs

p,q,D(Rn
+)(

n−1
k−1) × Ḃs

p,q,N (Rn
+)(

n−1
k ),

for which one may check for instance the Step 3 of Theorem A.2’s proof.
One can also build in the same fashion Ḃs

p,q,Ht
(Rn

+,Λk), with boundary conditions
ν ∧ u|∂Rn

+
= 0 and ν ∧ δu|∂Rn

+
= 0, so that

Ḃs
p,q,Ht

(
Rn

+,Λk
)
≃ Ḃs

p,q,N

(
Rn

+

)(n−1
k−1) × Ḃs

p,q,D

(
Rn

+

)(n−1
k )

.

We denote by Ḃs
p,q,H(Rn

+), either Ḃs
p,q,Hn

(Rn
+,Λ) or Ḃs

p,q,Ht
(Rn

+,Λ).

Proposition 3.12. — Let p ∈ (1,+∞), q ∈ [1,+∞], and s ∈ (−1 + 1/p, 1/p).
For all θ ∈ (0, 1) such that (Cs+2θ,p,q) is satisfied, provided J ∈ {D,N ,H}, one has(

Ḣs,p
(
Rn

+

)
, Ḋs

p

(
∆̊J

))
θ,q

= Ḃs+2θ
p,q,J

(
Rn

+

)
,

with equivalence of norms, whenever
• s+ 2θ ̸= 1/p if J = D,
• s+ 2θ ̸= 1 + 1/p if J = N ,
• s+ 2θ ̸= 1/p, 1 + 1/p if J = H.
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The proof is heavily inspired from the one of [DHMT21, Proposition 4.12].
Proof. —
Step 1: We start applying [Gau24b, Proposition 3.17] which yields the embedding(

Ḣs,p
(
Rn

+

)
, Ḋs

p

(
∆̊J

))
θ,q
↪→

(
Ḣs,p

(
Rn

+

)
, Ḣs+2,p

(
Rn

+

))
θ,q

= Ḃs+2θ
p,q

(
Rn

+

)
.

Now, if q < +∞, we recall that Ḣs,p(Rn
+)∩ Ḋs

p(∆̊J ) = Ḋs
p(∆J ) is a dense subspace of

(Ḣs,p(Rn
+), Ḋs

p(∆̊J ))θ,q by [BL76, Theorem 3.4.2], so that by continuity of the trace
operator, (

Ḣs,p
(
Rn

+

)
, Ḋs

p

(
∆̊J

))
θ,q
↪→ Ḃs+2θ

p,q,J

(
Rn

+

)
.

The case q = +∞ will be done in later steps.
Step 2: The reverse embedding when s+ 2θ ∈ (−1 + 1/p, 1/p). Let f ∈ Ḋs

p(∆J ),
then for all t > 0

f = et∆J f + ∆̊J

∫ t

0
τeτ∆J f

dτ
τ

=: b+ a(3.12)

with obviously f ∈ Ḋs
p(∆J ) ⊂ Ḣs,p(Rn

+) + Ḋs
p(∆̊J ) and by definition of the K-

functional, we obtain

K
(
t, f, Ḣs,p

(
Rn

+

)
, Ḋs

p

(
∆̊J

))
⩽ ∥a∥Ḣs,p(Rn

+) + t ∥∆J b∥Ḣs,p(Rn
+) .

So, as in the proof of [DHMT21, Proposition 4.12], we apply [DHMT21, Lemma 2.11]
so that

∥f∥(Ḣs,p(Rn
+),Ḋs

p(∆̊J ))
θ,q

⩽
1 + θ

θ

(∫ +∞

0

∥∥∥t1−θ∆J e
t∆J f

∥∥∥q
Ḣs,p(Rn

+)
dt
t

) 1
q

.(3.13)

Now, for 0 < θ < ε, such that s+ 2θ < s+ 2ε < 1/p we want to bound the Lq∗-norm
of ∥t1−θ∆J e

t∆J f∥Ḣs,p(Rn
+) by the Lq∗-norm of the K-functional associated with the

real interpolation space (Ḣs,p(Rn
+), Ḣs+2ε,p(Rn

+)) θ
ε
,q.

Notice that Lemmas 1.8 and 3.6 do imply that et∆J f ∈ Ḣs+2ε̃,p(Rn
+) for 0 < ε̃ < 1:∥∥∥et∆J f

∥∥∥
Ḣs+2ε̃,p(Rn

+) ≲ε̃
p,s,n

∥∥∥et∆J f
∥∥∥(1−ε̃)

Ḣs,p(Rn
+)
∥∥∥et∆J f

∥∥∥ε̃
Ḣs+2,p(Rn

+)
≲ε̃
p,s,n ∥f∥

(1−ε̃)
Ḣs,p(Rn

+) ∥∆J f∥ε̃Ḣs,p(Rn
+) .

Hence, by (3.12), f ∈ Ḣs,p(Rn
+) + Ḣs+2ε̃,p(Rn

+) for all ε̃ ∈ (0, 1).
Let (ã, b̃) ∈ Ḣs,p(Rn

+)× Ḣs+2ε,p(Rn
+), such that f = ã+ b̃, the fact that f ∈ Ḋs

p(∆J )
implies ã, b̃ ∈ [Ḣs,p ∩ Ḣs+2ε,p](Rn

+). By Lemma 3.7, since s+ 2ε < 1/p, we have

b̃ ∈ Ḋs
p((−∆J )ε).
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Therefore, since the semigroup (et∆J )t>0 is analytic, by the use of Lemma 3.7, we
have ∥∥∥t1−θ∆J e

t∆J f
∥∥∥

Ḣs,p(Rn
+) ⩽

∥∥∥t1−θ∆J e
t∆J ã

∥∥∥
Ḣs,p(Rn

+) +
∥∥∥t1−θ∆J e

t∆J b̃
∥∥∥

Ḣs,p(Rn
+)

≲n,p,s t
−θ
(
∥ã∥Ḣs,p(Rn

+) + tε
∥∥∥b̃∥∥∥

Ḣs+2ε,p(Rn
+)

)
.

Taking the infimum of all such ã, b̃, yields∥∥∥t1−θ∆J e
t∆J f

∥∥∥
Ḣs,p(Rn

+) ≲p,n,s t
−θK

(
tε, f, Ḣs,p

(
Rn

+

)
, Ḣs+2ε,p

(
Rn

+

))
.

Therefore one may take the Lq∗-norm on both sides, and use [Gau24b, Proposi-
tion 3.17], to obtain for all f ∈ Ḋs

p(∆J ),
∥f∥(Ḣs,p(Rn

+),Ḋs
p(∆̊J ))

θ,q

≲p,s,n,θ,ε ∥f∥(Ḣs,p(Rn
+),Ḣs+2ε(Rn

+)) θ
ε ,q

∼p,s,n,θ,ε ∥f∥Ḃs+2θ
p,q (Rn

+).

Then, thanks to Step 1, one has for all f ∈ Ḋs
p(∆J ),

∥f∥(Ḣs,p(Rn
+),Ḋs

p(∆̊J ))
θ,q

∼p,s,n,θ,ε ∥f∥Ḃs+2θ
p,q (Rn

+).

If q ∈ [1,+∞), the result follows from [Gau24b, Corollary 3.18], since C∞
c (Rn

+) is a
subspace of Ḋs

p(∆J ). The case q = +∞ is obtained via the reiteration theorem [BL76,
Theorem 3.5.3].

Step 3: The reverse embedding when s+ 2θ ∈ (1/p, 2 + 1/p), J = D. Provided
f ∈ YD, as introduced before Proposition 3.8, we may reproduce above Step 2 up
to (3.13). From there, for 0 < η < θ such that 1/p < s + 2η < s + 2θ, we want to
prove that one can bound (3.13) by the Lq∗-norm of the K-functional associated with
the real interpolation space (Ḣs+2η,p(Rn

+), Ḣs+2,p(Rn
+)) θ−η

1−η
,q.

Since f ∈ YD ⊂ Ḣs+2η,p(Rn
+) + Ḣs+2,p(Rn

+), for (a, b) ∈ Ḣs+2η,p(Rn
+) × Ḣs+2,p(Rn

+)
such that f = a+ b, we get
a = f − b ∈ Ḣs+2η,p

(
Rn

+

)
∩ (Ḣs+2,p

(
Rn

+

)
+ YD) ⊂ Ḣs+2η,p

(
Rn

+

)
∩ Ḣs+2,p

(
Rn

+

)
,

and the same argument leads to b ∈ Ḣs+2η,p(Rn
+) ∩ Ḣs+2,p(Rn

+). From Lemma 3.10,
we have

f = PDf = PDa+ PDb

where PDa,PDb ∈ Ḣs+2η,p
D (Rn

+) ∩ Ḣs+2,p(Rn
+) with the estimates

∥PDa∥Ḣs+2η,p(Rn
+) ≲p,s,η,n ∥a∥Ḣs+2η,p(Rn

+) and ∥PDb∥Ḣs+2,p(Rn
+) ≲p,s,n ∥b∥Ḣs+2,p(Rn

+).

Therefore, by above estimate, analyticity of the semigroup (et∆D)t> 0, and Lemma 3.7,
we are able to obtain∥∥∥t1−θ∆De

t∆Df
∥∥∥

Ḣs,p(Rn
+) ⩽

∥∥∥t1−θ∆De
t∆DPDa

∥∥∥
Ḣs,p(Rn

+) +
∥∥∥t1−θ∆De

t∆DPDb
∥∥∥

Ḣs,p(Rn
+)

≲n,p,s t
−(θ−η) ∥PDa∥Ḣs+2η,p(Rn

+) + t1−θ ∥PDb∥Ḣs+2,p(Rn
+)

≲n,p,s t
−(θ−η)

(
∥a∥Ḣs+2η,p(Rn

+) + t1−η∥b∥Ḣs+2,p(Rn
+)
)
.
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Taking the infimum of all such couples (a, b), yields∥∥∥t1−θ∆De
t∆Df

∥∥∥
Ḣs,p(Rn

+) ≲p,n,s t
−(θ−η)K

(
t1−η, f, Ḣs+2η,p

(
Rn

+

)
, Ḣs+2,p

(
Rn

+

))
.

As in the Step 2, one may take the Lq∗-norm on both sides, and use [Gau24b, Propo-
sition 3.17], to obtain for all f ∈ YD,

∥f∥(Ḣs,p(Rn
+),Ḋs

p(∆̊D))
θ,q

∼p,s,n,θ,η ∥f∥(Ḣs+2η,p(Rn
+),Ḣs+2,p(Rn

+)) θ−η
1−η ,q

∼p,s,n,θ,η ∥f∥Ḃs+2θ
p,q (Rn

+).

If q ∈ [1,+∞), the result follows from Proposition 3.8. The case q = +∞ is obtained
via the application of the reiteration theorem [BL76, Theorem 3.5.3], by means of
Lemma 3.10.

Step 4: The reverse embedding s + 2θ ∈ [1/p, 1 + 1/p), J = N . One may pick
f ∈ YN so that, as before, we can reproduce above Step 2 up to (3.13). From there,
for 0 < η < θ < ε such that 1/p < s + 2η < s + 2θ < s + 2ε < 1 + 1/p, we want
to prove that one can bound (3.13) by the Lq∗-norm of the K-functional associated
with the interpolation space (Ḣs+2η,p(Rn

+), Ḣs+2ε,p(Rn
+)) θ−η

ε−η
,q.

Since f ∈ YD ⊂ Ḣs+2η,p(Rn
+) + Ḣs+2ε,p(Rn

+), for (a, b) ∈ Ḣs+2η,p(Rn
+)× Ḣs+2ε,p(Rn

+)
such that f = a+ b, we get

b = f − a ∈ Ḣs+2η,p
(
Rn

+

)
∩ (Ḣs+2ε,p

(
Rn

+

)
+ YN ) ⊂ Ḣs+2η,p

(
Rn

+

)
∩ Ḣs+2ε,p

(
Rn

+

)
.

By Proposition 3.9, there exists sequences (aj)j ∈N, (bj)j ∈N ⊂ YN such that

∥aj − a∥Ḣs+2η,p(Rn
+) + ∥bj − b∥[Ḣs+2η,p∩Ḣs+2ε,p](Rn

+) −−−−→j→+∞
0.

Therefore, the analyticity of the semigroup (et∆N )t> 0 and Lemma 3.7 works together
to deliver ∥∥∥t∆N e

t∆N aj
∥∥∥

Ḣs,p(Rn
+) ≲p,s,n,η t

η∥aj∥Ḣs+2η,p(Rn
+) ,∥∥∥t∆N e

t∆N bj
∥∥∥

Ḣs,p(Rn
+) ≲p,s,n,ε t

ε∥bj∥Ḣs+2ε,p(Rn
+) ,

so that taking limits, it yields∥∥∥t∆N e
t∆N a

∥∥∥
Ḣs,p(Rn

+) ≲p,s,n,η t
η∥a∥Ḣs+2η,p(Rn

+),∥∥∥t∆N e
t∆N b

∥∥∥
Ḣs,p(Rn

+) ≲p,s,n,ε t
ε∥b∥Ḣs+2ε,p(Rn

+).
(3.14)

Therefore, by the estimates (3.14), the following holds∥∥∥t1−θ∆N e
t∆N f

∥∥∥
Ḣs,p(Rn

+) ≲n,p,s,η,ε t
−(θ−η)

(
∥a∥Ḣs+2η,p(Rn

+) + tε−η∥b∥Ḣs+2ε,p(Rn
+)
)
.

From there, we can take the infimum of all such couples (a, b), and we see that∥∥∥t1−θ∆N e
t∆N f

∥∥∥
Ḣs,p(Rn

+) ≲p,n,s t
−(θ−η)K

(
tε−η, f, Ḣs+2η,p

(
Rn

+

)
, Ḣs+2ε,p

(
Rn

+

))
.
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As in the Step 2, one may take the Lq∗-norm on both sides, and use [Gau24b, Propo-
sition 3.17], to obtain for all f ∈ YN ,

∥f∥(Ḣs,p(Rn
+),Ḋs

p(∆̊N ))
θ,q

∼p,s,n,θ,η,ε ∥f∥(Ḣs+2η,p(Rn
+),Ḣs+2ε,p(Rn

+)) θ−η
ε−η ,q

∼p,s,n,θ,η,ε ∥f∥Ḃs+2θ
p,q (Rn

+).

If q ∈ [1,+∞), the result follows from Proposition 3.8. The case q = +∞ is obtained
via the application of the reiteration theorem [BL76, Theorem 3.5.3]. The case
s = 1/p follows from reiteration theorem [BL76, Theorem 3.5.3] between Step 2 and
this one.

Step 5: The reverse embedding s+ 2θ ∈ (1 + 1/p, 2 + 1/p), J = N . For f ∈ YN ,
we reproduce again the Step 2 up to (3.13). Now let 0 < η < θ such that 1 + 1/p <
s + 2η < s + 2θ < 2 + 1/p, we want to achieve the same estimate obtained at the
end of Step 3.

Since f ∈ YN ⊂ Ḣs+2η,p(Rn
+) + Ḣs+2,p(Rn

+), for (a, b) ∈ Ḣs+2η,p(Rn
+) × Ḣs+2,p(Rn

+)
such that f = a+ b, we get

b = f − a ∈ Ḣs+2η,p
(
Rn

+

)
∩
(
Ḣs+2,p

(
Rn

+

)
+ YN

)
⊂ Ḣs+2η,p

(
Rn

+

)
∩ Ḣs+2,p

(
Rn

+

)
.

We want to fall in the expected homogeneous domains, i.e. to get back the Neumann
boundary condition, to do so, we use Lemma 3.10, and we get

f = PNf = PNa+ PN b,

with estimates
∥PNa∥Ḣs+2η,p(Rn

+) ≲p,n,s,η ∥a∥Ḣs+2η,p(Rn
+) and ∥PN b∥Ḣs+2,p(Rn

+) ≲p,n,s,η ∥b∥Ḣs+2,p(Rn
+).

By Proposition 3.9, there exists sequences (aj)j ∈N, (bj)j ∈N ⊂ YN such that
∥aj − PNa∥Ḣs+2η,p(Rn

+) + ∥bj − PN b∥[Ḣs+2η,p∩Ḣs+2,p](Rn
+) −−−−→j→+∞

0.

As in Step 4, we obtain∥∥∥t∆N e
t∆NPNa

∥∥∥
Ḣs,p(Rn

+) ≲p,s,n,η t
η∥a∥Ḣs+2η,p(Rn

+) ,∥∥∥t∆N e
t∆NPN b

∥∥∥
Ḣs,p(Rn

+) ≲p,s,n t∥b∥Ḣs+2,p(Rn
+).

Therefore, by the estimates above, the following estimate holds∥∥∥t1−θ∆N e
t∆N f

∥∥∥
Ḣs,p(Rn

+) ≲n,p,s t
−(θ−η)

(
∥a∥Ḣs+2η,p(Rn

+) + t1−η∥b∥Ḣs+2,p(Rn
+)
)
.

Finally, one may finish the present Step 5 with the same arguments present in Step 3.
Step 6: The case J = H. Let k ∈ [[0, n]], from Lemma 3.6, we deduce that the

following holds with equivalence of norms

Ḋs
p

(
∆̊H, n,Λk

)
≃ Ḋs

p

(
∆̊D

)(n−1
k−1) × Ḋs

p

(
∆̊N

)(n−1
k )

The result is then immediate, by all above steps. The case of the Hodge Laplacian
with generalized tangential boundary conditions admits a similar proof. □
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Finally, we want to compute interpolation spaces for the Hodge–Stokes and the
Hodge–Maxwell operators. To do so, we set for all p ∈ (1,+∞), q ∈ [1,+∞],
s ∈ (−1 + 1/p, 2 + 1/p), such that (Cs,p,q) is satisfied, provided, k ∈ [[0, n]],

(3.15) Ḃs,σ
p,q,Hn

(
Rn

+,Λk
)

:=Ḃs,σ
p,q,n

(
Rn

+,Λk
)
, s < 1

p
,{

u ∈ Ḃs
p,q,Hn

(
Rn

+,Λk
) ∣∣∣ δu = 0

}
, 1

p
< s < 2 + 1

p
, s ̸= 1 + 1/p.

(3.16) Ḃs,γ
p,q,Hn

(
Rn

+,Λk
)

:=Ḃs,γ
p,q

(
Rn

+,Λk
)
, s < 1

p
,{

u ∈ Ḃs
p,q,Hn

(
Rn

+,Λk
) ∣∣∣ du = 0

}
, 1

p
< s < 2 + 1

p
, s ̸= 1 + 1/p.

One may build similarly Ḃs,σ
p,q,Ht

(Rn
+,Λk) and Ḃs,γ

p,q,Ht
(Rn

+,Λk) replacing (n, σ, γ, d, δ)
by (t, γ, σ, δ, d).

Proposition 3.13. — Let p ∈ (1,+∞), q ∈ [1,+∞], and s ∈ (−1 + 1/p, 1/p).
For all θ ∈ (0, 1) such that (Cs+2θ,p,q) is satisfied, one has

(
Ḣs,p

n,σ

(
Rn

+

)
, Ḋs

p

(
ÅH,n

))
θ,q

= Ḃs+2θ,σ
p,q,Hn

(
Rn

+

)
,(3.17) (

Ḣs,p
γ

(
Rn

+

)
, Ḋs

p

(
M̊H,n

))
θ,q

= Ḃs+2θ,γ
p,q,Hn

(
Rn

+

)
,(3.18)

with equivalence of norms, whenever s+ 2θ ̸= 1/p, 1 + 1/p.
The same result holds replacing (n, σ, γ,A,M) by (t, γ, σ,M,A).

Proof. — We only prove (3.17), other equalities have the same proof.

Step 1: We start with [Gau24b, Proposition 3.17] which yields the embedding(
Ḣs,p

n,σ

(
Rn

+

)
, Ḋs

p

(
ÅH,n

))
θ,q
↪→

(
Ḣs,p

(
Rn

+

)
, Ḣs+2,p

(
Rn

+

))
θ,q

= Ḃs+2θ
p,q

(
Rn

+

)
.

Now, if q < +∞, we recall that Ḣs,p
n,σ(Rn

+)∩ ḋsp(ÅH,n) is a dense subspace of (Ḣs,p
n,σ(Rn

+),
ḋsp(ÅH,n))θ,q by [BL76, Theorem 3.4.2], so that by continuity of traces,

(
Ḣs,p

n,σ

(
Rn

+

)
, Ḋs

p

(
ÅH,n

))
θ,q
↪→ Ḃs+2θ,σ

p,q,Hn

(
Rn

+

)
↪→ Ḃs+2θ

p,q,Hn

(
Rn

+

)
.

Again density of Ḣs,p
n,σ(Rn

+)∩ Ḋs
p(ÅH,n) yields δf = 0 for all f ∈ (Ḣs,p(Rn

+), Ḋs
p(∆̊J ))θ,q.

The case q = +∞ is left to the end of Step 3.

Step 2: We want to extend the range of exponents for the boundedness of P, and
get a density result.
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Let f ∈ Ḋs
p(∆H,n) ⊂ Ḃs+2θ

p,q,Hn
(Rn

+), we have Pf ∈ Ḋs
p(∆H,n) and by Proposition 3.12,

[DHMT21, Proposition 2.12], Corollary 2.34 and Theorem 2.33, we obtain succes-
sively

∥Pf∥Ḃs+2θ
p,q (Rn

+) ≲p,s,n,θ

(∫ +∞

0

∥∥∥t1−θ∆H,ne
t∆H,nPf

∥∥∥q
Ḣs,p(Rn

+)
dt
t

) 1
q

≲p,s,n,θ

(∫ +∞

0

∥∥∥t1−θP∆H,ne
t∆H,nf

∥∥∥q
Ḣs,p(Rn

+)
dt
t

) 1
q

≲p,s,n,θ

(∫ +∞

0

∥∥∥t1−θ∆H,ne
t∆H,nf

∥∥∥q
Ḣs,p(Rn

+)
dt
t

) 1
q

≲p,s,n,θ ∥f∥Ḃs+2θ
p,q (Rn

+).

From above estimates, if q < +∞, by density of Ḋs
p(∆H,n) in Ḃs+2θ

p,q,Hn
(Rn

+), we have
that

P : Ḃs+2θ
p,q,Hn

(
Rn

+

)
−→ Ḃs+2θ

p,q,Hn

(
Rn

+

)
extends uniquely as a bounded projection on Ḃs+2θ

p,q,Hn
(Rn

+) with range Ḃs+2θ,σ
p,q,Hn

(Rn
+).

The result still holds for q = +∞, by above Step 1, the reiteration theorem [BL76,
Theorem 3.5.3] and Proposition 3.12.

In particular, Ḋs
p(AH,n) = PḊs

p(∆H,n) is dense in Ḃs+2θ,σ
p,q,Hn

(Rn
+), when q < +∞.

Step 3: For the reverse embedding. Let f ∈ Ḋs
p(AH,n) ⊂ Ḃs+2θ

p,q,Hn
(Rn

+), and note
that Ḃs+2θ

p,q,Hn
(Rn

+) = (Ḣs,p(Rn
+), Ḋs

p(∆̊H,n))θ,q ⊂ Ḣs,p(Rn
+) + Ḋs

p(∆̊H,n)
If we let (a, b) ∈ Ḣs,p(Rn

+)× Ḋs
p(∆̊H,n) such that f = a+ b, by Proposition 3.11, it

is given that

b = f − a ∈
(
Ḋs
p(∆H,n) + Ḣs,p

(
Rn

+

))
∩ Ḋs

p

(
∆̊H,n

)
⊂ Ḋs

p(∆H,n)

and for the same reason a ∈ Ḋs
p(∆H,n). Therefore,

f = Pf = Pa+ Pb ∈ Ḣs,p
n,σ(Rn

+) + Ḋs
p

(
ÅH,n

)
.

By (2.15) and Corollary 2.34, we have∥∥∥t1−θÅH,ne
−tAH,nf

∥∥∥
Ḣs,p(Rn

+)
⩽
∥∥∥t1−θÅH,ne

−tAH,nPa
∥∥∥

Ḣs,p(Rn
+)
∥∥∥t1−θÅH,ne

−tAH,nPb
∥∥∥

Ḣs,p(Rn
+)

≲p,n,s

∥∥∥t1−θP∆H,ne
t∆H,na

∥∥∥
Ḣs,p(Rn

+) +
∥∥∥t1−θP∆H,ne

t∆H,nb
∥∥∥

Ḣs,p(Rn
+) .

From there, we use analyticity of the semigroup, boundedness of P given by Theo-
rem 2.33, to obtain∥∥∥t1−θÅH,ne

−tAH,nf
∥∥∥

Ḣs,p(Rn
+) ≲p,n,s t

−θ∥a∥Ḣs,p(Rn
+) + t1−θ ∥∆H,nb∥Ḣs,p(Rn

+) .
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Taking the infimum on all such pairs (a, b) yields∥∥∥t1−θÅH,ne
−tAH,nf

∥∥∥
Ḣs,p(Rn

+) ≲p,n,s t
−θK

(
t, f, Ḣs,p

(
Rn

+

)
, Ḋs

p

(
∆̊H,n

))
.

One may take the Lq∗-norm of the inequality above, then applies [DHMT21, Propo-
sition 2.12] and Proposition 3.12, to deduce that

∥f∥(Ḣs,p
n,σ(Rn

+),ḋs
p(ÅH,n))

θ,q

≲θ

(∫ +∞

0

∥∥∥t1−θ∆H,ne
t∆H,nPf

∥∥∥q
Ḣs,p(Rn

+)
dt
t

)
≲p,n,s,θ ∥f∥(Ḣs,p(Rn

+),Ḋs
p(∆̊H,n))

θ,q

≲p,n,s,θ ∥f∥Ḃs+2θ
p,q (Rn

+).

With Step 1, one has for all f ∈ Ḋs
p(AH,n),

∥f∥(Ḣs,p
n,σ(Rn

+),Ḋs
p(ÅH,n))

θ,q

∼p,n,s,θ ∥f∥Ḃs+2θ
p,q (Rn

+).

If q < +∞, then the end of the Step 2 above, and [DHMT21, Lemma 2.10] allows to
conclude by density. If q = +∞, the result follows from the reiteration theorem [BL76,
Theorem 3.5.3] and the boundedness and the range of P in Step 2 (use a retraction
argument [BL76, Theorem 6.4.2]). □

The Step 2 from the proof above leads to the immediate following corollary.

Corollary 3.14. — Let p ∈ (1,+∞), q ∈ [1,+∞], s ∈ (−1+1/p, 2+1/p), such
that s /∈ N + 1

p
, and (Cs,p,q) is satisfied. Then,

P : Ḃs
p,q,Hn

(
Rn

+

)
−→ Ḃs,σ

p,q,Hn

(
Rn

+

)
,

[I− P] : Ḃs
p,q,Hn

(
Rn

+

)
−→ Ḃs,γ

p,q,Hn

(
Rn

+

)
,

are both well-defined bounded linear projections, so that the following Hodge de-
composition holds

Ḃs
p,q,Hn

(
Rn

+

)
= Ḃs,σ

p,q,Hn

(
Rn

+

)
⊕ Ḃs,γ

p,q,Hn

(
Rn

+

)
.

The result still holds if we replace (n,P) by (t,Q).

Finally, we mention without its proofs, that follows exactly the same lines, the result
for interpolation spaces of the homogeneous domains with Besov spaces as an ambient
function space, say, for θ ∈ (0, 1), r, q ∈ [1,+∞], p ∈ (1,+∞), −1 + 1/p < s < 1/p,

D̊
s,p,r
−∆H

(θ, q) =
(
Ḃs
p,r

(
Rn

+

)
, Ḋs

p,r

(
∆̊H

))
θ,q
.

We are able to obtain,

Proposition 3.15. — Let p ∈ (1,+∞), r ∈ [1,+∞) q ∈ [1,+∞], and s ∈ (−1 +
1/p, 1/p). For all θ ∈ (0, 1) such that (Cs+2θ,p,q) is satisfied, provided J ∈ {D,N ,H},
one has (

Ḃs
p,r

(
Rn

+

)
, Ḋs

p,r

(
∆̊J

))
θ,q

= Ḃs+2θ
p,q,J

(
Rn

+

)
,

with equivalence of norms, whenever
• s+ 2θ ̸= 1/p if J = D,
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• s+ 2θ ̸= 1 + 1/p if J = N ,
• s+ 2θ ̸= 1/p, 1 + 1/p if J = H.

Then by means of Corollary 3.14,
Proposition 3.16. — Let p ∈ (1,+∞), r ∈ [1,+∞), q ∈ [1,+∞], and s ∈

(−1 + 1/p, 1/p). For all θ ∈ (0, 1) such that (Cs+2θ,p,q) is satisfied, one has(
Ḃs,σ
p,r,n

(
Rn

+

)
, Ḋs

p,r

(
ÅH,n

))
θ,q

= Ḃs+2θ,σ
p,q,Hn

(
Rn

+

)
,(

Ḃs,γ
p,r

(
Rn

+

)
, Ḋs

p,r

(
M̊H,n

))
θ,q

= Ḃs+2θ,γ
p,q,Hn

(
Rn

+

)
,

with equivalence of norms, whenever s+ 2θ ̸= 1/p, 1 + 1/p.
The same result holds replacing (n, σ, γ,A,M) by (t, γ, σ,M,A).

3.2. Maximal regularity for Hodge Laplacians and related operators

We will present here a direct application of Theorem 3.4, and [DHMT21, The-
orem 2.20] with appropriate identification of real interpolation spaces, provided
p, r ∈ (1,+∞), s ∈ (−1 + 1/p, 1/p),

D̊
s,p
A (θ, q), D̊s,p,r

A (θ, q), θ ∈ (0, 1), q ∈ [1,+∞] and A ∈ {−∆H,AH,MH}
subject to either normal or tangential boundary conditions, see Propositions 3.12,
3.13, 3.15 and 3.16.

We recall that the definition of involved spaces are given in Notations 2.32, see
also (3.11) and (3.15). To alleviate notations in inequalities, we drop the references
to the open set Rn

+.
We give first two theorems in the case where the ambient spaces is a UMD Banach

space which is the case of Ḣs,p and Ḃs
p,r, provided p, r ∈ (1,+∞), s ∈ (−1 + 1/p, 2 +

1/p).
Theorem 3.17. — Let p, q, r ∈ (1,+∞), and for α ∈ (−1 + 1/q, 1/q) fixed, we

set αq := 1 + α− 1/q.
Let s ∈ (−1 + 1/p, 2 + 1/p) such that s, s + 2αq /∈ N + 1

p
, (Cs+2αq ,p,q) is satisfied,

and let T ∈ (0,+∞].
For any f ∈ Ḣα,q((0, T ), Ḃs

p,r,Hn
(Rn

+,Λ)), u0 ∈ Ḃs+2αq

p,q,Hn
(Rn

+,Λ), there exists a unique
mild solution u ∈ C0

b([0, T ], Ḃs+2αq

p,q,Hn
(Rn

+,Λ)) of

(HHSn)



∂tu−∆u = f, on (0, T )× Rn
+,

ν ⌟ du|∂Rn
+

= 0, on (0, T )× ∂Rn
+,

ν ⌟ u|∂Rn
+

= 0, on (0, T )× ∂Rn
+,

u(0) = u0, in Ḃ
2+s− 2

q
p,q

(
Rn

+,Λ
)
,

with estimate
∥u∥L∞((0,T ),Ḃs+2αq

p,q ) ≲
α,s
p,q,n

∥∥∥(∂tu,∇2u
)∥∥∥

Ḣα,q((0,T ),Ḃs
p,r)

≲α,s
p,q,n ∥f∥Ḣα,q((0,T ),Ḃs

p,r) + ∥u0∥Ḃs+2αq
p,q

.
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For all β ∈ [0, 1], we also have∥∥∥(−∂t)β (−∆H,n)1−β u
∥∥∥

Ḣα,q((0,T ),Ḃs
p,r)

≲s,α
p,q,n ∥f∥Ḣα,q((0,T ),Ḃs

p,r) + ∥u0∥Ḃs+2αq
p,q

.(3.19)

Proof. — From Theorem 2.29 we have the bounded holomorphic calculus of−∆H, n
on Ḃs

p,r,Hn
(Rn

+), so that we may apply Theorem 3.4 to obtain maximal regularity
estimates, whereas Proposition 3.12 gives an exact description of interpolation spaces.

□

Theorem 3.18. — Let p, q ∈ (1,+∞), s ∈ (−1 + 1/p, 1/p), and α ∈ (−1 +
1/q, 1/q) fixed, we set αq := 1+α−1/q. We assume that s+2αq /∈ N+ 1

p
, (Cs+2αq ,p,q)

is satisfied, and let T ∈ (0,+∞].
For any f ∈ Ḣα,q((0, T ), Ḣs,p

t,γ (Rn
+,Λ)), u0 ∈ Ḃs+2αq ,γ

p,q,Ht
(Rn

+,Λ), there exists a unique
mild solution u ∈ C0

b([0, T ], Ḃs+2αq ,γ
p,q,Ht

(Rn
+,Λ)) of

(HMSt)



∂tu−∆u = f, on (0, T )× Rn
+,

du = 0, on (0, T )× Rn
+,

ν ∧ δu|∂Rn
+

= 0, on (0, T )× ∂Rn
+,

ν ∧ u|∂Rn
+

= 0, on (0, T )× ∂Rn
+,

u(0) = u0, in Ḃs+2αq
p,q

(
Rn

+,Λ
)
,

with estimate

∥u∥L∞((0,T ),Ḃs+2αq
p,q ) ≲

s,α
p,q,n

∥∥∥(∂tu,∇2u
)∥∥∥

Ḣα,q((0,T ),Ḣs,p)
≲s,α
p,q,n ∥f∥Ḣα,q((0,T ),Ḣs,p) + ∥u0∥Ḃs+2αq

p,q
.

For all β ∈ [0, 1], we also have∥∥∥(−∂t)β (MH,t)1−β u
∥∥∥

Ḣα,q((0,T ),Ḣs,p) ≲s,α
p,q,n ∥f∥Ḣα,q((0,T ),Ḣs,p) + ∥u0∥Ḃs+2αq

p,q
.(3.20)

Proof. — From Theorem 2.35, we have the bounded holomorphic calculus of
MH,t on Ḣs,p(Rn

+), so that we may apply Theorem 3.4 to obtain maximal regu-
larity estimates, whereas Proposition 3.15 gives an exact description of interpolation
spaces. □

Finally, the homogeneous Da Prato–Grisvard Theorem 3.19 yields our (almost)
last Lq-maximal regularity theorem.

Theorem 3.19. — Let p ∈ (1,+∞), q ∈ [1,+∞), s ∈ (−1 + 1/p, 1/p + 2/q),
such that s, s+ 2− 2/q /∈ N + 1

p
and (Cs+2−2/q,p,q) is satisfied and let T ∈ (0,+∞].

For any

f ∈ Lq
(
(0, T ), Ḃs,σ

p,q,Hn

(
Rn

+,Λ
))
, u0 ∈ Ḃ

2+s− 2
q
,σ

p,q,Hn

(
Rn

+,Λ
)
,
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there exists a unique mild solution u ∈ C0
b([0, T ], Ḃ

2+s− 2
q
,σ

p,q,Hn
(Rn

+,Λ)) of

(HSSn)



∂tu−∆u = f, on (0, T )× Rn
+,

δu = 0, on (0, T )× Rn
+,

ν ⌟ du|∂Rn
+

= 0, on (0, T )× ∂Rn
+,

ν ⌟ u|∂Rn
+

= 0, on (0, T )× ∂Rn
+,

u(0) = u0, in Ḃ
2+s− 2

q
p,q

(
Rn

+,Λ
)
,

with estimate

∥u∥
L∞([0,T ],Ḃ

2+s− 2
q

p,q )
+
∥∥∥(∂tu,∇2u

)∥∥∥
Lq((0,T ),Ḃs

p,q)
≲s
p,q,n ∥f∥Lq((0,T ),Ḃs

p,q) + ∥u0∥
Ḃ

2+s− 2
q

p,q

.

In the case q = +∞, if we assume in addition u0 ∈ ḋsp(A2
H,n), we have∥∥∥(∂tu,∇2u

)∥∥∥
L∞([0,T ],Ḃs

p,∞) ≲p,s,n ∥f∥L∞((0,T ),Ḃs
p,∞) + ∥AH,nu0∥Ḃs

p,∞
.

Remark 3.20. — Notice that above Theorem 3.19 is the only one presented here
that allows L1 and L∞ in time maximal regularity estimates.
In particular, one should notice that in the case q = 1, that above solution u satisfies
for almost every t ∈ R+,

u(t), ∂tu(t), ∇2u(t) ∈ Ḃs
p,1(Rn

+).

Proof. — We may apply Theorem 3.3 to obtain maximal regularity estimates, since
Proposition 3.13 gives an exact description of interpolation spaces. □

Remark 3.21. — One may perform a cyclic permutation of systems (HHSn),
(HMSt) and (HSSn), but also exchange n and t, up to appropriate modification
on boundary conditions and considered function spaces, to obtain each type of
results for each operator

{−∆H,n,AH,n,MH,n,−∆H,t,AH,t,MH,t} .

3.3. Maximal regularity for the Stokes system with Navier-slip
boundary conditions

The flatness of ∂Rn
+ has the interesting consequence that, for u : Rn

+ −→ Cn ≃ Λ1

regular enough, the normal Hodge boundary conditions ν ⌟ u|∂Rn
+

= 0,
ν ⌟ du|∂Rn

+
= 0,

are equivalent to the Navier-slip boundary conditions

(3.21)


ν · u|∂Rn

+
= 0,[(

t∇u+∇u
)
ν
]

tan|∂Rn
+

= 0.
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Indeed, recalling that ν = −en, one has[(
t∇u+∇u

)
ν
]

tan
=
(
t∇u+∇u

)
(−en)−

[(
t∇u+∇u

)
(−en) · (−en)

]
(−en)

= −
n−1∑
k=1

(∂xk
un + ∂xnuk) ek.

We may use −en · u|∂Rn
+

= un(·, 0) = 0, yielding for all k ∈ [[1, n− 1]]

0 =
n−1∑
k=1

(
∂xk

un(·, 0) + ∂xnuk(·, 0)
)
ek =

n−1∑
k=1

∂xnuk(·, 0)ek.

This implies that u satisfies exactly n − 1 Neumann boundary conditions, and a
single Dirichlet boundary condition on un. This stands exactly as in Lemma 3.6. The
converse also holds.

As long as one has enough regularity on u, at least in the Sobolev / Besov sense
on Rn

+, one is still able to perform the same decoupling for the boundary values.
This occurs when s ∈ (−1 + 1/p, 1 + 1/p), p ∈ (1,+∞) for the spaces Hs+2,p,

Ḣs,p ∩ Ḣs+2,p, Ḣs+2,p when those are complete. It still occurs when we replace H·,p by
B·
p,q, q ∈ [1,+∞].
Therefore, in each of the previous definitions restricted to Λ1 ≃ Cn, such as

e.g. (3.11), one may replace the boundary condition ν ⌟ du|∂Rn
+

= 0 by[(
t∇u+∇u

)
ν
]

tan|∂Rn
+

= 0.

However, we mention the fact that, as exhibited in [MM09a, Section 2], such an
identification is no longer true for (even smooth) domains Ω with non-flat boundary.
In this case, the equivalence holds up to a correction termWu, i.e. (3.21) is equivalent
to {

ν · u|∂Ω = 0,
ν ⌟ du+Wu|∂Ω = 0.

Here, W is the Weingarten map. It is linear in u and its coefficients depend linearly
on the first derivatives of the outer unit normal ν, requiring then some smoothness
on the boundary ∂Ω. With the flat boundary ∂Rn

+, the outer unit normal ν = −en
is constant, which explains why the map W vanishes.

We can then exhibit the following maximal regularity result, where we identify Λ1

with Cn. Similar results such as Theorems 3.17 and 3.18 are also available.

Theorem 3.22. — Let p ∈ (1,+∞), q ∈ [1,+∞), s ∈ (−1 + 1/p, 1/p + 2/q),
such that s, s+ 2− 2/q /∈ N + 1

p
and (Cs+2−2/q,p,q) is satisfied and let T ∈ (0,+∞].

For any

f ∈ Lq
(
(0, T ), Ḃs

p,q,Hn

(
Rn

+,Cn
))
, u0 ∈ Ḃ

2+s− 2
q
,σ

p,q,Hn

(
Rn

+,Cn
)
,

there exists a unique mild solution

(u,∇p) ∈ C0
b

(
[0, T ], Ḃ

2+s− 2
q
,σ

p,q,Hn

(
Rn

+,Cn
) )
× Lq

(
(0, T ), Ḃs

p,q

(
Rn

+,Cn
))

of
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(NSS)



∂tu−∆u+∇p = f, on (0, T )× Rn
+,

div u = 0, on (0, T )× Rn
+,[(

t∇u+∇u
)
ν
]

tan|∂Rn
+

= 0, on (0, T )× ∂Rn
+,

ν · u|∂Rn
+

= 0, on (0, T )× ∂Rn
+,

u(0) = u0, in Ḃ
2+s− 2

q
p,q

(
Rn

+,Cn
)
,

with estimate

∥u∥
L∞
(

[0,T ],Ḃ
2+s− 2

q
p,q

) +
∥∥∥(∂tu,∇2u,∇p

)∥∥∥
Lq((0,T ),Ḃs

p,q)
≲s
p,q,n ∥f∥Lq((0,T ),Ḃs

p,q) + ∥u0∥
Ḃ

2+s− 2
q

p,q

.

In the case q = +∞, if we assume in addition u0 ∈ Ḋs
p(A2

H,n), we have∥∥∥(∂tu,∇2u,∇p
)∥∥∥

L∞([0,T ],Ḃs
p,∞) ≲p,s,n ∥f∥L∞((0,T ),Ḃs

p,∞) + ∥AH,nu0∥Ḃs
p,∞

.

Appendix A. Partial traces of differential forms

We state here a trace theorem for generalized tangential and normal traces of dif-
ferential forms. The general case for vector fields in inhomogeneous function spaces is
well-known, also is the case of differential forms in the setting of inhomogeneous func-
tion spaces on bounded Lipschitz domains of a Riemannian manifold, see [MMS08,
Section 4] and the references therein.

We recall that ν = −en is the outer unit normal at the boundary ∂Rn
+ = Rn−1×{0}.

Theorem A.1. — Let p ∈ (1,+∞), q ∈ [1,+∞], s ∈ (−1 + 1
p
, 1
p
) and let k ∈

[[0, n]].
(i) For all u ∈ Ds

p(δ,Rn
+,Λk). Then there exists a unique function

ν ⌟ u|∂Rn
+
∈ B

s− 1
p

p,p

(
Rn−1,Λk−1

)
called the generalized normal trace, such that

(A.1)
∫
Rn−1

〈
ν ⌟ u|∂Rn

+
(x′),Ψ|∂Rn

+
(x′)

〉
dx′

=
∫
Rn

+

⟨u(x), dΨ(x)⟩ dx−
∫
Rn

+

⟨δu(x),Ψ(x)⟩ dx

for all Ψ ∈ H1−s,p′(Rn
+,Λk−1), with estimates∥∥∥∥ν ⌟ u|∂Rn

+

∥∥∥∥
B

s− 1
p

p,p (Rn−1)
≲p,s,n ∥u∥Hs,p(Rn

+) + ∥δu∥Hs,p(Rn
+).

The same result holds with corresponding estimate, for u ∈ dsp(D,Rn
+,Λk) we

have a partial trace

ν ∧ u|∂Rn
+
∈ B

s− 1
p

p,p

(
Rn−1,Λk+1

)
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called the generalized tangential trace, satisfying the identity

(A.2)
∫
Rn−1

〈
ν ∧ u|∂Rn

+
(x′),Ψ|∂Rn

+
(x′)

〉
dx′

=
∫
Rn

+

⟨du(x),Ψ(x)⟩dx−
∫
Rn

+

⟨u(x), δΨ(x)⟩dx.

for all Ψ ∈ H1−s,p′(Rn
+,Λk+1).

(ii) For all u ∈ Ds
p,q(δ,Rn

+,Λk) we have ν ⌟ u|∂Rn
+
∈ B

s− 1
p

p,q (Rn−1,Λk−1), such that
formula (A.1) holds for all Ψ ∈ B1−s

p′,q′(Rn
+,Λ). Moreover, we have the estimates∥∥∥∥ν ⌟ u|∂Rn

+

∥∥∥∥
B

s− 1
p

p,q (Rn−1)
≲p,s,n ∥u∥Bs

p,q(Rn
+) + ∥δu∥Bs

p,q(Rn
+) .

The same results holds with the corresponding estimate, for u ∈ dsp,q(d,Rn
+,Λk)

we have a partial trace

ν ∧ u|∂Rn
+
∈ B

s− 1
p

p,q

(
Rn−1,Λk+1

)
such that (A.2) is satisfied for all Ψ ∈ B1−s

p′,q′(Rn
+,Λk+1).

(iii) For all u ∈ Bs+1
p,q (Rn

+,Λk), we have

(ν ⌟ u⊕ ν ∧ u)|∂Rn
+
∈ B

s+1− 1
p

p,q

(
Rn−1,Λk−1 ⊕ Λk+1

)
with estimate∥∥∥∥(ν ⌟ u⊕ ν ∧ u)|∂Rn

+

∥∥∥∥
B

s+1− 1
p

p,q (Rn−1)
≲p,s,n ∥u∥Bs+1

p,q (Rn
+),

and everything still hold with Hs+1,p instead of Bs+1
p,q , when q = p.

Theorem A.2. — Let p ∈ (1,+∞), q ∈ [1,+∞], s ∈ (−1 + 1
p
, 1
p
) and let k ∈

[[0, n]].
(i) For all u ∈ Ḋs

p(δ,Rn
+,Λk),

• If s ⩽ 0, then there exists a unique function ν ⌟u|∂Rn
+
∈ B

s− 1
p

p,p (Rn−1,Λk−1)
such that the formula (A.1) holds for all Ψ ∈ H1−s,p′(Rn

+,Λ), with esti-
mate∥∥∥∥ν ⌟ u|∂Rn

+

∥∥∥∥
B

s− 1
p

p,p (Rn−1)
≲p,s,n ∥u∥Ḣs,p(Rn

+) + ∥δu∥Ḣs,p(Rn
+) .

• If s > 0, for 1
r

= 1
p
− s

n
∈ (n−1

pn
, 1
p
), there exists a unique function

ν ⌟ u|∂Rn
+
∈ B− 1

r
r,r

(
Rn−1,Λk−1

)
,

such that the formula (A.1) holds for all Ψ ∈ H1,r′(Rn
+,Λk−1) with esti-

mate∥∥∥∥ν ⌟ u|∂Rn
+

∥∥∥∥
B− 1

r
r,r (Rn−1)

≲r,p,s,n ∥u∥Ḣs,p(Rn
+) + ∥δu∥Ḣs,p(Rn

+) .
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The same result, up to appropriate changes, still holds for u ∈ Ḋs
p(d,Rn

+,Λk)
with partial trace ν ∧ u|∂Rn

+
satisfying the formula (A.2).

(ii) For all u ∈ Ḋs
p,q(δ,Rn

+,Λk),

• If s < 0, there exists a unique ν ⌟ u|∂Rn
+
∈ B

s− 1
p

p,q (Rn−1,Λk−1) such that
the formula (A.1) holds for all

Ψ ∈
[
S ∩ B1−s

p′,q′

] (
Rn

+,Λk−1 ⊕ Λk+1
)
,

with estimates∥∥∥∥ν ⌟ u|∂Rn
+

∥∥∥∥
B

s− 1
p

p,q (Rn−1)
≲p,s,n ∥u∥Ḃs

p,q(Rn
+) + ∥δu∥Ḃs

p,q(Rn
+) .

• If s > 0, for 1
r

= 1
p
− s

n
∈ (n−1

pn
, 1
p
), there exists a unique

ν ⌟ u|∂Rn
+
∈ B− 1

r̃
−ε

r̃,q

(
Rn−1,Λk−1

)
,

for any sufficiently small ε > 0, with 1
r
− ε

n
= 1

r̃
, such that the for-

mula (A.1) holds for all Ψ ∈ [S ∩ B1+ε
r̃′,q′ ](Rn

+,Λ) with estimate∥∥∥∥ν ⌟ u|∂Rn
+

∥∥∥∥
B

− 1
r̃ −ε

r̃,q (Rn−1)
≲p,s,n,ε ∥u∥Ḃs

p,q(Rn
+) + ∥δu∥Ḃs

p,q(Rn
+).

• If s = 0, there exists a unique

ν ⌟ u|∂Rn
+
∈ B− 1

r
−ε

r,q

(
Rn−1,Λk−1

)
,

where 1
r

= 1
p
− ε

n
, for any sufficiently small ε > 0, such that the for-

mula (A.1) holds for all Ψ ∈ [S ∩ B1+ε
r′,q′ ](Rn

+,Λ), with estimates∥∥∥∥ν ⌟ u|∂Rn
+

∥∥∥∥
B− 1

r −ε
r,q (Rn−1)

≲p,s,n,ε ∥u∥Ḃ0
p,q(Rn

+) + ∥δu∥Ḃ0
p,q(Rn

+) .

The same result, up to appropriate changes, still holds for u ∈ ḋsp,q(d,Rn
+,Λk)

with partial trace ν ∧ u|∂Rn
+

satisfying the formula (A.2).
(iii) For all u ∈ [Ḃs

p,q ∩ Ḃs+1
p,q ](Rn

+,Λk), if q ̸= +∞, we have

(ν ⌟ u⊕ ν ∧ u)|∂Rn
+
∈ B

s+1− 1
p

p,q

(
Rn−1,Λk−1 ⊕ Λk+1

)
with estimate∥∥∥∥(ν ⌟ u⊕ ν ∧ u)|∂Rn

+

∥∥∥∥
B

s+1− 1
p

p,q (Rn−1)
≲p,s,n ∥u∥[Ḃs

p,q∩Ḃs+1
p,q ](Rn

+),

and everything still hold with (Ḣs,p, Ḣs+1,p) instead of (Ḃs
p,q, Ḃs+1

p,q ), when q = p.
If q = +∞, we have

(ν ⌟ u⊕ ν ∧ u)|∂Rn
+
∈ Lp

(
Rn−1,Λk−1 ⊕ Λk+1

)
with corresponding estimate.
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Remark A.3. — The proof of Theorem A.1 in case of inhomogeneous function
spaces follows straightforward the same proof provided for corresponding results
in [MMS08, Section 4] and is somewhat sharp.

Notice that Theorem A.2 is certainly not sharp, and investigation of sharp range for
partial traces could be of great interest in the treatment of inhomogeneous boundary
value problems in homogeneous function spaces.

Proof. — Without loss of generality, we only investigate the case of normal traces
ν ⌟ u|∂Rn

+
.

Step 1.1: Proof of (i), for s ⩽ 0. Let u ∈ Ḋs
p(δ,Rn

+,Λk), We can define for all

ψ ∈ B
1
p

−s
p′,p′

(
Rn−1,Λk−1

)
,

and Ψ ∈ H1−s,p′(Rn
+,Λk−1) such that Ψ|∂Rn

+
= ψ, the following functional,

κu(Ψ) :=
∫
Rn

+

⟨u(x), dΨ(x)⟩dx−
∫
Rn

+

⟨δu(x),Ψ(x)⟩dx.

First, the map (u,Ψ) 7→ κu(Ψ) is well-defined and bilinear on Ḋs
p(δ,Rn

+,Λk) ×
H1−s,p′(Rn

+,Λk−1), i.e., in particular only depends on the boundary value ψ of Ψ. It
is straightforward from duality that,

∥κu(Ψ)∥ ≲s,p,n ∥u∥Ḣs,p(Rn
+)∥dΨ∥Ḣ−s,p′ (Rn

+) + ∥δu∥Ḣs,p(Rn
+)∥Ψ∥Ḣ−s,p′(Rn

+)
≲s,p,n ∥u∥Ḣs,p(Rn

+)∥Ψ∥Ḣ1−s,p′(Rn
+) + ∥δu∥Ḣs,p(Rn

+)∥Ψ∥Ḣ−s,p′(Rn
+)

≲s,p,n ∥u∥Ḣs,p(Rn
+)∥Ψ∥H1−s,p′(Rn

+) + ∥δu∥Ḣs,p(Rn
+)∥Ψ∥H−s,p′(Rn

+)

≲s,p,n

(
∥u∥Ḣs,p(Rn

+) + ∥δu∥Ḣs,p(Rn
+)
)
∥Ψ∥H1−s,p′(Rn

+),

where above inequalities follows from

H−s,p′ (Rn
+

)
↪→ Ḣ−s,p′ (Rn

+

)
,H1−s,p′ (Rn

+

)
↪→ Ḣ1−s,p′ (Rn

+

)
,

since −1 + 1
p
< s ⩽ 0, then from H1−s,p′(Rn

+) ↪→ H−s,p′(Rn
+).

Now, if we have Ψ1,Ψ2 ∈ H1−s,p′(Rn
+,Λk−1) such that Ψ1|∂Rn

+
= Ψ2|∂Rn

+
= ψ, we

introduce
Ψ0 = Ψ1 −Ψ2 ∈ H1−s,p′

0

(
Rn

+,Λk−1
)
.

Therefore, let’s consider (Φk)k∈N ⊂ C∞
c (Rn

+,Λk−1) such that,

Φk −−−−→
k→+∞

Ψ0 in H1−s,p′

0

(
Rn

+,Λk−1
)
.

We can deduce,

κu(Ψ1)− κu(Ψ2) = κu(Ψ0) = lim
k→+∞

[∫
Rn

+

⟨u(x), dΦk(x)⟩dx−
∫
Rn

+

⟨δu(x),Φk(x)⟩dx
]

= 0.
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Thus, the following equality occurs, where we also consider the extension operator
ExtRn

+
from [BL76, Exercises 25, 26, p. 166], see also [Gau23, Theorem 2.45],

κ̃u(ψ) := κu
(
ExtRn

+
⊗ ψ

)
= κu(Ψ),

and with estimate, also obtained from [Gau23, Theorem 2.45],

∥κ̃u(ψ)∥ ≲s,p,n

(
∥u∥Ḣs,p(Rn

+) + ∥du∥Ḣs,p(Rn
+)
)
∥ψ∥

B
1
p −s

p′,p′ (Rn−1)
.

By duality, there exists a unique function depending linearly on

u, ν ⌟ u|∂Rn
+
∈ B

s− 1
p

p,p

(
Rn−1,Λk−1

)
such that (A.1) holds.

To guarantee that the representation formula makes sense, one may use the usual
integration by parts formula with u,Ψ ∈ S(Rn

+,Λ).
Step 1.2: Proof of (i), for s > 0. For the same assumption on u, and Ψ as

before, everything works similarly except the way we bounded bilinearly the map
(u,Ψ) 7→ κu(Ψ) on Ḋs

p(δ,Rn
+,Λk) × H1−s,p′(Rn

+,Λk−1). For r ∈ (1,+∞) such that
1
r

= 1
p
− s

n
, we deduce from Sobolev embeddings and duality that

∥κu(Ψ)∥ ≲s,p,n ∥u∥Ḣs,p(Rn
+)∥dΨ∥Ḣ−s,p′(Rn

+) + ∥δu∥Lr(Rn
+)∥Ψ∥Lr′(Rn

+)
≲r,s,p,n ∥u∥Ḣs,p(Rn

+)∥Ψ∥H1,r′(Rn
+) + ∥δu∥Ḣs,p(Rn

+)∥Ψ∥H1,r′(Rn
+)

≲r,s,p,n

(
∥u∥Ḣs,p(Rn

+) + ∥δu∥Ḣs,p(Rn
+)
)
∥Ψ∥H1,r′(Rn

+).

Thus everything goes similarly.
Step 2.1: Proof of (ii) for s < 0, is very similar to the one of above Step 1.1.
Step 2.2: Proof of 2.(ii), for s > 0, is somewhat similar to the one of Step 1.2

but needs further explanations. We use Sobolev embeddings, and generalized Hölder
inequalities using Lorentz spaces,

Ḃs
p,q

(
Rn

+

)
↪→ Lr,q

(
Rn

+

)
,Bε

r̃′,q′

(
Rn

+

)
↪→ Lr′,q′ (Rn

+

)
↪→ Ḃ−s

p′,q′

(
Rn

+

)
, for ε > 0,

∥κu(Ψ)∥ ≲s,p,n ∥u∥Ḃs
p,q(Rn

+)∥dΨ∥Ḃ−s
p′,q′(Rn

+) + ∥δu∥Lr,q(Rn
+)∥Ψ∥Lr′,q′(Rn

+)
≲r,s,p,n ∥u∥Ḃs

p,q(Rn
+)∥dΨ∥Lr′,q′(Rn

+) + ∥δu∥Ḃs
p,q(Rn

+)∥Ψ∥Lr′,q′(Rn
+)

≲r,s,p,n

(
∥u∥Ḃs

p,q(Rn
+) + ∥δu∥Ḃs

p,q(Rn
+)
)
∥Ψ∥B1+ε

r̃′,q′(Rn
+).

Step 2.3: Proof of (ii), for s = 0 is shown via similar Sobolev embeddings
arguments and is left to the reader.
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Step 3: Proof of (iii), follows from [Gau24b, Proposition 4.4], with explicit rep-
resentation formula for any suitable k-differential forms u:
ν ⌟ u|∂Rn

+
= −en ⌟ u|∂Rn

+
= (−1)k

∑
1⩽ℓ1<...<ℓk−1<n

uℓ1ℓ2...ℓk−1n(·, 0) dxℓ1 ∧ . . . ∧ dxℓk−1

= (−1)k
∑

I′ ∈ Ik−1
n−1

uI′,n(·, 0) dxI′ .

A similar treatment yields the same conclusion for the boundary term ν ∧ u|∂Rn
+

, so
that one ends the proof here. □

Remark A.4. — Let’s make further comment about estimates used in the proof
of Theorem A.2 above, in particulacr the ones used in Step 2.2.

We recall that from Sobolev embeddings, see [BCD11, Proposition 2.39], for 0 <
s0 < s < s1 < 1/p, r0, r1, p ∈ (1,+∞), 1/rj = 1/p− sj/n, we have by the definition
of function spaces by restriction

Ḃsj

p,1

(
Rn

+

)
↪→ Lrj

(
Rn

+

)
, j ∈ {0, 1}.

If (s, 1/r) = (1− θ)(s0, 1/r0) + θ(s1, 1/r1), by real interpolation, for q ∈ [1,+∞] we
obtain,

Ḃs
p,q

(
Rn

+

)
=
(
Ḃs0
p,1

(
Rn

+

)
, Ḃs1

p,1

(
Rn

+

))
θ,q
↪→

(
Lr0

(
Rn

+

)
,Lr1

(
Rn

+

))
θ,q

= Lr,q
(
Rn

+

)
.

And one may proceed similarly for the reverse embedding,

Lr′,q′(Rn
+) ↪→ Ḃ−s

p′,q′

(
Rn

+

)
.

For more details about Lorentz spaces and their interpolation, one could con-
sult [Lun18, Section 1, Examples 1.10, 1.11 & 1.27] and [BL76, Chapter 5, Sec-
tion 5.3].

BIBLIOGRAPHY

[ABHN11] W. Arendt, C. J. K. Batty, M. Hieber, and F. Neubrander, Vector-valued Laplace trans-
forms and Cauchy problems, 2nd ed., Monographs in Mathematics, vol. 96, Birkhäuser,
2011. ↑1469, 1484, 1505

[ACDH04] P. Auscher, T. Coulhon, X. T. Duong, and S. Hofmann, Riesz transform on manifolds
and heat kernel regularity, Ann. Sci. Éc. Norm. Supér. 37 (2004), no. 6, 911–957. ↑1461

[AM04] A. Axelsson and A. McIntosh, Hodge decompositions on weakly Lipschitz domains,
Advances in analysis and geometry. New developments using Clifford algebras, Trends
in Mathematics, Birkhäuser, 2004, pp. 3–29. ↑1477

[Ama95] H. Amann, Linear and quasilinear parabolic problems, Vol. I: Abstract linear theory,
Monographs in Mathematics, vol. 89, Birkhäuser, 1995. ↑1463, 1464

[BCD11] H. Bahouri, J.-Y. Chemin, and R. Danchin, Fourier analysis and nonlinear partial differ-
ential equations, Grundlehren der Mathematischen Wissenschaften, vol. 343, Springer,
2011. ↑1465, 1471, 1472, 1482, 1483, 1484, 1530

[BL76] J. Bergh and J. Löfström, Interpolation spaces. An introduction, Grundlehren der
Mathematischen Wissenschaften, vol. 223, Springer, 1976. ↑1465, 1470, 1472, 1473,
1514, 1515, 1516, 1517, 1518, 1519, 1520, 1529, 1530

ANNALES HENRI LEBESGUE



Hodge decompositions and maximal regularity for Hodge Laplacians on the half-space 1531

[Bog86] M. E. Bogovskiı, Decomposition of Lp(Ω, Rn) into the direct sum of subspaces of
solenoidal and potential vector fields, Sov. Math., Dokl. 33 (1986), no. 1, 161–165.
↑1460

[Che99] J.-Y. Chemin, Théorèmes d’unicité pour le système de Navier–Stokes tridimensionnel,
J. Anal. Math. 77 (1999), no. 1, 27–50. ↑1464

[CM10] M. Costabel and A. McIntosh, On Bogovskĭi and regularized Poincaré integral operators
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