Annales Henri Lebesgue PY
7 (2024) 1535-1601

ANNALES
HENRI LEBESGUE

FREDERIC CHAPOTON
VINCENT PILAUD

SHUFFLES OF DEFORMED
PERMUTAHEDRA,
MULTIPLIHEDRA,
CONSTRAINAHEDRA, AND
BIASSOCIAHEDRA

MELANGES DE PERMUTAEDRES DEFORMES,

MULTIPLIEDRES, CONSTRAINAEDRES ET
BIASSOCIAEDRES

ABSTRACT. — We introduce the shuffle of deformed permutahedra (a.k.a. generalized per-
mutahedra), a simple associative operation obtained as the Cartesian product followed by the
Minkowski sum with the graphical zonotope of a complete bipartite graph. Besides preserv-
ing the class of graphical zonotopes (the shuffle of two graphical zonotopes is the graphical
zonotope of the join of the graphs), this operation is particularly relevant when applied to the
classical permutahedra and associahedra. First, the shuffle of an m-permutahedron with an
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1536 F. CHAPOTON & V. PILAUD

n-associahedron gives the (m, n)-multiplihedron, whose face structure is encoded by m-painted
n-trees, generalizing the classical multiplihedron. We show in particular that the graph of
the (m,n)-multiplihedron is the Hasse diagram of a lattice generalizing the weak order on
permutations and the Tamari lattice on binary trees. Second, the shuffle of an m-associahedron
with an n-associahedron gives the (m,n)-constrainahedron, whose face structure is encoded
by (m,n)-cotrees, and reflects collisions of particles constrained on a grid. Third, the shuffle of
an m-anti-associahedron with an n-associahedron gives the (m, n)-biassociahedron, whose face
structure is encoded by (m,n)-bitrees, with relevant connections to bialgebras up to homotopy.
We provide explicit vertex, facet, and Minkowski sum descriptions of these polytopes, as well
as summation formulas for their f-polynomials based on generating functionology of decorated
trees.

RESUME. — Nous introduisons le mélange de permuta¢dres déformés (ou permutaédres
généralisés), une opération associative simple obtenue comme le produit cartésien suivi de
la somme de Minkowski avec le zonotope graphique d’un graphe biparti complet. En plus
de préserver la classe des zonotopes graphiques (le mélange de deux zonotopes graphiques
est le zonotope graphique de la jointure des graphes), cette opération est particulierement
pertinente lorsqu’on 'applique aux permutaedres et aux associaedres classiques. Premierement,
le mélange d’un m-permutaedre avec un n-associaédre donne le (m,n)-multipliedre, dont la
structure des faces est encodée par des n-arbres m-peints, généralisant le multipliedre classique.
Nous montrons en particulier que le graphe du (m, n)-multipliedre est le diagramme de Hasse
d’un treillis généralisant 'ordre faible sur les permutations et le treillis de Tamari sur les
arbres binaires. Deuxiémement, le mélange d’un m-associaédre avec un n-associaedre donne le
(m, n)-constrainaédre, dont la structure des faces est encodée par des (m, n)-coarbres, et reflete
les collisions de particules contraintes sur une grille. Troisiemement, le mélange d’un m-anti-
associaedre avec un n-associaédre donne le (m, n)-biassociaédre, dont la structure des faces est
codée par des (m, n)-biarbres, qui ont des liens intéressants avec les bigebres a ’homotopie pres.
Nous fournissons des descriptions explicites des sommets, des facettes et des décompositions
en somme de Minkowski de ces polytopes, ainsi que des formules de sommation pour leurs
f-polyndémes basées sur les fonctions génératrices d’arbres décorés.
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Figure 0.1. The (2, 3)-multiplihedron.
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Introduction

The associahedra, now very classical objects, have their origin in algebraic topol-
ogy [Sta63], where they are used to define associative spaces up-to-homotopy and
associative algebras up-to-homotopy. They were first defined as topological cell com-
plexes and later realized as convex polytopes, as explained in [CZ12]. For any inte-
ger n, the associahedron Asso(n) is a polytope of dimension n — 1 whose vertices are
labeled by binary trees with n nodes. The axioms of A., algebras encode the fact
that each facet of an associahedron can be identified with a product of two smaller
associahedra.

One important and natural question is to search for a similar clean descrip-
tion of the axioms for bialgebras up-to-homotopy. This has been studied by sev-
eral people [Marl5, MW18, SU11] who have found that one meets new difficulties.
The expected picture is the existence, for any pair of integers (m,n), of a (m,n)-
biassociahedron Bias(m,n), a polytope of dimension m + n — 1 whose vertices are
labeled by binary (m,n)-bitrees (which are pairs of binary trees, growing in opposite
directions, with n and m nodes respectively, and that are somehow shuffled). These
polytopes are called step-one biassociahedra in [Marl5]. The new difficulty is that
the facets of these polytopes are no longer products of two smaller biassociahedra,
but rather fiber products with respect to natural projection maps to associahedra.
This implies that, in order to associate an algebraic homotopy to each facet of a
biassociahedra, one needs to decompose each problematic facet into several cells. In
the smallest concrete case, the (2, 1)-biassociahedron By is an hexagon, but one
of its edges appears as the diagonal of a square, and must be replaced by half the
boundary of this square. For more details on all this, the reader may consult the
given references. In this article, we give the first complete description of all biassoci-
ahedra as convex polytopes, with detailed vertex and facet descriptions. As far as
we know, these objects were previously only known as topological cell complexes,
except in small dimensions. As an historical and futile remark, the first author had
the idea of the corresponding fans more than twenty years ago, and asked at least
twice the second author whether these fans could be normal fans of convex polytopes.
While we do not consider here the question of finding good axioms for the bialgebras
up-to-homotopy, we hope that our simple setting could be helpful to make progress
on this subtle question, whose current status is not really satisfactory.

The constrainahedra are another family of polytopes closely related to the associa-
hedra and arising in algebraic topology. They should describe the up-to-homotopy
version of double semigroups, namely structures endowed with two associative prod-
ucts (horizontal e and vertical o) that satisfy the compatibility axiom (aeb)o(ced) =
(aob)e(cod). To our knowledge, this has not appeared in the literature, possi-
bly because it would involve a variant of operads with two-dimensional inputs. In-
stead, constrainahedra were introduced as constrained versions of the 2-associahedra
of [Bot19]. A first sketch-definition of the constrainahedra appeared in [Tiel6], which
was based on a private communication from N. Bottman. The complete rigorous
definition appeared in [BP22, Pol21|, where the constrainahedra are also realized
as convex polytopes. For any pair of integers (m,n), the (m,n)-constrainahedron
Constr(m, n) is a polytope of dimension m+n — 1 whose vertices are labeled by good
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rectangular orders on [m + n] or equivalently by maximal rectangular bracketings
in the (m x n)-grid (see [BP22, Pol21] for details). Here, we prefer to interpret the
vertices as binary (m,n)-cotrees (which are pairs of binary trees, growing in the
same direction, with n and m nodes respectively, and that are somehow shuffled).
We provide alternative polytopal realizations of these polytopes, with detailed vertex,
facet, and Minkowski sum descriptions. As a side note, let us mention that arbitrary
2-associahedra do not fit in the framework of this paper.

The multiplihedra are yet other close relatives of the associahedra, with a very
similar story in algebraic topology [Sta70]. Their original source is the study of
maps between A, algebras, but they appear under various other guises [FLS10,
MW10, SU04]. For instance, because the coproduct in Hopf algebras is a morphism
of algebras, the multiplihedra belong to the family of biassociahedra. The interested
reader can find a detailed historical exposition in the introduction of [For08]. As the
associahedra, the multiplihedra were originally built as topological cell complexes
(or polytopes with subdivided faces), until a polytopal realization was provided
in [AD13, For08]. For any integer n, the multiplihedron Mul(n) is a polytope of
dimension n — 1 whose vertices are labeled by painted binary trees with n nodes.
In this paper, we include the multiplihedra in a larger family of polytopes. Namely,
for any pair of integers (m,n), we construct a (m,n)-multiplihedron Mul(m,n), a
polytope of dimension m + n — 1 whose vertices are labeled by m-painted binary
n-trees (which are binary trees with n nodes painted with m colors). Again, we
give detailed vertex, facet, and Minkowski sum descriptions of these polytopes. The
classical multiplihedra are obtained when m = 1, but our polytopes provide a
different realization from that of [AD13, For08|. For general m, there is no clear
interpretation of the (m,n)-multiplihedra in terms of algebraic topology.

Our main result is that these three constructions are actually instances of a common
natural shuffle operation on the family of deformed permutahedra. These polytopes
are those obtained from the classical permutahedron by moving facets parallely
without passing a vertex, or equivalently those whose normal fans coarsen the braid
fan. They were studied under the name polymatroids by J. Edmonds [Edm70] and
rediscovered under the name generalized permutahedra by A. Postnikov [Pos09].
Relevant examples of deformed permutahedra include the permutahedra themselves,
the graphical zonotopes, the matroid polytopes, the associahedra of [HL07, Lod04,
SS93], the permutreehedra of [PP18], the quotientopes of [PPR23, PS19], etc. This
paper focuses on the following simple operation on deformed permutahedra.

DEFINITION 0.1. — The shuffle of two deformed permutahedra P C R™
and Q C R" is the Minkowski sum of the Cartesian product P x Q with the
segments [e;, €,,+;] for all it € [m] and j € [n].

This shuffle operation preserves deformed permutahedra (since the Cartesian prod-
uct and the Minkowski sum do). It also preserves the family of graphical zonotopes:
the shuffle of two graphical zonotopes is the graphical zonotope of the join of the
graphs. But more importantly, it turns out that shuffles of permutahedra and asso-
ciahedra provide polytopal realizations of the above-mentioned algebraic structures,
whose combinatorics is described in details in Sections 3, 4 and 5.

TOME 7 (2024)
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PROPOSITION 0.2. — Let m and n be two positive integers.

(1) The shuffle of an m-permutahedron by an n-associahedron is an
(m, n)-multiplihedron, whose faces are encoded by m-painted n-trees,

(2) The shuffle of an m-associahedron by an n-associahedron is an (m,n)-cons-
trainahedron, whose faces are encoded by (m,n)-cotrees,

(3) The shuffle of an m-anti-associahedron by an mn-associahedron is an
(m, n)-biassociahedron, whose faces are encoded by (m,n)-bitrees.

This enables us to give precise integer vertex and facet descriptions of polytopal re-
alizations of the (m,n)-multiplihedron, the (m,n)-constrainahedron, and the (m,n)-
biassociahedron. Along the way, we also provide summation formulas for their f-
polynomials based on generating functionology of decorated trees. As a side note,
observe that the shuffle of an m-permutahedron with a graph associahedron also
generalizes the graph multiplihedra of [DF08].

Finally, we study the behavior of the shuffle operation with respect to lattice prop-
erties of the deformed permutahedra. Our motivation is the classical fact that, when
oriented in the direction w:=(n, ..., 1) — (1, ..., n), the graph of the permutahe-
dron is the Hasse diagram of the weak order on permutations, and the graph of the
associahedron is the Hasse diagram of the Tamari lattice on binary trees. In view
of these examples, we say that a deformed permutahedron has the lattice property
when its graph oriented in the direction w is the Hasse diagram of a lattice. Unfor-
tunately, the shuffle operation does not preserve the lattice property: for instance,
the (3,3)-constrainahedron and the (3, 3)-biassociahedron do not have the lattice
property. However, the shuffle with a permutahedron preserves the lattice property.

ProrosiTION 0.3. — If a deformed permutahedron P has the lattice property,
then the shuffle P x Perm(n) has the lattice property for any integer n > 1. In
particular, the graph of the (m,n)-multiplihedron oriented by w defines a lattice
structure on the m-painted n-trees.

In fact, it is well-known that the Tamari lattice is the quotient of the weak order
by the sylvester congruence (where two permutations are equivalent when the cor-
responding cones of the braid fan belong to the same cone of the normal fan of the
associahedron). This implies in particular that the classes of the sylvester congru-
ence are intervals of the weak order. We say that a deformed permutahedron has the
congruence property (resp. the interval property) when the corresponding equivalence
relation on permutations is a lattice congruence of the weak order (resp. admits only
intervals as equivalence classes). We observe that the shuffle operation preserves the
interval property but not the congruence property.

The paper is organized as follows. In Section 1, we recall definitions and properties
of permutahedra, associahedra, graphical zonotopes, deformed permutahedra and
lattice congruences. In Section 2, we define the shuffle of two deformed permutahedra,
describe combinatorially its faces, and discuss the shuffle with a point and the shuffle
of graphical zonotopes. Finally, using shuffles of permutahedra and associahedra,
we construct the (m,n)-multiplihedron in Section 3, the (m,n)-constrainahedron in
Section 4, and the (m, n)-associahedron in Section 5, provide their vertex and facet
descriptions, describe their face lattices, and compute their f-polynomials.
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1. Preliminaries

This section recalls classical definitions and properties concerning polyhedral geom-
etry (Section 1.1), permutahedra (Section 1.2), associahedra (Section 1.3), graphical
zonotopes (Section 1.4), deformed permutahedra (Section 1.5), and lattice congru-
ences (Section 1.6). The reader familiar with these notions is invited to jump directly
to Section 2 and to refer to this section only for conventions and notations. We omit
the proofs of all results of this section as they are either well-known or immediate.
In fact, we try to attribute properly the results of this section, but consider some of
them as folklore, and do not claim anything new in this section.

1.1. Fans and polytopes

We refer to [Zie95] for a standard reference on polyhedral geometry. We denote
by (€;)iecm the standard basis of R™.
DEFINITION 1.1. — A (polyhedral) cone is defined equivalently as

e the cone

rTeER
generated by a finite set R C R",
e the cone {x eR"| (n | x) > 0 for all ne N} defined by a finite set N CR™.

A face of a cone C is the intersection of C with a supporting hyperplane of C. In
this paper, we also consider C itself as a face, but ignore the empty face.

)\,a)OforaHrER}

R>0R1: {Z )\TT'

DEFINITION 1.2. — A (polyhedral) fan is a collection F of cones of R™ such that

e any face of a cone in F is also in F,
e the intersection of any two cones of F is a face of both.

The rays (resp. walls, resp. chambers) of F are its 1-dimensional (resp. codimension 1,
resp. full-dimensional) cones.

DEFINITION 1.3. — A polytope is defined equivalently as
e the convex hull

{Z)\vv

Ay =0 for allv € V and Z)\vzl}
veV

veV

of a finite set V' € R",
e a bounded intersection of a finite number of affine halt-spaces of R™.

A face of a polytope P is the intersection of IP with a supporting hyperplane of P.
The vertices (resp. edges, resp. facets) are the O-dimensional (resp. 1-dimensional,
resp. codimension 1) faces. In this paper, we also consider P itself as a face, but
ignore the empty face.

Any polytope defines a fan as follows (in contrast, not all fans come from polytopes).

TOME 7 (2024)



1542 F. CHAPOTON & V. PILAUD

DEFINITION 1.4. — Let P be a polytope and I be a face of P. The normal cone
of I is the cone

NEF)={veR"|(v]|f)=(v|p) forall f € F and p € P}

of linear functions maximized over P by all the face IF. The normal fan of P is the
fan

N(P):={N(F) | F face of P}

containing the normal cones of all faces of P.
In this paper, we will use the following standard operations on fans and polytopes.

DEFINITION 1.5. — Let F C R™ and G C R" be two fans. Then
e the direct sum of F and G is the fan
FoG={CxD|CeFandDEe€G},
e if m = n, the common refinement of F and G is the fan
FAG={CnND|CeFandDe€gG}.

DEFINITION 1.6. — Let P C R™ and QQ C R™ be two polytopes. Then
e the Cartesian product of P and Q is the polytope

P xQ:={(p,q)|peP andqcQ},
e if m = n, the Minkowski sum of IP and @ is the polytope

P+Q:={p+q|pecPandqecqQ}.

The following connection between Definitions 1.5 and 1.6 is classical, see [Zie95,
Lems. 7.7 & 7.12].

PrROPOSITION 1.7. — Let P C R™ and Q C R"™ be two polytopes. Then
e the normal fan of the Cartesian product P x @ is the direct sum of the normal

fans of P and Q, that is N (P x Q) = N(P) & N(Q),
e if m = n, the normal fan of the Minkowski sum P + Q is the common
refinement of the normal fans of P and @, that is N (P + Q) = N(P) AN (Q).

1.2. Permutahedra

Let &,, denote the symmetric group of permutations of [n]:={1, ..., n}.

DEFINITION 1.8. — The permutahedron Perm(n) is the polytope in R" equiva-
lently defined as:
e the convex hull of the points (n] © €a(i) for all permutations o € S,
e or the intersection of the hyperplane {x € R"| ¥, ¢, z: = ("§")} with the
affine half-spaces {x € R" | ¥y a; = (1)} for all @ # 1 C [n],
e or (a translate of) the Minkowski sum of all segments [e;, e;] for
alll1 <1< j<n.
See Figure 1.1 (left).
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Figure 1.1. The permutahedron, the braid fan, and the weak order.

The permutahedron Perm(n) has dimension n — 1 but it will be convenient to con-
sider it embedded in R™. Note that the point corresponding to a permutation o is the
point of coordinates (c71(1), ..., 07(n)). The face structure of the permutahedron
is encoded by ordered partitions.

DEFINITION 1.9. — An ordered partition of [n] is a partition p:= | ... |p, of [n]
into non-empty parts, with a total order on the parts (but each part is unordered).
It defines a preposet (i.e. a reflexive and transitive binary relation) <, on [n]
where 1 5, j if the part of pu containing i is before or equal to the part of ji contain-
ing j. The resulting preposets are all total preposets, that is, where any two elements
of [m] are comparable (i.e. i < j or i = j or both). For two ordered partitions f
and v, we say that ; refines v (and v coarsens ;) when i <, j implies i <, j for
any i,j € [n]. We denote by B,, the set of ordered partitions of [n].

PROPOSITION 1.10. — The face lattice of the permutahedron Perm(n) is isomor-
phic to the refinement poset on *B,, (augmented with a minimal element).

PROPOSITION 1.11. — The normal fan of the permutahedron Perm(n) is the
braid fan with one cone C(u):={x € R"|x; < z; ifi <, j} for each p € B,.
Its walls are given by the arrangement of the hyperplanes {x € R"|x; = x;} for
all 1 <i < j < n. See Figure 1.1 (middle).

We now recall the connection between the graph of the permutahedron Perm(n)
and the weak order on permutations of &,,.

DEFINITION 1.12. — An inversion of a permutation o is a pair (o;,0;) such
that i < j but o; > 0. The weak order is the lattice on permutations of [n] defined
by inclusion of their inversion sets. See Figure 1.1 (right).

ProrosIiTION 1.13. — When oriented in the direction
wi=(n,...,1)=(1,....,n)= Y (n+1-2i)e,,
i € [n]

the graph of the permutahedron Perm(n) is the Hasse diagram of the weak order
on G,.

TOME 7 (2024)
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1.3. Associahedra

We now recall the classical associahedra, whose vertices (resp. faces) correspond to
binary trees (resp. Schroder trees). We start with some formal definitions on rooted
plane trees used later in Sections 3.1, 4.1 and 5.1. Definitions 1.14, 1.15, 1.16 and 1.17
are illustrated in Figure 1.2.

DEFINITION 1.14. — A (rooted plane) tree is either a leaf | or a node n with an
ordered non-empty list C(n) of (rooted plane) trees. The node n is the parent of the
nodes in C(n), which are the children of n. The degree of n is its number of children.
The root is the unique node with no parent. An n-tree is a tree with n + 1 leaves.

DEFINITION 1.15. — A n-tree T is labeled in inorder when each degree ¢ node is
labeled by an (¢ —1)-subset {x1, ..., xy_1} of [n] such that all labels in its i*" subtree
are larger than z;_, and smaller than x; (where by convention xq = 0 and xy = n+1).
It defines a preposet < on [n| where i < j if there is a (possibly empty) path from
the node containing ¢ to the node containing j in the tree T oriented towards the
root. The resulting preposets are all preposets < such that any 1 < i < k < n are
comparable (i.e. i < k or i = k or both) if and only if there is no i < j < k such
that i < j > k.

DEFINITION 1.16. — The deletion of a node n with parent p consists in replacing
n by the list C(n) in the list C(p). Intuitively, this operation contracts the edge from
n to p in the tree.

DEFINITION 1.17. — A binary (resp. Schréder) tree is a rooted plane tree whose
internal nodes have degree exactly (resp. at least) 2. We denote by B, (resp. T,)
the set of binary (resp. Schroder) n-trees.

PROPOSITION 1.18. — For any integer n > 0, the set ¥, is stable by deletion,
and the deletion graph is the Hasse diagram of a poset ranked by

tk(7) = 3 (deg(n) —2) =n —|T].

neT
In this poset, S is smaller than T' if and only if Xg refines <. The binary trees are
the minimal elements, and the corolla is the unique maximal element of this poset.

%M W ihOAR
. A AAﬂA

15

Figure 1.2. A (plane rooted) tree Ty with a circled node, the tree Ty obtained by
deletion of the circled node in T, a binary tree T3, and a Schréder tree Ty. All
trees are labeled in inorder (at each node, we simply write the word 1 ... xs_4
for the set {1, ..., Tp_1}).
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Figure 1.3. The associahedron, the sylvester fan, and the Tamari lattice.

DEFINITION 1.19. — The n-Schroder tree deletion poset is the poset on ‘¥,, where
a Schroder tree is covered by all Schréder trees that can be obtained by a deletion.

We now recall a classical geometric realization of this poset, tracing back to [Lod04,
Pos09, SS93]. Generalizations of this construction were explored in [HLO7, HLT11,
HPS18, PP18, PPPP23, Pil24] among others. See [PSZ23] for a recent survey.

DEFINITION 1.20. — The associahedron Asso(n) is the polytope in R" equiva-
lently defined as:

e the convex hull of the points -, ¢ (,; £(T',7) 7(T', i) e; for all binary trees T'€ B,
where ((T', i) and (T, 1) respectively denote the numbers of leaves in the left
and right subtrees of the i*® node of T in inorder (see [Lod04]),

e or the intersection of the hyperplane {& € R™| 3, ¢,y s = ("§")} with the
affine half-spaces {x € R"| Yy jme = (7757) forall1 < i< j<n
(see [SS93]),

e or (a translate of) the Minkowski sum of the faces Ay ; of the standard
simplex A, for all 1 < i < j < n, where Ay := conv{e, |z € X} for X C [n]
(see [Pos09]).

See Figure 1.3 (left).

The associahedron Asso(n) has dimension n — 1, although it is convenient to
consider it embedded in R". Note that any facet defining inequality for Assso(n) is also
a facet defining inequality for Perm(n). In other words, the associahedron Asso(n)
is a removahedron: it can be obtained by deleting some inequalities in the facet
description of the permutahedron Perm(n).

PROPOSITION 1.21 ([Lod04]). — The face lattice of the associahedron Asso(n)
is isomorphic to the deletion poset on T, (augmented with a minimal element).

PROPOSITION 1.22. — The normal fan of the associahedron Asso(n) is the
sylvester fan with one cone C(S):={x € R" |z; < z; if i K¢ j} for each S € T,,. See
Figure 1.3 (middle).

Note that here and throughout, sylvester is an ancient adjective for woody, and
has nothing to do with the mathematician James Joseph Sylvester.
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It turns out that the sylvester fan of Proposition 1.22 coarsens the braid fan of
Proposition 1.11.

PROPOSITION 1.23. — The braid fan refines the sylvester fan. More precisely, for
any Schroder tree S, the sylvester cone C(S) is the union of the braid cones C(u) for
the ordered partitions p such that <, extends <g (meaning that i <gj implies i<, j
for any i,j € [n]).

This can be interpreted as equivalence relations on permutations and on ordered
partitions.

DEFINITION 1.24. — The sylvester relation on ordered partitions of [n] is the
equivalence relation =gy, defined by p =g, v if and only if the cones C(u) and C(v)
of the braid fan belong precisely to the same cones of the sylvester fan. It also
restricts to an equivalence relation on permutations.

Remark 1.25. — The sylvester relation on permutations admits several equivalent
definitions. Namely, two permutations 0,7 € &,, are equivalent when:

e 0 and 7 are linear extensions of the poset <t for the same binary tree T
of B,,,

e o and 7 are sent to the same binary tree T via right-to-left binary search tree
insertions,

e the braid cones C(o) and C(7) of the braid fan belong to the same sylvester
cone C(7T),

e 0 and 7 are connected via a sequence of rewritings of the form UacVOW =
UcaVbW where 1 < a <b<c<nand UV, W are words on [n].

We now recall the connection between the graph of the associahedron Asso(n) and
the Tamari lattice on binary trees of B, illustrated in Figure 1.3 (right).

DEFINITION 1.26. — A right rotation is the operation on binary trees illustrated
on the right (this operation can be applied locally anywhere in the tree). The Tamari
lattice is the lattice on *B,, whose Hasse diagram is the graph of right rotations. See
Figure 1.3 (right).

PRrROPOSITION 1.27. — When oriented in the direction
w=mn, ..., 1)—1,...,n)= > (n+1-2)e,,
1€ [n]

the graph of the associahedron Asso(n) is the Hasse diagram of the Tamari lattice
on ‘B,.

Remark 1.28. — In fact, the sylvester relation is a lattice congruence of the
weak order (meaning that it respects meets and joins), and the Tamari lattice is
the quotient of the weak order by the sylvester congruence. This perspective has
been largely explored by N. Reading in his study of lattice congruences of the weak
order [Rea04]. In this paper, we do not consider this property as it is not stable by
the shuffie operation we focus on. See Section 1.6.

We conclude with some classical numerology on binary and Schréder trees that will
be generalized to multiplihedra, constrainahedra, and biassociahedra in Sections 3.4,
4.4 and 5.4.
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Figure 1.4. A graphical zonotope, its graphical fan, and its acyclic orientation poset.

Notation 1.29. — Let C'(n) = %H(Qg) denote the Catalan number of binary trees

with n + 1 leaves and let S(n,p) denote the Schrider number of Schroder trees
with n + 1 leaves and n — p internal nodes. We denote the corresponding generating
functions by

Cly):= Z C(n)y" and Sy, z):= Z S(n,p)y" 2P.

n>1 n=>1,p=>0

PROPOSITION 1.30. — The generating functions C(y) of binary trees (i.e. vertices
of associahedra) and S(y, z) of Schréder trees (i.e. faces of associahedra) satisty
Sy, 2)*

Cly) = C(y)? d S = :
(y) =y+C(y) an (y,2) U
and are therefore given by

1—yI—4dy
Cly)=—5—"

14+ yz — 1 — 4y — 2yz + y222
and  S(y,z) = 2+ 1) .

1.4. Graphical zonotopes

In this section, we consider a simple (no loop nor multiple edges) non-oriented
graph G, with vertex set V(G) and edge set E(G). We say that G is an integer
graph when V(G) = [n], and we then represent the edges of G by ordered pairs (i, j)
with 1 <i < j <n.

DEFINITION 1.31. — The graphical zonotope Zono(G) of an integer graph G is
the Minkowski sum of the segments [e;, ;] for (i,j) € E(G). See Figure 1.4 (left).

For instance, the graphical zonotope of the complete graph (resp. path, resp. empty
graph) on [n] is the permutahedron Perm(n) (resp. a parallelotope denoted Para(n),
resp. a point denoted Point(n)). We need the following definition to describe the
face structure of graphical zonotopes. We refer to [Gre77] and [GZ83, Sect. 7] for
the original references.
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DEFINITION 1.32. — A G-ordered partition is a pair [1 = (7, w), where

e 7 is a partition of [n] where each part induces a connected subgraph of G,

e w is an acyclic orientation on the quotient graph G /.
It defines a preposet <1 on [n|, where i <y j if and only if there is a (possibly empty)
oriented path in w joining the part of m containing ¢ to the part of w containing j.
For two G-ordered partitions Il and ©, we say that Il refines © (and © coarsens 11)
when i <y j implies i K¢ j for any i,j € [n].

PROPOSITION 1.33 ([GZ83, Sect. 7]). — The face lattice of the graphical zono-
tope Zono(G) is isomorphic to the refinement poset on G-ordered partitions (aug-
mented with a minimal element). In particular,

e the vertices of Zono(G) are in bijection with acyclic orientations of G,

e the facets of Zoono(G) are in bijection with biconnected subsets of G, i.e. non-
empty connected subset U C V' whose complement U in its connected com-
ponent of G is also non-empty and connected.

For instance for the complete graph K,,, the K,-ordered partitions are all ordered
partitions (in the classical sense), the acyclic orientations are given by permutations,
and the biconnected subsets are all proper subsets.

PROPOSITION 1.34. — The normal fan of the graphical zonotope Zono(G) is
the graphical fan F(G) with one cone C(n):={x € R"|z; < z; if i <5y j} for each
G-ordered partition I1. Its walls are given by the arrangement of the hyperplanes
{x e R"|x; = x;} for all (i,7) € E(G). See Figure 1.4 (middle).

As for the sylvester fan of Proposition 1.22, the graphical fan of Proposition 1.34
coarsens the braid fan of Proposition 1.11.

PROPOSITION 1.35. — The braid fan refines the graphical fan F(G). More pre-
cisely, for a G-ordered partition I1, the cone C(II) is the union of the braid cones C(f)
for the ordered partitions ;i such that <, extends <.

This can be interpreted as an equivalence relation on permutations and on or-
dered partitions, similar to the sylvester relation discussed in Definition 1.24 and
Remark 1.25.

DEFINITION 1.36. — The graphical relation =¢ on ordered partitions of [n] is
defined by 1 =¢ v if and only if the cones C(u) and C(v) of the braid fan belong
precisely to the same cones of the graphical fan F(G). Equivalently, p =¢ v if and
only if i 5, j <= i <, j for any edge (i,j) of G. It restricts to an equivalence
relation on permutations, which can also be seen as the transitive closure of the
rewriting rule UabV =g UbaV for all words U,V on [n] and elements a,b in [n]
which do not form an edge of G.

We now orient the graph of the graphical zonotope Zono(G) as in Propositions 1.13
and 1.27.

DEFINITION 1.37. — An inversion of an acyclic orientation w of an integer
graph G is an edge {i,j} of G such that i < j but the edge goes from j to i
in the orientation w. The acyclic orientation poset of G is the poset on acyclic
orientations of G' defined by inclusion of their inversion sets. See Figure 1.4 (right).
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PROPOSITION 1.38. — When oriented in the direction
wi=(n,....,1)—=(1,....,n)= Y (n+1-2i)e,,
i € [n]

the graph of the graphical zonotope Zono(G) is the Hasse diagram of the acyclic
orientation poset of G.

Remark 1.39. — In contrast to Propositions 1.13 and 1.27, the acyclic orientation

poset is not always a lattice, as will be discussed in more details in Proposition 1.68
(see also [Pil24]).

In contrast to the permutahedra and braid fans of Section 1.2 and as illustrated
in Figure 1.4, the graphical zonotope Zono(G) is not always simple and the graph-
ical fan F(G) is not always simplicial. The following characterization was stated
in [Kim08, Rem. 6.2], [PRWO08, Prop. 5.2] and [Pil24, Prop. 52] (the immediate proof
is omitted in the first two).

PROPOSITION 1.40. — The graphical zonotope Zono(G) is simple (or equiva-
lently, the graphical fan F(G) is simplicial) if and only if G is chordful, meaning
that any cycle of G induces a clique of G.

We now want to underline that the Cartesian products and Minkowski sums of
Definition 1.6 preserve the family of graphical zonotopes.

DEFINITION 1.41. — For two graphs G and H,
o if V(G)NV(H) = @, then the disjoint union G U H is the graph with
V(GUH)=V(G)UV(H) and E(GUH) = E(G)U E(H),
e if V(G) =V (H) and E(G)NE(H) = @, then the superposition G & H is the
graph with V(G® H) =V (G)=V(H) and E(G® H) = E(G) U E(H).
DEFINITION 1.42. — For two graphs G on [m| and H on [n], define
e the shifted graph H™™ as the graph with vertices [n]™™:={m+1, ..., m+n}
and edges E(H)"™:={(m+1i,m+j)|(i,j) € E(H)},
e the shifted union as G ® H:=G L H™™.

PROPOSITION 1.43. — For all graphs G on [m] and H on [n],
e Zono(G) x Zono(H) = Zono(G ® H).
e ifm=n and E(G)N E(H) = @, then Zono(G) + Zono(H) = Zono(G @ H).

Note that if E(G) N E(H) # @, then Zono(G @ H) has the same combinatorics,
but not the same geometry as Zono(G) + Zono(H). In this paper, we will anyway
only need Minkowski sums of graphical zonotopes of graphs with disjoint edge sets.

Finally, we briefly describe the graphical zonotopes of complete multipartite
graphs, that will play a crucial role in this paper.

DEFINITION 1.44. — We consider a k-tuple n = (nq, ..., ny) of positive integers,
and let n:=ny + -+ -+ ny and Vi :=[nq], Vo:=[no|™™, ..., Vii=[ng] Tt -1 We
denote by K,, the complete multipartite graph with vertex set V(K,):=[n] =V, U
-+~ UVj and edge set E(Ky,):= Uy <i< ;< Vi X V;. We denote by Z,, = Zono(Ky) its
graphical zonotope. For m,n € N, we often write K,, ,, and Z,,,, instead of Ky, )
and Z(mm).
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Figure 1.5. The graphical zonotope Z1y with faces labeled by K s 1y-ordered
partitions (left) and by ordered partitions of [3] with no two consecutive parts
contained in {1,2} (right).

As discussed in Definition 1.32 and Proposition 1.33, the combinatorial structure
of Z,, is given by K,-ordered partitions. It turns out that these K,,-ordered partitions
are almost ordered partitions of [n] in the classical sense. Indeed, note that

e a subset of [n] induces a connected subgraph of K, if and only if either it is
a singleton or it is not contained in one of the V’s,

e two such sets are connected by an edge except if they are two singletons in
the same V.

Therefore, given a Kj,-ordered partition II = (7,w), the preposet <}; obtained
from < by adding all relations between incomparable elements of <y is the preposet
of an ordered partition, with the property that no two consecutive parts are included
in the same V;. Conversely, given such an ordered partition p, the preposet <7
obtained from <, by deleting all relations inside each part of ;1 completely contained
in one of the V;’s is the preposet of a K,-ordered partition. The correspondence
between these two combinatorial descriptions of the faces of 7, is illustrated in
Figure 1.5. The following statement summarizes this observation.

PROPOSITION 1.45. — The faces of the graphical zonotope Z., are in bijection
with the ordered partitions of [n] where no two consecutive parts are included in the
same V;. The vertices of Z,, then correspond to those ordered partitions where each
part is included in some V.

The poset of Proposition 1.38 can then be read on the partition model as follows.

PROPOSITION 1.46. — Consider two ordered partitions p and ' where each
part is contained in some V;, and let v and v' denote the corresponding vertices
of Z.,,. There is a path from v to v’ in the graph of Z,, oriented in the direc-
tion w:=(n, ..., 1) = (1, ..., n) = X;cpn+1-2i)e; if and only if p <, q im-
plies p <,v q foranyp e Vi andqge V; with1 <i < j <k.

One also easily derives from Proposition 1.45 the number of vertices of Z, by

encoding such an ordered partition into a word with no consecutive identical letters
and some surjections. For n = (m,n), this yields poly-Bernoulli numbers, see [AK99a,

AK99b, BH15, BH17, CGRS14, Kan97).
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PROPOSITION 1.47. — Let S(n, k) denotes the number of surjections from [n]
to [k| (see [OEIS10, A019538|). The number of vertices of the graphical zonotope Z.,,
is given by the summation formula

> I St wla),

weWy i€ k]

where W, is the set of words on the alphabet [k| containing at least one copy of each
letter and no consecutive identical letters, and |w|; denotes the number of letters i
in the word w. In particular, when n = (m,n), we obtain the poly-Bernoulli number
(see [Kan97], [OEIS10, A099594|, and [CGRS14] for an explanation of the formula)

Sm+1,4+1)S(n+1,0+1)
B(—m,n):= E :
( ) >0 (0 +1)2

The number of facets of Z,, will appear later as a special case of Proposition 2.27.

1.5. Deformed permutahedra

We now consider deformations of the permutahedron of Section 1.2, introduced by
A. Postnikov [Pos09, PRWO08]. They are usually called “generalized permutahedra”
but we prefer the term “deformed permutahedra” which we find more explicit.

DEFINITION 1.48. — A deformed permutahedron is a polytope whose normal
fan coarsens that of the permutahedron Perm(n). We denote by DIP(n) the set of
deformed permutahedra in R".

Remark 1.49. — There are further equivalent definitions of deformed permutahe-
dra, among others:

e they are all polytopes obtained by moving parallely the facet defining in-
equalities of the permutahedron Perm(n) without passing any vertex [Pos09,
PRWO0S],

e their right-hand-sides are described by submodular functions [Edm70, Pos09,
PRWO0S],

e they are all weak Minkowski summands of the permutahedron
[Mey74, McM73],

e they are all polytopes obtained by Minkowski sums and differences of faces
of the standard simplex [ABD10].

Example 1.50. — Examples of deformed permutahedra include permutahedra (see
Section 1.2), associahedra (see Section 1.3), graphical zonotopes (see Section 1.4),
and all polytopes discussed in this paper in particular multiplihedra (see Section 3.2),
constrainahedra (see Section 4.2), and biassociahedra (see Section 5.2).

By Definition 1.48, the normal cones of the faces of a deformed permutahedron
are defined by inequalities of the form z; < z;. This justifies the following definition.

DEFINITION 1.51. — FEach face I of a deformed permutahedron P defines a pre-
poset < on [n] such that the normal cone of F is given by {x e R" | x; <z, if i<y j}.
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This preposet is a poset when I is a vertex of P. We call them face preposets of P
or shortly PP-preposets, and vertex poset of P or shortly P-posets. The face lattice
of P is isomorphic to the refinement lattice on the P-preposets.

Remark 1.52. — In contrast to the permutahedra of Section 1.2 and the asso-
ciahedra of Section 1.3, not all deformed permutahedra are simple polytopes. It
is immediate that a deformed permutahedron IP is simple if and only if the Hasse
diagrams of its vertex posets are all forests.

These preposets (resp. posets) naturally define an equivalence relation on ordered

partitions (resp. on permutations), similar to the sylvester congruence presented in
Definition 1.24.

DEFINITION 1.53. — A deformed permutahedron P defines an equivalence rela-
tion =p on ordered partitions by u =p v if and only if the cones C(u) and C(v) of
the braid fan belong precisely to the same cones of the normal fan of IP. Said differ-
ently, each face I of P defines an equivalence class of =p consisting in all ordered
partitions p such that ¢ <y j implies i <,, j for all i,j € [n]. This relation =p also
restrict to an equivalence relation on permutations, with one equivalence class for
each vertex of P.

Remark 1.54. — In contrast to the sylvester congruence =g, presented in Def-
inition 1.24, the equivalence relation =p is not necessarily a lattice congruence of
the weak order. See Section 1.6.

We now orient the graphs of arbitrary deformed permutahedra as in Proposi-
tions 1.13, 1.27 and 1.38.

DEFINITION 1.55. — The rotation graph of P € DIP(n) is the directed graph on
P-posets obtained by orienting the graph of P in the direction

w=mn,...,1)=1,....,n)= Y (n+1-2i)e,.
i€ [n]
The rotation poset <p is the transitive closure of the rotation graph.

Remark 1.56. — In contrast to the Tamari lattice presented in Definition 1.26,
the rotation poset <p is not always a lattice. See Section 1.6.

We finally want to underline that the Cartesian products and Minkowski sums of
Definition 1.6 and Proposition 1.7 preserve deformed permutahedra.

PROPOSITION 1.57. — Let P € DP(m) and Q € DP(n) be two deformed permu-
tahedra. Then

e the Cartesian product P x @ is a deformed permutahedron in DP(m + n),
e if m = n, then the Minkowski sum P 4+ @Q is a deformed permutahedra
in DP(m).

To describe the resulting face preposets, equivalence relations on ordered partitions
(or on permutations), and rotation posets on vertex posets, we need the following
standard notations.
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DEFINITION 1.58. — For a preposet < on [n] and an integer m € [n], we define
® by <[ the restriction of < to [m],
e by <™ the shift of < by +m, defined by i + m <™ j+m <= i< j.
We use similar notations for ordered partitions and permutations.

Using the notations of Definition 1.58, we first describe the behavior of the Carte-
sian product and Minkowski sum on the face preposets of Definition 1.51.

PROPOSITION 1.59. — For any two deformed permutahedra P € DP(m) and
Q € DP(n), and any two faces IF of P and G of Q,

o <y LU g™ is a face preposet of P x Q,

e when m = n, if <y and ¢ have a common extension and any three of the
relations 1 <y J, ] v 1, © K¢ J, J <q ¢ imply the fourth, then the transitive
closure of <y U <¢q is a face preposet of P + Q.

Moreover, any face preposet of P x Q and P 4+ @ is uniquely obtained this way.

We next describe the behavior of the Cartesian product and Minkowski sum on
the equivalence relations on ordered partitions of Definition 1.53.

PROPOSITION 1.60. — For any two deformed permutahedra P € DP(m) and
Q € DP(n), and any two ordered partitions p € B, and v € B,
o i =pyxq v if and only if jim) =p V) and W ZEQ VM s
e if m =mn, then p =p,q v if and only if p =p v and 1 =q v.

Finally, we describe the behavior of the Cartesian product and Minkowski sum on
the rotation posets of Definition 1.55.

PROPOSITION 1.61. — For any two deformed permutahedra P € DP(m) and
Q € DP(n), and any four vertices v,v’ € P and w,w’ € Q, we have
¢ <o U S0 Kpxq S U Sw ™™ if and only if <y <p <o and o <q Sw's
e if m = n and the transitive closure = of <, U <4 (resp. 5 of <y U <o)
is a vertex poset of P + Q, then < <piq <’ if and only if <, <p <uv
and <Sw gQ <Sw'-

1.6. Lattice properties of rotation posets

As mentioned in Propositions 1.13, 1.27 and 1.38, the graphs of the permutahe-
dron Perm(n), of the associahedron Asso(n), and of the graphical zonotope Zono(G),
oriented in the direction w are the Hasse diagrams of the weak order, of the Tamari
lattice, and of the acyclic orientation poset of GG, respectively. More generally, we
have defined in Definition 1.55 the rotation poset <p of a deformed permutahedron IP
by orienting its graph in the direction w. It turns out that the Tamari lattice is
a lattice quotient of the weak order. More generally, the graph of any quotientope
of [PS19] oriented by w is the Hasse diagram of a lattice quotient of the weak order.
In contrast, not all acyclic orientation posets are lattices, even less lattice quotients
of the weak order. In this section, we discuss lattice properties of the rotation posets
of deformed permutahedra. We start by recalling some basic facts about lattice
congruences.
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DEFINITION 1.62. — Given a binary relation R and an equivalence relation =
on the same set X, the quotient relation R/= is the binary relation on X /= defined
by I R/=J if and only if there isi € I and j € J such that i R j.

PROPOSITION 1.63. — For any deformed permutahedron IP, the rotation poset <p
is the poset quotient of the weak order on &,, by the equivalence relation =p.

DEFINITION 1.64. — A congruence of a lattice (L, <, A, V) is an equivalence rela-
tion on L compatible with the meet and join operations, meaning that x Ay = 2’ Ny
and xVy = 2'Vy for any x = 2’ and y = y'. The quotient < /= is then automatically
a lattice on L/=.

PROPOSITION 1.65. — An equivalence relation = on a lattice L is a lattice
congruence if and only if

e its equivalent classes are intervals of L,
e the map | (resp. n') sending an element to the minimum (resp. maximum)
element in its equivalence class is order preserving.

In view of Proposition 1.65, we define the following properties of equivalence
relations on permutations. Note that the first two properties are independent, and
are both implied by (but do not imply) the third one.

DEFINITION 1.66. — We say that an equivalent relation = on G,, has

e the interval property if its classes are intervals of the weak order,

e the lattice property if the quotient of the weak order by = is a latticeon &,,/=,

e the congruence property if it is a lattice congruence (see Definition 1.64 and
Proposition 1.65).

By extension, we say that a deformed permutahedron P has these properties when
the corresponding equivalence relation =p of Definition 1.53 does. In particular, P
has the lattice property when the rotation poset <p is a lattice.

To illustrate these notions, we characterize in the next statements the graphs
whose zonotope has the interval, the lattice, or the congruence property. We will
need the following definitions, see [BM21, Pil24].

DEFINITION 1.67. — An integer graph G is
o filled if (i, k) € E(G) implies (i, j) € E(G) and (j, k) € E(G) foralli < j < k,
e half-filled if (i,k) € E(G) implies (i,j) € E(G) or (j,k) € E(G) for
all i < j < k,
e vertebrate if the transitive reduction of any induced subgraph of G is a forest.

PROPOSITION 1.68. — The graphical zonotope Zono(G) has the interval (resp.
lattice, resp. congruence) property if and only if G is half-filled (resp. vertebrate,
resp. filled).

The characterizations of the lattice and congruence properties in Proposition 1.68
were already proved in [Pil24]. We just prove here the characterization of the interval
property as it did not appear in the literature. For this, we need the classical
characterization of the weak order intervals [BW91].
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PROPOSITION 1.69. — A poset <I on [n] defines an interval of the weak order
if and only if ¢« < k implies i < j or j < k, and @ I> k implies i > j or j > k, for
every 1 <1< j<k<n.

Proof of Proposition 1.68. — As just explained, we only prove here the charac-
terization of the interval property. Assume first that G is half-filled. Consider a
poset <o corresponding to an acyclic orientation O of G andlet 1 <i<j<k<n
be such that ¢ <o k. By definition, there is a sequence 7 = jo, j1, ..., j, = k such
that (j,—1,J,) is an oriented arc of O for all ¢ € [p]. Moreover, since 1<i<j<k<n,
there is ¢ € [p] such that j,_1 <j<j,. If j=j,, then we obtain that i<oj and j<k.
Otherwise, since (j,—1,7,) € £(G) and G is half-filled, we also have (j,_1,j) € E(G)
or (j,7,) € E(G). Assume for instance that (j,j,) € E(G) (the other case is sym-
metric). If the edge (j,j,) is oriented from j to j, in O, then we obtain that
J <o Jq So k, so that j <o k. Otherwise, we have ¢ <o j, < 7 so that i < j.
Therefore, i <o k implies © <o j or j <o k. By symmetry, we conclude from Propo-
sition 1.69 that Zono(G) has the interval property. Conversely, if G is not half-filled,
it is immediate to construct an acyclic orientation O of G whose corresponding poset
<o fails to satisfy the conditions of Proposition 1.69. U

COROLLARY 1.70. — The graphical zonotope Z,y, ,, == Zono(K,, ) has the inter-
val (resp. lattice, resp. congruence) property if and only if m,n > 1 (resp. m =1
orn=1,resp. m=n=1).

Proof. — It follows immediately from Definition 1.67 that the complete bipartite
graph K,,, is always half-filled, vertebrate only when m = 1 or n = 1, and filled
only when m =n = 1. U

We finally want to underline which of the properties of Definition 1.66 are preserved
by the Cartesian product and the Minkowski sum of Definition 1.6. The proofs are
immediate for the Cartesian product, and rely on the fact that the congruence =pq
is the intersection of the congruences =p and =q for the Minkowski sum.

PROPOSITION 1.71. — The Cartesian product preserves the interval, lattice, and
congruence properties. The Minkowski sum preserve the interval and congruence
properties, but not the lattice property.

2. Shuffles of deformed permutahedra

In this section, we introduce the shuffle operation on deformed permutahedra
(Section 2.1), provide a combinatorial description of the resulting polytopes (Sec-
tion 2.2), and discuss the shuffle with a point (Section 2.3) and the shuffle of graphical
zonotopes (Section 2.4).

2.1. Shuffle operation

This paper focuses on the following operation on the deformed permutahedra of
Section 1.5.

TOME 7 (2024)



1556 F. CHAPOTON & V. PILAUD

DEFINITION 2.1. — The shuffle of two deformed permutahedra P € DP(m) and
Q € DP(n) is

PxQ:=(PxQ)+Zp,=PxQ)+ Z (€, €mtjl,
i € [m]
j€ln]
where x denotes the Cartesian product, and + and Y. the Minkowski sum (see
Definition 1.6).

For instance, we have Perm(m) x Perm(n) = Perm(m + n). We will study in more
details certain particular shuffles: the shuffle with a point in Section 2.3, shuffles of
graphical zonotopes in Section 2.4, and shuffles of permutahedra and associahedra in
Sections 3, 4 and 5. At the moment, we observe that the shuffle operation *x preserves
the family of deformed permutahedra, which directly follows from Definition 2.1 and
Proposition 1.57.

PROPOSITION 2.2. — For all deformed permutahedra P € DP(m) and Q € DP(n),
the shuffle P x Q is a deformed permutahedron in DP(m + n).

We now gather in Remarks 2.3, 2.4 and 2.14 some elementary observations on the
shuffle operation *.

Remark 2.3. — The shuffle is an associative operation on deformed permutahedra.
Indeed, for any k& deformed permutahedra Py € DP(n,), ..., P, € DP(ny), we have

]Pl*"'*IPk = (IPl X X IPk) "‘Z(nl,‘..,nk)'

The shuffle is also commutative up to permutation of coordinates. Indeed, for any
deformed permutahedra P € DP(m) and Q € DP(n), we have P x Q = s(Q  P)
where s : R"™ — R™*™ denotes the swap s(z,y) = (y, x).

Remark 2.4. — The shuffle operation * does not preserve simple polytopes.
For instance, while the permutahedron Perm(n) of Section 1.2 and the associahe-
dron Asso(n) of Section 1.3 are simple, the multiplihedron Mul(m, n):=Perm(m) %
Asso(n) of Section 3, the constrainahedron Constr(m,n):= Asso(m) x Asso(n) of
Section 4, and the biassociahedron Bias(m,n) := Asso(m) * Asso(n) of Section 5 are
not simple in general (see Remarks 3.14, 4.13 and 5.12).

2.2. Combinatorial description

We now aim at describing the behavior of the shuffle operation x of Definition 2.1 in
terms of the face preposets of Definition 1.51. Such a description immediately follows
from Propositions 1.59 and 1.33. A more convenient description arises by combining
as well with the description of the face preposets of Z,, ,, provided in Proposition 1.45.
Recall that for an ordered partition g on [m + nl, we denote by <" the preposet
obtained from <, by deleting all relations inside each part of u completely contained
in [m] or in [n]™™.

PROPOSITION 2.5. — Consider two deformed permutahedra P € DP(m)
and @ € DP(n), two faces F of P and G of Q, and an ordered partition y of [m + n|
such that
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e <, extends both < and <™,

e 10 two consecutive parts of i are both contained in [m] or both contained
in [n]t™,

o if up N [m] # & # g N [n]™™, then any two elements of py N [m] are equal
or incomparable in <p and any two elements of py N [n]™™ are equal or
incomparable in <g*™.

Then the preposet <p g, = (sr U <¢™™) U <p s a face preposet of P x @, and
any face preposet of P x @ is uniquely obtained this way:.

Proof. — Combine Propositions 1.59 and 1.45. 0

Remark 2.6. — The deformed permutahedron P (resp. Q) itself appear as a face
of PxQ. The corresponding face preposets are given by <p 4, (resp. <y.q,,) where w
(resp. v) is an arbitrary vertex of Q (resp. of P) and p is one of the two ordered
partitions with parts [m] and [n]™™.

Remark 2.7. — The face preposet < g, of Proposition 2.5 can be represented
visually by drawing the Hasse diagrams of the face preposets < and g™ side by
side, with their vertices separated in blocks organized from bottom to top according
to p. Then ¢ <p g,y J if

e cither there is an oriented path from ¢ to j in <y or in g™,
e or ¢ is in a block lower than j,
e or ¢ and j belong to the same block which is not contained in [m] or in [n]™™.

We call such pictures (IP, Q)-bipreposets. Examples of bipreposets where the preposets
are trees are illustrated in Figures 4.1 and 5.1.

Remark 2.8. — The preposet <y g, is a poset if and only if I and G are vertices,
and the parts of p are alternatively contained in [m] and [n]™™. In other words, the
vertex posets of IP x () are obtained by interspersing the vertex posets of IP with the
vertex posets of @) as explained in Remark 2.7. We call such pictures (P, Q)-biposets.

Remark 2.8 yields the following statement.

DEFINITION 2.9. — A partitioned poset is a pair (<, u) where < is a poset on [n]
and p is an ordered partition of [n] such that i < j implies i <, j.

COROLLARY 2.10. — The number of vertices of P x Q) is given by the summation
formula

>~ PPu(P) (PP,-1(Q) +2PPy(Q) + PP.11(Q)),

where PP,(P) denotes the number of partitioned posets (<, 1) where < is a vertex
poset of P and p has ¢ parts. In particular, it only depends on the repartition of
partitioned vertex posets of P and Q.

Remark 2.11. — Corollary 2.10 impliesx Constr(m, n) := Asso(m)xAsso(n) of Sec-
tion 4 and the biassociahedron Bias(m,n):= Asso(m Asso(n) of Section 5 have the
same number of vertices for anym,n >1. This symmetry property is lost beyond ver-
tices: for instance, Constr(3,3,n) has 1550 edges, while Bias(3,3,n) has 1549 edges.
Corollary 2.10 also implies that Perm(m) x Para(n) and Perm(m + 1) * Point(n — 1)
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have the same number of vertices while their number of facets differ for n > 4, see
Remark 2.28.

We now describe the behavior of the shuffie operation x of Definition 2.1 at the level
of the equivalence relations on ordered partitions and permutations of Definition 1.53.
It immediately follows from Definition 1.36 and Proposition 1.60.

PROPOSITION 2.12. — For any two deformed permutahedra P € DP(m) and
Q € DP(n), the equivalence relation =p,q on ordered partitions is given by j1 =p.q v
if and only if pyn) =p Vjm) while p=™ ) =q v " and i S, m+j = i<, m+j
for all i € [m| and j € [n].

Finally, we describe the behavior of the shuffle operation x of Definition 2.1 on
rotation posets of Definition 1.55. It immediately follows from Propositions 1.46
and 1.61.

PROPOSITION 2.13. — For any two deformed permutahedra P € DP(m) and
Q € DP(n), the rotation poset <p,q on the vertex posets of P Q is given by <y,
<IP*Q %v’,w’,,u’ if and 01’11}’ if <w <]P <o and <w gQ <w! and p 4# q 1mp11es p %,u’ q
for all p € [m] and q € [n]*™.

Remark 2.14. — Tt follows from Corollary 1.70 and Proposition 1.71 that the shuf-
fle operation x preserves the interval property. In contrast, Remarks 4.16 and 5.15
show that neither the (3, 3)-constrainahedron Constr(3, 3):= Asso(3) * Asso(3) nor
the (3, 3)-biassociahedron Bias(3,3):= Asso(3) x Asso(3) have the lattice and con-
gruence properties, while Asso(3) and Asso(3) both do. However, we will see in
Corollary 2.21 that the shuffle with a permutahedron Perm(n) preserves the lattice
property (but not the congruence property).

2.3. Shuffle with a point

We mark a little pause to specialize the observations of Section 2.2 to the case
where Q is reduced to a point 0. The bipreposets (and biposets) where the second
poset is a singleton can then be encoded as painted preposets (and posets) defined
below. We first define antichains, upper sets and lower sets in preposets, generalizing
the classical notions for posets.

DEFINITION 2.15. — Consider a preposet < on [n]. An antichain of X is a subset A
of [n| such that i € A <= j < i for any i < j with j € A. An upper (resp. lower)
set of X is a subset U (resp. L) of [n| such that i € U implies j € U (resp. j € L
implies 1 € L) for any i < j. In other words, an antichain (resp. an upper set, resp. a
lower set) of a preposet < is the union of the classes of an antichain (resp. an upper
set, resp. a lower set) in the quotient poset < /= on the classes of the equivalence
relation = defined by i = j <= i< j and j < i.

DEFINITION 2.16. — A painted preposet is a preposet < on [n| together with a
partition [n] = LU AU U where L is a lower set, A is an antichain, and U is an
upper set (all possibly empty) of <.
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PROPOSITION 2.17. — For any deformed permutahedron P € DP(n), the faces
of the shuffle P x 0 are in bijection with the painted P-preposets.

Proof. — Each face preposet g, of Proposition 2.5 corresponds to a painted
poset (g, LLUAUU) where L (resp. A, resp. U) is the subset of elements of [n] that
appear in a part of u before (resp. equal to, resp. after) the part of p containing n+1.

O

DEFINITION 2.18. — A painted poset is a poset < together with a partition
[n] = LUU where L is a lower set and U is an upper set (both possibly empty) of <.
Two painted posets (5, LU U) and (]', L' UU’) are connected by a right rotation if

e cither < and < are related by a right flip, while L = L' and U = U,
eor<x=<and L=LU{i} and U = U’ \ {i} for some i € [n].

PROPOSITION 2.19. — The rotation graph of the shuffle P x 0 is isomorphic to
the rotation graph on painted P-posets. For any two painted P-posets P:= (%, LUU)
and P := (g, L'UU’), there is a path from P to ' in this graph if and only if < <p <’
and L C L.

Proof. — This is a specialization of Proposition 2.13 to P % 0. U
This description of the rotation graph enables us to show the following statement.

PROPOSITION 2.20. — A deformed permutahedron P has the lattice property if
and only if the shuffle P x 0 has the lattice property.

Proof. — Observe first that the rotation poset <p is isomorphic to the interval
of the rotation poset <p.o given by the painted P-posets (=, L U U) where L = &.
This proves that <p, is a lattice implies that <p is a lattice, since any interval of a
lattice is a lattice.

Conversely, assume that <p is a lattice. Consider k painted P-posets Py := (<,
LyUUy),...,Py:=(%k, Ly UUyg). Then it is immediate from Proposition 2.19 that
the join of Py, ..., Py in <p,p is the painted P-poset P, := (v, Ly U Uy ), where <
is the join of the P-posets <1, ..., <k in <p, and L, is the lower set of < generated
by the union L; U---U L;. A symmetric expression obviously holds for the meet
using U instead of L. O

COROLLARY 2.21. — If a deformed permutahedron P has the lattice property,
then the shuffle P x Perm(n) has the lattice property for any integer n > 1.

2.4. Shuffle of graphical zonotopes

As it turns out, the family of graphical zonotopes is stable by the shuffle operation =
on deformed permutahedra. The corresponding operation on graphs is well-known
in graph theory.

DEFINITION 2.22. — The join of two graphs G and H with disjoint vertex sets is
the graph G ® H obtained by taking the disjoint union of G and H and connecting
all vertices of G to all vertices of H. In other words, V(G® H) = V(G)UV(H) and

E(G® H)=E(G)UE(H)U (V(G) X V(H)). If V(G) = [m] and V(H) = [n], we
write G ® H for the graph G® H™ = (G R H) & K p.
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Example 2.23. — The following families provide some relevant examples:

e the join of two empty graphs E,, and £, is the complete bipartite graph K, ,,
(more generally, the join of k£ empty graphs E,,, ..., E,, is the complete k-
partite graph K, ),

e the join of a path P,, by an empty graph E, is a fan graph £}, ,,

e the join of two complete graphs K,, and K, is the complete graph K,,.,,.

The next statement immediately follows from Definitions2.1 and 2.22 and Propo-
sition 1.43.

PROPOSITION 2.24. — For all integer graphs G' and H, we have
Zono(G) x Ziono(H) = Zono(G ® H).
Example 2.25. — For instance, the permutahedra are stable by x since

Perm(m) * Perm(n) = Zono(K,,) * Zono(K,,) = Zono(K,, ® K,)
= Zono(K1p) = Perm(m + n).

In view of Proposition 2.24, it was tempting to call P x Q the join of the deformed
permutahedra IP and Q. Recall however that there is a classical join operation on
polytopes with the property that the graph of a join of polytopes is the join of the
graphs of the polytopes (see [Zie95, Ex. 9.9, p. 323]).

The number of vertices and facets of the graphical zonotopes arising from shuffles
of graphical zonotopes are interesting. See Tables A.1, A.2, A.3, A4, A.5 and A.6 in
Section A.1 for tables of particularly relevant families. We just mention here some
relevant facts.

PrRoPOSITION 2.26. — For all graphs G and H, the number of vertices of
Zono(G) x Zono(H) is the number of acyclic orientations of the join G ® H. In
particular,

o fo(Perm(m) x Para(n)) = (m + 1)! (m + 2)"!,

o fo(Perm(m) x Point(n)) = m! (m + 1)",

o fo(Point(m) * Point(n)) = B(—m,n):= >, S(mﬂ’eaﬁf)(fﬂ’”l), where
S(n, k) denotes the number of surjections from [n] to [k] (see A019538 in
[OEIS10]),

e fo(Point(ny) x - - - x Point(ng)) = X, cw, [T e g S(ni, [wli), where Wy is the
set of words on the alphabet [k] containing at least one copy of each letter
and no consecutive identical letters, |w|; denotes the number of letters i in

the word w, and S(n, k) denotes the number of surjections from [n] to [k]
(see [OEIS10, A019538]).

Proof. — The first sentence of the statement is a direct consequence of Propo-
sitions 2.24 and 1.33. The numbers of vertices of Perm(m) x Para(n) and
Perm(m)  Point(n) are easily computed by induction. Finally, the numbers of
vertices of Point(m) « Point(n) and Point(n;) - - - x Point(ny) follow from Proposi-
tion 1.47. U
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PROPOSITION 2.27. — For all graphs G, ..., Gy on [ny], ..., [ng] respectively,
such that k > 2 or at least one of GG; and (G5 is connected, the number of facets of
Zono(Gy) x - - - x Zono(Gy) is given by

>
Fonotmp—2(Zono(Gy) x - -+ % Zono(Gy) ) = 250 —2 3~ NC(Gy) — 2,
1 € [k]

where NC(G) denotes the number of disconnected subsets of G. For two discon-
nected graphs Gy and Gy on [ny] and [ns] respectively, the number of facets of
Zono(Gy) * Ziono(Gy) is

Farins—2(Zono(Gh) * Zono(Gy) ) = 277 — 2NC(G) — 2NC(Ga).

In particular,

(m) % Para(n)) = 2m*" — 2"t 4 n(n + 1),
(m) % Point(n)) = 2m*" — 2"t 4 9p
Point(m) x Point(n)) = 2m*" — 2m+L — 90+l 4 9y + 9 + 4,
(n1) % - - % Point(ny)) = 22-i€ 0™ — 25, (2" — n; — 2) — 2
for k > 2.

Proof. — By Propositions 2.24 and 1.33, the number of facets of Zono(Gy) % - - - x
Zono(Gy,) is the number of biconnected subsets of G:= G, ®- - -®Gy. Consider a sub-
set U of the vertex set of G. If U meets the vertex sets of ¢ > 1 of the graphs G;, then
the subgraph of G induced by U contains a complete (-partite graph and is thus con-
nected. Therefore, the subsets of vertices of GG that are not biconnected are precisely
the disconnected subsets of the graphs G; and their complements. When k£ > 2 or at
least one of G; and G5 is connected, there is no ambiguity between these sets. It fol-

lows that the number of biconnected subsets of G is 22i®™ — 2 — 92 e NC(GY).
If £ =2 and both Gy and G5 are disconnected, we are counting Gy (resp. G3) both
as a disconnected subset of G (resp. G3) and as the complement of Gy (resp. G),
which yield the correction 2”12 — 2 NC(G) — 2 NC(G3). The specific formulas then
follow from the immediate observation that NC(K,) = 0 for the complete graph K,
NC(P,) = 2" — ("3') = 1 for the path graph P,, and NC(E,) = 2" — n — 1 for the
empty graph E,. O

Remark 2.28. — Note that Perm(m) = Para(n) and Perm(m + 1) x Point(n — 1)
have the same number of vertices by Proposition 2.26, but not the same number of
facets when n > 4 by Proposition 2.27. The equality for the number of vertices can
be seen from Corollary 2.10.

Remark 2.29. — Note that the results of this section extend to all hypergraphic
polytopes. A hypergraphic polytope is the Minkowski sum of the faces of the stan-
dard simplex corresponding to the hyperedges of an arbitrary hypergraph. See for
instance [AA23, BBM19]. Hypergraphic polytopes contain in particular graphical
zonotopes (when the hypergraph is a graph) and nestohedra (when the hypergraph
is a building set [F'S05, Pos09]). It immediately follows from Definition 2.1 that the
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shuffle of two hypergraphic polytopes is a hypergraphic polytope (and the hyper-
graph of the shuffie is the join of the hypergraphs of the factors in the sense of
Definition 2.22).

3. Multiplihedra

In this section, we study the family of (m, n)-multiplihedra, obtained as the shuffle
of an m-permutahedron Perm(m) with an n-associahedron Asso(n). It extends the
classical multiplihedron studied in [AD13, For08, FL.S10, MW10, Sta70, SU04|, which
corresponds to the case m = 1. We generalize the classical model of painted trees
to (m,n)-multiplihedron (Section 3.1), describe the face lattice, fan and oriented
skeleton of the (m,n)-multiplihedron in terms of these trees (Section 3.2), provide
explicit vertex, facet and Minkowski sum descriptions of the (m,n)-multiplihedron
(Section 3.3), and present enumerative results on the number of vertices, faces and
facets of the (m,n)-multiplihedron (Section 3.4). One relevant byproduct of this
section is a lattice structure on binary m-painted n-trees, containing simultaneously
the weak order on permutations of G,,, and the Tamari lattice on binary trees of B,,.
We are not aware that this lattice structure was noticed in the literature, even for
the classical painted trees (with m = 1).

3.1. Painted trees

We start by defining m-painted n-trees, see Figure 3.1. Intuitively, an m-painted n-
tree is just a Schroder n-tree with some disjoint cuts that can pass through vertices
or through edges and are labeled by a partition of [m]. To make our definitions
precise, it is convenient to introduce unary nodes when a cut passes through an edge.
Recall from Definitions 1.14, 1.15 and 1.16 our conventions for rooted plane trees,
inorder labelings, and node deletions.

DEFINITION 3.1. — For a tree T, we call

e cut of T' a subset C' of nodes of T' containing precisely one node along the
path from the root to any leaf of T,

e stump of T" a subset S of nodes of T' containing the root of T' and such that
the parent of a node in S also belongs to S, and conversely either none or all
children of a node in S also belong to S.

Clearly, to a cut C of T' corresponds the stump C of all nodes located along a path
from the root of T' to a node of C. Conversely, to a stump S of T corresponds the
cut S of nodes of S with no child in S.

DEFINITION 3.2. — A m-painted n-tree T:= (T, C, u) consists of an n-tree T, a
sequence C:=(Cy, -+, Cy) of k < m cuts of T, and an ordered partition p of [m)]
into k parts, such that

e Ciy1 CC;\C; foralli € [k—1], and
e any unary node of T belongs to one of the cuts Cy, ..., Cj.
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1 | 1
AN TR o S A

Figure 3.1. Some 2-painted trees.
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Figure 3.2. Deletions in 2-painted 5-trees.

We denote by BL,, ,, the set of m-painted n-trees.

In other words, an m-painted n-tree is an n-tree with at most m cuts, where each
cut is disjoint and below the previous one, the union of the cuts covers all unary nodes,
and the cuts are labeled by an ordered partition of [m]. In the sequel, we write |C|
for k and |UC| for |U;ep Cil- To represent an m-painted n-tree T:= (T, C, p),
we draw the tree T in such a way that all nodes in the cut C; belong to the
same (red) horizontal line labeled by p; (which is abbreviated as a word rather
than a set). Examples are illustrated in Figure 3.1. Note that when & = 1, the
1-painted n-trees are precisely the painted posets of Definitions 2.16 and 2.18 for the
associahedron Asso(n), since it is equivalent to remember the cut and to remember
which vertices are below, on, or above the cut.

We now define the painted tree deletion poset. Definition 3.3 provides a direct
description in terms of painted trees, while Definition 3.6 provides an alternative
simpler but indirect description in terms of preposets. To illustrate the following
definition, Figure 3.2 represents a sequence of deletions in 2-painted 5-trees.

DEFINITION 3.3. — Let T:=(T,C, ) and T":=(T",C", ') be two m-painted n-
trees. We say that T’ is obtained by a deletion in T in either of the following three
cases:

(i) Free child: A node n of T distinct from the root is in none of the cuts of C,
and T" is obtained by deleting n in T', while C' = C and p/ = p.

(ii) Free parent: A node p is in none of the cuts of C' while all its children C(p)
belong to the same cut C;, and T" is obtained by deleting all C(p) in T, C" is
obtained from C' by replacing C; by C!:=(C; ~ C(p)) U {p}, and ' = p.

(iii) Twin cuts: There is i such that a node belongs to C;y if and only if its
children belong to C;, and T" is obtained by deleting simultaneously all nodes
in C;, C" is obtained from C' by deleting C;, and ' is obtained from p by
merging p; and ft;iq.

PROPOSITION 3.4. — For all integers m,n 2> 0, the set BL,, . is stable by deletion,
and the deletion graph is the Hasse diagram of a poset ranked by
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In particular an m-painted n-tree T := (T, C, ) has

o rank 0 if and only |C| = m, and all nodes in JC (resp. not in JC) have
degree 1 (resp. 2),

o rank m+n—2 if and only if either |C| = 1 and all but one node are contained
in Cy, or |C| = 2 and all nodes are contained in C7 U Cs,

e rank m +n — 1 if and only if it has a single node.

Proof. — Consider a deletion transforming T:=(7,C,u) to T':=(1",C", 1).
Then T’ is clearly an m-painted n-tree since the cuts of C” are still disjoint and
one below the other, and |C’| = |¢/|. For the rank, we distinguish three cases corre-
sponding to that of Definition 3.3:

(i) Free child: |7"| = |T'|—1 while C' = C so that |C’| = |C| and |UC'| = |UC]|.
(i) Free parent: |7"| = |T| — |C(p)|, |C"| = [C| and [UC"| = [UC| - [C(p)| + 1.

(iii) Twin cuts: |T"| = |T| — |Cy], |C'] = |C| — 1 and |[UC’| = |UC| — |Cy].

In all three situations, we get rk(T’) = rk(T) + 1. The end of the statement immedi-
ately follows. 0

DEFINITION 3.5. — The m-painted n-tree deletion poset is the poset on PL
where an m-painted n-tree is covered by all m-painted n-trees that can be obtained
by a deletion.

The m-painted n-tree deletion poset can alternatively be defined using preposets.

DEFINITION 3.6. — A me-painted n-tree T:=(T,C, ) defines a preposet <r
on [m + n] that can be read as follows. Label each node n of T' by the union
of the part u; if n € C; (empty set if n ¢ |JC') and the inorder label of n in T shifted
by m (empty set if n has degree 1). Then merge together all nodes contained in
each cut. Then, for any i,j € [m + n], we have i <t j if there is a (possibly empty)
oriented path from the node containing i to the node containing j in the resulting
oriented graph.

PROPOSITION 3.7. — The preposets <t for T € BT, are precisely the pre-
posets < on [m + n| in which any 1 < i < k < m + n are comparable (i.e. i X k
ori =k or both) if and only if

e cither i < m,
e or m < i and at least one of the following holds:
— there exists no i < j < k such that i < j > k,
— there exists j € [m| such thati < j < korix=j=k.

Proof. — Any preposet <t clearly satisfies these conditions. Conversely, given a
preposet < on [m + n] satisfying these conditions, consider the preposet <’ on [n]
defined by ¢ <’ k if and only if i +m < k 4+ m and there is no i < j < k such
that i +m < j +m = k + m. The preposet <’ is clearly the preposet <7 of a
Schréder n-tree T'. We then obtain the cuts C' and the partition p by considering
the relations i < k& with ¢ < m < k. Details are left to the reader. OJ

PROPOSITION 3.8. — In the m-painted n-tree deletion poset, T is smaller than T’
if and only if <Xt refines <.
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Figure 3.3. Right rotations in binary 2-painted 3-trees.

Proof. — An immediate case analysis shows that deletions in a painted tree T de-
fined in Definition 3.3 precisely translate all possible refinements in the corresponding
preposet <. [

Finally, we define the rotations in painted trees, which correspond to rank 1 painted
trees. To illustrate the following definition, Figure 3.3 represents a sequence of right
rotations in binary 2-painted 3-trees.

DEeFINITION 3.9. — We call binary m-painted n-trees the rank 0 m-painted
n-trees, i.e. where all nodes in |JC' have degree 1 while all nodes not in |JC' have
degree 2. We say that two binary m-painted n-trees T := (T, C, u) and T" := (T",C", 1)
are connected by a right rotation if:

(i) Edge rotation: T' is obtained from T by the right rotation of an edge
connecting two binary nodes, C' = C and ' = p,

(i) Node—cut sweep: T" is obtained from T by replacing a binary node ny with
two unary children ny, ng by a unary node n} with a binary child nl,, C" is
obtained by replacing ny and n3 by n!, and i/ = p,

(iii) Twin cuts: There is i such that p; < u;y1 and a node belongs to C; if and
only if its children belong to Ci,1, and T" =T, C' = C' and ' is obtained
from p by exchanging the values p; and ji;y1.

Remark 3.10. — 'The binary m-painted n-trees can be interpreted algebraically
as follows. We consider a non-associative magma (X, *) and m functions fi, ..., fi
from X to X which are not magma homomorphisms. We then consider the terms
than can be produced by starting from a sequence of n elements of X and iteratively
applying either x to two consecutive terms in the sequence or one function f; (each one
used exactly once) to all terms in the sequence. For instance, the terms corresponding
to the 4 trees of Figure 3.3 are

(fao fil@)* oo fi(y)) * fao fi(2),

(frofol@)  fro fo(y))  fro fal2),

fro fa(@) s (fro foly) = fro fa(2)),
fro falx) « fi(fo(y) * fal2)).

3.2. Permutahedra x Associahedra

We now consider shuffles of permutahedra with associahedra.
DEFINITION 3.11. — The (m,n)-multiplihedron is the polytope
Mul(m,n) = Perm(m) x Asso(n).
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Figure 3.4. The (m,n)-multiplihedra Mul(m,n) and their f-vectors for
(m,n) =(0,3), (1,2), (2,1) and (3,0). The top left is the 2-dimensional associ-
ahedron Asso(3) while the other three are all relabelings of the 2-dimensional
permutahedron Perm(3).

Remark 3.12. — When n = 1, we obtain the multiplihedron studied in [AD13,
For08, FLS10, MW10, Sta70, SU04]. Our geometric realization is different from that
of [For(08]. For instance, the two facets corresponding to associahedra are translated
copies in our realizations of the (1,n)-multiplihedron, while they are dilated copies
in the realization of [For08§].

This family of polytopes is illustrated in Figures 3.4, 3.5 and 3.6. We have labeled
with m-painted n-trees all faces in Figure 3.4, and all vertices in Figure 3.5 (see also
Figure 0.1). We let the reader complete the pictures in Figures 3.5 and 3.6.
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(1,24, 36,14, 1)

Figure 3.5. The (m,n)-multiplihedra Mul(m,n) and their f-vectors for
(m,n) =(0,4), (1,3), (2,2), (3,1) and (4,0). The top two are the 3-dimensional
associahedron Asso(4) and multiplihedron, while the bottom three are all rela-
belings of the 3-dimensional permutahedron Perm(4).
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(1,42,84,56,14,1) (1,80, 165,110, 25, 1)

(1,108,219, 140, 29, 1) (1,120, 240, 150, 30, 1)

Figure 3.6. Schlegel diagrams and f-vectors of the (m,n)-multiplihedra
Mul(m,n) for (m,n) = (0,5), (1,4), (2,3) and (3,2) ~ (4,1) ~ (5,0). The
top left, top right, and bottom right polytopes are the 4-dimensional associa-
hedron Asso(5), multiplihedron, and permutahedron Perm(5). The bottom left
polytope is the (2, 3)-multiplihedron, labeled in Figure 0.1.

PROPOSITION 3.13. — The face lattice of the (m,n)-multiplihedron Mul(m,n)

is isomorphic to the m-painted n-tree deletion poset (augmented with a minimal
element).

Proof. — This follows from Proposition 2.5 (see also Remark 2.7). Indeed, associate
to an m-painted n-tree T:= (T, C, 1) the face preposet <p g\ where
e I is the face of the permutahedron Perm(m) corresponding to the partition p,
e G is the face of the associahedron Asso(n) corresponding to the Schroder tree
obtained by deleting all unary nodes in 7', and

e )\ is the partition of [m + n] with

— a part formed by p; and the inorder labels of the nodes of C; for each
cut C; containing a non-unary node,
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— apart formed by ;U- - -Up; for each maximal sequence of cuts C;, ..., C;
containing only unary nodes and such that C,., = C, ~ O} for
all i < k < j, and

— a part formed by the inorder labels of the nodes in between the cuts C;
and C;,; (i.e. the nodes of C; \ (C; U C;1)) for each i € [|C| — 1].

We leave to the reader the immediate verification that this yields a poset isomorphism
from the deletion poset on m-painted n-trees to the refinement poset on the face
preposets of the (m,n)-multiplihedron Mul(m,n) = Perm(m) x Asso(n). O

Remark 3.14. — 1In contrast to the permutahedron Perm(m) and the associahe-
dron Asso(n), the multiplihedron Mul(m, n) is simple if and only if m = 0 or n < 2.

PROPOSITION 3.15. — The normal fan of the (m,n)-multiplihedron Mul(m,n) is
the fan containing one cone C(T):={x € R™™"|z; < uz;ifi <p j} for
each T € PL,, ..

Proof. — Immediate from Proposition 3.13 and Definition 3.6. U
PROPOSITION 3.16. — When oriented in the direction
wi=(n,....,1)—=(1,...,n) = Y (n+1-2i)e,
i € [n]

the graph of the (m,n)-multiplihedron Mul(m,n) is isomorphic to the right rotation
graph on binary m-painted n-trees, and is the Hasse diagram of a lattice.

Proof. — Tt follows from Proposition 3.13 that the vertices of Mul(m, n) correspond
to the binary m-painted n-trees. It is easy to check that the edges of Mul(m,n)
oriented by w correspond to right rotations on binary m-painted n-trees. Finally,
the lattice property is a special case of Corollary 2.21. O

Remark 3.17. — 1In contrast to the weak order on &,, and the Tamari lattice
on ‘B, the lattice of Proposition 3.16 is not a lattice quotient of the weak order and
is not even semidistributive when m > 1 and n > 3.

Remark 3.18. — Similarly, the shuffle of an m-permutahedron with a graph as-
sociahedron is a generalization of the graph multiplihedron of [DFO08]. It follows
from Corollary 2.21 that the resulting rotation graph is a lattice as soon as the
graph associahedron is a lattice (necessary and sufficient conditions for the latter
are discussed in [BM21]).

3.3. Vertex, facet, and Minkowski sum descriptions

Our next three statements, illustrated in Figures 3.7 and 3.8, provide the vertex,
facet, and Minkowski sum descriptions of the (m,n)-multiplihedron Mul(m, n). The
proofs are elementary computations from Definitions 1.8, 1.20, 1.31 and 3.11.

PROPOSITION 3.19. — For any i € [m + n|, the i*™® coordinate of the vertex of
the (m,n)-multiplihedron IMul(m, n) corresponding to a binary m-painted n-tree is
given by
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e if i < m, the number of binary nodes and cuts weakly below the cut labeled
by 1,

e if i > m + 1, the number of cuts below n plus the product of the numbers of
leaves in the left and right subtrees of n, where n is the node labeled by i —m
in inorder.

In particular, the sum of the coordinates is always (™3') 4+ ("§') + mn = (™31,

PrOPOSITION 3.20. — Let T:=(T,C,u) be an m-painted n-tree of rank
m +n — 2. Let A be the elements of [m] which label a cut not containing the root of
T (A = @ if C has only one cut, which contains the root of T'), and B := By U- - -U By,
where By, ..., B, are the inorder labels shifted by m of the non-unary nodes of T
distinct from the root of T'. Then the facet of the (m,n)-multiplihedron Mul(m,n)
corresponding to T is defined by the inequality

(x| 1laup) > <|A|2+1) + (‘312!“) 4+ 4 ('B’}‘H) + Al - |B|.

Moreover, this inequality is a facet defining inequality of the permutahedron
Perm(m + n) if and only if k < 1, that is, if T has at most two non-unary nodes.

PROPOSITION 3.21. — The (m,n)-multiplihedron Mul(m,n) is the Minkowski
sum of the faces ;= conv{e; | i € I} of the standard simplex Ap,, 1, corresponding
to all subsets I C [m +n] such that |I| < 2 and |I N [n|™™| < 1, or I is a subinterval
of [n]™™

T, T, Ts T, T

3 3
3 -3 3 3 3 3

A 2 1 A 1 1 1 1
A L ) I I I 2 2
(4,3,6,1,2,5) (1,3,5,4,2,6) (3,1,5,2,4,6) (4,1,6,2,6,2) (4,1,5,2,7,2)
Figure 3.7. Vertices of Mul(3, 3) corresponding to five binary 3-painted 3-trees.

123 123 13 13
ﬁ 12%12 mzém ﬁ mAm

Ty + x5 2 T1+2To+xy T1+To+x3 To+Tstre =D T+ T2+ 23
+f175 > 10 +QJ4 + Ty > 15 —|—$C4 +.T6 > 14

Figure 3.8. Facet defining inequalities of Mul(3, 3) corresponding to five rank 4
3-painted 3-trees.

DO

[\
(UV]

=

1
2

Example 3.22. — Figure 3.7 illustrates some vertex coordinates of IMul(3,3)
computed by Proposition 3.19 and Figure 3.8 illustrates some facet inequalities
of Mul(3,3) computed by Proposition 3.20. Note that all vertices of IMul(3, 3) have
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coordinate sum 21. Note that for any pair (7,7) € {(1,1),(1,2),(2,2),(2,3),(3,2),
(3,3),(4,4),(5,4),(5,5)}, we have T; smaller than S; in deletion order, so that the
vertex corresponding to T; is contained in the facet corresponding to S;.

3.4. Numerology

We now present enumerative results on the number of vertices, faces and facets
of the (m,n)-multiplihedron Mul(m,n), using standard techniques from generating
functionology [F'S09]. The first few values of these numbers are collected in Tables A.7,
A.8 and A.9 in Section A.2. We start with vertices, which appear as [OEIS10,
A158825] up to a factorial factor, generalizing the formula of [For08, Thm. 3.1].
See Table A.7.

PROPOSITION 3.23. — The number of vertices of the (m,n)-multiplihedron
Mul(m, n) (equivalently, of binary m-painted n-trees) is

m) |:yn+1] C(m—l—l)(y),
where [y"*!] selects the coefficient of y**', and C%(y) is defined for i > 1 by
CO(y)=Cly) and  C(y)=c(cV(y)),

where . —
- — 4y
cly) = —¥

is the Catalan generating function (see Proposition 1.30).

Proof. — According to Propositions 3.4 and 3.13, we need to count the binary
m-painted n-trees. We construct a binary m-painted tree by

e choosing a binary tree 7" above the topmost cut (thus the apparition of C),
e grafting at each leaf of T" a binary tree with m — 1 cuts (thus the substitution
of the y variable in C),
e choosing the permutation of [m] that will label the m cuts (thus the factor
m!). O
We now consider the number of facets of the (m,n)-multiplihedron Mul(m,n),
generalizing the formula of [For08, Thm. 2.4]. See Table A.8.

PROPOSITION 3.24. — The number of facets of the (m,n)-multiplihedron
Mul(m, n) is
(n—zi-l) 14+ gm+n _ gn.

Proof. — According to Propositions 3.4 and 3.13, there are two types of m-painted
n-trees corresponding to facets of the (m,n)-multiplihedron IMul(m, n):

e those where the bottommost cut contains the root: this amounts to choose a
corolla with n + 1 leaves, thus (™3') — 1 choices,

e those where the bottommost cut contains all children of the root: this amounts
to choose a non-empty subset of [m] to label this bottommost cut (the com-
plement, if non-empty, will label the topmost cut containing the root), and a

subset of [n] for the inorder label of the root, thus (2" — 1)2" choices. [
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Finally, adapting the approach of Proposition 3.23, we can count all faces of the
(m, n)-multiplihedron Mul(m,n) according to their dimension.

PROPOSITION 3.25. — Let PT(m,n,p) denote the number of p-dimensional faces
of the (m,n)-multiplihedron Mul(m,n), or equivalently the number of m-painted
n-trees of rank p. Then the generating function

PT (x,y,z):= Z PT(m,n,p)z™y" 2P

m?”?p

is given by
PT(x,y,2) = > a™ Y. S(8W(y, 2), 2) S(m, k) =,
m k=0

where S(m, k) is the number of surjections from [m] to [k],

S(y.2) 14+ yz — /1 — 4y — 2yz + y222
Z) =
v 2(: + 1)

is the Schréder generating function (see Proposition 1.30), and &Ei)(y, z) is defined
fori > 0 by

SOy, 2)=y, SV(y,2)=(142)S(y,z)—yz and ST (y,2):=8"(8M(y,2),z).

*

Proof. — According to Propositions 3.4 and 3.13, we need to count the m-painted
n-trees of rank p. We count them according to their number £ of cuts. For k = 0,
we just obtain the Schréder generating function S(y, z) multiplied by 2™ to take the
rank shift into account. For £ > 1, we construct an m-painted tree with k£ cuts by

e choosing a Schroder tree S above the topmost cut (thus the apparition of S),
e grafting at each leaf of S a Schroder tree with £ —1 cuts (thus the substitution
of the y variable in §), whose root may or may not lie on the topmost cut
(explaining the twist from S(y, z) to (1 + 2) S(y, z) — yz),
e choosing the ordered partition of [m] that will label the k cuts (thus the
factor S(m, k)).
Finally, since an m-painted n-tree (7', C,u) yields a monomial y"z”"TH‘UC' in
the generating function S (Sik)(y, 2), z), we multiply by the factor 2™ * to take into
account m —|C| in the definition of the rank rk(7',C) :=m+n—|T|—|C|+|UC|. O

We derive from Proposition 3.25 the total number of faces of the (m, n)-multipli-
hedron Mul(m,n). See Table A.9.

PROPOSITION 3.26. — The number of faces of the (m,n)-multiplihedron
Mul(m,n) (equivalently, of m-painted n-trees) is

> Stm k) [ 5(s1)

where S(m, k) is the number of surjections from [m] to [k],

l+y—+1—-06y+y?
S(y) = 1
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is the Schréder generating function (see Proposition 1.30), and S (y) is defined
fori > 0 by

SO(y) =y, SW(y):=28(y) —y and SV (y)=8D (SN (y)).

*

For instance, the f-vectors of all multiplihedra IMul(m, n) with m +n < 5 are dis-
played in Figures 3.4, 3.5 and 3.6. The f-vector of the (3, 3)-multiplihedron IMul(3, 3)
Is

f(Mul(3,3)) = (1,660, 1668, 1467, 518,61, 1).

4. Constrainahedra

In this section, we study the family of (m,n)-constrainahedra, obtained as the
shuffle of an m-associahedron Asso(m) with an n-associahedron Asso(n). A first
description of the constrainahedra appeared in [Tiel6], based on a private commu-
nication from N. Bottman. The rigorous description in terms of good rectangular
preorders was worked out in [BP22, Pol21], where the constrainahedra are also real-
ized as convex polytopes. We provide the alternative combinatorial model of cotrees
(Section 4.1), describe the face lattice, fan and oriented skeleton of the (m,n)-
constrainahedron in terms of these cotrees (Section 4.2), provide explicit vertex,
facet and Minkowski sum descriptions of the (m,n)-constrainahedron (Section 4.3),
and present enumerative results on the number of vertices, faces and facets of the
(m, n)-constrainahedron (Section 4.4).

4.1. Cotrees

We start by defining cotrees, illustrated in Figure 4.1. Intuitively, a cotree is a pair
of Schroder trees both growing in the same direction (say down), drawn side to side,
together with the information of the relative positions of their nodes. Examples are
illustrated in Figure 4.1.

DEFINITION 4.1. — A (m, n)-cotree is a triple T:=(L, R, i), where L is a Schréder
m-tree, R is a Schroder n-tree, and y is an ordered partition of the nodes of L
and R such that

e the part of pu containing a node n of L (resp. R) distinct from the root is
before or equal to the part of y containing the parent of n,
e 10 two consecutive parts of i are both contained in L or both contained in R,
e there is no oriented path in L (resp. in R) joining two nodes in a part of p
which meets both L and R.
We say that a part of u is of type £, r or b when it contains nodes from L, R or
both L and R, and we call type of the cotree the word given by the sequence of types
of the parts of . We denote by €%, ,, the set of (m,n)-cotrees.

To represent a (m, n)-cotree T:= (L, R, i), we draw the two trees L and R side by
side, and we mark the separations between the parts of p by (red) horizontal lines.
Note that p is read from bottom to top. Examples are illustrated in Figure 4.1.
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Figure 4.1. A (10,7)-cotree of type rlrtblr (left), a binary (8, 6)-cotree of type
rlrérl (right).

We now define the cotree deletion poset. Definition 4.2 provides a direct description
in terms of cotrees, while Definition 4.5 provides an alternative simpler but indirect
description in terms of preposets. To illustrate the following definition, Figure 4.2
represents a sequence of deletions in (7, 5)-cotrees.

DEFINITION 4.2. — Let T:= (L, R, u) and T":= (L', R', ') be two (m, n)-cotrees.
We say that T’ is obtained by a deletion in T in either of the following three cases:

(i) Node deletion: L' (resp. R') is obtained by deleting a node n with parent

p in L (resp. R) in the following situations:

(a) n and p belong to the same part of u, then ' is obtained by deleting n
from y,

(b) the part of n is of type ¢ (resp. r), the part of p is of type b, and the parts
of n and p are consecutive, then u' is obtained by deleting n from p,

(c) the part of n is of type b, the part of p is of type ¢ (resp. r), and the
parts of n and p are consecutive, then p' is obtained from p by moving
p to the part of n and deleting n.

(ii)) Nodes move: L' = L, R' = R, and y' is obtained from v by

(a) either creating, in between two consecutive parts ji; of type ¢ (resp. r)
and ;1 of type r (resp. £), a new part containing a node of p; whose
children are not in p; and a node of y; 1 whose parent is not in ;1 (and
removing these nodes from their original parts in p),

(b) or moving a node n from its part p; to the previous (or next) part ;411
in u, provided that the part p; is not of type b, that the part p;y is of
type b, and that the parent (or children) of n does not belong to ;U p;+1,

(iii) Twin parts merge: 1/ is obtained by merging two consecutive parts of
of type b, and L' (resp. R') is obtained by deleting any node n in L (resp. R)
such that both n and its parent belong to these parts.

PROPOSITION 4.3. — For all integers m,n = 0, the set €%, ,, is stable by deletion,
and the deletion graph is the Hasse diagram of a poset ranked by

tk(L, R,p) = m+n — || — |R| + B(u),
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Figure 4.2. Deletions in (7, 5)-cotrees.

where B() is the sum of |u;| — 1 over all parts p; of pu with u; N L # & # p; N R. In
particular a (m,n)-cotree T:= (L, R, 1) has

e rank 0 if and only if both L and R are binary trees, and no part of |1 meets
both L and R,

e rank m+n — 2 if and only if p has two parts, and each part of u either meets
both L and R or contains a single node,

e rank m +n — 1 if and only if u has a single part (hence, both L and R have
a single node).

Proof. — Consider a deletion transforming T:=(L,R,u) to T':= (L' R ).
Then T’ is clearly a (m,n)-cotree since L' and R’ are still Schroder trees, and
the partition y’ fulfills the conditions of Definition 4.1. For the rank, we distinguish
three cases corresponding to that of Definition 4.2:

(i) Node deletion: |L'| + |R'| = |L| + |R| — 1 while 5(i') = B(i').
(ii) Nodes move: |L'| = |L|, |R'| = |R|, while B(¢') = B(u) + 1.
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(iii) Twin parts merge: if 6 denotes the number of nodes n of L and R such
that both n and its parent belong to the merged parts of p, then |L'| + |R/| =

|L| +[R] — 0 and B(u') = B(n) — 6 + 1.
In all three situations, we get rk(T’) = rk(T) + 1. The end of the statement immedi-
ately follows. O

DEFINITION 4.4. — The (m,n)-cotree deletion poset is the poset on €%, , where
a (m,n)-cotree is covered by all (m,n)-cotrees that can be obtained by a deletion.

The (m, n)-cotree deletion poset can alternatively be defined using preposets.

DEFINITION 4.5. — A (m,n)-cotree T:= (L, R, i) defines a preposet <t on [m+n]|
that can be read as follows. Label L by [m] in inorder and R by [n|™™ in inorder
(shifted by m). Then, for any i,j € [m+n], we have i <t j if the part of u containing i
is before the part of u containing j, or if there is a (possibly empty) path from the
node containing ¢ to the node containing j in the tree L or in the tree D oriented
towards their roots.

PROPOSITION 4.6. — The preposets <r for T € €%, ,, are precisely the pre-
posets < on [m + n| in which any 1 < i < k < m + n are comparable (i.e. i X k
or i »= k or both) if and only if

e cither i < m < k,
e orm < i (resp. k < m) and at least one of the following holds:
— there exists no v < j < k such that i < j > k,
— there exists j € [m] (resp. j € [n]t") such that i < j < k ori = j = k.

Proof. — Any preposet <t clearly satisfies these conditions. Conversely, given a
preposet < on [m + n| satisfying these conditions, consider
e the preposet <, on [m] defined by i <, k if and only if i < k and there is
no i < j < k such that i < j = k,
e the preposet <, on [n] defined by i <, k if and only if i +m < k + m and
there isno ¢ < j < k such that i + m < 7 +m = k + m.
The preposet <, (resp. <) is clearly the preposet < (resp. <g) of a Schroder
m-tree L (resp. a Schroder n-tree R). We then obtain the partition p by considering
the relations i < k& with ¢ < m < k. Details are left to the reader. O

PROPOSITION 4.7. — In the cotree deletion poset, T is smaller than T’ if and
only if <Xt refines <.

Proof. — An immediate case analysis shows that deletions in a cotree T defined
in Definition 4.2 precisely translate all possible refinements in the corresponding
preposet <. [l

Finally, we define the rotations in cotrees, which correspond to rank 1 cotrees. To
illustrate the following definition, Figure 4.3 represents a sequence of right rotations
in binary (3, 2)-cotrees.

DEFINITION 4.8. — We call binary (m, n)-cotrees the rank 0 (m,n)-cotrees, i.e.
where both L and R are binary trees, and no part of i meets both L and R. We say
that two binary (m,n)-cotrees T:= (L, R, u) and T':= (L', R, ') are connected by
a right rotation if:

ANNALES HENRI LEBESGUE



Shuffles of deformed permutahedra 1577

| | |
AT AT e W, A

A A iy HTTAA

Figure 4.3. Right rotations in binary (3, 2)-cotrees.

(i) Edge rotation: L' (resp. R') is obtained from L (resp. R) by the right
rotation of an edge whose endpoints belong to the same part of u,

(i) Twin parts: L' = L, R = R, and y' is obtained from u by creating, in
between two consecutive parts p; of type ¢ and ;.1 of type r, first a new
part containing a node of j;,1 whose children are not in p;.1, and second a
new part containing a node of y; whose children are not in yu; (and removing
these nodes from their original parts in u, and merging consecutive parts of
the same type ( or r if any).

Remark 4.9. — The (m,n)-cotrees are algebraically motivated by the (m,n)-
constrainahedron defined in [BP22, Pol21, Tiel6] as a constrained version of the

2-associahedra of [Bot19]. This structure was already studied in details in particular
in [Pol21, Sect. 5], where

e the preposets of Proposition 4.6 are already described under the name “good
rectangular preorders” in [Pol21, Sect. 5.1.3] and [BP22, Sect. 2.1],

e an alternative combinatorial model is given by “rectangular bracketings’
in [Pol21, Sect. 5.1.3] and [BP22, Sect. 2.3] (see Figure 4.4 which illustrates
the immediate bijection between binary (m,n)-cotrees and maximal (m,n)-
bracketings),

e the contraction poset on good rectangular preorders is proved to be a lat-
tice in [Pol21, Sect. 5.2] and [BP22, Sect. 3] (here, this property is a direct
consequence of Proposition 4.12),

e a polytopal realization of this contraction poset is constructed in [Pol21,
Sect. 5.3] and [BP22, Sect. 4] (which differs from our construction of Sec-
tion 4.2 as discussed in [BP22, Sect. 5]).

Note that these realizations even extend to higher dimension: bracketings of a
ny X ng X -+ X ng grid are naturally encoded by the shuffle of associahedra
Assso(ng) * Asso(ng) * ... x Asso(ng).

)

Remark 4.10. — A simple-minded algebraic interpretation of the binary (m,n)-
cotrees involves two magmatic products e and o on a set X. The nodes in the left
part of a cotree are associated with the product e, those in the right part with the
product o. One starts at the bottom with a (m+1) x (n+ 1)-matrix of elements of X
(with m + 1 columns and n+ 1 rows). Intermediate steps will go through rectangular
p X g-matrices of elements of X with decreasing 1 <p<m+land1<g<n+1,
until one reaches a 1 x 1-matrix of elements of X at the top. Going up through a
node in the left part of the cotree means applying e to corresponding elements in two
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Figure 4.4. (3,2)-rectangular bracketings, corresponding to the binary (3,2)-
cotrees of Figure 4.3.

consecutive columns of the matrix, replacing these two columns by a single column
and decreasing p by 1. Similarly, going up through a node in the right part of the
cotree means applying o to corresponding elements in two consecutive rows of the
matrix, replacing these two rows by a single row and decreasing ¢ by 1. In short,
a left node stands for e merging two consecutive columns, and a right node for o
merging two consecutive rows.

4.2. Associahedra x Associahedra

We now consider shuffles of associahedra with associahedra.

DEFINITION 4.11. — The (m, n)-constrainahedron is the polytope
Constr(m,n) = Asso(m) x Asso(n).

Note that since Perm(1) = Asso(1) and Perm(2) = Asso(2), the first (m,n)-
constrainahedron which is neither an associahedron, nor a (m,n)-multiplihedron, is
the (3, 3)-constrainahedron Constr(3,3), which is a 5-dimensional polytope. There
is thus no reasonable example to be drawn in this section.

PROPOSITION 4.12. — The face lattice of the (m,n)-constrainahedron
Constr(m,n) is isomorphic to the (m,n)-cotree deletion poset (augmented with
a minimal element).

Proof. — This follows from Proposition 2.5 (see also Remark 2.7), since (m,n)-
cotrees are just a specialization of bipreposets. 0

Remark 4.13. — In contrast to the associahedron Asso(n), the constrainahedron
Constr(m,n) is simple if and only if m = 0, or n = 0, or max(m,n) < 2.

PROPOSITION 4.14. — The normal fan of the (m,n)-constrainahedron
Constr(m, n) is the fan containing one cone C(T):={x € R™™|z; < x; if i <7 j}
for each T € €%, ,,.

Proof. — Immediate from Proposition 4.12 and Definition 4.5. 0
PROPOSITION 4.15. — When oriented in the direction
w=mn, ..., 1)=1,...,n)= > (n+1-2)e,,
i€ [n]

the graph of the (m,n)-constrainahedron Constr(m,n) is isomorphic to the right
rotation graph on binary (m,n)-cotrees.

ANNALES HENRI LEBESGUE



Shuffles of deformed permutahedra 1579

Proof. — 1t follows from Proposition 4.12 that the vertices of Constr(m,n) corre-
spond to the binary (m, n)-cotrees. It is easy to check that the edges of Constr(m,n)

oriented by w correspond to right rotations on binary (m, n)-cotrees. O
| |
T, = =T,
/\ /\
RERIDN T A
| | | |
Y ) A A A A Y )
A AT AT THTTTA
Sl = = SQ
/\ AN
Al A ||

Figure 4.5. Rotations on all (3, 3)-cotrees larger than Sy or Sy and smaller than T
or Ty. This shows that S; and Se have no join, and T, and Ty have no meet, so
that the rotation graph on binary (3, 3)-cotrees does not define a lattice.

Remark 4.16. — In contrast to Proposition 3.16, note that the right rotation
graph on binary (m,n)-cotrees is not the Hasse diagram of a lattice when m > 3
and n > 3. See Figure 4.5 for examples of a pair of binary (3, 3)-cotrees with no join
and a pair of binary (3, 3)-cotrees with no meet.
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4.3. Vertex, facet, and Minkowski sum descriptions

Our next three statements, illustrated in Figures 4.6 and 4.7, provide the vertex,
facet, and Minkowski sum descriptions of the (m, n)-constrainahedron Constr(m,n).
The proofs are elementary computations from Definitions 1.20, 1.31 and 4.11.

PROPOSITION 4.17. — For any i € [m + n|, the i coordinate of the vertex of
the (m,n)-constrainahedron Constr(m,n) corresponding to a binary (m,n)-cotree
(L, R, ) is given by

e if i < m, the product of the numbers of leaves in the left and right subtrees
of n, plus the number of nodes of R below n, where n is the node of L labeled
by i in inorder.

e ifi > m+1, the product of the numbers of leaves in the left and right subtrees
of n, plus the number of nodes of L. below n, where n is the node of R labeled
by ¢ —m in inorder.

In particular, the sum of the coordinates is always (™) + ("§') +mn = (™3+).

PROPOSITION 4.18. — Let T:= (L, R, i) be a (m,n)-cotree of rank m +n — 2.
Let A:==A;U---U A, where Ay, ... A, are the inorder labels of the nodes of L
located in the bottom part i, and let B:= By U ---U B, where By, ..., B, are the
inorder labels shifted by m of the nodes of R located in the bottom part . Then
the facet of the (m,n)-constrainahedron Constr(m,n) corresponding to T is defined
by the inequality

(x| 1aos) > 3 (M) + 30 (P47) + 141 |B).
i € [K] i€ld]
Moreover, this inequality is a facet defining inequality of the permutahedron
Perm(m + n) if and only if k < 1 and ¢ < 1, i.e. if both L and R have at most two
nodes.

PROPOSITION 4.19. — The (m,n)-constrainahedron Constr(m,n) is the Min-
kowski sum of the faces Aj:= conv{e;|i € I} of the standard simplex Ap, n
corresponding to all subsets I C [m + n] such that |[I N [m]| < 1 and [I N[n]™"] < 1,
or I is a subinterval of [m] or of [n]*™.

Example 4.20. — Figure 4.6 illustrates some vertex coordinates of Constr(3,3)
computed by Proposition 4.17 and Figure 4.7 illustrates some facet inequalities of
Constr(3,3) computed by Proposition 4.18. Note that all vertices of Constr(3, 3) have
coordinate sum 21. Note that for any pair (i,7) € {(1,2),(1,3),(2,2),(2,3),(2,4),
(3,2),(3,4),(4,4)}, we have T, smaller than S; in deletion order, so that the vertex
corresponding to T; is contained in the facet corresponding to S;.

4.4. Numerology

We now present enumerative results on the number of vertices, faces and facets
of the (m,n)-constrainahedron Constr(m,n). The first few values of these numbers
are collected in Tables A.10, A.11 and A.12 in Section A.3. We start with vertices.
See Table A.10.
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Tl TQ T3 P]F4

VANIWAN
ALTEETE ATEEEEE AT A AT
(1,5,6,2,5,2) (1,7,4,2,5,2) (1,7,3,2,6,2) (1,7,1,3,6,3)

Figure 4.6. Vertices of Constr(3,3) corresponding to four binary (3, 3)-cotrees.

Sl SQ SS 84
| A A A A
T A ATTAA ATl AL AA A
T3+ T4+ x5 206 T+ x4+ 36 205 T1 4+ x4+ x5 T+ x3 + T4
+x6 = 10 425 + a6 = 14

Figure 4.7. Facet defining inequalities of Constr (3, 3) corresponding to four rank 4
(3, 3)-cotrees.

PROPOSITION 4.21. — The number of vertices of the (m,n)-constrainahedron
Constr(m, n) (equivalently of binary (m,n)-cotrees) is given by

min(m,n)
Eat’an 200 (x) €V (y) + C () CIH () + CIH ) () € (y),
0

where CY (x) is defined for i > 0 by
CO@)=2z and  CP(x)=ClV(C(x)) —Cl V()
Cla) = 1-— \/21 —4x

is the Catalan generating function (see Proposition 1.30).

where

Proof. — According to Propositions 4.3 and 4.12, we need to count the binary
(m, n)-cotrees. We group them according to their type, which can be of the form
(er)t, (r)t, (fr)'€ or (rf)'r. We then need to construct the two binary trees L and R
with compatible partitions of their nodes into i (or ¢ + 1) parts. We construct a
partitioned binary tree with ¢ + 1 parts by

e choosing a binary tree T for the first part (thus the apparition of C),

e grafting at each leaf of T" a partitioned binary tree with ¢ — 1 parts (thus the
substitution of the y variable in Cii)), such that not all leaves of T" are replaced
by an empty binary tree (thus the subtraction of ¢V in the definition

of C\). O
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We now consider the number of facets of the (m, n)-constrainahedron Constr(m,n).

See Table A.11.

PROPOSITION 4.22. — The number of facets of the (m,n)-constrainahedron
Constr(m,n) is
@ -1 -0+ ")+ (1) -1

Proof. — According to Propositions 4.3 and 4.12, the possible types for the (m,n)-
cotrees corresponding to facets of the (m, n)-constrainahedron Constr(m,n) are:

e type {r (resp. type r{): then both L and R have a single node, thus a single
choice,

e type bl (resp. type rb): then L (resp. R) is a non-trivial corolla while R

(resp. L) has a single node, thus (™J') — 1 choices (resp. ("$') — 1 choices),

e type (b (resp. type br): then L (resp. R) is any Schroder tree of height 2

while R (resp. L) has a single node, thus 2™ — 2 choices (resp. 2" — 2 choices),

e type bb: then both L and R are Schroder trees of height 2, thus (2™ —2)(2" —2)

choices. UJ

Finally, adapting the approach of Proposition 4.21, we can count all faces of the
(m, n)-constrainahedron Constr(m,n) according to their dimension.

PROPOSITION 4.23. — Let C'T(m,n,p) denote the number of p-dimensional faces
of the (m,n)-constrainahedron Constr(m,n), or equivalently the number of (m,n)-
cotrees of rank p. Then the generating function

BT (z,y,z):= > CT(m,n,p)a™y" 2*
m,n,p
is given by
BT (2,y,2) = ¥ 84w, 2) S (1. 2)

w

where
e w runs over all words on the alphabet {¢,r,b} with no two consecutive ¢ nor
two consecutive r and such that 1 < |w|, + |w|, < m and 1 < |w|, + |w], < n,
o for a letter s € {{,r}, the generating function S¥(y,z) is defined by
S;(y,z) ==y and
SY(S(y,2),2) =S¥ (y,2) ifw = sw,
SU(y,z) = ¢ SY (1f’yz, z) ~S8Y(y,2) ifw=bw
SY (y, 2) if w=tw" witht ¢ {s, b},

where

14+ yz — /1 — 4y — 2yz + y22?
S(y’ 2) =
2(z+1)
is the Schroder generating function (see Proposition 1.30).

Proof. — According to Propositions 4.3 and 4.12, we need to count the (m,n)-
cotrees of rank p. We group them according to their type, which can be any word w
on the alphabet {¢,r,b} with no two consecutive ¢ nor two consecutive r and such
that 1 < |w|, + |w|p, < m and 1 < |w|, + |w|, < n. We then need to construct the
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two trees L and R with compatible partitions of their nodes. If w = ¢ is the empty
word, then both L and R are empty trees with a single leaf. Otherwise, w = tw’
with ¢t € {¢,r,b}, and we construct L (resp. R) by considering a tree L' (resp. R’)
for w’" and

o if t = ¢ (resp. t = r), grafting at each leaf of L’ (resp. R’) a Schroder tree
(thus the substitution of the y variable in S*" by S(y, 2)), such that not all
leaves of L' (resp. R’) are replaced by an empty trees (thus the subtraction
of S,

o if ¢t = b, grafting at each leaf of L' (resp. R') either an empty tree or a tree
with a single node (thus the substitution of the y variable in S;”/ by %£-),
such that not all leaves of L’ (resp. R') are replaced by an empty tree (tﬁus
the subtraction of S¥'). O

For instance, the f-vectors of all constrainahedra Constr(m,n) with m +n < 5
are displayed in Figures 3.4, 3.5 and 3.6 (all these constrainahedra are multiplihe-

dra since Perm(1) = Asso(1) and Perm(2) = Asso(2)). The f-vector of the (3,3)-
constrainahedron Constr(3, 3) is

f(Constr(3,3)) = (1,606, 1550, 1384, 498, 60, 1).

5. Biassociahedra

In this section, we study the family of (m, n)-biassociahedra, obtained as the shuffle
of an m-anti-associahedron Asso(m) with an n-associahedron Asso(n). The combi-
natorics of the biassociahedron was already studied in [Marl5, MW18, SU11|. We
recall the combinatorial model of bitrees (Section 5.1), describe the face lattice, fan
and oriented skeleton of the (m,n)-biassociahedron in terms of these bitrees (Sec-
tion 5.2), provide explicit vertex and facet descriptions of the (m, n)-biassociahedron
(Section 5.3), and present enumerative results on the number of vertices, faces and
facets of the (m,n)-biassociahedron (Section 5.4).

5.1. Bitrees

We start by recalling the bitrees of [Marl5], illustrated in Figure 5.1. Intuitively, a
bitree is a pair of Schroder trees, the first growing up and the second growing down,
drawn side to side, together with the information of the relative positions of their
nodes. Examples are illustrated in Figure 5.1.

We say that a tree is (growing) up (resp. down) when we see it as a poset oriented
from its root to its leaves (resp. from its leaves to its roots), and we draw it accordingly
so that the orientation goes from bottom to top.

DEFINITION 5.1 ([Marl5]). — A (m,n)-bitree is a triple T:= (U, D, u), where U
is an up Schroder m-tree, D is a down Schroder n-tree, and v is an ordered partition
of the nodes of U and D such that

e the part of p containing a node n of U (resp. D) distinct from the root is
before (resp. after) or equal to the part of p containing the parent of n,
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e 1o two consecutive parts of i are both contained in U or both contained in D,
e there is no oriented path in U (resp. in D) joining two nodes in a part of u
which meets both U and D.

We say that a part of y is of type u, d or b when it contains nodes from U, D or both
U and D, and we call type of the bitree the word given by the sequence of types of
the parts of u. We denote by B, ,, the set of (m,n)-bitrees.

To represent a (m,n)-bitree T:= (U, D, ), we draw the two trees U and D side
by side in opposite directions (U grows up while D grows down), and we mark the
separations between the parts of p by (red) horizontal lines. Note that u is read
from bottom to top. Examples are illustrated in Figure 5.1.

| | | | Y | Y | 'Y |
A\ \Y4 |

[
| AN | VAN BVAN

Figure 5.1. A (10, 7)-bitree of type dubudbu (left), a binary (8,6)-bitree of type
dududu (right).

We now define the bitree deletion poset. Definition 5.2 provides a direct description
in terms of bitrees, while Definition 5.5 provides an alternative simpler but indirect
description in terms of preposets. To illustrate the following definition, Figure 5.2
represents a sequence of deletions in (6, 5)-bitrees.

DEFINITION 5.2. — Let T:= (U, D, u) and T":= (U’, D', ii') be two (m, n)-bitrees.
We say that T’ is obtained by a deletion in T in either of the following three cases:
(i) Node deletion: U’ (resp. D') is obtained by deleting a node n with parent
p in U (resp. D) in the following situations:
(a) n and p belong to the same part of u, then ' is obtained by deleting n
from p,
(b) the part of n is of type u (resp. d), the part of p is of type b, and the parts
of n and p are consecutive, then p’ is obtained by deleting n from p,
(c) the part of n is of type b, the part of p is of type u (resp. d), and the
parts of n and p are consecutive, then ' is obtained from p by moving
p to the part of n and deleting n.
(ii)) Nodes move: U' = U, D' = D, and p' is obtained from v by
(a) either creating, in between two consecutive parts ju; of type u (resp. d)
and p; 11 of type d (resp. u), a new part containing a node of p; whose
children (resp. parent) are not in u; and a node of ;11 whose children
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(resp. parent) are not in p;.; (and removing these nodes from their
original parts in p),
(b) or moving a node n of U from its part u; to the previous (or next) part fi;+1
in p, provided that the part p; is of type u, that the part ;4 is of type
b, and that the parent (or children) of n does not belong to p; U pi;+1
(and same for D exchanging u/d, previous/next and parent/children),
(iii) Twin parts merge: 1 is obtained by merging two consecutive parts of
of type b, and U’ (resp. D') is obtained by deleting any node n in U (resp. D)
such that both n and its parent belong to these parts.

PROPOSITION 5.3. — For all integers m,n > 0, the set B%,,, is stable by
deletion, and the deletion graph is the Hasse diagram of a poset ranked by

tk(U, D, p) = m+n — U] = |D| + B(u),

where () is the sum of |u;| — 1 over all parts u; of p with p; "U # & # p; N D.
In particular a (m,n)-bitree T:= (U, D, u) has

Y | Y|

T (i)
M Wy
| o AN AN
VOV Y | NERRR
[ )
Y Y |
{ g
| M
| o)
VvV VYV | [ e
VvV VYV |
ANA ANCAN
LT (1T

Figure 5.2. Deletions in (6, 5)-bitrees.
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e rank 0 if and only if both U and D are binary trees, and no part of y meets
both U and D,

e rank m+n — 2 if and only if p has two parts, and each part of u either meets
both U and D or contains a single node,

e rank m +n — 1 if and only if ;1 has a single part (hence, both U and D have
a single node).

Proof. — Consider a deletion transforming T:=(U,D,u) to T':= (L', R ).
Then T is clearly a (m,n)-bitree since U’ and D’ are still Schroder trees, and
the partition p’ fulfills the conditions of Definition 5.1. For the rank, we distinguish
three cases corresponding to that of Definition 5.2:

(i) Node deletion: |U’'| + |D'| = |U| + |D| — 1 while 8(y') = B(¢).
(i) Nodes move: |U’'| = |U|, |D'| = |D|, while g(¢') = () + 1.
(iii) Twin parts merge: if ¢ denotes the number of nodes n of U and D such
that both n and its parent belong to the merged parts of u, then |U’| + |D’| =
U]+ |D| - and B(') = Bu) — 6+ 1.
In all three situations, we get rk(T’) = rk(T) + 1. The end of the statement immedi-
ately follows. 0

DEFINITION 5.4. — The (m,n)-bitree deletion poset is the poset on BE,, ,, where
a (m,n)-bitree is covered by all (m,n)-bitrees that can be obtained by a deletion.

The (m,n)-bitree deletion poset can alternatively be defined using preposets.

DEFINITION 5.5. — A (m,n)-bitree T:= (U, D, u) defines a preposet <t on [m+n]
that can be read as follows. Label U by [m] in inorder and D by [n]™™ in inorder
(shifted by m). Then, for any i, j € [m+n], we have i <t j if the part of u containing i
is before the part of i containing j, or if there is a (possibly empty) path from the
node containing i to the node containing j in the tree U oriented towards its leaves
or in the tree D oriented towards its root.

PROPOSITION 5.6. — The preposets <t for T € *BY,,,, are precisely the pre-
posets < on [m + n] in which any 1 < i < k < m + n are comparable (i.e. i < k
or i »= k or both) if and only if

e cither i < m < k,
e or m < i (resp. k < m) and at least one of the following holds:
— there exists no i < j < k such that i < j =k (resp. i > j < k),
— there exists j € [m] (resp. j € [n]t") such that i < j < kori = j = k.

Proof. — Any preposet <t clearly satisfies these conditions. Conversely, given a
preposet < on [m + n| satisfying these conditions, consider
e the preposet <, on [m] defined by ¢ <, k if and only if i < k and there is
no ¢ < j < k such that ¢« > 5 < k,
e the preposet <4 on [n]| defined by i <4 k if and only if i + m < k + m and
there isno ¢ < j < k such that i + m < j+m > k + m.
The preposet <, (resp. <) is clearly the preposet <y (resp. <p) of an up Schroder
m-tree U (resp. a down Schroder n-tree D). We then obtain the partition p by
considering the relations i < k£ with ¢ < m < k. Details are left to the reader. ]
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v | v | VY
A o, L /o, oA
N U

Figure 5.3. Right rotations in binary (3, 2)-bitrees.

—

PROPOSITION 5.7. — In the bitree deletion poset, T is smaller than T’ if and
only if <Xt refines <.

Proof. — An immediate case analysis shows that deletions in a bitree T defined
in Definition 5.2 precisely translate all possible refinements in the corresponding
preposet <. [

Finally, we define the rotations in bitrees, which correspond to rank 1 bitrees. To
illustrate the following definition, Figure 5.3 represents a sequence of right rotations
in binary (3, 2)-bitrees.

DEFINITION 5.8. — We call binary (m,n)-bitrees the rank 0 (m,n)-bitrees, i.e.
where both U and D are binary trees, and no part of u meets both U and D. We
say that two binary (m,n)-bitrees T:= (U, D, ) and T":= (U’, D', ii') are connected
by a right rotation if:

(i) Edge rotation: U’ (resp. D') is obtained from U (resp. D) by the right
rotation of an edge whose endpoints belong to the same part of p,

(i) Twin parts: U' = U, D' = D, and 1/ is obtained from p by creating, in
between two consecutive parts p; of type uw and p;4q of type d, first a new
part containing a node of ;11 whose children are not in p;.1, and second a
new part containing a node of y; whose children are not in yu; (and removing
these nodes from their original parts in u, and merging consecutive parts of
the same type u or d if any).

Remark 5.9. — The algebraic interpretation of the binary (m,n)-bitrees involves
both a magmatic product * and a magmatic coproduct A on a set X. The nodes in the
left part of a bitree are associated with the coproduct A, while the nodes in the right
part are associated with the product *. One starts at the bottom with a 1 x (n + 1)-
matrix of elements of X (with 1 column and n + 1 rows). Intermediate steps will go
through rectangular p x g-matrices of elements of X with increasing 1 <p<m+1
and decreasing 1 < ¢ < n+1, until one reaches a (m+1) x 1-matrix of elements of X
at the top. Going up through a node in the left part of the bitree means applying A
to each element in a column of the matrix, replacing this column by two columns
and increasing p by 1. Similarly, going up through a node in the right part of the
bitree means applying * to corresponding elements in two consecutive rows of the
matrix, replacing these two rows by a single row and decreasing ¢ by 1. In short,
a left node stands for A duplicating a column, and a right node for * merging two
consecutive rows.
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5.2. Anti-associahedra x Associahedra

We now consider shuffles of anti-associahedra with associahedra. We call anti-
associahedron the polytope Asso(n):=(n + 1)1 — Asso(n). It has the same combi-
natorics (but a different embedding) as the associahedron Asso(n).

DEFINITION 5.10. — The (m, n)-biassociahedron is the polytope
Bias(m,n) = Asso(m) x Asso(n).

Note that since Perm(1) = Asso(1) and Perm(2) = Asso(2), the first (m,n)-
biassociahedron which is neither an associahedron, nor a (m,n)-multiplihedron, is
the (3, 3)-biassociahedron Bias(3,3), which is a 5-dimensional polytope. There is
thus no reasonable example to be drawn in this section.

PROPOSITION 5.11. — The face lattice of the (m,n)-biassociahedron Bias(m,n)
is isomorphic to the (m,n)-bitree deletion poset (augmented with a minimal element).

Proof. — This follows from Proposition 2.5 (see also Remark 2.7), since (m,n)-
bitrees are just a specialization of bipreposets. O

Remark 5.12. — 1In contrast to the associahedron Asso(n), the biassociahedron
Bias(m, n) is simple if and only if m = 0, or n = 0, or max(m,n) < 2.

PROPOSITION 5.13. — The normal fan of the (m,n)-biassociahedron Bias(m,n)
is the fan containing one cone C(T):={x € R™""|xz; < xz; ifi <r j} for each
T € B%,, ..

Proof. — Immediate from Proposition 5.11 and Definition 5.5. U
PROPOSITION 5.14. — When oriented in the direction
w=mn, ..., 1)=1,...,n)= > (n+1-2)e,,
i€ [n]

the graph of the (m, n)-biassociahedron Bias(m,n) is isomorphic to the right rotation
graph on binary (m,n)-bitrees.

Proof. — Tt follows from Proposition 5.11 that the vertices of Bias(m,n) corre-
spond to the binary (m,n)-bitrees. It is easy to check that the edges of Bias(m,n)
oriented by w correspond to right rotations on binary (m,n)-bitrees. ([l

Remark 5.15. — 1In contrast to Proposition 3.16, note that the right rotation
graph on binary (m,n)-bitrees is not the Hasse diagram of a lattice when m > 3
and n > 3. See Figure 5.4 for examples of a pair of binary (3, 3)-bitrees with no join
and a pair of binary (3, 3)-bitrees with no meet.

5.3. Vertex and facet descriptions
Our next two statements, illustrated in Figures 5.5 and 5.6, provide the vertex

and facet descriptions of the (m,n)-biassociahedron Bias(m,n). The proofs are
elementary computations from Definitions 1.20, 1.31 and 5.10.
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Figure 5.4. Rotations on all (3, 3)-bitrees larger than Sy or Sy and smaller than T,
or Ty. This shows that S; and S, have no join, and T, and Ty have no meet, so
that the rotation graph on binary (3, 3)-bitrees does not define a lattice.

PROPOSITION 5.16. — For any i € [m+ n, the i*"coordinate of the vertex of the
(m, n)-biassociahedron Bias(m,n) corresponding to a binary (m,n)-bitree (U, D, )
is given by

e if i < m, then m + 1 minus the product of the numbers of leaves in the left
and right subtrees of n, plus the number of nodes of D below n, where n is
the node of U labeled by @ in inorder.

e ifi > m+1, the product of the numbers of leaves in the left and right subtrees
of n, plus the number of nodes of U below n, where n is the node of D labeled
by ¢+ — m in inorder.

In particular, the sum of the coordinates is always (™) + ("§') +mn = (m3+).
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Tl Tg T3 P:|F4
V
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1T |11
(6,2,1,3,6,3) (6,0,3,3,6,3) (6,0,5,2,6,2) (6,0,6,2,5,2)

Figure 5.5. Vertices of Bias(3,3) corresponding to four binary (3, 3)-bitrees.

PROPOSITION 5.17. — Let T:= (U, D, 1) be a (m,n)-bitree of rank m +n — 2.
Let A:==A;U---U A, where Ay,... A are the inorder labels of the nodes of U
located in the top part s, and let B:=ByU---U B, where By,..., B, are the
inorder labels shifted by m of the nodes of D located in the bottom part . Then
the facet of the (m,n)-biassociahedron Bias(m,n) corresponding to T is defined by
the inequality

(=] Lpaon) > ("37) ~Ml-tms )+ 52 (447) 4 m- a8l 2 (1%)7).

Moreover, this inequality is a facet defining inequality of the permutahedron
Perm(m + n) if and only if k < 1 and ¢ < 1, i.e. if both U and D have at most two
nodes.

Note that, in contrast to Propositions 3.21 and 4.19, we do not provide an expres-
sion of the (m,n)-biassociahedron Bias(m,n) as a signed Minkowski sum of faces
of the standard simplex Ap,;,. Such an expression is possible (since Bias(m,n) is
a deformed permutahedron by Proposition 2.2), but combinatorially less attractive
than that of Mul(m,n) or Constr(m,n) (as it requires to express the faces of the op-
posite standard simplex as signed Minkowski sums of faces of the standard simplex).
See [Lan13] for further discussion.

Example 5.18. — Figure 5.5 illustrates some vertex coordinates of Bias(3,3)
computed by Proposition 5.16 and Figure 5.6 illustrates some facet inequalities
of Bias(3,3) computed by Proposition 5.17. Note that all vertices of Bias(3,3) have
coordinate sum 21. Note that for any pair (7,7) € {(1,2),(1,3),(2,2),(2,3),(2,4),
(3,2),(3,3),(3,4),(4,3), (4,4)}, we have T; smaller than S; in deletion order, so that
the vertex corresponding to T; is contained in the facet corresponding to S;.

5.4. Numerology
We now present enumerative results on the number of vertices, faces and facets
of the (m, n)-biassociahedron Bias(m,n). The first few values of these numbers are

collected in Tables A.10, A.11 and A.13 in Section A.3. We start with vertices.
See Table A.10.
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Sl S2 S3 S4
WA PN \ai ISBEN
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‘|‘l’6>9 +IE5+[E6>15

Figure 5.6. Facet defining inequalities of Bias(3,3) corresponding to four rank 4
(3, 3)-bitrees.

PROPOSITION 5.19. — The number of vertices of the (m,n)-biassociahedron
Bias(m, n) (equivalently of binary (m,n)-bitrees) is given by

min(m,n)

[y Y 20P(@) P (y) + €O (@) €I (y) + €I (2) €O (y),

i=0
where Cii)(x) is defined for i > 0 by
@)=z and  COx) =V (C(x) — €V (),

where
1—+1—4x
2
is the Catalan generating function (see Proposition 1.30).

C(z) =

Proof. — According to Propositions 5.3 and 5.11, we need to count the binary
(m, n)-bitrees. We group them according to their type, which can be of the form
(ud)’, (du)’, (ud)'u or (du)'d. We then need to construct the two binary trees U
and D with compatible partitions of their nodes into ¢ (or i + 1) parts. We construct
a partitioned binary tree with ¢ + 1 parts by

e choosing a binary tree T for the first part (thus the apparition of C),
e grafting at each leaf of T a partitioned binary tree with i — 1 parts (thus the

substitution of the y variable in Cf)), such that not all leaves of T are replaced

by an empty binary tree (thus the subtraction of ¢V in the definition

of ¢!). O

We now consider the number of facets of the (m,n)-biassociahedron Bias(m,n).
See Table A.11.

PROPOSITION 5.20. — The number of facets of the (m,n)-biassociahedron
Bias(m,n) is
@ -1 -1+ (") + (") -1
Proof. — According to Propositions 5.3 and 5.11, the possible types for the

(m, n)-bitrees corresponding to facets of the (m,n)-biassociahedron Bias(m,n) are:

e type ud (resp. type du): then both U and D have a single node, thus a single
choice,

TOME 7 (2024)



1592 F. CHAPOTON & V. PILAUD

e type bu (resp. type db): then U (resp. D) is a non-trivial corolla while D
(resp. U) has a single node, thus (™) — 1 choices (resp. ("§') — 1 choices),
e type ub (resp. type bd): then U (resp. D) is any Schroder tree of height 2
while D (resp. U) has a single node, thus 2™ — 2 choices (resp. 2" — 2 choices),
e type bb: then both U and D are Schroder trees of height 2, thus (2™ —2)(2"—2)
choices. O

Finally, adapting the approach of Proposition 5.19, we can count all faces of the
(m, n)-biassociahedron Bias(m,n) according to their dimension.

PROPOSITION 5.21. — Let BT (m,n,p) denote the number of p-dimensional faces
of the (m, n)-biassociahedron Bias(m, n), or equivalently the number of (m, n)-bitrees
of rank p. Then the generating function

BT (x,y,z):= Z BT (m,n,p)z™y" 2P

m,n,p
is given by
BT (z.y,2) = > S (2, 2) 8§ (y, 2)

w
where

e w runs over all words on the alphabet {u,d,b} with no two consecutive u nor
two consecutive d and such that 1 < |wl|, + |w|, < m and 1 < |w|g+ |w|, < n,
e rev(w) :=wy ... w; denotes the reverse of the word w = wy . .. wy,
o for a letter s € {u,d}, the generating function S*(y,z) is defined by
Si(y, z) =y and
SY(S(y,2),2) =S¥ (y,2) ifw=sw,
’S;U(y?Z) = S:SLUI (1—yyz’z) _S;U’(%Z) if w=bw,

S¥ (y, 2) if w=tw" witht ¢ {s,b},

where

S(y.2) 1+yz— V1 —4y —2yz + y?22
Z) =
4 20+ 1)

is the Schréder generating function (see Proposition 1.30).

Proof. — According to Propositions 5.3 and 5.11, we need to count the (m,n)-
bitrees of rank p. We group them according to their type, which can be any word w
on the alphabet {u,d, b} with no two consecutive u nor two consecutive d and such
that 1 < |w|, + |w]p < m and 1 < |w|g + |w|, < n. We then need to construct the
two trees U and D with compatible partitions of their nodes. If w = ¢ is the empty
word, then both U and D are empty trees with a single leaf. Otherwise, w = tw’
with ¢ € {u,d, b}, and we construct U (resp. D) by considering a tree U’ (resp. D’)
for w" and

o if t = u (resp. t = d), grafting at cach leaf of U’ (resp. D’) a Schroder tree
(thus the substitution of the y variable in S by S(y, z)), such that not all
leaves of U’ (resp. D’) are replaced by an empty trees (thus the subtraction
of 5,
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e if ¢t = b, grafting at each leaf of U’ (resp. D’) either an empty tree or a tree
with a single node (thus the substitution of the y variable in S*' by ),
such that not all leaves of U’ (resp. D’) are replaced by an empty tree (tﬁus
the subtraction of S¥'). O

For instance, the f-vectors of all biassociahedra Bias(m,n) with m +n < 5
are displayed in Figures 3.4, 3.5 and 3.6 (all these biassociahedra are multiplihe-
dra since Perm(1) = Asso(1) and Perm(2) = Asso(2)). The f-vector of the (3,3)-
biassociahedron Bias(3, 3) is

F(Bias(3,3)) = (1,606, 1549, 1382, 497, 60, 1).

Note that it slightly differs from the f-vector of the (3, 3)-constrainahedron
Constr(3,3) which is

F(Constr(3,3)) = (1,606, 1550, 1384, 498, 60, 1),

given in Section 4.4.
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Appendix A. Tables

All references like A0O00142 are entries of the Online Encyclopedia of Integer Se-
quences [OEIS10].

A.1. Zonotopes

Table A.1. Number of vertices of Ziono(K,,) * Zono(P,) = Perm(m) x Para(n).

m\n 0 1 2 3 4 5 6 7 8 9
0 1 2 4 8 16 32 64 128 256 | A000079
1 1 2 6 18 54 162 486 1458 4374 A025192
2 2 6 24 96 384 1536 6144 24576 4002023
3 6 24 120 600 3000 15000 75000 A235702
4 24 120 720 4320 25920 155520 ?
5 120 720 5040 35280 246960
6 720 5040 40320 322560
7 5040 40320 362880
8 40320 362880
9 362880
A000142 A000142 A000142 A001563 A002775 A091363 A091364 ?

Table A.2. Number of facets of Zono(K,,) * Zono(P,) = Perm(m) = Para(n).

m\n 0 1 2 3 4 5 6 7 8 9
0 . 1 2 4 6 8 10 12 14 16 | A000027
1 1 2 6 12 20 30 42 56 72 A002378
2 2 6 14 28 52 94 170 312 A290699
3 6 14 30 60 116 222 426 A308580
4 14 30 62 124 244 478 ?
5 30 62 126 252 500
6 62 126 254 508
7 126 254 510
8 254 510
9 510
A000918 A000918 A000918 A028399 A173034 ?

Table A.3. Number of vertices of Ziono(K,,) * Zono(E,) = Perm(m) x Point(n).

m\n 0 1 2 3 4 5 6 7 8 9
0 . 1 1 1 1 1 1 1 1 1| A000012
1 1 2 4 8 16 32 64 128 256 A000079
2 2 6 18 54 162 486 1458 4374 A008776, A025192
3 6 24 96 384 1536 6144 24576 A002023
4 24 120 600 3000 15000 75000 A235702
5 120 720 4320 25920 155520 ?
6 720 5040 35280 246960
7 5040 40320 322560
8 40320 362880
9 362880

A000142 A000142 A001563 A002775 A091363 A091364 ?
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Table A.4. Number of facets of Zono(K,,) x Zono(E,) = Perm(m) x Point(n).

m\n 0 1 2 3 4 5 6 7 8
0 1 1 1 1 1 1 1 1 A000012
1 1 2 4 6 8 10 12 14 16 A005843
2 2 6 12 22 40 74 140 270 A131520
3 6 14 28 54 104 202 396 ?
4 14 30 60 118 232 458
5 30 62 124 246 488
6 62 126 252 502
7 126 254 508
8 254 510
9 510
A000918 A000918 A028399 A246168 ?

Table A.5. Number of vertices of Zono(E,,) x Zono(E, ) = Point(m) » Point(n).

m\n 0 1 2 3 4 5 6 7
0 1 1 1 1 1 1 1 1 1 | A000012
1 1 2 4 8 16 32 64 128 256 A000079
2 1 4 14 46 146 454 1394 4246 A027649
3 1 8 46 230 1066 4718 20266 A027650
4 1 16 146 1066 6902 41506 A027651
5 1 32 454 4718 41506 A283811
6 1 64 1394 20266 A283812
7 1 128 4246 A283813
8 1 256 A284032
9 1 A284033
A000012 AOO0079 A027649 A027650 A027651 A283811 A283812 A283813 A284032 A284033

Table A.6. Number of facets of Ziono(FE,,) = Zono(FE,) = Point(m) » Point(n).

m\n 0 1 2 3 4 5 6 7 8 9
0 . 1 1 1 1 1 1 1 1 1 | A000012
1 1 2 4 6 8 10 12 14 16 A005843
2 2 4 12 22 40 74 140 270 A131520
3 4 6 22 48 98 196 390 ?
4 6 8 40 98 212 438
5 8 10 74 196 438
6 10 12 140 390
7 12 14 270
8 14 16
9 16
A005843 A005843 A131520 ?

TOME 7 (2024)



http://oeis.org/A000012
http://oeis.org/A005843
http://oeis.org/A131520
http://oeis.org/A000918
http://oeis.org/A000918
http://oeis.org/A028399
http://oeis.org/A246168
http://oeis.org/A000012
http://oeis.org/A000079
http://oeis.org/A027649
http://oeis.org/A027650
http://oeis.org/A027651
http://oeis.org/A283811
http://oeis.org/A283812
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A.2. Multiplihedra

Table A.7. Number of vertices of the multiplihedra Mul(m,n):=Perm(m) x
Asso(n). See A158825.

m\n 0 1 2 3 4 5 6 7 8 9
0 1 2 5 14 42 132 429 1430 4862 | A000108
1 1 2 6 21 80 322 1348 5814 25674 A121988
2 2 6 24 108 520 2620 13648 72956 2 -A158826
3 6 24 120 660 3840 23220 144504 ?
4 24 120 720 4680 31920 225120
5 120 720 5040 37800 295680
6 720 5040 40320 342720
7 5040 40320 362880
8 40320 362880
9 362880
A000142 A000142 A000142 A084253 ? m! - A158825

Table A.8. Number of facets of the multiplihedra Mul(m, n) :=Perm(m) x Asso(n).

m\n 0 1 2 3 4 5 6 7 8 9
0 . 1 2 5 9 14 20 27 35 44 | A000096
1 1 2 6 13 25 46 84 155 291 A335439
2 2 6 14 29 57 110 212 411 ?
3 6 14 30 61 121 238 468
4 14 30 62 125 249 494
5 30 62 126 253 505
6 62 126 254 509
7 126 254 510
8 254 510
9 510
A000918 A000918 A000918 A036563 A048490 ?

Table A.9. Total number of faces of the multiplihedra Mul(m,n) :=Perm(m) x
Asso(n). The empty face is not counted, but the polytope itself is.

m\n 0 1 2 3 4 5 6 7 8 9
0 . 1 3 11 45 197 903 4279 20793 103049 | A001003
1 1 3 13 67 381 2311 14681 96583 653049 ?
2 3 13 75 497 3583 27393 218871 1810373
3 13 75 541 4375 38073 349423 3341753
4 75 541 4683 44681 454855 4859697
5 541 4683 47293 519847 6055401
6 4683 47293 545835 6790697
7 47293 545835 7087261
8 545835 7087261
9 | 7087261
A000670 A000670 A000670 ?
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Table A.10. Number of vertices of the constrainahedra Constr(m,n) := Asso(m)x
Asso(n) and of the biassociahedra Bias(m,n):= Asso(m) x Asso(n).

m\n 0 1 2 3 4 5 6 7 8 9
0 . 1 2 5 14 42 132 429 1430 4862 | A000108
1 1 2 6 21 80 322 1348 5814 25674 A121988
2 2 6 24 108 520 2620 13648 72956 2-A158826
3 5 21 108 606 3580 21910 137680 ?
4 14 80 520 3580 25520 186420
5 42 322 2620 21910 186420
6 132 1348 13648 137680
7 429 5814 72956
8 1430 25674
9 4862
A000108 A121988 2-A158826 ?

Table A.11. Number of facets of the constrainahedra Constr(m,n):= Asso(m) x
Asso(n) and of the biassociahedra Bias(m,n):= Asso(m) x Asso(n).

m\n 0 1 2 3 4 5 6 7 8 9
0 A 0 2 5 9 14 20 27 35 44| 4000096
1 0 2 6 13 25 46 84 155 291 4335439
2 2 6 14 29 57 110 212 411 ?
3 5 13 29 60 120 237 467
4 9 25 57 120 244 489
5 14 46 110 237 489
6 20 84 212 467
7 27 155 411
8 35 291
9 44
A000096 A335439 ?
Table A.12. Total  number of  faces of  the constrainahedra

Constr(m, n) := Asso(m) = Asso(n). The empty face is not counted, but the
polytope itself is.

m\n 0 1 2 3 4 5 6 7 8 9
0 . 1 3 11 45 197 903 4279 20793 103049 | A001003
1 1 3 13 67 381 2311 14681 96583 653049 ?
2 3 13 75 497 3583 27393 218871 1810373
3 11 67 497 4099 36205 336107 3243085
4 45 381 3583 36205 384819 4251605
5 197 2311 27393 336107 4251605
6 903 14681 218871 3243085
7 4279 96583 1810373
8 20793 653049
9 103049
A001003 ?
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Table A.13. Total number of faces of the biassociahedra Bias(m,n):= Asso(m)x
Asso(n). The empty face is not counted, but the polytope itself is.

3
=
3

0 1 2 3 4 5 6 7 8 9

© 00O Uik WNH-O

11 67 497 4095 36137 335287 3234433
45 381 3583 36137 383375 4229985
197 2311 27393 335287 4229985
903 14681 218871 3234433
4279 96583 1810373
20793 653049
103049

. 1 3 11 45 197 903 4279 20793 103049 | A001003
1 3 13 67 381 2311 14681 96583 653049 ?
3 13 75 497 3583 27393 218871 1810373

[AA23]

[ABD10]
[AD13]
[AK99a]
[AK99b)]
[BBM19]
[BH15]
[BH17]

[BM21]

[Bot19]
[BP22]

[BWOI1]

A001003 ?
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