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variables. The delicate point and most of the work thus consists in proving Carleman estimates
in the strip with a linear weight function for a second-order operator with coefficients depending
linearly on the normal variable. This is done by constructing an explicit parametrix for the
conjugated operator, which is estimated through the use of Stein—Tomas restriction theorems.
As an application, we deduce quantified versions of the unique continuation property for
solutions of Au = Vu + Wy - Vu + div(Wau) in terms of the norms of V' in L% (), of W; in
L1 (Q) and of Wy in L92(Q) for g € (g, oo] and g1 and go satisfying either ¢1, go > %—72 and
L+ <4(1-3)/(Bd—2), 0r q1, g2 > 4.

RESUME. — L’objectif de ce travail est de démontrer des estimations de Carleman LP
globales pour I'opérateur Laplacien en dimension d > 3. Notre stratégie repose sur des esti-
mations de Carleman sur des bandes puis un recollement approprié des estimations locales
et au bord obtenues grace a un changement de variables. L’essentiel du travail consiste a
prouver des estimations de Carleman dans la bande avec une fonction poids linéaire pour un
opérateur du second ordre a coefficients dépendant linéairement de la variable normale. Cela
est réalisé par la construction d’une paramétrice explicite pour 'opérateur conjugué, qui est
estimée grace a l'utilisation des théoremes de restriction de Stein—Tomas. En application, nous
déduisons des versions quantifiées de la propriété de prolongement unique pour les solutions
de Au = Vu+ Wy - Vu + div(Wau) en termes des normes de V' dans L%(Q2), de W; dans
L1 (Q) et de Wy dans L%(Q2) pour gy € (%, o0] et g1 et go satisfaisant soit ¢1, g2 > ?’dT_2 et

s <4 - 3)/(3d = 2), soit g1, g2 > .

1. Introduction
Main result

The goal of this article is to prove global LP Carleman estimates for the flat Laplace
operator in a smooth bounded domain of R? (d > 3) for a general weight function
satisfying the sub-ellipticity conditions of Hormander. As an application, we will
show how these can be used to obtain quantitative unique continuation results for
solutions of elliptic equation with respect to the norms of the potentials.

To be more precise, our main result is the following one:

THEOREM 1.1. — Let d > 3. Let Q C R? be a bounded domain of class C3, and
w be a non-empty open subset of Q withw C Q. Let ¢ € C3(2) be such that

(1.1) Ve d, p(x) =0 and 0,p(x) < 0,
and there exists «, 8 > 0 for which
(1.2) inf |Vo| > «,
Q\w
and

(13) VezeQ\w, VEER? with |Vo(x)|=[¢| and Ve(z)-£& =0,

(Hess o(2))Vip(x) - Vip(x) + (Hess p(x))€ - € > BV ()],
where Hess ¢ denotes the Hessian matrix of ¢. Let wy be an open subset of {2 so
that W C wy and wy; C €2, and n be a smooth radial non-negative cut-off function
(in €>°(R?)) vanishing outside the ball of radius 1 and equal to one in the ball of

radius %
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Then there exist C' > 0 and 79 > 1 (depending only on «, 3, |[¢||cs@). n and the
geometric configuration ), w, and wy ) such that for all u € H*(2) solution of

14 {—Au = fot fo +divF  inQ,
u=gq on 02,
with
fo € L2(Q), fo € L#3(Q), FeLXCY, and g€ H2(0Q),

we have, for all T > 1,

2d
2 (0

3. 4 1. ; ERIE I
(1.5) 72 [[eull 2 (q) + 72 |7 Vul 2y < C (He “fallpa) + 72 [[€77 fa

d
”7

+7 17 F | 2y + 751913 ey + 72 €770l 2y + 77 l€™Pul]

)
H2(8Q L'r?,7'2 (wl)>
and

2d

3 1
(1.6) rita IIeWUH (Q) <C <||eT“’f2||L2(Q) + it e f, 17 )

7]7’

+7 1€ Fll 2y + 74200l g o + 72 €Ul 2y + 7320 l7ul| ) '
L#T (w1)

H2 (092)

Here, the norms | - ||1r () are defined for p € [1,00] for f € LP(S2) by the formula

(1.7) 17130 =75 [ (3¢ =20)) £0)

Remark 1.2. — The notations 2, and 2! stem from the Sobolev s embedding
HY(Q) C L*(), with 2, = 2% and L*(Q) ¢ H (), with 2, = 2%

2

Lr(9) dxo.

2°

Before going further, let us remark that the existence of a function satisfying the
conditions (1.1)—(1.2)—(1.3) for any arbitrary geometric setting is due to Fursikov
and Imanuvilov [F196, Lemma 1.1] (see also [LRLR22, Proposition 3.31]). The con-
ditions (1.2)—(1.3) are the sub-ellipticity conditions of the weight function ¢ with
respect to the Laplace operator, which are known to be necessary and sufficient
conditions to get a local L? Carleman estimate (i.e. (1.5) for compactly supported
functions u, and with fy = 0) for the Laplace operator with the same powers of
the Carleman parameter 7, see [Hor94, Chapter XXVIII] and, for instance [LRLR22,
Definition 3.2, Section 3.6 and Section 4.1.2] for a more recent perspective.

The Carleman estimate (1.5) coincides with the one in [IP03] except for the terms
involving the norm

Ld+2 (92).
This term and the estimate (1.6) on

2d

win Lj7 ()
are the main novelties of our result and allow us to quantify efficiently unique
continuation properties for solutions of elliptic equations with respect to the norms
of potentials in LP().
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1606 B. DEHMAN, S. ERVEDOZA & L. THABOUTI

Note that estimate (1.5) implies an estimate on 72 |le™?ul| g1 () from the right hand
side of (1.5), thus on T%HewuHL%(m. Therefore, estimate (1.5) does not allow to

recover estimate (1.6) directly from classical Sobolev’s embeddings.

Local L? Carleman estimates (i.e Carleman estimates for compactly supported
functions) have been derived in many situations, but usually to focus on questions
related to unique continuation. We should in particular quote the breakthrough
article [JK85] obtained for a radial weight log(|z|), which rather corresponds to a
limiting Carleman weight in the sense that the second condition (1.3) is satisfied with
f = 0 (see also the previous results [ABG81, H6r83]). Later, several works have been
devoted to get local Carleman estimates with some specific strictly convex weights,
see e.g. [BKRSS88, Sog89, Sog90], which have later been revisited and improved in
the works [KT01, DSF05]. We also point out the more recent works [Dav20, DZ19]
for local Carleman estimates with some specific strictly convex weight. Here, we
emphasize that we will consider general weight functions satisfying the sub-ellipticity
conditions (1.2)—(1.3), similarly as in [DSFO05], which considers the more general
case of second order real principal type operators of order 2. In fact, in our context,
the article [DSF05] proves that, for all 2y € RY, if ¢ is subelliptic at z (that is
|IVp(zo)| # 0 and condition (1.3) at z = x¢), there exists a neighborhood K of

xo such that the local Carleman estimate ||ewu||L% < C’||ewAu||Ld% holds for

all u compactly supported in K. The estimates (1.5)—(1.6) thus extend the result
in [DSF05] by providing a global Carleman estimate, allowing source terms in H ()
and boundary conditions in H2(99), and estimating v in the H'(€2)-norm as well.

Finally, let us also emphasize that Theorem 1.1 presents global LP Carleman
estimates, in the sense that the Carleman estimates (1.5)—(1.6) hold for functions u
having possibly non-zero trace on the boundary. To our knowledge, this is new, as
all the LP Carleman estimates with p # 2 that we have encountered in the literature
hold for compactly supported functions.

Properties of the L7 () norms

To understand the norms L? (2), let us first remark that for p = 2, and f €
LEW(Q), by Fubini’s theorem, we have, for 7 large enough,

HfH%EM(Q) < nllZz@a 1 f 720,

1 2

19135 o > 151 (int 78 [ o (r@ = a0))[| do) > el e
Here, ¢, > 0 is independent of 7 > 7 if 7y is chosen so that 75 > ¢, 3 where 5 > 0
is such that for all € € (0,¢0] and x € Q, there exists a ball of radius /8 contained
in B(xz,e/2)NQ (it is not difficult to check that such an € > 0 exists by compactness
and smoothness of the boundary 99). The norms L2 () are thus equivalent to the
usual L?(2) norm uniformly with respect to the parameter 7.

For other values of p € [1,00), these norms are less easy to describe, as they
SOI?ehovv encode some mean information on the LP-norms localized in balls of radius

773, as one can see by writing them under the form
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d
1fllez @) =T°

[ (75 (@ = 20)) f(2)

Le@llzz (o

In fact, for p € (1,00), again by Fubini’s theorem, there exists C' > 0, such that
for 7 > 19 and f € LP(Q2),

(18) CA;@@gg (73 = 20)) @) dw o < 1 f1l0q0)
<crd /ace QJageq ‘77 <T%(x B xo)) f(m)‘p dx dxo,

i.e. the L? norm || f||zr(q) is equivalent to the norm

d 1
| (78 @ = 20)) £@) | 1y o
z0
This implies in particular that, for p > 2,
d
19) Wz =74 [ (75 = 20)) £y, o
4 1 (z-3)8
<Crt|n(ri e = 20) S0y [, o <CT M Niri
z

On the other hand, for p > 2, by Minkowski’s integral inequality ([Ste70], page 271),
we have, for C independent of 7 > 79,

L10) [l = ([ 11 i)’
< C(/xeg(fé/meg]n(ﬁ(x—mo)) @) dmo) dm)p

< Cré (/xoeﬂ (/xEQ )77 (T%(I—l’o)) fla )‘ dI) d%); = C||f||Lg,T(Q).

Similarly, for p < 2, we get, using Minkowski’s integral inequality and the norm
equivalence (1.8), that there exists a constant C' independent of 7 > 79, such that

1

1_1yd
(1.11) T gy < Sl < C 1oy

Note that, of course, the estimates (1.9), (1.10), and (1.11) can be used to simplify
the norms L” in the Carleman estimates (1.5) and (1.6) and replace them by the
classical L? norms

Finally, let us point out that, for p, ¢, r in [1, o] such that %—I—é = %, for Ve L)

and u € LP(2), we have the following Hélder type estimate

L%AQ)SZHuHLﬁ S%P {HVW\ ( (oxé))} <\“4h£J«nHVﬂL%Q)

[S4S]

(1.12)  ||Vu
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1608 B. DEHMAN, S. ERVEDOZA & L. THABOUTI

Application to the quantification of unique continuation with respect to
lower order terms

Next, as a consequence of the Carleman estimates in Theorem 1.1, we will prove
(in Section 8) the following result:

THEOREM 1.3. — Let d > 3, Q C R? be a bounded domain of class C®, and
w be a non-empty open subset of ) with @ C (). Then there exists a constant
C = C(Q,w) > 0 depending only on Q and w such that for any solution u € H} ()
of

Au=Vu+ Wy - Vu+div(Weu) in Q,
with
VeLrQ), WielL(CY), WyelL®(q;CY),
we have:

(1) Ifqo € (%700]7 G € (%700] and G2 € (#700] and

1 1 1-1
—+— <4 i,
G Qo <3d—2>

the function u satisfies

(1.13) ”UHL2(Q)

(a1.02)
< Cec(Hvuz%%f?m+||wl||i‘§f§m+uwz||i<5§3m+(nw1Hm(Q)H%um(m)" ) Jull, 2,
with
1 2
3(,_d) 1 itg>d, °) | 3d-2
2\ T 2g) T g 2
v(q)=
! if q € d d ( ) !
i = = :
4 2d q d \4 2d/\q1 @
(2) If go € (4,00], 1 € (3, 00] and g5 € (22, 00], the function u satisfies
o (IVIRse) +iwa 15 w5
118l < 6 il
with
5(0) — 2
(q) = 17%
2q
Remark 1.4. — Note that the conditions in item 1 and in item 2 do not overlap,

in the sense that there are cases in which the conditions in item 2 are satisfied while

conditions in item 1 are not (for instance ¢, = g = 3¢ + ¢ with € > 0 small), and
3d—2

reciprocally (for instance q; = *5= 4 € with € > 0 small and ¢, = 00).
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Several remarks are in order.

First, unique continuation is known to hold for general V € L%(Q), W; €
L (Q;CY), and W, € L2(Q;CY) for qo > %, ¢ = d and ¢ > d, see [Wol93],
and [KTO1] where even strong unique continuation is proved in that case when
qo > %, ¢1 > d and g2 > d. (These classes of integrability for the potentials are sharp,
see [KT02].)

These unique continuation results require the use of a Carleman estimate and
a delicate argument from harmonic analysis inspired by [Wol92], see also [KTO01].
In this argument, the weight function in the Carleman estimate depends on the
solution, making the quantification of unique continuation with respect to the norms
of the potentials difficult to track. Another related result is the article [MV12],
which quantifies unique continuation properties for the Laplacian operator with
lower order terms in the sharp integrability class, but not with respect to the norms
of the potentials. In fact, since this work is based on [KT01], as said above, it is not
clear how the proof in [MV12] can be made quantitative with respect to the norms
of the potentials.

Therefore, when trying to quantify the unique continuation property with respect
to the norms of the lower order terms, the known results rely only on the use of
a Carleman estimate, which, as pointed out in [BKRS88], does not allow to go

beyond W, € L*% (). This corresponds to what is done in [DZ19, Dav20] using
LP Carleman estimate. But the results in [DZ19] describing the maximal order of
vanishing of solutions of elliptic equations require V' and W respectively in L% (£2)
with go > d(3d — 2)/(5d — 2) and in L9 () with ¢; > 342 and W5 = 0. Also note
that [Dav20, Theorem 1|, which applies when W; = W, = 0, exhibits the same
dependence in the L%(€2) norm of V' as in Theorem 1.3.

Let us also mention that taking L? Carleman estimates, one cannot reach the same
integrability class as in our case, see for instance [DZZ08].

Finally, note that using a quantitative Caccioppoli inequality with singular lower
order terms, see for instance [DZ19, Lemma 5|, and Sobolev embedding, one can

show that the inequalities (1.13) and (1.14) remain true by replacing ||u||L%( : by
||| 2w, for w1 an open subset satisfying @ C w; (Since w is any arbitrary non-empty

open set in Theorem 1.3, this is of course a harmless condition).

Let us also note that one can be slightly more precise in Theorem 1.3, in (1.13)
and (1.14), by using the intermediate bound in (1.12) instead of the extremal one
in the proof of Theorem 1.3.

Strategy of the proof of Theorem 1.1

In order to prove Theorem 1.1, we start with the easy geometric case of a vertical
strip, with a linear weight function x +— x1, and a second order operator of the form
A — x4 2?22 )\jf)f, see Section 2 for the statements.

Although this might seem at first to be a very specific case, we will check in
Section 7 that this is not the case, due to the two following facts. First, if we localize
the functions in a ball of radius sufficiently small, one can do a change of variables

TOME 7 (2024)



1610 B. DEHMAN, S. ERVEDOZA & L. THABOUTI

(in the spirit of the normal geodesic coordinates), such that the conjugated operator
e™?A (e~ 7%-) can be recast into the problem in the strip with an operator of the form
A — 1y 25-122 )\jﬁf and the linear weight function z — z;. Second, one can glue the
local and boundary Carleman estimates obtained that way, and the localization terms
introduced by the cut-off can be absorbed through that process if the localization is
not too strong. Therefore, we have to balance the two processes, and to choose the
localization rate appropriately. It turns out that a localization in balls of size T3
works.

Accordingly, most of the article in fact focuses on the proof of a Carleman estimate
in the strip for an operator of the form A — x; 2?22 )\j@f with linear weight x +— x;.
We do that in several steps.

First, due to the specific geometric setting, one can perform a Fourier transform in
the tangential variables (which are transverse to the gradient of the weight function,
i.e. to the direction e;), and construct explicitly a parametrix, see Section 3. In fact,
this approach is inspired by [KTO01, Sog89] and by recent works on Carleman esti-
mates for Laplace operator with discontinuous conductivities, for instance [LRL13].

Once this is done, it is clear that we will have to get estimates on the operators
appearing in the parametrix. Dealing with the Hilbertian norms can be done using
classical multiplier type arguments and Parseval’s identity, see Section 4.

It thus remains to understand how to get estimates on the operators appearing

in the parametrix in & (L%(Q), LC%(Q)) for instance, and other operator norms
involving non-Hilbertian spaces. In order to do this, we will rely on the Fourier
restriction Stein—Tomas theorem, recalled in Theorem 5.1, see e.g. [Tom75], [Ste93,
Theorem 2, p. 352], or [Sogl7, Corollary 2.2.2]. Similarly, as in [BKRS88, KRS87],
this approach will allow us to give an efficient manner to estimate the norm in
X(L%(Rdfl), L%(Rdfl)) (among others) of operators given in Fourier, see Sec-
tion 5.2.

Using these results, and the explicit formula obtained for the parametrix, we
manage to get LP Carleman estimates in the strip for an operator of the form
A—x E?:z A;07 with linear weight z — ;.

Let us finally emphasize that we made the choice of presenting the proofs in a
(hopefully) pedagogical manner, and thus of giving all the technical details required
to get through the whole proofs. Therefore, some parts, for instance regarding the
Hilbertian estimates or the Fourier restriction theorems, might seem merely classical,
but we made the choice to present them nevertheless since we did not find them in
the literature in the precise version we needed.

Outline

The rest of the paper is as follows. Section 2 is devoted to state Carleman estimates
(namely Theorems 2.1 and 2.4) in the specific case of a vertical strip, with a linear
weight function z — x1, and for an operator of the form A — x; 2?22 )\j@?. Section 3
gives a parametrix of the conjugated operator e™ (A — x; 2?22 A;07)(e"™ +). Sec-
tion 4 explains how to get Hilbertian estimates on the parametrix. Section 5 then
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recalls Fourier restriction theorems and explains how they can be used in our context
to estimate & (Ld%(Rd_l), L%(Rd_l)) norms (among others) of operators given
in Fourier. We then derive all the estimates needed on the operators appearing in
the parametrix in Section 6 and conclude the proof of Theorems 2.1 and 2.4. In
Section 7, we explain how to derive the proof of Theorem 1.1 from Theorem 2.4. We
then provide in Section 8 the proof of Theorem 1.3. Finally, in the Appendix, we
provide some reminders of classical results, namely the Hardy—Littlewood—Sobolev
theorem and the stationary phase lemma (the refined version in [ABZ17]). We also
give the proof of a technical result of interpolation used in Section 7.

Notations

Here is a set of notations we will use throughout the article.

For every z € RY, & = (x4, .., 24), we set = (11, 2'), where 2’ = (3, .., 24) € R¥1

The notations V and A respectively stand for the gradient and the Laplacian with
respect to x = (x1,..,24), and V' = (0, ..,04) and A’ = ?:2 8? are, respectively,
the tangential gradient and Laplacian operators.

In all the document except in Section 5, the Fourier transform is always taken
to be the Fourier transform with respect to ' = (z9,..,24), and its dual variable
¢ € R4 is then indexed by ¢ = (&,..,&;). The Fourier transform of a function
f e (R will be denoted by f:

Flely — 1 —ig! ¢! / / / d—1
f(f)—@ﬂdgl/%e f(a')da', ¢ e R,
and is extended by duality as usual to any f € .7/(R%1).

Note that for a function f defined on R? such that f(zy,-) € .Z(RY), fzy,-)

denotes the partial Fourier transform with respect to 2/, that is:

(L15)  Fen€) = (2; [ e e ¢ eR,

2. A Carleman estimate in a strip

In this section, we focus on the case of a strip
(2.1) Q= (Xo, X1) x RI7H

and on the following elliptic problem

d
Av—x1 Y )\]0]2@ = fo+ fo +divF in Q,
=2

(2.2)

J_
v (Xo,2') = g(2'), for 2’ € RL,
v(Xy,2)=0 for 2/ € R4,

where

(23) fa€LXQ), fy €Lt(Q), Fel?(2C?), and geH? (R

TOME 7 (2024)



1612 B. DEHMAN, S. ERVEDOZA & L. THABOUTI

To be able to solve the elliptic problem (2.2), we assume the coercivity of the
operator —A + x; 2?22 )\]6]2 in €2, that is

d
(24) g >0, Vo €[Xo, X4, VEERY, Z 1L—a1\) &1 < A€,

2

where we have set A\; = 0 for convenience. Under condition (2.4) and the integrability
and regularity assumptions (2.3), the problem (2.2) has a unique solution v € H*(2).
Our goal is to prove the following Carleman estimate:

THEOREM 2.1. — Let € be as in (2.1) with X, <0< X, and max{|Xo|,|X;|} <1
and assume that the coeficients (\;);e 1,y € R? satisfy \; = 0, (2.4) and that
there exist positive constants m, and M, such that

(2.5) 0<m,< min A < max A < M,.
jE{Q,"',d} jE{Q,“',d}

Then there exists a constant C' > 0 depending on ¢y, m, and M, (independent of
Xo, X1) such that for all (fs, for, F, g) as in (2.3), if the solution v of (2.2) satisfies
(O1v — F1)(Xy,2') = 0 for 2’ € R¥™!, then we have, for all T > 1,

(2.6) 72 flve™ |2y + 77 [le™ | 1 q)

<C (W™ ey + 744 1™ g,

2(Q)
TT TX
+7[[Fe™ | 2o + 74 gere H%({XO}XRd1)>,
and
34 L T T 34 L T
(2.7) 772 flue™| d(m<0<||f2€ 1||L2(9>+T4+2d Ife 1HLdeQ(Q)
7X0

+7‘||Fem1||L —|—7'4

H%({Xo}del)> ’

Remark 2.2. — A solution v of (2.2) with (fa, for, F, g) as in (2.3) only belongs a
priori to H'(€2). Therefore, trace theorems do not allow defining directly its normal
trace. However, Vv — F satisfies Vo — F € L*(€;C%) and div(Vv — F) € L*(Q) +
L#2(Q) and it is casy to check that if B € L2(Q; C%) and div R € L2(Q) + L& (Q),
then R - n is well-defined as an element of H~2(852), see [BF12, Theorem 111.2.43).
Therefore, the trace (Vo — F) - n is well-defined as an element of H~2(99).

Remark 2.3. — The strict positivity of the coefficients (A;); e ¢2,...,qy guaranteed
by condition (2.5) is the sub-ellipticity condition for the operator —A 4 x4 Z?ZQ )\]0]2
with respect to the weight function z +— 1, see for instance [LRLR22, Part 1,
Definition 3.30].

As one easily checks by working on w defined by w(x) = e™w(z) in Q, Theo-
rem 2.1 is implied by the following result, whose proof is developed from Section 3
to Section 6:

ANNALES HENRI LEBESGUE
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THEOREM 2.4. — Let 2 be as in (2.1) with X, <0< X; and max{|Xo|,|X:|} <1
and assume that the coefficients (\j)je 1, ..., ay € R? satisfy Ay = 0, (2.4), and (2.5).
Then there exist constants C' > 0 and 19 > 1 depending on ¢y, m, and M, (in-
dependent of Xy, X, ), such that for all (fs, for, F,g) as in (2.3), if the solution w
of

d
Aw —x1 >

w (X07 /)]
w (Xl’ ,)
)

satisfies (Oyw — Fy)(X1,2") = 0 for 2’ € R4L, then for all T > 79,

— 2701w + T?w = fo+ fo +divE  inQ,

;0
g(z ) for 2/ € R,
0, for ' € R,

(2.8)

[

3 1
(29) T2 ||w||L2(Q) + 72 ||VU)||L2(Q

<C (Ialagay + 7208l gy o+ 7IF 2y + 72 gl

2(Q) HE ({Xo}xRd- 1)) ’

and

(2.10) 735wl e,

3

C (Mol + 7443 £

Lt TTIE e + g ({Xo} xR~ 1))

In fact, the correspondence between Theorem 2.1 and 2.4 is given by

(fz, fg/*, F, g) — ((f2 — TFl)eTxl, f2,*€7—ac1’ Fe”"l,geTXO) .

Theorem 2.1 and Theorem 2.4 are then completely equivalent, and we thus focus
only on the latter.

3. Construction of the parametrix in the case of a strip

The goal of this section is to explicitly construct the solution w of (2.8) for 7 > 1,
(f2, for, F,g) as in (2.3), under the assumptions that the domain Q is a strip as
n (2.1), and the coefficients (\;);e1,...ay € R? satisfy Ay =0, (2.4) and (2.5).

In order to do that, we take the partial Fourier transform in the variable 2’ € R%~!
of (2.8) with dual variable ¢’ € R4~

d
(01 — 7' Z (1 —x\)E QD
= d ~
(3.1) = fot fo, + O F, +i 2 & tor (1, 8) €4,
=
D (Xo,€) = G(&), for ' € R,
W (X1,&) =0, for & € R4L.

We then show the following:
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1614 B. DEHMAN, S. ERVEDOZA & L. THABOUTI

PROPOSITION 3.1. — Let Q2 be as in (2.1), and assume that the coefficients
(Aj)jeq,,ay € R? satisfy Ay = 0, (2.4) and (2.5). We introduce the function 1 :
Q — R defined by

d
(3.2) Y(x,&) = \IZ (1—=21))) 5;2'7 z1 € [Xo, X4], € € R

Jj=2

For all T > 1, for all (fs, fo, F,g) as in (2.3), the solution w of (2.8) formally
satisfies

(3.3) w=Kro(f2+ for) + Kr1(F1)

3 Ko (Fy) + Re(w) + Go(9) + He ((Orw — Fi)(X5,),

where, using the partial Fourier transform (1.15), the operators K, ;, for j € {0,
.-+ ,d}, and R, are formally defined for f depending on (z1,x") € €2, by

(34) Keflon €)= [ | oo €, ) dys (e1.6) € 0
(35) R f(z1,€) = /y C(ox )7"7(1’17?!1,5/) f(y1,€) dy, (71,¢') € Q,

with kernels given, for (z1,y1,£") € [Xo, X1]> x R4L, by

(3.6) Ero(z1,11,¢)

=-—1 z1,&! T/
w( 17§)> Xo

min{w1,y1} 6—7(311 —m)—ffll ¥(v1.¢") dgl—ffll ¥(v1,¢") dy 47,

u —T(y1—$1)+f§1¢ v, ) dyr— [ (i€ ) dyr
+1T/J(ﬂ?17€’)<71y1>$1/ € ! ( ) 1 ( ) dxq,

1

—r(y1—z)+ [P (71, dy.
(3.7) k‘fvl(zl’yhg) = Ly er<r lyy>ae (=) ffvl v(og") din

r(x1—y)— 1 1, dy.
+ 11/1(331,5')>7’ 1y1 <CE1e (1 =v0) fyl w<y1£) . + ]{77—70(331,1/1,5/) (7_ +¢(y175,)>7

k‘m(ﬂ?l,yl,f,) = ifjkr,0<xlay1>€,)a J€ {2, T ,d},
Tr(mla Y1, 5) = k7,0<x17 Y1, 5/)31¢(yb fl)

The operators G, and H, are formally given in Fourier for gy € .7 (R%"1) by

(3.8)

—

(3.9) Gr90(z1,&) = g-(x1,£)30(§), (z1,€) € Q,
Hego(x1,€") = hr(21,€)50(€), (21,€) € Q,

ANNALES HENRI LEBESGUE



Global L? Carleman estimates for the Laplace operator 1615

where g, and r, are given, for (x1,£') € [Xo, X1] X R by

gT<:U17 5/) = 11/,(331 € >TeT(x1_XO)_f;§(l) 1/’(&1{’) d51’

T —r(X1—z1)— [ (y.€ dgl—f31¢ e ) dyy
(310) Prlon€) = Luersr [ e SO )
0
X —7(X1—x ;'1 ~7/d~_31 ~7/ d"'
_ 11/)(301 o) / le (X1 1)+f$1 w(y1€) Y1 fml w(ylf) yldfl.
1

Remark 3.2. — We emphasize that Proposition 3.1 is formal. We will prove later,
in Theorem 4.1, Proposition 4.3 and in Proposition 6.2, that the operators K,
(K:j)jeq, a3 Rr, Gy and H, respectively belong to Z(L*(Q) + L%(Q); L*()),
(L(L(Q); L), L(LA(Q); LA(Q), L (H'(Q); LX(Q)), L (H?(99); L*(©2)), and
Z(H ~3 (92); L*(Q)). A simple density argument would then allow to justify rigorously
formula (3.3).

Proof. — The basic strategy of proof of Proposition 3.1 consists in the factorization
of the operator (91 — 7)% — S70_,(1 — 21A;)&2:
d

(01— 7)* = > (1 —21)gf = (O — 7 = ¥(21,€)) (O — 7+ P(21,€)) — D (1, §),

j=2
where 1) is the function introduced in (3.2), and the last term should be seen as a

correction term.
We thus set, for all 7; € [Xy, X1], ¢ € R* L

H(x1,&) = fo(21,€) + far (1,€) 125; (21,&) + 01 (w1, §) (21, &),

so that equation (3.1)¢) can be rewritten as
01— 7= ¥(@1,8) (01 — T+ (21, 8)) W =H+ 0 F, inQ.

Accordingly, introducing the additional unknown z(z1, £ )=(01 —7+¢(x1, ) w(xy, &),
equation (3.1) can be rewritten as a system of two first order ODE indexed by
¢ e RTL

(01 = 7+ (21, ¢) W21, &) = Z(21,¢) ~ in 2,

(3.11) (01— 7 — (21, €)) 221, &) = H(wy, &) + 0, F1(21,€) in Q,
‘ @(X(]’g,) = ./g\( /)7 on Rdil,
w(X1,8) =0 on R41L,

Let ¢ € R4, Solving (3.11), from the right, which can be done easily by working
on (Z— F1)(+,&), by Duhamel’s formula we get, for x; € (X, X3),

(3.12) 2(1,1, 5/) _ e*‘r(lem)*lel 1/)(5175/) dy1 (31’&3 B ﬁl) (Xh é—/) + ﬁl(l’ly 5/)

X1 z1) 1 L (77 P
_/ e L)@ (H(y, &) + (r + 9y, €) Fa(n1, €)) dyn,
where we did the additional remark that, using (3.11)(1.4), 2(X1,¢') = 1w (X4, ).
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We then focus on the equations (3.11) 34) giving @(-,&’) in terms of Z(-,£’). One
should notice here that (3.11)34) give two boundary conditions for a first order
equation. Therefore, we do a choice when solving (3.11)) based on the fact that
we want formulae involving only exponentials of nonpositive numbers. In order to
do such a choice, we analyse the sign of the function x; — —7 + ¥(21,£’). Due
to conditions (2.4) and (2.5), the function z; — ¥(xq,&’) is strictly decreasing on
[Xo, X1]. Therefore, the function x; — —7 + ¥ (x1,&’) can vanish only once on
[Xo, X1], and if it vanishes at some point z,¢ € [Xo, Xi], it is positive in [Xo, z,¢)
and negative for x1 € (z,¢, X1

Accordingly, for z; € [Xy, X;] such that 1(x,¢&") < 7, we use the formula

X -~ ;1 ~ et e
w(xhé-/) — _/ ! efT(fEl*ml)‘i’le w(yl,i )dylg(f1’£/> d.%h

1

while for z; € [Xo, Xi] such that ¢(z1,&') > 7, we use the formula
P 1 (o) [T (e ) i B
@(xhg/) —e (z1—Xo) fx0¢(y1,§)dy1§(§/) +/)<16 (z1—21) le ’1/1(1/15) ylZ(.ﬁEl,g,) d.ﬁUl.
0

These two formulae can be written in one under the form
N X1 —75—334—;1 v1,E ) dy1 , ~ -
(313) w<x1’§/> — _1¢(I1,§/)<7'/ e (z1 1) le sz(yl 5) ylZ(x1,§/> dIl + 1¢(x17§/)>7_

1
(1 — (7. diy 1 r(zi—m1)— [S1 Nv/d~/\~ >
<e (21— X0) fx()w(yl,g)dy1g<£/) A o (z1—21) le Tl’(ylé) ylz(xl,f/) dq;1>-
0

The formulae given by Proposition 3.1 are then deduced by putting together formu-
lae (3.12) and (3.13). Details are left to the reader. O

4. Hilbertian estimates

The goal of this section is to prove the following result:

THEOREM 4.1. — Let  be as in (2.1) with X, <0< X; and max{|Xo|, | X1|} < 1,
and assume that the coefficients (\;);e(1,... ay € R? satisfy A\; = 0, (2.4) and (2.5).

Then there exist constants C' > 0 and 19 > 1 depending on cq, m, and M,
(independent of Xy, X;) such that for all T > 7o, for all (fa, F,g0,91) € L*(Q) x
L2(Q;C%) x Hz(R1) x H-2 (R4, the function w given by

d
(4.1) w = K;o(f2) + Kr1(F1) + > K j(F) + G- (90) + Hr (91),
j=2
where (K j)jco,.,ay, Gr and H, are given by Proposition 3.1, satisfies:
3 1
(4.2) 72llwlr2) + 72Vl 120) < Ol f2llz2(0)
+ CrFlz0) + Ol gacsy + Crltl 3 gy
Besides, for w € L*(2) satistying V'w € L*(Q), for all T > 79, R, (w) introduced in
Proposition 3.1, satisfies

(4.3) 72| R (W) 2y + 72| V'R (w) | 12(0) < ClV'w]| 20
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Remark 4.2. — The estimate (4.2) above gives estimates on the norm of the
operators K, ; for j € {0, --- , d} as operators in Z(L?(Q2), L*(©)), and on the norm
of the operators G, and H., in, respectively £ (H2 (R%1), L2(2)) and .Z(H 2 (R41),
L*(2)), but with no claim of optimality. In fact, as we will see later in Theorem 4.4,
the estimate on the operator norm of GG, is not sharp. On the contrary, the ones on
K, ; for j € {0, --- , d} are sharp, see for instance [LRLR22, Part 1, Theorems 4.4,
4.5 and Theorem 4.10] regarding K o.

In this section and in Section 6, all the constants C' depend only on ¢; in (2.4) and
M., M, in (2.5), and this fact will not be mentioned in the sequel.

Proof. — We first remark that w as in (4.1) satisfies by construction the following
version of (3.11):

((91 -7+ w< f))@<$17§/> = 2(:[;176/2\ for (513'1,6/) < Qlﬂ"
(O —7— w(izbf/)) (2 = F1)(21,€) = fol21,£)

(4.4) +i]§2§ﬁj(%afl) + (T + (1, &) Fi(21,€) for (21,8) € 9,
@(me/) = %(5/)7 if @D(ong/) > T,
@(Xl,Aﬁ") =0 if w(be’) < T,
(2_ 1)(X1a§/> = gl(fl)u for fl € Rdil’

where Q. = ({¥(z1,&) > 7} N Q) U {¥(21,£) < 7} N Q). Note that, given
¢ € R4 due to the conditions (2.4) and (2.5), there exists at most one element
z3(&') € [Xo, Xi] such that ¢(x3(¢), &) = 0. Consequently, given & € R {z, €
(Xo, X1), (21,€') € Q1 ,} is either the whole interval (Xo, X;) or the union of two
disjoint intervals (Xo, z7(¢')) U (23(£), X1).

Since this system is now a family of ODE indexed by the tangential Fourier
parameter £ € R?! from now on, we see £’ € R?™! as a free parameter.

We then perform estimates on Z(-, ') using (4.4)(,5) by setting z(-,§') = 2(-,¢') —
Fy(-,€), which satisfies:

(81 - T = ¢<x17€ ))g(‘rhg/) = .]?2(‘77175/)
+i Z GFi(21, &) + (1 + (1, &) Fi(21,¢) inQ,
72X, ) = gl<§> on RE-1.

We then use a multiplier approach, taking the square of both sides and integrating
in x:

7 (013 O + (7 + 901, €0 + 0000, ) o, ) i
(B0, €)E X0, O = (7 + 0(X1, €)E(X1, )

X1
+
Xo

<49 ENBEP + @+ [ e of day

2

]?2(37175 125; (x1,€) (T+¢($1>§,))ﬁ1($1,§/) dxy
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~ , 2
&F (@, &) day

+(d+1)§:/):

P+ [ e )P i € o

0
Note that, within the setting of Theorem 4.1, the function v defined as in (3.2) is
such that there exists Cy > 0 for which

!/
(45) Ve [Xo X)) ve el cup ey <ae

1
1€
Cy’
Accordingly, for 7 > 7y large enough, there exists C' > 0 such that for all £ € R%!
and 1 € [Xo, X1],

—C1E| < (z,€) < —

ST+ < (7 (0, €))7 + Buan, €) < Cr + €,
S HIED < 74 Y €) < Clr 4 e,

Therefore, the above estimate yields:

X1 2d <C "N\|a |2 C X2 / 2d
[ G O der < O+ EDGEN +C [ Falen,€)P dry
d X,

+Cj22/XO

Recalling that z(-, &) = 2(+,¢') — ]31(-,5’), we obtain

in INE: X1 N2 | T INE:
&F5@n, ) doi+C [+ €D |Pier, )] dan.

X X1~ 2
[ PR P day < O+ EDENE +C [ |fatwn ) da
d X3
+Cj§_:2/XO

We then derive estimates on @(-,¢’) from the equation (4.4)( 34, again by taking the
square of both sides of (4.4)1) and doing integration by parts. If for all z; € [Xo, X,
U(x1,E) # 7, we do the computatlon at once by doing the integration by parts
on (X, X1), and if there exists 27(¢') € [Xo, Xi] such that ¥ (27(¢), &) = 7 (recall
that such an z7(£') is necessarily unique), we do the computations on [Xy, z3(£))
and on (x7(£'), X1], and we sum the estimates. In this latter case, d;w should be
interpreted as 1;, <210 (71,&") + 1oy > 2 (e O1W (21, €'). There is a priori no reason
that this coincides with the derivative of @(-,¢’) in the sense of 2'(Xy, X1), which
would require some continuity conditions on @(z%(£)*, &), We get:

in NE X1 N2 | NE
&Fi(@ | du+C [ 1) i, €0 don.

/XX (10v(n, €)1 + (7 = (w0, €)= (w1, ) [ (21,6 dary
+ (U(X1,€) = 1) [0(X1, ) = ($(Xo, ) = 1) [@(Xo, ) = [ X 220, €[ day.
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Accordingly, using the boundary conditions (4.4)(.4) and (4.5),

X1 _ "2 2
[ (19, 0F + (7 = (e, €))* + [€1) [, €)F) day
Xo

< WX €) = urxaen»Go(@P + € [ 120, ) da.
Therefore, there exists C' > 0 such that for all 7 > 7y and ¢’ € R4!,

[ (@€ + (= 00w, €07 + 1) (e, €)) don

< C((X0, &) = T)ly(xoen > -10(€)[ + C—— [5:(X1, &)

C X
+u+mw4@o

1

T+

~ d 1) ~

P, [ s + 167 [ !Fy<x1,§v]2dx1)
j=27%Xo

X1, , 2
Fl(th)‘ dz.

Xo

+C

We finally use that there exists a constant such that for all ¢ € R, 7 > 7, and
xr1 € [Xo, Xl],

/|2
((r = 90, €02 +1€)) > ( K|>,(Wme—Wﬁwmng<CWL
1 1 1 1 €2

< , S5 —rame S L
T Il () Tt (r+ )

so that

X1 . "2 . NI SV "2

/. Tmmmm|+mw@h@\+ﬂmrMmfﬂ dr,
B+ 5 [ Flen )] o

+CZ/

5 (£1)]2 c
< ClE'1g0(€)] +1+|§|

l’l 6 d!lﬁ'l.

Integrating in ¢ € R4"! and using Parseval’s identity, we derive (4.2).

To prove (4.3), we simply remark that Row= K. ofs with fg(xl,ﬁ') =01(x, &)
w(x1, &), which clearly satisfies || fo||22(q) < C||V'w]|12(q). Accordingly the estimates
on K, in (4.2) immediately provide (4.3). O

In view of the above computations, for w as in (4.1), we have good estimates on
01w in L*(€ ), where

(4.6) U, ={(x1,&) € Q, with ¥(z1,&") > 7 U{(21,¢) € Q, with ¢(z1,£) < 7}.
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Indeed, from the above computations, for w as in (4.1), we have

4.7) 7lor@l 2

d
< Ol fellzzi) + CTZ ||Fj||L2(Q) + CTHQOHH%(Rd,g + CT||91||H—%(Rd,1>‘
j=1

In particular, if one knows that w € H'(Q), we get an estimate on d;w in L*(1).

Note that the above proof and the previous remark immediately give the following
result, whose proof is left to the reader, since all solutions w of (2.8) with source
terms (fa, for, F, g) as in (2.3) belong to H'(£2), and the terms ||V’w||%2(ﬂ) coming
from R.(w) and (4.3) can be easily absorbed by taking 7 large enough:

PROPOSITION 4.3. — Let €2 be as in (2.1) with Xy <0<X; and max{|Xo|, | X1|}
< 1, and assume that the coeflicients (X\;)jeq,...aqy € R? satisfy \; = 0, (2.4)
and (2.5).

Then there exist constants C' > 0 and 19 > 1 depending on ¢y, m, and M,
(independent of Xy, X;) such that for all (fa, for, F, g) as in (2.3) with fy =0, if the
solution w of (2.8) satisfies (Oyw — Fy)(Xy,2') = 0 in R, then for all T > 7o,

d
w = K,o(fa) + K;1(F1) + Z K, ;(F;)+ R (w)+ G.(9),

Jj=2

where the operators (KT,i)ie{O,m,d}y R. and G, are defined in Proposition 3.1, and

3 1
72 |wllze() + TNO1wllz2) + 72 VWl 12y

< Ol fallizen + Ol Fllisiy + O gl 3 ooy

We now check that the estimate on G, can indeed be improved:

THEOREM 4.4. — Let Q be as in (2.1) with Xy <0< X, and max{|Xo|, | X1|} < 1,
and assume that the coefficients (\j)jeq1,... a € R? satisfy \; = 0, (2.4) and (2.5),
and let G, be the operator in (3.9) and (3.10).

Then there exists a constant C' > 0 depending on ¢y, m, and M, (independent of

Xo, X1) such that for all T > 1, for all g € H2 (R%1),

741G (9)ll 20 + |01 G (9)

_1
S H T EIVG9)l ey < Cllgl 3

L2(, Rd—l)’

where Q, , is defined by (4.6).

Remark 4.5. — Note that the estimates in Theorem 4.4 yield better estimates
than the ones of Theorem 4.1 on the .Z(Hz (R, L2(R%)) norms of the operators
G, and V'G,, and are in agreement with the ones obtained in [IP03].

Proof. — For 7 > 1 and & € R%! such that ¢(Xy, &) > 7, we introduce x}(¢') €
(Xo, X1] as the unique solution of ¥ (x3(¢),£) = 7 if it exists, or x}(¢) = X;
otherwise, and we compute
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7 (€") 23 (¢)
SO arlan )P daand [ g (a1, ) dan,
0

and / ]@197 x1,& )|2d$1.

In order to do that, we recall that, within the setting of Theorem 4.4, we have

3C>0,V¢ eR"LY (z1,91) € [Xo, X1)? with y; < 7y,

Yy, &) = (21, € )+é’f,”$l_yl‘a
3O0>0, V& eR" L, Vr>1, V:(:le[Xo,xl(é)]

SIENE) — mal < 7= Yo, ),

so that

23 (')
[ lgetan, )P day
Xo

z3(¢") 627(961—X0)—2 f;; Y(y1,€") dyr iy

<

Xo

2 / ! 2

< 27— (@1,€)) (@1 —X0)~I¢'(21-X0)*/C ..

Xo
g x’f(g ) 6—2\5’\(xf(f/)—l’l)(xl_XO)/C_|f/|(m_XO)2/C dxl

Xo
< / (Kot €)/2 o036 =01/ g,

Xo

+/IT(5) 6—|§’|(961—X0)2/C dxq
(Xo+a1(6))/2

. (Xot=i(€))/2 o 1€/1(21 (€)= Xo0) (01-X0)/20) g

Xo

n /J}T(fl) 67‘5/|(11(51)7X0)(x17X0)/Cdl,1
(Xo+a3(€))/2

. 2/(Xo+xf(£ ))/2 ¢~ I¢/1(#1(€)~Xo) @1 -X0)/(20) g,
Xo

1
< C'mi ,*/—X.
S mm{mwm@o—xa‘““> “}
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It is then easy to check that, for 7 > 1 and ¢ € R4! such that ¢(X,, &) > 7,

27 (')
| g €)F danlg(€)P?

Xo
: 1 ’f{(f/)_XO’}}> / |2
<C
. A e ot

C
< I¢1 9P

Integrating in ¢ € R?! and using Parseval’s identity, we obtain that
3
PG 6 < Cllgly s gy

Similarly, we prove that

w’{(g/) !/ ! /
L€ g, €0 da lg(€)”

1
<o sup {min{*, ¢)[23(€) - X, }}) &) 1g(&)P
(o fun et - xab) 1 e
1
<CTE| gl
so that there exists a constant C' > 0 such that for all g € Hz(R4™1),

T HIV'G (@)l a@) < Clll gy gy

We then check that

8197—(131,6/) = (T - w(‘xhg)) gr (‘Thg/) :

Then, if ¢ € R4 is such that (X, &) > 7 and (X1, &) < 7, using that for all
1 € [Xo,#1(§)), 7 — ¥(21, &) < C|§I||xl( §') — a1, we get
zik(f (1 — o Ty /
/X 019+ (21,¢) d$1 'rlug))Q ¢’ (=0 QIXO vl dn dr;
0

Xo

<cf o w <x*;< ) — 1)? e 2N 1) (1K) OoIE 1= X0)%/C i,
C/ e ‘f ? (23(¢)) = Xo)” e~2€1 (21 (€)= X0 ) (a1 -X0)/C day
20 [T P () ) e IO )0 gy,
Xo+xt (&
- C/(X0+1‘I(§')>/2 |€,|2 (x’{({') B XO)Q 6_|5/|(m;(gf)_xo)(xl—xo)/(zc) diy
Xo
< Cmin {|¢/](21(£)) = Xo), |€']? (27(€) — Xo)*}

N )3
B {w(Xo,f/) . <w<X0,é’> ) }
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In particular,
21(€)
Ao|mmmfwmmmﬁf
<o s fon PR =T CEREZI) i) e
W(Xo,&) > '] €]

<ClE| 19

Similar estimates can be achieved for ¢ € R4~! such that (X1, ¢’) > 7, and details
are left to the reader. 1
We thus obtained that there exists a constant C' > 0 such that for all g € Hz (R*!)
and 7 > 1,
’ Rckl) :

This concludes the proof of Theorem 4.4. 0

—

alGT (g) 2

< Clglgz

1,7

5. Fourier Restriction theorems and applications

In this section, we first recall the classical Fourier restriction theorem, and present a
version adapted to our case. We will then explain how it can be applied to estimate the
norms of operators of some specific forms, which will encompass the ones appearing
in the parametrix provided in Proposition 3.1.

In this section, n > 2 and, for a function f € #(R"), the Fourier transform
f e .Z(R") is given by

. 1 ,
f(§) = W/xew e f(x) d, £ eR”,

and is extended by duality to functions in .”/(R") as usual. We will see later that n
in fact corresponds to d — 1 in the applications we have in mind.

5.1. Fourier restriction theorems

We start by recalling the classical Stein—Tomas Fourier restriction theorem:

THEOREM 5.1 ([Tom?75], see also [Ste93, Theorem 2, p. 352]). — Let n > 2, and
S~ denote the unit sphere of R™.
Then the map

o Flos

2(n+1)
can be extended by continuity on L =+3 (R™), and there exists a constant C' > 0

such that for all f € L& (R™),
17

{Ll(R") — L2 (S

< CO|f]] 200

L2(S"71) I, (n+3) (Rn)
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1624 B. DEHMAN, S. ERVEDOZA & L. THABOUTI

It is well-known that this restriction theorem can be extended to any hypersurface
with non-vanishing Gaussian curvature, (see, for example, [Sogl7, Corollary 2.2.2]).

In view of the formulae in Proposition 3.1, it is interesting for us to analyze Fourier
restriction theorems on the family of surfaces

(51) Za = {5 € Rn7 @ZJ(CL,G) = 1}7 ac [XOaXl]a
where by analogy with the function ¢ in (3.2) and the conditions (2.4), we have set

(5:2) ¢m@>=dﬁﬂl—a&>ﬁ 0 € [Xo, Xi], €€ R,

=1

where the family of coeflicients (X;);c 1, ..., n) satisfies
1 n

(6.3) Jecp>0, YVae|[XypXi],VEeR", ?‘£|2 Z 1—a)\ ‘fg CO‘£|2'
0 =1

Note that due to condition (5.3), for all a € [X,, X1], the surface 3, is an ellipsoid
and thus [Sogl7, Corollary 2.2.2] applies and yields that for all a € [Xg, X;], the
~ 2(n+1)
map f — f|g, maps L G5 (R™) to L*(3,).
For our purpose, we need a slightly more refined version of this result, guaranteeing
that the norm of this map is independent of a € [X,, Xi].

THEOREM 5.2. — Letn > 2. Assume that the family of coefficients (\;); e (1, n}
satisfies (5.3) for some co > 0. Then there exists a constant C' > 0 depending only

on ¢y (and n) such that for all a € [ Xy, X1|, for all f € L (R™),
(5.4) |25y < M1 st

L2(3q) (n+3) (Rn )'

Note that the proof below follows the classical one of Theorem 5.1 and is mainly
based on the stationary phase lemma.

Proof. — For a € [Xy, X;], we denote by T, the map T, : f € L*(R") f]ga €
L*(3,). We then consider its adjoint operator T : L*(3,) — L®(R"): for g € L*(%,),

Tigle) = [ e gw)dTa(w), r €R".

wEX,

The operator T;T, then maps L'(R™) to L>(R™) and, for f € L'(R"),

(55) TTuf(z / / @D 45, (w) £(7) d, v € R".
n [SDIM

Next, we Will prove that the operator 17T, can in fact be extended as an operator

from L7 (R™) to L1 o (R™), uniformly with respect to a € [Xo, X;]. This will
prove (5.4) since

ITeTall / 2oen 2wy =Tl / 2wy :
(L 3 (Rr), L =D “R")) 3’<L s @Rn),ma))

To start with, we parametrize the hypersurface >, through several patches. We
first remark that ¥, can be mapped into the sphere S"~! as follows. For w € X,, we
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Global L? Carleman estimates for the Laplace operator 1625

define € = G, (w) by
VjE{l,---,n}, §j:wj ]_—CL)\]‘.

We then choose a spherical cap

_ net, L
- {568 ) §n> \/%}

It is easy to check that, if, for ¢ € {—1,1} and j € {1, ---, n}, R.; denotes the
rotation that maps the basis vector e, to ee;, and leaves all the vectors ey, for k& # j,n
invariant, then the family of R, ;%, for e € {—1,1} and j € {1,--- ,n} covers the
whole sphere. Therefore, there exists a partition of unity (Xe;j)ee{-11},je{1,,n} Of
the sphere S"! such that for each e € {—1,1} and j € {1, --- , n}, the function x.
is smooth and compactly supported in R, ;%),. Since by construction, > ; x;(§) =1
for all £ € S*!, we have

Vwed, > Xej(Ga(w)) = 1.
ec{-1,1},j€{1,-,n}
Therefore,
LTf@ = Y [ xi(Galw)e T Sy w) (@) i, @ e R
ce{-11}, je{1,,n} R /wEZa
Besides, for all e € {—1,1} and j € {1, --- , n}, x; © G, is supported in the set of

all w € ¥, such that ew;\/1 —a); > 1/v/2n, i.e. the pre-image of the cap R.;(%),)
by G,, that we denote by €. ;. It is clear that this set can be parametrized by R~

as follows. Denoting éj = (&, 61,841, -+ 5 &), we easily obtain
o n 1
Cge,j = (51) 3] Sj—laehj <a7£j> 75j+17 (3] fn) ; kz_: 1 - a)\k 1 - % 3
i)
where the function h; is defined by the formula
v 1 n v
hi(a,§) = ——=——= 1= (1 -a\)  ac[Xo,Xi], & € Vay,

A/ 1-— CL)\j k=1
k#j

with V, ; given by

" n 1
Vaj =& EREY (T—a)§ <1 —
= 2n

i

Therefore, the study of 7T}, is reduced to the study of the family of operators

fe (x ~ /n /éjeva,j Xe.j (Ga (Hw‘ <a> fg))) i@ =9;)-€ei(z; =25 )h(ag;)

A1+ [y (0.8 £(0) dy) :
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1626 B. DEHMAN, S. ERVEDOZA & L. THABOUTI

where H. ;(a,&;) = ({1, o o1, ehi(aé), €, {’n), for all j € {1,---, n} and
e {-1,1}.

Thus, up to a renumbering of the coefficients, we can focus without loss of generality
on the operator corresponding to ¢ = 1 and j = n. Accordingly, we introduce the
notation ' = (xy, --+, x,_1) and & = (&1, -+, &u—1), and we consider the operator,
defined for f € L'(R") to L>(R") by

66 Taf@) = [ [ x(Gal€ hula,€)))el T e)
X 1+ [Vho(a,€)2d€ f(7) dT,

where y is a smooth function on the sphere S*~! compactly supported in the spherical
cap 6, and x(Gg(+, hy(a,-)) is extended by 0 for & ¢ V..

We have reduced the proof of Theorem 5.2 to the proof of the fact that the maps
7. defined in (5.6) belong to the space X(L%(R"), L%(R”)) uniformly with
respect to a € [ X, Xi].

In order to show this property, for a € [Xy, X;| and 6 € R, we introduce the family
of operators, defined from L'(R"™!) to L>®(R"!) by

%76f($,) B /]Rn—l // cRn—1 X(Ga(flv hn(a7 5/)))Gi(m/_gl)fl—"_i(sh”(a’g/)
< 1+ [Vha(a, &) 2de £ (&) A,

for which we will show that there exists a constant C' > 0 such that for all a € [ X, X]
and 0 € R,

L) (®=1),L D) (R

(5.7) ||<%5||$< 2(n41) 2(nt1) ) < C|5|_%.

Indeed, if the estimate (5.7) holds, then Hardy-Littlewood—Sobolev theorem (re-
2(n+4+1
called in Appendix in Theorem A.1) implies that, for f € L'(R") N L G (R™),

(] [P | AN (OF DTN pevess
L =1) (Rn) zn €R L;,”‘” (Rn-1) L:j:;jll)) ®
< ﬁ HZ xnfgnf('a in)‘ 2(nt+1) din
zn €ER Lz(ln—l) (Rn-1) ij;:f)) ®
~ —7,'1_1 ~ ~
<O|[ 1@ =2 ICE sy dE,
rn€R (n+3) n—1 2(n+1)
Ly, (R"=1) (n—1)
¢ Loy " (R)
<C ||f(a fn)” 2(nt1) =C ||f|| 2(n+1) )
L~(”+3) (Rn—1) 2(n+1) [, (n¥3) (R™)
o' L (w)

Tn
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Global L? Carleman estimates for the Laplace operator 1627

since

n—1 n—+3 n—1
L - .
n+1 2n+1) 2(n+1)
We thus focus on the proof of estimate (5.7), which, as explained above, would
conclude the proof of Theorem 5.2. This is done in three steps.
In the first step, we check that .7, s maps L*(R""!) into itself with uniform bounds.
Indeed, taking the Fourier transform x’ — & of R"™ !, we easily get:

TusF(€) = X(Gal€' hn(a,€))) @) /1 + [V (a, ) PF(E),
so that by Parseval’s identity,

X (Gal€ hn(a, €))L 4 |V h (a,€)

7. vy < .
17asll 22 n-ry) L (R"-1)

We then immediately get that there exists a constant C' > 0 depending only on cq
in (5.3) such that for all @ € [Xp, X;] and § € R,

(58> H%,ISHWZ/(LQ(Rnfl)) g C

In a second step, we check that J, s maps continuously L'(R"™!) to L*(R")
and get an estimate on its norm. In fact, we clearly have that

(59) ||%,5||$(L1(R7L71)7L00(R7L71))
/]Rni1 €i5’.§’+i5hn(a§ ( (5 h )\/1+ |Vh (& 6/)

Our goal is then to prove that there exists a constant C' > 0 such that for all
a < [X(JyXl] and § € R,

[ e (o€ (0, €)1+ [Vha(a, )P

< sup
8 e Rn—1

(5.10)  sup
§' cRn-1

< —
o=
For & € R" ! and § € R, we define A > 0 and w € S"! by

A=/[0'2+0%? andw = i(é’,&).

Accordingly,
/ (i0"€ +i0hn (a,€) ( (€ hn( >\/1+ \Vh,(a,&)|2dE
Rn—l

1)\<I>(wa§ (ag) g

Rn— 1
where

B(w,a,€") =€ +wnhn(a,€), and  x(a,€)=x(Ga (€' hu(a,€)) )y/1+|Vha(a, )2
Note that we immediately have that

(5.11) /R %0, ¢)

Sup ||Xv<a7')”L1(R"*1)7
(ZE [Xo,Xﬂ
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1628 B. DEHMAN, S. ERVEDOZA & L. THABOUTI

so that we are only interested in large values of 9. It is then clear that we have to
use the stationary phase lemma to get a suitable estimate on that quantity. Since
we need to quantify properly in terms of the parameters a € [Xo, X;] and § € R,
we will use the refined version of [ABZ17, Theorem 1], recalled in the appendix in
Theorem A.2.

Let 2, € (0,3) be such that

1

Q sup | Veha(a, ) e, ) < 3 1—02.
CLG[X(),Xl] 13 ’
Then
/
S with |w,| < O inf B N s @l
YVwée with |w,| < Q,, ae[X07)1(111]7€/€Va’n|V5 (w,a,&)| = 5

Therefore, if w € S with |w,| < Q,, applying integration by parts based on the
formula

. / 1 : y
iIANO(w,a,8") V. P AW v ¥ iANP(w,a,¢’)
e Ve (e a, ) <0 ® e Ve

we get that, for all £ € N, there exists Cy > 0 and a decreasing function F; : R — R
such that

/Rn71 61)\<I>(w a,f’) = (a 5)

Cy N
S P (I (@, -, Ylowres e (pxo xr)sevi ) IR 0 a1V

Therefore, for all £k € N, there exists a constant C} > 0 such that for w €
S*1 with |w,| < Q, and a € [Xy, X],
< G

1)\‘1>(w af) =
[ e Ox € e <

It remains to analyze what happens when w € S"~! satisfies |w,| = §2,. There, we
use that

(5.12)

(Hessg @) (w, a, &) = w, (Hesse hy) (a,€).
Since there exists ag > 0 such that

inf inf |det (Hessg hy) (a,&')] =

CLE[X() Xl] £/€Van

a direct application of Theorem A.2 yields the existence of a constant C' > 0 such
that for all a € [X, X1], for all w € S"~1 with |w,| = Q,,
[ ez g)ag| <« <
Rt Ao
Combining (5.11)—(5.12)—(5.13), we get (5.10), and thus from (5.9), the existence of
a constant C' such that for all a € [X(, X;] and § € R,
C’

I5\

(5.13)

(5-14) ||<%6||g (LY (Rn—1),Loo(RP—1))
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In a third and last step, we conclude the estimate (5.7) by M. Riesz interpolation
theorem ([Sogl7, Theorem 0.1.13]) combining (5.8) and (5.14). This concludes the
proof of Theorem 5.2. O

5.2. Fourier multiplier operators

The goal of this section is to show how Theorem 5.2 can be applied to get estimates
on some families of Fourier multipliers operators.

To be more precise, for Xy < X; and coefficients (A;);e (1, ..., n} satisfying (5.3), we
define ¢ as in (5.2) and X, the ellipsoid defined for a € [ Xy, X;] by (5.1).

For a € [ Xy, X1] and k € L>®(R, L*>(3,)), we consider operators given as follows:

(5.15) Kop: L*(R") — L*(R"),

—

given by Kor(7)(€) = & (wa, ),

We prove the following result:

é n n
w<a,s>> 7o), cer

PROPOSITION 5.3. — Let n € N, n > 2. Let Xy < X;, and the coefficients
(Nj)jeqt,-,n} satisfy (5.3). For a € [Xo,X1], let ¢ and ¥, be as in (5.1)—(5.2).
Then there exists a constant C' > 0 such that, for all a € [Xq, X;], for all k €
LOO(R+7LOO(EG>)7

e the Fourier multiplier operator K, in (5.15) maps L*(R™) to itself and
(5.16) [ Kokl 22y < Nkl o0y

e if moreover, k satisfies

/0 (A, )| Loy AT dA < oo,

(n+1) (n+1)
the operator K, in (5.15) belongs to Z(Li";) (R™), LoD (R™)) and

(5.17) 1Kasll ¢ s o c/ 1O )l () AT d.
( (nt3) (Rn),L (n=D ( )

e if moreover, k satisfies
e n—1
| IRy A5 @ < o0,

the operator K, in (5.15) belongs to

2(n+1)

Z (L (R, 12 (R”)) ne <L2 (R"), LT (R”))

and

(5.18) [h:oml <2<n+1> ¢/ 1B 7o, )\n+1d)\,

n+3) (Rn 1.2 Rn)

I (n— 1)

(5.19) | Ko | 2(nt1) \// | E(A HLoo(z NAFT A
$<L( n),
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1630 B. DEHMAN, S. ERVEDOZA & L. THABOUTI

Remark 5.4. — 'The estimates of Proposition 5.3 will play a similar role as Sogge’s
spectral projection bounds [Sog88] for the spherical Laplacian to prove LP Carleman
estimates in the elliptic case as in [Jer86, Sog90, KT01].

Proof. — The proof of (5.16) follows immediately from Parseval’s identity.

The proof of (5.17) is more subtle and is done in several steps. First, based on
Theorem 5.2, we analyze, for A > 0, the map T, : f € L'(R") — J/C\lza’/\, where
Yar ={£ € R", ¢(a,&) = A\}. We then explain how this yields estimate (5.17).

The first step is based on the fact that for a € [Xo, X;] and A > 0, for f € L}*(R"™),

T\ Torf(z) = /~ . /5 . @D gy (€)f(F) dF, z € R™
x a,\

Since the function £ — ¥(a, &) is homogeneous of degree 1, by using a scaling
argument, we get

ToTanf@) =3 [ s, 0) (@) d

ZeRn
= A_1/~ / el (e—e)w d¥qq(w)f (9?) dz, r € R"™.
TeR" JueT, A
We thus obtain
(T2, Tunf) (2) = A~ (T;ITa,l <f (Q)) (A1), T ER".

From this identity, a simple scaling argument shows that for all a € [X,, X;] and all
A>0,

Since T\ To1 = 1T, is the operator defined in (5.5), and since T, belongs to

(n+1)
£ (L2<”++31> (R"), L?(R™)) from Theorem 5.2, we deduce that there exists C' > 0 such
that for all a € [Xo, X3], for all A > 0,

||Ta7>\|| 2(n+1) = ‘
f(L (n+3) (R”),LQ(ZQ)\)>

The second step then consists on rewriting the operator K, ; as follows:

*
Ta,)\Ta7>\

*
1—‘0,,17—‘%1

n—1
’ 2(n+1) 2(n+1) < Antl
.,?(L (n+3) (R7),L (n—1) (Rn))

’ 2(n+1) 2(n+1) .
.,?(L (n+3) (Rn)’L (n—1) (Rn))

*
Ta,)\Tav/\

n—1
2(n+1) 2(n+1) < CA ntl,
‘Z(L (n+3) (Rn)7L (n—1) (Rn))

(n—1)
‘ 2(n+1) < O\
$<L2(2M),L (n—1) (R"))

*
Ta,)\

Kog = [ T2xMapo Tand,
A>0

where M, j(x.) is the operator defined from L?*(%,)) to itself as follows: for g €
L2<Ea,)\)7

Mo pr9(&) =k <)\7 Wif)) 9(§), § € X
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Accordingly, we have

| Kokl 2(nt1) 2(nt1)
$<L (n+3) (R")yL (n—1) (Rn))

</ |
A>0

<

T} \Mar)Tax

a,

‘ 2(n+1) 2(n+1) d)\
$<L (n+3) (R™),L (n—1) (Rn))

*

TA’

A>0 H @

2(n+1) ) HMa KO (25, 0)

$<L2(E W)L =D (

L (nF5) (R™),L2(Sa,x)

HTa/\” ( 2(n+1) )d)\

n—1
< [ ROl AT
A>0
where we used the straightforward estimates:
M| gags, ) < B ez

This concludes the proof of the estimate (5.17).
Estimates (5.18)—(5.19) are based on the estimate (5.17) and the facts that the
map K,y satisfies K, = K, ; when computing the adjoint with respect to the

L?*(R") scalar product, and K K, 5 = Ko xp2. Therefore,

1Karll® /2
(L (n+3) (R”),L2(R"))

- HKG@ Eﬂ (L?(Rn),L = (R"))

= || K

oo n—1
sosn e\ = [ RO ey AT AN,
.i”(L (n+3) (R™),L (n—1) (Rn)) 0

which concludes the proof of Proposition 5.3, up to exchanging k and k in the above
formulae. 0

6. LP-Estimates on the parametrix, and proofs of
Theorem 2.1 and Theorem 2.4

This section is devoted to give estimates on the norms of the various operators
appearing in Proposition 3.1, especially in the spaces .Z(LP(£2), L?(Q2)) for suitable
values of p and ¢. This will be done in particular by using the results in Proposition 5.3
with n = d — 1 and the Hardy-Littlewood-Sobolev theorem (Theorem A.1).

We will also repeatedly use the straightforward lemma below, whose proof is left
to the reader.

LEMMA 6.1. —
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1632 B. DEHMAN, S. ERVEDOZA & L. THABOUTI

(1) For all « € R, and a € [3,2], there exists C > 0 such that for all p > 1,
JF e e dX\ < Ce™ (1 + p)~.
(2) For all o > —1, there exists C > 0 such that for all ;i > 0, [t'e*\*d\ <

+1
oy
Ce T

(3) For all « > —1, there exists C' > 0 such that for all v > 0, [, e *AX*d\ <
Ce (1 +7)*.
(4) For all v < —1, there exists C' > 0 such that for all ¥ > 0, [y e *A*d\ <

_,‘/,\/a-i—l
Ce -

(5) For all « € (—3,0) and a € [3,2], there exists C > 0 such that for all v > 0,
—al )« e~
f>\>’y(A_7)2€ A d)\gow

In the whole section, we assume the setting of Theorem 2.1. Within this setting,
with ¢ defined as in (3.2), there exists ¢; > 0 depending only on ¢, in (2.4) such
that

(6.1) ¥ (x1,11) € [Xo, X%, VE € R, ! (1, &) < (1,&) < ey, &),

a
We also recall that in this section, all the constants C' depend only on ¢ in (2.4)
and m., M, in (2.5).

6.1. Estimates on the operator K, in (3.4)—(3.6)

The goal of this section is to estimate the norm of the operator K, in (3.4)—(3.6),
more precisely:

PROPOSITION 6.2. — Let §2 be as in (2.1) with Xo<0<X; and max{|Xo|, | X1|}
< 1, and assume that the coefficients ()\;)jeq1,... ap € R? satisfy Ay = 0, (2.4) and (2.5).
Then there exist C' > 0 and 79 > 1 independent of Xy, X; (and depending only on

co, my and M, in (2.4) and (2.5)), such that for all T > 1, for all f € Ld%(Q),

3,1 -
(62) NKrofll ay  +7H3 | Krofl ooy + [0 Frof

(Q) L2 (Ql,r)

11
+ 7oAt ||V,KT,0f||L2(Q) < C”fHLd%(Q),
and, for all f € L*(Q),

3, 1 3 —
(6.3) 755 | Krofl e, o+ 72 1Krof iz + 7 0nFrof

L2(Q1,7)
1
+ 72 HV/KT,OfHL2(Q) < C”fHLQ(Q%
with 4, as in (4.6).

Remark 6.3. — In the above estimates, we point out that the £ (L?(€), L%(Q))

and X(L%(Q), L*(€2)) bounds of the operator K, are estimated by a power of
the Carleman parameter that depends on d. This fact, which does not occur for the

Hilbertian estimates, has been already observed in several cases, and we refer for
instance to [BKRS88, KT01, KT05, Sog89].
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Proof. — In view of the results in Proposition 5.3, we first estimate weighted norms
of k;o(x1,y1,-) for x1 and y; in [ Xy, X;] (recall the definition of &, o in (3.6)). We also
identify ¢’ € R with pairs (\,w’) € Ry x ¥,,, where 3, = {w’ € R¥! (2, w’)
= 1}, through the formula ¢ = Mo/, or equivalently A = ¥(21,¢) and W' =
& J(xy,€). With a slight abuse of notations, we denote k;( similarly whether it is
written in terms of & € R4 or in terms of (\,w’) € R, x ¥, that is

kro(z1, 91, W) = kro(z1, 91, ).
We begin with the following lemma:

LEMMA 6.4. — There exist constants C > 0 and C; > 0 independent of X, X;
(and depending only on ¢y, m, and M, in (2.4) and (2.5)), such that for all x; and
y1 in [Xo, X4], for all T > 1, and X > 0,

o If A < 7, then the kernel k. defined in (3.6) satisfies

(64) Nlkro(@r, y1, Al oo s,

Clyy — ale v, if My — x| <1,
<
S| Sertmal e ) > 1

o If A\ > 7, then k; satisfies

C

Xef(/\*T)\xrylI*/\(m*yl)z/cl, if y1 <y,
(6:5)  Nkro(@i v Al pe(m,) < &

3¢

Setting, for x, and y; in [Xo, X1], & € R4,

~WCHm)y =] ify; >z

ol —z1) — (Y (T € du
(66) ]{?T,O7al($17y1,f/) = _1£B1<y1€ (y1—z1) le ¢(y1,§)dy1

min{z1,91}  _r(yr—a1)— (L (51,6 dii— Y1 o (€ ) din
- 1¢($1,£’)>7—<7——¢(x1,f’))s/ e (y1=a1) fxl 7/)(3/15) y1 f{tl ¢<y1§> yldib‘l

0

W —rly—an) [ () di— 2 0(5) i
+1¢($1,§')<T 1x1<y1 (T—¢($1>f/))/ € o le (1 ) ' fxl (1 ) 1dl’1,
x1
k: .5, satisfies the following bounds:
o [f AL T,

(67> ||k7,0781 (xh Y1, )‘7 ')||LOC(E(E1)
< CeNCOHnlyi—a] (7 — N|lkro(z1, y1, A, ')”Loo(zzl)-

o If A>T,
(6:8) [Er0.00 (21,51, A )l oo s,

B P L R A T S

Oe—(A/C+T)(yl_1'1)7 if yp > xq.

¢
<{ X
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Remark 6.5. — The kernel k.5, corresponds to the kernel of 0;K,o in the
following sense: for all f € L%*((Xo, X1); L*(R%™1)), and all (z1,¢') € Q4.1

~

(6.9) 81?7,07(961,5’) =/ ko0 (21, y1,E) f (1, €) dya.

y1€(X0,X1)

Proof of Lemma 6.4. — Let us first prove (6.4) corresponding to A < 7. Let
¢ € R¥1 and x; € [Xo, Xi] be such that A = (z1,£) < 7. We then have to
estimate, for y; > xq,

/yl T mE)E ff} ¥(y1.¢") dyi— k! ¥(v1.6') dy di.
xr

1

For y; € [x1, X1], we introduce the map

plor o) = [ 0@ i~ [ 0,¢) i

x1 z1

which clearly satisfies p(z1,y1,41,¢") = —p(w1, 21,91,€") = [y — 21|A/c1, and
Dol Fayn, &) = 20, €) and 2 p(a, 31,11,€) = 2010(F,€) < O by (2.5).
Therefore, by concavity in 7y, for 1 < y; and T € [x1, 1],

p(x1,Z1,91,€") < p(z1, y1,v1,E) — 2¢0(y1, E) |y — 74|
Y1 ~ _ 2 _
< / (71, €) dyy — a)\\yl — Il
1

where the last estimate follows from (6.1). Hence, we obtain

1

/yl e’T(yr:meEll Y(90.8") dyi— [21 o(y1.€") dyn dr,
X

1

< e*T(ylle) v efzyll 1/’(51’5/) d§172)‘|y1751|/61 di,
z1

< e*T(ylfﬂfl)Jrfmyll ¥(v1,€') dy

. 1
mm{\yl x1), 2)\} )
We then use that the function g; — ¥(y1,{’) is concave, so that for z; < 7,
we have ¥(71,¢) < ¥(21,£) + 01p(21,&) (Y1 — x1). From (5.3) and (2.5), there
exists a constant co > 0 depending only on ¢y, m, and M, such that 019 (z1,£) <
—cY(11,&") = —caA. Therefore, for yy > 21, [J¥(71,€) dyy < (y1 —21) A — oM (y1 —
71)?, and (6.4) follows immediately.

We then prove (6.5) corresponding to A > 7. Let ¢ € R*! and z; € [Xo, X
be such that A = ¢(x1,£’) > 7. We then have to estimate, for y; € [Xo, X3], the
quantity

min{xy, —_r —x1)— [*1 U £ dur — [Y1 IR AN A

/ {zrun} o) Fto(og) din- 2 o (on€) din o
Xo

As before, one easily checks that the map Z; — — ffll W(y1,&) dyy — ffll »(y1,¢&) dyy

has derivative 2¢(Z1,¢’) and is thus strictly increasing and concave. Therefore, for
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Global L? Carleman estimates for the Laplace operator 1635

all 71 € [Xo, min{xy, y1}],

- /;1 (1, ) dijy — /: Y(71,¢) diyy

max{z1,y1}

< - Y(1, &) dyy + 2¢p(minf{zy, y1 }, ) (2 — min{zy, 1 })

min{z1,y1}

max{z1,y1}

<- O(G, €) iy — flxmm{xl,yl} — @),

min{z1,y1}

Accordingly,

min{z1,y1} _ —xq)— [21 W(y1,¢") dy1— 41 ¥(y1,8") dy: ~
/ e T(y1—x1) qu (yl ) Y1 fwl (yl ) Y1 dxl
Xo

_ -~ _ max{x1,y]} ~ ~ c
L e T Josntzyny P 0E) 1 i {2;, | min{zy, 11} — Xo|} :
If y; > 21, we simply use

max{z1,y1} B N 1
_/ Y (y1,€) dys < ——(y1 — x1) A

min{z1,y1} (&1

If 3 < 21, we use that 1 is concave decreasing and thus for all 7; € [y, 1],
(Y1, E) = Y(x,8) + (41 — 21)01Y(y1,&'). But there exists a constant ¢g > 0
depending on ¢y, m, and M, such that d1¢(y1,£) < —(x1,£')/cs, so that we easily
get

max{z1,y1} N 1
-/ () din < (o — )X = — (3 — 2\

min{z1,y1} 3

in this case. Combining the last three estimates immediately yields (6.5).
The proof of estimates (6.7)—(6.8) follows from the fact that, for y; > 21,

Hef(ylxl)fff v(n) i < e~ m—m),

L25(5ay)

and from the estimates already proved above. Details are left to the reader. O

Using the bounds in Lemma 6.4, we prove the following lemma:

LEMMA 6.6. — There exists a constant C' > 0 independent of Xy, X; (and de-
pending only on ¢y, m, and M, in (2.4) and (2.5)), such that for all z1 and y, in
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[Xo, Xq], for all T > 1,

C
6.10 | Mo, g ) e, ) AF A < s
( ) =0 || ,O(Il Y1 )”L (211) ‘33'1 — 3/1’173
1
610 ([ ol Al s,y M FdN) < ooy = )
A>0 0 (3a1) ’
with kro € L7 (R) and kol o < Cr7i73,
’ I La-T(R)
> \2 C
(612) ([ Iheoon (@ n A s,y N HdN) < .
A>0 o 1 |[p1—y1| d
(6.13)
/ N2 1—-2 %
</>\>0||)\w kT,0<xluy17>\7w>‘|Lf}(211) A dd}‘)
C .
< — + kro(T1 — 31),
w1 — ]
with ko € L7 (R) and |[k-of o < Criva,
’ I LAa-T(R)
Proof of Lemma 6.6. — We start by simply noticing that we can always impose

that O} in Lemma 6.4 is large enough to get for all (xq,4;) € [Xo, X1)?, that |z, —
y11?/C1 < |z1 — y1|/4. This can be done by assuming for instance C; > 8 since
| Xol, | X1| < 1. This will make some of the estimates below easier to prove properly.
For convenience, this constant C; will next be denoted by C, similarly as generic
constants which depend only on the dimension and the parameters ¢y, m, and M,
in (2.4), and (2.5).

Proof of (6.10). We decompose the integral in the left-hand side of (6.10) in three
terms more suitable to use the results in Lemma 6.4. The first is easily estimated as

follows:

0

/miﬂ{ﬂl/yl—wl [}

_2
||k7—’0(x1’y1’)\7'>||L°°(Ezl) /\1 dd)\

min{7,1/|y1—=z1|} 12
< C/ lyy — xyfe T m NG g\
0

1 >-a
< Clyy — x1\6_7|y1_x1| min {7’, }
‘yl - 1’1’

< C!yl — le‘*lJr%e*ﬂyl*ﬂtl‘ min {7.|y1 N x1|’ 1}2—% < C|y1 B l’1|71+%.
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Next if 1/|y1 — x1| < 7, that is 7|y, — z1| > 1, we get

T kT L1, 7/\7 : oo )\17% dA
/l/yl—wl lro(es v, Al (£a1)
< C T 6—(T—>\)|y1—x1|—)\|y1_x1|2/01)\_% d)\
1/ly1—1|
< CGileli‘m' . eA|y1711|)\7% d)\
1/|y1—w1|

Tly1 —z1]

< C|y1 - x1|71+§e*7|y1*x1|/ ! 1 e)‘/\*% d)\
1

1
< C|yl - IL'1|_1+% - < C|y1 _ $1|—1+%7
(1 +7yr — 21|)a

where, from the fourth to the fifth lines, we have used Lemma 6.1(1). Finally, we
also have, for y; > x1,

1—2
/)\>T||k770(w1’y17)\’.)”Lw(Em) AT2dA
< C e_(A/C‘f'T)(yl—wﬂ)\—% d\
A>T

< Cemrlnmm) [ /Oy gy
A>0

< Ce ™=y, — ml|—1+§ < Clys — x1|—1+§_

Accordingly, estimate (6.10) holds for y; > x;. Then for y; < x1, it only remains to
prove the following estimate, in which we use Lemma 6.1 (3):

1—2
/,\>T HkT,O(xbyb A, ')HLOO(E“) AT ddA

< C e*()‘*T)(Il*y1)f)\(x1—y1)2/01 )\,% A\
A>T

< Clem(@1—y1) / e*)\(xlfyl))\*% d\

A>T

< Clay =y et | e A~ dA

A>7(x1-Y1)

<Oz — yer% -

This concludes the proof of (6.10) for y; < z; as well. O
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Proof of (6.11). Of course, the proof of (6.11) is very similar to the one of (6.10).
We first have

min{7,1/|y1—z1[}
L Mo A s,y X AN

IIll‘Il{ ’1/|y1 xl‘}
C/
0

~

_ _ _2
Y — .111|2€ 27|y1—x1| )\1 2 d\
2 -2 1 o
< Clyy — o1]7e” T nlpindr, ———
ly1 — 1|

<Cra ((7'|3/1 — ) ie M= min {rly; — 2, 1}2_%) '

Next if 1/|y; — x1| < 7, that is 7]y; — 1| > 1, using Lemma 6.1 (1), we have

T 9 12
L Mo ) s,y X )
<c [ o= 2(r=Nly1—z1| =2\ (1 —21)?/C1 \ ~1-2 7\
1/ly1 -1
< Ce—ZT\yl—xﬂ T 62)\(\y17x1\—(y17x1)2/01))\—1—% d\
1/ly1 -1

2 _ Tly1—z1] e )
< Clyy —anfae”> xl'/ D N )
1

0l |2 e~ T—1)?/C

< Clyy — 2|4

S (14 7]y — 21]) e
, e Tn—x1)?/C

<Ct4d .
= (14 7|yr — 21])

Finally, we also have, for y; > x1,

2 1—-2
| Moy A e, ) A

<C e 2N/ CHn)(y1—21) \~1-F g\
A>T

< Ce~2rlyi—a1) e~ 2My1—21)/C\—1-3 1y
A>T

< Qe 2 ly—a) A E A

A>T
—92 — _2
< Ce T(yi—21) —5
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On the other hand, for xz; > y;, we have that

Mo n A s, ) M EdA

< C’ 6—2()\—7')(361—yl)—2/\(~’01—y1)2/C1)\—1—% d)\
A>T

< CQQT(M*ZJI) / e—2>\((z1—y1)+(x1—y1)2/01))\*1*% d\
A>T

< 0627'(931*1/1)’(1;1 _ yl‘%/ €—2>\(1+(ﬂ?1—y1)2/c1))\7173 d)\,
A>Tlz1—y1|

so that using Lemma 6.1 (4), for z; > y;, we obtain

2 6—27(11—111)2/01

d .
1+ T(.Tl — yl)

2 _2
/)\>T |‘k770(:€1’y1’ )\’ ')HLOO(Ez-ﬂ >\1 @ d\ < cr

Therefore, combining the above estimates, we have

614) ([ oy A ) s, XN FAA) < Cholon = )
1 e_T|Z1‘2/C
(et s )

(rl=1)2

=

~ _1 -
where ]{3770(21) =1p<1rT 4+ Ly 5107

Easy computations then yield H%T,OHL < Cr~ 1721 as announced. O

_d
1(R)

Proof of (6.12). We have
/ e 2MEHDIn=nINI=G ) < e 2rlvimelly, — :U1|_2+% <y — $1|_2+%.
A>0

We also have, as before,

/min{q—,l/yl—xﬂ}(T B )\)2|y1 . x1’26727\y1*$1\ )\1*2 d\
0

min{7,1/|y1—x1|} 5
< 72/0 ly1 — a1 e 2=l \1=3 g\

1 >"a
< C’7'2|y1 — x1|26_2ﬂy1_“‘ min {T, }
|y1 - $1|

—27|y1—>1|

2 9 . 2-2
< Clyy — xq]dt7e min{7|y; — x1],1}7 4@

‘72+§( —27[y1 1]

min {7|y; — 21, 1}2_3

Clyr — x4 T|lyr — 331‘)2@

<
< Clyy — | 724,

If 1/|yy — 1| < 7, that is 7|y; — x1] > 1, we distinguish the cases 1/|y; — 21| < 7/2
and 1/|y; — x| = 7/2.
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If 1/|yy — 1| € [7/2, 7], we have

/T (7— _ )\)26—2(7—)\”2/1—331|—2>\(y1—$1)2/C’1 /\—1—% d\
1

/ly1—1]
g 06—27|y1—r1| /T (7_ B )\)262)\(@1_3;1|_(y1_z1)2/cl))\_1_% A\
/2
< 06727|y17m1|7_717% /T (7‘ - >\)262)\(|y1—x1|_(y1_x1)2/cl) A\

T/2
—1—%627(|y1—x1I—(y1—x1)2/C1)

-
< Ce—QT|y1—r1| -
|?J1 - 33'1’

)
<C

‘3/1 - 9151|3

< Clyy — oy 2 (rlyy — @) ae 0200 L Olyy — |24

If 1/|y1 — 21| < 7/2, we split the integral into two parts, ff—//él*fﬂ and [[,. The
second integral has been estimated above, and, using Lemma 6.1 (1), the first one is
estimated as follows:

/ (7_ . )\)26—2(7'—)\)|y1—x1|—2/\(y1—x1)2/0)\—1—% d\
AE 1/ |ly1—=1|,7/2)

/2

< e—2f\y1—x1\7_2/ 62/\(|y1—$1|—(y1—$1)2/0))\—1—2/dd)\

1/ly1—m1]

< Ce rmile2)y g /ﬂylxlﬂ 1= (n=e1)/C) \=1=F g\
1

< Clys —m|ir?e ™ =ml(rly, — )74
<

It remains to estimate, for y; < xq,

2,207 (@1 —y)~2A (@1 —51)?/C 13

(A—17)%€ A d\

A>T

< Cerl@—v) (A — 7)2e~ M@=y +H@—y)?/C) \ 1= g\
A>T

<O Wy =y [ vl -l e PO Ox 1 )
)\>T£B17y1

We now use Lemma 6.1(5) and obtain for z; > y,

/ ()\ _ 7—)26*2()\*7)(%1*yl)*2/\($1*y1)2/c)\*1*% d\
A>T

. C|l’1 _ y1|—2+%e*27(901*yl)2/0

< C'|3171 - 3/1|72+%-
L+ (rlay — )+
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Proof of (6.13). We have
min{7,1/|y1—z1(}
/o H)‘w/k“()(m’yl’/\’w/>”ij‘3(211) A7 d)

min{r,1/[y1—z1|}
S C/O ’yl - $1‘26727(y1711) )\3,% X

R R
< Clyr — a1’ =) min {T, }
|yl - 331\

< C|y1 _ x1|*2+%€*27(y1711)min {lel - Q31|7 1}4—% <C|y1 . .’1}1|72+%,

If 1/|y1 — 21| < 7, that is 7|y; — 21| > 1, using Lemma 6.1 (1), we obtain

’ ! N2 12
/1/y1 21 ||)\UJ k“T,O(xl7y17)\,W)||L§(211) >\ 3 d)\

e B A o A O S A BN
1/y1—21|
< Ce—QT\?Jl—m\ T 62)\(|y17x1\7(3/1,%1)2/0))\1_% A\
1/|3/1*961|

_942 _ _ Tlyr—z1| o D
<C|y1—$1| 245 =27l m\/l 2 A=ly1=21]/C) \1=3 1\

Clyn — a1|” +§e_7(yl—ffl)2/0( ly1 — $1’)1—§
C

7-1 T(yl x1) /C|y1_l‘1|

NN

Finally, using Lemma 6.1 (3), we also have, for y; > 1,

/)\>T”)\w/kT,O(xl?yl,)\,w/)Hi:ﬁ(EwJ )\1—% d\

< C 672(/\/C+7')(y1*21))\177 d\

A>T
< Ce—2r(y1—x1)/ 6—2)\(91—371)/0/\1_3 A\
A>T
< Ce 2oy, — gy |24 / e~2NC A= g\
A>T(y1—21)

2
<C€_27y1 xl)‘y —JJ1| 2+ (1+( ’yl_xlD)l_d
< Clyr — o|” 24,

Similarly, for z; > yy,

[ Delheafon i Al s, N

<C e~ 20T (@1—y1)=2X(z1-41)?/C \ 1= gy
A>T

< C€2T(w1_y1)/ 672)‘((x1*y1)+(331*y1)2/c)Al—% d\

A>T
< Cer@—w)|p, — y1|—2+§/ e~ (a1 —1)/C) \1-3 gy

A>Tz —y1|
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so that using Lemma 6.1 (3), we get, for 7 > vy,

S @1, A e, ) A D

Clyr — $1|_2+%€_27(y1_m)2/0(1 +Tly — 7 |) a
1

<
2
<O (Lyai<aselyn = 217250 4+ 1y, gyoye " alys — [Tl mm)/0).

Therefore, by combining the above estimates, we have

3
([ I beoon, A s ) A )
1 v
<C (H + kro(T1 — 3/1)) ;

where ]27,0('21) = 1\21|>1/T7—%_56_72%/C|Z1|_%‘

1

Easy computations then give ||kyo(z;) < Cri72a, as announced. This con-

Ity <
cludes the proof of Lemma 6.6. 0

Now we are in position to conclude the proof of Proposition 6.2. First, from
Proposition 5.3 with n = d — 1, estimate (6.10) and the one-dimensional Hardy—

Littlewood—Sobolev inequality (recall Theorem A.1), we have, for f € L%(Q),

Ko fll 2

x= 2(9)
< KTOf X1,y —2d_
= || ’ ( ! )||L§/72(Rd71) did(Xo,Xl)
X1 _2
<L Mot g Al A AN ) 1) s oy W1
o ) Lr(X07X1)
el T ——— T d
< - Y1, * 2d_ Y1
Xo |:131—y1|1_% Ly (@I ng%(Xle)
SO Gl g, || =Cl 2 o -
Lg‘fl+2(X07X1)

Using the estimate (6.11) in Proposition 5.3, and Young’s inequality, we have, for
f € Lz (Q),
K0/l 120

< 1ot s gy

L3, (X0,X1)

dy:

B k 20|12 AlfgdA%
o (o Wssatn om0 s M) Wl g,

L3, (X0,X1)
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X1 -
< — .
<C /Xo kro(zr —y) [[f (w1, ) Ld,Qﬁz(Rd—1>dy1
v L7, (X0,X1)
< C |kro L7 w (v1,°) L7 () # < Crim|f] T,
L2 (Xo,X1)
Similarly, for f € L?(Q), we get
3.1
(6,15 1Ko, gy < 7475 Ul

Using the relation (6.9), the estimate (6.12) in Proposition 5.3, and Hardy—Little-
wood—Sobolev theorem (Theorem A.1), we get, for all f € L%(Q),

oK <O, a4
Using the estimate (6.13) in Propositlon 5.3, Hardy—thtlewood—Sobolev theorem
(Theorem A.1) and Young’s inequality, we get, for all f € Ld%(Q),
IV' Ko f ll 20y < CT373 |11 2

La+tz(Q)

L2(Q .

The above estimates allow to conclude the estimate (6.2).
Estimate (6.3) simply consists in the combination of (6.15), Theorem 4.1, and
estimate (4.7). O

6.2. Estimates on the operator K ;

The goal of this section is to estimate the norm of the operator K, ; in (3.4)—(3.7),
more precisely:

PROPOSITION 6.7. — Let 2 be asin (2.1) with X <0< X; and max{|Xy|, | X1|} <
1, and assume that the coefficients (\;)je 1, ..., ay € R? satisfy \; = 0, (2.4) and (2.5).
Then there exist C' > 0 and 79 > 1 independent of Xy, X1 (and depending only on
co, My and M, in (2.4) and (2.5)), such that for all T > 7y and for all f € L*(QQ),

11 3 Koif
T NK g, + T W ey + [0 T

_1
1-,—) +7— 2 HV/KTylfH[P(Q)
< Ollfllz2)-

Proof. — We use the same notations as in the proof of the previous proposition.
From the definition of k. ; in (3.7), adapting the proof of Lemma 6.6 to k., we can
easily deduce the following result, whose proof is left to the reader:

LEMMA 6.8. — There exists a constant C' > 0 independent of Xy, X; (and de-
pending only on ¢y, m, and M, in (2.4) and (2.5)), such that for all z1 and y, in
[Xo, Xy], for all T > 1, and A > 0,

(616) [k (1,91, A )l oo s,

< Ce~Im=Ally1— —z1|=A(y1—x1)?/C + C(T + ,\)Hk;T’O(;pl,yh A, ')“LOO(E )
@
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We shall then prove the following lemma:

LEMMA 6.9. — There exists a constant C' > 0 independent of Xy, X; (and de-
pending only on ¢y, m, and M, in (2.4) and (2.5)), such that for all x; and y, in
[Xo,Xl], for all T = ].,

717;"_%7-,1(331 —?/1),
|2y —yy|' 74

kT,l

%
(6.17) </A>0||k:T71(x1,y1,/\,-)||ioo(211) Al—idA> <C

with %7,1 € Ld%l(]R) and ‘ < COri—m,

_d_
L71(R)

Proof. — Using Lemma 6.1 (2), we get
/T o 2T=Nly 21| =2X(y1-21)?/C \1-F gy
0

< Cle2mly1—a1] /T €2>\(\y1—z1|—(y1—x1)2/c) )\173 d\
0

5.2 _ T|y1 —z1] e 2
< Clys — | 2Hiem2rinonl [ A A-ln=a1l/C) \1=5 g
0

2
2-3

- 2 T —x T — X
< Clyy — oy | Frae 2w 1)?/C (1 |-|z{17—|y1 1_|)x1’

_2 1 — —r1)2
< Ort aly; — a1 Lo=27(y1—21)*/C

Similarly, using Lemma 6.1(3), we get

/OO 6_2(/\_T)|y1—501|—2>\(y1—x1)2/c)\1_% d\

<062T‘y1*x1‘ /02_2’\(“/1_3?1\+(yl_x1)2/c> )\17% d\
T
o0
< Clyr — m| 2 i e 2=l / e~ PAAHu=al/O\1=F g
T

ly1—z1]

< C|y1 . x1’72+%6727(y1711)2/0(1 + T’yl . Iﬂ)li%
2 -2 —1_—27(y1—x
< C (1\y1—x1\<1/7|y1 - $1|_2+d + 1|y1—x1\21/77—1 d|y1 - $1| 16 2r(n 1)2/C> .

Now, from (6.11), (6.13), (6.16) and the explicit formula of k..o in (6.14), we get

1
([ 2 oo,y VP N2
A>0

1 ~ .
<C (11 + Thro(z1 —y1) + k(2 — y1)> .
‘331 - yl’

a
We then easily obtain (6.17). O

We now conclude the proof of Proposition 6.7. As in the proof of Proposition 6.2,
the estimate (6.17) easily implies that there exists C' > 0 such that for all 7 > 1 and
for all f € L*(Q),

1,1
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The estimates on K,; and V'K, ; as operators from L?(Q2) to L*(f2), and on all?;
from L?(2) to L?(2; ;) can then be deduced immediately from Theorem 4.1 and (4.7).
U

6.3. Estimates on the operator K ; for j > 2

The goal of this section is to estimate the norm of the operator K ; in (3.4)-(3.8)
for 7 > 2, more precisely:

PROPOSITION 6.10. — Let Q be as in (2.1) with X, <0< X; and max{|Xo|, | X1|}
< 1, and assume that the coefficients (A\j)jeq,...qy € R? satisfy \; = 0, (2.4)
and (2.5). Then there exist C' > 0 and 7y > 1 independent of Xy, X; (and depending
only on ¢y, m, and M, in (2.4) and (2.5)), such that for all j € {2, --- | d}, for all
T > 719 and for all f € L*(),

1,1 1 T 7
T K |y g+ Vi gy + |0 T

L2(Q1,7)
_1
+ 72 VK f gy < Cll 2@

Proof. — We start by noticing that there exists a constant C' > 0 such that for all
j€{2, -+, d}, for all z; and y; in [Xo, X;], for all 7 > 1, and A > 0,

| brj (@1, 91, A, ')HLOO(EII) < OX||kro(z1, y1,5 A, ')||Loo(2zl) -

From (6.13), there exists a constant C' > 0 such that for all z; and y; in [Xo, X;],
for all 7 > 1, and for all j € {2,--- ,d},

1

2 2 1 .
(6.18) (/ 1Frj (1, 91, A, ')Hi“’(z ) AT dA) <C———— F kro(z1 — Y1),
A>0 zq |x1 . y1|1_a
with kro € L%(R) and |kl o < Cri—ma,
’ 7= gy

Accordingly, there exists C' > 0, such that for all j € {2,--- ,d}, for all 7 > 1 and
for all f € L*(Q),

1,1
TR K £l gy ) < Ol Nz

We then conclude Proposition 6.10 by combining this estimate with the ones in
Theorem 4.1 and (4.7). O

6.4. Estimates on the operator G, in (3.9)—(3.10)

PROPOSITION 6.11. — Let Q be as in (2.1) with X, <0< X; and max{|Xo|, | X1|}
< 1, and assume that the coefficients (A\j)jeq,...qy € R? satisfy \; = 0, (2.4)
and (2.5). Then there exists C' > 0 independent of Xy, X; (and depending only on
co, my and M, in (2.4) and (2.5)), such that for all T > 1, for all g € Hz (R*1),

(6.19) 77 (G- (9)l 200y + |01G(9)

_1
+ 73 VG (9)l 120

+1Gagll gy oy < Cll

L2(,7)

Rdfl)'
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1646 B. DEHMAN, S. ERVEDOZA & L. THABOUTI

Proof. — Note that all the terms in (6.19) involving Hilbertian norms have already
been estimated in Theorem 4.4, so only the estimate on G, in the

Z(H3%(RI1), L2 (())-norm remains to prove.
For g € Hz(R™1), we introduce go € L2(R%) so that go(&') = |€/]25(¢'), and we
notice that G-(g) = G;0(g0), where G is given as follows:

G/r,o\go<$1,€/) = g‘r,O(xlyg,)aO(f/), (1’1,5/) € [Xo,Xl] X Rdil,

(21,€)/|€'|2, and g, as in (3.10). It is then clear that the

with gro(21,&") = g ez
2(Q2))-norm of G, coincides with the Z(L?(R4™1), La-2(Q))-norm

)
ZL(H 2(Rd b, L=
of G7—70.
To estimate the .Z(L*(R?1), L%(Q))—norm of G, we compute G7,, where the
adjoint is given with respect to the L?(Q) scalar product: for f € L*(Q),

d

~

Grol (€)= | grolr1 &) (a1, €) dus, g e R
x1 € [Xo,Xl]
Accordingly, for f € L*(Q),

GroGhof(21,€) :/y o 7 (£1,€) gro (y1,€) (1, &) dyn, (x1,&') € Q.

Our next goal is to check that the operator G oG belongs to X(Ld% (Q), Lo (2)).
In order to do that, as previously, we first check that there exists a constant C
such that for all z; € [X,, X3], for all A > 0,

C

(6‘20) ||gT70(x1’ )\7 ')HLOO(Z ) < 1>\>T)\7 —(A—T)(m—Xo)—A(x1—Xo)2/C‘
zq =

e
Consequently, for z; € [Xo, X;] and y; € [Xo, X1],

|GroGrof (21,)]

L% (Rd—1)
00 12
< 1 € [Xo,X] /r [gro(z1, A, ')HLoo(zz ) HgT,O(yla A, ')HLOO(EII) AT adA
||f(y1a )||Ld+2 (]Rd 1)
< / / % = (A=) (@1=Xo)+ (1~ X0) = A( (a1 - X0)>+ (11 -X0)) /Oy ~ 3 7
y1 € [Xo0,X1]

1F )l

dy,

(s W1

—7((@1-X0)?+(y1-X0)?)/C

1 + (T(Il — X(] -+ Y1 — Xo))
dys,

2

< X X))
| -y (0= X0) (1= X0))

1S (1, )

v

LT (Re-1)
where we have used Lemma 6.1 item (3). With straightforward bounds, we thus get

HGTOGTof(xh )‘

< )R .
) S g @I ()
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Global L? Carleman estimates for the Laplace operator 1647

and then Hardy-Littlewood—Sobolev theorem (Theorem A.1) implies that

[eave CUSN, 24

It follows that the Z(L*(R41), L%(Q))—norm of G, is bounded by a constant
independent of 7 as announced, and thus this is also the case for the £ (Hz (R*1),
L#3(Q))-norm of G,. 0

Remark 6.12. — One may wonder why the above proof does not rely on the
estimate (5.19) directly. This is due to the fact that it would correspond to a limit
case. Indeed, from the estimate(6.20) and Proposition 5.3, for z; € [Xq, X1,

||GT,090<x17 )H 2d (

Rd— 1)

< Ol ey Norofn A s, N300

OHQOHL2 Rd~1 \// 21-X0)—2X(21-X0)2/C \~ 3 )\

—71(x1—X0)2/C
i e
X0| (d—2)/(2d)

1+ (r(z1 — Xo))d

)

< C||90||L2(Rd—1) |l‘1 -

where we used item (3) in Lemma 6.1. But the function

—71(x1—X0)2/C

e e
21 |31 — X[ ~D/Ca) .
1+ (7(x; — Xop))d

does not belong to Ld%(XO,Xl), and so we cannot conclude directly that G ogo
2d
belongs to La-2(2).

6.5. Estimates on the operator R, in (3.5)

For f € H1<Q)7 using that RT(f) = KT,O(Q) Wlth §(:L’1,§/) = 81¢($175/>f(x1a§/)7
and thus with [|g||r2() < C||V'f|l12(0), we immediately deduce the following result
from (6.3):

PROPOSITION 6.13. — Let Q be as in (2.1) with X, <0< X; and max{|Xo|, | X1|}

< 1, and assume that the coefficients ()\;)jeq1.... ay € R? satisfy Ay = 0, (2.4) and (2.5).
Then there exist C' > 0 and 7y > 1 independent of Xy, X; (and depending only on
co, my and M, in (2.4) and (2.5)), such that for all T > 7y, for all f € H*(Q),

R gy o TE IR gy + 7 [0 R

1
2 + 72 HV,RT,OfHLQ(Q)
SOV 2

)

TOME 7 (2024)



1648 B. DEHMAN, S. ERVEDOZA & L. THABOUTI

6.6. Proofs of Theorem 2.4 and Theorem 2.1

Within the setting of Theorem 2.4, we use Proposition 3.1 to write the solution
w of (2.8) satisfying (Oyw — F1)(X1,-) = 0 in R under the form (3.3). Since
w € H(Q), using the various estimates in Propositions 6.2, 6.7, 6.10, 6.11 and 6.13,
we obtain, on one hand,

3 3 1
(621) T§||'UJ||L2(Q) —+ 7'Z||81w||L2(Q) + 72 ||VIU)||L2(Q) < C (||f2||L2(Q)

3_ 1 /
Al g o+ I 0+ T i)+ IV i )

and, on the other hand,

622) Tl gy <O (Ifallia + 755 2

LT 2(Q

L2 o T TNl

2 (Q)

+m2wmu4g}wdg+HVwme-

We then simply take 7 > 75 with 77 > 1 large enough in order to absorb the last
term in the right-hand side of (6.21) by 72 |V'w|| 20, and we get

(623) 7 wlzz@ + 7 ol o) + 7 90l a0
<€ (Mallwaoy + 74 11

that is estimate (2.9).
Therefore, using (6.23), the last term in (6.22) can be removed, thus yielding (2.10).
In order to prove Theorem 2.1, we simply use the correspondence w(z) = e™'v(zx)
for x € Q. This proves (2.6) and (2.7) for 7 > 75. We then deduce (2.6) and (2.7) for
any 7 > 1 by changing the constant if necessary through straightforward bounds on
T eXp(Txl) for 7 € [1, 7).

L o FTIF ) + 7 gl .1

Ld+2(Q)

H? ({Xo}de 1)) ’

7. General geometrical setting: proof of Theorem 1.1

Here, we provide a proof of Theorem 1.1 using Fourier techniques as we did earlier,
following the approach developed in [DE23], and adapted to the case of source terms

in H71(Q) and in Ld%(Q) This approach is based on a localization argument and
a gluing argument, as it is usually done for Carleman estimates. The originality
here is that we will localize the functions in balls of size T’%, that is, depending
on the Carleman parameter 7. Doing that choice allows to somehow approximate
the weight function ¢ by its quadratic approximation, and to reduce the problem
through a suitable change of variables to the case of a strip with linear coefficients
as in Theorem 2.4 (see Lemma 7.1 and its proof).
For 7 > 1, we introduce

wzeﬂpu’ fQ:eTw(fQ_TVSO'F)a f~2/*:€ﬂpf2'*7 erﬂva §:g7
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Global L? Carleman estimates for the Laplace operator 1649

so that the function u solves (1.4) if and only if w solves

(7.1) Aw — 27V - Vw + 72|Vo|Pw — TApw = fo + fg; + div (F) , in Q,
‘ w=g on 0f).

7.1. Local estimates

Our first step is to introduce a local version of (7.1). Namely, for zo € Q \ w, we
introduce 7,,(z) a cut-off function, which will be made more precise in (7.5), and set

wl“o(x) = nxo(x)w(x), HANS Q7
which solves
Awg, — 27V - Vw,, + 7'2|Vg0|2wz0 = foue + for zy + div(Fy,), in Q,
(7.2) - ’ *
Wy = YGzo on 89,
where

f2.20 = Mo fg — Vg, - F+ TAQpw,, + 2Vn,, - Vw + Angw — 27V - Vi, w
f2’*,zo :771:on’*7 FCC() :771:0]5, 9zo :naf:og

We claim that, provided the localization is strong enough, we can get a local
Carleman estimate:

LEMMA 7.1. — There exist constants C' > 0 and 7o > 1 (depending only on «, f3,
ol o3 (@) ) such that for all T > 1, for all x € Q\ w, and for all

flwo S L2(Q)7 f2'*,$0 € L%(Q% Faco € L2<Q;Cd)a and 9z € H% (aQ)a
and w,, satisfying (7.2) and supported in B(xy, 773) N €Y, we have

3 1 3_1
(73) T2 ||wxo||L2(Q) + 72 ||wa0||L2(Q) + 714 2d||wx0||L%(Q)

< O (Wamllizay + 753 Wforan gty g + 7l1Feullzen + 78000l )

and

(74) 7805 gy 477 [0 g2y + 72 Vw2

<C (ol sy + 75 ol

3

L
iy TIErol@) + 7 gl )

The proof of Lemma 7.1 is postponed to the next section, and will be based on a
suitable change of variables and the Carleman estimate in Theorem 2.4.
In the following, we will thus choose the localization as follows:

(7.5) Neo () =1 (T%(ZL‘ — xo)) , r € RY,
where 7 is a non-negative smooth radial function (in €>°(R?)) such that n(p) = 1

for |p| < % and vanishing outside the unit ball, so that Lemma 7.1 applies to w,,,

and the estimates (7.3) and (7.4) hold uniformly with respect to zy € Q \ w.
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1650 B. DEHMAN, S. ERVEDOZA & L. THABOUTI

It thus remains to prove Lemma 7.1, which is done in Section 7.2, and to show how
to glue the estimates in Lemma 7.1 to conclude Theorem 1.1, which is explained in
Section 7.3.

7.2. Proof of Lemma 7.1: A suitable change of coordinates

The proof of Lemma 7.1 mainly reduces to a suitable change of variables allowing
to link the Carleman estimates (7.3) and (7.4) in small balls around z, with the
Carleman estimates (2.9)-(2.10) in the strip proved in Theorem 2.4.

We let 2o € Q \ w, and we introduce L; € R¢ and A; € R¥? a5 follows:

Ly = V(zg) € R, A; = Hess p(z) € R,
The bilinear form
€ € R (Hess p(x0))E - €
is symmetric on R? and on Span{L;}*. Accordingly, there exists a family of or-
thogonal vectors (L;);e 2, ., ay of Span{L;}+ which diagonalizes this form, that we
normalize so that for all j € {2,---,d}, |L;| = |L1|. Since the family (L;);c (2,4
of Span{L,}+ diagonalizes the form ¢ ~ (Hess (o)) - € in Span{L;}*, for all
j€{2,---,d}, there exist a; and y; in R such that
(Hess p(z0))Lj = pjL; + oLy, jed2,---,d}.
Note that by symmetry of Hess ¢(x(), we then necessarily have
(Hess p(z0)) L1 = 1Ly + Z oLy,
k>2

where

(Hess p(x0)) L1 - Ly = B (Hess ¢(z0)) V(o) - Vio(o).

V(o)
For j € {2,---,d}, we then introduce the self-adjoint matrix A; € R¥? defined by
AL =y oyl ke 2 dh\ (),

Aij = —,U,le + Z OékLk.

k>2

H1 = ’L1\2

(7.6)

(It is easy to check that the matrix A; defined that way is indeed symmetric.)
We shall then introduce the following change of coordinates for x in a neighbour-
hood of xy:

y1(x) = p(x) — p(x0),

forj € {2, dY, y;(x) = L, - ( — o) + ;Aj(x ~ w0) - (z — o).

By construction, there exists a neighbourhood, whose size depends on the C? norm
of ¢ only, such that = — y(z) is a local diffeomorphism between a neighbourhood
V of g in Q \ w and a neighbourhood of 0, that we call €, and which may thus
contain the image of a part of 9€2. If it exists, we will denote it by I'y = y(0Q2 N V).
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Global L? Carleman estimates for the Laplace operator 1651

For 7 large enough, we can ensure that the ball of center z and radius 7'_%, when
intersected with €, is included in a set on which = — y(x) is a diffeomorphism, and

its image is included in a ball B(0, C773).
Therefore, for w,, solving (7.2), we set
W(y) = way(x) for y=y(z),
Explicit computations then give that w satisfies, for = € Q N B(x, 7'_%),

(7.7) %_: bk (2)0y, 0y, 0(y(x)) + Vy(y(z)) - Aay(z) — 27;%(%)3@;@(9(@)
+7%|V(x) P (y(x)) = (Awa, — 27V - Vg, + 72| Vi Pwy, ) (),
where
bir(z) = Vyyj(x) - Veye(x), and ¢ Z Dip(x)dy;(x

We then remark that c;(z) = bj1(x) and that b;,(z) = bk,j(x) for all . We now
briefly analyze the coefficients b; ;. By construction of the coordinates (y;);e 1, a},
we easily check that for (j,k, () € {1, ---, d}?,
bjn(xo) = [L1[*d;
d

e i (x0) =D (06D (0) Oy (o) + 07y (20) DDy (20))
i=1
d
= Z(Ajei . 6@)(Lk . ei) + (LJ . 61')(14]661‘ . 64) = (Aij + Aij) - €y,
i=1

so that we have in particular that
Lg . Vbj’k(xo) = (A]Lk + AkLJ) . Lg,
For convenience, we also write separately

IVo(z0)]> = |L1]?, and 84(|Vg0|2)(x0):2zagi3ig0(xo)aig0(xo):2A1L1-eg.

We can thus analyze b; /| V|? close to z = zy:

bjk

Vo (10) = 0
b 1
L \V4 <|VJ k|2> ( 0) |L |2 ((A Lk + Ak ) Lg — 2(5]‘7]9141[/1 . Lg) .
In particular, since A;Ly + AL; =0 for all 5,k € {1, --- , d} with j # k,

b.
Vike{l,---,d} withj#k Ve {l, - -, d}, LL;~V<‘VJ£’2> (xo) = 0.

When j = k£ =1, it is obvious that

bll
V/e 1, ---.d L,-V : = 0.
€ { ) ) }’ ¢ <|V§0|2> (xO)
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When j = k > 2, the choices (7.6) yield

Lg-V( big >(m0):Owhen€€{2,---,d},

[Vel?
and
ij' 2
Ll -V |V90|2 (CL’()) == |L1|2 (AlL L + AlLl L1>

Consequently, as a consequence of Taylor expansion of b;x/|V|? close to x = x,
bj ()

,Vﬂ)P—@ﬁa—&wm»+00w—mm,
where
(7.8) M =0, )= |L2|2(A1L L+ ALy - Ly) forje{2, ---,d}.
Accordingly, setting
binl) = 5 for = la),

we have
biw(y) = 051 = Nyr) + O(lyl*)  and ¥y (B(y) = 65 (1 = Ajyn)) = O(Jy).
Thus, using that w is supported in B(0, OT_%), writing

Z [;j,k (iy) Z jyl

J,k=1 Jj=1

we get that
d d 5
Z w(y) _Z(l —Agy1) f2a+d1v (F)
k= j=1
where
d v
foaly) = — Z 9y (bjk(y) 5]k(1_>‘ﬂ/1))8 w
k=1
d
Z ( Oy (1 — >‘jy1)) Oy W0
k=1
satisfy
(12 sy SCT IVl and [[B < CTTE IVl
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Similarly,

—QTZbu B(y) + 270y, (y) = fos(y),
with

Hfz,b 2@y) < O73 |Vyd | 12 q

Finally,

. 1

oY) = — o V() - Asy(a(y)),
f2, (y> |V<p(w(y))|2 yw(y) y(I(y))

where x(y) denotes the inverse of the change of variables x — y(x), also satisfies

oy < €15y
We then set
9:,Y5(z(y))
Pje\Y )
5#9) = 19 (y)
and introduce
“ 1 “ “ “
fa(y) = sz o Zayjﬂkj 2ok (T(Y)) + foa(y) + fop(y) + foc(y),
7.k
Fo.(y) = o5 formo (2(¥)),
’ WSO( )"
me Fri(z(y) + Fia(y), j €Ll ,d},
and we get that w satisfies in €2,
d v v v
> (1= XNjy1)0: b — 270, 0 + T2 = fo + fo, + div, F.

Jj=1

If 'y is not empty, then we simply recall that the weight function ¢ has been
chosen such that ¢ = 0 on the boundary of J€2. In particular, the set I'y is simply
parametrized by y;(z) = Y for some Yy = —p(z0) < 0, and Q can be locally defined
by y1 > Yy. Thus, in this case, the equation of @ should be completed with

(Yo, y') = 9(y), for y' € R,
where
3 = gz (x(Yo,9)), for y' € R such that (Yo,y') €T,,.

Due to the form of €2, and the fact that we are considering functions which are

supported in sets included in balls of the form B (O,CT_%), we can then simply
extend all the source terms in a strip of the form [Yj, Y;] x R?~! where the functions
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are extended by 0 outside §2,, and W then satisfies

d
Ay — 1y 2 )\jagjﬁ} — 270, W + T
=
= —fao+ fo +divy, I in (Yp,Y7) ¥ R-1,

TN 0%, y) = 5, for y/ € R™-",
w (Y1,y') =0, for ¢/ € R
0y, w (Y1,y') =0, for y' € R4~

In the following, for convenience, we also write 2, for the strip (Yp, Y1) x R41. Now,
we come back to the definition of A; in (7.8) and remark that the condition (1.3),
when taken at = = xg, is equivalent to the condition (2.5). Accordingly, the Carleman
estimates in Theorem 2.4 apply: for 7 > 79, we have

72 |0 2,y + 72 IV 2y + T2 0] 2,

2 (Qy)
3_1 || x > 3
(Hfg 12(0,) + 74724 || for Ld%(ﬂy) +THF 12(0y) + 74 HgHH%({YO}de—l)>’
and
3,1 . 3. 1 .
7472 HwHLd?—jQ(Q ) + 72 |d][ 120,y + T2 [Vl 120,
Yy
Syl x a2 Sy Loy
<Hf2 12(9,) + 7T 2d || fy Ld%(ay) +T‘ 12(9,) + 747 2d ||9||H;({YO}XRd1)).

We then simply remark that, from the expression of fg, fg; , F and g,

v

f2

v

¥ . 3
for L%(Qy) + 7 HF + 739

3_1
< C (Wawoll sy + 73 Il

+ 3_ 1
T4 2d
L2(Qy)

12(9,) HH%({YO}de—l)

3
@ + 7| Faoll 20y + 73 ”gonH%(aQ)
1 -
+73 1V, 2a,)

and

7-4+2d

The

fa

@) " iy T 190 vy ma

+ 7 HF
Ld+2 (Q )
3,1 341
c <||f2,cco||L2(Q) + it ||f2’*,zo||L%(Q) + 7 | Fo |l 2y + TitH Hgm”H%(c’m)
1 _
+75 |V 2, ) -
Accordingly, taking 7y > 1 larger if necessary, we get for all 7 > 79,

30 1o 3.1 .
72 @l 2o,y + T2 V@l 20,y + 77720 [[0]] | 2

—2(2y)
¢ (Hﬁ L2(Q
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r §+L v
( Jo 12(9,) + 71" 2d HgHH%({Yo}XRd—I)> .

Undoing the change of variables on the left-hand side, we easily deduce the esti-
mates (7.3) and (7.4).

The fact that the constants above do not depend on zy € Q \ w can be tracked in
the above proof: it comes from uniformity properties of the diffeomorphism x +— v,
and relies heavily on the uniform bounds (1.2)—(1.3), on the fact that ¢ € C3(Q), and
that the constants in Theorem 2.4 depend only on ¢y, m. and M, in (2.4), and (2.5)
for Xo < 0 < X; with |Xo|,|X;1| < 1. This ends the proof of Lemma 7.1.

3 1
+ ritaa

+THF

_2d_
L2(Qy) La+2(Q,)

7.3. A gluing argument: end of the proof of Theorem 1.1

We then perform a gluing argument, which essentially consists in integrating the
local Carleman estimates (7.3) and (7.4), or rather the square of these estimates,
with respect to xg € 2\ w, in order to deduce estimates (1.5) and (1.6), respectively.
We will only explain how to deduce estimate (1.5) from the estimate (7.3), since the
other argument is completely similar.

We thus start from (7.3): There exist constants C' > 0 and 7y > 1 such that for all
79 € O\ wand 7 > 7,

3_
2

1
Tl way [ T20) + 7 deondefd + 7 Vs, [ 72(0)

2(9)
2 3_1
C (Il 2sollfay + 7474 o I

Using the explicit expressions of the source terms, we obtain:

72 Fa iy + 7 1900 ) -

L&z ()

]t 71l

Py ey + 7 o

<C(

+ (|7

3_
2

2
Ld+2 (Q) +7

3 g | TeoF gy + 7 110313

+ 72 way 7200y + 1V - Vw”m(g) + ||An$0wHL2(Q)

~ 112
nl”on L2(Q)

2
L2(Q)
2 2
+72 | Vit lw] 32y -

By taking 7o > 1 larger if necessary (which can be done uniformly in z € Q\w),
we can absorb the term 7'2||u13,50||%2(ﬂ)7 and we get for all o € Q\ w, for all 7 > 7,

3_1
TSszOH%Q(m | g+ anmu%m
rs 3_
e (Hv% |+ 1V V0l 180 )+ 7 |||Vnwo|wum(m)
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1656 B. DEHMAN, S. ERVEDOZA & L. THABOUTI

Now, integrating in xy on {2\ w and using Fubini’s identity for the Hilbertian
norms, we get

T3Ap0(x)|w(x)y2dx+T/Qp0(x)|vu)(m)\2dx+rié/g\ 700]|? 20 do

L2 ()

<C ([ poi@) o) do+ [ (o) + prat) |F)f do)

3_1 3 ~1n2
+C (7‘2 d /Q\ Ld%f2(Q dxy+ 72 /Q\w ”nxOgHH%(BQ) dl'())

+C ([ (pra@) + Ppea(@)) 0@ do + [ pra(a) Vo) dz )

T];Eo fQ/

where the weights pg, p,; are defined as follows:

0)= [, @z, (@)= [ Ve @)Pdro, pra(e)= [ [Ane (@) d

Taking an open subset w, such that @ C w, and W, C wy, it is easy to check from

the choice (7.5) that

d
3

(7.10) VaoeQ\w, Ipo(2)|= 3 Il
VreQ |p(z) < Or7F,

(7.11) Vaeel, |par)] < Ti’ il

Ve, |ppa(r)] <CTs75.

Thus, for 7 large enough,

7'3/ lw(x)|? dx+7'/ IVw(z)|” dx—i—T%Jr%_%/ IMeew]]? 2a  daxg
N\wa N\wa Q\w -

< C/Q ‘fQ(x)‘Q de +C (TQ/Q ’F’(aj)’z do 4+ 72%574 /Q\w

d

34d
—i—C( 2 3/ H77109|’H2 69 drg+ T

wloo
\
=3
8
o
Q.
)
+
\]
win
D
<
=3
=
o
Q.
)
N——

We then add

7 |w(a:)|2dx—|—7'/ |vw(x>12dx+73+%fé/ gt s, g

Wa,
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to both sides of the previous estimate and get

(7.12) /]w ‘2d.13—|—7'/ |Vw(x)|* do + 7273~ %/ IMeew]]® 2o daxg
0 20

<c</g]f2(x)\ dI+7’2/Q‘ﬁ(ZE)‘ dx+7-§+§—§/ﬂ\w

+C(“/ 11203133 gy A0 +7° [ (@) dw+7 WW)'”””)

We claim the following lemma, proven in Appendix B:

LEMMA 7.2. — With n,, as in (7.5), there exists a constant C' > 0 such that for
all 7 > 19 and g € Hz(09),

3 d
113) gl doo < O (7Rl + 7 el )

We thus have the bound

d

EA all? 2 11/6
7273 /Q\w ||77930gHH%(8Q) dﬂ?o (7'2 ||gH 2(89 + T HQHLQ 39)

Now, g is the trace of the function w € H(Q). Taking X € WH>({;RY) such that
X -n =1 on 0,

1913200y = [ div (X[w?) do = [ div(Oluwlde+2 [ X - Vwwds
< Cllwlizzg + llwllez@ | Vel -

It follows that the term 7'/6[|g[|7, »q) can in fact be absorbed by the left-hand side
of (7.12) by taking 71y larger if necessary, and we obtain:

34 d4_ 1
/|w \2dx+7/ Vw(z)? de + 75+ / anowHi%(mdQ;o

2

<C(/Q‘f2(:v)‘ do+7 [ [F@)[ de+ g2,

+T%+§—$/ o dx + 73 Jw(z)]Pda
N Laz) 0 a

+7’/ \Vw(z)|? dx + r3ts—a

Nxg fQ’*

2
a0l g, , o).

Wa
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1658 B. DEHMAN, S. ERVEDOZA & L. THABOUTI

We then go back to the variable v and get the following estimate:

(7.14) 7 e ullfagy + 7 e Vulfaqy + T [ npgue™? g da

3,4 1
<O (16 follfaiay + 744l ™12 gy o o+ 7 [ F

+72 €791 4 e + 70 17Ul 22

o3 (6%2) Wa)

. 3.d_1 o2
ATVl + 7 [ naguen?l? g, dao).
We finally explain how to remove the term 7{|e™*Vul|7,(, ) from the right-hand side
of (7.14). In order to do that, we choose an open subset wy, of €2 such that @, C wy

and wy, C wy, and a smooth compactly supported function 7, taking value 1 in w,
and vanishing in Q \ wy,. We then multiply (1.4) by n,ue?™?, which yields:

/ M| Vul?e?™ dz = / Mo foue®™? dz + / Mo fo,ue®™ da — / F -V (1,67%) udx
Q Q I o
1
- / F - Vun,e?™ dr + */ A (UWGQW) lu|? d.
Q 2 Ja
Using the bound,

1o 1 .
<SIFe ey + 5 | nalVuletr da,

/ F - Vun,e*™ dx
Q

we easily get

T T T T2
le™ Yl < CllF2e™ Il 2y €™l 2,y + C I1Fe™ | 2q

(wa) X

+C7 ||F€T§D||L2(Q) ||U€w||L2(wb) +Or? ||U€T(p||iz(wb) +C ‘/Q%f%WQW d| .

Only the last term is unusual. In order to estimate it, we remark that, for all x € wy,
(recall that wq, hence wy, is at a positive distance from 0€2), taking 7o > 1 larger if
necessary, for all 7 > 7,

a
3

2 _ 2 -
L @) do = 0l sy

Accordingly,
8
/ nwfg;ueQW dz = 7/ / 77wf2;1t€2w77x0(x)2 dx dxg
@ HnHL2(Rd z0inQ) Jz e
5 re’? T®
<Ot [ el pg o Weote™l

< OT5 ||y for €™ e N | mmoue™|| PV
L3, (Q;Léi” (Q)> L3 (Q§ng2("-’b)>

0o
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One then easily gets that

2
T [€7VullTa(,)

T 2 3+4-1 TP |2 201,70 112
el (e O s o
2

1

3 T
73 €1 4

+ 7 €Ul o,y + T2 ng,ue|? < y ) ,
2

0

which concludes the proof of (1.5) since we obviously have

0

772 ue™ | o\ < [lnwgue™|? 2
L2 Q;L;f 2(u.)b)) L2 wuLﬁ 2 (w1)

for 7o sufficiently large so that 75 > 1/d(wp, Q \ wy).

8. Proof of Theorem 1.3: Quantitative unique continuation

First, by restricting w if necessary, we assume that w is a non-empty open subset
of Q2 with @ C (). Then, for wy a non-empty open subset such that wy C w, there
exists a function ¢ satisfying conditions (1.2)—(1.3) in wp (see for instance [F196,
Lemma 1.1} or [LRLR22, Proposition 3.31]), so that the Carleman estimates (1.5)—
(1.6) in Theorem 1.1 with w; = w hold.

For V € L©(Q), Wy € L1 (Q;CY), and Wy € L®(Q;C?), we consider decomposi-
tions of the form

V= Vi+ Vit Vie, with Va € L2(Q), Vy € LYQ), Vao € L(9),
Wy = Wig+ Wi, with W4 € LY (2;C%), Wy € L (5 C7),
Wy = Wa g + W oo, with Waa € L4 (Q;C%), Wapo € L (2 C7)

which will be made precise later.
In particular, applying (1.5) for u solution of (1.4), with fo = V%u—i-Vdu—i-Wl,qu,

fo = Voou + Wi o - Vu, and using (1.9) and (1.12), we get the existence of C; > 0
such that for 7 > 74:
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(8.1) 7'2||e “ull 2o —|—7'2||e V|2

< O |[e™?(Vaou + Wl,oo : VU)HL2(Q)

+ C’lT%*Tld e’ <Vgu +Vou+Wig- Vu)‘

2
Lit?(Q)

+ 017' ||6T<p (Wg,du + WQQOU)HLQ(Q)
e ( el oy + 7 el )
LT3 (w)

Ci (Voo ll o=y + 74722 | Vill pacy + 71 Waool 2o ) €™l 2
+ Cy <||W1oo||Loo + 7573 W l| ooy ) €™ Vul L2

+ C <T4 2d Vd

T
i+ TIWaalusey ) 72l g,

+ Oy 7||eul| e
Ld=2(w)
Similarly, applying (1.6) with fy = Vdu + Wia-Vu, fo=Vou+ Veu+ Wi « - Vu,
we obtain the existence of a constant C’2 > (0 such that for 7 > 7,
3.1, o+ -
82) U] <O (Walim + I Wa i) e Pl

7T

3,1 .
+ Cy (HWLooHLw(Q) + T4+2dHWl,d||Ld(Q)) €7 Vull 12q)

341 T
+ Co (Wil + 785V g g I Wolln ) lemul g,

+ Cor? €| 20
L2 (w)

Thus, if we have

3
(8.3) 201 (| Vaollzoe(e) + 7372 Vall ey + 7l Wesol (@) < 72,
(8.4) 201(|W100||m>+r4 %[ Wil pogey ) < 72,
65 20 (Wallsawy + 715 [V g + 71 Waallza) <7305,

estimates (8.1)—(8.2) yield:

3 1
T2 [[e™ul| 12 o + 73 €77V ull 12 ()

124 T 2o
20, (8 [ g i)l g5, 20U
and
§+L < C T
Titaa e < 2C; (|[Vaollzooe) + Tl Wasoll ooy ) €™l 20

n,T
é T T
+ 20 (|Wasellieioy + 7HF I Waall o) eVl gy + 2Ca7 €720l g, -
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Following, under conditions (8.3)—(8.4)—(8.5), we also have
3. . .
T2 [[e™u[ 2q) + T2 [[€77Vul| 12 ()

2z @) ’ “”)

(IVaollz=@) + T Waoll ey ) lle™?ull 2

o)

3 1
(IWsolle@ + 73722 [Wiall o) x €7 Vul|2()

3 3 -
Wl ) 7473 le72ul g -

< 46’16’27'_%_i (Ti_Qd

3

et sl Gl | AW

L3 (@)

120, (02 <T4 BVl

L% @)

Note that this estimate yields an observation estimate if the additional following
conditions are also satisfied:

(86)  8CiChr i~ (74 v,

o TIWaallzoey )
X (”Voo”LOO(Q) +T||W2,OO||L°°(Q)) < T2,
oy + Wil

3.1 1
x (”WLOOHW’(Q) + TZ+27||W1,d||Ld(Q)) <72,

i
L2

N

(8.7)  8C Cor i~ (74 2 |V

Indeed, in this case, one would obtain
(8.8) 72| e™ul 2y + 72 €7 Vul| 2@
<20, (02 <T4 % o THWQ,de)) = 73) lereull, s -

Therefore, our next step is to understand how, given V' € L% (), W, € L9(2; C%),
and W, € L%(Q; C?), one can minimize the value of 7 for which we can find decom-
positions such that conditions (8.3)—(8.4)—(8.5)—(8.6)—(8.7) are satisfied.

Before going further, let us remark that (8.3)—(8.4)—(8.5)—(8.6)—(8.7) are satisfied
provided, for ¢y > 0 small enough,

Vil 4
21L2(

; 3,1
Wacllzmen < cord, Wil < cort™sn, [V 4, <o
1
(8.9) ||W1c>o||Loo + [[Wa ol @) < co7?,
’ 11
T (||W1d||m + 1 Wall Loy ) < co,
72HW1 dllLa@)[Wadll o) < co-
The case V € L®(Q) with ¢y € (£,d]. For V € L®(Q) with ¢y € (£,d] and
Ao > 0 to be chosen later, we set Vg == V1yvisx, Vi = V19yi<r, Voo = 0, for

which we have the following estimates:

A : Vd

< VI @) IVallZay < X0~ NV |0 c-
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Similarly, for Wy € L#(Q) and Wy € L%(Q2) and A, Ay positive numbers to be
chosen later, we set Wi 4 = Wilpw, > a, Wieo = Wiljwy <o, and Wa g = Wolpwy s a,,
Waee = Waljwy| < a,, for which we have the estimates:

—d
(8.10) MW allfay < WAl Far 0, Wi ool e () < At
: —d
AT Woall T < IWellfa o [Wa,oollzoe@) < A

Conditions (8.9) are thus satisfied pr0V1ded

2-

-4 Q0 3,1
Ao IIVIIfqo \cmﬁw, "’IIVlquo <
1 1

1) | A+ d<ar (A Bl - A ) <

N T
P W s W2l ooy < o

We then choose \g = Ta0‘|VHqu(Q), A= T‘“HWlHqu( and Ay = 7°2||Wa||Lez2 () for
some real parameters ag, a1, @z, so that conditions (8.11) yield:

7""0(1*%0)*%’ﬁ||v||m0 <c, T o(1- #)HVHL‘“’ S o,
(8.12) 12||W1||m @+ 7% 2||W2||Lq2<ﬂ o
i3t (B W g gy + 75320 [ Wl < o,
Tém(lf%)w(lf%)||W1|\Lq1 ||W2Hm<n Co-
For qo € (4,d), 1 > 352, ¢o > 342 with - + L < 4(1 — 1)/(3d — 2), we choose
a0 = (+ 82 a1 = (G- )L azze—ﬁ) 0 that system (8.12) 15 satisfied

provided, for some C' large enough,

> C||V]|zo0 (9,
l,(é,L)
r2 \a72d)a > CHWIHLQI(Q
: >

1
(8.13) | Woll oo 0,

1-1_(3_1y(d, a
=i 2d)(q1+q2) > C|Wi 2o @ | Wall oo o
that is, with the notations of Theorem 1.3,

(8.14) 7>
p(q1,92)
¢ (VI +||W1||qu<m+uwzum?> + (Wil ey Well )™ ™)

For ¢y € (5, dl, ¢ > 7, and ¢» > 3¢, one can alternatively choose oy = (3 + 21(1) d

o = %, g = %, so that system (8.12) is satisfied provided, for some C large
enough,

9_d (34 L 1
T( qo)(4+ d) 2 OHVHLQO(Q), 7'2 4‘11 CHWlHL‘“(Q)? T2 4‘12 CHWgHLqQ
that is, with the notations of Theorem 1.3,

(5.15) > C (VIS + 1M1 18 + IWal 2)).
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Taking 7 large enough that saturates condition (8.14), respectively condition (8.15),
bounding the weight function €™ from below and from above in (8.8), we easily
deduce Theorem 1.3 item 1, respectively item 2, for ¢y € (%, d].

The case V € L®(QQ) with ¢y € [d,o0]. For V € L®(Q) with ¢y € [d,c0] and
Ao > 0 to be chosen later, we set Vg =0, Va=V1y|>x Voo = V1jy<ny, for which
we have the following estimates:

d
A MVall ooy < IV I E0 o Vaoll () < Ao

The potentials W, € L?(Q) and W, € L‘D(Q) are decomposed as before W, =
Wia+ Wi o, Wo = Wa g+ W o with the estimates (8.10) for positive parameters
A1 and A2 to be chosen later. Similarly as before, conditions (8.9) are thus satisfied
provided

_ 40 4q0
o VIl < coritE, Ao < cor?
1 1 1 42
(8.16) A+ A < T2, TAT d( |W1||L<11(Q + Ay ||W2||L<12 Q)> Co;
1.1-4 1-22
TN ¢ HW1HLq1 A 1 HWQHqu < .

Similarly as before, for qq € [d, 0], ¢ > MT’Q, G2 > MT’Q with i + i < 4(1 —

é)/(?)d — 2), we choose oy = (% — %) d oy = (% — Q—Id)d oy = (3 - 2%1)—, and

Ao = 7V o), A1 = T Wil L and Ao =T 2|]W2HLq2(Q). We then deduce
that system (8.16) is satisfied provided, for some C' large enough,

ClIWillza (@)

_d 31
7(2 qo)(4 2d) 2 CHVHL‘ZO(Q)
2 >
1 ,L)
2 2d)az > C||W2||Lq2(Q

(8.17)

1 (3 _1\(ad
-i(d )(+) > O W par (e[| Wall o2 (0
that is, (8.14) with the notations of Theorem 1.3.

Here again, for ¢y € [d,o0], ¢1 > 32—d, and ¢ > ?’Z—d, one can alternatively choose
oy = (% — %i)go, ap = j’;l g = Ci, so that conditions (8.16) are implied by

(3-) G+0) - -3
T > CHVHqu(Q), T a > CHWlHqu(Q), T ‘72 CHWQHqu

that is (8.15) with the notations of Theorem 1.3.
We then deduce Theorem 1.3 in the case ¢ > d immediately from (8.8) as in the
case ¢ < d.
Remark 8.1. — In fact, if we focus on the conditions
1 1_1 (.1-4 a 1-2 =
(8.18) A+ A STz, TATA <)‘1 Wil o) + A2 ¢ ||W2||Ldf12(9)> < ¢,
' 1.1-9 a
P Wl s 12l ooy < o

which appear in the second and third lines of system (8.11) and (8.16), and choose
A = T Wh||La @) and Ay = 792||Ws||Le2 (), one can find 7 large enough so that
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system (8.18) is satisfied provided

o — Q —
1 27 2 127 , ) )
q1 q2
8.19 —1>>—, (—1>>_,
( ) al(d 4 2d a2 4  2d

Indeed, in this case, it suffices to take, for a sufficiently large constant C,
a aq, (a ) b(a1,a2)
3200 7> C (IS + IMal55E + (Willn @ IWellzme) ™).

with

aq(ar) = max { 5 :

1 (q 1) L
2~ Y "y 1" 24

thqz (ala Oég) = .
G

Although it is rather easy to check that the system (8.19) admits solutions (a;, as)
if g1 and ¢y satisfy ¢; > ?’Q—d -1, ¢ > 3—2(1 — 1 and ¢; + @2 > 3d, it is not clear how to
choose a; and ay satisfying (8.19) to minimize 7 in (8.20). We have thus decided in
the above proof of Theorem 1.3 to restrict ourselves to the case in which both terms
in a,(a) are equal (this choice corresponds to item 1 in Theorem 1.3), or to consider,
instead of (8.18), the sufficient conditions

1 1 1-4 @ 1-2 2
M+ X <crE, 7 </\1 A A dHWQHquQ(Q)><CO,

this choice yielding to item (2) in Theorem 1.3.

Appendix A. Reminder of some classical results in
harmonic analysis

We start by recalling the classical Hardy—Littlewood—Sobolev theorem.

THEOREM A.1 ([H6r90, Theorem 4.5.3.] Hardy—Littlewood-Sobolev theorem).
Let n € N. For (p,q,r) € (1,00)3 such that

1 1 1
(-9
r P g

there exists a constant C,,, , such that for all f € LP(R"),

v [l =sl @y < Gl larien
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In the article, we have also used the stationary phase lemma. Although it is a
very classical lemma of harmonic analysis, we used the following version proved
in [ABZ17], which presents the advantage of quantifying precisely the constants in
the stationary phase lemma:

THEOREM A.2 ([ABZ17, Theorem 1] Stationary phase lemma). — Let & €
C*(R%4R), b € C°(R4R). For A € R, we introduce

Top(A) = /R ENOp(E)de.

Set K = suppb and let V' be an open neighbourhood of K, and use the following
notations:
e Myo:= Z sup ’DO‘(I)
2<|a|<d+2 $€EV
o Nupi= > sup [Dgb(e)|,
o] <d+1 §€K
and assume that there exists ag > 0 such that for all £ € V, | det(Hess ®(£))| = ao,
where Hess ®(§) denotes the Hessian matrix of ® at .

There exists a constant C' independent of (®,b) satisfying the above assumptions,
such that for all A > 1,

C
Ts5(N)] < T (1 M ) Npor—t.

Appendix B. Proof of Lemma 7.2

Proof. — The proof of Lemma 7.2 relies on a suitable interpolation estimate.
First, for 7 > 79, we define the operator A, : L?(0Q) — L*(Q\ w; L*(992)) by

ATQ(ZL‘()) - nxo,T(')g('>a for ZTo € Q \w7

where we recall that 7,, , is the function given by 7, - () = (73 (x — 1)) for z € R,
for a smooth compactly supported function 7.

Using (7.10)—(7.11), it is easy to check that there exists a constant C' > 0 such
that

d
3

VgeLX(09Q), [Agllizowrzoa)y < CT° Hg”%%am’
2
Vge Hl(aﬂ), HAT9HL2 (Q\wsH(09) S Cr™ (HQH%{l(aQ) + 73 ”9”%%89)) .

We can then deduce easily the estimate (7.13). More precisely, by interpolation,
A, maps Hz(89Q) to L2(Q\ w; Hz(d9)). To estimate the operator in this norm
with appropriate powers of 7, we proceed as follows. We let (®;);cn be the basis
of eigenfunctions of the Laplace Beltrami operator —A on 0f2, with correspond-
ing eigenvalues ()\5) jen, which are non-negative and going to infinity. Accordingly,
for g = 3;a;®;, the L*(9Q), H'(09) and Hz(09) norms of g can be read as,
respectively, [[(a;)l e, [1(a; (% + 1)z, and [[(a;(\; +1)2)[lew)-
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1666 B. DEHMAN, S. ERVEDOZA & L. THABOUTI

Writing ¢ € Hz(d9) under the form g = > jena;®;, we then introduce the
function

F(2) =3 a;(\ + 14 75)772A,;, 2 € C with R(z) € [0,1].
jeN
The function f is holomorphic in {z € C with R(z) € (0,1)} with values in L*(Q\
w; L*(09)), f(3) = Arg, and

VEER,  f(iB)llzz@wirzon) SOT % laf (N +1+75),
) 1
VBER, [f(L+iB)zx@wim on) <Ors Zlagl2 (N +1+77).

Since L2(Q\ w; H2(99Q)) = [LA(Q\ w; L2(09)), L*(Q\ w; H'(09))]1, we deduce from
the above estimates that there exists C' > 0 such that for all g € H 3 (092) and T = 79,

—d 2 i 2
A9 ) < 7 F (1912 3 gy + 31912000 ) -

This concludes the proof of Lemma 7.2. 0
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