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Abstract. — The backward heat flow on the real line started from the initial condition
zn results in the classical nth Hermite polynomial whose zeroes are distributed according to
the Wigner semicircle law in the large n limit. Similarly, the backward heat flow with the
periodic initial condition (sin θ

2 )n leads to trigonometric or unitary analogues of the Hermite
polynomials. These polynomials are closely related to the partition function of the Curie–
Weiss model and appeared in the work of Mirabelli on finite free probability. We relate the nth

unitary Hermite polynomial to the expected characteristic polynomial of a unitary random
matrix obtained by running a Brownian motion on the unitary group U(n). We identify the
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2 Z. KABLUCHKO

global distribution of zeroes of the unitary Hermite polynomials as the free unitary normal
distribution. We also compute the asymptotics of these polynomials or, equivalently, the free
energy of the Curie–Weiss model in a complex external field. We identify the global distribution
of the Lee–Yang zeroes of this model. Finally, we show that the backward heat flow applied
to a high-degree real-rooted polynomial (respectively, trigonometric polynomial) induces, on
the level of the asymptotic distribution of its roots, a free Brownian motion (respectively, free
unitary Brownian motion).

Résumé. — Le flot de la chaleur rétrograde sur la droite réelle, partant de la condition
initiale zn, donne le nème polynôme d’Hermite classique, dont les zéros sont distribués selon la
loi du demi-cercle de Wigner pour n grand. De la même manière, le flot de la chaleur rétrograde
avec la condition initiale périodique (sin θ

2 )n conduit à des analogues trigonométriques ou
unitaires des polynômes d’Hermite. Ces polynômes sont étroitement liés à la fonction de
partition du modèle de Curie–Weiss et sont apparus dans les travaux de Mirabelli sur les
probabilités libres finies. Nous relions le nème polynôme d’Hermite unitaire à l”espérance du
polynôme caractéristique d’une matrice aléatoire unitaire obtenue en exécutant un mouvement
brownien sur le groupe unitaire U(n). Nous identifions la distribution globale des zéros des
polynômes d’Hermite unitaires comme la distribution normale unitaire libre. Nous calculons
également l’asymptotique de ces polynômes ou, de manière équivalente, l’énergie libre du
modèle de Curie–Weiss dans un champ extérieur complexe. Nous identifions la distribution
globale des zéros de Lee–Yang de ce modèle. Enfin, nous montrons que le flot de la chaleur
rétrograde appliqué à un polynôme (respectivement, polynôme trigonométrique) de haut degré
à racines réelles induit, au niveau de la distribution asymptotique de ses racines, un mouvement
brownien libre (respectivement, mouvement brownien unitaire libre).

1. Introduction

1.1. Hermite polynomials and their trigonometric analogues

One possible way to define the classical (probabilist) Hermite polynomials He0(z)
= 1,He1(z) = z,He2(z) = z2 − 1, . . . is the formula

(1.1) Hen(z) = exp
{

−1
2∂

2
z

}
zn = n!

[n/2]∑
m=0

(−1)m

m!2m
· zn−2m

(n− 2m)! , n ∈ N0,

where ∂z denotes differentiation in z and the exponential can be understood as
an infinite series which terminates after finitely many non-zero summands. More
generally, we have

(1.2) exp
{

−1
2σ

2∂2
z

}
zn = σn Hen

(
z

σ

)
, σ > 0.

This can be expressed by saying that the nth Hermite polynomial arises when solving
the backward heat equation ∂tf(z; t) = −1

2∂
2
zf(z; t) on the real line with the initial

condition f(z; 0) = zn.
We shall be interested in the trigonometric (or unitary) analogues of the Her-

mite polynomials. To introduce them, it will be convenient to adopt the following
(somewhat unconventional) terminology. A trigonometric polynomial Tn(θ) of degree
n ∈ N0 is an expression of the form

(1.3) Tn(θ) = Pn(ei θ)
ei nθ/2 ,
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Unitary Hermite polynomials 3

where Pn(z) ∈ C[z] is an algebraic polynomial of degree n such that Pn(0) ̸= 0. For
example, if Pn(z) = (z − 1)n, then Tn(θ) = (2 i sin θ

2)n.
In general, Tn(θ) is a linear combination of the functions θ 7→ ei(k− n

2 )θ, k = 0,. . . , n,
with complex coefficients (such that the first and the last coefficient do not vanish).
If n = 2d is even, then Tn(θ) can be represented as a linear combination of the func-
tions 1, sin θ, cos θ, . . . , sin(dθ), cos(dθ). This case corresponds to the usual definition
of trigonometric polynomials. If n = 2d+1 is odd, then Tn(θ) can be written as a lin-
ear combination of the functions sin(ℓθ/2) and cos(ℓθ/2) with ℓ = 1, 3, 5, . . . , n. This
case is somewhat unconventional. From the representation Pn(z) = C

∏n
j=1(z − zj),

where z1, . . . , zn ∈ C\{0} are the complex zeroes of Pn, one deduces the existence of
a representation

Tn(θ) = C ′
n∏

j=1
sin θ − θj

2

where θ1, . . . , θn ∈ C are chosen to satisfy ei θj = zj ̸= 0.
We shall be interested in trigonometric polynomials with real roots only or, equiv-

alently, in algebraic polynomials having all roots on the unit circle. If we consider
(z − 1)n as the “simplest” algebraic polynomial of degree n with this property, then
the “simplest” real-rooted trigonometric polynomial of degree n is (sin θ

2)n (up to a
constant factor). To derive the trigonometric analogues of the Hermite polynomials
Hen, we look at the backward heat flow on R with the initial condition (sin θ

2)n. More
precisely, we take some parameter σ2 > 0, let ∂θ be the differentiation operator in θ
and consider, similarly to (1.2), the expression

Tn(θ;σ2):= exp
{

−1
2σ

2∂2
θ

}(
sin θ2

)n

= (2 i)−n exp
{

−1
2σ

2∂2
θ

} (ei θ −1)n

ei nθ/2

= (2 i)−n exp
{

−1
2σ

2∂2
θ

} n∑
j=0

(−1)n−j

(
n

j

)
ei θ(j− n

2 )

= (2 i)−n
n∑

j=0
(−1)n−j

(
n

j

)
e

1
2 σ2(j− n

2 )2

ei θ(j− n
2 ) .

(1.4)

In the last line we used the identity e− 1
2 σ2∂2

θ ei cθ = e 1
2 σ2c2 ei cθ. The algebraic polyno-

mials corresponding to these trigonometric polynomials via (1.3) are given by

(1.5) Hn(z;σ2) =
n∑

j=0
(−1)n−j

(
n

j

)
exp

{
−σ2j(n− j)

2

}
zj, n ∈ N,

up to a multiplicative constant which was chosen to make Hn(z;σ2) monic.
If we view t := σ2 as the time, then the trigonometric polynomial Tn(θ; t) satisfies

the backward heat equation ∂tTn(θ; t) = −1
2∂

2
θTn(θ; t), while Hn(z; t) satisfies the

PDE
∂tHn(z; t) = −1

2(z∂z)(n− z∂z)Hn(z; t), Hn(z; 0) = (z − 1)n,
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4 Z. KABLUCHKO

very similar to the heat-type PDE’s that appeared in [Tao18] and [HH22, Section 2.3].
Indeed, using the fact that (z∂z)(n− z∂z)zj = j(n− j) · zj, we deduce

exp
{

− t

2(z∂z)(n− z∂z)
}

(z − 1)n

=
n∑

j=0
(−1)n−j

(
n

j

)
exp

{
− t

2(z∂z)(n− z∂z)
}
zj

=
n∑

j=0
(−1)n−j

(
n

j

)
exp

{
− t

2j(n− j)
}
zj = Hn(z; t).

1.2. Connection to finite free probability

In the following, we shall refer to the polynomials Hn(z;σ2) defined by (1.5) as
unitary Hermite polynomials with parameter σ2 > 0. These polynomials appeared
in the work of Mirabelli [Mir21] on finite free probability, a theory developed by
Marcus, Spielman, Srivastava [MSS22] and Marcus [Mar18]. This theory studies the
finite free additive convolution ⊞n and the finite free multiplicative convolution ⊠n

which are bilinear operations on the space of algebraic polynomials of degree at most
n defined [Mar18, MSS22] as follows:(

n∑
i=0

αi

i! z
i

)
⊞n

 n∑
j=0

βj

j! z
j

 = 1
n!

n∑
ℓ=0

zℓ

ℓ!
∑

i,j ∈ {0,...,n}
i+j=n+ℓ

αiβj,(1.6)

 n∑
j=0

αjz
j

⊠n

 n∑
j=0

βjz
j

 =
n∑

j=0
(−1)n−jαjβj(

n
j

) zj.(1.7)

It has been shown in [Mar18, Mir21, MSS22] that there is an analogue of the
central limit theorem for these convolutions (for every fixed n ∈ N). The classical
Hermite polynomials play the role of the normal distribution for ⊞n; see [Mar18,
Theorem 6.7] and [Mir21, Theorems 3.2, 3.5]. Similarly, the unitary Hermite polyno-
mials Hn(z;σ2/(n− 1)) play the role of the normal distribution for ⊠n; see [Mir21,
Theorems 3.16, 3.23, 3.32]. For example, the analogue of the de Moivre–Laplace
theorem for ⊠n is as follows. Fix some even number n = 2d and consider degree 2d
polynomials

QN(z) :=
(
z2 − 2z cos(σ/

√
N) + 1

)d
, N ∈ N,

having two zeroes at ei σ/
√

N and e− i σ/
√

N , both of multiplicity d. Then, it can be
shown that

lim
N→∞

QN(z) ⊠2d . . .⊠2d QN(z)︸ ︷︷ ︸
N times

= H2d

(
z; σ2

2d− 1

)
.

The operations ⊞n (respectively, ⊠n) are known (in a suitable sense) to converge,
as n → ∞, to the classical free additive (respectively, multiplicative) convolutions
⊞, respectively, ⊠. For information on (infinite) free probability we refer to [NS06,
VDN92] for its finite counterpart to [AP18, AGVP23, Mar18, Mir21, MSS22].
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Unitary Hermite polynomials 5

1.3. Connection to the Curie–Weiss model

It has been observed by Mirabelli [Mir21, Section 3.2.5] that the unitary Hermite
polynomials are closely related to the Curie–Weiss model (or the Ising model on the
complete graph), which is one of the simplest models of statistical mechanics. The
partition function of the Curie–Weiss model at inverse temperature β > 0 and with
external magnetic field h ∈ R is given by

(1.8) Zn(β, h) =
∑

(σ1,...,σn) ∈ {±1}n

e
β

2n

(
n∑

k=1
σk

)2

+h
n∑

k=1
σk

.

For every j ∈ {0, . . . , n} there exist
(

n
j

)
configurations (σ1, . . . , σn) in which the

number of +1’s is j. Since for every such configuration we have ∑n
k=1 σk = 2j − n,

the above partition function can be written as

(1.9) Zn(β, h) =
n∑

j=0

(
n

j

)
e

β
2n

(2j−n)2+h(2j−n) = Hn

(
− e2h; 4β

n

)
· en( β

2 −h) ·(−1)n.

The fact that various quantities related to Zn(β, h) satisfy PDE’s (the heat equa-
tion, the Burgers equation and a Hamilton–Jacobi equation) is known since New-
man [New86]; see also [DM24, DMTW19].

The behavior of the Curie–Weiss model at real parameters β and h is very well
understood; see [EN78a, EN78b, ENR80] as well as the books by Ellis [Ell06, Sec-
tions IV.4, V.9] and Friedli and Velenik [FV18, Chapter 2]. For a recent approach
using the theory of mod-ϕ-convergence we refer to [MN15].

The behavior at complex parameters β and h, and in particular the location of
the complex zeroes of Zn(β, h) is also of interest and has attracted attention in the
theoretical physics literature [DBF20, DF20, GPS86, KBHK16]; see also the recent
paper [HJN23]. These authors were motivated by the Lee–Yang program [Fis65,
LY52, YL52] which relates phase transitions to the complex zeroes of the partition
function. Shamis and Zeitouni [SZ18] analyzed the partition function and its zeroes
at complex β (with h = 0) in a small neighborhood of the critical value β = 1, while
the behavior outside this neighborhood remains largely unknown. The results of the
present paper clarify the asymptotic behavior of Zn(β, h) at complex h (with fixed
real β > 0) and, in particular, identify the global limiting distribution of the complex
zeroes of Zn(β, h). Thus, we analyse the so-called Lee–Yang zeroes in contrast to
the Fisher zeroes analyzed in [SZ18]. Partition function zeroes of the Ising model on
Cayley trees and hierarchical lattices have been studied in [BLR17, BLR20, CHJR19],
where pointers to earlier literature and a discussion of conjectures on the Ising model
on Zd can be found.

1.4. Summary of results

The main results of the present paper, to be stated in Section 2, can be summarized
as follows:

TOME 8 (2025)



6 Z. KABLUCHKO

(a) We prove that the empirical distribution of zeroes of Hn(z;σ2/n) converges
weakly on the unit circle to the free unitary normal distribution Nσ2 , thereby
identifying the limiting distribution of the Lee–Yang zeroes of the Curie–Weiss
model; see Theorem 2.2 and Corollary 2.7.

(b) We compute the asymptotics of Hn(z;σ2/n) for complex z with |z| ≠ 1,
thereby identifying the free energy of the Curie–Weiss model with complex
external field; see Theorem 2.4 and Corollary 2.9.

(c) It is well known [PB21, Section 6.1.2] that the expected characteristic poly-
nomial of a Wigner random matrix of size n coincides with the nth classical
Hermite polynomial. We prove a unitary analogue of this result. More pre-
cisely, let (Un(t))t⩾ 0 be a Brownian motion on the unitary group U(n) such
that Un(0) = In is the identity matrix. In Theorem 2.10 we show that

E det(xIn − Un(t)) = e−nt/2 Hn

(
et/2 x; t

)
, t ⩾ 0.

An extension to Brownian motion starting at an arbitrary unitary matrix is
given in Corollary 2.11.

(d) Consider a high-degree polynomial (respectively, trigonometric polynomials)
whose roots are real and have certain asymptotic distribution. We show that
applying the backward heat flow to the polynomial is equivalent, on the level
of the asymptotic distribution of the roots, to starting a free Brownian motion
(respectively, a free unitary Brownian motion) from the initial distribution of
roots; see Theorems 2.13 and 2.16.

(e) We review the properties of the free unitary normal distribution Nσ2 and
derive some new ones; see Theorem 2.18 and Proposition 2.21.

Notation

Throughout the paper, D = {z ∈ C : |z| < 1} denotes the open unit disk,
T = {z ∈ C : |z| = 1} the unit circle, and H = {θ ∈ C : Im θ > 0} the upper
half-plane. The closures of D and H are denoted by D and H, respectively. We write
an ∼ bn if an/bn → 1 as n → ∞. Weak and vague convergence of measures are
denoted by w−→ and v−→, respectively.

2. Main results

2.1. Empirical distribution of zeroes

The empirical distribution of zeroes of an algebraic polynomial Pn(z) of degree
n, i.e. the probability measure assigning to each zero the same weight 1/n, will be
denoted by

(2.1) µ[[Pn]] := 1
n

∑
z ∈C : Pn(z)=0

δz.

ANNALES HENRI LEBESGUE
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Figure 2.1. Zeroes of the unitary Hermite polynomials Hn(z;σ2/n) with σ2 =
1, 2, 3, 4. The degree is n = 200.

We agree that the roots are always counted with multiplicities. It is well known, see,
e.g, [Ull80, Gaw87, KM16], that the empirical distribution of zeroes of the classical
Hermite polynomial Hen(z

√
n) converges weakly to the Wigner distribution γ0,2 with

the density x 7→ 1
2π

√
4 − x2 on the interval [−2, 2], namely[[

Hen( ·
√
n)
]]

= 1
n

∑
z ∈C :

Hen(z)=0

δz/
√

n
w−→

n→∞
γ0,2.

Given that the Wigner law is the analogue of the normal distribution w.r.t. the free
additive convolution ⊞, one may conjecture that the limiting empirical distribution
of zeroes of the unitary Hermite polynomials should be related to the analogue of
the normal distribution w.r.t. the free multiplicative convolution ⊠. We shall confirm
this intuition. We begin by recording the following important property.

Lemma 2.1. — All zeroes of the polynomial Hn(z;σ2) are located on the unit
circle T = {|z| = 1}.

Proof. — The claim is a special case of the Lee–Yang theorem; see [LY52, Appen-
dix II] (where one takes xαβ := e−σ2/2 for all α, β = 1, . . . , n) or [Rue69, Section 5.1].
Alternatively, the claim can be deduced from the Pólya–Benz theorem [ABH04,
Theorem 1.2] applied to the periodic function f(θ) = (sin θ

2)n and the differential op-
erator exp{−1

2σ
2∂2

θ } (see the remarks preceding Corollary 1.3 in [ABH04] regarding
applicability to non-polynomials). The Pólya–Benz theorem implies that all zeroes
of exp{−1

2σ
2∂2

θ }(sin θ
2)n are real. Recalling (1.4) completes the proof. □

The empirical distribution of zeroes of Hn(z;σ2/n) will be denoted by

(2.2) µn;σ2 := µ
[[
Hn( · ;σ2/n)

]]
= 1
n

∑
z ∈T: Hn(z; σ2/n)=0

δz.

Theorem 2.2. — Fix some σ2 > 0. Then, as n → ∞, the probability mea-
sures µn;σ2 converge weakly on T to the free unitary normal distribution Nσ2 with
parameter σ2; see Section 2.6 for its definition and properties.

Attempting to prove Theorem 2.2 by the method of moments leads to non-trivial
combinatorics. After the preprint version of this paper appeared, such proof has
been given in [AFU24].
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2.2. Asymptotics of unitary Hermite polynomials

Our asymptotic results on the polynomials Hn(z;σ2/n) will be stated in terms of
certain analytic function ζt(θ) that satisfies

ζt(θ) − t tan ζt(θ) = θ,

where t > 0 is a parameter and θ is a complex variable satisfying Im θ > 0. This
function is related to the free unitary Poisson distribution, as has been shown
in [Kab21], and to the free unitary normal distribution, which will be demonstrated
in Section 2.6 below. The next theorem summarizes the main properties of this
function; see [Kab21, Section 4] for proofs and further properties.

Theorem 2.3. — Fix t > 0. Let H := {θ ∈ C : Im θ > 0} be the upper half-
plane. For every θ ∈ H, the equation ζ − t tan ζ = θ has a unique, simple solution
ζ = ζt(θ) in H. The function ζt : H → H is analytic on H, admits a continuous
extension to the closed upper half-plane H, and satisfies
(2.3) ζt(θ + π) = ζt(θ) + π, ζt(−θ̄) = −ζt(θ), Im ζt(θ) > Im θ,

for all θ ∈ H. Locally uniformly in x ∈ H we have

ζt(θ) = lim
n→∞

(
θ + t tan(θ + t tan(. . . (θ + t tan x) . . .))

)
︸ ︷︷ ︸

n iterations

, θ ∈ H.

Finally, we have
(2.4) ζt(θ) − θ → i t as Im θ → +∞ uniformly in Re θ ∈ R.

The next theorem is our second main result.

Theorem 2.4. — Locally uniformly in θ ∈ H we have

lim
n→∞

1
n

log
Hn

(
− ei θ;σ2/n

)
(−1)n

= log
(
1 + e2 i ζσ2/4(θ/2)

)
− σ2

2
(
1 + e−2 i ζσ2/4(θ/2)

)2 ,(2.5)

lim
n→∞

1
n

H ′
n

(
− ei θ;σ2/n

)
Hn (− ei θ;σ2/n) = − e− i θ

1 + e−2 i ζσ2/4(θ/2) = − e− i θ
( i

2 tan ζσ2/4(θ/2) + 1
2

)
.

(2.6)

The logarithms in (2.5) are chosen such that log 1 = 0 and all functions of the form
log(. . .) are continuous (and analytic) in θ ∈ H.

Remark 2.5. — We can consider all functions appearing in (2.5) and (2.6) as
analytic functions of the variable z := − ei θ ∈ D including the value z = 0. Firstly,
z → 0 is equivalent to Im θ → +∞. In this regime, (2.4) implies that ζσ2/4(θ/2) =
(θ/2) + i(σ2/4) + o(1) and, consequently, Im ζσ2/4(θ/2) → +∞. It follows that the
right-hand side of (2.5) converges to 0, while the right-hand side of (2.6) converges
to − e−σ2/2. Secondly, note that θ corresponding to a given z ∈ D\{0} is defined only
up to a summand of the form 2πn with n ∈ Z. Still, the right-hand sides of (2.5)
and (2.6) stay invariant under the substitution θ 7→ θ+ 2πn (since ζσ2/4(θ/2 +πn) =
ζσ2/4(θ/2) + πn by (2.3)) and hence define analytic functions of z ∈ D. Analogous

ANNALES HENRI LEBESGUE



Unitary Hermite polynomials 9

observations apply to many similar functions below. Note that convergence in (2.5)
and (2.6) stays locally uniform in z ∈ D. For z outside any small disk around 0, this
is stated in Theorem 2.4, while the rest follows from Cauchy’s integration formula.

Remark 2.6. — Theorem 2.4 describes the asymptotics of Hn(z;σ2/n) for |z| < 1.
The asymptotics for |z| > 1 can be derived from the identity znHn(1/z;σ2/n) =
(−1)nHn(z;σ2/n) following from (1.5). On the circle {|z| = 1} one may expect an
asymptotic result of Plancherel–Rotach type; see [Sze75, Theorem 8.22.9] for the
case of the classical Hermite polynomials.

2.3. Applications to the Curie–Weiss model

We are now going to describe the global limiting distribution of zeroes of Zn(β, h),
the partition function of the Curie–Weiss model defined in (1.8). We consider the
so-called Lee–Yang zeroes, that is we fix real β > 0 and allow h to be complex. By
the Lee–Yang theorem, all zeroes are purely imaginary; see (1.9) and Lemma 2.1.
Observe also that Zn(β, h+ π i) = eπ i n Zn(β, h) by (1.8) implying that the zeros are
periodic with period π i.

Corollary 2.7. — Fix β > 0. For the partition function of the Curie–Weiss
model, the following convergence holds vaguely on R:

1
n

∑
y ∈R : Zn(β,i y)=0

δy
v−→

n→∞
νβ.

Here, νβ is a measure on R which is invariant under the shifts h 7→ h+πℓ, ℓ ∈ Z, and
is characterized by νβ(A) = N4β(− e2 i A) for every Borel set A ⊂ (−π

2 ,
π
2 ], where N4β

is the free unitary normal distribution on the unit circle with parameter σ2 = 4β;
see Section 2.6.

Proof. — Let f : R → R be a continuous function with compact support. Define
f ∗(y) := ∑

ℓ ∈Z f(y + πℓ) for y ∈ (−π
2 ,

π
2 ]. Let also ψ : T → (−π

2 ,
π
2 ] be the inverse

map of y 7→ − e2 i y. Then, by (1.9),
1
n

∑
y ∈R : Zn(β,i y)=0

f(y) = 1
n

∑
y ∈ (− π

2 , π
2 ] : Hn(− e2 i y , 4β

n )=0

f ∗(y) = 1
n

∑
z ∈T : Hn(z, 4β

n )=0

f ∗(ψ(z)).

By Theorem 2.2, the latter sum converges to
∫
T f

∗(ψ(z))N4β(dz) =
∫
R f(y)νβ(dy),

and the claim follows. □

Remark 2.8. — The Lebesgue density of νβ on R is given by y 7→ 2f4β(− e2 i y) =
1

πβ
Im ζβ(y), where f4β is the function which will be discussed in Theorem 2.18. It

follows from this theorem that the support of νβ is R for β ⩾ 1, while for 0 < β < 1
the support is the union of the intervals[

π

2 − arcsin
√
β −

√
β − β2 + πℓ,

π

2 + arcsin
√
β +

√
β − β2 + πℓ

]
, ℓ ∈ Z.

If β increases from 0 to ∞, then the support of νβ hits the real axis at β = 1, which
is well known to be the point of phase transition for the Curie–Weiss model.
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In the next result we compute the free energy of the Curie–Weiss model in the
complex h-plane excluding the imaginary axis.

Corollary 2.9. — Let β > 0 and h ∈ C with Reh > 0. For the partition
function of the Curie–Weiss model defined in (1.8) we have

lim
n→∞

1
n

logZn(β, h) = lim
n→∞

1
n

logZn(β,−h)

= β

2 + h+ log
(
1 + e2 i ζβ(i h)

)
− 2β(

1 + e−2 i ζβ(i h)
)2 .

Proof. — Recall that Zn(β, h) = Zn(β,−h) is given by (1.8) and (1.9) and apply
Theorem 2.4 with σ2 = 4β and θ = 2 ih. □

2.4. Expected characteristic polynomial of the Brownian motion on
unitary matrices

It is well known [PB21, Section 6.1.2] that the expected characteristic polynomial of
an n×n Wigner random matrix coincides with the nth Hermite polynomial. Formulas
of this type go back to Heine [Sze75, (2.2.11) p. 27]. For this and analogous results
on several other types of random matrices including the Wishart matrices whose
expected characteristic polynomials are the Laguerre polynomials we refer to [PB21,
Sections 6.2, 6.3], [Aom87], [Ede89, Chapter 9], [DE02, Theorem 4.1], [BH00, (15)],
[DG04, Proposition 12], [FG06, Proposition 11], [AGN21, Theorem 1.1].

In this section we prove a similar result on unitary Hermite polynomials by relating
them to the expected characteristic polynomials of the random matrices obtained
by running a Brownian motion on the unitary group U(n). More precisely, we
consider the unitary group U(n) as a compact Riemannian manifold endowed with
the Riemannian metric induced by its natural embedding into Cn×n ≡ R2n2 . On the
Lie algebra u(n) = {A ∈ Matn×n(C) : A∗ = −A} (which can be identified with the
tangent space of U(n) at the identity matrix In) the scalar product takes the form
⟨A,B⟩ = Tr(AB∗) = − Tr(AB).

Let now (Un(t))t⩾ 0 be the Brownian motion on the unitary group U(n) starting at
the identity matrix In at time t = 0. The eigenvalues λ1(t), . . . , λn(t) of the unitary
random matrix Un(t) represent a special case of Dyson’s Brownian motions [Dys62,
Section III] on the circle; see also [Bia09, Bui24, CL01, FKLZ24, Hal18, HW96] for
further information on this process.

To define Dyson’s Brownian motions on the circle, fix parameters n ∈ N and λ > 0.
Let (B1(t))t⩾ 0, . . . , (Bn(t))t⩾ 0 be n independent standard Brownian motions on R.
We are interested in real-valued stochastic processes X1(t) ⩽ . . . ⩽ Xn(t), defined
for t ⩾ 0 and solving stochastic differential equations

(2.7) dXj = dBj + λ ·

 ∑
k ∈ {1,...,n}

k ̸=j

cot Xj −Xk

2

 dt, j = 1, . . . , n,
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with the initial condition X1(0) = . . . = Xn(0) = 0. If λ = 1/2, then we can identify
ei X1(t), . . . , ei Xn(t) with the eigenvalues λ1(t), . . . , λn(t) of the unitary random matrix
Un(t). More precisely, it is known that the measure-valued process(

n∑
ℓ=1

δei Xℓ(t)

)
t⩾ 0

has the same distribution as the process(
n∑

ℓ=1
δλℓ(t)

)
t⩾ 0

.

We are interested in the following polynomial in x which, for λ = 1/2, reduces
to the characteristic polynomial of Un(t):

Pn,λ(x; t) :=
n∏

j=1

(
x− ei Xj(t)

)
.

Theorem 2.10. — For every λ > 0, n ∈ N, t ⩾ 0 and x ∈ C we have

EPn,λ(x; t) =
n∑

j=0
(−1)n−j

(
n

j

)
e− 1

2 (n−j)t−λj(n−j)t xj = e− 1
2 nt Hn

(
et/2 x; 2λt

)
.

Proof. — To simplify the notation, we shall usually suppress the dependence of
quantities under consideration on n and λ. Let eℓ(t) be the ℓ th elementary symmetric
polynomial of ei X1(t), . . . , ei Xn(t), that is

eℓ(t) =
∑

1⩽ j1 < ... < jℓ ⩽n

ei Xj1 (t)+...+i Xjℓ
(t), ℓ = 1, . . . , n,

Put also e0(t) = 1. Since Pn,λ(x; t) = ∑n
ℓ=0(−1)ℓeℓ(t)xn−ℓ by Vieta’s formula, it

suffices to show that for all ℓ ∈ {1, . . . , n} we have

Eeℓ(t) =
(
n

ℓ

)
e− 1

2 ℓt−λℓ(n−ℓ)t .

To this end, we shall derive stochastic differential equations satisfied by eℓ(t).
Using the Itô formula, see, e.g., [RY99, Chapter IV, Theorem (3.3)], we have

deℓ =
∑

1⩽ j1 < ... < jℓ ⩽n

d
(
ei Xj1 +...+i Xjℓ

)

=
∑

1⩽ j1 < ... < jℓ ⩽n

(
ℓ∑

s=1
i ei Xj1 +...+i Xjℓ dXjs − ℓ

2 ei Xj1 +...+i Xjℓ dt
)
.

Write V (x) := λ cot x
2 . Recalling (2.7), we obtain

(2.8) deℓ =
∑

1⩽ j1 < ... < jℓ ⩽n

i ei Xj1 +...+i Xjℓ (dBj1 + . . .+ dBjℓ
) − ℓ

2eℓdt+Rdt
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with
R :=

∑
1⩽ j1 < ... < jℓ ⩽n

i ei Xj1 +...+i Xjℓ

 ∑
m ∈ {1,...,n}

m ̸= j1

V (Xj1 −Xm) + . . .+
∑

m ∈ {1,...,n}
m ̸= jℓ

V (Xjℓ
−Xm)


=

∑
1⩽ j1 < ... < jℓ ⩽n

i ei Xj1 +...+i Xjℓ

 ∑
m ∈ {1,...,n}\{j1,...,jℓ}

(
V (Xj1 −Xm) + . . .+ V (Xjℓ

−Xm)
) ,

where in the second line we used that V (−x) = −V (x). After some re-indexing, we
can write

R = i
(ℓ+ 1)!

∑
k0,...,kℓ ∈ {1,...,n}
pairwise distinct

ei Xk0 +i Xk1 +...+i Xkℓ

∑
s,p ∈ {0,...,ℓ}

s ̸= p

V (Xkp −Xks)
ei Xks

= i
2(ℓ+ 1)!

∑
k0,...,kℓ ∈ {1,...,n}
pairwise distinct

ei Xk0 +i Xk0 +...+i Xkℓ

∑
s,p ∈ {0,...,ℓ}

s ̸=p

(
V (Xkp −Xks)

ei Xks
+ V (Xks −Xkp)

ei Xkp

)
.

To simplify the expression in the brackets, note that
V (x− y)

ei y
+ V (y − x)

ei x
= λ cot

(
x− y

2

) (
ei(x−y) −1

)
e− i x = iλ

(
e− i x + e− i y

)
.

It follows that

R = −λ
2(ℓ+ 1)!

∑
k0,...,kℓ ∈ {1,...,n}
pairwise distinct

ei Xk0 +i Xk1 +...+i Xkℓ

∑
s,p ∈ {0,...,ℓ}

s ̸=p

(
e− i Xks + e− i Xkp

)

= −λℓ(n− ℓ)eℓ(t).
To justify the last identity, observe that the double sum in the first line must be a
multiple of eℓ for symmetry reasons and that it contains (n)ℓ+1 ·(ℓ+1)ℓ ·2 summands,
while eℓ contains

(
n
ℓ

)
summands. Taking the quotient of these two numbers, it follows

that the double sum in the first line equals 2(ℓ+ 1)!ℓ(n− ℓ)eℓ.
Finally, recalling (2.8), we arrive at the stochastic differential equation

(2.9) deℓ = −
(
ℓ

2 + λℓ(n− ℓ)
)
eℓdt+

n∑
j=1

i ei Xj e
(j)
ℓ−1dBj,

ANNALES HENRI LEBESGUE



Unitary Hermite polynomials 13

where e
(j)
ℓ−1 is the (ℓ − 1)st elementary symmetric polynomial of ei X1 , . . . , ei Xj−1 ,

ei Xj+1 , . . . , ei Xn (excluding ei Xj ). From the Itô formula it follows that e 1
2 ℓt+λℓ(n−ℓ)t eℓ(t)

is a martingale. Recalling that eℓ(0) =
(

n
ℓ

)
we conclude that

Eeℓ(t) =
(
n

ℓ

)
e− 1

2 ℓt−λℓ(n−ℓ)t,

and the proof of Theorem 2.10 is complete. □

Following a suggestion of an anonymous referee let us extend the above result
to the Brownian motion (V Un(t))t⩾ 0 on the unitary group U(n) starting from an
arbitrary unitary matrix V ∈ U(n).

Corollary 2.11. — For every unitary matrix V ∈ U(n) and all t ⩾ 0 and z ∈ C
we have

(2.10) Qn(z; t) = E det(zIn − V Un(t)) = det(zIn − V ) ⊠n e− 1
2 nt Hn

(
et/2 z; t

)
.

Also, the following PDE holds:

(2.11) ∂tQn(z; t) = −1
2(z∂z + 1)(n− z∂z)Qn(z; t), Qn(z; 0) = det(zIn − V ).

Proof. — It is possible to prove (2.10) by changing the initial condition for eℓ(t)
in the proof of Theorem 2.10, however, we find it more instructive to give a proof
that uses finite free probability. Let W be a Haar-distributed random matrix in
U(n) which is independent of everything else. Then, V Un(t) has the same law as
VW−1Un(t)W . Hence,

E det(zIn − V Un(t)) = E
[
det

(
zIn − VW−1Un(t)W

)]
= E

[
E
[
det

(
zIn − VW−1Un(t)W

) ∣∣∣Un(t)
]]
.

In the conditional expectation, Un(t) is fixed and the integration is over the dis-
tribution of W , i.e. the Haar distribution on U(n). By [MSS22, Theorem 1.5], the
conditional expectation can be expressed using ⊠n, which leads to

E det(zIn − V Un(t)) = E
[

det(zIn − V ) ⊠n det(zIn − Un(t))
]

= det(zIn − V ) ⊠n E det(zIn − Un(t))

= det(zIn − V ) ⊠n e− 1
2 nt Hn

(
et/2 z; t

)
.

We used the bilinearity of ⊠n and Theorem 2.10 with λ = 1/2. The proof of (2.10)
is complete.

Since ⊠n commutes with z∂z, see [MSS22, p. 810], it suffices to prove the PDE (2.11)
for Qn(z; t) = e− 1

2 nt Hn(et/2 z; t) with the initial condition Qn(z; 0) = (z − 1)n,
which corresponds to the case when V = In. Using that (z∂z + 1)(n − z∂z)zj =
(j + 1)(n− j) · zj, we deduce
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exp
{

− t

2(z∂z + 1)(n− z∂z)
}

(z − 1)n

=
n∑

j=0
(−1)n−j

(
n

j

)
exp

{
− t

2(z∂z + 1)(n− z∂z)
}
zj

=
n∑

j=0
(−1)n−j

(
n

j

)
exp

{
− t

2(j + 1)(n− j)
}
zj

= e− 1
2 nt Hn

(
et/2 z; t

)
,

where we used (1.5) in the last step. □

Remark 2.12. — The operator (z∂z + 1)(n − z∂z) = −z2∂2
z + (n − 2)z∂z + n is

(up to sign) the same as the one appearing in Conjecture 2.14 and Proposition 2.15
of Hall and Ho [HH22].

Biane [Bia97a, Bia97b] proved that, as n → ∞, the process (Un(t/n))t⩾ 0 converges
(in a suitable sense) to the free unitary Brownian motion. In particular, by [Bia97a,
Theorem 1], the spectral distribution of Un(t/n) converges weakly to the free unitary
normal distribution Nt (making the appearance of this distribution in Theorem 2.2
quite natural); see also [CDG01, Section 3.3] for related large deviation results. Exact
combinatorial formulas for moments of the form E[Tr(Um1

n (t)) . . .Tr(Umr
n (t))] have

been derived in [Lév08].

2.5. The action of the backward heat flow on the roots

Consider a sequence of polynomials (or trigonometric polynomials) of increasing
degrees whose empirical distributions of roots approach some probability measure.
One may ask what happens to the asymptotic distribution of roots if we apply to
these polynomials certain operator. One special case, in which the operator is the re-
peated differentiation, has been studied in [AGVP23, BHS24, Gal22, HK23, Kab21,
KT20, OS21, Ste19, Ste20, Ste23]. For trigonometric polynomials, it has been shown
in [Kab21] that, on the level of roots, the repeated differentiation induces the free
unitary Poisson process. In his blog, Tao [Tao17, Tao18] discusses the evolution of
zeroes of a polynomial which undergoes a (backward) heat flow. As this paper was
almost complete, Jonas Jalowy brought to our attention the recent preprint by Hall
and Ho [HH22] who studied the action of the backward heat flow on the character-
istic polynomials of the Ginibre matrices (whose eigenvalues obey the circular law).
We shall consider two settings: algebraic polynomials and trigonometric polynomials,
both with real roots, and show that the backward heat flow induces free (additive
or unitary) Brownian motion on the level of roots.

2.5.1. Heat flow acting on algebraic polynomials

Let (Pn(z))n ∈N be a sequence of algebraic polynomials from R[z]. We suppose that
Pn(z) = ∑n

j=0 aj : nz
j is real-rooted (that is, it has only real roots) and that all roots

are contained in some fixed interval [−C,C] with C not depending on n. Moreover,
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we suppose that the empirical distribution of roots of Pn converges weakly to some
probability measure µ on [−C,C], that is

(2.12) µ[[Pn]] = 1
n

∑
z ∈R : Pn(z)=0

δz
w−→

n→∞
µ.

The roots are counted with multiplicities, as always. We are interested in the action
which the backward heat flow induces on the roots of Pn, in the large n limit. More
precisely, we consider the heat equation on the real line with initial condition given
by Pn(z):

(2.13) ∂tgn(z; t) = 1
2∂

2
zgn(z; t), gn(z; 0) = Pn(z), z ∈ R, t ∈ R.

The solution is explicit and can be written as

(2.14) gn(z; −s) = e− s
2 ∂2

z Pn(z) =
n∑

j=0
aj : n e− s

2 ∂2
z zj =

n∑
j=0

aj : n Hej

(
z√
s

)
sj/2,

z ∈ R, s ∈ R,

where Hej(z) is the jth probabilist Hermite polynomial defined by (1.1) or (1.2).
Note that the solution exists both for positive and negative times since the term
Hej(z/

√
s)sj/2 does not contain fractional powers of s, see (1.1), and makes sense

irrespective of the sign of s. Moreover, for every s ∈ R, the function z 7→ gn(z; −s)
is a polynomial. In the sequel, we shall focus on the case s > 0, which corresponds
to the backward heat equation. It is known to be ill-posed for initial conditions
more general than polynomials. Since we assume that the initial condition Pn(z)
is real-rooted, the polynomials gn(z; −s) remain real-rooted for all s ⩾ 0 by the
Pólya–Benz theorem; see [Ben34] or [ABH04, Theorem 1.2]. Another proof of this
fact can be found [Tao17].

Theorem 2.13. — Fix r > 0. Under the above assumptions, the empirical dis-
tribution of zeroes of the polynomials gn(z; −r2/n) converges weakly (as n → ∞) to
the free additive convolution µ ⊞ γ0,2r of µ and the Wigner semicircle distribution
γ0,2r with density x 7→ 1

2πr2

√
4r2 − x2 on the interval [−2r, 2r].

To prove this theorem, we shall use a result from finite free probability [Mar18,
MSS22]. Recall from (1.6) the definition of the finite free additive convolution ⊞n. It
is known from [AP18, Corollary 5.5 and Theorem 5.4], see also [Mar18, Theorem 4.3],
that, as n → ∞, the finite free additive convolution ⊞n approaches the free additive
convolution ⊞ in the following sense.

Proposition 2.14. — Let (pn)n ∈N and (qn)n ∈N be sequences of polynomials
in R[z] whose roots are contained in some fixed interval [−C,C]. Suppose that
deg pn = deg qn = n and the empirical distributions of zeroes of pn and qn converge
weakly to certain probability measures ν and ρ on [−C,C]. Then, the empirical
distribution of zeroes of pn⊞n qn (which is also real-rooted by [MSS22, Theorem 1.3])
converges weakly to ν ⊞ ρ.

Indeed, µ[[pn]] → ν and µ[[qn]] → ρ (weakly) implies that the moments of µ[[pn]]
and µ[[qn]] converge to the corresponding moments of ν and ρ (since all measures are
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16 Z. KABLUCHKO

concentrated on a fixed interval). By the results cited above, this implies that the
moments of the empirical distribution of zeroes of pn⊞n qn converge to those of ν⊞ρ.
This implies that the probability measures µ[[pn ⊞n qn]] (which are concentrated on
[−2C, 2C] by [MSS22, Theorem 1.3]) converge weakly to ν ⊞ ρ.

Proof of Theorem 2.13. It is known [MSS22] that ⊞n commutes with differentiation
in the sense that ∂z(p(z) ⊞n q(z)) = (∂zp(z)) ⊞n q(z) for arbitrary polynomials p(z)
and q(z) of degree at most n. By bilinearity of ⊞n it follows that it also commutes
with the operator exp{− s

2∂
2
z }, for all s ∈ R. Hence,

gn(z; −s) = e− s
2 ∂2

z Pn(z) = e− s
2 ∂2

z (Pn(z) ⊞n z
n)

= Pn(z) ⊞n

(
e− s

2 ∂2
z zn

)
= Pn(z) ⊞n Hen

(
z√
s

)
sn/2,

where we used (1.2) in the last equality. We take s = r2/n and let n → ∞. By
a classical result, the empirical distribution of zeroes of the Hermite polynomial
Hen(z

√
n/r) converges weakly to the Wigner distribution with the density x 7→

1
2πr2

√
4r2 − x2 on the interval [−2r, 2r]; see, e.g., [Gaw87, KM16, Ull80]. Applying

Proposition 2.14 completes the proof. □

Remark 2.15. — Tao [Tao17] derived the following system of differential equations
satisfied by the roots z1 : n(s), . . . , zn : n(s) of the polynomial gn(z; −s):

(2.15) ∂szi : n(s) =
∑

k ∈ {1,...,n}
k ̸=i

1
zi : n(s) − zk : n(s) , i = 1, . . . , n,

and proved that the solutions are well-defined for s ⩾ 0 but may run into a singularity
for s ⩽ 0. These equations are Dyson’s Brownian motions with vanishing variance (or
with β = ∞); see [AGZ10, Theorem 4.3.2]. Therefore, one can view Theorem 2.13 as
the β = ∞ case of [AGZ10, Proposition 4.3.10]. In this form, it has been established
in [VW22, Theorem 1.1]. For other results relating Dyson’s Brownian motions to
free convolutions we refer to [AKM12, DE05, GK24, VW20, VW22].

2.5.2. Heat flow acting on trigonometric polynomials
Let us now state analogous results for trigonometric polynomials. For every even

number n = 2d, d ∈ N, let Tn(θ) := ∑d
ℓ=−d cℓ : n ei ℓθ be a trigonometric polynomial

with complex coefficients cℓ : n satisfying c−ℓ : n = cℓ : n for all ℓ ∈ {−d, . . . , d} (meaning
that Tn(θ) takes real values for real θ). Moreover, assume that Tn(θ) is real-rooted
meaning that it has n real roots θ1; n, . . . , θn; n (counting multiplicities) and that its
empirical distribution of zeroes converges weakly as n → ∞. The latter assumption
will be written in the following form:

(2.16) ν[[Tn]] := 1
n

n∑
j=1

δei θj; n

w−→
n→∞

ν

weakly on the unit circle T, for some probability measure ν on T. Consider the heat
equation on the real line with periodic initial condition given by Tn(θ):

(2.17) ∂tfn(θ; t) = 1
2∂

2
θfn(θ; t), fn(θ; 0) = Tn(θ), θ ∈ R, t ∈ R.
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Its solution is explicit and can be written as

(2.18) fn(θ; t) = e t
2 ∂2

θ Tn(θ) =
d∑

ℓ=−d

cℓ : n e t
2 ∂2

θ ei ℓθ =
d∑

ℓ=−d

cℓ : n e− t
2 ℓ2 ei ℓθ .

For every t ∈ R, the function θ 7→ fn(θ; t) is a trigonometric polynomial. In particular,
the solution makes sense both for t ⩾ 0 and for t < 0. In the sequel we shall focus
on the latter case, which corresponds to the backward heat equation. For s > 0, the
trigonometric polynomial fn(θ; −s) remains real-rooted. This claim can be deduced
from the Pólya–Benz theorem [ABH04, Corollary 1.3]. Another proof can be found
in [Tao18] (where differential equations analogous to (2.15) in the circular setting
are derived; see also [CL01, HW96] for the corresponding stochastic differential
equations).

Theorem 2.16. — Take some σ2 > 0. In the setting described above, including
Assumption (2.16), the empirical distribution ν[[fn(· ; −σ2/n)]] of zeroes of the solu-
tion fn(θ; −σ2/n) of the heat equation at time tn := −σ2/n, converges weakly (as
n = 2d → ∞) to the free unitary convolution ν ⊠ Nσ2 of ν and the free unitary
normal distribution Nσ2 .

We again rely on a result from finite free probability [MSS22, Mar18]. Recall
from (1.7) the definition of the finite free multiplicative convolution ⊠n. The following
fact proved in [AGVP23, Proposition 3.4] (see also [Kab21, Proposition 2.9] for
the version stated here) states that, in a suitable sense, ⊠n converges to the free
multiplicative convolution ⊠ as n → ∞.

Proposition 2.17. — Let (pn(z))n ∈N and (qn(z))n ∈N be sequences of polynomi-
als in C[z] with deg pn = deg qn = n. Suppose that all roots of pn and qn are located
on the unit circle and that, as n → ∞, the empirical distributions of zeroes µ[[pn]]
and µ[[qn]] converge weakly to two probability measures ν and ρ on T. Then, all roots
of the polynomial pn ⊠n qn are also located on T and µ[[pn ⊠n qn]] converges weakly
to ν ⊠ ρ.

Proof of Theorem 2.16. For t ∈ R we consider the algebraic polynomial P2d(z; t)
in the complex variable z defined by

(2.19) P2d(ei θ; t)
ei dθ

= f2d(θ; t),

More concretely, it follows from (2.18) that

P2d(z; t) =
d∑

ℓ=−d

cℓ : 2d e− t
2 ℓ2
zℓ+d =

2d∑
j=0

cj−d : 2d e− t
2 (j−d)2

zj

=
2d∑

j=0
cj−d : s2d e− t

2(j2−2jd+d2) zj.
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Figure 2.2. Densities of the free unitary normal distributions Nσ2 . The plots
show the functions θ 7→ fσ2(ei θ) for θ ∈ [−π, π]. Left: σ2 = 0.5, 1, 1.5, . . . , 4.
Right: σ2 = 4, 4.5, 5, . . . , 7.

It follows from (1.7) and (1.5) that for t = t2d = −σ2/(2d) < 0 we can write

P2d(z; t) = e− td2
2

 2d∑
j=0

(−1)2d−j

(
2d
j

)
e t

2 j(2d−j) zj

⊠2d

 2d∑
j=0

cj−d : 2dz
j


= e− td2

2

(
H2d

(
z; σ

2

2d

)
⊠2d P2d(z; 0)

)
.

Recall from Theorem 2.2 that the empirical distribution of zeroes of H2d(z;σ2/(2d))
converges weakly to Nσ2 , while the empirical distribution of zeroes of P2d(z; 0) con-
verges to ν by (2.19) and (2.16):

1
2d

∑
z ∈C : H2d(z; σ2/(2d))=0

δz
w−→

d→∞
Nσ2 ,

1
2d

∑
z ∈C : P2d(z; 0)=0

δz = 1
2d

2d∑
j=1

δei θj; 2d

w−→
d→∞

ν.

To complete the proof, apply Proposition 2.17. □

2.6. Free unitary normal distribution and its properties

In this section we recall the notion of free multiplicative convolution ⊠ of prob-
ability measures on the unit circle which was introduced by Voiculescu in [Voi85]
and [Voi87]; see also [VDN92, §3.6]. Also, we recall the definition of the free uni-
tary normal distribution, which was introduced by Bercovici and Voiculescu [BV92]
and studied in [Bia97a, Bia97b, Céb16, Zho14, Zho15]. Finally, we shall state some
properties of this distribution.

Given two probability measures µ1 and µ2 on the unit circle T, it is possible
to construct a C∗-probability space and two mutually free unitaries u1 and u2
with spectral distributions µ1 and µ2, respectively. Then, the free multiplicative
convolution of µ1 and µ2, denoted by µ1 ⊠ µ2, is the spectral distribution of u1u2.
It does not depend on the choice of u1 and u2; see [VDN92] for more details. Free
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Unitary Hermite polynomials 19

multiplicative convolution is linearized by the S-transform which is defined as follows.
The ψ-transform of a probability measure µ on the unit circle T is defined by

(2.20) ψµ(z) =
∫
T

uz

1 − uz
µ(du) =

∞∑
ℓ=1

zℓ
∫
T
uℓµ(du), z ∈ D.

Note that ψµ(z) is an analytic function on D satisfying ψµ(0) = 0 and Reψµ(z) > −1
2 .

These properties characterize the class of ψ-transforms; see [FHS20, Lemma 2.9].
If ψ′

µ(0) =
∫
T uµ(du) ̸= 0, then the analytic function ψµ has an inverse on some

sufficiently small disk around the origin and the S-transform of µ is defined by

(2.21) Sµ(z) = 1 + z

z
ψ−1

µ (z).

The free unitary normal distribution Nσ2 with parameter σ2 > 0 introduced in [BV92,
Lemmas 6.3], is a probability measure on T with

(2.22) SNσ2 (z) = eσ2(z+ 1
2) .

The next theorem summarizes some properties of the free unitary normal distribu-
tions; see Figure 2.2 for the plots of their densities. Almost all of these properties
are known from the work of Biane [Bia97a], [Bia97b, Proposition 10]; see also the
discussion in [Kem17, Proposition 2.24] and [Lév08, Remark 6.8] for further pointers
to the literature. For similar properties of the free unitary Poisson distribution we
refer to [Kab21, Section 5].

Theorem 2.18. — The density of the free unitary normal distribution Nσ2 w.r.t.
the length measure on T is given by

(2.23) fσ2(ei θ) = 2
πσ2 Im ζσ2/4

(
θ − π

2

)
, θ ∈ [−π, π),

where ζσ2/4(·) is the function appearing in Theorem 2.3. The distribution Nσ2 is
invariant under complex conjugation meaning that fσ2(ei θ) = fσ2(e− i θ).

(a) For σ2 > 4, the function θ 7→ fσ2(ei θ) is strictly positive and real analytic on
R.

(b) For 0 < σ2 < 4, the function θ 7→ fσ2(ei θ) is continuous on its period [−π, π].
It is strictly positive and real-analytic on the interval (−mσ2 ,+mσ2), and
vanishes on its complement [−π, π]\(−mσ2 ,+mσ2), where

(2.24) mσ2 := 2 arcsin σ2 + σ

2
√

4 − σ2 =
∫ σ

0

√
4 − t2 dt.

At the points ±mσ2 , the function θ 7→ fσ2(ei θ) vanishes and has square-root
singularities with

(2.25) fσ2

(
ei(mσ2 −ε)

)
= fσ2

(
ei(ε−mσ2)

)
∼ 1
πσ2

4

√
4σ2

4 − σ2 ·
√
ε, ε ↓ 0.

(c) For σ2 = 4, the function θ 7→ fσ2(ei θ) is strictly positive and real-analytic on
the interval (−π, π). At θ = ±π, it vanishes and has cubic-root singularities
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with

(2.26) fσ2

(
ei(π−ε)

)
= fσ2

(
ei(ε−π)

)
∼

√
3

4π

(3ε
2

)1/3
, ε ↓ 0.

Proof of Theorem 2.18. — We shall show in Lemma 3.3 below that

ψNσ2 (− ei θ) =
i
(
θ − 2ζσ2/4(θ/2)

)
σ2 − 1

2 , θ ∈ H.

Consider the Poisson integral of Nσ2 given for z ∈ D by

FNσ2 (z) := 1
2π Re

∫
T

u+ z

u− z
Nσ2(du) = 1

2π Re
∫
T

1 + zū

1 − zū
Nσ2(du)

= 1
2π Re

(
1 + 2ψNσ2 (z̄)

)
.

Since the function ζσ2/4 admits a continuous extension to H, the above formula
defines FNσ2 (z) as a continuous function on D. Under these circumstances, it is well
known (see, e.g., [Kab21, Lemma 5.2]) that the density of Nσ2 with respect to the
length measure on T is given by

fσ2(ei θ) = FNσ2 (ei θ) = 1
2π Re

(
1 + 2ψNσ2

(
e− i θ

))
= 1

2π Re
(
1 + 2ψNσ2

(
− ei(π−θ)

))
= 2
πσ2 Im ζσ2/4

(
θ − π

2

)

for all θ ∈ R. All other claims follow from the properties of the function ζσ2/4 derived
in [Kab21, Section 4]. In particular, Equation (2.25) follows from (2.23) and [Kab21,
Remark 4.3], while Equation (2.26) is a consequence of [Kab21, Lemma 4.5]. □

Remark 2.19. — It follows from (2.23) and the series expansion of ζσ2/4 given
in [Kab21, Theorem 4.11] that

(2.27) fσ2(ei θ) = 1
2π + 1

π

∞∑
ℓ=1

1
ℓ

e−ℓσ2/2 qℓ−1(−ℓσ2) cos(ℓθ),

where qm(x) = ∑m
j=0

xj

j!

(
m+1
j+1

)
, m ∈ N0, and the series converges uniformly in θ ∈ R.

Note that (2.27) characterizes the moments of Nσ2 . In this form, the result be found
in [Bia97a, Lemma 1].

Remark 2.20. — The function ζt is closely related to the function χ(t, z) appearing
in [Bia97b, p. 273]. A function very similar to mσ2 appears in [RŚ15, Theorem 5.1].

It follows from (2.27) that, as σ2 → ∞, the density fσ2(ei θ) converges to 1/(2π)
uniformly, which implies that the free unitary normal distribution converges to the
uniform distribution weakly on T. On the other hand, the next result states that, as
σ2 → 0, the free unitary normal distribution Nσ2 can be approximated by a Wigner
semicircle distribution supported on a small arc of length ∼ 4σ centered at 1.

Proposition 2.21. — For all x ∈ (−2, 2) we have limσ2↓0 σfσ2(ei σx) = 1
2π

√
4 − x2.
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Proof. — We shall only sketch the idea without giving full details. First of all,
from (2.24) we have mσ2 ∼ 2σ as σ2 ↓ 0. Let us take x = 0. It has been argued
in [Kab21, Section 4] that for all τ ⩾ 0, we have ζσ2/4(−π

2 + i τ) = −π
2 + i ỹσ2/4(τ),

where ỹ = ỹσ2/4(τ) > 0 is the unique positive solution of ỹ − 1
4σ

2 cotanh ỹ = τ .
For τ = 0 the equation takes the form ỹ = 1

4σ
2 cotanh ỹ and its unique positive

solution satisfies ỹσ2/4(0) ∼ σ
2 as σ2 ↓ 0. It follows that ζσ2/4(−π

2 ) = −π
2 + i σ

2 + o(σ),
and it follows from (2.23) that σfσ2(1) → 1

π
as σ2 ↓ 0. For general x ∈ (−2, 2),

Equation (2.23) expresses fσ2(ei σx) through the value ζ = ζσ2/4(σx−π
2 ) which solves

the equation
ζ − σ2

4 tan ζ = σx− π

2 .

As σ2 ↓ 0, we can search for a solution in the form ζ = −π
2 + c(x)σ + o(σ) with

some unknown c(x) satisfying c(0) = i
2 by the above analysis of the case x = 0.

Inserting this into the equation for ζ and taking σ2 ↓ 0, we obtain 4c(x) + 1
c(x) = 2x.

The solution is c(x) = 1
4x+ 1

4

√
x2 − 4. It follows that Im ζσ2/4(σx−π

2 ) ∼ σ
4

√
4 − x2 for

x ∈ (−2, 2), as σ2 ↓ 0. Inserting this into (2.23) completes the argument. □

3. Proofs of Theorems 2.2 and 2.4
In this section we prove Theorems 2.2 and 2.4. Throughout the proof, we use the

following notational convention: θ denotes a variable ranging in the upper half-plane
H, while z := − ei θ is a variable ranging in the unit disk D. Most of the time we
shall be occupied with the proof of the following result.

Proposition 3.1. — Fix σ2 > 0. If r = r(σ2) > 0 is sufficiently small, then
locally uniformly in |z| ⩽ r we have

(3.1) lim
n→∞

1
n

· H
′
n (z;σ2/n)

Hn (z;σ2/n) = − e− i θ

1 + e−2 i ζσ2/4(θ/2) = − e− i θ
( i

2 tan ζσ2/4(θ/2) + 1
2

)
.

As we argued in Remark 2.5, the right-hand side of (3.1) can be considered as an
analytic function of z ∈ D including the value z = 0 (corresponding to Im θ → +∞)
where it equals − e−σ2/2.

3.1. Proof of Theorems 2.2 and 2.4 assuming Proposition 3.1

First we need to compute the ψ-transforms of the empirical distribution of zeroes
of Hn(z;σ2/n) and of the free unitary normal distribution Nσ2 . This is done in the
next two lemmas.

Lemma 3.2. — The ψ-transform of the probability measure

µn; σ2 := 1
n

∑
z ∈T : Hn(z; σ2/n)=0

δz

is given by

ψµn; σ2 (z) = − z

n
· H

′
n (z;σ2/n)

Hn (z;σ2/n) , z ∈ D.
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Proof. — Using the definition of the ψ-transform given in (2.20) and the identity
ū = 1/u for u ∈ T, we can write

ψµn; σ2 (z̄) = 1
n

∞∑
ℓ=1

zℓ
∑

u ∈T :
Hn(u; σ2/n)=0

1
uℓ

= 1
n

∑
u ∈T :

Hn(u; σ2/n)=0

∞∑
ℓ=1

zℓ

uℓ
= 1
n

∑
u ∈T :

Hn(u; σ2/n)=0

z

u− z

= − z

n
· H

′
n (z;σ2/n)

Hn(z;σ2/n) .

To complete the proof, note that the polynomials Hn(z;σ2/n) have real coeffi-
cients, implying that its non-real zeroes come in complex-conjugated pairs and
hence ψµn; σ2 (z̄) = ψµn; σ2 (z). □

Lemma 3.3. — The ψ-transform of the free unitary normal distribution Nσ2 with
parameter σ2 > 0 is given by

ψNσ2 (− ei θ) = − i
2 tan ζσ2/4(θ/2) − 1

2 =
i
(
θ − 2ζσ2/4(θ/2)

)
σ2 − 1

2 , θ ∈ H.

Proof. — By the definition of Nσ2 given in (2.22), for all complex w with sufficiently
small |w| we have

(3.2) w = ψNσ2

(
w

1 + w
eσ2(w+ 1

2)
)
.

Let us use the shorthand ζ := ζσ2/4(θ/2) with some θ ∈ H and put

w := − i
2 tan ζ − 1

2 = i(θ − 2ζ)
σ2 − 1

2 .

If Im θ is sufficiently large, then |w| is sufficiently small; see (2.4). Also, the definition
of w implies that

w

1 + w
eσ2(w+ 1

2) =
− i

2 tan ζ − 1
2

− i
2 tan ζ + 1

2
ei(θ−2ζ) =

− ei ζ − e− i ζ

ei ζ + e− i ζ − 1
− ei ζ − e− i ζ

ei ζ + e− i ζ + 1
ei(θ−2ζ)

= − e2 i ζ ei(θ−2ζ) = − ei θ .

Inserting this into (3.2) yields ψNσ2 (− ei θ) = w = − i
2 tan ζσ2/4(θ/2) − 1

2 for all θ ∈ H
with sufficiently large Im θ. The latter restriction can be dropped by uniqueness of
analytic continuation since both sides are analytic functions of θ ∈ H. □

Proof of Theorems 2.2 and 2.4 assuming Proposition 3.1. From Proposition 3.1
combined with Lemmas 3.2 and 3.3 we conclude that

ψµn; σ2 (z) = − z

n
· H

′
n (z;σ2/n)

Hn (z;σ2/n) −→
n→∞

− 1
1 + e−2 i ζσ2/4(θ/2)

= − i
2 tan ζσ2/4(θ/2) − 1

2 = ψNσ2 (z),
(3.3)

locally uniformly on {|z| ⩽ r}. By standard results, see [FHS20, Lemmas 2.6 and
2.11], this already implies uniform convergence on {|z| ⩽ R} for every R ∈ (0, 1)
and the weak convergence µn; σ2 → Nσ2 . For convenience of the reader, we provide a
full proof.
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By Cauchy’s integral formula, (3.3) implies the convergence of the derivatives of
any order at 0 of the above ψ-transforms. By (2.20) this means that the Fourier
coefficients of µn; σ2 converge to those of Nσ2 , namely

∫
T
uℓµn; σ2(du) =

ψ(ℓ)
µn; σ2 (0)
ℓ! −→

n→∞

ψ
(ℓ)
Nσ2 (0)
ℓ! =

∫
T
uℓNσ2(du),

for all ℓ ∈ N. Since we are dealing with measures invariant under complex conjugation,
this convergence continues to hold for all ℓ ∈ Z. By [Bil68, p. 50], it follows that
µn; σ2 → Nσ2 weakly on T, thus proving Theorem 2.2.

To prove Theorem 2.4, we need the following classical consequence of Montel’s
fundamental normality test; see [Bur79, p. 252] and also [Bur79, p. 219] for a slightly
weaker Vitali–Porter theorem.

Theorem 3.4 (Carathéodory–Landau theorem). — Let f1, f2, . . . and f be an-
alytic functions defined on the unit disk D and taking values in C\{a1, a2}, where
a1, a2 ∈ C are distinct. If limn→∞ fn(zi) = f(zi) for all i ∈ N, where z1, z2, . . . ∈ D is
a sequence of distinct points having an accumulation point in D, then fn → f locally
uniformly on D.

We are now in position to prove (2.6) of Theorem 2.4. Since Reψµn; σ2 (z) > −1
2 for

all z ∈ D, Theorem 3.4 lifts (3.3) to locally uniform convergence on D. That is, for
every R ∈ (0, 1), we have limn→∞ ψµn; σ2 (z) = ψNσ2 (z) uniformly on {|z| ⩽ R}. In
view of Lemmas 3.2 and 3.3 we conclude that

(3.4) lim
n→∞

1
n

· H
′
n (z;σ2/n)

Hn (z;σ2/n) = − e− i θ

1 + e−2 i ζσ2/4(θ/2) = − e− i θ
( i

2 tan ζσ2/4(θ/2) + 1
2

)
uniformly on {|z| ⩽ R}. This proves (2.6).

Let us prove (2.5) of Theorem 2.4. Denote the right-hand side of (3.4) by hσ2/4(z)
with the usual convention z = − ei θ. Integrating the uniform convergence in (3.4)
along the segment joining 0 and z we obtain

1
n

log Hn(z;σ2/n)
(−1)n

=
∫ z

0

1
n

· H
′
n(y;σ2/n)

Hn(y;σ2/n)dy

−→
n→∞

∫ z

0
hσ2/4(y)dy = log

(
1 + e2 i ζσ2/4(θ/2)

)
− σ2

2
(
1 + e−2 i ζσ2/4(θ/2)

)2 .
(3.5)

To prove the last equality, one observes that the right-hand side of (3.5) vanishes
at z = 0 and that its derivative in z is hσ2/4(z); see (3.12) for the details of the
calculation. □

3.2. Proof of Proposition 3.1

Proof. — We start with an integral representation of the unitary Hermite polyno-
mials. A related result can be found in [SZ18, Proposition 2.1].
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Lemma 3.5. — For all n ∈ N, σ2 > 0 and z ∈ C we have

(3.6) Hn(z;σ2/n) = (−1)n

√
n√

2πσ2

∫ +∞

−∞

(
1 − z et

)n
e− n

2 ( t
σ

+ σ
2 )2

dt.

Proof. — As in [SZ18], we use the Hubbard–Stratonovich trick, that is the identity
e 1

2 a2 = 1√
2π

∫+∞
−∞ e− 1

2 s2 eas ds, for all a ∈ C. With a = σ(j − n
2 )/

√
n it follows that

e
1

2n
σ2(j− n

2 )2

= 1√
2π

∫ +∞

−∞
e− 1

2 s2 esσ(j− n
2 )/

√
n ds.

With this in mind, we can represent the unitary Hermite polynomials as follows:

Hn

(
z;σ2/n

)
=

n∑
j=0

(
n

j

)
(−1)n−jzj exp

{
σ2 (j2 − jn)

2n

}

= e− 1
8 σ2n 1√

2π

∫ +∞

−∞

n∑
j=0

(
n

j

)
(−1)n−jzj e− 1

2 s2 esσ(j− n
2 )/

√
n ds

= (−1)n e− 1
8 σ2n 1√

2π

∫ +∞

−∞

(
1 − z esσ/

√
n
)n

e− 1
2 s2 e− 1

2 sσ
√

n ds

= (−1)n 1√
2π

∫ +∞

−∞

(
1 − z esσ/

√
n
)n

e− 1
2(s+ 1

2 σ
√

n)2

ds.

After the substitution t = sσ/
√
n we arrive at (3.6). □

Our next aim is to prove the following result which will imply Proposition 3.1 by
differentiation.

Proposition 3.6. — Fix some σ2 > 0. If r = r(σ2) > 0 is sufficiently small, then
uniformly over the disk {z ∈ C : |z| ⩽ r} we have

lim
n→∞

1
n

log Hn (z;σ2/n)
(−1)n

= log
(
1 + e2 i ζσ2/4(θ/2)

)
− σ2

2
(
1 + e−2 i ζσ2/4(θ/2)

)2 ,

where θ ∈ H is such that − ei θ = z if z ̸= 0. In the case z = 0, which corresponds
to Im θ → +∞, the right-hand side is defined to be 0, by continuity. The branch of
the logarithm on the left-hand side is chosen such that log 1 = 0 at z = 0 and the
function log(. . .) is continuous (and analytic).

We shall write the integral in (3.6) as
∫ 0

−∞ +
∫+∞

0 and analyze both summands
separately. As we shall show, the main contribution comes from the negative half-axis.

Saddle point analysis

With the help of the saddle-point method [SFS85, §45.4, p. 423] we shall analyze
the integral

∫ 0
−∞ enS(t; z) dt, where

(3.7) S(t; z) = log(1 − z et) − 1
2

(
t

σ
+ σ

2

)2
, |z| < 1, Re t < 0.
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Figure 3.1. Level lines of the function t 7→ ReS(t; z) in the left half-plane
{Re t ⩽ 0}. Left panel: z = 0. Right panel: z ̸= 0. In both cases, σ = 2. The
level set passing through the saddle point is shown in black. Level lines where
the function takes smaller (respectively, larger) values than at the saddle point
are shown in blue (respectively, red).

Observe that S(t; z) is an analytic function of its two variables since for |z| < 1 and
Re t < 0 we have |z et | < 1, implying that log(1 − z et) is well-defined and analytic.
The saddle-point equation takes the form

(3.8) d
dtS(t; z) = − z et

1 − z et
− t

σ2 − 1
2 = 0.

Lemma 3.7. — For every z ∈ D, Equation (3.8) has a unique solution t0 :=
t0(z;σ2) in the left half-plane {Re t < 0}. For z ∈ D\{0}, the solution is given by

(3.9) t0(z;σ2) = iσ2

2 tan ζσ2/4(θ/2) = 2 i
(
ζσ2/4(θ/2) − θ/2

)
,

where we recall the notation z = − ei θ for some θ ∈ H. For z = 0, the solution is
t0(0;σ2) = −1

2σ
2.

Proof. — Let z = − ei θ ≠ 0 with θ ∈ H. Every complex number t with Re t < 0
can be represented as t = i σ2

2 tan ζ with some ζ ∈ H which is unique up to an
additive term of the form πn, n ∈ Z. With this notation, Equation (3.8) takes the
form

0 = 1
2 + t

σ2 + z et

1 − z et
= 1

2 + i
2 tan ζ − 1

1 − z−1 e−t
= 1

1 + e−2 i ζ
− 1

1 + e− i θ− i σ2
2 tan ζ

.

It follows that 2 i ζ = i θ+ i σ2

2 tan ζ+2π in for some n ∈ Z. Hence, for ζ∗ := ζ−πn we
obtain the equation ζ∗ = θ

2 + σ2

4 tan ζ∗. Since ζ∗ ∈ H, it follows that ζ∗ = ζσ2/4(θ/2),
see Theorem 2.3, and the proof is complete. □

We are now going to apply the saddle-point method [SFS85, §45.4, p. 423] to the
integral

∫ 0
−∞ enS(t; z) dt. To this end, we shall replace the initial contour of integration
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by a contour γ (depending on z and σ2) with the following properties. The contour
γ starts at −∞, ends at 0, and stays in the left half-plane Re t ⩽ 0. Furthermore,
γ passes through the saddle point t0 = t0(z) = t0(z;σ2), and satisfies ReS(t; z) <
ReS(t0(z); z) for all t ∈ γ\{t0(z)}. Finally, in the neighborhood of the point t0(z), the
contour is required to pass through both sectors in which ReS(t; z) < ReS(t0(z); z).

We shall prove the existence of such a contour provided |z| is sufficiently small
(even though we conjecture that it exists for all z ∈ D). Let ∂1S and ∂2S denote the
partial derivatives of S(·, ·) in the first/second argument. First of all, for z = 0, the
function S(t; 0) = −1

2( t
σ

+ σ
2 )2 attains its strict maximum on (−∞, 0] at t0(0) = −1

2σ
2.

This critical point is simple meaning that (∂2
1S)(−1

2σ
2; 0) < 0. It follows that the

negative half-line (−∞, 0] satisfies the conditions listed above; see the left panel of
Figure 3.1. Observe also that in a small disk D centered at −1

2σ
2, the set where

ReS(t; 0) < ReS(−1
2σ

2; 0) consists of two sectors whose boundaries are straight lines
crossing D at four points A1, A2, A3, A4. After a small perturbation of z, we still have
a critical point at t0(z) which is close to t0(0) and simple, by analyticity of t0(z) and S;
see Lemma 3.7. It follows that, in the disk D, the set where ReS(t; z) < ReS(t0(z); z)
still consists of two sectors; see the right panel of Figure 3.1. The four points where
the boundaries of these sectors cross D are close to the points A1, A2, A3, A4, again by
analyticity. It follows that the saddle-point contour γ satisfying the above condition
exists (and can be obtained by perturbing the segment of the real line contained
in D).

Applying the saddle-point asymptotics [SFS85, §45.4, p. 423], we have

(3.10)
∫ 0

−∞
enS(t; z) dt ∼

√
− 2π
n(∂2

1S)(t0(z); z)
enS(t0(z); z), as n → ∞.

This holds pointwise in z provided |z| is sufficiently small (the uniformity in z will
be addressed later). A formula for (∂2

1S)(t0(z); z) will be given in (3.17). The choice
of the square root branch, irrelevant for our purposes, is explained in [SFS85, p. 425].
It follows from (3.7) and (3.9) that for z = − ei θ ̸= 0 we have

S(t0(z); z) = log
(
1 − z et0(z)

)
− 1

2

(
t0(z)
σ

+ σ

2

)2

= log
(
1 + e2 i ζσ2/4(θ/2)

)
− σ2

2
(
1 + e−2 i ζσ2/4(θ/2)

)2 .
(3.11)

Note that for z = 0 we have S(t0(0); 0) = 0. For future use let us note the identity
d
dzS(t0(z); z) = (∂1S)(t0(z); z)∂zt0(z) + (∂2S)(t0(z); z) = (∂2S)(t0(z); z)

= − et0(z)

1 − z et0(z) = 1
z

(
1
2 + t0(z)

σ2

)

= − e− i θ
( i

2 tan ζσ2/4(θ/2) + 1
2

)
= − e− i θ

1 + e−2 i ζσ2/4(θ/2) ,

(3.12)

where we used that (∂1S)(t0(z); z) = 0 since t = t0(z) solves the saddle-point
equation (3.8).
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Contribution of the positive half-axis is negligible

We claim that if r = r(σ2) > 0 is sufficiently small, then uniformly over the disk
|z| ⩽ r it holds that

(3.13)
∫ ∞

0

(
1 − z et

)n
e− n

2 ( t
σ

+ σ
2 )2

dt = O
(
e− 1

16 σ2n
)
, as n → ∞.

If 0 ⩽ t ⩽ σ2, then by choosing a sufficiently small r > 0 we can achieve that
|1 − z et | ⩽ 1 + |z| et < e 1

16 σ2 for all |z| ⩽ r and hence, for all n ∈ N,∣∣∣∣ (1 − z et
)n

e− n
2 ( t

σ
+ σ

2 )2
∣∣∣∣ ⩽ e 1

16 σ2n e− 1
8 σ2n = e− 1

16 σ2n .

It follows that

(3.14)
∫ σ2

0

(
1 − z et

)n
e− n

2 ( t
σ

+ σ
2 )2

dt = O
(
− e 1

16 σ2n
)
, as n → ∞.

For t ⩾ σ2 we argue as follows. Since 1 ⩽ et for all t ⩾ 0, we have |1 − z et | ⩽
1 + |z| et ⩽ et(1 + r) provided |z| ⩽ r. It follows that∣∣∣∣ ∫ ∞

σ2

(
1 − z et

)n
e− n

2 ( t
σ

+ σ
2 )2

dt
∣∣∣∣ ⩽ (1 + r)n

∫ ∞

σ2
e− n

2 ( t
σ

− σ
2 )2

dt

= (1 + r)n e− 1
8 σ2(n−1)

∫ ∞

σ2
e− 1

2( t
σ

− σ
2 )2

dt

since 1
2( t

σ
− σ

2 )2 ⩾ 1
8σ

2 for t ⩾ σ2. Note that the integral on the right-hand side
converges. Also, if r > 0 is sufficiently small, then 1 + r ⩽ e 1

16 σ2 and it follows that

(3.15)
∫ ∞

σ2
(1 − z et)n e− n

2 ( t
σ

+ σ
2 )2

dt = O
(
e− 1

16 σ2n
)
, as n → ∞.

Combining (3.14) and (3.15) yields (3.13), thus completing the proof that the con-
tribution of the positive half-line is negligible.

Exact asymptotics of Hn

It follows from (3.10) and (3.13), together with the fact that S(t0(z); z) converges
to 0 as z → 0, that, for sufficiently small |z|, the contribution of the positive half-axis
is negligible in the sense that∫ ∞

−∞
enS(t; z) dt ∼

√
− 2π
n (∂2

1S) (t0(z); z)
enS(t0(z); z), as n → ∞.

In view of Lemma 3.5, we can write this as

(3.16) Hn(z;σ2/n)
(−1)n

∼
√

− 1
σ2(∂2

1S)(t0(z); z)
enS(t0(z); z) as n → ∞.

This holds pointwise for every |z| ⩽ r provided that r > 0 is sufficiently small.
Although we shall not need this fact, let us mention that after some work it is
possible to verify that

(3.17)
(
∂2

1S
)

(t0(z); z) = z−1 e−t0(z)

(1 − z−1 e−t0(z))2 − 1
σ2 = − 1

4 cos2 ζσ2/4(θ/2) − 1
σ2 .
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Proof of the uniform convergence

Now we would like to take the logarithm of both sides of (3.16). Observe that
the left-hand side cannot become zero for z ∈ D by Lemma 2.1. Trivially, the same
conclusion holds for the right-hand side. Therefore, applying the function w 7→ log |w|
to both sides of (3.16) and dividing by n we get

(3.18) lim
n→∞

1
n

log
∣∣∣∣∣Hn (z;σ2/n)

(−1)n

∣∣∣∣∣ = ReS(t0(z); z).

This holds pointwise in z provided |z| ⩽ r with r > 0 sufficiently small. Note that
we did not apply the function w 7→ logw to avoid difficulties with the choice of the
branch. Now, our aim is to prove that

(3.19) lim
n→∞

1
n

log Hn (z;σ2/n)
(−1)n

= S(t0(z); z)

locally uniformly in |z| < r and with the same convention for the logarithm as
in Proposition 3.6. To this end, we shall use the following lemma which strength-
ens [Kab21, Lemma 3.8].

Lemma 3.8. — Let h1(z), h2(z), . . . be a sequence of holomorphic functions de-
fined on some domain D ⊂ C. If Rehn(z) → 0 pointwise on D and the sequence
(Rehn(z))n ∈N is locally uniformly bounded from above on D, then h′

n(z) → 0 locally
uniformly on D.

Remark 3.9. — If, additionally, hn(y0) → 0 for some y0 ∈ D, then, integrating,
we conclude that hn(z) → 0 locally uniformly on D.

Proof of Lemma 3.8. — Consider some closed disk B contained in D and centered
at z0 ∈ D. We know that Rehn(z) ⩽ C, for all n ∈ N and z ∈ B. Also, we know that
Re fn(z0) converges (and hence is bounded below). By Harnack’s inequality applied
to the non-negative harmonic functions C − Rehn(z) it follows that C − Rehn(z) is
uniformly bounded from above on B. We conclude that the sequence (Rehn(z))n ∈N
is locally uniformly bounded, both from above and from below.

Take some z0 ∈ D and let Br(z0) ⊂ D be a closed disk of radius r centered at z0
and contained in D. It is known (see, e.g., the proof of [Kab21, Lemma 3.8]) that
for all z in the interior of Br(z0), we have

(3.20) h′
n(z) = 1

π i

∮
|w−z0|=r

Rehn(w)
(w − z)2 dw,

where the integration contour is the boundary of Br(z0), oriented counter-clockwise.
Having (3.20) at our disposal, we claim that h′

n(z) → 0 uniformly over z ∈ Br/2(z0).
Indeed, (3.20) implies

sup
z ∈ Br/2(z0)

|h′
n(z)| ⩽ 1

π
·

 sup
|w−z0|=r

z ∈ Br/2(z0)

1
|w − z|2

 ·
∫

|w−z0|=r
| Rehn(w)||dw|.

Since the supremum is finite and the integral converges to 0 by the dominated
convergence theorem, the desired conclusion follows. □
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We apply Lemma 3.8 with hn(z) := 1
n

log Hn(z; σ2/n)
(−1)n − S(t0(z); z). These functions

are analytic on {|z| < r} and we have hn(0) = 0 as well as Rehn(z) → 0 pointwise,
by (3.18). Observe that the functions (Rehn(z))n ∈N are locally uniformly bounded
from above since by (1.5) and the triangle inequality,

1
n

log
∣∣∣∣∣Hn (z;σ2/n)

(−1)n

∣∣∣∣∣ ⩽ 1
n

log
 n∑

j=0

(
n

j

)
|z|j

 ⩽ log(1 + |z|), z ∈ C.

Lemma 3.8 (together with Remark 3.9) yields (3.19). Taking into account (3.11),
this proves Proposition 3.6. Since a locally uniform convergence of analytic functions
can be differentiated, we infer that

lim
n→∞

1
n

· H
′
n (z;σ2/n)

Hn (z;σ2/n) = d
dzS(t0(z); z) = − e− i θ

1 + e−2 i ζσ2/4(θ/2)

= − e− i θ
( i

2 tan ζσ2/4(θ/2) + 1
2

)
;

see (3.12). The proof of Proposition 3.1 is complete. □
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