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Abstract. — We consider a recently introduced model of color-avoiding percolation
(abbreviated CA-percolation) defined as follows. Every edge in a graph G is colored in some
of k ⩾ 2 colors. Two vertices u and v in G are said to be CA-connected if u and v may be
connected using any subset of k− 1 colors. CA-connectivity defines an equivalence relation on
the vertex set of G whose classes are called CA-components.

We study the component structure of a randomly colored Erdős–Rényi random graph of
constant average degree. We distinguish three regimes for the size of the largest component:
a supercritical regime, a so-called intermediate regime, and a subcritical regime, in which the
largest CA-component has respectively linear, logarithmic, and bounded size. Interestingly, in
the subcritical regime, the bound is deterministic and given by the number of colors.

Résumé. — Nous considérons un modèle introduit récemment de percolation par couleur-
évitante (abrégée CA-percolation) définie comme suit. Chaque arête d’un graphe G est colorée
en une ou plusieurs couleurs parmi k ⩾ 2 choix possibles. Deux sommets u et v de G sont
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36 L. LICHEV & B. SCHAPIRA

dits CA-connectés si u et v peuvent être connectés en utilisant uniquement n’importe quel
sous-ensemble de k − 1 couleurs. La CA-connectivité définit une relation d’équivalence sur
l’ensemble des sommets de G dont les classes sont appelées CA-composantes.

Nous étudions la structure des composantes d’un graphe aléatoire Erdős–Rényi coloré aléatoi-
rement de degré moyen constant. Nous distinguons trois régimes pour la taille de la plus grande
composante : un régime sur-critique, un régime dit intermédiaire et un régime sous-critique,
dans lesquels la plus grande CA-composante a respectivement une taille linéaire, logarithmique
et bornée. Curieusement, dans le régime sous-critique, la borne est déterministe et donnée par
le nombre de couleurs.

1. Introduction

In this paper, we are interested in the model of (edge-)color-avoiding percolation
defined as follows. Fix a set of k ⩾ 2 colors and a graph G, and color every edge
of G in at least one color. We say that two vertices u and v in G are color-avoiding
connected, or CA-connected for short, if u and v may be connected using any subset
of k− 1 colors. In fact, CA-connectivity defines an equivalence relation on the vertex
set of G whose classes are called CA-components. The model has been motivated
by a number of real-world applications, for example, avoiding a set of mistrusted
information channels (where colors correspond to eavesdroppers), or avoiding a set
of possibly corrupted links in a network. In a sense, a network with large CA-
components may be considered resistant to attacks from a set of adversaries where
the adversaries control all channels but can only attack the network separately.

Color-avoiding percolation was introduced by Krause, Danziger, and Zlatić [KDZ16,
KDZ17]. In their work, the authors were interested in vertex-colored graphs and
analyzed a vertex analog of CA-connectivity. While some empirical observations
were made for scale-free networks, the focus was put on Erdős–Rényi random graphs
due to their better CA-connectivity [KDZ16]. In a subsequent work, Kadović, Krause,
Caldarelli, and Zlatić [KKCZ18] defined mixed CA-percolation where both vertices
and edges have colors. To a large extent, each of these foundational papers based
their conclusions on experimental evidence.

Precise mathematical treatment of the subject is challenging for several reasons.
Firstly, unlike connected components in a graph, the CA-components cannot be
found by a local exploration of the graph in general. Indeed, note that even if two
vertices are neighbors in the graph, all paths that connect them and avoid a certain
color may be rather long. Secondly, while one edge in a graph may merge at most
two components or divide a single connected component into two parts, a single
colored edge may lead to a merging of a lot of different CA-components. For example,
consider two parallel paths of length 2ℓ + 1, and for every i ∈ [2ℓ + 1], connect the
ith vertex in one of the paths with the ith vertex in the other path. Also, color the
odd edges in the paths in blue, the even edges in red, and the edges between them
in green, see Figure 1.1. Then, it may be easily checked that all CA-components in
the obtained graph are of size 1 while adding a blue edge between the last vertices
in the two paths creates 2ℓ + 1 components of size 2 at once. Last but not least,
in the framework of random graphs, deleting the edges in two different colors from
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Figure 1.1. Blue, red and green edges are represented by dotted, dashed, and
solid segments, respectively. One may easily check that on the left, every vertex
is alone in its CA-component, while on the right, the addition of a single blue
edge leads to the appearance of many CA-components of size 2.

the original graph leads to two distinct subgraphs that can have a large intersection,
and can therefore be highly correlated.

To our knowledge, a rigorous mathematical treatment of the behavior of color-
avoiding percolation on random graphs has only been studied in a recent work
of Ráth, Varga, Fekete, and Molontay [FMRV24]. In their paper, they show that
under a certain subcriticality assumption, the number of CA-components of a given
fixed size renormalized by n converges in probability to a fixed constant. Moreover,
under the same assumption, it is proved that the size of the largest CA-component
renormalized by n converges in probability to a fixed constant. They also characterize
the behavior of that constant in the barely supercritical regime.

Our goal here is to go further in the analysis of the structure of CA-components in
a randomly colored Erdős–Rényi random graph around the threshold of appearance
of a giant component. Apart from simplifying the approach of [FMRV24] (or, more
precisely, the earlier version of this work [FMRV22]) and getting rid of their additional
hypothesis, we show that the parameter space may be naturally divided into three
regimes. In each of them, we conduct a careful analysis of the size of the largest
CA-component as well as the number of small CA-components.

1.1. Main results

For a positive integer m, we denote [m] = {1, . . . , m}. In particular, we reserve the
notation [k] to denote the set of colors, and the notation [n] for the set of vertices
of our graphs. Recall that for p ∈ [0, 1], the Erdős–Rényi random graph G(n, p), or
ER random graph for short, with parameters n and p is the graph on the vertex set
[n] where the edge between any two distinct vertices is present with probability p,
independently from all other edges.

Consider now a non-increasing sequence of positive real numbers λ1 ⩾ · · · ⩾ λk,
and define a family of k independent Erdős–Rényi random graphs Gi = G(n, λi

n
)

for i ∈ [k] on the same vertex set [n] (alternatively, this family can be seen as a
multigraph ([n], E1, . . . , Ek) where Ei is the edge set of Gi). In order to easily refer
to and distinguish the graphs (Gi)k

i=1, we say that for every i ∈ [k], the edges of Gi

are given color i. Define further
Λ = λ1 + · · ·+ λk, and λ∗

i = Λ− λi for every i ∈ [k].
In particular, λ∗

1 ⩽ λ∗
2 ⩽ · · · ⩽ λ∗

k. Also, we set
(1.1) G = G1 ∪ . . . ∪Gk,
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38 L. LICHEV & B. SCHAPIRA

and for I ⊆ [k],
GI =

⋃
i ∈ I

Gi, and GI =
⋃

i ∈ [k]\I

Gi,

with the shorthand notation Gi and Gi, respectively, when I = {i}.
Recall that two vertices u and v in G are CA-connected if u and v are connected in

each of the graphs (Gi)k
i=1. Moreover, CA-connectivity is an equivalence relation with

classes called CA-components. The CA-component of a vertex u ∈ [n] is denoted by
C̃(u), and |C̃(u)| denotes its size. Our main object of interest is the size of the largest
CA-component in G. Under the assumption that ∑i ∈ I λi < 1 for every set I ⊆ [k]
of size k − 2, it was shown in [FMRV22] that there exists a constant a ∈ [0, 1] such
that

(1.2)
maxu ∈ [n]

∣∣∣C̃(u)
∣∣∣

n
P−−−→

n→∞
a,

and that the constant a is positive if and only if λ∗
1 > 1, which is called the super-

critical regime. Here, we improve this result in three directions:
• We observe that (1.2) can be easily derived from the convergence in distribu-

tion of the neighborhood of a typical vertex, and this does not require any
additional technical assumptions.
• In the subcritical regime (that is, when λ∗

k < 1), we prove that asymptotically
almost surely (a.a.s.), any CA-component has size at most k. Moreover, the
random variables (Nℓ)k

ℓ=2 which count the number of CA-components of size
2, . . . , k, respectively, jointly converge in distribution to independent Poisson
random variables.
• We start investigating the more difficult intermediate regime (that is, when

λ∗
k > 1 > λ∗

1). In this setting, we show a weak law of large numbers under the
assumption that λ∗

k > 1 > λ∗
k−1.

These results are summarized in the following theorem.

Theorem 1.1. — Suppose that k ⩾ 2.
(i) There exists a1 ∈ [0, 1), such that

maxu ∈ [n]

∣∣∣C̃(u)
∣∣∣

n
P−−−→

n→∞
a1.

Moreover, one has a1 > 0 if and only if λ∗
1 > 1.

(ii) If λ∗
k > 1 > λ∗

k−1, then there is a positive constant a2 such that

maxu ∈ [n]

∣∣∣C̃(u)
∣∣∣

log n
P−−−→

n→∞
a2.

(iii) If λ∗
k < 1, then a.a.s. maxu ∈ [n] |C̃(u)| ⩽ k. Moreover, there are positive

constants β2, . . . , βk, such that

(N2, . . . , Nk) d−−−→
n→∞

k⊗
ℓ=2

Po(βℓ),
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that is, the random variables (Nℓ)k
ℓ=2 jointly converge in distribution to k − 1

independent Poisson variables with means β2, . . . , βk as n→∞.

Note that in the above result, we recover an analog of the famous transition from a
linear to a logarithmic size for the largest connected component, which appears in an
ER random graph G(n, λ

n
) as the parameter λ crosses the critical value 1. However,

unlike this standard setting, one original feature of CA-percolation is that there is
an additional regime where the size of the largest CA-component remains bounded.
Furthermore, the critical cases λ∗

1 = 1 and λ∗
k = 1 appear to be more subtle, see

Proposition 1.3 below and Section 4 for more on this.
Now, we take a closer look at each of the three parts of Theorem 1.1. Part (i)

should not be very surprising as, on the one hand, if λ∗
1 ⩽ 1, then a.a.s. the largest

connected component in G1 has sublinear size, and thus the largest CA-component as
well. On the other hand, if λ∗

1 > 1, then a.a.s. the largest CA-component is obtained
by intersecting the largest connected components in each of the graphs G1, . . . , Gk,
which all have linear size. However, we stress that the whole point of the proof is
to handle the lack of independence between these components. To do this, we use a
local limit argument for a sequence of randomly colored ER random graphs, which
also allows us to recover and improve in a simple way a result of [FMRV22, FMRV24]
on the number of CA-components of given size.

Proposition 1.2. — There exists a sequence of non-negative real numbers
(νℓ)ℓ⩾ 1 such that ∑ℓ⩾ 1 νℓ = 1− a1, and for each ℓ ⩾ 1,

(1.3)

∣∣∣{u ∈ [n] :
∣∣∣C̃(u)

∣∣∣ = ℓ
}∣∣∣

n
= ℓ ·Nℓ

n
P−−−→

n→∞
νℓ.

Moreover, one has νℓ > 0 for all ℓ ⩾ 1 if and only if λ∗
k > 1, while if λ∗

k ⩽ 1, then
ν1 = 1.

This proposition and Part (i) of Theorem 1.1 answer a question from [FMRV22]
by showing that one can get rid of their technical assumption.

For Part (ii) of Theorem 1.1, the main observation is that the largest CA-component
comes from intersecting a connected component in Gk with the largest component
of Gk. In fact this argument also gives us that the size of the largest CA-component
in the critical case λ∗

k = 1 > λ∗
k−1 is tight.

Proposition 1.3. — Suppose that λ∗
k = 1 > λ∗

k−1. Then,

sup
n⩾ 1

P
(

max
u ∈ [n]

∣∣∣C̃(u)
∣∣∣ ⩾ M

)
−−−−→
M→∞

0.

The question of whether in this critical case the size of the largest CA-component
converges in distribution remains open. In fact, even knowing if the support is
asymptotically bounded by a deterministic constant is unknown.

In the remaining intermediate regime, i.e. when λ∗
k−1 ⩾ 1 > λ∗

1, one can easily
show that the size of the largest CA-component is still of logarithmic order. However,
proving concentration seems to be a challenging problem, which remains out of reach
with our present techniques.
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Part (iii), as we already mentioned, is arguably the most original part. In this
case, the largest connected component in each of the graphs G1, . . . , Gk has only
logarithmic size, which makes it very difficult for a pair of vertices to be connected
in all k graphs. This explains, at least heuristically, why the largest CA-component
has bounded size, although the fact that the bound is deterministic may appear as
unexpected. Actually, as we shall see, the main reason for which the upper bound is
given by the number of colors is that a.a.s. every CA-component is either contained
in a single edge, or all paths connecting two of its vertices and avoiding some color
are contained in a single cycle.

Finally, we provide an explicit expression of βk in terms of λ1, . . . , λk in Remark 3.7.
While it is possible to do the same for the other values of βm for m < k, the formula
and the computation tend to get more and more tedious as m decreases.

We now comment on the proofs themselves in more detail.

Outline of the proofs

As already mentioned, the proofs of Part (i) of Theorem 1.1 and Proposition 1.2
are based on the well-known local convergence of Erdős–Rényi random graphs to
Bienaymé–Galton–Watson trees, or BGW trees for short, with Poisson offspring
distribution. In our setting of edge-colored ER random graph, the local limit can be
seen as a BGW tree with Po(Λ) offspring distribution where additionally each edge
is colored with color i ∈ [k] with probability λi/Λ, independently for different edges.
Then, the constant a1 is just the probability that for every i ∈ [k], the connected
component of the root is infinite when we erase the edges colored with color i. The
same approach allows to prove Proposition 1.2, with (νℓ)ℓ⩾ 1 being the probability
distribution of the size of the CA-component of the root in the aforementioned
BGW tree. However, here the notion of CA-component must be suitably adjusted,
as already noticed in [FMRV22]: for each i ∈ [k], two vertices are declared to be
connected when erasing color i if either they are indeed connected by a path in the
BGW tree that avoids color i, or if they both connect to infinity by paths avoiding
color i. It is then not difficult to see that, for this notion of CA-connectivity, the
constant a1 is also the probability that the CA-component of the root is infinite.

On the other hand, the proofs of (ii), Proposition 1.3 and (iii) have a different
flavor. Firstly, we outline the proof strategy for (ii). To begin with, we make use of
the following fact, which might be of independent interest. Consider a subcritical
Erdős–Rényi random graph G(n, λ

n
), and independently color each of its vertices in

black with some probability q ∈ (0, 1]. Then, we show that the maximal number
of black vertices which are all connected in G(n, λ

n
) divided by log n converges in

probability towards a positive constant. This result extends the concentration for the
size of the largest component in a subcritical ER random graph, which corresponds
to q = 1. The proof is obtained by solving an energy-entropy optimization problem,
where the energy corresponds to the cost of having a large number of black vertices
in a given connected component of G(n, λ

n
), while the entropy factor comes from

the fact that as b decreases, the number of connected components of size b log n in
G(n, λ

n
) increases. The link with (ii) arises as one realizes (the nontrivial fact) that
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when λ∗
k−1 < 1, the largest CA-component necessarily comes from intersecting a

component in Gk (which is subcritical) with the largest component of Gk (which is
supercritical), the two being independent, and the fact that the vertex set of the
giant component in the latter can be approximated by a binomial random subset
of vertices. A similar argument also leads to a proof of Proposition 1.3. We refer to
Sections 2.3, 2.4, and 3.2 for more details.

Concerning (iii), the crux of the proof is to show that when λ∗
k < 1, a.a.s. every

CA-component of size at least two is contained either in a cycle of G or in a single
edge (the latter happening only if the CA-component has exactly two vertices which
are linked by an edge in at least two different colors), see Lemma 3.4. The proof of
this result relies on a combination of some counting arguments (e.g. showing that
a.a.s. connected subgraphs of G(n, λ/n) of size at most some constant times log n
contain at most one cycle, see Lemma 2.5), and a more probabilistic lemma showing
that a.a.s. all CA-components have bounded size (see in particular Lemma 3.2). Once
this is established, (iii) follows from standard results on the asymptotic numbers of
short cycles in an Erdős–Rényi random graph.

Remark 1.4. — Note that the notion of CA-component of a vertex u is usually
defined as the set of vertices connected to u when deleting edges of color i for any
i ∈ [k] (that is, unlike in our setting, edges in color i cannot be used even if they
have more than one color). While all our results would also hold with this definition,
ours is slightly more convenient to deal with, especially in the intermediate regime,
since this way Gi and Gi are independent.

Further notation and terminology

In general, we omit the dependence on n, Λ and (λi)i ∈ [k] for convenience of notation.
For I ⊆ [k] and a vertex u ∈ [n], we denote by CI(u) and CI(u) the connected

components of u in GI and GI , respectively. An edge is said to be repeated if it
participates in at least two of G1, . . . , Gk.

In this paper, we often identify graphs with their vertex sets. For instance, given a
graph H, the size of H stands for the number of vertices in H, which we denote by
|H|. For a set S of vertices of H, we denote by H[S] the subgraph of H induced by
S (that is, the graph with vertex set S and edge set given by the edges of H with
both vertices in S). Moreover, for two vertices u, v in H, we denote by {u H←→ v} the
event that u and v are connected in H.

A sequence of events (En)n⩾ 1 is said to hold a.a.s. if P(En)→ 1 as n→∞. Given
two positive real sequences (fn)n⩾ 1 and (gn)n⩾ 1, we write fn = o(gn) if fn/gn → 0
when n→∞, and fn = O(gn) if there exists a constant C > 0 such that fn ⩽ Cgn

for all n ⩾ 1. Furthermore, we write d−→ to denote convergence in distribution of a
sequence of random variables, and P−→ for convergence in probability.

Finally, we denote by Po(λ) the Poisson distribution with parameter λ, and by
Bin(n, q) the Binomial distribution with parameters n and q. For a family of dis-
tributions (µi)i ∈ I , we denote by ⊗

i ∈ I µi the distribution of a vector (Xi)i ∈ I of
independent random variables where Xi ∼ µi for every i ∈ I.
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Plan of the paper

The rest of the paper is organized as follows. In the next section, we recall some
known facts about ER random graphs, both in the subcritical and supercritical
regimes, and show the result on the size of the largest black connected set in a
(vertex-)colored subcritical ER random graph which was mentioned above. Then, in
Section 3 we give the proof of our main results, Theorem 1.1 and Propositions 1.2
and 1.3, and finally discuss some open questions in Section 4.

2. Preliminaries on Erdős–Rényi random graphs

In this section, we gather some results on the random graph G(n, λ
n
). Apart from

the results in Section 2.4, most of the material presented here is well-known, and we
sometimes include short proofs only for the reader’s convenience.

We let C(u) denote the connected component of a vertex u ∈ [n]. Also, for λ > 0,
set

(2.1) Iλ = λ− 1− log λ.

It is easy to check that this is a positive real number for all λ > 0 different from 1.
Also, for every integer s ⩾ 0, we define

Zs =
∑

u ∈ [n]
1{|C(u)|⩾ s}.

2.1. Subcritical regime: cluster size and two-point connectivity

Fix λ ∈ (0, 1). Then, it is well-known that

(2.2) maxu ∈ [n] |C(u)|
log n

P−−−→
n→∞

1
Iλ

,

see e.g. [Hof17, Theorems 4.4 and 4.5]. It will also be useful to have a bound on
the upper tail of the typical cluster size. The following one will be sufficient for our
purposes.

Lemma 2.1 (see [Hof17, (4.3.11)]). — Fix λ ∈ (0, 1). Then, for every t ⩾ 1,

P(|C(u)| ⩾ t) ⩽ e−Iλ· t.

A reverse inequality holds as well when t does not grow too fast with n. In particular,
we shall need the following result (see e.g. [Hof17, (4.3.34) and (4.3.37)]).

Lemma 2.2. — Fix λ ∈ (0, 1) and a ∈ (0, 1/Iλ]. Then,

P(|C(u)| ⩾ a log n) ⩾ n−(1+o(1))Iλ· a.

Moreover, Lemma 2.1 has the following important consequence.
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Corollary 2.3. — Fix λ ∈ (0, 1). Then, for every pair of distinct vertices u, v
in G(n, λ

n
),

P(v ∈ C(u)) ⩽ 1
n
· e−Iλ

1− e−Iλ
.

Proof. — It suffices to observe that for every t ⩾ 1, conditionally on the event
{|C(u)| = t}, the set of vertices different from u and contained in C(u) is uniformly
distributed among all possible subsets of [n] \ {u} of size t − 1. In particular, for
every v ̸= u,

(2.3) P(v ∈ C(u) | |C(u)| = t) = t− 1
n− 1 ⩽

t

n
.

By summing over all positive integers t ∈ [n] and using Lemma 2.1, we get

P(v ∈ C(u)) ⩽
n∑

t=1

t

n
· P(|C(u)| = t) = 1

n

n∑
t=1

P(|C(u)| ⩾ t) ⩽ 1
n
· e−Iλ

1− e−Iλ
,

as desired. □

The next result provides concentration of the variables Zs when s is of order log n.
The equality for the expectation is a direct consequence of Lemmas 2.1 and 2.2,
while the two inequalities for the variance follow from [Hof17, Proposition 4.7] and
Lemma 2.1, respectively.

Lemma 2.4. — Let λ ∈ (0, 1) and a ∈ (0, 1/Iλ]. Then,

E [Za log n] = n1−(1+o(1))Iλ· a

and
Var[Za log n] ⩽ n · E

[
|C(1)|1{|C(1)|⩾ a log n}

]
⩽ n1−(1+o(1))Iλ· a.

2.2. On the number of cycles

We start with a result showing that a.a.s. all connected subgraphs of G(n, λ
n
) of

size at most some constant (depending on λ) times log n contain at most one cycle,
and when λ < 1, all those with size at least ε log n are trees for any fixed ε > 0.

Lemma 2.5. — Fix λ > 0.
(1) There is a positive constant c1 = c1(λ) such that a.a.s. the following holds:

for every set S ⊆ [n] with |S| ⩽ c1 log n, whenever the subgraph of G(n, λ
n
)

induced by S is connected, it contains at most one cycle.
(2) If λ < 1, then for every ε > 0, a.a.s. all components of size larger than ε log n

are trees.

Remark 2.6. — In fact, concerning the second statement of this lemma, more is
true: as shown in the proof below, the expected number of vertices whose connected
component contains at least one cycle is bounded uniformly in n.
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Proof of Lemma 2.5. — Concerning the first part of the lemma, note that any
connected graph with at least two cycles contains as a subgraph a spanning tree
together with two additional edges. Furthermore, by Cayley’s formula the number
of spanning trees of the complete graph with size m is equal to mm−2. Therefore, for
every c > 0, by using that

(
n
m

)
⩽
(

ne
m

)m
, we deduce that the expected number of

subgraphs of G(n, λ
n
) which are connected, contain at least two cycles and at most

c log n vertices, is bounded from above by,
⌊c log n⌋∑

m=1
mm−2 ·

(
m

2

)2

·
(

n

m

)
·
(

λ

n

)m+1

⩽
1
n

⌊c log n⌋∑
m=1

m2(eλ)m+1,

which is o(1) if one chooses c < 1
1+max(0,log λ) . The proof of the first part is completed

by an application of Markov’s inequality.
For the second part, we compute the expected number of vertices in components

of size at most 2I−1
λ log n containing a cycle. Taking also into account the fact that

no vertex in a component of size m is connected to any of the n−m vertices outside
the component, the previous computation implies that the above expectation is at
most

2I−1
λ

log n∑
m=1

m ·mm−2 ·
(

m

2

)
·
(

n

m

)
·
(

λ

n

)m (
1− λ

n

)m(n−m)

⩽ (1 + o(1))
2I−1

λ
log n∑

m=1
m · e−Iλm = O(1).

Thus, by Markov’s inequality there are a.a.s. less than ε log n vertices in components
of size at most 2I−1

λ log n containing a cycle. However, by Lemma 2.1 a.a.s. all
components have size at most 2I−1

λ log n, which completes the proof. □

Remark 2.7. — The following modification of Lemma 2.5 holds with almost the
same proof.

(1) There exists c1 = c1(Λ) such that a.a.s. for every set S ⊆ [n] with |S| ⩽
c1 log n, whenever the subgraph of G induced by S is connected, it either
contains at most one cycle and no repeated edges or at most one repeated
edge and no cycles.

(2) If λ∗
i < 1 for some i, then for every ε > 0, a.a.s. all connected components of

Gi of size at least ε log n are trees with no repeated edges.
The next lemma is a well-known result concerning the number of cycles of given

size that will be needed for the proof of Theorem 1.1(iii). We refer e.g. to [Bol01,
Corollary 4.9] for a proof.

Lemma 2.8 ([Bol01], Corollary 4.9). — Fix λ > 0. For m ⩾ 3, denote by Cm the
number of cycles of length m in the graph G(n, p) with p = (1 + o(1))λ

n
. Then, for

any fixed ℓ ⩾ 3,

(C3, . . . , Cℓ) d−−−→
n→∞

ℓ⊗
m=3

Po(γm),

where for all m ∈ {3, . . . , ℓ}, γm = λm

2m
.
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Lemma 2.8 has the following direct consequence. Recall that an edge is said to be
repeated in G if it is part of at least two of the graphs G1, . . . , Gk.

Corollary 2.9. — Denote by C2 the number of repeated edges in G. Then,
with the same notation as in Lemma 2.8, for every ℓ ⩾ 2,

(C2, . . . , Cℓ) d−−−→
n→∞

ℓ⊗
m=2

Po(γm),

where γ2 = 1
2
∑

i,j ∈ [k], i < j λiλj and for all m ∈ {3, . . . , ℓ}, γm = Λm

2m
.

Proof. — Using that G is distributed as an Erdős–Rényi random graph with
parameters n and

p = 1−
k∏

i=1

(
1− λi

n

)
= (1 + o(1)) · Λ

n
,

the joint convergence of (C3, . . . , Cℓ) is given by Lemma 2.8.
On the other hand, by definition C2 ∼ Bin(n(n−1)

2 , 2(1+o(1))γ2
n2 ), and thus C2 con-

verges in distribution to Po(γ2). It only remains to justify the asymptotic indepen-
dence between C2 and the other variables. The argument is the same as the one
showing asymptotic independence of C3, . . . , Cℓ, see [Bol01, Theorem 4.8 and Corol-
lary 4.9]. Briefly, one can first notice by a simple first moment argument that a.a.s.
no vertex participates simultaneously in a repeated edge and in a cycle of length at
most ℓ. Thus, the variables (C3, . . . , Cℓ) a.a.s. coincide with the cycle counts in the
graph, obtained by deleting all vertices in repeated edges, which conditionally on
C2 is an ER random graph with at least n− 2C2 vertices. Using that E[C2] = O(1),
and more precisely that a.a.s. n− 2C2 = n− o(n), implies the corollary. □

2.3. Supercritical regime: stochastic domination of the giant component

Recall that when λ > 1, the graph G(n, λ
n
) has a.a.s. a unique connected component

of linear size (called the giant component). More precisely, it is well-known that

(2.4) maxu ∈ [n] |C(u)|
n

P−−−→
n→∞

µλ

where µλ is the survival probability of a Bienaymé–Galton–Watson tree with offspring
distribution Po(λ) characterized as the unique positive solution of the equation 1 =
e−λt + t, see [Hof17, display (3.6.2) and Theorem 4.8]. Recall also that conditionally
on its size, the set of vertices in the giant component is uniformly distributed among
the family of subsets of [n] of that size. As a consequence, one has the following
stochastic comparison with binomial random subsets of vertices.

Lemma 2.10. — Fix λ > 1 and ε > 0. Let Cmax be the a.a.s. unique largest
connected component of G(n, λ

n
). Let also (Xv)v ∈ [n] and (Yv)v ∈ [n] be two sequences

of i.i.d. Bernoulli random variables with respective parameters max(µλ − ε, 0) and
min(µλ + ε, 1). Then, there is a coupling of these two sequences with G(n, λ

n
) such

that a.a.s. one has
(2.5) {v : Xv = 1} ⊆ Cmax ⊆ {v : Yv = 1}.
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Proof. — Note that conditionally on their respective sizes, the three sets appearing
in (2.5) are sampled uniformly at random among all subsets of [n] of that size. The
lemma then follows by the weak law of large numbers and (2.4), which together
imply that a.a.s. ∑

v ∈ [n]
Xv ⩽ |Cmax| ⩽

∑
v ∈ [n]

Yv. □

2.4. On the intersection of a giant with independent subcritical clusters

Fix q ∈ (0, 1) and λ ∈ (0, 1). For every x ∈ [q, 1), define

Jq(x) = x log x

q
+ (1− x) log 1− x

1− q
, and set ρ(q, λ) = inf

x ∈ [q,1)

Iλ + Jq(x)
x

.

Consider a sequence (Xv)v ∈ [n] of independent Bernoulli random variables with pa-
rameter q, and independently a graph G(n, λ

n
). For u ∈ [n] and t ⩾ 0, define

Z̃t =
∑

u ∈ [n]
1{∑

v ∈ C(u) Xv ⩾ t

}.

The next lemma is similar in essence to Lemma 2.4.

Lemma 2.11. — Fix a ∈ (0, 1
ρ(q,λ) ]. Then,

E
[
Z̃a log n

]
= n1−(1+o(1))ρ(q,λ) · a and Var

[
Z̃a log n

]
⩽ n1−(1+o(1))ρ(q,λ) · a.

Proof. — We begin by proving the estimate on the mean. To start with, we recall
two large deviation estimates for Binomial random variables. On the one hand, for
every x ∈ [q, 1) and every N ⩾ 1 (see e.g. [Hof17, Corollary 2.20]),

(2.6) P(Bin(N, q) ⩾ xN) ⩽ exp
(
−N · Jq(x)

)
,

and on the other hand, for every fixed x ∈ [q, 1) (see e.g. [DZ10, Theorem 2.2.3 and
Exercise 2.2.23]),

(2.7) P(Bin(N, q) ⩾ xN) ⩾ exp
(
− (1 + oN(1)) ·N · Jq(x)

)
,

where the oN(1) term goes to 0 as N →∞. Since conditionally on its size the cluster
C(1) is uniformly distributed among the subsets of [n] of that size containing the
vertex 1, we deduce using (2.6) and Lemma 2.1 that

(2.8) P

 ∑
v ∈ C(1)

Xv ⩾ a log n


⩽

(a/q) log n∑
s=a log n

P(|C(1)| = s) · P(Bin(s, q) ⩾ a log n) + P(|C(1)| ⩾ (a/q) · log n)

⩽
(a/q) log n∑
s=a log n

exp
(
−
(

Iλ + Jq

(
a log n

s

))
· s
)

+ n−Iλ· a/q

= O(log n) · n− infb ∈ (a,a/q] b(Iλ+Jq(a/b)),
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and observing that
(2.9) inf

b ∈ (a,a/q]
b (Iλ + Jq(a/b)) = a · ρ(q, λ),

concludes the proof of the upper bound.
Now, we concentrate on the lower bound. To start with, we extend Jq to a conti-

nuous function on the interval [q, 1] by defining Jq(1) = log(1/q), and let b∗ be the
smallest real number realizing the infimum of the function b 7→ b(Iλ + Jq(a/b)) over
the interval [a, a/q]. Recall that log is a concave function, so by Jensen’s inequality
the function Jq is non-negative. Then, together with the fact that a ⩽ 1/ρ(q, λ) by
our hypothesis, (2.9) shows that

b∗ = a · ρ(q, λ)
Iλ + Jq(a/b∗)

⩽
a · ρ(q, λ)

Iλ

⩽
1
Iλ

.

Thus, by using Lemma 2.2 and (2.7), we get

P

 ∑
v ∈ C(1)

Xv ⩾ a log n

 ⩾ P(|C(1)| ⩾ b∗ log n) · P(Bin(b∗ log n, q) ⩾ a log n)

⩾ n−(1+o(1))b∗·Iλ · n−(1+o(1))b∗·Jq(a/b∗) = n−(1+o(1))a · ρ(q,λ),

which concludes the proof of the lower bound.
Finally, the proof of the upper bound on the variance is mutatis mutandis the

same as the proof of Lemma 2.4, in particular, the same argument leads to

Var
[
Z̃a log n

]
⩽ n · E

 ∑
v ∈ C(1)

Xv

 · 1{∑
v ∈ C(1) Xv ⩾ a log n

} ,

which combined with (2.8) yields the desired upper bound. □

Remark 2.12. — A close look at the previous proof shows that the upper bound
on the mean is in fact valid for all a > 0.

Corollary 2.13. — Let a = a(q, λ) = 1
ρ(q,λ) > 0. Then,

maxu ∈ [n]
∑

v ∈ C(u) Xv

log n
P−−−→

n→∞
a.

Proof. — If h > a(q, λ), then by Markov’s inequality and Lemma 2.11 (see also
Remark 2.12) we get

P

max
u ∈ [n]

∑
v ∈ C(u)

Xv ⩾ h log n

 = P
(
Z̃h log n ⩾ 1

)
⩽ E

[
Z̃h log n

]
= o(1).

Conversely, if h < a(q, λ), then again Lemma 2.11 together with the Cauchy–Schwarz
inequality gives

P

max
u ∈ [n]

∑
v ∈ C(u)

Xv ⩾ h log n

 = P
(
Z̃h log n ⩾ 1

)
⩾

E
[
Z̃h log n

]2
E
[
Z̃h log n

]2
+ Var

[
Z̃h log n

]
= 1− o(1). □
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3. Proofs of the main results

This section is devoted to the proofs of Theorem 1.1 and Proposition 1.2. We first
prove Part (i) of the theorem together with the proposition in Section 3.1, then
Part (ii) of the theorem in Section 3.2, and finally Part (iii) in Section 3.3.

3.1. Proofs of Theorem 1.1(i) and Proposition 1.2

The proofs of these two results are based on the well-known local convergence of
ER random graphs to BGW trees with Poisson offspring distribution. Recall that
in the standard setting of uncolored graphs, the local weak convergence states the
following: denoting by VL(u) the L-neighborhood of a vertex u in G (as defined
in (1.1)) or in the BGW tree with Po(Λ) offspring distribution, for every bounded
function (u, H) 7→ φ(u, H) defined on pairs (u, H) where H is a finite graph and u
a vertex of H, one has

1
n

∑
u ∈ [n]

E[φ(u,VL(u))] −−−→
n→∞

E[φ(∅,VL(∅))],

see e.g. [Cur17, Theorem 6]. It is straightforward to see that the same convergence
holds in our setting of colored graphs. The difference is that now, edges are endowed
with a label encoding its set of colors. As a consequence, the limiting graph is a
BGW tree with Po(Λ) offspring distribution, denoted hereafter by GW(Λ), where
each edge is colored in a single color and independently of other edges, and where
color i is attributed with probability λi/Λ (see the proof of Proposition 3.1 below).

Moreover, using that finite neighborhoods of two given points are mostly indepen-
dent (in particular, they are unlikely to intersect), it is possible to strengthen the
previous convergence in expectation into a convergence in probability, see e.g. [Hof24,
Theorem 2.19] in the case of uncolored graphs. In our case, we obtain the following
result, which is our main tool for proving Theorem 1.1(i) and Proposition 1.2. Al-
though the proof is standard, we briefly sketch the argument for reader’s convenience.
A similar result is derived in the proof of [FMRV22, Proposition 4.1.7].

Proposition 3.1. — Let φ be a bounded function on the set of finite rooted
graphs whose edges are endowed with a label encoding its set of colors. Then, for
any L ⩾ 1,

(3.1) 1
n

∑
u ∈ [n]

φ(u,VL(u)) P−−−→
n→∞

E[φ(∅,VL(∅))],

where VL(∅) is the L-neighborhood of the root ∅ in the colored graph GW(Λ)
defined above.

Proof. — As already mentioned, the convergence in expectation is a straight-
forward consequence of the well-known local weak convergence of G. Note that
conditionally on being present in G, an edge has color i with probability

λi/n

1−∏k
j=1 (1− λj/n)

= (1 + o(1))λi

Λ .
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In particular, since (λi/Λ)k
i=1 sum up to 1, a.s. every edge in the limit has only one

color.
To prove convergence in probability, we use Chebyshev’s inequality and bound the

variance of the random variable appearing on the left-hand side of (3.1). Assume
without loss of generality that φ is non-negative and bounded by one. Then, on the
one hand, for every u ∈ [n] and every fixed L ⩾ 1,

(3.2)
∑

v ∈ [n]
E
[
φ(u,VL(u)) = φ(v,VL(v)) · 1{v ∈ V2L(u)}

]
⩽ E[|V2L(u)|] ⩽ 1 + · · ·+ Λ2L = O(1).

On the other hand, conditionally on the event that v /∈ V2L(u), or equivalently
that VL(u) ∩ VL(v) = ∅, and |VL(u)| = m for some m ⩾ 1, VL(v) is distributed as
the L-neighborhood of v in a colored ER random graph with n − m vertices and
parameter 1−∏k

i=1(1− λi

n
), denoted hereafter by G′

n−m. Thus, denoting also by En−m

the expectation with respect to the distribution of G′
n−m, one has

E
[
φ(u,VL(u))φ(v,VL(v)) · 1{v /∈ V2L(u)}

]
=
∑

m⩾ 1
E
[
φ(u,VL(u)) · E

[
φ(v,VL(v))1{VL(u) ∩ VL(v)=∅}

∣∣∣VL(u)
]
· 1{|VL(u)|=m}

]
⩽
∑

m⩾ 1
E
[
φ(u,VL(u)) · 1{|VL(u)|=m}

]
· En−m [φ(v,VL(v))] .

Now, the set VL(v) on G′
n−m is the same as on G unless there is at least one edge

between one vertex of this set and one of the m additional vertices which are present
in G but not in G′

n−m. Conditionally on the size of VL(v) in G′
n−m, this holds with

probability bounded from above by m|VL(v)|Λ
n

. Therefore,

En−m[φ(v,VL(v))] ⩽ En[φ(v,VL(v))] + 2mEn−m[|VL(v)|] · Λ
n

= En[φ(v,VL(v))] +O
(

m

n

)
.

As a consequence, using that E[φ(u,VL(u)) · |VL(u)|] ⩽ E[|VL(u)|], which is bounded
uniformly in n, we get

E
[
φ(u,VL(u))φ(v,VL(v)) · 1{v /∈ V2L(u)}

]
− E [φ(u,VL(u))]E [φ(v,VL(v))] = O

( 1
n

)
.

Together with (3.2), and summing over all pairs of vertices u, v ∈ [n], this gives

Var
 1

n

∑
u ∈ [n]

φ(u,VL(u))
 = O

( 1
n

)
,

proving the desired concentration result. This concludes the (sketch of) proof of the
Proposition 3.1. □

We can now give the proof of our main results.
Proof of Theorem 1.1(i). — Assume first that λ∗

1 ⩽ 1. In this case, it is well-known
that the size of the largest connected component of G1 divided by n converges in
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probability to zero, and thus a fortiori the same must hold for the largest CA-
component.

Assume now that λ∗
1 > 1. In this case, a.a.s. each of G1, . . . , Gk contains a unique

giant component denoted by C1
max, . . . , Ck

max, respectively. When this is not the case
for some i ∈ [k], we define Ci

max to be an arbitrarily chosen largest component in
Gi. Let also µi be the asymptotic proportion of vertices in Ci

max. Since a.a.s. every
non-giant connected component in G1, . . . , Gk has size O(log n) (which follows by
combining Lemma 2.1 with [Hof17, Theorem 4.15]), it is sufficient to show that the
size of ⋂k

i=1 Ci
max divided by n converges to a positive constant in probability.

Firstly, note that by (2.4) one has µi = P(|Ci(∅)| = ∞), where we keep the
notation Ci(u) for the connected component of a vertex u in GW(Λ) after removal
of all edges in color i. Thus, for every i ∈ [k],

|Ci
max|
n

= 1
n

∑
u ∈ [n]

1{u ∈ Ci
max}

P−−−→
n→∞

P
(∣∣∣Ci(∅)

∣∣∣ =∞
)

.

On the other hand, for every L ⩾ 1, by Proposition 3.1 one has
1
n

∑
u ∈ [n]

1{|Ci(u)|⩾L}
P−−−→

n→∞
P
(∣∣∣Ci(∅)

∣∣∣ ⩾ L
)

,

since the event of having a connected component of size at least L is a measurable
function of the L-neighborhood. Taking the difference between the terms in the last
two displays, we deduce that for every i ∈ [k] and every L ⩾ 1,

(3.3) 1
n

∑
u ∈ [n]

1{|Ci(u)|⩾L and u /∈ Ci
max}

P−−−→
n→∞

P
(
L ⩽

∣∣∣Ci(∅)
∣∣∣ <∞

)
.

Since the probability on the right-hand side goes to 0 as L → ∞, for every ε > 0
one can find L such that for all i ∈ [k],

lim sup
n→∞

P

 1
n

∑
u ∈ [n]

1{|Ci(u)|⩾L and u/∈Ci
max} ⩾

ε

k

 = 0,

which by summation over i gives

(3.4) lim sup
n→∞

P

 1
n

∑
u ∈ [n]

1{∃i ∈ [k] : |Ci(u)|⩾L and u/∈Ci
max} ⩾ ε

 = 0.

Moreover, using Proposition 3.1 again yields
1
n

∑
u ∈ [n]

1{|Ci(u)|⩾L for all i ∈ [k]}
P−−−→

n→∞
P
(∣∣∣Ci(∅)

∣∣∣ ⩾ L for all i ∈ [k]
)

.

Then, letting L→∞ together with (3.4) implies that∣∣∣⋂k
i=1 Ci

max

∣∣∣
n

= 1
n

∑
u ∈ [n]

1{u ∈ Ci
max for all i ∈ [k]}

P−−−→
n→∞

P
(
|Ci(∅)| =∞ for all i ∈ [k]

)
.
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To conclude the proof of Theorem 1.1(i), we show that the above limit is positive.
For every L ⩾ 1 and a fixed vertex u ∈ [n], the events {|Ci(u)| ⩾ L} are increasing,
so by the FKG inequality (see [Gri06, Theorem 3.1])

P
(∣∣∣Ci(u)

∣∣∣ ⩾ L for all i ∈ [k]
)
⩾

k∏
i=1

P
(∣∣∣Ci(u)

∣∣∣ ⩾ L
)

.

Then, letting n→∞ and using the local convergence of G towards GW(Λ) implies
that

P
(∣∣∣Ci(∅)

∣∣∣ ⩾ L for all i ∈ [k]
)
⩾

k∏
i=1

P
(∣∣∣Ci(∅)

∣∣∣ ⩾ L
)

.

Finally, letting L→∞ shows that

P
(∣∣∣Ci(∅)

∣∣∣ =∞ for all i ∈ [k]
)
⩾

k∏
i=1

P
(∣∣∣Ci(∅)

∣∣∣ =∞
)

> 0,

as desired. □

Proof of Proposition 1.2. — Firstly, we recall the notion of CA-connectivity in
GW(Λ) from [FMRV22]. Two vertices u and v are declared to be CA-connected if
for every i ∈ [k], either u and v are connected in the subgraph of GW(Λ) obtained
by removing edges in color i, which we denote by GWi(Λ), or if their connected
components in this graph are both infinite. We denote by C̃(∅) the CA-component
of the root.

Now, we define I = {i : λ∗
i > 1}, and J = [k] \ I. Also, given two vertices u and

v in GW(Λ) and a subgraph H of GW(Λ), we denote by u
H←→ v the event that u

and v are connected in H. Then, for L ⩾ 1, M ⩾ 1, and u ∈ [n], we define

C̃L,M(u) =
(⋂

i ∈ J

{
v : u

Gi ∩ VL(u)←−−−−→ v
})

∩
(⋂

i ∈ I

{
v ∈ VL(u) : u

Gi ∩ VL(u)←−−−−→ v or min
(∣∣∣Ci(u)

∣∣∣ , ∣∣∣Ci(v)
∣∣∣) ⩾ M

})
,

with the notation from the proof of Theorem 1.1(i), and

C̃L(u) =
(⋂

i ∈ J

{
v ∈ VL(u) : u

Gi ∩ VL(u)←−−−−→ v
})

∩
(⋂

i ∈ I

{
v ∈ VL(u) : u

Gi ∩ VL(u)←−−−−→ v or both u, v ∈ Ci
max

})
.

Note that on the a.a.s. event |Ci
max| ⩾ µi

2 n and for all sufficiently large n, every vertex
u such that |C̃L(u)| < |C̃L,M(u)| is at distance at most L from the set

SM =
⋃

i ∈ I

{
v ∈ G :

∣∣∣Ci(v)
∣∣∣ ⩾ M and v /∈ Ci

max

}
.
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However, by the Cauchy–Schwarz inequality, the expected number of such sites
divided by n is at most

E

 1
n

∑
v ∈ [n]

|VL(v)|1{v ∈ SM }

 = E
[
|VL(1)|1{1 ∈ SM }

]
⩽ E

[
|VL(1)|2

]1/2
· P(1 ∈ SM)1/2.

Moreover, by (3.3), P(1 ∈ SM) → 0 as M → ∞ uniformly in n, and a straightfor-
ward computation shows that for fixed Λ and L, the second moment of |VL(1)| is
uniformly bounded in n (using e.g. that it is stochastically dominated by the size of
the L-neighborhood of the root in a BGW tree with Bin(n, Λ

n
) offspring distribution).

Therefore, Markov’s inequality implies that for every ε > 0 and every L, one can
find M large enough so that

lim sup
n→∞

P

 1
n

∑
v ∈ [n]

|VL(v)|1{v ∈ SM } ⩾ ε

 ⩽ ε,

and in particular,

(3.5) lim sup
n→∞

P


∣∣∣{u ∈ G :

∣∣∣C̃L(u)
∣∣∣ <

∣∣∣C̃L,M(u)
∣∣∣}∣∣∣

n
⩾ ε


⩽ lim sup

n→∞
P
(
∃ i ∈ [k] :

∣∣∣Ci
max

∣∣∣ ⩽ µin

2

)
+ ε = ε.

Similarly, we define

C̃L,M(∅) =
(⋂

i ∈ J

{
v ∈ VL(∅) ∩ Ci(∅)

})

∩
(⋂

i ∈ I

{
v ∈ VL(∅) : v ∈ Ci(∅) or min

(∣∣∣Ci(∅)
∣∣∣ , ∣∣∣Ci(v)

∣∣∣) ⩾ M
})

,

and

C̃L(∅) =
(⋂

i ∈ J

{
v ∈ VL(∅) ∩ Ci(∅)

})

∩
(⋂

i ∈ I

{
v ∈ VL(∅) : v ∈ Ci(∅) or

∣∣∣Ci(∅)
∣∣∣ =

∣∣∣Ci(v)
∣∣∣ =∞

})
,

which is the decreasing limit of C̃L,M(∅) as M →∞. Moreover,

P
(∣∣∣C̃L(∅)

∣∣∣ <
∣∣∣C̃L,M(∅)

∣∣∣) ⩽ E
[∣∣∣C̃L,M(∅)

∣∣∣− ∣∣∣C̃L(∅)
∣∣∣]

⩽
∑
i ∈ I

E

 ∑
v ∈ VL(∅)

1{v /∈ Ci(∅), M ⩽ |Ci(v)| < ∞}

 .

Fix i ∈ I. For every edge e ∈ GW(Λ), let us denote by e+ the endvertex of
e which is farther from the root. Then, for every vertex v ∈ GW(Λ) such that

ANNALES HENRI LEBESGUE



Color-avoiding percolation on the Erdős–Rényi random graph 53

Ci(∅) ̸= Ci(v), the (unique) path between ∅ and v in GW(Λ) contains an edge in
color i. Considering the closest such edge to v, we get∑
v ∈ VL(∅)

1{v /∈ Ci(∅), M ⩽ |Ci(v)| < ∞} ⩽
∑

e ∈ VL(∅), e in color i

∣∣∣Ci(e+) ∩ VL(e+)
∣∣∣·1{M ⩽ |Ci(e+)| < ∞}.

Since for any edge e in color i, the component Ci(e+) is contained in the subtree of
the descendants of e+, and is thus independent of the remainder of GW(Λ), we have

E

 ∑
v ∈ VL(∅)

1{v /∈ Ci(∅), M ⩽ |Ci(v)| < ∞}

 ⩽ E[|VL(∅)|] · E
[
|VL(∅)| · 1{M ⩽ |Ci(∅)| < ∞}

]
.

Then, using Cauchy–Schwarz inequality as before, we get that

(3.6) P
(∣∣∣C̃L(∅)

∣∣∣ <
∣∣∣C̃L,M(∅)

∣∣∣) −−−−→
M→∞

0.

The next step is to notice that since the sets C̃L,M(u) are measurable with respect
to the (L + M)-neighborhood of a vertex u, for every ℓ ⩾ 1, Proposition 3.1 implies
that

1
n

∑
u ∈ [n]

1{|C̃L,M (u)|= ℓ}
P−−−→

n→∞
P
(∣∣∣C̃L,M(∅)

∣∣∣ = ℓ
)

.

We remark that this last step is reminiscent of a similar convergence in [FMRV22,
Lemma 5.2.4]. Together with (3.5) and (3.6), by letting M →∞ we get that for any
L ⩾ 1,

(3.7) 1
n

∑
u ∈ [n]

1{|C̃L(u)|= ℓ}
P−−−→

n→∞
P
(∣∣∣C̃L(∅)

∣∣∣ = ℓ
)

.

Finally, to conclude the proof of (1.3), it amounts to consider the L→∞ limit in
the last display. For the right-hand side, we just observe that the CA-component of
the root is the increasing limit of the sets C̃L(∅) as L → ∞, from which it follows
that for any ℓ ⩾ 1,

P
(∣∣∣C̃L(∅)

∣∣∣ = ℓ,
∣∣∣C̃(∅)

∣∣∣ > ℓ
)
−−−→
L→∞

0,

which yields for any ℓ ⩾ 1,

(3.8) P
(∣∣∣C̃L(∅)

∣∣∣ = ℓ
)
−−−→
L→∞

P
(∣∣∣C̃(∅)

∣∣∣ = ℓ
)

.

It remains to show the corresponding convergence for a typical vertex of G. We
distinguish two cases. If the set J is nonempty (or equivalently if λ∗

1 ⩽ 1), then we
claim that for any vertex u ∈ [n], we have

(3.9)
{
C̃L(u) ̸= C̃(u)

}
⊆

(⋃
i ∈ J

{∣∣∣Ci(u)
∣∣∣ ⩾ L

})
∪
(⋃

i ∈ I

{∣∣∣Ci(u)
∣∣∣ ⩾ L and u /∈ Ci

max

})
.

Indeed, for the event on the left-hand side of (3.9) to hold, either there is a vertex
in C̃(u) \ VL(u), which together with C̃(u) ⊆ C1(u) implies that |C1(u)| ⩾ L, or
there is a vertex v in C̃(u) ∩ VL(u) outside C̃L(u), which means that there is i ∈ [k]
such that u and v are connected by a path in Gi exiting VL(u), and if i ∈ I,
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additionally Ci(u) ̸= Ci
max. Now, given ε > 0, one can choose L large enough so that

P(|Ci(∅)| ⩾ L) ⩽ ε
2k

for all i ∈ J and P(L ⩽ |Ci(∅)| <∞) ⩽ ε
2k

for all i ∈ I. Then
we can write

(3.10) lim sup
n→∞

P


∣∣∣{u ∈ G :

∣∣∣C̃L(u)
∣∣∣ <

∣∣∣C̃(u)
∣∣∣}∣∣∣

n
⩾ ε


⩽

∑
i ∈ J

lim sup
n→∞

P
(
|{u ∈ G : |Ci(u)| ⩾ L}|

n
⩾

ε

k

)

+
∑
i ∈ I

lim sup
n→∞

P
(
|{u ∈ G : L ⩽ |Ci(u)| < ∞}|

n
⩾

ε

k

)
,

and the right-hand side is zero by Proposition 3.1. We consider now the slightly
more difficult case when J is empty. Let A = ⋂k

i=1 Ci
max. One has

(3.11)
{∣∣∣C̃L(u)

∣∣∣ = ℓ,
∣∣∣C̃(u)

∣∣∣ > ℓ
}

⊆
{∣∣∣C̃L(u)

∣∣∣ = ℓ, u ∈ A
}
∪
(

k⋃
i=1

{∣∣∣Ci(u)
∣∣∣ ⩾ L, Ci(u) ̸= Ci

max

})

since either u ∈ A, or there is a vertex v and i ∈ [k] such that u, v /∈ Ci
max but u and

v are connected by a path in Gi exiting VL(u). Moreover, note that if u ∈ A, then
C̃(u) = A, and thus{∣∣∣C̃L(u)

∣∣∣ = ℓ, u ∈ A
}
⊆

{∣∣∣A ∩ VL(u)
∣∣∣ = ℓ, |VL(u)| ⩾ L

}
∪ {|A| = ℓ}.

Indeed, if u ∈ A and |A| ⩾ ℓ + 1, then A must necessarily contain a vertex outside
VL(u), which means that |VL(u)| ⩾ L. Note that Theorem 1.1(i) implies that P(|A| =
ℓ) → 0 as n → ∞, so we concentrate on the first event in the union above. For
M ⩾ 1, define

AM =
{
v :

∣∣∣Ci(v)
∣∣∣ ⩾ M for all i ∈ [k]

}
,

where for convenience we see AM as a vertex subset of both G or GW(Λ). By a
similar argument as for (3.5), we know that for every ε > 0, there exists M such
that

lim sup
n→∞

P

∣∣∣∣∣∣ 1n
∑

u ∈ [n]
1{|A ∩ VL(u)| = ℓ, |VL(u)|⩾L} −

1
n

∑
u ∈ [n]

1{|AM ∩ VL(u)| = ℓ, |VL(u)|⩾L}

∣∣∣∣∣∣ ⩾ ε

 ,

is equal to zero. However, by Proposition 3.1 one has for any L ⩾ 1 and M ⩾ 1,
1
n

∑
u ∈ [n]

1{|AM ∩ VL(u)| = ℓ, |VL(u)|⩾L}
P−−−→

n→∞
P
(
|AM ∩ VL(∅)| = ℓ, |VL(∅)| ⩾ L

)
,

which goes to 0 as L→∞ for any fixed M ⩾ 1. Indeed, this can be seen by exploring
VL(u) in several steps. At each step, we fix a vertex v at the boundary of the already
explored set and explore the successors of v at distance at most M from v. Note that
the probability that v belongs to AM is bounded from below by a positive constant,

ANNALES HENRI LEBESGUE



Color-avoiding percolation on the Erdős–Rényi random graph 55

which is independent of the previous steps. Furthermore, as L → ∞ and on the
event {|VL(∅)| ⩾ L}, the number of steps goes almost surely to infinity, and thus
the probability of the event {|AM ∩ VL(∅)| = ℓ} tends to 0 for every fixed ℓ. Then,
by using also (3.4) again to handle the second union in (3.11), we deduce that for
every fixed ε > 0 and ℓ ⩾ 1, there is a sufficiently large L so that,

lim sup
n→∞

P


∣∣∣{u ∈ G :

∣∣∣C̃L(u)
∣∣∣ = ℓ,

∣∣∣C̃(u)
∣∣∣ > ℓ

}∣∣∣
n

⩾ ε

 = 0.

Together with (3.7), (3.8) and (3.10), this proves (1.3).
The last piece of the proof of the proposition is to show that for any ℓ ⩾ 2,

νℓ = P(|C̃(∅)| = ℓ) is positive if and only if λ∗
k > 1, and that the constant a1 appearing

in Part (i) of Theorem 1.1 is equal to the probability that the CA-component of
the root is infinite. This part bears close resemblance to the proof of [FMRV22,
Proposition 2.18(ii)]. For the first part, assume that λ∗

k > 1, and let ℓ ⩾ 1 be given.
Then, with positive probability one can have altogether |Ck(∅)| = ℓ, all vertices of
Ck(∅) are connected to infinity in GWk(Λ), and |Ci(∅)| < ∞ for all values of i
different from k. If the last events hold simultaneously, one can observe that the
CA-component of the root is precisely Ck(∅), and thus it has size ℓ. Conversely, if
λ∗

k ⩽ 1, then it is well-known that all the components Ci(∅) are a.s. finite, and since
edges have a.s. a unique color, this implies that the CA-component of the root is
necessarily reduced to a single vertex.

For the last part, note that on the one hand, if |C̃(∅)| =∞, then |Ci(∅)| =∞ for
all i ∈ [k], so

a1 = P
(∣∣∣Ci(∅)

∣∣∣ =∞ for all i ∈ [k]
)
⩾ P

(∣∣∣C̃(∅)
∣∣∣ =∞

)
.

The proof of the reverse inequality appears as [FMRV22, Lemma 5.1.1]; we provide
it for completeness. First, notice that if a1 = 0, there is nothing to prove. Thus, we
may assume that a1 > 0, which by Part (i) of Theorem 1.1 is equivalent to λ∗

1 > 1.
Suppose that each of the components Ci(∅) for i ∈ [k] is infinite. We prove that in
this case, the CA-component of the root is also a.s. infinite. To begin with, the well-
known Kesten–Stigum theorem [KS66] implies that on the event {|C1(∅)| = ∞},
the number of vertices in generation L in the tree C1(∅) goes to infinity almost
surely as L → ∞. However, conditionally on the vertices v1, . . . , vN in the Lth

generation of that tree, the subtrees T1, . . . , TN of GW(Λ) emanating from the
vertices v1, . . . , vN , respectively, are all independent. Thus, the probability that for
at least a1N/2 of them, the connected components of their root are infinite in each
of GWi(Λ) for i ∈ [k], goes to one as N → ∞. Moreover, all such vertices are in
the CA-component of ∅. But as already mentioned, on the event {|C1(∅)| =∞} we
have that N = N(L)→∞ almost surely as L→∞, so the result follows. □

3.2. Proof of Theorem 1.1(ii) and Proposition 1.3

The proof starts with the following general lemma that will also be used for the
proof of Theorem 1.1(iii) in the next section. For I ⊂ [k], write λ∗

I = Λ−∑i ∈ I λi.
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Lemma 3.2. — For every j ∈ [k] and I ⊆ [k] \ {j} such that max(λ∗
I , λ∗

j) < 1,
one has uniformly in n,

lim
M→∞

P
(
∃ u ̸= v : u

GI

←→ v, u
Gj

←→ v, u
GI ∪ {j}

↚→ v, max
(∣∣∣CI(u)

∣∣∣ , ∣∣∣Cj(u)
∣∣∣) ⩾ M

)
= 0.

Proof. — Fix ε > 0 and a set I ⊆ [k] \ {j} with max(λ∗
I , λ∗

j) < 1. For every
u, v ∈ [n], define the event

Au,v :=
{

u
GI

←→ v, u
Gj

←→ v, u
GI ∪ {j}

↚→ v

}
.

Then, on the event Au,v, there exists a path P connecting u and v not using color j.
Since u and v are not connected in GI∪{j}, P must contain at least one edge which
is not in GI . In particular, since v is a vertex in CI(u), P must exit the graph CI(u)
at some point and return to it later. Consequently, on the event Au,v, there must
exist w1, w2 ∈ CI(u) which are connected in Gj \ CI(u) (where the latter graph is the
subgraph of Gj with vertex set [n] obtained by removing only the edges of CI(u)).
Moreover, note that conditioning on CI(u) only forces edges in G\CI(u) with at least
one endvertex in CI(u) to have a color in I, while it does not reveal any information
for the remaining edges. Thus, for every fixed graph H containing u, one has

P
(

w1
Gj\H←−−→ w2

∣∣∣∣ CI(u) = H
)
⩽ P

(
w1

Gj\H←−−→ w2

)
⩽ P

(
w1

Gj

←→ w2

)
= O

( 1
n

)
,

where for the first inequality we use that conditioning on {CI(u) = H} makes the
event {

w1
Gj\H←−−→ w2

}
harder since, by the previous discussion, it forces edges emanating from w1 and w2 to
have a color in I, and for the last equality we use Corollary 2.3 together with the fact
that Gj is stochastically dominated by G(n, λ∗

j/n) (and that λ∗
j < 1 by hypothesis).

As a consequence, on the event {v ∈ CI(u)},

P
(

u
Gj

←→ v, u
GI ∪ {j}

↚→ v

∣∣∣∣∣ CI(u)
)

⩽
∑

w1,w2 ∈ CI(u)
P
(

w1
Gj\CI(u)←−−−−→ w2

∣∣∣∣ CI(u)
)

= O


∣∣∣CI(u)

∣∣∣2
n

 .

Therefore,

(3.12) P
(
Au,v,

∣∣∣CI(u)
∣∣∣ ⩾ M

)
= O

 1
n

∑
t⩾M

t2 · P
(
v ∈ CI(u)

∣∣∣ ∣∣∣CI(u)
∣∣∣ = t

)
· P
(∣∣∣CI(u)

∣∣∣ = t
)

= O
 1

n2

∑
t⩾M

t3 · P
(∣∣∣CI(u)

∣∣∣ = t
) = O

(
M3 e−M ·IλI

n2

)
,
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where we use (2.3) for the second equality and Lemma 2.1 for the last one. Also, by
a similar argument

(3.13) P
(
Au,v,

∣∣∣Cj(u)
∣∣∣ ⩾ M

)
= O

(
M3 e−M ·Iλj

n2

)
.

A union bound by summing (3.12) and (3.13) over all possible pairs of vertices {u, v}
of G, and letting M →∞ finishes the proof. □

We call a set connected if its vertices belong to the same connected component.

Lemma 3.3. — Suppose that λ∗
k−1 < 1. Then,

P
(
∃ S ⊆ [n] : |S| ⩾ M, S is connected in each of G1, . . . , Gk−1 but not in Gk

)
converges to 0 uniformly in n.

Proof. — Fix S ⊆ [n] of size at least M , and assume that S is connected in each of
the graphs G1, . . . , Gk−1. If S is not connected in Gk, it means that one can find two
distinct vertices u, v ∈ S which are not connected in Gk. Let I be a maximal subset
of [k − 1] such that u and v are connected in GI . Since u and v are not connected
in Gk, I ̸= [k − 1], and hence there exists j ∈ [k − 1] \ I such that u and v are not
connected in GI ∪ {j}. However, using that max(λ∗

I , λ∗
j) < 1 and |Cj(u)| ⩾ |S| ⩾ M ,

Lemma 3.2 ensures that this event happens with probability converging to 0 as
M →∞, uniformly in n. □

We are ready conclude the proofs of Theorem 1.1(ii) and Proposition 1.3.

Proof of Proposition 1.3. — Denote by C̃max the largest CA-component in G. As
the vertices of C̃max form a connected set in Gi for every i ∈ [k − 1], by Lemma 3.3
we have that uniformly in n,

(3.14) lim
M→∞

P
(∣∣∣C̃max

∣∣∣ ⩾ M, C̃max is not connected in Gk

)
= 0.

On the other hand, if C̃max is connected in Gk, it is obtained by intersecting a
connected component in Gk and one in Gk. Moreover, by definition the probability
of having an edge present in Gk is 1−∏k−1

i=1 (1−λi

n
) ⩽ λ∗

k

n
= 1

n
. Thus, Gk is stochastically

dominated by G(n, 1/n). However, it is well-known that the size of the largest
component in G(n, 1/n) is a.a.s. of order n2/3 (see [Hof17, Proposition 5.2]), in
particular it is a.a.s. smaller than n3/4, say. On the other hand, by a similar argument
as in (2.3) one has that for any n > ℓ ⩾ M ⩾ 2 and any distinct vertices v1, . . . , vM ∈
[n],

P
(
vM ∈ Ck(v1)

∣∣∣ ∣∣∣Ck(v1)
∣∣∣ = ℓ, v2, . . . , vM−1 ∈ Ck(v1)

)
= ℓ− (M − 1)

n− (M − 1) ⩽
ℓ

n
,
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and the same holds with Ck(v1) instead of Ck(v1). Thus, for any M ⩾ 2 and any
distinct v1, . . . , vM ∈ [n],

P
(
v1, . . . , vM are connected in Gk,

∣∣∣Ck
max

∣∣∣ ⩽ n3/4
)

⩽
n3/4∑
ℓ=M

(
ℓ

n

)M−1

· P
(∣∣∣Ck(v1)

∣∣∣ = ℓ
)

=
E
[∣∣∣Ck(v1)

∣∣∣M−1
· 1{|Ck(v1)|⩽n3/4}

]
nM−1

⩽ n− M−1
4 .

Likewise, we know by (2.2) that a.a.s. the size of the largest connected component
in Gk is at most 2

Iλk

log n, and as above one has

P
(

v1, . . . , vM are connected in Gk, |Ck(v1)| ⩽
2

Iλk

log n

)
= O

(
(log n)M−1

nM−1

)
.

Summing over all possible vertices v1, . . . , vM ∈ [n] and using independence between
Gk and Gk, we deduce that

P
(
∃ v1, . . . , vM connected in both Gk and Gk

)
⩽ P

(
max
u ∈ [n]

∣∣∣Ck(u)
∣∣∣ ⩾ n3/4

)
+ P

(
max
u ∈ [n]

|Ck(u)| ⩾ 2
Iλk

log n

)

+O
(

(log n)M−1

n
M−5

4

)
= o(1),

where the last equality holds as soon as M ⩾ 6. Together with (3.14), this concludes
the proof of the proposition. □

Proof of Theorem 1.1(ii). — Recall that now λ∗
k > 1 > λ∗

k−1, and in particular,
all graphs Gi with i ⩽ k − 1 are subcritical while Gk is supercritical. Firstly, we
observe that there exists ε > 0 such that a.a.s. the largest CA-component has size
larger than ε log n. Indeed, we know by (2.2) that a.a.s. there exists a connected
component in Gk of size at least log n/(2Iλk

), and hence (2.4) and Lemma 2.10 imply
together that a.a.s. its intersection with the giant component of Gk has size at least
µλ∗

k
log n/(4Iλk

) (recall that Gk and Gk are independent).
Next, let C̃max be the largest CA-component. By definition its vertices are connected

in all the graphs G1, . . . , Gk−1, and thus by Lemma 3.3 a.a.s. they are also connected
in Gk. This means that C̃max is in fact obtained as the intersection of a connected
component of Gk with one of Gk. However, it is well-known that a.a.s. all connected
components in a supercritical ER random graph but the largest one have sizeO(log n)
(see e.g. [Hof17, Section 4.4.1]). Thus, by the same argument as in the proof of
Proposition 1.3, we deduce that the probability of having three vertices connected in
Gk and participating in the same non-giant component of Gk is O(n3 · (log n)4

n4 ) = o(1).
Hence, a.a.s. every CA-component of size at least 3 (and C̃max in particular) is
contained in the giant in Gk.
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Finally, by Lemma 2.10 and Corollary 2.13 we conclude that, with the notation of
Corollary 2.13, ∣∣∣C̃max

∣∣∣
log n

P−−−→
n→∞

a
(
µλ∗

k
, λk

)
,

which finishes the proof of Proposition 1.3. □

3.3. Proof of Theorem 1.1(iii)

We assume throughout this section that λ∗
k < 1.

We call support of a CA-component the subgraph of G obtained as the union of
all paths in G1, . . . , Gk between any pair of distinct vertices of the CA-component.
The main observation of the proof is the following lemma.

Lemma 3.4. — A.a.s. every CA-component is supported by either a single vertex,
a single edge or a cycle of G. In particular, a.a.s. every CA-component has size at
most k.

Proof. — Consider a CA-component C̃ and assume that it is not reduced to a
single vertex. Let u and v be two different vertices of C̃. Assume first that |Ci(u)| ⩾
c1(Λ)

k
log n for some i ∈ [k], with the notation of Remark 2.7. By the second point

of this remark, and since λ∗
i < 1 by hypothesis, we know that a.a.s. Ci(u) is a tree

with no repeated edge. In other words, u and v are connected by a unique path P in
Gi, and since P contains no repeated edges, u and v cannot be connected in G{i,j}

for any color j in P . However, Lemma 3.2 applied for I = {i} shows that a.a.s. this
situation does not happen. Thus, we may assume that |Ci(u)| ⩽ c1(Λ)

k
log n for all i,

and by summation over i we may as well assume that C(u), the connected component
of u in G, has size at most c1(Λ) log n. Then, using the first result from Remark 2.7,
we know that a.a.s. either C(u) contains no cycles and at most one repeated edge
or no repeated edges and at most one cycle. Moreover, note that for every pair of
vertices u and v in C̃, u and v cannot be disconnected in G by deleting an edge with
a single color in C(u). Thus, the unique cycle or repeated edge necessarily supports C̃,
which concludes the proof of the first part.

For the second part, just observe that when |C̃| ⩾ 3, the vertices in C̃ divide its
supporting cycle into paths without common colors, so there are at most k such
paths. □

For a positive integer ℓ, we say that a cycle in G is separated into ℓ parts if it can
be divided into ℓ consecutive paths that use disjoint sets of colors. We say that it is
separated into exactly ℓ parts if it is separated into ℓ parts but not into ℓ + 1 parts.
The following fact follows directly from the previous definition.

Lemma 3.5. — Every cycle in G supports at most one CA-component of size
more than 1. Moreover, a CA-component supported by a cycle has size ℓ if and only
if its supporting cycle is separated into exactly ℓ parts.

Proof. — Suppose that C̃1 and C̃2 are two distinct CA-components of sizes ℓ1, ℓ2 ⩾ 2,
respectively, which are supported by the same cycle, say C. Then, C̃1 and C̃2 must
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be disjoint. Moreover, the vertices of C1 separate C into ℓ1 parts, and the ones of
C2 separate C into ℓ2 parts. It follows that the vertices of C1 ∪ C2 separate C into
ℓ1 + ℓ2 parts, and so C1 ∪ C2 is a CA-component itself, a contradiction.

Thus, one cycle can support at most one CA-component. At the same time, if it
supports a CA-component of size ℓ ⩾ 2, it cannot be divided into ℓ + 1 parts as
otherwise it would also support a CA-component of size more than ℓ, which finishes
the proof. □

The last important piece towards the proof of Theorem 1.1(iii) is the following
lemma.

Lemma 3.6. — For every m ∈ {2, . . . , k}, denote by Ym the number of cycles in
G that are separated into exactly m parts. Then, there are positive constants β̃2 and
β3, . . . , βk, such that

(Y2, . . . , Yk) d−−−→
n→∞

Po(β̃2)⊗
k⊗

m=3
Po(βm).

Proof of Lemma 3.6. — For every m ∈ {2, . . . , M}, denote by Ym,M the number
of cycles in G that are separated into exactly m parts and having length at most M .

The first step of the proof is to show that for every m ∈ {2, . . . , k}, uniformly in n,

(3.15) E[Ym − Ym,M ] −−−−→
M→∞

0.

To show this, note that a cycle of G is separated into (at least) two parts if and only
if there exists a nonempty subset I ⊆ [k] different from [k] such that one part of
the cycle is contained in GI while the other part of the cycle is contained in GI . For
every ℓ ⩾ 3, set C2,ℓ to be the number of cycles of length ℓ in G which are separated
into (at least) two parts.

Then, using that to form a cycle of length ℓ, one may choose its vertices in
(

n
ℓ

)
ways and order them in (ℓ−1)!

2 ways, we have

(3.16) E[C2,ℓ] ⩽
(

n

ℓ

)
(ℓ− 1)!

2
∑

I ⊆ [k]

ℓ−1∑
m=1

(∑
i ∈ I λi

n

)m (∑
i ∈ [k]\I λi

n

)ℓ−m

⩽ 2k · (λ∗
k)ℓ.

It follows that

E [Ym − Ym,M ] ⩽
n∑

ℓ=M+1
E[C2,ℓ] ⩽ 2k

∞∑
ℓ=M+1

(λ∗
k)ℓ,

which goes to 0 as M → ∞ uniformly in n since λ∗
k < 1 by hypothesis, thus

proving (3.15).
The second step of the proof is to show that for every fixed M ⩾ k, one has

(3.17) (Y2,M , . . . , Yk,M) d−−−→
n→∞

k⊗
m=2

Po(βm,M)

for some positive constants (βm,M)k
m=2. For m ⩽ k, denote by pm,ℓ the probability

that a cycle of length ℓ in G is separated into exactly m parts. Let also Ỹm,ℓ denote the
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number of cycles of length ℓ which are separated into exactly m parts. In particular,

Ym,M =
M∑

ℓ=max(m,3)
Ỹm,ℓ.

Adopting the notation of Lemma 2.8, observe also that for every m ⩽ k, conditionally
on G,

Ỹm,ℓ
d= Bin(Cℓ, pm,ℓ).

Moreover, recall that G is distributed as an Erdős–Rényi random graph with param-
eters n and p = (1 + o(1)) · Λ

n
, so Lemma 2.8 shows that

(C3, . . . , CM) d−−−→
n→∞

M⊗
ℓ=3

Zℓ

where for every ℓ ∈ {3, . . . , M}, Zℓ is a Poisson random variable with parameter
γℓ = Λℓ

2ℓ
. It follows that for every fixed ℓ, (still writing with a slight abuse of notation

pm,ℓ for the limiting value of this probability as n → ∞, see Remark 3.7 for an
explicit expression when m = k),(

Ỹ2,ℓ, . . . , Ỹk,ℓ

)
d−−−→

n→∞

(
Bin(Zℓ, p2,ℓ), . . . , Bin(Zℓ, pk,ℓ)

)
,

which by the thinning property of the Poisson distribution (see e.g. [LP17, Sec-
tion 5.3]) is a vector of independent Poisson variables with parameters (pm,ℓ · γℓ)ℓ

m=2.
Summing over ℓ and using the independence of the variables (Zℓ)M

ℓ=3, we deduce
that (3.17) holds with

βm,M =
M∑

ℓ=max(m,3)
pm,ℓ · γℓ.

The final step is to show that for every m ∈ {2, . . . , k}, the sequence (βm,M)M ⩾ 3 is
a bounded non-decreasing sequence, which therefore converges as M →∞ to some
positive and finite constant. The fact that it is non-decreasing is straightforward by
definition. On the other hand, by (3.16) we deduce that for every m ∈ {2, . . . , k}
and M ⩾ 1,

βm,M ⩽ lim inf
n→∞

E[Ym,M ] ⩽ lim inf
n→∞

E
[

M∑
ℓ=3

C2,ℓ

]
⩽

2k

1− λ∗
k

,

showing that the sequence (βm,M)M ⩾ 3 is bounded, which completes the proof of
Lemma 3.6. □

To finish the proof of Theorem 1.1(iii), note that by Lemma 3.4 a.a.s. for every
m ⩾ 3 we have Nm = Ym, while N2 is the sum of Y2 and the repeated edges in G.
Thus, using the notation of Lemma 3.6 and Corollary 2.9, Theorem 1.1(iii) follows
with the constants β2 = β̃2 + γ2 and (βm)k

m=3. □

Remark 3.7. — We note that while it is possible to provide explicit expressions
for β2, . . . , βk in terms of λ1, . . . , λk, they tend to be more and more complicated as
ℓ decreases from k to 2. However, one can provide a simple formula for βk. We do
this in the case k ⩾ 3; in fact, with the notation of Corollary 2.9, in the case k = 2
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one simply needs to add γ2 to the final result to account for the number of repeated
edges.

By the previous proof, one has

βk =
∑
ℓ⩾ k

pk,ℓ · γℓ,

where pk,ℓ is the limit (as n → ∞) of the probability that a cycle of length ℓ in G

is separated into exactly k parts, and γℓ = Λℓ

2ℓ
. To compute pk,ℓ, one needs to decide

the lengths s1, . . . , sk ⩾ 1 of the portions of the cycle in colors 1, . . . , k, respectively
(with the constraint that s1 + · · ·+ sk = ℓ). Then, one needs to choose the starting
vertex of the path colored in color 1 (say when turning clockwise), for which there
are ℓ choices, and the order of appearance of the other colors, for which there are
(k− 1)! choices. Finally, note that as n→∞, the probability that an edge is colored
in color i tends to λi/Λ, which in total yields the formula

pk,ℓ = ℓ(k − 1)! ·
∑

s1+···+sk=ℓ

k∏
i=1

(
λi

Λ

)si

.

Altogether this gives

βk =
∑
ℓ⩾ k

pk,ℓ · γℓ = (k − 1)!
2

∑
ℓ⩾ k

∑
s1+···+sk=ℓ

k∏
i=1

λsi
i = (k − 1)!

2

k∏
i=1

 ∞∑
j=1

λj
i


= (k − 1)!

2

k∏
i=1

λi

1− λi

,

remembering for the third equality that the sum runs over indices {si}i ∈ [k] larger
than or equal to 1.

For completeness, let us mention another slightly different way to compute βk.
Note first that since CA-components are supported by cycles or single edges, the
expected number of CA-components of size k, or equivalently of cycles which are
separated in exactly k parts, is equal to

1 + o(1)
2

∑
i1,...,ik ∈ [k]

∑
u1,...,uk ∈ [n]

P
(

u1
Gi1←→ u2, . . . , uk

Gik←→ u1

)
,

where the two sums run over k-tuples of ordered pairwise distinct elements of [k]
and [n], respectively, with i1 = 1 (the factor 1/2 coming from the fact that there are
two possible ways to orient a cycle). Now, recall that for any pair of distinct vertices
u, v ∈ [n] and any i ∈ [k], by (2.3) one has that

P(v ∈ Ci(u)) = E[|Ci(u)| − 1]
n− 1 .
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Thus, by induction we get that for any (i1, . . . , ik),∑
u1,...,uk

P
(

u1
Gi1←→ u2, . . . , uk

Gik←→ u1

)

= E[|Cik
(1)| − 1]

n− 1 ·
∑

u1,...,uk

P
(

u1
Gi1←→ u2, . . . , uk−1

Gik−1←−−→ uk

)

= n(n− 1) . . . (n− k + 1)
k∏

i=1

E[|Ci(1)| − 1]
n− 1

= (1 + o(1))
k∏

i=1
E[|Ci(1)| − 1],

where for the second equality we use that the number of choices for the sequence
(u1, . . . , uk) is n(n− 1) . . . (n− k + 1). The formula follows since there are (k − 1)!
ways to choose i2, . . . , ik, and with the notation of Section 3.1

E[|Ci(1)| − 1] = (1 + o(1)) · E[|GW(λi)| − 1] = (1 + o(1)) · λi

1− λi

,

where the last equality is derived from the fact that for every d ⩾ 1, the expected
number of vertices at distance exactly d from the root in GW(λi) is λd

i .

4. Conclusion

In this paper, we characterized precisely the size of the largest CA-component
in randomly colored Erdős–Rényi random graphs in the entire supercritical and
subcritical regimes, and in part of the intermediate regime as well. The most obvious
open question that we leave concerns the size of the largest CA-component when
λ∗

k−1 ⩾ 1 > λ∗
1. The additional difficulty this point presents compared to the second

part of Theorem 1.1 is that in general, one cannot obtain the largest CA-component as
an intersection of two independent random graphs. Nevertheless, we conjecture that
an analogue of Theorem 1.1(ii) holds in this case as well. Unfortunately, confirming
this fact seems to be out of reach with our present techniques even in the simplest
case when k = 3. We remark that when λ∗

m < 1, by a statement similar to Lemma 3.3
(that is also proved in a similar way) one may reduce the problem to the case of
k − m + 1 colors where G2, . . . , Gk−m+1 are all supercritical graphs while G1 is
subcritical.

In the critical case when λ∗
1 = 1 < λ∗

2, we suspect that the size of the largest
CA-component divided by n2/3 converges in distribution towards a non-degenerate
random variable. The reason is that in G1, the size of the largest component divided
by n2/3 converges in distribution, and the largest components in G2, . . . , Gk are
of linear order. However, the lack of independence makes it difficult to turn this
heuristic into a rigorous proof.

Another possible direction could be to explore the case of other classical random
graphs, or the closely related model of randomly vertex-color-avoiding random graph,
which was initially considered in the literature [KDZ16, KDZ17] (and in which, as its
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name suggests, we color the vertices of the graph instead of the edges). In particular,
as suggested in [KDZ16], it could be interesting to study the effect of clustering
(typical for random graphs with power law degree distributions, for example), as
it arises in numerous recently introduced real-world networks models. Indeed, in
this case, removing vertices with large degree could have a dramatic effect on the
connectivity properties of the graph.
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