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68 S. ALLAIS, P.-A. ARLOVE & S. SANDON

Abstract. — Using Givental’s non-linear Maslov index we define a sequence of spectral
selectors on the universal cover of the identity component of the contactomorphism group of
any lens space. As applications, we prove for lens spaces with equal weights that the standard
Reeb flow is a geodesic for the discriminant and oscillation norms, and we define for general
lens spaces a stably unbounded conjugation invariant spectral pseudonorm.

Résumé. — En utilisant l’indice de Maslov non-linéaire de Givental nous définissons une
suite d’invariants spectraux sur le recouvrement universel de la composante de l’identité du
groupe des contactomorphismes de n’importe quel espace lenticulaire. Comme applications
nous démontrons pour les espaces lenticulaires de poids égaux que le flot de Reeb standard est
une géodésique pour les normes discriminante et d’oscillation, et nous définissons en général
une pseudonorme invariante par conjugaison qui n’est pas bornée au sens stable.

1. Introduction

For any integer k ⩾ 2 and n-tuple w = (w1, · · · , wn) of positive integers relatively
prime to k, the lens space L2n−1

k (w) is the quotient of the unit sphere S2n−1 in
R2n ≡ Cn by the free Zk-action generated by the map

(z1, · · · , zn) 7→
(
e

2πi
k

·w1 z1, · · · , e
2πi

k
·wn zn

)
.

We endow L2n−1
k (w) with its canonical contact structure ξ0, the kernel of the con-

tact form α0 whose pullback ᾱ0 by the projection S2n−1 → L2n−1
k (w) is equal to

the pullback of ∑n
j=1 xjdyj − yjdxj by the inclusion S2n−1 ↪→ R2n. We denote by

Cont0(L2n−1
k (w), ξ0) the identity component of the contactomorphism group, and by

C̃ont0(L2n−1
k (w), ξ0) its universal cover. The non-linear Maslov index is a quasimor-

phism
µ : C̃ont0

(
L2n−1

k (w), ξ0
)

→ Z ,
defined by Givental [Giv90] for real projective spaces and extended to general lens
spaces in [GKPS21]. Roughly speaking, it counts with multiplicity the number of
intersections of contact isotopies with (a certain subspace of) the space of contacto-
morphisms that have at least one discriminant point.

Recall that a point p of a contact manifold (M, ξ) is said to be a discriminant
point of a contactomorphism ϕ if ϕ(p) = p and (ϕ∗α)p = αp for some (hence any)
contact form α for ξ, and is said to be a translated point of ϕ with respect to a
contact form α if there exists a real number T (in general not unique) such that
p is a discriminant point of rα

−T ◦ ϕ, where {rα
t } denotes the Reeb flow; such T is

then said to be a translation of the translated point p. Discriminant and translated
points play a key role in certain proofs of several global rigidity results in contact
topology, related in particular to contact non-squeezing [AM18, FSZ23, San11a], or-
derability [AM18, Bhu01, EP00, GKPS21, San11a, San11b], and bi-invariant metrics
on the contactomorphism group [Arl23, CS15, San10]. In particular, Givental’s non-
linear Maslov index for projective spaces has been used in [EP00], [San13] and [CS15]
respectively to prove that real projective spaces are orderable, satisfy a contact ana-
logue of the Arnold conjecture and have unbounded discriminant and oscillation
norms. All these results have then been generalized to lens spaces in [GKPS21]
(recovering for orderability a result also obtained in [Mil08, San11b]). In the original
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article of Givental [Giv90], the non-linear Maslov index on projective spaces and
a Legendrian version of it have been applied in particular to prove the Weinstein
and chord conjectures, and a result on existence of Reeb chords between Legendrian
submanifolds Legendrian isotopic to each other. Moreover, an analogue of the non-
linear Maslov index for complex projective spaces has been used by Givental [Giv90]
and Théret [Thé98] to prove the Arnold conjectures on fixed points of Hamiltonian
symplectomorphisms and Lagrangian intersections.

In the present article we use the non-linear Maslov index to define spectral selectors
on the universal cover of the identity component of the contactomorphism group of
lens spaces, i.e. maps

cj : C̃ont0
(
L2n−1

k (w), ξ0
)

→ R

that associate to every element of C̃ont0(L2n−1
k (w), ξ0) a real number belonging to

its action spectrum. Recall that the action spectrum of a contactomorphism ϕ of a
contact manifold (M, ξ) with respect to a contact form α is the set Aα(ϕ) of real
numbers that are translations of translated points of ϕ with respect to α. We denote
by

Π : C̃ont0(M, ξ) → Cont0(M, ξ)

the standard projection, which sends an element ϕ̃ = [{ϕt}t ∈ [0,1]] of C̃ont0(M, ξ) to ϕ1,
and define the action spectrum of an element ϕ̃ of C̃ont0(M, ξ) by Aα(ϕ̃) = Aα(Π(ϕ̃)).
Let

L : C̃ont0
(
L2n−1

k (w), ξ0
)

→ C̃ont0
(
S2n−1, ξ̄0 = ker(ᾱ0)

)
be the map that sends ϕ̃ = [{ϕt}t ∈ [0,1]] to the element of C̃ont0(S2n−1, ξ̄0) represented
by the lift of {ϕt}t ∈ [0,1] to (S2n−1, ξ̄0). For ϕ̃ ∈ C̃ont0(L2n−1

k (w), ξ0) we denote

A(ϕ̃) = Aα0(ϕ̃)
and

Ā(ϕ̃) = Aᾱ0

(
L(ϕ̃)

)
⊂ A(ϕ̃) .

The sets A(ϕ̃) and Ā(ϕ̃) are invariant by translation by Tw and 2π respectively,
where Tw denotes the period of the Reeb flow of α0 on L2n−1

k (w). For a real number
T we denote ⌈

T
⌉

Tw
= Tw

⌈
T

Tw

⌉
and

⌊
T
⌋

Tw
= Tw

⌊
T

Tw

⌋
,

thus ⌈T ⌉Tw and ⌊T ⌋Tw are respectively the smallest multiple of Tw greater or equal
than T and the greatest multiple of Tw smaller or equal than T .

Before stating our main result we recall that, since (L2n−1
k (w), ξ0) is orderable, the

relation ⩽ on C̃ont0(L2n−1
k (w), ξ0) defined by posing ϕ̃ ⩽ ψ̃ if there is a non-negative

contact isotopy representing ψ̃ · ϕ̃−1 is a bi-invariant partial order; this is the partial
order that appears in point (vii) below. Recall also that a translated point p of a
contactomorphism ϕ of a contact manifold (M, ξ) with respect to a contact form α
is said to be non-degenerate for a translation T if there is no vector X ∈ TpM ∖ {0}
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70 S. ALLAIS, P.-A. ARLOVE & S. SANDON

such that (rα
−T ◦ ϕ)∗(X) = X and dg(X) = 0, where g is the conformal factor of ϕ,

i.e. the function defined by the relation ϕ∗α = egα. In the case of (S2n−1, ξ̄0), if a
translated point of a contactomorphism with respect to ᾱ0 is non-degenerate for a
certain translation then it is non-degenerate for all the translations; we then just say
that it is non-degenerate. For any T ∈ R we denote

r̃T = [{rT t}t ∈ [0,1]] ,

where {rt} is the Reeb flow on L2n−1
k (w) of α0. Moreover, we denote by ĩd the identity

on C̃ont0(L2n−1
k (w), ξ0).

Our main result is the following theorem.

Theorem 1.1 (Spectral selectors). — There exists a non-decreasing sequence of
maps {

cj : C̃ont0
(
L2n−1

k (w), ξ0
)

→ R , j ∈ Z
}

satisfying the following properties:
(i) Spectrality:

cj(ϕ̃) ∈ Ā(ϕ̃) .
(ii) Normalization:

c0(ĩd) = 0 .
(iii) Relation with translated points: if all the translated points of Π(L(ϕ̃)) with

respect to ᾱ0 are non-degenerate then the spectral selectors { cj(ϕ̃) , j ∈ Z }
are all distinct. On the other hand, if

cj−1(ϕ̃) < cj(ϕ̃) = cj+1(ϕ̃) = · · · = cj+m(ϕ̃) = T < cj+m+1(ϕ̃)
for some j and 1 ⩽ m ⩽ 2n− 1 and either k is even or j is odd or m > 1 then
Π(L(ϕ̃)) has infinitely many translated points of translation T with respect
to ᾱ0.

(iv) Non-degeneracy: if
c−2n+1(ϕ̃) = c0(ϕ̃) = 0

then Π(L(ϕ̃)) is the identity.
(v) Composition with the Reeb flow: for every T ∈ R we have

cj(r̃T · ϕ̃) = cj(ϕ̃) + T ;
in particular, c0(r̃T ) = T .

(vi) Periodicity:
cj+2n(ϕ̃) = cj(ϕ̃) + 2π .

(vii) Monotonicity: if ϕ̃ ⩽ ψ̃ then cj(ϕ̃) ⩽ cj(ψ̃).
(viii) Continuity: if ϕ̃ · ψ̃−1 is represented by a contact isotopy with Hamiltonian

function Ht : L2n−1
k (w) → R with respect to α0 then∫ 1

0
minHt dt ⩽ cj(ϕ̃) − cj(ψ̃) ⩽

∫ 1

0
maxHt dt .

Moreover, each cj is continuous with respect to the C1-topology.
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(ix) Triangle inequality: if either k is even or j is even then

cj+l(ϕ̃ · ψ̃) ⩽ cj(ϕ̃) +
⌈
cl(ψ̃)

⌉
Tw

,

in particular ⌈
cj+l(ϕ̃ · ψ̃)

⌉
Tw

⩽
⌈
cj(ϕ̃)

⌉
Tw

+
⌈
cl(ψ̃)

⌉
Tw

.

(x) Conjugation invariance:⌈
cj(ψ̃ · ϕ̃ · ψ̃−1)

⌉
Tw

=
⌈
cj(ϕ̃)

⌉
Tw

.

(xi) Poincaré duality:⌈
cj(ϕ̃)

⌉
Tw

= −
⌊
c−j−(2n−1)(ϕ̃−1)

⌋
Tw

.

Using the Hamiltonian version of the non-linear Maslov index for complex projec-
tive spaces ([Car13, Giv90, Thé98]) it is possible to define also spectral invariants{

cj : H̃am(CPn, ω0) → R , j ∈ Z
}

satisfying properties analogue to those of Theorem 1.1, with stronger statements
for (ix), (x) and (xi) not involving the Tw-floors and ceilings. Such spectral invariants
coincide with the ones defined by the first author in [All22a], and their projections to
S1 coincide with the rotation numbers defined by Théret in [Thé98]. Moreover, their
properties are analogue to those satisfied by the spectral invariants defined with
Floer homology by Entov and Polterovich in [EP03]. The fact that in the contact
case the statements of the triangle inequality, conjugation invariance and Poincaré
duality properties are weaker than in the symplectic case and involve the Tw-floors
and ceilings is similar to what happens for the spectral selectors of compactly sup-
ported contactomorphisms of (R2n × S1, ξ0) defined by the third author in [San11a].
Indeed, these spectral selectors are contact analogues of the spectral selectors of com-
pactly supported Hamiltonian symplectomorphisms of (R2n, ω0) defined by Viterbo
in [Vit92], but they satisfy weaker versions of the triangle inequality, conjugation
invariance and Poincaré duality properties involving their (integral) floors and ceil-
ings. Roughly speaking, this difference with respect to the symplectic case can be
explained as follows. If we see (R2n ×S1, ξ0) and (L2n−1

k (1, · · · , 1), ξ0) as prequantiza-
tions of (R2n, ω0) and (CPn−1, ω0) respectively then in both cases the contact spectral
selectors are generalizations of the symplectic ones, in the sense that the symplectic
spectral selectors of Hamiltonian isotopies of (R2n, ω0) and (CPn−1, ω0) coincide with
the contact spectral selectors of their lifts to (R2n × S1, ξ0) and (L2n−1

k (1, · · · , 1), ξ0)
respectively. The fact that the contact spectral selectors satisfy weaker versions of the
triangle inequality, conjugation invariance and Poincaré duality properties involving
their floors and ceilings with respect to the period of the Reeb flow is due to the
fact that, while the lifts of Hamiltonian isotopies of (R2n, ω0) and (CPn−1, ω0) are
exactly the contact isotopies that commute with the standard Reeb flows, general
contact isotopies commute with the Reeb flow at time t only when t is a multiple
of the period of the Reeb flow. For conjugation invariance, for instance, while in
the symplectic case the action spectrum is invariant by conjugation, in the contact
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72 S. ALLAIS, P.-A. ARLOVE & S. SANDON

case this is in general not true: the translated points of a contactomorphism are in
general not in bijection with those of a conjugation. However, if the Reeb flow is
periodic then the translated points of translation equal to the period of the Reeb
flow are discriminant points, which are invariant by conjugation, and this fact can
be used to prove that the corresponding floor and ceiling of the spectral selectors
are invariant by conjugation (see also the discussion in [San11a]).

In [AA23] the first and second authors have defined invariants c+ and c− for
elements of the universal cover of any closed orderable contact manifold and for
contactomorphisms of any closed contact manifold with orderable contactomorphism
group. In the universal cover case, these invariants satisfy all the properties in The-
orem 1.1 (including conjugation invariance if the Reeb flow is periodic, and with
stronger versions for the triangle inequality and Poincaré duality properties not
involving floors and ceilings) except for periodicity (there are only two invariants
c+ and c−, while we have a sequence cj related by periodicity), spectrality and (iii).
These properties are important for us to obtain the applications discussed below.
In particular, spectrality is crucial to obtain Corollary 1.5 and the relation between
the pseudonorm ν of Corollary 1.6 and the oscillation norm, while periodicity is
used in Corollary 1.6 to show that the induced norm ν∗ is bounded (see also Re-
marks 1.2 and 1.3 below for two more consequences of these properties). The first
and second authors also defined in [AA23] invariants for Legendrian submanifolds
and Legendrian isotopies (when the involved spaces are orderable) that do satisfy a
spectrality property. Using the Legendrian version of the non-linear Maslov index
defined in [Giv90] it should be possible to obtain also a Legendrian version of our
spectral selectors, with properties similar to those in Theorem 1.1. However, as far as
we can see, the only new application of these spectral selectors with respect to those
in [AA23] would be a better lower bound for the number of Reeb chords between
Legendrian submanifolds Legendrian isotopic to each other, but (at least in the case
of real projective space) such bound is already given by Givental in [Giv90] just
using the non-linear Maslov index.

Remark 1.2. — Properties (vi), (ix) and (xi) imply that each cj is a quasimor-
phism.

Remark 1.3. — Properties (i), (iii) and (vi) imply that every contactomorphism
of (L2n−1

k (w), ξ0) contact isotopic to the identity has at least n translated points
with respect to α0, and at least 2n if either k is even or all the translated points are
non-degenerate. We thus recover the corresponding result of [GKPS21], but not the
optimal bound obtained by the first author in [All22b], where it is proved that every
contactomorphism of (L2n−1

k (w), ξ0) contact isotopic to the identity has at least 2n
translated points with respect to α0.

Remark 1.4. — Suppose that k is prime. Recall that the cohomological index
ind(A) of a subset A of L2n−1

k (w) is the dimension over Zk of the image of the
map Ȟ∗(L2n−1

k (w);Zk) → Ȟ∗(A;Zk) on Čech cohomology induced by the inclusion
A ↪→ L2n−1

k (w). As we will see, property (iii) can be refined in this case as follows: if

cj−1(ϕ̃) < cj(ϕ̃) = cj+1(ϕ̃) = · · · = cj+m(ϕ̃) = T < cj+m+1(ϕ̃)
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for some j and 1 ⩽ m ⩽ 2n− 1 then the set of translated points of translation T of
Π(ϕ̃) has cohomological index greater or equal than m, and greater or equal than
m+ 1 if either k = 2 or j is odd.

As a first application of Theorem 1.1 we prove that the standard Reeb flow on
lens spaces with equal weights is a geodesic for the discriminant and oscillation
norms introduced in [CS15]. The definition of the discriminant norm νdis and of the
oscillation pseudonorm νosc on the universal cover of the identity component of the
contactomorphism group of a closed contact manifold (M, ξ) are recalled in Section 4
below, as well as the definition of the discriminant and oscillation lengths of contact
isotopies. Recall also from [CS15, Proposition 3.2] that the oscillation pseudonorm
is non-degenerate if and only if (M, ξ) is orderable; in particular, it is thus a norm
for lens spaces. As in [Arl23], we say that a contact isotopy of a closed orderable
contact manifold is a geodesic for the discriminant or for the oscillation norm if its
discriminant or oscillation length is equal to the discriminant or oscillation norm of
the element of the universal cover it represents. In other words, a contact isotopy is
a geodesic for the discriminant or oscillation norm if it minimizes the discriminant or
oscillation length in its homotopy class with fixed endpoints. In [Arl23] it is proved
that certain contact isotopies of (R2n ×S1, ξ0) are geodesics for the discriminant and
oscillation norms. We obtain here a similar result for lens spaces with equal weights,
answering a question in [CS15]. In [CS15, GKPS21] respectively it is proved that the
discriminant and oscillation norms on real projective spaces and on general lens spaces
are unbounded, by showing that the classes in the universal cover represented by
higher iterations of the Reeb flow have bigger and bigger discriminant and oscillation
norms. More precisely, it is proved in [GKPS21] that for every N the discriminant
and oscillation norms on C̃ont0(L2n−1

k (w), ξ0) of r̃6πN and r̃20πN respectively are at
least equal to N + 1. Since the discriminant length of {r6πNt}t ∈ [0,1] is 3Nk + 1 and
the oscillation length of {r20πNt}t ∈ [0,1] is 10Nk + 1, the results in [GKPS21] (as
well as the previous ones in [CS15]) left open the question of whether there exist
contact isotopies in the same homotopy class with fixed endpoints as {r6πNt}t ∈ [0,1]
or {r20πNt}t ∈ [0,1] having shorter discriminant or oscillation lengths. Note that this
is what happens for the sphere (S2n−1, ξ̄0): the N th iteration {r2πNt}t ∈ [0,1] of the
Reeb flow {r2πt}t ∈ [0,1] of ᾱ0 has discriminant and oscillation length N + 1, but
by [CS15, Proposition 4.3] the discriminant norm and the oscillation pseudonorm
of [{r2πNt}t ∈ [0,1]] are smaller or equal than 4; in other words, there exist contact
isotopies of (S2n−1, ξ̄0) in the same homotopy class with fixed endpoints as certain
iterations the Reeb flow having strictly shorter discriminant and oscillation length.
As an application of Theorem 1.1, in Section 4 we show that for lens spaces with
equal weights this is not possible. More precisely, we show that Theorem 1.1 implies
the following result.

Corollary 1.5 (Non-shortening of the standard Reeb flow). — For every real
number T , the Reeb flow {rT t}t ∈ [0,1] of the standard contact form α0 on a lens space
of the form L2n−1

k (w, · · · , w) is a geodesic for the discriminant and oscillation norms.
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In particular,

νdis(r̃T ) = νosc(r̃T ) =
⌊
k

2π T
⌋

+ 1 .

For general lens spaces L2n−1
k (w) we also obtain lower bounds for the discriminant

and oscillation norms of the standard Reeb flow that are sharper than those in [CS15,
GKPS21], however in general these bounds are not sharp enough to prove that the
Reeb flow is a geodesic (see Remark 4.2).

Using the spectral selectors of Theorem 1.1 we also define a stably unbounded
conjugation invariant pseudonorm on C̃ont0(L2n−1

k (w), ξ0). More precisely, posing
c− = c−2n+1 and c+ = c0 we prove the following result.

Corollary 1.6 (Spectral pseudonorm). — The map ν : C̃ont0(L2n−1
k (w), ξ0) →

Tw · Z defined by

ν(ϕ̃) = max
{ ⌈
c+(ϕ̃)

⌉
Tw

, −
⌊
c−(ϕ̃)

⌋
Tw

}
is a stably unbounded conjugation invariant pseudonorm, which is compatible with
the partial order ⩽ and satisfies ν(ϕ̃) ⩽ Tw ·νosc(ϕ̃) for every ϕ̃ ∈ C̃ont0(L2n−1

k (w), ξ0).
The induced pseudonorm ν∗ on Cont0(L2n−1

k (w), ξ0) is non-degenerate and bounded.

Finally, we remark that the spectral selectors of Theorem 1.1 can also be used as
in [AA23] to define a time function on C̃ont0(L2n−1

k (w), ξ0), i.e. a function

τ : C̃ont0
(
L2n−1

k (w), ξ0
)

→ R

that is continuous with respect to the C1-topology and satisfies τ(ϕ̃) < τ(ψ̃) whenever
ϕ̃ ⩽ ψ̃ with ϕ̃ ̸= ψ̃. Such function can be defined by

τ(ϕ̃) = a
∑
j ∈N

c0(ϕ̃ · ψ̃j)

2j max
(

1 ,
∣∣∣ ⌈c0(ψ̃j)

⌉
Tw

∣∣∣ , ∣∣∣ ⌈c0
(
ψ̃−1

j

) ⌉
Tw

∣∣∣ ) + b

with

a =

∑
j ∈N

1
2j max

(
1 ,
∣∣∣ ⌈c0(ψ̃j)

⌉
Tw

∣∣∣ , ∣∣∣ ⌈c0
(
ψ̃−1

j

) ⌉
Tw

∣∣∣ )


−1

and b chosen so that τ(ĩd) = 0, where (ψ̃j)j ⩾ 1 is any sequence in C̃ont0(L2n−1
k (w), ξ0)

that is dense with respect to the C1-topology. As in [AA23], the time function τ

satisfies moreover τ(r̃T · ϕ̃) = T + τ(ϕ̃) for all T and ϕ̃.
The article is organized as follows. In Section 2 we recall the definition of the

non-linear Maslov index and discuss the properties that are needed for the con-
struction of the spectral selectors. In Section 3 we define the spectral selectors and
prove Theorem 1.1. In Section 4 we prove Corollary 1.5, and in Section 5 we prove
Corollary 1.6.
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2. The non-linear Maslov index

In this section we recall the definition of the non-linear Maslov index
µ : C̃ont0

(
L2n−1

k (w), ξ0
)

→ Z

following the presentation in [GKPS21], to which we refer for more details. We
also discuss the properties of the non-linear Maslov index that are needed for the
construction of the spectral selectors. Several of these properties do not appear
in [GKPS21], and so we include detailed proofs.

Since the weights w do not play a particular role in the discussion, in this section
we denote L2n−1

k (w) simply by L2n−1
k . As in [GKPS21], we first define the non-

linear Maslov index assuming that k is prime and then obtain the general case
(Proposition 2.12) by pullback. Assume thus for now that k is prime.

The construction of the non-linear Maslov index is based on generating functions.
Recall that a function F : E → R defined on the total space of a fibre bundle
p : E → B is said to be a generating function if the differential dF : E → T ∗E
is transverse to the fibre conormal bundle N∗

E, the space of points (e, η) of T ∗E
such that η vanishes on the kernel of dp(e). Then the set ΣF = (dF )−1(N∗

E) of fibre
critical points of F is a submanifold of E, and the map

iF : ΣF → T ∗B , e 7→
(
p(e), v∗(e)

)
defined by posing v∗(e)(X) = dF (X̂) for X ∈ Tp(e)B, where X̂ is any vector in
TeE with dp(e)(X̂) = X, is a Lagrangian immersion with respect to the canonical
symplectic form ωcan on T ∗B. If iF is an embedding then F is said to be a generating
function of the Lagrangian submanifold iF (ΣF ) of (T ∗B,ωcan). A function F is said
to be a generating function of a symplectomorphism Φ of (R2n, ω0) if it is a generating
function of the Lagrangian submanifold of (T ∗R2n, ωcan) that is the image of the
graph of Φ by the symplectomorphism τ : R2n × R2n → T ∗R2n defined by

τ(x, y,X, Y ) =
(
x+X

2 ,
y + Y

2 , Y − y, x−X
)
.

Any contact isotopy {ϕt}t ∈ [0,1] of (L2n−1
k , ξ0) starting at the identity can be uniquely

lifted to a Zk-equivariant contact isotopy {ϕ̄t}t ∈ [0,1] of (S2n−1, ξ̄0) starting at the
identity, which in turn can be uniquely extended to a conical Hamiltonian isotopy
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{Φt}t ∈ [0,1] of (R2n, ω0), i.e. a 1-parameter family of (Zk × R>0)-equivariant homeo-
morphisms of R2n that is a Hamiltonian isotopy on R2n ∖ {0}. If M is a multiple
of n then we say that a function F : R2M → R is conical if it is C1 with Lip-
schitz differential, homogeneous of degree 2 with respect to the radial action of
R>0 on R2M , and invariant by the diagonal action of Zk on R2M . We say that a
conical function F : E → R defined on the total space of a trivial vector bundle
E = R2n × R2nN → R2n is a conical generating functions of a conical symplecto-
morphism Φ of (R2n, ω0), i.e. a (Zk × R>0)-equivariant homeomorphism of R2n that
is a symplectomorphism on R2n ∖ {0}, if it is smooth near its fibre critical points
other than the origin, dF : E → T ∗E is transverse to the fibre conormal bundle
N∗

E except possibly at the origin, and iF is a homeomorphism between ΣF and the
image of the graph of Φ by τ . We say that Ft : R2n × R2nN → R, t ∈ [0, 1], is a
family of conical generating functions for a contact isotopy {ϕt}t ∈ [0,1] of (L2n−1

k , ξ0)
starting at the identity if for every t the function Ft is a conical generating func-
tion of Φt, where {Φt} denotes the conical Hamiltonian isotopy of (R2n, ω0) lifting
{ϕt}, and the map (e, t) 7→ Ft(e) is C1 with locally Lipschitz differential and smooth
near (e, t) whenever e is a fibre critical point of Ft other than the origin. We say
that Ft, t ∈ [0, 1], is a based family of conical generating functions for {ϕt}t ∈ [0,1] if
moreover F0 is equivalent to the zero function on R2n, where we consider on the set
of conical generating functions the smallest equivalence relation under which two
such functions are equivalent if they differ by a stabilization (i.e. replacing a conical
generating function F : R2n × R2nN → R by F ⊕ Q : R2n × R2nN × R2nN ′ → R for
a non-degenerate Zk-invariant quadratic form Q on R2nN ′) or by a fibre preserving
conical homeomorphism (i.e. a (Zk×R> 0)-equivariant homeomorphism of R2n×R2nN

that takes each fibre {z}×R2nN to itself) that restricts to a diffeomorphism between
neighborhoods of fibre critical points other than the origin. It is proved in [GKPS21,
Proposition 2.14] that any contact isotopy {ϕt}t ∈ [0,1] of (L2n−1

k , ξ0) starting at the
identity has a based family Ft : R2n × R2nN → R of conical generating functions.

A conical function F : R2M → R induces uniquely a function f : L2M−1
k → R, which

is C1 with Lipschitz differential. All the critical points of F have critical value zero
and come in (Zk×R> 0)-families; moreover, there is a 1–1 correspondence between the
(Zk ×R> 0)-families of critical points of F and the critical points of critical value zero
of f . If F is a conical generating function of a conical symplectomorphism Φ whose
restriction ϕ̄ to S2n−1 projects to a contactomorphism ϕ of (L2n−1

k , ξ0) then there
is a 1–1 correspondence between the critical points of critical value zero of f and
the discriminant points of ϕ that lift to discriminant points of ϕ̄. In order to detect
discriminant points of contactomorphisms of (L2n−1

k , ξ0) we thus study the topology
of the sublevel set at zero of the functions on (possibly higher dimensional) lens
spaces induced by the corresponding conical generating functions. The topological
invariant that we use for this is the cohomological index for subsets of lens spaces:
for a subset A of L2M−1

k such index, which we denote by ind(A), is the dimension
over Zk of the image of the map Ȟ∗(L2M−1

k ;Zk) → Ȟ∗(A;Zk) on Čech cohomology
induced by the inclusion A ↪→ L2M−1

k . For any conical function F : R2M → R we
thus define

ind(F ) = ind({f ⩽ 0}) .
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The following property is proved in [GKPS21, Corollary 3.15] (cf. [GKPS21, Propo-
sition 3.14, Proposition 3.9(v) and Remark 3.11] for the case k = 2).

Lemma 2.1. — For any two conical functions F and G we have

| ind(F ⊕G) − ind(F ) − ind(G) |⩽ 1 ,

and
ind(F ⊕G) = ind(F ) + ind(G)

if either k = 2 or ind(F ) is even or ind(G) is even.

For a contact isotopy {ϕt}t ∈ [0,1] of (L2n−1
k , ξ0) we define

µ
(
{ϕt}t ∈ [0,1]

)
= ind(F0) − ind(F1) ,

where Ft, t ∈ [0, 1], is any based family of conical generating functions for {ϕt}t ∈ [0,1].
It is proved in [GKPS21, Proposition 2.20] that any two based families of conical
generating functions for {ϕt}t ∈ [0,1] are equivalent, where we consider on the set of
based families of conical generating functions the smallest equivalence relation under
which two such families are equivalent if they differ by a stabilization (i.e. replacing
Ft : R2n ×R2nN → R by Ft ⊕Q : R2n ×R2nN ×R2nN ′ → R for a non-degenerate Zk-
invariant quadratic form Q on R2nN ′) or by a 1-parameter family of fibre preserving
conical homeomorphism that restrict to diffeomorphisms between neighborhoods
of fibre critical points other than the origin. Since, for k > 2, ind(Q) is even for
every Zk-invariant quadratic form Q ([GKPS21, Remark 3.13]), it thus follows from
Lemma 2.1 that µ({ϕt}t ∈ [0,1]) is well-defined, i.e. it does not depend on the choice of
a based family of conical generating functions. Moreover, it is proved in [GKPS21]
(as a consequence of [GKPS21, Proposition 2.21]) that µ descends to a map

µ : C̃ont0
(
L2n−1

k , ξ0
)

→ Z .

Example 2.2. — By definition we have µ(ĩd) = 0. By [GKPS21, Example 4.1],
if ϕ̃ is small enough in the C1-topology then 0 ⩽ µ(ϕ̃) ⩽ 2n, and if moreover ϕ̃ is
positive then µ(ϕ̃) = 2n. In particular, for ϵ > 0 small enough we have µ(r̃ϵ) = 2n.
By [GKPS21, Example 4.13], for every integer m we have µ(r̃2πm) = 2nm.

It is proved in [GKPS21, Theorem 1.4(i) and Remark 1.7] that for any two elements
ϕ̃ and ψ̃ of C̃ont0(L2n−1

k , ξ0) we have∣∣∣ µ(ϕ̃ · ψ̃) − µ(ϕ̃) − µ(ψ̃)
∣∣∣ ⩽ 2n+ 1 ,(2.1)

and ∣∣∣ µ(ϕ̃ · ψ̃) − µ(ϕ̃) − µ(ψ̃)
∣∣∣ ⩽ 2n(2.2)

if k = 2; in particular, µ : C̃ont0(L2n−1
k , ξ0) → Z is a quasimorphism. The non-linear

Maslov index also satisfies the following triangle inequality, which is not proved
in [GKPS21].
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Proposition 2.3. — For any two elements ϕ̃ and ψ̃ of C̃ont0(L2n−1
k , ξ0) we have

µ(ϕ̃ · ψ̃) ⩽ µ(ϕ̃) + µ(ψ̃) + 1 ,
and

µ(ϕ̃ · ψ̃) ⩽ µ(ϕ̃) + µ(ψ̃)

if either k = 2 or µ(ϕ̃) is even or µ(ψ̃) is even.

Before proving Proposition 2.3, recall ([GKPS21, Proposition 2.10]) that if F : R2n×
R2nN1 → R and G : R2n × R2nN2 → R are conical generating functions for conical
symplectomorphisms Φ and Ψ respectively, then the function

F ♯G : R2n ×
(
R2n × R2n × R2nN1 × R2nN2

)
→ R

defined by
F ♯G (q; ζ1, ζ2, ν1, ν2) = F (ζ1, ν1) +G(ζ2, ν2) − 2 ⟨ζ2 − q, i(ζ1 − q)⟩

is a conical generating function of Ψ ◦ Φ, and ([GKPS21, Proposition 2.26]) there is
a linear (Zk × R> 0)-equivariant injection

ι : R2n × R2n × R2nN1 × R2nN2 → R2n × R2n × R2n × R2nN1 × R2nN2

such that (F ♯G) ◦ ι = F ⊕ G. Since the cohomological index is monotone, i.e.
ind(A) ⩽ ind(B) if A ⊂ B [GKPS21, Proposition 3.9(i)], we deduce that
(2.3) ind(F ⊕G) ⩽ ind(F ♯G) .
Recall also ([GKPS21, Lemma 4.2]) that if F and G are equivalent to the zero
function then

ind(F ♯G) = ind(F ) + ind(G) .
Proof of Proposition 2.3. — Let Ft and Gt be based families of conical generating

functions for contact isotopies {ϕt}t ∈ [0,1] and {ψt}t ∈ [0,1] representing ϕ̃ and ψ̃ respec-
tively. Then, by [GKPS21, Proposition 2.10 and Remark 2.14], Gt ♯ Ft is a based
family of conical generating functions for {ϕt ◦ ψt}t ∈ [0,1], and thus

µ(ϕ̃ · ψ̃) = ind(G0 ♯ F0) − ind(G1 ♯ F1) .
Since F0 and G0 are equivalent to the zero function, we have

ind(G0 ♯ F0) = ind(G0) + ind(F0) .
Moreover, by (2.3) we have

− ind(G1 ♯ F1) ⩽ − ind(G1 ⊕ F1) .
Using Lemma 2.1 we thus deduce that

µ(ϕ̃ · ψ̃) ⩽ ind(F0) + ind(G0) − ind(F1) − ind(G1) + 1 = µ(ϕ̃) + µ(ψ̃) + 1 ,
and that

µ(ϕ̃ · ψ̃) ⩽ µ(ϕ̃) + µ(ψ̃)
if either k = 2 or ind(F1) is even or ind(G1) is even, hence (since, for k > 2, ind(F0)
and ind(G0) are even by [GKPS21, Remark 3.13]) if either k = 2 or µ(ϕ̃) is even or
µ(ψ̃) is even. □
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It is proved in [Giv90] that

µ(ϕ̃ · ψ̃) = µ(ϕ̃) + µ(ψ̃)

if either L(ϕ̃) or L(ψ̃) are in π1(Cont0(S2n−1, ξ̄0)). For our applications we only need
this property in the case when one of the factors is the Reeb flow.

Proposition 2.4. — For every element ϕ̃ of C̃ont0(L2n−1
k , ξ0) and every integer

m we have
µ
(
ϕ̃ · r̃2πm

)
= µ

(
r̃2πm · ϕ̃

)
= 2nm+ µ(ϕ̃) .

Proof. — Since ϕ̃ · r̃2πm = r̃2πm · ϕ̃, it is enough to prove that µ(ϕ̃ · r̃2πm) =
2nm+ µ(ϕ̃). We represent ϕ̃ · r̃2πm by the concatenation

{φt}t ∈ [0,1] = {r4πmt}t ∈ [0, 1
2 ] ⊔ {ϕ2t−1}t ∈ [ 1

2 ,1] ,

where {ϕt}t ∈ [0,1] is a contact isotopy representing ϕ̃, and we consider a based family
Ft, t ∈ [0, 1], of conical generating functions for {φt}t ∈ [0,1] so that Ft, t ∈ [0, 1

2 ], is a
family of quadratic forms generating {r4πmt}t ∈ [0, 1

2 ] (cf. [GKPS21, Proposition 4.9]).
Since the lift of {r4πmt}t ∈ [0, 1

2 ] to (S2n−1, ξ̄0) is a loop, by [GKPS21, Lemma 4.10] the
quadratic form F 1

2
is equivalent to the zero function, and so

µ
(
{ϕt}t ∈ [0,1]

)
= ind

(
F 1

2

)
− ind(F1) .

We thus have

µ
(
ϕ̃ · r̃2πm

)
= ind(F0) − ind(F1) = ind(F0) − ind

(
F 1

2

)
+ ind

(
F 1

2

)
− ind(F1)

= µ(r̃2πm) + µ(ϕ̃) = 2nm+ µ
(
{ϕt}t ∈ [0,1]

)
,

where the last equality follows from Example 2.2. □

In the next section we also need the following result.

Proposition 2.5. — For every ϕ̃ ∈ C̃ont0(L2n−1
k , ξ0) and every T0 ∈ R there

exists ϵ > 0 such that µ(r̃−T · ϕ̃) = µ(r̃−T0 · ϕ̃) for every T ∈ [T0, T0 + ϵ).

Before proving Proposition 2.5, recall that the cohomological index is continuous
([GKPS21, Proposition 3.9(ii)]): every closed subset A of L2M−1

k has a neighborhood
U such that if A ⊂ V ⊂ U then ind(V) = ind(A).

Proof of Proposition 2.5. — Let {ϕt}t ∈ [0,1] be a contact isotopy representing ϕ̃,
and let Ft, t ∈ [0, 1], be a based family of conical generating functions for the
concatenation

{ϕ2t}t ∈ [0, 1
2 ] ⊔

{
r−(2t−1)(T0+ϵ′)

}
t ∈ [ 1

2 ,1]
for some ϵ′ > 0. Then for every T ∈ [T0, T0 + ϵ′) we have

µ
(
r̃−T · ϕ̃

)
= ind

(
{f0 ⩽ 0}

)
− ind

f 1
2

(
T

T0+ϵ′ +1
) ⩽ 0


 .
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By monotonicity of generating functions ([GKPS21, Proposition 2.23]) we can assume
that dft

dt
⩽ 0 for all t ∈ [1

2 , 1], and sof 1
2

(
T

T0+ϵ′ +1
) ⩽ 0

 ⊂

f 1
2

(
T ′

T0+ϵ′ +1
) ⩽ 0


for T, T ′ ∈ [T0, T0 + ϵ′) with T ⩽ T ′. By continuity of the cohomological index, there
is a neighborhood U of {f 1

2 ( T0
T0+ϵ′ +1) ⩽ 0} such that iff 1

2

(
T0

T0+ϵ′ +1
) ⩽ 0

 ⊂ V ⊂ U

then

ind(V) = ind
f 1

2

(
T0

T0+ϵ′ +1
) ⩽ 0


 .

For every T ∈ [T0, T0 + ϵ) with ϵ < ϵ′ small enough we havef 1
2

(
T0

T0+ϵ′ +1
) ⩽ 0

 ⊂

f 1
2

(
T

T0+ϵ′ +1
) ⩽ 0

 ⊂ U ,

and so

ind
f 1

2

(
T

T0+ϵ′ +1
) ⩽ 0


 = ind

f 1
2

(
T0

T0+ϵ′ +1
) ⩽ 0


 ,

i.e. µ(r̃−T · ϕ̃) = µ(r̃−T0 · ϕ̃) as we wanted. □

It is proved in [GKPS21, Proposition 4.21] that if {ϕt}t ∈ [0,1) is a non-negative
(respectively non-positive) contact isotopy then µ([{ϕt}t ∈ [0,1)]) ⩾ 0 (respectively
µ([{ϕt}t ∈ [0,1)]) ⩽ 0). We actually have the following result.

Proposition 2.6. — If ϕ̃ ⩽ ψ̃ then µ(ϕ̃) ⩽ µ(ψ̃).

Proof. — Assume that ϕ̃ ⩽ ψ̃. Then ψ̃ can be represented by the concatenation
{ψt}t ∈ [0,1] = {ϕ2t}t ∈ [0, 1

2 ] ⊔ {χ2t−1}t ∈ [ 1
2 ,1]

of a contact isotopy {ϕt}t ∈ [0,1] representing ϕ̃ and a non-negative contact isotopy
{χt}t ∈ [0,1]. Let Ft : R2n × R2nN → R be a based family of generating functions for
{ψt}t ∈ [0,1]. By monotonicity of generating function ([GKPS21, Proposition 2.23])
we can assume that F1 ⩾ F 1

2
and so, by monotonicity of the cohomological index

([GKPS21, Proposition 3.9(i)]), ind(F1) ⩽ ind(F 1
2
). We thus have

µ(ψ̃) = µ(ϕ̃) + ind
(
F 1

2

)
− ind(F1) ⩾ µ(ϕ̃) .

□

Remark 2.7. — It follows from Proposition 2.5 and Proposition 2.6 that the map
T 7→ µ(r̃−T · ϕ̃) is lower semi-continuous, i.e. {T ∈ R |µ(r̃−T · ϕ̃) ⩽ y} is closed for
every y ∈ R.
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If Ft is a based family of conical generating functions for a contact isotopy {ϕt}t ∈ [0,1]
of (L2n−1

k , ξ0) then for every t there is a 1–1 correspondence between the critical points
of critical value zero of ft and the discriminant points of ϕt that lift to discriminant
points of ϕ̄t, where {ϕ̄t}t ∈ [0,1] is the lift of {ϕt}t ∈ [0,1] to (S2n−1, ξ̄0). Since the non-
linear Maslov index µ({ϕt}t ∈ [0,1]) counts, with multiplicity given by the change in the
cohomological index of the sublevel sets {ft ⩽ 0}, the critical points of ft with critical
value zero as t varies in [0, 1], its value is related to the presence of discriminant
points of ϕ̄t for t ∈ [0, 1]. More precisely, we have the following result ([GKPS21,
Theorem 1.4(iii)]).

Proposition 2.8. — Let {ϕt}t ∈ [0,1] be a contact isotopy of (L2n−1
k , ξ0) starting at

the identity, and let [t0, t1] be a subinterval of [0, 1]. If µ({ϕt}t ∈ [0,t0]) ̸= µ({ϕt}t ∈ [0,t1])
then there is t ∈ [t0, t1] such that ϕ̄t has discriminant points. If moreover(1) the map
s 7→ µ({ϕt}t ∈ [0,s]) is constant on [t0, t) and on (t, t1] and all the discriminant points
of ϕ̄t are non-degenerate then∣∣∣µ ({ϕt}t ∈ [0,t0]

)
− µ

(
{ϕt}t ∈ [0,t1]

) ∣∣∣ ⩽ 1 .
In particular, it follows from Example 2.2, Proposition 2.4 and the first statement

of Proposition 2.8 that for every real number T we have

(2.4) µ(r̃T ) = 2n
⌈
T

2π

⌉
.

We also have the following result.
Proposition 2.9. — Let {ϕt}t ∈ [0,1] be a contact isotopy of (L2n−1

k , ξ0) starting at
the identity, and let [t0, t1] be a subinterval of [0, 1]. Assume that there is t ∈ [t0, t1]
such that ϕ̄t has discriminant points, and denote by ∆(ϕt) ⊂ L2n−1

k the set of
discriminant points of ϕt. Assume also that the map s 7→ µ({ϕt}t ∈ [0,s]) is constant
on [t0, t) and on (t, t1]. Then∣∣∣µ ({ϕt}t ∈ [0,t0]

)
− µ

(
{ϕt}t ∈ [0,t1]

) ∣∣∣ ⩽ ind
(
∆(ϕt)

)
+ 1 ,

and ∣∣∣µ ({ϕt}t ∈ [0,t0]
)

− µ
(
{ϕt}t ∈ [0,t1]

) ∣∣∣ ⩽ ind
(
∆(ϕt)

)
if either k = 2 or if {ϕt}t ∈ [0,1] is negative and µ({ϕt}t ∈ [0,t0]) is even.

Before proving Proposition 2.9, recall that the cohomological index is subadditive
in the following sense ([GKPS21, Proposition 3.9(iv)]): for any two closed subsets
A and B of L2M−1

k we have
ind(A ∪B) ⩽ ind(A) + ind(B) + 1 ,

and
ind(A ∪B) ⩽ ind(A) + ind(B)

if either k = 2 or ind(A) is even or ind(B) is even.
(1) In [GKPS21, Theorem 1.4(iii)] it is assumed that there is only one t ∈ [0, 1] such that ϕ̄t

has discriminant points. However, the proof works in the same way also if we only assume that
s 7→ µ({ϕt}t ∈ [0,s]) is constant on [t0, t) and on (t, t1]. Similarly for Proposition 2.9 below.
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Proof of Proposition 2.9. — The first inequality and the second one in the case
k = 2 are proved in [GKPS21, Proposition 4.15]. Suppose thus that {ϕt}t∈[0,1]
is negative and µ({ϕt}t ∈ [0,t0]) is even. By monotonicity of generating functions
([GKPS21, Proposition 2.23]), there is a based family of conical generating functions
Ft for {ϕt}t ∈ [0,1] with dft

dt
⩽ 0. The proof of [GKPS21, Proposition 2.23] actually

shows that for every t either dft

dt
< 0 or dft

dt
= 0. We can thus assume that either

{ft0 ⩽ 0} = {ft ⩽ 0} or {ft0 ⩽ 0} is included in the interior of {ft ⩽ 0}. In the first
case, by continuity of the cohomological index and since the map s 7→ µ({ϕt}t ∈ [0,s]) is
constant on (t, t1] we have µ({ϕt}t ∈ [0,t0]) = µ({ϕt}t ∈ [0,t1]), which implies the desired
inequality ∣∣∣µ ({ϕt}t ∈ [0,t0]

)
− µ

(
{ϕt}t ∈ [0,t1]

) ∣∣∣ ⩽ ind
(
∆(ϕt)

)
.

In the second case, take ϵ, ϵ′ > 0 such that
{ft0 ⩽ 0} ⊂ {ft ⩽ −ϵ} ⊂ {ft−ϵ′ ⩽ 0} ⊂ {ft ⩽ 0} .

By monotonicity of the cohomological index and since s 7→ µ({ϕt}t ∈ [0,s]) is constant
on [t0, t) we then have

(2.5) ind
(
{ft ⩽ −ϵ}

)
= ind

(
{ft0 ⩽ 0}

)
.

As in the proof of [GKPS21, Proposition 4.15] we have∣∣∣µ ({ϕt}t ∈ [0,t0]
)

− µ
(
{ϕt}t ∈ [0,t1]

) ∣∣∣ ⩽ ind
(
{ft ⩽ ϵ}

)
− ind

(
{ft ⩽ −ϵ}

)
(2.6)

and
ind

(
{ft ⩽ ϵ}

)
⩽ ind

(
{ft ⩽ −ϵ} ∪ U

)
,(2.7)

where U is a neighborhood of the set C of critical points of ft of critical value zero
that has the same cohomological index as C. Since

µ
(
{ϕt}t ∈ [0,t0]

)
= ind

(
{f0 ⩽ 0}) − ind

(
{ft0 ⩽ 0})

is even (by assumption) and ind({f0 ⩽ 0}) is even (by [GKPS21, Remark 3.13]),
using (2.5) we see that ind({ft ⩽ −ϵ}) is even and so, by subadditivity of the
cohomological index,

ind
(
{ft ⩽ −ϵ} ∪ U

)
⩽ ind

(
{ft ⩽ −ϵ}

)
+ ind(U) = ind

(
{ft ⩽ −ϵ}

)
+ ind(C) .

Since ind(C) = ind(∆(ϕt)) by [GKPS21, Proposition 2.22], using (2.6) and (2.7) we
thus conclude that∣∣∣µ ({ϕt}t ∈ [0,t0]

)
− µ

(
{ϕt}t ∈ [0,t1]

) ∣∣∣ ⩽ ind
(
∆(ϕt)

)
. □

The following Poincaré duality property for the cohomological index is proved
in [Car13, Proposition 4.1.15] for subsets of complex projective space. We adapt here
the proof to the case of lens spaces.

Lemma 2.10. — Assume that zero is a regular value of a function f : L2M−1
k → R.

Then
ind

(
{f ⩽ 0}

)
+ ind

(
{f ⩾ 0}

)
= 2M .
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Proof. — Let A = {f ⩽ 0} and B = {f ⩾ 0}. Since zero is a regular value of f ,
A and B are smooth submanifolds with boundary and thus deformation retract to
sets A′ and B′ that are strictly included in {f < 0} and {f > 0} respectively. By
continuity of the cohomological index, there are thus open subsets UA and UB of
L2M−1

k strictly included in {f < 0} and {f > 0} respectively with ind(UA) = ind(A)
and ind(UB) = ind(B). Assume first that ind(A) is even. Since A ∪B = L2M−1

k , by
subadditivity of the cohomological index we have

ind(A) + ind(B) ⩾ 2M .

Assume by contradiction that
(2.8) ind(UA) + ind(UB) = ind(A) + ind(B) ⩾ 2M + 1 .
Let ind(A) = ind(UA) = 2a. By definition of the cohomological index (cf. [GKPS21,
Lemma 3.3]) and since Čech cohomology agrees with singular cohomology on open
sets, the homomorphism H2a−1(L2M−1

k ;Zk) → H2a−1(UA;Zk) induced by the inclu-
sion UA ↪→ L2M−1

k is injective. Since k is prime, the coefficient ring Zk is a field and
so cohomology is the dual of homology, thus the homomorphism H2a−1(UA;Zk) →
H2a−1(L2M−1

k ;Zk) induced by the inclusion UA ↪→ L2M−1
k is surjective. Consider the

commutative square

(2.9)

H2a−1
(
L2M−1

k ∖ int(B);Zk

)
// H2a−1

(
L2M−1

k ;Zk

)

H2(M−a)
(
L2M−1

k , B;Zk

)∼=

OO

jB
// H2(M−a)

(
L2M−1

k ;Zk

)∼=

OO

where the horizontal arrows are induced by the inclusions and the vertical ones are
Poincaré duality isomorphisms (composed with excision H2(M−a)(L2M−1

k , B;Zk) →
H2(M−a)(L2M−1

k ∖ int(B), ∂B;Zk) for the vertical arrow on the left hand side). Since
UA ⊂ L2M−1

k ∖ int(B), surjectivity of the inclusion homomorphism H2a−1(UA;Zk) →
H2a−1(L2M−1

k ;Zk) implies that the homomorphism on the top horizontal line of the
diagram is also surjective. Thus jB is surjective, and so there exists a class

u ∈ H2(M−a)
(
L2M−1

k , B;Zk

)
such that jB(u) = βM−a, where β denotes a generator of H2(L2M−1

k ;Zk). By (2.8)
we have ind(UB) ⩾ 2M + 1 − 2a, and so by a similar argument there exists a class

v ∈ H2a−1
(
L2M−1

k , A;Zk

)
such that jA(v) = αβa−1, where

jA : H2a−1
(
L2M−1

k , A;Zk

)
→ H2a−1

(
L2M−1

k ;Zk

)
is the homomorphism induced by the inclusion and where α denotes a genera-
tor of H1(L2M−1

k ;Zk). We then obtain a contradiction: on the one hand v ∪ u ∈
H2M−1(L2M−1

k , A ∪B;Zk) is zero since A ∪B = L2M−1
k , on the other hand by natu-

rality of the cup product we have
jA∪B(v ∪ u) = jA(v) ∪ jB(u) = αβM−1 ̸= 0 .
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This finishes the proof in the case when ind(A) is even. If ind(B) is even a similar
argument also gives the result. Suppose thus that ind(A) and ind(B) are odd. Then
ind(A) + ind(B) is even, and so it is enough to prove

2M − 1 ⩽ ind(A) + ind(B) ⩽ 2M .

The first inequality follows from subadditivity of the cohomological index. For the
second one, suppose by contradiction that

ind(UA) + ind(UB) = ind(A) + ind(B) ⩾ 2M + 1 ,

and let ind(A) = 2a − 1. By a similar argument as above, there exist cohomology
classes u in H2M−2a+1(L2M−1

k , B;Zk) and v in H2a−2(L2M−1
k , A;Zk) such that jB(u) =

αβM−a and jA(v) = βa−1. Since jB(u) ∪ jA(v) = αβM−1 ̸= 0, this leads to the same
contradiction as above. □

Applying Lemma 2.10 we obtain the following result.

Proposition 2.11. — For every ϕ̃ ∈ C̃ont0(L2n−1
k , ξ0) such that Π(L(ϕ̃)) does

not have discriminant points we have

µ(ϕ̃) + µ(ϕ̃−1) = 2n .

Proof. — Let Ft : R2n×R2nN → R be a based family of conical generating functions
for a contact isotopy {ϕt}t ∈ [0,1] representing ϕ̃. Then −Ft is a based family of conical
generating functions for {ϕ−1

t }t ∈ [0,1], which represent ϕ̃−1. Thus

µ(ϕ̃) + µ(ϕ̃−1) = ind(F0) − ind(F1) + ind(−F0) − ind(−F1) .

Since F0 is equivalent to the zero function, up to a fibre preserving conical homeo-
morphism it is equal to a Zk-invariant quadratic form Q0. Since F0 generates the
identity, by [GKPS21, Proposition 2.22] the nullity of Q0 is equal to 2n. Let ι be the
dimension of the maximal subspace on which Q0 is negative definite. Then

ind(F0)+ind(−F0) = ind(Q0)+ind(−Q0) = (2n+ι)+
(
2n+(2nN−ι)

)
= 4n+2nN .

On the other hand, since Π(L(ϕ̃)) has no discriminant points we have that zero is a
regular value of F1 and so we can apply Lemma 2.10 to obtain

ind(F1) + ind(−F1) = 2n+ 2nN .

We conclude that µ(ϕ̃) + µ(ϕ̃−1) = 2n. □

So far we have assumed that k is prime. Suppose now that k is not prime, and let
k′ be the smallest prime that divides k. As in [GKPS21, Remark 1.4], we define the
non-linear Maslov index

µ : C̃ont0
(
L2n−1

k , ξ0
)

→ Z

by pulling back µ : C̃ont0(L2n−1
k′ , ξ0) → Z by the natural map C̃ont0(L2n−1

k , ξ0) →
C̃ont0(L2n−1

k′ , ξ0). This general non-linear Maslov index then satisfies the following
properties.
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Proposition 2.12 (Non-linear Maslov index for general k). — For any integer
k ⩾ 2 and n-tuple w = (w1, · · · , wn) of positive integers relatively prime to k, the
non-linear Maslov index

µ : C̃ont0
(
L2n−1

k (w), ξ0
)

→ Z

satisfies the following properties:
(i) Identity and small elements: if ϕ̃ is small enough in the C1-topology then

0 ⩽ µ(ϕ̃) ⩽ 2n, and if moreover ϕ̃ is positive then µ(ϕ̃) = 2n. Moreover,
µ(ĩd) = 0.

(ii) Quasimorphism property:∣∣∣ µ(ϕ̃ · ψ̃) − µ(ϕ̃) − µ(ψ̃)
∣∣∣ ⩽ 2n+ 1 ,

and ∣∣∣ µ(ϕ̃ · ψ̃) − µ(ϕ̃) − µ(ψ̃)
∣∣∣ ⩽ 2n

if k is even; in particular, µ is a quasimorphism.
(iii) Triangle inequality:

µ(ϕ̃ · ψ̃) ⩽ µ(ϕ̃) + µ(ψ̃) + 1 ,
and

µ(ϕ̃ · ψ̃) ⩽ µ(ϕ̃) + µ(ψ̃)

if either k is even or µ(ϕ̃) is even or µ(ψ̃) is even.
(iv) Monotonicity: if ϕ̃ ⩽ ψ̃ then µ(ϕ̃) ⩽ µ(ψ̃).
(v) Relation with discriminant points: for any contact isotopy {ϕt}t ∈ [0,1] start-

ing at the identity and any subinterval [t0, t1] of [0, 1], if µ({ϕt}t ∈ [0,t0]) ̸=
µ({ϕt}t ∈ [0,t1]) then there is t ∈ [t0, t1] such that ϕ̄t has discriminant points.
Assume that the map s 7→ µ({ϕt}t ∈ [0,s]) is constant on [t0, t) and on (t, t1],
and denote by ∆k′(ϕt) ⊂ L2n−1

k′ (w) the set of discriminant points at time t of
the lift of {ϕt} to L2n−1

k′ (w), where k′ is the smallest prime dividing k. Then∣∣∣µ({ϕt}t ∈ [0,t0]) − µ({ϕt}t ∈ [0,t1])
∣∣∣ ⩽ ind

(
∆k′(ϕt)

)
+ 1 ,

and ∣∣∣µ({ϕt}t ∈ [0,t0]) − µ({ϕt}t ∈ [0,t1])
∣∣∣ ⩽ ind

(
∆k′(ϕt)

)
if either k is even or if {ϕt}t∈[0,1] is negative and µ({ϕt}t∈[0,t0]) is even. If
moreover all the discriminant points of ϕ̄t are non-degenerate then∣∣∣µ({ϕt}t ∈ [0,t0]) − µ({ϕt}t ∈ [0,t1])

∣∣∣ ⩽ 1 .

(vi) Reeb flow: for every real number T we have

µ(r̃T ) = 2n
⌈
T

2π

⌉
.

(vii) Composition with the Reeb flow: for every integer m we have

µ
(
ϕ̃ · r̃2πm

)
= µ

(
r̃2πm · ϕ̃

)
= 2nm+ µ(ϕ̃) .
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(viii) Lower semi-continuity: the map T 7→ µ(r̃−T · ϕ̃) is lower semi-continuous.
(ix) Poincaré duality: for every ϕ̃ such that Π(L(ϕ̃)) has no discriminant points

we have
µ(ϕ̃) + µ(ϕ̃−1) = 2n .

Proof. — In the case when k is prime all the properties have been discussed
above in Example 2.2, Equations (2.1) and (2.2), Proposition 2.3, Proposition 2.6,
Proposition 2.8, Proposition 2.9, Equation (2.4), Proposition 2.4, Remark 2.7 and
Proposition 2.11. If k is not prime and k′ is the smallest prime that divides k then the
properties of µ : C̃ont0(L2n−1

k′ (w), ξ0) → Z imply the corresponding properties for the
pullback µ : C̃ont0(L2n−1

k (w), ξ0) → Z by the natural map C̃ont0(L2n−1
k (w), ξ0) →

C̃ont0(L2n−1
k′ (w), ξ0). □

3. Spectral selectors

For any j ∈ Z we define the j-th spectral selector on C̃ont0(L2n−1
k (w), ξ0) by

cj(ϕ̃) = inf
{
T ∈ R

∣∣∣ µ(r̃−T · ϕ̃) ⩽ −j
}
.

By Proposition 2.12(iv), (ii) and (vi), the function T 7→ µ(r̃−T · ϕ̃) is non-increasing
and tends to ∓∞ as T → ±∞, thus cj(ϕ̃) is a well-defined real number. By Propo-
sition 2.12(viii) the infimum is in fact a minimum, in particular

(3.1)
⌈
cj(ϕ̃)

⌉
Tw

= min
{
N ∈ Tw · Z

∣∣∣ µ(r̃−N · ϕ̃) ⩽ −j
}
.

It follows from the definition that the sequence {cj} is non-decreasing. In the rest of
this section we prove the other properties listed in Theorem 1.1.

We say that a contactomorphism of (L2n−1
k (w), ξ0) is non-degenerate with respect

to α0 if all its translated points with respect to α0 are non-degenerate for all their
translations. We then have the following lemma.

Lemma 3.1. — The set of contactomorphisms contact isotopic to the identity
that are non-degenerate with respect to α0 is dense in Cont0(L2n−1

k (w), ξ0) for the
C1-topology.

Proof. — We first prove the following result. Let Λ0 be a closed Legendrian sub-
manifold of a contact manifold (M, ξ = ker(α)), and denote by Leg(Λ0) its Leg-
endrian isotopy class. Then for any collection N = {Nl , l ∈ Z} of submanifolds
of M the set LegN(Λ0) of elements of Leg(Λ0) transverse to Nl for all l is dense
in Leg(Λ0) for the C1-topology. Indeed, let Λ be an element of Leg(Λ0) and let
U(Λ) ⊂ M be a Weinstein neighborhood of Λ. Fix a diffeomorphism Ψ from U(Λ) to
an open neighborhood U(j10) of the zero section of J1Λ such that Ψ(Λ) = j10 and
Ψ∗(dz−λcan) = α. Denote for each l by N ′

l the submanifold Ψ(Nl ∩ U(Λ)) of U(j10),
and let N ′ = {N ′

l , l ∈ Z}. Since the map j1 : C∞(Λ) → Leg(j10) that associates to
a function its 1-jet is a local homeomorphism with respect to the C2-topology on
C∞(Λ) and the C1-topology on Leg(j10) (cf. for instance [Tsu08, Section 3]), for a
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sufficiently small C2-neighborhood U(0) of the zero function in C∞(Λ) the 1-jet of
any f ∈ U(0) is in U(j10) and the map U(0) → Leg(Λ0) that sends f to Ψ−1(j1f) is
a local homeomorphism. By Thom’s transversality theorem (see for instance [GG73,
Corollary 4.10]), the subset T 1

N ′ of U(0) consisting of functions with 1-jet transverse
to N ′

l for all l is dense in U(0) for the C∞-topology, hence also for the C2-topology.
Thus for any C1-neighborhood U of Λ in Leg(Λ0) there exists f ∈ T 1

N ′ such that
Ψ−1(j1f) ∈ U . The Legendrian Ψ−1(j1f) intersects each Nl transversely, and so
belongs to LegN(Λ0). This shows that LegN(Λ0) is C1-dense in Leg(Λ0).

Using this, we now prove that the set of contactomorphisms of (L2n−1
k (w), ξ0)

contact isotopic to the identity that are non-degenerate with respect to α0 is C1-
dense in Cont0(L2n−1

k (w), ξ0). Consider the contact product of (L2n−1
k (w), ξ0), i.e. the

product L2n−1
k (w) × L2n−1

k (w) × R endowed with the contact structure given by the
kernel of the contact form π∗

2α0 − eθπ∗
1α0, where π1 and π2 denote the projections on

the first and second factor respectively and where θ is the coordinate in R. Denote
by grα0(ϕ) the graph with respect to α0 of a contactomorphism ϕ of (L2n−1

k (w), ξ0),
i.e. the Legendrian submanifold

grα0(ϕ) =
{(
p, ϕ(p), g(p)

) ∣∣∣ p ∈ L2n−1
k (w)

}
of the contact product, where g is the conformal factor of ϕ with respect to α0.
Denote by {Rt} the Reeb flow of π∗

2α0 − eθπ∗
1α0. Let 0 = t0 < · · · < tm = 2π

be a decomposition of the time interval [0, 2π] such that, for some ϵ > 0, Nl :=⋃
t ∈ (tl−ϵ,tl+1+ϵ) Rt(grα0(id)) is a submanifold of L2n−1

k (w) × L2n−1
k (w) × R for every

l ∈ {0, · · · ,m− 1}. A contactomorphism ϕ of (L2n−1
k (w), ξ0) is non-degenerate with

respect to α0 if and only if grα0(ϕ) is transverse to Nl for all l. In other words, using
the notation of the first part of the proof, ϕ is non-degenerate with respect to α0 if
and only if grα0(ϕ) ∈ LegN(grα0(id)), where N = {N0, · · · , Nm−1}. Our result thus
follows from the first part of the proof and the fact that the map

grα0 : Cont0
(
L2n−1

k (w), ξ0
)

→ Leg(grα0(id))

that associates to a contactomorphism its graph is a local homeomorphism with
respect to the C1-topologies. □

We also remark the following fact.

Lemma 3.2. — For any element ϕ̃ of C̃ont0(L2n−1
k (w), ξ0), the sets A(ϕ̃) and Ā(ϕ̃)

are closed and nowhere dense in R.

Proof. — Let Ft : R2n × R2nN → R, t ∈ [0, 1], be a based family of conical
generating functions for the concatenation

{ϕ2t}t ∈ [0, 1
2 ] ⊔ {r−2π(2t−1)}t ∈ [ 1

2 ,1] .

For every t ∈ [1
2 , 1], the Zk-orbits of translated points of ϕ̄1 of translation 2π(2t− 1)

are in 1–1 correspondence with the critical points of critical value zero of ft :
L

2n(N+1)−1
k → R. Consider the function

f : L2n(N+1)−1
k ×

[1
2 , 1

]
→ R , (x, t) 7→ ft(x) .
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As in [Thé98, Section 5.2 and Lemma 4.4], zero is a regular value of f and so f−1(0)
is a submanifold of L2n(N+1)−1

k × [1
2 , 1]. Let p : f−1(0) → [1

2 , 1] be the composition of
the inclusion f−1(0) ↪→ L

2n(N+1)−1
k × [1

2 , 1] with the projection on the second factor.
Then (x, t) ∈ f−1(0) is a critical point of p (of critical value t) if and only if x is a
critical point of ft (of critical value zero). Thus the Zk-orbits of translated points of
ϕ̄1 of translation 2π(2t− 1) are in 1–1 correspondence with the critical points of p
of critical value t. It follows that

Ā(ϕ̃) = 2π
(

2 p
(

Crit(p)
)

− 1
)

+ 2π · Z ,

and so Ā(ϕ̃) is closed and nowhere dense. Since

Ā(ϕ̃) + Tw · Z ⊆ A(ϕ̃) ⊆ Ā(ϕ̃) + 2π
k

· Z ,

we deduce that A(ϕ̃) is also closed and nowhere dense. □

We now prove that the spectral selectors satisfy the properties listed in Theo-
rem 1.1.

Spectrality

We have to show that
cj(ϕ̃) ∈ Ā(ϕ̃)

for every ϕ̃ in C̃ont0(L2n−1
k (w), ξ0). Suppose by contradiction that this is not the

case. Since Ā(ϕ̃) is closed (by Lemma 3.2), there is then ϵ > 0 such that [cj(ϕ̃) −
ϵ, cj(ϕ̃) + ϵ] ⊂ R∖ Ā(ϕ̃). By the first statement of Proposition 2.12(v) we thus have

µ
(

˜r−(cj(ϕ̃)−ϵ) · ϕ̃
)

= µ
(

˜r−(cj(ϕ̃)+ϵ) · ϕ̃
)
,

but this contradicts the definition of cj(ϕ̃).

Normalization

It follows from Proposition 2.12(vi) that

cj(ĩd) =



· · ·
−4π for j = −6n+ 1, · · · ,−4n
−2π for j = −4n+ 1, · · · ,−2n
0 for j = −2n+ 1, · · · , 0
2π for j = 1, · · · , 2n
4π for j = 2n+ 1, · · · , 4n
· · ·

In particular, c0(ĩd) = 0.
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Relation with translated points

If all the translated points of Π(L(ϕ̃)) are non-degenerate, it follows from the last
statement of Proposition 2.12(v) that the spectral selectors {cj(ϕ̃) , j ∈ Z} are all
distinct. Suppose now that

cj−1(ϕ̃) < cj(ϕ̃) = cj+1(ϕ̃) = · · · = cj+m(ϕ̃) = T < cj+m+1(ϕ̃)

for some j and 1 ⩽ m ⩽ 2n− 1. Then for ϵ > 0 small enough we have∣∣∣µ(r̃−(T −ϵ) · ϕ̃
)

− µ
(
r̃−(T +ϵ) · ϕ̃

) ∣∣∣ = m+ 1

and µ(r̃−(T −ϵ) · ϕ̃) = −j + 1. It thus follows from Proposition 2.12(v) that if either k
is even or j is odd or m > 1 then Π(L(ϕ̃)) has infinitely many translated points of
translation T . If moreover k is prime then Proposition 2.12(v) also implies that the
set of translated points of translation T of Π(ϕ̃) has cohomological index greater or
equal than m, and greater or equal than m+ 1 if either k = 2 or j is odd.

Non-degeneracy

Assume that
c−2n+1(ϕ̃) = c0(ϕ̃) = 0 .

Then for ϵ > 0 small enough we have∣∣∣µ(r̃ϵ · ϕ̃) − µ(r̃−ϵ · ϕ̃)
∣∣∣ = 2n

and µ(r̃ϵ · ϕ̃) = 2n. By Proposition 2.12(v) we then conclude that Π(ϕ̃) is the identity.
Since, by spectrality, 0 ∈ Ā(ϕ̃), we have in fact that Π(L(ϕ̃)) is the identity.

Composition with the Reeb flow

By definition of the spectral selectors, for every ϕ̃ and every T ∈ R we have

cj(r̃T · ϕ̃) = inf
{
T ∈ R

∣∣∣ µ (r̃−T · r̃T · ϕ̃
)
⩽ −j

}
= inf

{
T − T ∈ R

∣∣∣ µ (r̃−T +T · ϕ̃
)
⩽ −j

}
+ T

= cj(ϕ̃) + T .

Periodicity

Using the previous property and Proposition 2.12 (vii) we have

cj(ϕ̃) + 2π = cj

(
r̃2π · ϕ̃

)
= cj+2n(ϕ̃) .
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Monotonicity

Suppose that ϕ̃ ⩽ ψ̃. Then r̃−T · ϕ̃ ⩽ r̃−T · ψ̃ and so, by Proposition 2.12 (iv),

µ
(
r̃−T · ϕ̃

)
⩽ µ

(
r̃−T · ψ̃

)
.

This implies that cj(ϕ̃) ⩽ cj(ψ̃).

Continuity

Suppose that ϕ̃ · ψ̃−1 is represented by a contact isotopy with Hamiltonian function
Ht : L2n−1

k (w) → R with respect to α0. Let m(t) = minHt and M(t) = maxHt. The
flows of m and M are respectively {r∫ t

0 m
} and {r∫ t

0 M
}, thus

r̃∫ 1
0 m

⩽ ϕ̃ · ψ̃−1 ⩽ r̃∫ 1
0 M

and so
r̃∫ 1

0 m
· ψ̃ ⩽ ϕ̃ ⩽ r̃∫ 1

0 M
· ψ̃ .

By the composition with the Reeb flow property and monotonicity we thus have

(3.2)
∫ 1

0
minHt dt ⩽ cj(ϕ̃) − cj(ψ̃) ⩽

∫ 1

0
maxHt dt .

We now show that (3.2) implies that each cj is continuous with respect to the C1-
topology. Notice first that the Shelukhin–Hofer norm να : C̃ont0(L2n−1

k (w), ξ0) → R,
which is defined by

να(ϕ̃) = inf
∫ 1

0
max |Ht| dt

with the infimum taken over all contact Hamiltonian functions Ht whose flow repre-
sents ϕ̃, is continuous with respect to the C1-topology. This follows from the main
result of [AA23], or can be seen directly as follows. Since C̃ont0(L2n−1

k (w), ξ0) is
a topological group, it is enough to show that να is C1-continuous at the identity,
i.e. that for every ϵ > 0 there is a C1-neighborhood Ũ of ĩd in C̃ont0(L2n−1

k (w), ξ0)
such that for every ϕ̃ ∈ Ũ we have να(ϕ̃) < ϵ. As in the proof of Lemma 3.1 we
consider the product L2n−1

k (w) × L2n−1
k (w) × R endowed with the contact structure

given by the kernel of the contact form π∗
2α0 − eθπ∗

1α0. Applying the Weinstein
theorem we can find a neighborhood U(grα0(id)) of grα0(id), a neighborhood U(j10)
of the zero section of J1L2n−1

k (w) of the form U(j10) = U(j10) × (−ϵ′, ϵ′) with ϵ′ < ϵ
and a diffeomorphism Ψ from U(grα0(id)) to U(j10) with Ψ(grα0(id)) = j10 and
Ψ∗(dz − λcan) = π∗

2α0 − eθπ∗
1α0. Since the map j1 : C∞(L2n−1

k (w))) → Leg(j10) that
associates to a function its 1-jet is a local homeomorphism with respect to the C2-
topology on C∞(L2n−1

k (w)) and the C1-topology on Leg(j10), we can find a convex
C2-neighborhood U(0) of the zero function in C∞(L2n−1

k (w)) such that j1f ∈ U(j10)
for any f ∈ U(0), and the map U(0) 7→ Leg(grα0(id)) that sends f to Ψ−1(j1f) is
a local homeomorphism. Since the map grα0 : Cont0(L2n−1

k (w), ξ0) → Leg(grα0(id))
that associates to a contactomorphism its graph is a local homeomorphism with
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respect to the C1-topologies, we obtain a map U(0) → Cont0(L2n−1
k (w), ξ0) that

associates to a function f a contactomorphism ϕ with j1f = Ψ(grα0(ϕ)), which is a
homeomorphism on its image U . Since U(0) is convex, U is simply connected; let thus
Ũ be the open neighborhood of ĩd in C̃ont0(L2n−1

k (w), ξ0) that projects homeomor-
phically to U . Consider now any ϕ̃ in Ũ . Let f : L2n−1

k (w) → (−ϵ, ϵ) be the function
in U(0) such that j1f = Ψ(grα0(Π(ϕ̃))). Since U(0) is convex, ft := tf is in U(0) for
every t ∈ [0, 1], and so for every t ∈ [0, 1] there is ϕt ∈ U with j1ft = Ψ(grα0(ϕt)).
Consider the two Legendrian isotopies j1ft and grα0(ϕt), with parametrisations given
respectively by

i1 : [0, 1] × j10 → J1L2n−1
k (w) , i1

(
t, (x, 0, 0)

)
= j1ft(x)

and
i2 : [0, 1] × grα0(id) → L2n−1

k (w) × L2n−1
k (w) × R , i2

(
t, (x, x, 0)

)
=
(
x, ϕt(x), gt(x)

)
,

where gt is the conformal factor of ϕt. Let Ht be the contact Hamiltonian function
of the contact isotopy {ϕt}. Then

Ht

(
ϕt(x)

)
=
(
π∗

2α0 − eθπ∗
1α0

)( d
dt
i2
(
t, (x, x, 0)

))

= (dz − λcan)
(
d

dt
i1
(
t, (x, 0, 0)

))
= f(x) ,

and so |Ht| < ϵ. Moreover [{ϕt}t ∈ [0,1]] = ϕ̃, because ϕ̃ · [{ϕt}t ∈ [0,1]]−1 can be repre-
sented by a loop in U , which is simply connected. We thus conclude that να(ϕ̃) < ϵ,
as we wanted.

Using (3.2) and the fact that να is C1-continuous we now deduce that each cj is
C1-continuous. Let ϕ̃ ∈ C̃ont0(L2n−1

k (w), ξ0). By C1-continuity of να, for any ϵ > 0
there is a C1-neighborhood Ũ of ĩd in C̃ont0(L2n−1

k (w), ξ0) such that να|Ũ< ϵ. Then
Ṽ := Ũ · ϕ̃ is a C1-neighborhood of ϕ̃ such that for every ψ̃ ∈ Ṽ we have

να(ϕ̃ · ψ̃−1) = να(ψ̃ · ϕ̃−1) < ϵ .

This implies that there is a contact Hamiltonian function Ht whose flow represents
ϕ̃ · ψ̃−1 and satisfies

∫ 1
0 max |Ht| dt < ϵ . Using (3.2) we thus conclude that for every

ψ̃ ∈ Ṽ we have | cj(ϕ̃) − cj(ψ̃) | < ϵ, and so that cj is C1-continuous.

Triangle inequality

We have to prove that if either k is even or j is even then

cj+l(ϕ̃ · ψ̃) ⩽ cj(ϕ̃) +
⌈
cl(ψ̃)

⌉
Tw

.

Let T = cj(ϕ̃) and N = ⌈cl(ψ̃)⌉Tw . Since

Π : C̃ont0
(
L2n−1

k (w), ξ0
)

→ Cont0
(
L2n−1

k (w), ξ0
)
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is a local homeomorphism, by the continuity property of the spectral selectors and
Lemma 3.1 we can assume that Π(ϕ̃) is non-degenerate with respect to α0. By the
relation with translated points property, the spectral selectors of ϕ̃ are thus all
distinct, and so µ(r̃−T · ϕ̃) = −j. Using the fact that r̃−N commutes with ϕ̃ (since
{rt} has period Tw) and the triangle inequality for the non-linear Maslov index
(Proposition 2.12 (iii)) we thus have

µ
(
˜r−(T +N) · ϕ̃ · ψ̃

)
= µ

( (
r̃−T · ϕ̃

)
·
(
r̃−N · ψ̃

) )
⩽ µ

(
r̃−T · ϕ̃

)
+ µ

(
r̃−N · ψ̃

)
⩽ −(j + l) .

By definition of cj+l we conclude that

cj+l

(
ϕ̃ · ψ̃

)
⩽ T +N = cj(ϕ̃) +

⌈
cl(ψ̃)

⌉
Tw

.

Conjugation invariance

We have to prove that

(3.3)
⌈
cj

(
ψ̃ · ϕ̃ · ψ̃−1

)⌉
Tw

=
⌈
cj(ϕ̃)

⌉
Tw

.

Assume first that Π(ϕ̃) does not have discriminant points. Let {ψt}t ∈ [0,1] be a contact
isotopy representing ψ̃, and consider the homotopy ψ̃s = [{ψst}t ∈ [0,1]] from ψ̃0 = ĩd
to ψ̃1 = ψ̃. By the continuity property, the map

s 7→ cj

(
ψ̃s · ϕ̃ · ψ̃−1

s

)
∈ Ā

(
ψ̃s · ϕ̃ · ψ̃−1

s

)
is continuous. Moreover, cj(ψ̃s · ϕ̃ · ψ̃−1

s ) ∈ R∖ Tw · Z for all s ∈ [0, 1]. Indeed, if we
had cj(ψ̃s · ϕ̃ · ψ̃−1

s ) ∈ Tw ·Z for some s then, by the spectrality property, Π(ψ̃s · ϕ̃ · ψ̃−1
s )

would have discriminant points. But this is absurd, because the discriminant points
of Π(ψ̃s · ϕ̃ · ψ̃−1

s ) are in bijection with the discriminant points of Π(ϕ̃). We thus
obtain (3.3) in this case.

The general case can be obtained as follows. Given any ϕ̃ ∈ C̃ont0(L2n−1
k (w), ξ0),

since (by Lemma 3.2) A(ϕ̃) is nowhere dense, there is a sequence (ϵl) of positive real
numbers with ϵl → 0 such that, for every l, Π(r̃−ϵl

· ϕ̃) does not have discriminant
points. Pose χ̃l = r̃−ϵl

· ϕ̃. By the first part of the proof we have

(3.4)
⌈
cj

(
ψ̃ · χ̃l · ψ̃−1

)⌉
Tw

=
⌈
cj(χ̃l)

⌉
Tw

for all l. Since (χ̃l) converges to ϕ̃ in the C1-topology and χ̃l ⩽ ϕ̃ for all l, by the
continuity and monotonicity properties of the spectral selectors for l big enough we
have ⌈cj(ϕ̃)⌉Tw = ⌈cj(χ̃l)⌉Tw and ⌈cj(ψ̃·ϕ̃·ψ̃−1)⌉Tw = ⌈cj(ψ̃·χ̃l·ψ̃−1)⌉Tw . Equation (3.4)
thus gives the desired result (3.3).
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Poincaré duality

We first notice that if Π(ϕ̃) does not have discriminant points then

(3.5)
⌊
cj(ϕ̃)

⌋
Tw

= max
{
N ∈ Tw · Z

∣∣∣∣ µ(r̃−N · ϕ̃) > −j
}
.

Indeed, by spectrality we have cj(ϕ̃) /∈ Tw ·Z and thus N := ⌊cj(ϕ̃)⌋Tw < cj(ϕ̃). This
implies that µ(r̃−N · ϕ̃) > −j, and so the inequality ⩽ in (3.5). On the other hand,
the opposite inequality follows (without any assumption on ϕ̃) from (3.1) and the
fact that ⌊cj(ϕ̃)⌋Tw + Tw ⩾ ⌈cj(ϕ̃)⌉Tw .

We now prove the Poincaré duality property, i.e. that

(3.6)
⌈
cj(ϕ̃)

⌉
Tw

= −
⌊
c−j−(2n−1)(ϕ̃−1)

⌋
Tw

for any ϕ̃ ∈ C̃ont0(L2n−1
k (w), ξ0). Assume first that Π(ϕ̃) does not have discriminant

points. Then Proposition 2.12 (ix) implies that

(3.7) µ(r̃N · ϕ̃) + µ
(
ϕ̃−1 · r̃−N

)
= 2n

for everyN that is a multiple of Tw. The Poincaré duality (3.6) then follows from (3.1),
(3.5), (3.7) and the fact that ϕ̃−1 · r̃−N = r̃−N · ϕ̃−1 for every N that is a multiple
of Tw.

For a general ϕ̃, as in the proof of conjugation invariance we can find a sequence
(χ̃l) that converges to ϕ̃ in the C1-topology and such that, for all l, χ̃l ⩽ ϕ̃ and
Π(χ̃l) does not have discriminant points. By the first part of the proof we have
⌈cj(χ̃l)⌉Tw = −⌊c−j−(2n−1)(χ̃−1

l )⌋Tw . By monotonicity and continuity of the spectral
selectors we thus obtain (3.6) also in this case.

4. Non-shortening of the standard Reeb flow with respect to
the discriminant and oscillation norms

Recall from [CS15] that, for any closed contact manifold (M, ξ), the discriminant
norm νdis on the universal cover C̃ont0(M, ξ) of the identity component of the
contactomorphism group is the word norm associated to the generating set D formed
by elements ϕ̃ that can be represented by an embedded contact isotopy, i.e. a contact
isotopy {ϕt}t ∈ [0,1] such that ϕt ◦ ϕ−1

s has no discriminant points for all s ̸= t ∈ [0, 1].
Recall also from [Arl23] that the discriminant length of a contact isotopy {ϕt}t ∈ [0,1]
is the minimal N such that there is a decomposition 0 = t0 < · · · < tN = 1 of the
time interval [0, 1] with {ϕt}t ∈ [tj ,tj+1] embedded for all j = 0, · · · , N − 1.

Consider the discriminant norm on C̃ont0(L2n−1
k (w), ξ0). For every positive real

number T we have

(4.1) νdis(r̃T ) ⩾
2n⌈ T

2π
⌉ + 1

2n+ 1 .
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Indeed, let N = νdis(r̃T ) and write r̃T = ∏N
j=1 ϕ̃j with ϕ̃j ∈ D. Then, by Proposi-

tion 2.12(i), (iii), (vi) and the first statement of (v) we have

2n
⌈
T

2π

⌉
= µ(r̃T ) ⩽

N∑
j=1

µ(ϕ̃j) +N − 1 ⩽ 2nN +N − 1 .

Similarly, in the case of projective space we have

(4.2) νdis(r̃T ) ⩾
⌈
T

2π

⌉
.

The estimates (4.1) and (4.2) are better than those obtained in [CS15, GKPS21], since
in those references just the quasimorphism property of the non-liner Maslov index
(Proposition 2.12(ii)) is used and not the triangle inequality (Proposition 2.12(iii)).
However, they are still not optimal. Indeed, writing

0 < T0 := T⌊
k

2π
T
⌋

+ 1
<

2π
k

we have
(4.3) {rT t}t ∈ [0,1] = {rT0t ◦ · · · ◦ rT0t︸ ︷︷ ︸

⌊ k
2π

T⌋+1

}t ∈ [0,1] .

Since the minimal period of a closed Reeb orbit of α0 on L2n−1
k (w) is 2π

k
we have

that {rT0t}t ∈ [0,1] ∈ D, and so {rT t}t ∈ [0,1] has discriminant length smaller or equal
than ⌊ k

2π
T ⌋ + 1; this length is actually equal to ⌊ k

2π
T ⌋ + 1, because for any interval

[t0, t1] of length t1 − t0 ⩾ 2π
k

the contact isotopy {rt}t ∈ [t0,t1] is not embedded. For
instance, in the case of projective space the discriminant length of {r2πmt}t ∈ [0,1] is
thus 2m+1, while (4.2) only gives νdis(r̃2πm) ⩾ m. In this section we prove the optimal
estimates for the discriminant and oscillation lengths of the standard Reeb flow of
lens spaces with equal weights using the spectral selectors defined in Section 3. The
main advantage of using the spectral selectors is that while (by Proposition 2.12(v))
the non-linear Maslov index only jumps in the presence of discriminant points of the
lift of a contact isotopy of a lens space to the sphere, so that in particular for instance
µ(r̃T ) = 2n ⌈ T

2π
⌉, the spectral selectors allow to distinguish r̃T also for different values

of T in [0, 2π], indeed by Theorem 1.1(v) we have for instance c0(r̃T ) = T .
We start with the following lemma.

Lemma 4.1. — For any element ϕ̃ of C̃ont0(L2n−1
k (w), ξ0), if ϕ̃ ∈ D then

c0(ϕ̃) < Tw .

Proof. — If ϕ̃ ∈ D then ϕ̃ can be represented by a contact isotopy {ϕt}t ∈ [0,1] such
that ϕt does not have discriminant points for all t ∈ (0, 1]. Suppose by contradiction
that c0(ϕ̃) ⩾ Tw, and for s ∈ [0, 1] let ϕ̃s = [{ϕst}t ∈ [0,1]]. Since c0(ϕ̃1) = c0(ϕ̃) ⩾ Tw

and, by Theorem 1.1(ii), c0(ϕ̃0) = c0(ĩd) = 0, by continuity of c0 (Theorem 1.1(viii))
there is a value of s in (0, 1] such that c0(ϕ̃s) = Tw. But then, by spectrality (Theo-
rem 1.1(i)), Tw belongs to Ā(ϕ̃s). This means that ϕs has discriminant points, which
is a contradiction. □
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We can now prove that for every real number T the Reeb flow {rT t}t ∈ [0,1] of the
standard contact form α0 on a lens space of the form L2n−1

k (w, · · · , w) is a geodesic
for the discriminant norm. We have seen above that {rT t}t ∈ [0,1] has discriminant
length ⌊ k

2π
T ⌋ + 1. In order to prove that it is a geodesic we thus have to show that

(4.4) νdis(r̃T ) ⩾
⌊
k

2π T
⌋

+ 1 .

Let νdis(r̃T ) = N , and write r̃T = ∏N
j=1 ϕ̃j with ϕ̃j ∈ D for all j. By Theorem 1.1(v),

(ix) and Lemma 4.1, and since Tw = 2π
k

for w = (w, · · · , w), we then have

T = c0(r̃T ) ⩽ c0(ϕ̃1) +
N∑

j=2

⌈
c0(ϕ̃j)

⌉
2π
k

< N
2π
k
.

This implies that νdis(r̃T ) ⩾
⌊

k
2π
T
⌋

+ 1, as we wanted.
We now show that the standard Reeb flow {rT t}t∈[0,1] on a lens space of the form

L2n−1
k (w, · · · , w) is a geodesic with respect to the oscillation norm. Recall from [CS15]

that the oscillation pseudonorm νosc on the universal cover C̃ont0(M, ξ) of the identity
component of the contactomorphism group of a closed contact manifold (M, ξ) is
defined as follows. Let D+ and D− be the sets of elements of C̃ont0(M, ξ) that can
be represented respectively by an embedded non-negative or non-positive contact
isotopy. It is proved in [CS15] that every element ϕ̃ of C̃ont0(M, ξ) can be written
as ϕ̃ = ∏N

j=1 ϕ̃j with ϕ̃j ∈ D+ or ϕ̃j ∈ D− for every j. We denote by ν+(ϕ̃) and
ν−(ϕ̃) respectively the minimal number of elements of D+ and minus the minimal
number of elements of D− in such a decomposition. The oscillation pseudonorm is
then defined by

νosc(ϕ̃) = ν+(ϕ̃) − ν−(ϕ̃)
for ϕ̃ ̸= ĩd, and νosc(ĩd) = 0. By [CS15, Proposition 3.2], the oscillation pseudonorm
on C̃ont0(M, ξ) is non-degenerate if and only if (M, ξ) is orderable; it is thus a norm
for lens spaces. Recall also from [Arl23] that the oscillation length of a contact isotopy
{ϕt}t ∈ [0,1] is the sum of L+({ϕt}t ∈ [0,1]) and L−({ϕt}t ∈ [0,1]), where L+({ϕt}t ∈ [0,1]) is
the minimal N+ for which there is N ⩾ N+ and a decomposition 0 = t0 < · · · < tN =
1 with each {ϕt}t ∈ [tj ,tj+1] embedded and non-negative or non-positive and exactly
N+ of them non-negative, and L−({ϕt}t ∈ [0,1]) is the minimal N− for which there
is N ⩾ N− and a decomposition 0 = t0 < · · · < tN = 1 with each {ϕt}t ∈ [tj ,tj+1]
embedded and non-negative or non-positive and exactly N− of them non-positive.

Consider now as above the class r̃T = [{rT t}t ∈ [0,1]] of the Reeb flow of α0 on a
lens space (L2n−1

k (w), ξ0). Similarly as before, the oscillation length of {rT t}t ∈ [0,1]
is ⌊ k

2π
T ⌋ + 1. The decomposition (4.3) shows moreover that ν−(r̃T ) = 0, and thus

νosc(r̃T ) = ν+(r̃T ). In order to show that the Reeb flow {rT t}t ∈ [0,1] of α0 on a lens
space of the form L2n−1

k (w, · · · , w) is a geodesic with respect to the oscillation norm
we thus have to show that

ν+(r̃T ) ⩾
⌊
k

2π T
⌋

+ 1 .
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Let ν+(r̃T ) = N+, and write r̃T = ∏N
j=1 ϕ̃j with ϕ̃j ∈ D± for all j and with exactly N+

of the ϕ̃j in D+. Denote such elements by ϕ̃σ(1), · · · , ϕ̃σ(N+). Then r̃T ⩽
∏N+

j=1 ϕ̃σ(j),
and so by Theorem 1.1(v), (vii), (ix) and Lemma 4.1, and since Tw = 2π

k
for w =

(w, · · · , w), we have

T = c0(r̃T ) ⩽ c0

N+∏
j=1

ϕ̃σ(j)

 ⩽ c0(ϕ̃σ(1)) +
N+∑
j=2

⌈
c0
(
ϕ̃σ(j)

)⌉
2π
k

<
2π
k

·N+ .

This implies that ν+(r̃T ) ⩾
⌊

k
2π
T
⌋

+ 1, as we wanted.

Remark 4.2. — For a general lens space (L2n−1
k (w), ξ0) the above discussion implies

that the discriminant and oscillation norms of r̃T = [{rT t}t ∈ [0,1]] are greater or equal
than ⌊ T

Tw
⌋ + 1, while the discriminant and oscillation lengths of {rT t}t ∈ [0,1] are equal

to ⌊ k
2π
T ⌋ + 1. We do not know thus if the standard Reeb flow on general lens spaces

is a geodesic for the discriminant and oscillation norms. The gap for general weights
between the minimal period 2π

k
of a closed Reeb orbit and the period Tw of the Reeb

flow seems to suggest that it might be possible to shorten the Reeb flow. It would
be interesting to investigate if this is indeed the case, or if other methods could be
used to prove that the Reeb flow is still a geodesic.

5. A spectral pseudonorm

Let c− = c−2n+1 and c+ = c0, and define ν : C̃ont0(L2n−1
k (w), ξ0) → Tw · Z by

ν(ϕ̃) = max
{ ⌈
c+(ϕ̃)

⌉
Tw

, −
⌊
c−(ϕ̃)

⌋
Tw

}
.

In this section we prove that ν is a pseudonorm satisfying the properties stated in
Corollary 1.6.

Recall that a pseudonorm ν on a group G is said to be stably unbounded if there
is an element σ of G such that limm→∞

ν(σm)
m

̸= 0, and is said to be compatible with
a bi-invariant partial order ⩽ if id ⩽ σ1 ⩽ σ2 implies ν(σ1) ⩽ ν(σ2).

Proposition 5.1. — The map ν : C̃ont0(L2n−1
k (w), ξ0) → Tw · Z is a stably

unbounded conjugation invariant pseudonorm compatible with the partial order ⩽.

Proof. — We first show that for every ϕ̃ we have ν(ϕ̃) ⩾ 0. Suppose by contra-
diction that ν(ϕ̃) < 0. Then ⌈c+(ϕ̃)⌉Tw < 0, thus c+(ϕ̃) < 0, and −⌊c−(ϕ̃)⌋Tw < 0,
thus c−(ϕ̃) > 0. But this contradicts the fact that, since the sequence cj is non-
decreasing, c−(ϕ̃) ⩽ c+(ϕ̃). The triangle inequality ν(ϕ̃ · ψ̃) ⩽ ν(ϕ̃) + ν(ψ̃) follows
from Theorem 1.1(ix) and (xi), and symmetry ν(ϕ̃) = ν(ϕ̃−1) from Theorem 1.1(xi).
This shows that ν is a pseudonorm. Invariance by conjugation follows from Theo-
rem 1.1(x) and (xi). The pseudonorm ν is stably unbounded, indeed Theorem 1.1(v)
implies that

ν
(
r̃Tw

m
)

= ν
(
r̃mTw

)
= mTw
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for every positive integer m, thus posing σ = r̃Tw we have limm→∞
ν(σm)

m
= Tw ̸= 0.

Finally, the fact that ν is compatible with the partial order ⩽ follows from Theo-
rem 1.1(vii) and (xi). □

It would be interesting to know if ν is equivalent to the oscillation norm νosc. In
this direction, we prove the following inequality.

Proposition 5.2. — For every element ϕ̃ of C̃ont0(L2n−1
k (w), ξ0) we have

ν(ϕ̃) ⩽ Tw · νosc(ϕ̃) .

Proof. — Let ν+(ϕ̃) = N+, and write ϕ̃ = ∏N
j=1 ϕ̃j with all the ϕ̃j in D+ or D−

and exactly N+ of them in D+. Denote such elements by ϕ̃σ(1), · · · , ϕ̃σ(N+). Then
ϕ̃ ⩽

∏N+
j=1 ϕ̃σ(j), and thus by Theorem 1.1(vii), (ix) and Lemma 4.1 we have

c+(ϕ̃) ⩽ c+

N+∏
j=1

ϕ̃σ(j)

 ⩽
N+∑
j=1

⌈
c+
(
ϕ̃σ(j)

)⌉
Tw

⩽ Tw ·N+ .

Similarly, setting ν−(ϕ̃) = −N− we have c+(ϕ̃−1) ⩽ Tw · N− and so, by Theo-
rem 1.1(xi),

−
⌊
c−(ϕ̃)

⌋
Tw

=
⌈
c+
(
ϕ̃−1

)⌉
Tw

⩽ Tw ·N− .

We deduce that

ν(ϕ̃) ⩽ Tw max
{
ν+(ϕ̃) , −ν−(ϕ̃)

}
⩽ Tw

(
ν+(ϕ̃) − ν−(ϕ̃)

)
= Tw · νosc(ϕ̃) . □

We do not know whether the pseudonorm ν is non-degenerate, i.e. whether ν(ϕ̃) = 0
if and only if ϕ̃ = ĩd. Indeed, by the definition of ν we have that ν(ϕ̃) = 0 if and
only if c+(ϕ̃) = c−(ϕ̃) = 0, which by Theorem 1.1(iv) only implies that Π(ϕ̃) is
the identity. On the other hand, the induced conjugation invariant pseudonorm on
Cont0(L2n−1

k (w), ξ0), i.e. the pseudonorm ν∗ defined by

ν∗(ϕ) = inf
{
ν(ϕ̃)

∣∣∣ Π(ϕ̃) = ϕ
}
,

is non-degenerate, hence a norm. However, this norm is bounded (hence equivalent
to the trivial norm, since it is discrete), as shown in the following proposition.

Proposition 5.3. — For every ϕ ∈ Cont0(L2n−1
k (w), ξ0) we have

ν∗(ϕ) ⩽ 2π + Tw .

Proof. — We show that

(5.1) ν∗
(
Π(ϕ̃)

)
⩽
⌈
c+(ϕ̃)

⌉
Tw

−
⌊
c−(ϕ̃)

⌋
Tw

⩽ 2π + Tw

for every ϕ̃ ∈ C̃ont0(L2n−1
k (w), ξ0). Using periodicity of the spectral selectors (Theo-

rem 1.1(vi)) and the fact that the sequence of spectral selectors cj is non-decreasing
we have c+(ϕ̃) ⩽ c−(ϕ̃)+2π, which implies the second inequality in (5.1). For the first
inequality, it is enough to find N ∈ Tw·Z such that ν(r̃−N ·ϕ̃) = ⌈c+(ϕ̃)⌉Tw −⌊c−(ϕ̃)⌋Tw .
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Suppose first that ν(ϕ̃) = ⌈c+(ϕ̃)⌉Tw , and pose N = ⌈c+(ϕ̃)⌉Tw . By Theorem 1.1(v)
we then have

ν(r̃−N · ϕ̃) = max
{ ⌈
c+(r̃−N · ϕ̃)

⌉
Tw

, −
⌊
c−(r̃−N · ϕ̃)

⌋
Tw

}
= max

{
0 ,
⌈
c+(ϕ̃)

⌉
Tw

−
⌊
c−(ϕ̃)

⌋
Tw

}
=
⌈
c+(ϕ̃)

⌉
Tw

−
⌊
c−(ϕ̃)

⌋
Tw

.

Similarly, if ν(ϕ̃) = −⌊c−(ϕ̃)⌋Tw then, posing N = ⌊c−(ϕ̃)⌋Tw we have

ν(r̃−N · ϕ̃) =
⌈
c+(ϕ̃)

⌉
Tw

−
⌊
c−(ϕ̃)

⌋
Tw

. □

Remark 5.4. — It follows from [AA23, Corollary 4.12] that on the universal cover
of the identity component of the contactomorphism group of the unit cotangent
bundle of the torus Tn for n ⩾ 2 the difference of the invariants c+ and c− defined
in [AA23] is unbounded. This difference with respect to (5.1) might be related to
the fact that the identity component of the contactomorphism group of the unit
cotangent bundle of the torus does not contain positive loops. It would be interesting
to investigate if on the other hand the difference of the invariants c+ and c− of [AA23]
is bounded on C̃ont0(L2n−1

k (w), ξ0). This would then imply as in Proposition 5.3 that
the induced norm on Cont0(L2n−1

k (w), ξ0) is bounded, and therefore answer partially
a question in [FPR18, Example 2.21].

Remark 5.5. — If ν : G → R⩾ 0 is a pseudonorm on a group G then, for any c > 0,
the map ν ′ : G → R⩾ 0 defined by

ν ′(g) :=

max{ν(g), c} if g ̸= id
0 if g = id

is a norm. Moreover, ν ′ is invariant by conjugation if and only if so is ν. This
trick (which is similar to one used in [BIP08]) can be applied to our pseudonorm
ν, with c = Tw, to obtain a stably unbounded conjugation invariant norm ν ′ on
C̃ont0(L2n−1

k (w), ξ0). Since ν takes values in Tw ·Z, if ν is already a norm then ν ′ ≡ ν.
Proposition 5.2 holds also for ν ′, indeed for any element ϕ̃ ̸= ĩd we have

ν ′(ϕ̃) = max
{⌈
c+(ϕ̃)

⌉
Tw
,−

⌊
c−(ϕ̃)

⌋
Tw
, Tw

}
⩽ Tw · max

{
νosc(ϕ̃), 1

}
= Tw · νosc(ϕ̃) .
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