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Abstract. — Let us consider subcritical Bernoulli percolation on a connected, transitive,
infinite and locally finite graph. In this paper, we propose a new (and short) proof of the
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1. Introduction

Let us consider Bernoulli bond percolation on a connected, locally finite, vertex-
transitive and countably infinite graph G = (V,E) (e.g. the hypercubic lattice Zd).
“Locally finite” means that the degree of each vertex is finite, and “vertex-transitive”
means that for all vertices v, w, there exists an automorphism of G that maps v
to w.

This model is defined as follows: each edge is declared open with some probability
p and closed otherwise, independently of the other edges. We let Pp denote the
corresponding product probability measure on {0, 1}E, where 1 means open and 0
means closed. In percolation theory, one is interested in the connectivity properties
of the graph obtained by keeping only the open edges. We fix a vertex o ∈ V once
and for all, we let Co denote the cluster of o, i.e. the set of all vertices that are
connected to o by an open path, and we let |Co| denote its cardinality. The critical
probability is defined as follows:

pc = inf
{
p ∈ [0, 1] : Pp

[
|Co| = +∞

]
> 0

}
.

Let
ψn(p) = Pp

[
|Co| ⩾ n

]
, ∀ n ⩾ 0.

In this paper, we give a new proof of the following theorem, which states that the
volume of Co has an exponential tail in the subcritical regime.

Theorem 1.1. — For every p < pc, there exist c, C > 0 such that
∀ n ⩾ 0, ψn(p) ⩽ Ce−cn.

Theorem 1.1 was proven independently by Menshikov [Men86] and Aizenman and
Barsky [AB87].(1) More precisely, they proved that Pp[diam(Co) ⩾ n] decays exponen-
tially fast in the subcritical regime (where diam denotes the diameter for the graph
distance), and Kesten [Kes81] and Aizenman and Newman [AN84] had previously
shown that this was equivalent to Theorem 1.1. We refer to [DCT16a, DCT16b,
DCRT19, Van22] for more recent proofs of exponential decay of Pp[diam(Co) ⩾ n]
and to [Hut20] for a direct proof of Theorem 1.1. Concerning the more recent
proofs, Duminil-Copin and Tassion [DCT16a, DCT16b] have proposed a very short
proof with a “branching processes flavour” and Duminil-Copin, Raoufi and Tas-
sion [DCRT19] have proposed a proof via the so-called OSSS inequality, that ex-
tends to several dependent percolation models. For more about these results (and
percolation in general), see for instance the books [Gri99, BR06] or the lecture
notes [DC20].

The study of differential inequalities is central in all the proofs of exponential
decay, except in the (not for publication) work [Van22]. In [Van22], we studied
Pp[diam(Co) ⩾ n] by using stochastic comparison techniques inspired both by a work
of Russo in the early 80’s (see [Rus82, Section 3]) and by works that combine explo-
ration procedures and coupling techniques in percolation theory (see e.g. [DCM22],
(1) [AB87, Men86] consider graphs with subexponential growth; see [AV08] for the extension to
graphs with exponential growth.
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Exponential decay of the volume for Bernoulli percolation 103

see also [GS14] for more about the application of exploration procedures to perco-
lation theory). In the present paper (which can be read independently of [Van22]),
drawing inspiration from a recent work by Easo [Eas23],(2) we observe that these
stochastic comparison techniques actually seem more suitable to study the volume
than the diameter, and we propose a short and direct proof of Theorem 1.1.

To study the volume of clusters, it is relevant to introduce what is often referred
to as a “ghost field”. By this, we just mean that, given some parameter h ∈ (0,+∞),
we color every vertex green with probability 1 − e−h, independently of the other
vertices and of the bond percolation configuration. We let Pp,h denote the product
probability measure on {0, 1}E×{0, 1}V with this additional feature, where we assign
the number 1 to every green vertex, i.e.

Pp,h =
(
pδ1 + (1 − p)δ0

)⊗E
⊗

(
(1 − e−h)δ1 + e−hδ0

)⊗V
.

We let G denote the set of green vertices and we consider the so-called magnetization
(this terminology comes from a comparison with analogous quantities that appear
in the Ising model):

mh(p) = Pp,h

[
Co ∩ G ̸= ∅

]
.

One can note that, for every p, mh(p) goes to Pp[|Co| = +∞] as h goes to 0.
Theorem 1.1 is a direct consequence of the following near-critical sharpness result,

which can also be deduced from [Hut20] (with different constants).
Theorem 1.2. — Let p ∈ (0, 1) and h ∈ (0,+∞), and let q = p(1 − mh(p)).

Then,
∀ n ⩾ 0, ψn(q) ⩽ 1

1 −mh(p)ψn(p)e−hn.

Proof of Theorem 1.1 by using Theorem 1.2. — Let p < pc. Let p′ be any number
in (p, pc). Since mh(p′) goes to 0 as h goes to 0, we can – and we do – choose some
h ∈ (0,+∞) such that p′(1 −mh(p′)) ⩾ p. Then,

ψn(p)
Theorem 1.2

⩽
1

1 −mh(p′)ψn(p′)e−hn ⩽ Ce−hn,

with C = 1/(1 −mh(p′)). □
Let us note that Theorem 1.2 is the analogue of [Van22, Theorem 1.1] for the

volume. Surprisingly (maybe), the proof of the former is simpler. Theorem 1.2
also implies the so-called mean-field lower bound, that was proven by Chayes and
Chayes [CC87]:

Theorem 1.3. — For every p ⩾ pc,
Pp

[
|Co| = +∞

]
⩾ (p− pc)/p.

Proof of Theorem 1.3 by using Theorem 1.2. — Fix some p ⩾ pc. For every h > 0,
let qh = p(1 − mh(p)). By Theorem 1.2, ψn(qh) → 0 as n → +∞. As a result,
qh ⩽ pc. The result follows by letting h go to 0 and using that mh(p) converges to
Pp[|Co| = +∞]. □
(2)Among other things, Easo adapts some techniques from [Van22] to the study of the volume of
percolation clusters on finite transitive graphs.
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104 H. VANNEUVILLE

Organization of the rest of the paper

• Some ideas behind the proof are provided in Section 2.
• The proof is written in Section 3 (where we propose a general criterion that

is not specific to percolation theory) and in Section 4 (that contains the proof
of Theorem 1.2).

• In Section 5, we discuss our motivations as well as the possibility to prove
new results via the stochastic domination techniques proposed in the present
paper.
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2. Some ideas behind the proof

How can one control the volume of subcritical clusters? One can first notice that
Theorem 1.1 is equivalent to the fact that decreasing p has the following regularizing
effect:

If, for a given p0, |Co| is finite Pp0-a.s., then for every p < p0, |C0| has
an exponential tail under Pp.

To prove this, we will show that, given any ε > 0 and p0 such that Pp0 [|Co| = +∞]
= 0, decreasing p0 by ε has more effect than conditioning on some well-chosen
disconnection event A, essentially in the sense that Pp0−ε is stochastically smaller
than Pp0 [ · | A]. This disconnection event will be A = {Co ∩ G = ∅} for some
parameter h.

So the question is now: how can one compare the effect of conditioning on an event
to that of slightly decreasing p? One can actually do this by exploring a configuration
with law Pp0 [ · | A] and estimating (at every step of the exploration) the probability
that the next edge to be explored has some influence on A. If this probability is
always small, then slightly decreasing p will have more effect than conditioning on A.

ANNALES HENRI LEBESGUE



Exponential decay of the volume for Bernoulli percolation 105

3. A general criterion to compare the effect of decreasing p
to that of conditioning on an event

3.1. Explorations

Let us fix a finite graph G = (V,E) and call PG
p and PG

p,h the analogues of Pp

and Pp,h on the graph G.(3) We denote by ω the elements of {0, 1}E and by η the
elements of {0, 1}V . Moreover, we let E⃗ be the set of all orderings (e1, . . . , e|E|) of E.

Definition 3.1. — An exploration of E is a map
e : {0, 1}E −→ E⃗

ω 7−→ (e1, . . . , e|E|) =
(
e1(ω), . . . , e|E|(ω)

)
such that e1 does not depend on ω and ek+1 only depends on (e1, . . . , ek) and
(ωe1 , . . . , ωek

).(4) Given an exploration e, (e, x) ∈ E⃗ × {0, 1}E and k ∈ {0, . . . , |E|},
we denote by Explk(e, x) the event that (e, ω) coincides with (e, x) at least until step
k, i.e.

Explk(e, x) =
{
ω ∈ {0, 1}E :∀ j ∈ {1, . . . , k}, ej = ej and ωej

= xej

}
.

(In particular, Expl0(e, x) = {0, 1}E.) We also let Expl(e, x) = Expl|E|(e, x).

We recall that an increasing subset A ⊆ {0, 1}E is a subset that satisfies (ω ∈ A
and ∀ e ∈ E, ω′

e ⩾ ωe) ⇒ ω′ ∈ A. Moreover, given two probability measures µ, ν
on {0, 1}E, we say that µ is stochastically smaller than ν if µ[A] ⩽ ν[A] for every
increasing subset A, and we denote this property by µ ⪯ ν. Finally, we say that
an edge e ∈ E is pivotal for a set A ⊆ {0, 1}E × {0, 1}V and an element (ω, η) if
changing only the edge e in ω (and not changing η) modifies 1A(ω, η).

3.2. The main intermediate lemma

The key result of this section is the following lemma. We fix an exploration of E
for the rest of the section.

Lemma 3.2. — Let p ∈ (0, 1) and h ∈ (0,+∞). Moreover, let A ⊆ {0, 1}E ×
{0, 1}V be any non-empty set and let ε ∈ [0, 1]. Assume that for every (e, x) ∈
E⃗ × {0, 1}E such that A ∩ Expl(e, x) ̸= ∅, we have

∀ k ∈ {0, . . . , |E| − 1}, PG
p,h

[
ek+1 is pivotal for A

∣∣∣ A ∩ Explk(e, x)
]
⩽ ε.

Then,
PG

p(1−ε) ⪯ PG
p,h

[
ω ∈ ·

∣∣∣ A]
.

(3) I.e. PG
p is the product Bernoulli measure of parameter p on {0, 1}E and PG

p,h is the product
Bernoulli measure on {0, 1}E × {0, 1}V , of parameter p on the edges and 1 − e−h on the vertices.
The proofs in this section actually work in a more general setting, for instance by considering a
probability space (M, F , ρ) and considering the measure PG

p ⊗ ρ instead of PG
p,h.

(4)This means that for every k ∈ {0, . . . , |E| − 1}, there exists a function ϕk such that ∀ ω ∈
{0, 1}E , ek+1(ω) = ϕk

(
e1(ω), . . . , ek(ω), ωe1(ω), . . . , ωek(ω)).
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Remark 3.3. —
• Recall that we use the letter ω to denote the elements of {0, 1}E. So PG

p,h[ω ∈
· | A] denotes the marginal law on {0, 1}E of PG

p,h[ · | A];
• We have written Explk(e, x) when we should have written Explk(e, x) ×

{0, 1}V ;
• Let us take the opportunity of this remark to make the following obser-

vation that holds when (e, x) is in the image of ω 7→ (e(ω), ω). In this
case, Explk(e, x) = {ω ∈ {0, 1}E :∀ j ∈ {1, . . . , k}, ωej

= xej
}. As a re-

sult, PG
p,h[ · | Explk(e, x)] is the probability measure on {0, 1}E × {0, 1}V that

assigns the value xej
to ej for every j ⩽ k and is still the product Bernoulli

measure of parameter p on the other edges and of parameter 1 − e−h on the
vertices.

The proof of Lemma 3.2 is based on the following lemma (see e.g. [Rus82, Lemma 1],
[Gri99, (7.64)] and [DCRT19, Lemma 2.1] for very similar results).

Lemma 3.4. — Let q ∈ [0, 1]. Moreover, let µ be a probability measure on {0, 1}E

and assume that for every (e, x) ∈ E⃗ × {0, 1}E such that µ[Expl(e, x)] > 0, we have

∀ k ∈ {0, . . . , |E| − 1}, µ
[
ωek+1 = 1

∣∣∣ Explk(e, x)
]
⩾ q.

Then, PG
q ⪯ µ.

Proof of Lemma 3.4. — The result can be proven by induction on |E|. Throughout
the proof, it is important to remember that e1 is constant. Let A ⊆ {0, 1}E be
an increasing set. We want to prove that µ[A] ⩾ PG

q [A]. We extend every ω ∈
{0, 1}E\{e1} into two configurations ω0, ω1 ∈ {0, 1}E by setting ωi

e1 = i. We define
A0, A1 ⊆ {0, 1}E\{e1} by Ai = {ω ∈ {0, 1}E\{e1} : ωi ∈ A}. Moreover, we define two
probability measures µ0, µ1 on {0, 1}E\{e1} by µi = µ[ω|E\{e1} ∈ · | ωe1 = i].

Let G′ be the graph obtained from G by erasing e1. By the induction hypothesis
– applied to the explorations ω ∈ {0, 1}E\{e1} 7→ (e2(ωi), . . . , e|E|(ωi)) –, we have
µi[Ai] ⩾ PG′

q [Ai] for every i ∈ {0, 1}. As a result,

µ[A] = µ[ωe1 = 0]µ0
[
A0

]
+ µ[ωe1 = 1]µ1

[
A1

]
⩾ µ[ωe1 = 0]PG′

q

[
A0

]
+ µ[ωe1 = 1]PG′

q

[
A1

]
.

By the assumption of the lemma for k = 0, we have µ[ωe1 = 1] ⩾ q. Moreover,
A0 ⊆ A1 since A is increasing, so the above is larger than or equal to

(1 − q)PG′

q

[
A0

]
+ qPG′

q

[
A1

]
= PG

q [A]. □

Proof of Lemma 3.2. — Let us prove that the hypothesis of Lemma 3.4 holds with
µ = PG

p,h[ω ∈ · | A] and q = p(1 − ε). Let (e, x) as in the statement of Lemma 3.2.
The third point of Remark 3.3 implies that, under PG

p,h[ · | Explk(e, x)], ωek+1 is
independent of the event A ∩ {ek+1 is not piv. for A} (because the latter depends
only on η and ω|E\{ek+1}). As a result,
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PG
p,h

[
ωek+1 = 1

∣∣∣ A ∩ Explk(e, x)
]

⩾
PG

p,h

[
ωek+1 = 1, A, ek+1 is not piv. for A

∣∣∣ Explk(e, x)
]

PG
p,h

[
A

∣∣∣ Explk(e, x)
]

= p× PG
p,h

[
ek+1 is not piv. for A

∣∣∣ A ∩ Explk(e, x)
]
⩾ p (1 − ε).

We end the proof by applying Lemma 3.4. □

4. Proof of Theorem 1.2

Let Gn = (Vn, En) denote the graph G restricted to the ball of radius n around o
(for the graph distance). We keep the notations Co and G (the cluster of o and the
ghost field) in the context of percolation on Gn. As in Section 3, PGn

p and PGn
p,h are

the analogues of Pp and Pp,h on the graph Gn, and we denote by ω the elements of
{0, 1}En .

Lemma 4.1. — Let p ∈ (0, 1) and h ∈ (0,+∞), and write q = p(1 − mh(p)).
Then,

∀ n ⩾ 0, PGn
q ⪯ PGn

p,h

[
ω ∈ ·

∣∣∣ Co ∩ G = ∅
]
.

Proof. — Let us apply Lemma 3.2, with A = {Co ∩ G = ∅} and ε = mh(p). To this
purpose, we define an exploration of En by fixing an arbitrary ordering of En and:

• By first revealing Co (i.e. by revealing iteratively the edge of smallest index
among all the edges that are connected to o by already revealed open edges).
Here and below, ‘smallest index’ refers to the arbitrary ordering that we have
fixed;

• Then, by revealing all the other edges (once again by revealing iteratively the
edge of smallest index).

Let (e, x) ∈ E⃗n × {0, 1}En such that {Co ∩ G = ∅} ∩ Expl(e, x) ̸= ∅. We observe
that, if Explk(e, x) holds and ek+1 is pivotal for {Co ∩ G = ∅}, then one can write
ek+1 = {vk+1, wk+1} where:

• vk+1 is connected to o by open edges in {e1, . . . , ek} but wk+1 is not;
• wk+1 is connected to a green vertex by open edges that do not belong to

{e1, . . . , ek+1}.
We let Bk+1 denote the event of the second item. By this observation and then the
Harris–FKG inequality(5) (see for instance [Gri99, Theorem 2.4] or [BR06, Lemma 3])
applied to PGn

p,h

[
· | Explk(e, x)

]
(which is a product of Bernoulli laws by the third

point of Remark 3.3) and to the increasing event Bk+1 and the decreasing event
{Co ∩ G = ∅}, we obtain that

(5) If one does not want to use the Harris–FKG inequality in this paper, one can continue to explore
the configuration with the same rule as before, except that ek+1 is not revealed until no other
unrevealed edge is connected to o, and one can compute the pivotal probability conditionally on
this further information.
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PGn
p,h

[
ek+1 is piv. for {Co ∩ G = ∅}

∣∣∣ Co ∩ G = ∅,Explk(e, x)
]

⩽ PGn
p,h

[
Bk+1

∣∣∣ Co ∩ G = ∅,Explk(e, x)
]

Harris–FKG
⩽ PGn

p,h

[
Bk+1

∣∣∣ Explk(e, x)
]

= PGn
p,h

[
Bk+1

]
⩽ mh(p),

where in the equality we have used the third point of Remark 3.3. We conclude by
applying Lemma 3.2. □

Proof of Theorem 1.2. — We note that ψn(q) = PGn
q

[
|Co| ⩾ n

]
. As a result,

Lemma 4.1 implies that

ψn(q) ⩽ PGn
p,h

[
|Co| ⩾ n

∣∣∣ Co ∩ G = ∅
] Bayes=

ψn(p) × PGn
p,h

[
Co ∩ G = ∅

∣∣∣ |Co| ⩾ n
]

1 − PGn
p,h

[
Co ∩ G ̸= ∅

]
=
ψn(p) × EGn

p,h

[
e−h|Co|

∣∣∣ |Co| ⩾ n
]

1 − PGn
p,h

[
Co ∩ G ̸= ∅

]
⩽

ψn(p)
1 −mh(p)e

−hn. □

5. Some motivations and some perspectives
I am not proving new results in this paper: even the quantitative result (i.e.

Theorem 1.2) can be deduced from earlier works (see [Hut20], where Hutchcroft
combines OSSS and ghost field techniques).

My initial goal, in the (not for publication) work [Van22] and the present paper,
was to propose a proof of sharpness without differential inequalities. As explained
in [DCMT21a] (where the authors propose a new proof – also without differential in-
equalities – of some scaling relations for 2D Bernoulli percolation), finding approaches
that “[do] not rely on interpretations (using Russo’s formula) of the derivatives of
probabilities of increasing events using so-called pivotal edges” is interesting because
“such formulas are unavailable in most dependent percolation models”. I have to
admit that on the one hand I have found a proof of exponential decay without
differential inequalities, but I have not succeeded in extending the proof to other
percolation models. Gradually, my aim became more to propose a new point of view
on sharpness properties, and as simple a proof of a sharpness phenomenon as I could
do. During discussions about such motivations, several colleagues asked me whether
these techniques could also be used to prove new results for Bernoulli percolation.
This was not my aim but the question is legitimate! I think that the answer is yes
and I would like to propose four examples.

5.1. A new inequality for critical exponents

In [Van22], we use similar stochastic domination techniques in order to prove an
analogue of Theorem 1.2 for the diameter. More precisely, we prove that

(5.1) ∀ n ⩾ m, θ2n

(
p− 2θm(p)

)
⩽ C

θn(p)
2n/m

,
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where θn(p) is the probability that there is a path from o to the sphere of radius
n around o (for the graph distance). Let η1 and ν denote the one-arm and the
correlation length exponents (so in particular η1 is the exponent that describes
the quantity θn(pc), see for instance [DM23] for precise definitions and for other
inequalities involving these exponents). (5.1) implies the following inequality:
(5.2) η1ν ⩽ 1.
Similar inequalities for critical exponents that describe the volume of clusters can
be proven by using Theorem 1.2, and were already proven in [Hut20]. However, (5.2)
is new to my knowledge, and the reason why previous techniques (such as those
from [Hut20]) do not seem to imply (5.2) is that the calculations behind them only
seem to work when the exponent of the connection probability is at most 1 (see
e.g. [Hut20, Section 4.1]). The critical exponent that describes ψn(pc) (which is 1/δ
in [Hut20]) is always at most 1, but this is not the case of η1, which is 2 on trees for
instance.

5.2. The existence of a percolation threshold for finite graphs

In [Eas23], P. Easo proves the existence of a percolation threshold for sequences of
finite graphs by using several techniques including stochastic comparison techniques
inspired by [Van22].(6) The present paper is inspired by both [Eas23, Van22].

5.3. A new inequality for arm events in the plane, and an application to
exceptional times in dynamical percolation

In this paragraph, we consider Bernoulli percolation on a planar (symmetric)
lattice. Let αk(n) denote the probability of the k-arm event from o to distance n, at
the critical parameter (see e.g. [GS14, Chapter 2] for this terminology). The OSSS
inequality implies that
(5.3) n2α4(n)α2(n) ⩾ c.

(See for instance [GS14, Chapter 12, Theorem 40].) I believe that – if one overcomes
some technical difficulties related to the arm separation techniques – one can prove
the following by using stochastic domination techniques similar to those proposed
in the present paper:
(5.4) n2α4(n)α2(n) ⩾ cnc.

The latter inequality is not only a very slight improvement of (5.3). Indeed, as
explained in [TV23], (5.4) implies that – if one considers dynamical percolation at
the critical parameter – there exist exceptional times when there are both primal
and dual unbounded components.
(6) On the other hand, Easo writes: “[. . . ] we could instead adapt Hutchcroft’s proof of sharpness
from [Hut20], rather than Vanneuville’s new proof. However, the adaption we found uses the
universal tightness result from [Hut21] and consequently yields a slightly weaker final bound.”
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The inequality (5.3) is known for very general planar lattices whereas (5.4) is known
(to my knowledge) only for site percolation on the regular triangular lattice ([SW01])
and bond percolation on Z2 (see [DCMT21b], where the authors use parafermionic
observables). I believe that one could prove (5.4) by combining the following two
results/observations:

(1) As proven by Kesten [Kes81], the size of the near-critical window for planar
percolation is 1/(n2α4(n));

(2) The size of the near critical window is much less than α2(n). How can one
prove this? Let us define an exploration of some percolation event by fol-
lowing an interface that separates a primal macroscopic cluster from a dual
macroscopic cluster. I believe that results analogous to Lemma 3.2 (together
with RSW techniques) imply that the near-critical window is less than the
infimum – on every vertex x and on every path γ – of the probability of
the 4-arm event at x, conditionally on the event {x belongs to the interface
and γ is the interface stopped at x}. This probability is less than the 2-arm
probability in a space that has the topology of the half-plane, which can be
strongly expected to be much smaller than α2(n).

5.4. A question based on the above paragraph

Can one find other contexts (e.g. non-planar) where general stochastic domination
lemmas such as Lemma 3.2 are more quantitative than the OSSS inequality?

BIBLIOGRAPHY

[AB87] Michael Aizenman and David J. Barsky, Sharpness of the phase transition in percola-
tion models, Commun. Math. Phys. 108 (1987), 489–526. ↑102

[AN84] Michael Aizenman and Charles M. Newman, Tree graph inequalities and critical
behavior in percolation models, J. Stat. Phys. 36 (1984), 107–143. ↑102

[AV08] Tonći Antunović and Ivan Veselić, Sharpness of the phase transition and exponential
decay of the subcritical cluster size for percolation on quasi-transitive graphs, J. Stat.
Phys. 130 (2008), no. 5, 983–1009. ↑102

[BR06] Béla Bollobás and Oliver Riordan, Percolation, Cambridge University Press, 2006.
↑102, 107

[CC87] Jennifer T. Chayes and Lincoln Chayes, The mean field bound for the order parameter
of Bernoulli percolation, Percolation theory and ergodic theory of infinite particle
systems, The IMA Volumes in Mathematics and its Applications, vol. 8, Springer,
1987, pp. 49–71. ↑103

[DC20] Hugo Duminil-Copin, Lectures on the Ising and Potts models on the hypercubic lattice,
Random graphs, phase transitions, and the Gaussian free field. Lecture notes given
at the PIMS-CRM summer school in probability, University of British Columbia,
Vancouver, Canada, June 5–30, 2017, Springer, 2020, pp. 35–161. ↑102

[DCM22] Hugo Duminil-Copin and Ioan Manolescu, Planar random-cluster model: scaling rela-
tions, Forum Math. Pi 10 (2022), article no. e23. ↑102

[DCMT21a] Hugo Duminil-Copin, Ioan Manolescu, and Vincent Tassion, Near critical scaling
relations for planar Bernoulli percolation without differential inequalities, 2021, https:
//arxiv.org/abs/2111.14414. ↑108

ANNALES HENRI LEBESGUE

https://arxiv.org/abs/2111.14414
https://arxiv.org/abs/2111.14414


Exponential decay of the volume for Bernoulli percolation 111

[DCMT21b] , Planar random-cluster model: fractal properties of the critical phase, Probab.
Theory Relat. Fields 181 (2021), no. 1-3, 401–449. ↑110

[DCRT19] Hugo Duminil-Copin, Aran Raoufi, and Vincent Tassion, Sharp phase transition for
the random-cluster and Potts models via decision trees, Ann. Math. (2) 189 (2019),
no. 1, 75–99. ↑102, 106

[DCT16a] Hugo Duminil-Copin and Vincent Tassion, A new proof of the sharpness of the phase
transition for Bernoulli percolation and the Ising model, Commun. Math. Phys. 343
(2016), no. 2, 725–745. ↑102

[DCT16b] , A new proof of the sharpness of the phase transition for Bernoulli percolation
on Zd, Enseign. Math. (2) 62 (2016), no. 1-2, 199–206. ↑102

[DM23] Vivek Dewan and Stephen Muirhead, Upper bounds on the one-arm exponent for
dependent percolation models, Probab. Theory Relat. Fields 185 (2023), no. 1-2, 41–
88. ↑109

[Eas23] Philip Easo, Existence of a percolation threshold on finite transitive graphs, Int. Math.
Res. Not. 2023 (2023), no. 21, 18781–18802. ↑103, 104, 109

[Gri99] Geoffrey R. Grimmett, Percolation, 2nd ed., Grundlehren der Mathematischen Wis-
senschaften, vol. 321, Springer, 1999. ↑102, 106, 107

[GS14] Christophe Garban and Jeffrey E. Steif, Noise sensitivity of Boolean functions and per-
colation, Institute of Mathematical Statistics Textbooks, vol. 5, Cambridge University
Press, 2014. ↑103, 109

[Hut20] Tom Hutchcroft, New critical exponent inequalities for percolation and the random
cluster model, Probab. Math. Phys. 1 (2020), no. 1, 147–165. ↑102, 103, 108, 109

[Hut21] , Power-law bounds for critical long-range percolation below the upper-critical
dimension, Probab. Theory Relat. Fields 181 (2021), no. 1-3, 533–570. ↑109

[Kes81] Harry Kesten, Analyticity properties and power law estimates of functions in percola-
tion theory, J. Stat. Phys. 25 (1981), 717–756. ↑102, 110

[Men86] Mikhail V. Menshikov, Coincidence of critical points in percolation problems, Sov.
Math., Dokl. 33 (1986), 856–859. ↑102

[Rus82] Lucio Russo, An approximate zero-one law, Z. Wahrscheinlichkeitstheor. Verw. Geb.
61 (1982), 129–139. ↑102, 106

[SW01] Stanislav Smirnov and Wendelin Werner, Critical exponents for two-dimensional per-
colation, Math. Res. Lett. 8 (2001), no. 5-6, 729–744. ↑110

[TV23] Vincent Tassion and Hugo Vanneuville, Noise sensitivity of percolation via differential
inequalities, Proc. Lond. Math. Soc. (3) 126 (2023), no. 4, 1063–1091. ↑109

[Van22] Hugo Vanneuville, Sharpness of Bernoulli percolation via couplings, 2022, https:
//arxiv.org/abs/2201.08223v1. ↑102, 103, 104, 108, 109

Manuscript received on 17th July 2023,
revised on 11th September 2024,
accepted on 18th September 2024.

Recommended by Editors S. Gouëzel and I. Benjamini.
Published under license CC BY 4.0.

eISSN: 2644-9463
This journal is a member of Centre Mersenne.

TOME 8 (2025)

https://arxiv.org/abs/2201.08223v1
https://arxiv.org/abs/2201.08223v1
https://creativecommons.org/licenses/by/4.0/
http://www.centre-mersenne.org/


112 H. VANNEUVILLE

Hugo VANNEUVILLE
Institut Fourier, UMR 5582,
Université Grenoble Alpes,
100 rue des mathématiques,
38402 Saint-Martin-d’Hères (France)
hugo.vanneuville@univ-grenoble-alpes.fr

ANNALES HENRI LEBESGUE

http://ahl.centre-mersenne.org/
mailto:hugo.vanneuville@univ-grenoble-alpes.fr

	1. Introduction
	Organization of the rest of the paper
	Acknowledgments

	2. Some ideas behind the proof
	3. A general criterion to compare the effect of decreasing p to that of conditioning on an event
	3.1. Explorations
	3.2. The main intermediate lemma

	4. Proof of Theorem 1.2
	5. Some motivations and some perspectives
	5.1. A new inequality for critical exponents
	5.2. The existence of a percolation threshold for finite graphs
	5.3. A new inequality for arm events in the plane, and an application to exceptional times in dynamical percolation
	5.4. A question based on the above paragraph

	References

