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1. Introduction

For a rooted tree t, the size |t]| of t is its number of vertices, the height Height(t)
is the greatest distance of any vertex of t from the root, and the width Width(t) is
the greatest number of nodes in any single generation of t.

Given a probability measure p on Z, (hereafter referred to as an offspring distri-
bution), write T = T(u) for a p-Bienaymé tree, i.e., the family tree of a u-distributed
branching process.!) For n € N with P(|T| = n) > 0, write T,, = T,(u) for a
random tree distributed as T conditioned to have size n. We prove the following
lower bound on Height(T,,), which holds for all offspring distributions p that are
critical, meaning that they have mean 1.

THEOREM 1.1. — Let p be any critical offspring distribution. Then
Height(T,,) = wp(lnn) and Width(T,) = op(n).

The notation X, = wp(Y,) means that X,,/Y,, — oo in probability as n — oo; in
the theorem (and implicitly in the sequel) the limit is along n for which P(|T| =
n) > 0.

The proof relies on the powerful Foata—Fuchs bijection, which establishes a con-
nection between trees and sequences. This bijection can be reformulated as a line-
breaking construction and we essentially show that for a critical offspring distribution,
the longest path used to build the tree has length wp(Inn).

The bounds in Theorem 1.1 are optimal for the class of critical offspring distribu-
tions; this is the content of our second theorem.

THEOREM 1.2. — Let f(n) — oo. There exists a critical offspring distribution p
such that
limsup P (Height(T,,) < f(n)Inn) =1 and limsupP (Width(T,) >n/f(n)) = 1.
n—oo n—oo

Theorems 1.1 and 1.2 contribute to the recent line of work devoted to obtain-
ing universal bounds for the height and the width of size-conditioned Bienaymé
trees without any regularity assumptions on the offspring distribution pu, see [AB19,
ABBHK22, ABD24].

Asymptotics for the tail of Height(T) have first been obtained by Kolmogorov
[Kol38] for subcritical (mean less than 1) and critical finite variance offspring distri-
butions (see also [Har63, Eq. (9.5) and (10.8)]). For subcritical offspring distributions
i, the finite variance condition required by Kolmogorov was relaxed by Heathcote,
Seneta & Vere-Jones [HSVJ67] to the condition >, 4 jIn(j)u; < oo. For critical off-
spring distributions p, the finite variance condition has been lifted by Slack [Sla68§]
to the condition that u belongs to the domain of attraction of an a-stable dis-
tribution with a € (1,2]; see also [BS71]. The case o = 1 has been considered
in [LS08, NW07, Sze76].

All the work cited in the previous paragraph concerns unconditioned branching
processes (or equivalently Bienaymé trees). However, following the pioneering work

() Also known as Galton—Watson or Bienaymé—Galton—Watson trees. Here we adopt the nomen-
clature proposed in [ABBHK22].

ANNALES HENRI LEBESGUE



Critical trees are neither too short nor too fat 115

of Aldous [Ald93] on scaling limits of random trees, much effort has been devoted to
obtaining limit theorems for Height(T},,). Aldous’ result implies that when p is critical
and has finite variance, Height(T,,)/y/n converges in distribution to a constant times
the supremum of the normalized Brownian excursion. This also holds for supercritical
offspring distributions by exponential tilting. Tail bounds on Height(T,,)//n which
hold uniformly in n were obtained in [ABDJ13].

Say that a function f: R, — R, is slowly varying (at infinity) if f(cz)/f(x) — 1
as x — oo for all ¢ > 0. When p is critical and belongs to the domain of attraction
of a stable distribution with index in a € (1,2], it is known [Duq03, Korl3] that
for a certain slowly varying function A, Height(T,,) divided by A(n)n!~Y/* converges
to a constant multiple of the supremum of the so-called normalised excursion of
the a-stable height process, introduced in [LJ98]. The work [DW17, Theorem 1.5]
describes the asymptotic behaviour of the tail of this supremum. Tail bounds on
Height(T,)/(A(n)n'~'/*) which hold uniformly in n, and which match the asymptotic
tail behaviour found in [DW17], were proved in [Korl7].

When p is subcritical and satisfies y, ~ C/n? with 3 > 2, then Height(T,,)/In(n)
converges in probability to a constant [Korl5]. This in particular shows that the crit-
icality assumption in Theorem 1.1 is necessary. The subcritical, heavy-tailed regime
was first studied by Jonsson & Stefansson [JS11], who identified a condensation
phenomenon whereby the tree T,, with high probability contains a single vertex of
degree linear in n and in particular has width ©(n).

Our next result is a new limit theorem for Height(T,) in a specific regime. Say
a sequence (a,),>1 € RT_ is slowly varying if the function f(z) := a|,) is slowly
varying. An offspring distribution g is said to be in the domain of attraction of a
Cauchy random variable if (np[n, 00)),n > 1) is slowly varying; see [Fel71, IX.8, Eq.
(8.14)]. We make the following slightly stronger assumption:

L
(H,) o, = f;l) and p is critical,

where L is slowly varying. This can be viewed as a “local” Cauchy condition. In
this framework, some properties of T,, have been studied in [KR19], motivated by
applications to random maps. An interesting condensation phenomenon appears for
such trees: with probability tending to 1 as n — oo, the maximal degree in T,
dominates the others, while the local limit of T,, is locally finite. This means that
vertices with maximal degrees “escape to infinity” and disappear in the local limit.

It turns that a limit theorem holds for Height(T,,) and Width(T,), with a certain
scaling sequence which we now define. Assume that p satisfies (H,) and let Y be
p-distributed. Then fix any sequence (a,,n > 1) such that nP(Y > a,) — 1 as
n — oo, and set

1.1 py = [0l L
(1) n_/1 zE Y1y, .
THEOREM 1.3. — Assume that p satisfies (H,). Then the following convergences
holds in probability:
Heich .
eight(T,,) 1 an Width(T,,) L
hy, n—00 nE [YILY}an] n—00
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116 L. ADDARIO-BERRY, S. DONDERWINKEL & I. KORTCHEMSKI

We will later prove that, for a, and h, as above, h, - nE[Y 1y, ] = O(nlogn)
and so Theorem 1.3 has the following corollary.

COROLLARY 1.4. — Assume that u satisfies (H,). Then Height(T,,)-Width(T,,) =
Op(nln(n)).

This answers a question from [AB19] in the affirmative, for the class of distributions
satisfying (H,,). For a further discussion of this question, see Section 6.

We will later see that E[Y 1y ~,,] and (h,) are slowly varying. The fact that such
a limit theorem holds for Height(T,) is surprising for multiple reasons. First, T,
does not have any nontrivial scaling limits [KR19]. Second, in contrast to the other
cases when limit theorems for Height(T,,) hold, here the asymptotic behavior of the
tail of Height(T) is not universal, in the following sense: if ;1 and p’ are two offspring
distributions satisfying respectively H, and H,, such that p, ~ pu/, as n — oo, then
in general it is not true that P(Height(T) > z) ~ P(Height(T') > ) as z — oo,
where T’ is a y/ Bienaymé tree (this is true when L(x) = o(1/In(z)?) but false
in general, see [NW07, Section 3.2]). However, it is true that h, ~ h! as n — oo,
where A/ is defined like h, but replacing p by u': in a certain sense, the effect of
size-conditioning restores asymptotic universality. This is the reason why the proof
of Theorem 1.3 is rather delicate.

Let us also mention that if one chooses another sequence @, such that nP(Y >
a,) — 1 asn — oo and defines B accordingly, then h,, ~ Ry, as n — oo. In particular,
for concreteness, one could take a, = inf{u > 0:P(Y > u) < 1/n}.

The main strategy to prove Theorem 1.3 is to combine results of [KR19] concerning
the structure of T,, with bounds from [NWO07] on the tail of Height(T).

Examples. Let us give some explicit examples, inspired by [NW07]; see Section 3.6
for details.

e For L(n) ~ B1ln(n)~'=# with 8 > 0, we have

1
~ —In(n)'*?
b~ )
e Set Iny(z) = In(z) and for every k > 1 define recursively Ingq)(z) =

In(Iny(x)). For

L(n) ~ (In 2H

with k£ > 2, we have

ln(l

hy ~ In(n)lng(n)

e For L(n) ~ I’ﬁ In(n ) Be=m(m’ with 8 € (0,1), letting k > 0 be the smallest

k1
< B < 4, we have

hn ~ exp <ZP B—i(1— ﬁ))

for some polynomials (P;,0 < i < k).

integer such that ) +1
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The final example demonstrates the wide range of asymptotic behaviour which can
appear, and also illustrates one subtlety in the definition of h,. Indeed, in the final
example, taking the upper limit in the integral in (1.1) to be nE[Y1y+,], or even
n, rather than nE [Y1y -, |, would change the asymptotic behaviour of h,; this is
not the case in the first two examples. (Again, see Section 3.6 for the details.)

Outline

First, in Section 2, we discuss the encoding of (random) planar trees by (random)
lattice paths; such encodings are used throughout the remainder of the paper. Then,
in Section 3, we discuss some general results which describe the structure of large
Cauchy—Bienaymé trees. This allows us to prove the height and width bounds of
Theorem 1.3, as well as Corollary 1.4. We also provide further detail about the ex-
amples from above. In Section 4 we use lattice path encodings to derive information
about the degree sequences of large critical Bienaymé trees and to prove the width
bound from Theorem 1.1. We also introduce an additional tool — the Foata—Fuchs bi-
jection for labeled trees with given degrees [ABBRD23, FF70] — which we combine
with the previously derived information about the degree sequences of large critical
Bienaymé trees in order to prove Theorem 1.1. In Section 5 we prove Theorem 1.2
using a stochastic domination result for the height of labeled trees with given de-
grees [ABD24] and an explicit construction of offspring distributions that yield trees
with large width and small height. Finally, Section 6 contains some open problems
and conjectures related to the possible asymptotic behaviour of conditioned critical
Bienaymé trees (with a particular focus on the Cauchy case).
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2. Bienaymé trees and their coding
2.1. Plane trees

We define plane trees according to Neveu'’s formalism [Nev86]. Let N = {1,2,...}
be the set of positive integers, and consider the set of labels U = U,,~ o N" (where
by convention N° = {@&}). For every v = (vy,...,v,) € U, the length of v is ||v|| = n.
For u,v € U, we let uv be the concatenation of u and v.

Then, a (locally finite) plane tree is a nonempty subset t C U satisfying the
following conditions. First, @ € t (@ is called the root vertex of the tree). Second, if
v=(v,...,0,) €t with n > 1, then (vq,...,v,_1) € t ((v1,...,v,_1) is called the
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parent of v in t). Finally, if v € t, then there exists an integer k,(t) > 0 such that
(v1,...,0p,1) € tif and only if 1 < i < k,(t). The quantity k,(t) is the number of
children of v in t; we also refer to k,(t) as the degree of v in t. The plane tree t may
be seen as a genealogical tree in which the individuals are the vertices v € t.

For v,w € t, we let [v,w] be the vertices belonging to the shortest path from v to
w in t. We use [u, w[ for the set obtained from [v,w] by excluding w. We also let
|t | be the total number of vertices (that is, the size) of the plane tree t.

2.2. Coding trees by lattice paths

Let t be a finite plane tree. We associate with every ordering @ = uy < u; <
-++ < ujg|—1 of the vertices of t the path W(t) = (W,(t) : 0 < n < |t]), defined by
Wy (t) =0, and W,,11(t) = W, (t) + Ky, (t) — 1 for every 0 < n < |t].

We will use two different orderings of the vertices of a tree:

(i) the lexicographical ordering, where v < w if there exists u € U such that

v=u(vy, ..., 0,), w=u(wy,...,wy,)and v; < wi;
(ii) the breadth-first search ordering, where v < w if either ||v|| < [Jw]||, or
|v]] = |lw]| and v = u(vy, ..., v,) and w = u(ws, ..., wy,) with v; < w.

Denote by W'™(t) and WP®(t) the paths constructed by using respectively the
lexicographical and breadth-first search ordering of the vertices of t. We refer to
both W' and W™ as exploration processes; we call W' (t) the Lukasiewicz path of
t and WP (t) the breadth-first queue process of t.

The following deterministic fact will be useful. Let t be a finite tree and order the
vertices of t using the breadth-first search ordering as wy, ..., u|¢|—1. Then for every
1 <i < |t], writing £ = |Ju;_1]|, then WP(t) is equal to the total number of children
of generation-¢ predecessors of u;_; plus the number of generation-¢ successors of
u;—1 (where “predecessor” and “successor” are relative to the breadth-first search

order).
As a consequence,
(2.1) A(t) < Width(t) < max (W(t),0 < i < [t]),

where we define A(t) = max, ¢ ky(t) to be the maximal number of children of a
vertex.

Set [n] ={1,2,...,n}. A discrete bridge of length n is a lattice path s = (so, ..., $,)
with sg =0 and s, = —1 and s; — s;_; > —1 for i € [n]; it is a discrete excursion if
additionally s; > 0 for i € [n — 1].

For either * € {lex, bfs} and any n > 1, the map

t — W*(t)
induces an invertible function with domain the set of plane trees with n vertices and
range the set of discrete excursions of length n.
The Vervaat transform is an n-to-1 map from discrete bridges of length n to

discrete excursions of length n which is defined as follows. Let s = (s; : 0 < i < n)
be a discrete bridge, and for 1 < i < nlet z; = s; — s;_1. Also, let

m = m(s) ::min{Oéign:si:min{sj:Oéjgn}}.
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Critical trees are neither too short nor too fat 119

be the first time at which (s; : 0 < i < n) reaches its overall minimum. Then the
Vervaat transform V(s) == (V(s); : 0 < i < n) of s is the walk obtained by reading
the increments (z1, ..., x,) from left to right in cyclic order, started from m. Namely,

V(s)o=0 and V(s)it1 — V(S)i = Tmti mod m, 0<i<n.

See Figure 2.1 for an illustration.
Sn V(S)n @ @ @
3
2 o o . ° @ @ @
1

— N W

0 . n J¢——m—o—— N
_1123456289].0 _112345678914) aea

-2 ° ° -2

-3 (] ° -3 @

Figure 2.1. Left: A walk s = (so,...,S$10) with s;0 = —1. Centre: the Vervaat
transform V(s). Right: the plane tree t with WP(t) = V(s).

Let 1 be a critical or subcritical offspring distribution. The Bienaymé measure
with offspring distribution p is the probability measure P, on plane trees that is
characterized by

(2.2) Pu(t) = IT truv

for every finite plane tree t (see [Le05, Proposition 1.4]); in particular, T(u) has
law IP,.

The following result relates the exploration processes of T(u) to a random walk
(see [Le05, Proposition 1.5] and/or [Pit06, Chapter 5 Exercise 1]). From this point on,
(X; 4 > 1) will always denote a sequence of i.i.d. random variables with law given
by P(X; = i) = p;yq for i = —1 for some offspring distribution p, and we will always
write Sp =0 and S; = X7 4+ ...+ X, fori > 1. Also, let ( =inf{i > 1: 5, = —1}.

PROPOSITION 2.1. — Fix a critical or subcritical offspring distribution p with
po > 0. Then with T = T(u), for every * € {lex, bfs} we have

(W;(T),0<i < |T)) = (S:,0<i<Q).

Moreover, for any n € N the following holds. For any discrete excursion w =
(wo, ..., wy),

P((S;,0<i<n)=w|{(=n)=P(V(S;,0<i<n)=w|S,=-1).
Together the two identities of Proposition 2.1 imply that for T, = T, (u), we have
(2.3) P((W;(T,),0<i<n)=s)=P(V(S;,0<i<n)=w|S,=-1).
The following fact follows readily from (2.3).

Remark 2.2. — The multiset of degrees in T,, has the same law as the conditional
law of the multiset {X; + 1,1 < ¢ < n} given that 5, = —1.
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3. The height and width of large conditioned critical
Cauchy—Bienaymé trees

Throughout this section we assume that u satisfies (H,), namely that p is critical
and p, = L(n)/n? with L : R, — R, is slowly varying.

3.1. Scaling constants

Let (an :m > 1) and (b, : n > 1) be sequences such that
(3.1) nP(X >a,) —— 1, by=-nE[Xlx<a,,

n—o0
where the law of X is given by P(X = i) = ;4 for i > —1. Observe that since p is
critical we have E [X] = 0, so that b, = nE[XIL‘X|>an].

The main reason why the scaling constants (a,),>1 and (b,),>1 appear is the
following: for (X; : ¢ > 1) a sequence of i.i.d. random variables distributed as X
and S, = X7 + -+ + X,,, then the convergence in distribution
Sy + by (d)

an n—oo

(3.2) G

holds, where C; is the random variable with Laplace transform given by Ele ‘1] =
MM for X > 0; C; is an asymmetric Cauchy random variable with skewness 1,
see [Fel71, Chapter IX.8 and Eq. (8.15), p. 315]. It is important to observe that even
though E[S,] = 0, a centering term is required in (3.2). The sequences (a,) and
(bn) are both regularly varying of index 1, meaning that a,/n and b,/n are slowly
varying, and also b, — oo and a,, = o(b,) (See Remark 3.5).

; ; . 2500 -
20000 40000 60000 80000 100000
-500 - 2000 |-
-1000 - 1500 [
-1500

1000 -

-2000 500 |
w

Ao

-2500 -

I I I I
20000 40000 60000 80000 100000

Figure 3.1. Left: a simulation of (S;)o<i<n-1 for n = 100000, where (S;,7 > 0)
is the random walk defined in Section 3.1 with p,, ~ m Right: the associ-

ated discrete excursion Z™ obtained by performing the Vervaat transform on
(S0, Sty .-y Sn1,—1).

3.2. The exploration processes of a size-conditioned Cauchy—Bienaymé
tree

We now describe the behavior of the exploration processes of T,,, a u-Bienaymé
tree conditioned to have size n, under the assumption (H,). We will use the Vervaat
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transform ) defined in Section 2.2. Recall that (S; : ¢ > 0) is a random walk
with increments distributed as X, and for every n € Z, define the random process

Zm = (Z™ .0 <i<n)by
(33) Z(n) = V(So, Sl, Ce >Sn—17 —1)

when S,_; < 0 and Z™ = (0,0,...,—1) otherwise (observe that S,_; < 0 with
probability tending to 1 as n — oo by (3.2)). The next theorem states that both of
the exploration processes of T,, are close in total variation distance to Z™ when n
goes to infinity.

THEOREM 3.1 ([KR19, Theorem 21]). — For every * € {lex, bfs}, we have
drv (W*(Tn), Z(n)> m 0,

where drv denotes the total variation distance on R"*! equipped with the product
topology.

Let us mention that compared to [KR19] we use a different convention concerning
the definition of b,: the two definitions differ by a factor of —1.

The following result on the scaling limit of the exploration processes of T,, implies
that, in probability, the processes have the following structure: they make a big
jump of size (1 4 o(1))b,, within time o(n), and then go down to —1 linearly with
fluctuations of size o(by,).

ProposITION 3.2 ([KR19, Proposition 24|). — For x € {lex, bfs}, extend the
exploration process W*(T,,) to [—n,n] by setting W*,(T,,) =0 fori =1,...,n. Then
for x € {lex, bfs} it holds that

* Tn
(wa<> —1<t< 1) (1=t s, -1 <t D)
in D([-1,1],R) as n — oc.

It might seem artificial to extend the process to a process on [—1,1], but an
extension to some interval [c, 1] with ¢ < 0 is required to obtain convergence in the
Skorokhod topology: indeed, the limit process has a jump instantaneously at time 0,
while in W(T,,) the macroscopic jump occurs at a strictly positive time.

COROLLARY 3.3. — Denote by Width(T,,) the width of T,,. Then the convergence

Width(T,,)

b, n—00

1

holds in probability.

Corollary 3.3 readily follows from (2.1), since by Proposition 3.2 we have the
following convergence in probability:

max AWPS(T,,) 1 max WP(T,,)

nooo n—oo
bn n

We now turn to the study of Height(T,,). From here on we will sometimes write
H(-) = Height(-) to make equations more readable.
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3.3. Reduction to a forest

Recall from Section 3.2 the construction
Z(n) = V<SO> Sla cee >Sn717 _1)

when S,,_; < 0and Z(™ = (0,0, ..., —1) otherwise. We denote by T/, the tree whose
Fukasiewicz path is Z(™ and by v/ the (lexicographically least) vertex of maximal
degree in T/. Observe that by Proposition 3.2 and since S,, /b, — —1 in probability,
it holds with probability tending to 1 as n — oo that this vertex is unique and has
degree A(T,) = |S,_1|, and that S,_; < —1. In addition, Theorem 3.1 implies that
dTV(Tna Tfn) — 0.

We now introduce a decomposition of the walk (S; : 7 > 0) into excursions above its
infimum. Set S;, = min{Sy, 51, ..., Sk} for every k > 0, let ¢, = inf{i > 0: 5, = —k}
for every k > 0, and define the excursions

(Wi(k);()giggk—(k_l) = (/{;—1—1—54,671“-:Oéig@—@q), k=1

For every k > 1, we let 7, be the tree whose Lukasiewicz path is W®*). Observe that
the trees (7x)r>1 are independent and T'(u)-distributed. Moreover, when S, < 0,
for every 1 < k < |S,_1], 71 is the subtree rooted at the k’th child of v/, in T},. Denote
by F{* (resp. Fjy) the forest of trees rooted at the children of [&,v/,[ and which are
on the left (resp. right) of [@, v/, [. Observe also that Ffy = {7, : [Sn_1]| < k < [S,,_1|}
when S, _; <0.

L 0<i
\ (Si:0<i<mn) C1Sn-1] SER i

S| LN N

En—1

Figure 3.2. The random walk (S; : 0 < i < n) and the associated tree T),. In red,
the |S,—1] first excursions of S that encode the trees grafted above the vertex
with maximal degree v),. In blue, the forest Fj; made of the trees grafted on
the children of [@,v!,[ on the right of [&,v![. In this example, H(F]*) = 2 and
H(FL) = 4.

It is an immediate consequence of the above definitions that when S,_; < 0,

(3.4) max H(7;) < H(T,) < ||| —i—max( max H(r), H(F), H(]—'ﬁ)) ,

1<z<|5n71\ 1<Z<|Sn71|

where by definition the height of a forest is the maximal height of a tree in this forest
(see Figure 3.2 for an example).
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3.4. Technical estimates

We give an asymptotic equivalent of the quantity h, defined by (1.1) in terms
of another slowly varying function involved in the generating function of yx. This
alternative form will be useful for the proof of Theorem 1.3.

Let G,(t) = Yk 0 t" ke be the probability generating function of u. Under the as-
sumption (H,), we may apply Karamata’s Abelian theorem [BGT89, Theorem 8.1.6]
(in the notation of the latter reference, we take n = o = 1, § = 0 and fi(s) =
Gu(e™®) — 1+ s) and write G, in the form

(3.5) Guls) = s+ (1 — 5)0, (1;) ,

with £, a slowly varying function. Observe that ¢,(x) — 0 as  — oo. For x > 0 set

v - [ s

which is slowly varying by [BGT89, Proposition 1.5.9a].
LEMMA 3.4. — If pu satisfies (H,) and Y is p-distributed then
b, ~ nE[Yly>, ] and h, ~ V(b,).
Proof. — First, recall that b, = nE[X1x|>,,]. Since X and Y — 1 have the same

law, we have b, = nE[YLy|>q,42] — nP(Y > a, + 2). By Karamata’s Abelian
theorem [BGT89, Theorem 8.1.6], we have

In particular E [Y'1y > ,] is slowly varying, Wthh implies
E [Y1yiza.e] ~E[Y1yisa,).

Also, since P(Y > n) ~ L(n)/n, we have nP(Y > a,, +2) ~ nP(Y > a,,) — 1. This
shows that b, ~ nE[Y1y-,,]. Observe that this also shows that b, ~ nf,(a,).

For the second statement, by (3.6) observe that ¢,(z) ~ E[Y1y-,] as x — oo. In
particular, ¢,(z) — 0 as x — oo so V(y) — 0o as y — oo. Therefore,

Y 1
V(y) ~ /—d
) L TE[Y1yo,

as y — 00. Since V is slowly varying, by the first statement of the Lemma we get
that V(b,) ~ V(nE[Y1ys,,]) and the desired result follows. O

Remark 3.5. — From the definition of a,, we have nL(a,) ~ a,, which implies that
(an) is regularly varying of index 1. In addition, we have seen in the previous proof
that b, ~ nf,(a,), which implies that b, is also regularly varying of index 1. Finally,
n /by ~ L(ay)/l(a,) — 0 because ,(n) ~ Y22 EE implies L(n) = o(f,(n))
by [BGTS89, Proposition 1.5.9b].

Observe that the convergence of the width stated in Theorem 1.3 readily follows
from Corollary 3.3 and Lemma 3.4. For the convergence of the height, there is still
some work remaining.

TOME 8 (2025)



124 L. ADDARIO-BERRY, S. DONDERWINKEL & I. KORTCHEMSKI

3.5. The height of a forest of Cauchy—Bienaymé trees

To simplify notation, denote by H the height of an unconditioned u-Bienaymé tree.
Set

Our main estimate is the following.
LEMMA 3.6. — For every € > 0 we have, as n — o0,
an(1+5)hn — 0 and an(17€)hn — .

We claim that this immediately implies that for every ¢ > 0 we have

maxXi <i<el H i

1<i<ab, H(Ti) ®),
hon,

where we recall that (7;);>1 is a sequence of i.i.d. u-Bienaymé trees. Indeed, for any

e >0,

(3.7) 1,

IP( max H(r) > (1+ E)hn> < b Q ey, — 0

1<i<chy

by a union bound and
. — p— _ cbn,
P (ﬁi‘ﬁn Hm) < (1 5)hn> (1 - Qo)
< exp (—can(l,E)hn) —0

sincel —z < e *forx>0.

We now explain how to use (3.7) to prove Theorem 1.3, then return to the proof
of Lemma 3.6.

Proof of Theorem 1.3. — We have already proved the result for the width, in
Corollary 3.3. To prove the result for the height, by Theorem 3.1 it is enough to
check that the convergence H(T!,)/h, — 1 holds in probability, where we keep the
notation T/, introduced in Section 3.3. For ¢ € (0,1) write

P< max H(Ti)>(1+€)hn>

1<i< |81
<P (| may H(m) > (14 2)h,) + P (S| > 200)

and

P< max H(Ti)g(l—s)hn>

1<i<[Sn-1]

bn
<P max H(n) <1 —¢e)h, | +P || <= .
1<ig<n 2
By (3.2) we have (S,_1 + b,)/a, — 1 in probability. Since a,, = o(b,), this implies
that |S,,/b,| — 1 in probability. Since the trees (7;,i > 1) are i.i.d. u-Bienaymé trees,
it then follows from (3.7) that

maX1<i<\Sn—1|H(Ti> ﬂ 1
h, ‘

(3.8)
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Taking into account (3.4), since H(F[") and H(F{) have the same law by symmetry
and since P(S,,—1 > 0) — 0, it remains to check that for every ¢ > 0

! max i H Ti
P B
To bound ||v}||, by [KR19, Theorem 2 and Remark 18] (recall that in the notation

]

of [KR19], —b, is used instead of b,) we have

(3.9) >1+5> — 0.

(3.10) LI D Exp(1).
Moreover, by Lemma 3.4,

o dx
Bl (b)) ~ £ (b) /1 )

by [BGT89, Proposition 1.5.9b], and combined with (3.10) this implies that ||v],||/hn
— 0 in probability.

Finally, to bound max|s, ,|<i<|s, | H(7i), first observe that by applying Proposi-
tion 3.2 with T/, (which is licit thanks to Theorem 3.1) we get (S,_1 —S,,_1)/bn — 0
in probability as n — oo. Thus

max i H(m;
P( &4<<m¢()>1+%

hin

i H(7;
<P(HlaXlghgbn (7_) >1+5>—|—P(|Sn_1—sn—1|>bn>’

which tends to 0 thanks to (3.7). This completes the proof. O

The proof of Lemma 3.6 relies on estimates due to Nagaev & Wachtel [NWO7].
We first introduce some notation. For s > 0 we set {(s) = £,(1/s), so that G, (s) =
s+ (1—s)l(1—s)and

(3.11) £s) = po— 3 ullk +1,00))(1 — 8)".
k=1
Indeed,
Z(l—s)zaul(?s 1_SZuk(s —s)

1
=1 (,uol—s Z,ukl—s +---+s)>

Zum—Xth+Lm%¢
k=1
and (3.11) follows. As a consequence, £(0) = limgo¢(s) = 0, (1) < 1 and ¢ is
increasing. A fortiori, = |—> xl(x) is increasing. Finally, recalling that Q,, = P(H > n),

observe that Qn-‘rl =1- ( Qn) Qn(l - K(Qn))
We shall use two estimates due to Nagaev & Wachtel [NW07]. We have included

the proofs for these estimates in our paper to ensure both self-containment and better
accessibility. The proofs for the desired estimates do essentially appear in [NW07],

TOME 8 (2025)



126 L. ADDARIO-BERRY, S. DONDERWINKEL & I. KORTCHEMSKI

but the estimates are not explicitly stated and their proofs are distributed throughout
the paper, which can make it somewhat challenging to see the full picture.

LEMMA 3.7 (Nagaev & Wachtel, proof of [NWO07, Lemma 5]). — There exists a
constant C' > 0 such that for every n > 1

L UQn)
1= £(Qn) {(Qn 1)

Proof. — From (3.11), since p is critical, for 0 < s < 1, we have

=> u([k+1,00) (1—(1—3)'“),
k=1
and the inequality ks(1—s)*! < 1—(1—s)* then implies that ¢'(s)/{(s) < 1/s. If we

integrate this inequality from = to y for 0 < x <y < 1 we get that In({(y)/¢(x)) <
In(y/z) <y/x —1. Thus

E(Qn) Q” = ex 17 —
(Quer) S (Qnﬂ - 1) - (1 —UQ.) 1)
= exp <1€(Qn)> <1+CYQy)

<14+ CUQy)

_K(Qn)
and
(-1 s < - @) e (1205 ) <1+ il

for certain constants C,C’" > 0, since for all 0 < s < 1 we have that 0 < {(s) <
(1) < 1. O
For y € (0,1), set

Vi =vas = [

LEMMA 3.8 (Nagaev & Wachtel, [NW07, Eq. (51)]). — There exists a constant
C > 0 such that we have
n < Vi(Qn) <n—ChnV. *(n).

Proof. — Using the facts that  — xf(x) is increasing and that Q; — Q11 =
Qil(Q:), write

Qi Qi QH—l tode
"= Z Q:il(Q Z:/l+1 xl(x /nxé(x) = Vi@,

=0 Q

8

which gives the lower bound for V,(@Q,) in the lemma. For the upper bound, we see

that
Z /Qzﬂ wl(x =0 Q2+1£(Q1+1)
N Qi (Q» S S B ((°))
= 2 Q@) 2 1= Q) U @)
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Thus, by Lemma 3.7 we have

VAQw) < n+C Y Q).
=0

Next, since the lower bound for V,(Q;) gives that i < V,(Q;), using the fact that Vj
is decreasing and /¢ is increasing, write

n—1 n n
> Q) <3 (vt) < [T (vt ) da.
The change of variable x = V,(u) with V/(u) = —M}u) gives
/nE(V*_l(x)) dac:/1 l(u) - ! du= -V, (n),
0 Vit(n) ul(u)
and the desired result follows. O
LEMMA 3.9. — We have In(V,7}(n))/n — 0 as n — oc.

Proof. — We have 0 < V,7!(n) < 1 so that In(V,7*(n)) < 0. We also have that
(InV, 1 (x)) = (V1 (z)). Since V71 (x) — 0 as x — oo and since £(0) = 0, we see
that for every ¢ > 0 we can find M > 0 such that —¢(V,"!(z)) > —¢ for x > M.

Integrating this inequality, it follows that there exists a constant C' > 0 such that
form>M

C—en<InV;*n)<0
The result follows. 0

Proof of Lemma 3.6. — By [BGT89, Theorem 2.4.7(i) and Eq. (2.4.3)], since V,
is slowly varying and decreasing, V7! is rapidly varying and decreasing, meaning
that for every e € (0,1) we have V, ' ((1+¢)n)/V, ' (n) — 0. Also, if a, is a sequence
such that a,/n — 1 — ¢, we have V,"*(a,)/V,"}(n) — oc.

To simplify notation, set h!, = V(b,). By definition, h], = V,(1/b,), so b, =
1/V.71(R)). By Lemma 3.4, we have h,, ~ h,. Thus for n sufficiently large we have
(14+¢e)h, < (1+2¢)h), and(1 —e)h, < (1 — 2¢)h),.

Then, by Lemma 3.8,

V(A + 26) k)
V()
For the other convergence, using Lemma 3.8, similarly write

V(1= 26)hn — CIn V(1 = 26)hy))

bn Q4o < bnQ1420)n,

an(l—e)hn P an(l—Zs)h;L P ‘/*_l(h;l) — 09,
where we use that
1—2 ! —1 . /
( e)h, — CIn V(1 —2¢e)h) 19
hn,
by Lemma 3.9. This completes the proof. O
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3.6. Examples

Here we give the details concerning the examples mentioned in the end of the
Introduction. Starting from p, = L(n)/n?, we compute the asymptotic equivalents
of ¢, and V using (3.6) and the definition of V:

(3.12) Ly~ [ L) g0 vy = - fo).

Xz

We extract an asymptotic equivalent for b, from the implicit asymptotic equivalent
by, ~ nli(b,), which comes from [Berl9, Lemma 4.3]. (We have already seen that
by, ~ nli(a,) but here it is more convenient to use that b, ~ nt,(b,)). This allows to
compute an asymptotic equivalent for V'(b,), which by Lemma 3.4 is an asymptotic
equivalent of h,. In the following examples the integrals appearing in (3.12) can
actually be computed explicitly.

(1) L(n) ~ Bln(n)~1=P with 8 > 0, then £,(s) ~ In(s)™? and V (x) ~ m In(x)*o.

Then b, ~ n/In(b,)?, which implies that b, ~ n/In(n)? and thus
1 1

1+5 1+
(2) Set Iny(z) = In(z) and for every k > 1 define recursively Ingq)(z) =

In(Iny(x)). For

hp ~ V(b,) ~ In(b,) 7 ~ In(n)*7.

1 _

H

with & > 2, we have £,(s) = ln(k)(s)_l and V(:U) ~ In(z) Ing (x). Then
bn, ~ nlngy(b,)~" which implies that b, ~ nlngy(n)~" and thus

by ~ V(bn) ~ In(by) Ingy (by,) ~ In(n) Ingy(n).

L(n) ~ (Ingo (n

(3) L(n) ~ 2 In(n) e~ with 8 € (0,1), then £,(s) ~ §In(s)' e ()’
and V(z) ~ e™®’ Then, b, ~ %ln(bn)l_ﬁe_ln(b")ﬁ. Thus, taking the B
power of the logarithm of this equivalent and iterating yields

k
o~ V(0) 0 e (32 PO )0,

1=0

where k& > 0 is the smallest integer such that k%l < B < 5L and where P, (B)1is

k+2
a polynomial in § of degree ¢ which can be computed by induction (e.g. Py = 1,
P (8) = —f3). Observe that in contrast with the two previous examples, here,

in general, it is neither true that h, ~ V(n) nor that h,, ~ V(nl,(n)).
Finally, we note that Theorem 1.3 is consistent with Theorem 1.1. Indeed, we have
b, = o(n) since b, ~ nl,(a,) and so to see that
hy,

(3.13) e

— 00,
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take € > 0 and M > 0 such that ¢, (z) < € for z > M. Then

L b da 1 bn%:hl(bn)—ln(M)‘l
In(n) /1 xly () > In(n) /M xe In(n) g

But b, /n is slowly varying, and if A is a slowly varying function we have In(A(n))/
In(n) — 0 as n — oo (see [BGT89, Proposition 1.3.6(i)]), so that In(b,) ~ In(n). As

a consequence

lim nf 1 /bn dz S 1
im in : > -
n>oo In(n) J1 xl(x) ~ €

and (3.13) follows.

We finish the section by proving Corollary 1.4, which stated that H(T,,)Width(T,,)
= Op(nln(n)).

Proof of Corollary 1.4. — By Theorem 1.3 and Lemma 3.4, we have the following
convergence in probability:

H(T,) - Width(T,,)

)
> 1.
bn (bn) n—00

We thus have to establish that b,V (b,) = O(nln(n)). To this end, using the definition
of V' write
bn dx ) du
bV (ba) = bn [ —b [
(b) 1zl (x) 1/b, uly (byu)

As seen in the beginning of Section 3.6, we have b, ~ nf,(b,), so that

11 £,(by)
bV (by) ~ / - d
Vibn) ~m /b, u i (bpu) "

But there exists a constant C' > 0 such that for every n > 1 and for every 1/b, <
u < 1 we have £,(by,)/l.(byu) < C (this follows e.g. from the representation theorem
for slowly varying functions [BGT89, Theorem 1.3.1]). Thus b,V (b,) < Cnln(b,),
and the desired result follows from the fact that In(b,) ~ In(n) as seen above. [

Observe that in the first two family of examples above b,V (b,,) is of order nln(n),
while in the third family of examples we have

bV (b))  ~ gmmyﬁ:ommm»
4. The height and width of large conditioned critical
Bienaymé trees
In this section we will prove Theorem 1.1.
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4.1. Degree sequences of Bienaymé trees

We first establish some properties concerning degree sequences of Bienaymé trees
that will be instrumental in our proof of Theorem 1.1.

We shall use the following fact about unconditioned samples from g, which can be
found in [Jan12, Lemmas 14.3 and 14.4]. We provide a proof for completeness and

since our argument is more probabilistic in nature and also somewhat shorter than
that in [Jan12].

LEMMA 4.1. — For (X;,i > 1) i.i.d. samples with law P(X; = i) = u;41, we have

that .
P (Z X, = —1> = e~°M
=1

as n — oo over all n for which P (3> ; X; = —1) > 0.

This lemma implies that every event that is exponentially unlikely for T is also
exponentially likely for T,,. Indeed, by the ballot theorem (or equivalently by Propo-
sition 2.1 and the fact that the Vervaat transform is an n-to-1 map),

P.(|T|=n)= IP’(ZX —-1)

which implies that for any set A of plane trees,

P(T € A)
P, (T, € A) < ——— < ne®™P(T € A).
' Pu(IT|=mn)
Proof of Lemma 4.1. — In the proof, we only consider n for which P(31 , X; =

—1) > 0.

Now, let r = ged(i > 0 : p; > 0), so that the support of Y7 | X; is contained
in —n + rZ. Then, there is k£ € N such that » = ged(0 < ¢ < k : p; > 0). Set
S={0<i<k:p;>0}and let &' ={i > k:p; >0} If S’ =0, then we are done,
because thls in particular implies that p has finite variance, so by the local central
limit theorem (see e.g. [Pet75, Theorem 1, Section VII]),

P (; X; = —1> = O(n'7?)

as n — oo over all n for which P (37 ; X; = —1) > 0. Therefore, we may assume
that 8" # 0.

Set p =Y ;csii- Then for N, = #{1 <i<n: X;+ 1€ S}, we see that N, is
distributed as a Binomial(n, p) random variable. Moreover, letting (A;,7 > 1) be i.i.d.
random variables distributed as X; conditional on X; +1 € § and (A,7 > 1) be
i.i.d. random variables distributed as X; conditional on X; + 1 € &', both sequences
independent of one another and of N, then

n—Np

ZA+ZA’dZX

Let c = E[A;] < 0 and ¢ = E[A]] > 0 be the means of A; and A respectively,
which satisfy that pc + (1 — p)c’ = 0 by the criticality condition.
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Fix € > 0. We are done if we show that
P <Z Xz = —1> = ief{-:n
i=1

for all n large enough. To this end, we first observe that there is M > 0 such that
P(|N,, — np| < Mn'/?) > 1/2 for all n. Furthermore, since 3™, A; is the sum of i.i.d
random variables with mean ¢ and finite support, there exists 6 > 0 such that for
all m,, with |m,, —np| < Mn'/? and for all k,, € —m,, +r7Z with |k, —npc| < dn, for
all n large enough,

(4.1) P (Z A= kn> > e,
=1

We now check that for n large enough and for all m,, with |m,, —np| < Mn

(4.2) P <

Then, with probability at least i, we get that m, = N, and k, = —1 — > " Al
satisfy the conditions of (4.1). (Observe that since P(3°7 ; X; = —1) > 0 we have
that n — 1 € rZ, and > A, € —n + m,, + rZ by definition of r, so that k, €
n—1—m,+rZ = —m, + rZ.) This implies that with probability at least ie*m, it
holds that "8 A, + YoM AL = —1.

Finally, to establish (4.2), observe that by the law of large numbers, for |m,, —np| <
Mn'/? it holds that | XF—™ A} — n(1 — p)d + 1| < dn with probability at least 1/2
for n large enough, so the fact that pc 4+ (1 — p)¢’ = 0 implies the statement. OJ

1/2

n—mmn,

> A+ npe+1

=1

1
<on| > -
o) >

To establish the bound concerning H(T,,), we will also use the following lemma,
which states that in T, all but o(n) of the total degree is at bounded degree nodes
with high probability. This in particular implies that the largest degree is o(n) in
probability.

LEMMA 4.2. — For every fB,e € (0,1), for Dq,..., D, the degrees in T, there
exists K > 0 such that for n large enough,

P(ZDiﬂDi>K <5n> >1—-c.

i=1
Proof. — Fix € (0,1). Let (X;,7 > 1) be i.i.d. samples with law P(X; = i) = pi41.
By Remark 2.2, the multiset {D1, ..., D, } of degrees in T,, has the same law as the
conditional law of the multiset {X; + 1,1 < i < n} given that > ;(X;+1) =n— 1.
We will first consider (X; +1,...,X,, + 1) before conditioning: we will show that
there exist 6 > 0 and K > 0 so that for all n large enough,

(4.3) P <i(Xi + Dy, e < (1— 5)n> < e

Since p is critical, there is K € N such that 35 | kug > 1 — 8/2. For such K we
have

{Zn:<Xi + Dy, cr1 < (1- ﬁ)”} C U {Zn: Lx,—k—1 < 11__562;%71}.

i=1 {ke[K]:p >0} Li=1
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Indeed, if Y7 1x,—x—1 > (1 — B)uxn/(1 — B/2) for all k € [K] for which p > 0,
then
n K n

DX+ 1) Lx,<n- 1—Z/€Z]lx —k—1

=1

no1=-8
(1—5) :

But, for each k, 3" ; 1y, is distributed as a Binomial(n, ;) random variable,
so for each k& < K for which py > 0, there is d, > 0 such that

n 1 _
P Ix,—p—1 < ;L;JL) < e Ok
@ -2

for all n large enough. Then a union bound implies (4.3) with, e.g.,

b=1 min {0}

{ke[K]: pp >0}

We now show how the statement follows from (4.3) and Lemma 4.1. By Lemma 4.1,
for all n large enough, P(X0(X; +1) =n — 1) > ™2 50

P (zn:DiﬂDi>K > ﬁn)

i=1

= (Z Dlx,41<x <n—1—pn

=1

i(Xi—kl):n—l)

(é(x Dl ex < (1— ﬁ)n) )
Ex )

which implies the desired result. U

< 6—(571/27

//\

4.2. Critical trees are not too fat

Here we establish the width bound in Theorem 1.1. We may assume throughout
that po+p1 < 1since if pg+p; = 1 then the assertions of the theorem are immediate.
We start with the bound concerning Width(T,,). Recall that S, = X; + ...+ X,, for
m > 1, where (X;,i > 1) are i.i.d. with P(X; = k) = pgyq for k > —

PROPOSITION 4.3. — For all ¢ > 0 there exists > 0 such that for all n sufficiently
large,

P( max |S,,| > 5n’Sn:—1)<e_5”.

o<m<n

Proof. — If i has bounded support then by a Chernoff bound, for all € > 0 there is
§ > 0 such that P(maxg<m<n |Sm| = en) < e 27 for all n sufficiently large. In this
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case, by the local central limit theorem we also have that P(S, = —1) = O(n/2)
as n — oo (along values n for which P(S,, = —1) # 0). Thus,

Sp = —1) =0 (\/ﬁe_%") =0 (e“s”) ,

which implies the result in this case. We may thus assume that g has unbounded
support.

We will use below that P(S, = —1) = ¢°™ as n — oo along values with
P(S, = —1) > 0; see Lemma 4.1.

For K € N it is convenient to write X% = X;1y.« g and X7 % = X; — X% and
also to write SSX = Y™ X% and S2K = 5, — S5K.

Fix ¢ > 0. Since the X; are centred, we may choose K = K (¢) large enough that
E[X;lx,<x] > —¢/2. Then E[Y", X~%] > —en/2. Since the random variables
X% are bounded, by a Chernoff bound there exists § = §(g) > 0 such that

P(SgK < —sn) < § e 2m
for all n > 1. Also, the random variables X;~* are bounded and (since the support

of u is unbounded) have strictly negative mean. Thus there is ¢ > 0 such that for
allm > 1,

P <Ognaécsn |Sim| = en

(SSK O) > c.
By the Markov property this implies that for 0 < m < n,
P (S5 <—en| 85K <—en) 2P (S35, <0) >,

so for m € [n] we have

P (S5 < —en) < (cd) le .
Again using the Markov property, this implies that

P(S,, = en, S, = —1) <P(Sp_m < —en) < (S<K —en) (c6)~te 20m
Since P(S,, = —1) = e~° the above bound yields that
P (S, >en|S,=—1)<(c6) e 2. o)

and a union bound over m € [n] then gives that

P( max S,, = en|S, :—1> ge*‘*”/z

o<m<n

for all n sufficiently large.
Bounding ming <, < Sy, is similar: for m € [n| we have we have

P(S,, < —en, S, = —1) < P(S,, < —en) < (S<K —en) (cd)"Le~2m
Just as above, dividing through by P(S, = -1), using that P(S, = -1)

= ¢~°" and taking a union bound gives that

P< min S, —sn’Sn:—l) <e /2
o<m<n
for n large; the result follows. O

The width bound of Theorem 1.1 now follows straightforwardly.
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COROLLARY 4.4. — For any critical offspring distribution pu, it holds that
Width(T,,) = op(n).

Proof. — Let ¢ = inf(i > 1 : S; = —1). By (2.3), for any discrete excursion
w = (wp, wy, ..., wy),

P ((W(T,),0<i<n) =w) =P (V(5,0<i<n)=w|S,=-1)
By (2.1) we also have
Width(T,) < max (W%S(Tn), 0<m< n) .
Finally, note that for any discrete bridge s = (s, S1, ..., S,), it holds that
max(V(s)m, 0 < m < n) = max(s,,, 0 < m < n) —min(s,,0 <m < n).
Proposition 4.3 now implies that for any € > 0, there is 0 > 0 such that
P(Width(T,) > 2en) < P (max (Wff(Tn), 0<m< n) > 25n)

SP( max S,, — min Sm>25n’5n——l)

o<m<n o<m<n
<P max |Sp|=2en|S,=-1)< e o, O
os<m<n

4.3. Bijection between rooted trees and sequences

Our proof for the height bound in Theorem 1.1 is in part based on a bijec-
tion between rooted trees on [n] and sequences in [n|"! introduced by Foata and
Fuchs [FF70], which we recall here. (See also the recent note by the first and second
author, Blanc-Renaudie, Maazoun and Martin on probabilistic applications of the
bijection [ABBRD™23] and the paper by the first and second author in which we
use the bijection to obtain upper bounds on the height of random trees [ABD24].)

For a rooted tree t and a vertex v of t, the degree di(v) of v is the number of
children of v in t. A leaf of t is a vertex of t with degree zero.

A degree sequence is a sequence of non-negative integers d = (dy,...,d,) with
>icn di = n — 1. We write Tg for the set of finite rooted labeled trees t with vertex
set labeled by [n] and such that for each i € [n], the vertex with label ¢ has degree d;.
Also write 7 (n) for the set of all finite rooted labeled trees with vertex set labeled
by [n]. For t € T(n), we write d;(i) for the degree of the vertex with label i and say
that (d¢(1),...,dy(n)) is the degree sequence of t.

We use the version of the bijection introduced in [ABBRD23, Section 3], special-
ized to trees with a fixed degree sequence and we closely follow the presentation of
the bijection in [ABD24].

The following proposition from [ABD24] is the tool that allows us to transfer results
from the setting of random trees with given degree sequences to that of Bienaymé
trees. Recall that T,, denotes a p-Bienaymé tree conditioned to have size n.

PROPOSITION 4.5 ([ABD24, Proposition 8]). — Conditionally given T,, let T,, be
the random tree in T (n) obtained as follows: label the vertices of T,, by a uniformly
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random permutation of [n], then forget about the plane structure. For i € [n] let
D; be the degree of vertex i in T,,. Then for any degree sequence d = (dy,...,d,),

conditionally given that (D1, ..., D,) = (dy,...,d,), the tree T, is a uniform element
nTg.

We will now explain the bijection. It is convenient to focus on degree sequences
with a particular form. Given a degree sequence d = (dy,...,d,), define another
degree sequence d' = (d},...,d,) as follows. Let m be the number of non-zero
entries of d; necessarily 1 < m < n — 1. List the non-zero entries of d in order of
appearance as dj,...,d, , and then set d;, ., = ... = d, = 0. So, for example, if
d=(1,0,3,0,0,2,0) then d’ = (1,3,2,0,0,0,0). Say that the degree sequence d’ is
compressed. (So a degree sequence is compressed if all of its non-zero entries appear
before all of its zero entries.)

There is a natural bijection between T3 and Ty : from a tree t € T, construct a
tree t' € Ty by relabeling the non-leaf vertices of t as 1,...,m and the leaves of t
as m+ 1,...n, in both cases in increasing order of their original labels. Using this
bijection provides a coupling (T, T') of uniformly random elements of 73 and Ty,
respectively, such that T and T" have the same height. It follows that any bound
on the height of a uniformly random tree in 7y applies verbatim to the height of a
uniformly random tree in 73.

Now, let d = (dy, ..., d,) be a compressed degree sequence, so thereis 1 < m < n—1
such that d; = 0 if and only if i > m. Write ng = ng(d) = n — m for the number of
leaves in a tree with degree sequence d. Then define

Sy = {(vl,...,vn_l) :{k:vp =i} =d; forallie [n]}

For example, if d = (1,3,2,0,0,0,0) then Sq is the set of all permutations of the

vector (1,2,2,2,3,3), so has size (122) = 60.
The following bijection between Sq and 74 appears in [ABBRD'23, Section 3|. See
also Figure 4.1. For v = (vy,...,v,-1) € Sq, we say that j € {2,...,n — 1} is the

location of a repeat of v if v; = v; for some @ < j.

Bijection t between Sq and 7.

o Let j(0) =1, let j(1) < j(2) <--- < j(no — 1) be the locations of the
repeats of the sequence v, and let j(ng) = m + ny = n.

e Fori=1,...,ng, let P; be the path (vji—1),...,vj@)-1,m +17).

e Let t(v) € 74 have root v; and edge set given by the union of the edge
sets of the paths P, P, ..., P,,.

The inverse of the bijection works as follows. Fix a tree t € Tg. Let Sy = {r(t)}
consist of the root of t. Recursively, for 1 < 7 < ng let P; be the path from S;_;
to m+ 1 in t, and let P’ be P, excluding its final point m + 4. Include the labels
of the vertices of P; in S;_; and call the resulting set S;. Then let v = v(t) be the
concatenation of P, ..., P} .
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Figure 4.1. A sequence v = (vy,...,vs) and the tree t(v) that it encodes. For
i = 1,...,5, the colour of the edges on the path P; in t(v) equals the colour
underlining entries vj(;_1y, . .., ;-1 of v. Figure adapted from [ABBRD*23].

4.4. Critical trees are not too short

It is straightforward from the above bijection that the height of the tree is bounded
from below by the length of the longest distance between two repeats in the sequence.
To prove Theorem 1.1, we will use Lemma 4.2 to show that if we let D be the degree
sequence of a critical Bienaymé tree, then the length of the longest distance between
two repeats in a uniform sample from Sp is w(lnn) in probability.

Proof of Theorem 1.1. — By Remark 2.2, we can generate T,, in the following
way. Let Dy,..., D, be ii.d. samples from p conditioned to sum to n — 1. Then, let
V., = (Vn(1),...,Vp(n—1)) be a uniformly random sample from the set of sequences
that satisfy that, for each ¢ € [n], ¢ occurs exactly D; times. Let T,, = b(V,,) be the
tree encoded by applying the Foata—Fuchs bijection to V y, so that, by Proposition 4.5,
Height(T,,) is distributed as the height of a u-Bienaymé tree with size n.

Fix M > 0 large and € > 0 small. We are done if we show that for n large
enough, with probability at least 1 — &, there exists k € [n — 1] such that none of
Vu(k),Va(k+1),...,V,(k+ [MInn]) is a repeat. Indeed, for such k, the vertices
Vo(k),Vo(k+1),...,V,(k+ [MInn]) form a path with [M Inn] edges away from
the root, so the height of the tree is at least M Inn.

Fix 6 > 0 small. By Lemma 4.2 there exists K = K(/3) > 0 such that for n large
enough,

P <ZDZ'I]-D,->K < BTL) >1 —5/2
i=1

We condition on the event that Dy, ..., D, satisfy this property. We call £ € [n—1]
good if it satisfies the following two properties:

(1) It corresponds to a vertex with degree at most K, or in other words, Dy, ) <
K, and
(2) it is not a repeat, or in other words, V,(¢) & {V,(1),...,V,({ —1)}.

It is sufficient to show that with conditional probability at least 1 — ¢/2 there
exists a consecutive sequence of good indices of length at least M Inn. We will now
show that for g sufficiently small and § = §(5) > 0 sufficiently small, it is in fact
likely that there exists such a sequence amongst the first dn elements of V,,.

ANNALES HENRI LEBESGUE



Critical trees are neither too short nor too fat 137

From now on we work conditionally given Dy, ..., D, and assume that

> Dilp,~k < fn.

i=1
Observe that the law of (V,(1),...,V,(n — 1)) is the law of a sampling without
replacement from the size-(n — 1) multiset in which each integer i € [n] occurs
exactly D; times. Note that, by our assumption, at most fn elements in this multiset
correspond to a vertex of degree larger than K. Now, for a given 0 < § < 1, for
any 1 < ¢ < dn, conditional on V,,(1),...,V, (¢ — 1), the probability that V,,(¢) has
degree larger than K is bounded from above by /(1 —§). Furthermore, the multiset
contains at most 0nK repeats of vertices in V,,(1),..., V, (¢ —1) with degree at most
K, so the probability that V,(¢) is a repeat of a vertex with degree at most K is
bounded from above by 0 K/(1 — §). This implies that for all 1 < ¢ < dn, conditional
on V,(1),...,V,(¢ — 1), the probability that ¢ is good is bounded from below by

1— -2 - 2= =1y,

and note that we can make p arbitrarily small by first choosing # small enough
(which determines the value of K = K(3)), and then choosing ¢ small enough.
Therefore, still under the assumption that ' ; D;1p. - k¢ < fn, it is possible to
couple the random variables (V,(1),...,V,(n — 1)) with a sequence of independent
tosses of a biased coin that comes up tail with probability p and head with probability
1 — p, so that for ¢ < n, if the ¢th coin flip gives a head then ¢ is good. But in
this sequence, the longest consecutive sequence of heads amongst the first on coin
flips divided by Inn converges to —1/In(1 — p) almost surely, which we can make
arbitrarily big by choosing p small, and in particular, choosing p small enough yields
that with probability at least 1 —e/2, the longest sequence of good indices is at least
M Inn for n large enough, which implies the statement. O

5. Some critical trees are quite short and quite fat

In this section, we prove Theorem 1.2, which implies that the bounds in Theorem 1.1
are optimal.

5.1. A high degree vertex makes a tree short and fat

We will first show that the following proposition implies Theorem 1.2, so that we
only need to study the largest degree in T,,.
For a tree t, recall that A(t) denotes the maximal offspring of a vertex in t.

PROPOSITION 5.1. — Let f(n) — oo. Then, there exists a critical offspring
distribution p so that

liznﬁsogpIP’ (A(Tn(u)) > f(n)) =1,

where the limit runs over all n for which T,, is well-defined.
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We will shortly prove Proposition 5.1 but we will first show how to use it to prove
Theorem 1.2. We use a stochastic domination result from [ABD24] for the heights
of random trees under a partial order on degree sequences. This allows us to switch
from a realization of the degree sequence of T,,, say D, to a degree sequence that is
easier to work with, say D', that satisfies that the height of a uniform element of 7p
is stochastically dominated by the height of a uniform element of 7py.

For a finite set A, let A €, A denote that A is a uniform sample from A.

We say two degree sequences d = (dy,...,d,) and d' = (d, ..., d.,) are equivalent
if there exists a permutation 7 : [n] — [n] such that (di,...,d,) = (d} ), .-, dy )
If this holds then “relabelling vertices according to n” induces a bijection from Ty
to T4. This bijection preserves the height of a tree, so for Ty €, Tq and Ty €, Ty

it holds that H(Tq) 4 H(Ty). We define a partial order by specifying a covering
relation on equivalence classes of such degree sequences.®
Let < be the partial order on degree sequences of length n defined by the following
covering relation on equivalence classes: for D and D’ equivalence classes of degree
sequences of length n, we say D covers D’ if there exist d = (dy,...,d,) € D and
d"=(d},...,d,) € D' such that
(1) d27
(2) d’ =d; + 1;
(3) d’ =dy — 1; and
(4) d’ =dy, fork:?),...,n
In words, to obtain d’ from d in the definition of <, for some a < b, we replace
one vertex with a children and one vertex with b children by a vertex with a — 1
children and one with b + 1 children; informally, the degrees in d’ are more skewed
than the degrees in d. We then have the following theorem, which states that more
skewed degree sequences yield shorter trees.

THEOREM 5.2 ([ABD24, Theorem 9]). — Let d and d’ degree sequences of length
n and let Tq €, Tq and Ty €, Ty. Then,

d =< d, > H(Td) jst H(Td/)

Proof of Theorem 1.2 using Proposition 5.1. — Suppose, without loss of generality,
that f(n) = o(n).

Fix n and fix df,...,d} in the support of p with > , d? = n — 1 so that d,
(dy,...,d") is the degree sequence of a tree. Then, for Ty, a uniform tree with degree
sequence d,,, we see that on the event that T, has degree sequence d,,, it holds that
H(T,) < H(Ty,).

Set A, = max{d},...,d"} and let d/, = (d’ln, ..., d™) be the degree sequence with
di* = A, dy' = ...,d » = 1and dn A41 = - = dy = 0. Then, we claim that
d,, < d/, in the partial order considered in Theorem 5.2. To see this, suppose without
loss of generality that df = A,,. Then, one can get from d,, to d’, (up to relabelling
the vertices) by iteratively choosing a vertex with label different from 1 with degree
at least 2, reducing its degree by 1 and increasing the degree of a vertex with degree 0

@) For a partially ordered set (P, <),y € P coversx € Pif x <yand forall ze P, ifx <2 =<y
then z € {z,y}.
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by 1. At each of these steps, we move to a degree sequence that is higher in the
partial ordering and the procedure terminates when all vertices but vertex 1 have
degree 1 or 0. Therefore, d,, < d/, and H(Ty,) =< H(Tq, ) by Theorem 5.2.

Any tree with degree sequence d), consists of A, + 1 paths leaving vertex 1, one
from the root to vertex 1 and A,, from vertex 1 to the leaves. The height of the tree
is the length of the path to the root plus the length of the longest path to a leaf.
Since Ty, is a uniformly random tree with degree sequence d/,, the lengths of these
paths are distributed as a uniformly random composition of n into A,, + 1 positive
parts. By a stars-and-bars argument we see that the probability that the first part
in such a composition has length exceeding 2n1n(n)/A,, is bounded from above by

2nlIn(n)/An
(1 - A”) <n?
n

so the expected number of parts that have length greater than 2nln(n)/A,, goes to 0
and therefore the longest part is O,(nln(n)/A,). It follows that if there exists a sub-
sequence (ny)r>1 such that A, = w,(ng/f(ng)), then H(Td;%) = 0,(f(ng) In(ng)).

In this case, by the stochastic domination of H(Tq,) by H(Ty, ) for each n, we also
get that H(Tq,, ) = 0,(f(nx) In(ng)). Finally, by Proposition 5.1 applied to /f(n)
there exists an offspring distribution p and a subsequence (ny),>1 so that

A, =9Q, (nk/\/m>

and therefore A, = w,(ny/f(ny)), which establishes the upper bound on the height.
Finally, since Width(Td;Lk) > A,,, this also establishes the lower bound on the

width, and completes the proof. O

5.2. Some critical trees have a high degree vertex

We will now prove Proposition 5.1. We first need some additional notation and
two lemmas. For an offspring distribution p and a set A C Z; with u(A) > 0, we
let the offspring distribution p restricted to A, denoted by u, be the distribution
defined by

o () itk e A
F 0 otherwise.

(Equivalently, for Y with law y, we let u be the law of Y conditional on the event
that Y € A.)

LEMMA 5.3. — Let u be an offspring distribution and let A, = A(T,,) be the
maximal degree in a u-Bienaymé tree with size n. For N > 0, let XN X5 ...
be i.i.d. samples with law P(X<N = 4) = #;{3’11 """ M fori e {-1,...,N =1} (ie
they are distributed as X conditional on the event that X < N). Then, for integers
n > N + 1, it holds that

P(X7N 44 XN = —1)
nP(X; = N)P (X5 4 4 X3N = -N—1)

P(A, < N) <
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Proof. — First, observe that for X,..., X, i.i.d. samples distributed as X (i.e.
P(X, = 1) = pi+1), the degree sequence of a u-Bienaymé tree has the same law as
(X1+4+1,...,X, 4+ 1) conditional on the event that X; + --- 4+ X,, = —1. Then since,
on the event X; +---+4+ X,, = —1, it holds that X, ..., X, are exchangeable, we get
for any N > 0 that

nP(X1 = N)P(Xa, ..., Xp < N)P (X5V 44 X5V = =N = 1)
PX;+--+X,=-1)

and
PA, <N)=P(X,,....,. X, <N| X1+ -+ X, =-1)
_IP’(Xl,...,Xn<N)IP’(X1<N+...+X;N:_1>
P(X;+ -+ X, =—1) ’
so that
P <3 < 5
o IP(X1<N+...+X§N:_1)
S nP(X = NP (X5 N+t XV =N - 1)
as claimed. O

Finally, for the proof of Proposition 5.1, we proceed as follows. Fix f(n) — oco. We
will explicitly construct a critical offspring distribution u for which

n—oo

(5.1) limsup P <An > f(n)) =1,

where we recall the notation A,, = A(T),,).

More precisely, we will construct an increasing integer sequence (n;); > with ng = 0,
niy = 1, ng = 2, and an offspring distribution g with mean 1 and support {n;,7 > 0}.
The construction will guarantee that there is another integer sequence (n});>2 with
n; = ny/f(n;) for which it holds that P(A,+ < n;) — 0 as i — oo. For our
construction, we first inductively build a sub-probability measure v with support
{n;,7 = 0} such that, writing p; = v,,, then ;5 yn;p; = 1. We then modify v to
obtain the critical probability measure p by placing all remaining mass on 1.

We will use Lemma 5.3 to establish (5.1) for our construction. The lemma requires
us to control a ratio of hitting probabilities, and for this we require the following
result. This result may seem more complicated than one might expect; the reason
is that the final mass at 1 is not determined until the very end of the construction
of i, so we need uniform bounds since we do not yet know the precise laws of the
summands appearing in the ratio in Lemma 5.3.

LEMMA 5.4. — Fix K € Nand vy, 14, ...,vg = 0 for which vy, vy, max{v; : i > 1}
>0and g+ +---+vg =1—¢ < 1. SupposezililiyiJre: 1—6 < 1. For
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c € [0,¢] let X be the random variable with support in {—1,0, ..., K —1} obtained
by setting

. DL i k£ 0
P(X():k):{lyl+4rcc P
1—e+c -

Let X\9, X\9 ... beii.d. copies of X(©. Then there exists A\ < 1 so that for all m
large enough, for all ¢ € [0,¢], for all 0 < s < § and for all max{s,d/2} < r < 0 such
that (6 — r)m and (0 — s)m are integers,

P(X{7 4+ X0 = (6 —7)m) < i
]P)(ch)+---+X,(,f)_1=—(5—s)m> h .

(5.2)

The proof of Lemma 5.4 involves a uniform local large deviation principle and we
postpone it to after the proof of Proposition 5.1.

Proof of Proposition 5.1. — We fix f(n) — oo and immediately proceed with
the construction described above. We start by setting ng = 0, ny = 1, ny = 2,
Uny =:Po = 1/2, vp, =: p1 = 1/8 and v,,, =: p, = 1/8. Now fix k > 2 and suppose

we have determined ng,...,ng and pyo, ..., pr such that
k k
gkzzl—Zpi>O and 5k::—2(ni—1)pi>0
i=0 i=0

(observe that 5 = 1/4 > 0 and d, = 3/8 > 0). We will choose suitable ngq > ny,
nj.1 > N1 (Whose use will appear later), pr41 € (0,€;) and we will set vy, , | = P11
We will also set v, = 0 for any ny < £ < ngiq.

Specifically, observe that we are in the conditions of application of Lemma 5.4
with K = n; and v; for 0 < i < K since vy + -+ + vg = 1 — g, < 1. Observe that
S K iy 4+ ep =1 — 6, < 1. Thus there exist \yy; € (0,1) and nyyq > ny, such that
the conclusion of Lemma 5.4 holds with m = (in;ﬁﬂ and § = 0y, and such that

(1) N1 — 1 2 ga

. nk+1—1 k)
(11) >\k+1 < m, and

(i) f([$nes1]) > (15—2 (which is possible because f(n) — 00).
We finally define nj, , = (inmﬂ and vy, ,, = Prt1 = m.

Note that
My < OkM 41

f(nz-i-l) S0

as required. It follows that to prove the proposition, it suffices to show that

(5.3) P(An <ni) >0

< nk+17

as 1 — 0o.
Observe also that €417 = € — prr1 > 0 because by (i) we have pyy1 < £/2. This
also implies that

0
(54) 5k+1 = 5k - (’nkJrl — 1)pk+1 = Ek > 0.
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We now define p. Observe that
(5.5) 0<> p<1 and > (ni—1)p; =0
i>0 i>0
because g, > 0 for every k > 1 and since §; — 0 by (5.4). We can therefore define
the offspring distribution p by setting p, = vy for k # 1 and g =p1 +1 =325 oD

Then . - -
Sk =pi+1-=Y pi+Y kuy=1-> p+> np =1
k=1 k=2 =0

- i>0 i>0 i-
by (5.5), so that p is critical.
Now let us check that (5.3) holds. It is enough to show that for every k > 1 we
have
1
Indeed, by (iii) we have n}/f(n;) < ng, so if (5.6) holds then
ny,

v (A”"@ < Fnp)

We will use Lemmas 5.3 and 5.4 to establish (5.6). Recall that by definition of
nk_1, in the notation of Lemma 5.4, by taking K = n;_; and v; for 0 < 7 < K,
(5.2) holds for m = nj and A = Ay and § = 0y since vg + -+ +vg =1 — g1 and
Zfil W +er_1 = 1—109,_1 < 1. Still in the notation of the latter lemma, observe that
for X<"1 the random variable with law P(X <™ = k) = {071 (o, x<m—1
has the law of X conditional on X < nj — 1), it holds that

X< ni—1 i X(c)
with ¢ =1 — 32,5 gpi. We now apply the bound (5.2) from Lemma 5.4 with m = nj
and r, s defined by
(01 —7)n; =1 and (0r_1 — s)n;, = ny,

by checking that 0 < s < d;_1 and that max{s,d;_1/2} < r < dx_1. Indeed, the
first inequalities are plainly satisfied since ny < 0x_1n;. Also s < r < d_ is trivial.
Finally, the inequality dx_1/2 < r comes from the fact that

S S
<5k_1—’“> nt=—"tnr>1

k

2 2

since 0x_1nj = np > 2.
Thus
P (X1<nk71 4. _‘_Xn<nk71 — _1)

P (X5 e X = -y

It follows from Lemma 5.3 that

< )\nk—l'

)\nk—l )\nk—l )\nk—l 1
< < < —.

nipe | MDDk /2 " m
where we have used the definition of p; and where the last inequality follows from (ii).
This entails (5.6) and completes the proof. O

P (Anz < nk) <
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5.3. Uniform local estimates

We finish with the proof of Lemma 5.4, for which we need the following uniform
local central limit theorem.

LEMMA 5.5. — Fix constants o, > 0 and 0 < v < 1/2. Then, there exist
constants C' = C(«, B,7) and N = N(«, 8,) so that for all random variables X on
Z. that satisfy that

(1) P(X =—-1) >y and P(X =0) > ~;

(2) E[X?] < a and

(3) E[IX[’] <5,
for allm > N, for S, = Y™, X;, p = E[X] and 0% = E[(X — p)?], for ¢(t) = e /2
the standard normal density,

o kE—np o
:1;}%\/51?’(571—/6) ¢<aﬁ>‘<ﬁ‘

Proof. — We will follow the proof of the local limit theorem for random variables
with a finite third moment found as Theorem VII.2 in Petrov’s book [Pet75], making
the bounds explicit to show uniformity across the family of random variables that we
consider. Fix o, > 0 and 0 < v < 1 and let X be a random variable satisfying the
conditions above. First, for g(t) = E[e"¥] the characteristic function of X, Fourier
inversion yields that, for any k£ and z

Lo ; 1 oo ,
P (Sn = k’) = 7/ dt €_ltkg(t)n and €—x2/2 — 7/ dt e—ztac—t2/27
27T —Tr 27T oo

so that, if we set z = xy,, = U\;Li‘ and

tolt) = & [oxp (5| e (it (o)) o 1/ (o)

we see that

1) Vs, =1 - (i}%”)\
1

_ 1 /’71'0'\/5 d —th}h / dt —itr— t2/2
21 |J—no/n

< dt [ (t) — e 2 + / dte? + / dt |hn(t))-
[t] <+v/n/4 |t\>f/4 Vn/4<|t| <moy/n

By [Pet75, Lemma V.1], for ¢ < " E[|X7

~1/2 16E [| X — pl’]
o3

it holds that

‘hn(t) — e_t2/2‘ <n tPe /3 < n 2|t/

for some ¢ = ¢(«, 3,7). The above inequality in particular holds for ¢ < % because
on probability spaces the L, norm is increasing in p so 0® < E[|X — u/?].

Since [t[>e~**/3 is integrable, this implies that the first integral on the right-hand
side of (5.7) is O(n~%/2) uniformly in all X that satisfy our conditions. Also the
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second integral is O(n~'/?) and has no dependence on the law of X. We now focus
our attention on the final integral. We see that

/\/ﬁ/4<|t|<7ro\/ﬁ dt hn(t)] = vn 1/(40)<|t\<7rdt lg(®)]
and we claim that |g(t)| is bounded away from 1 uniformly in X and 1/(40) < |t| < 7.
First observe that under our conditions, there is an A = A(«, 8,7) with 0 < A < 7/2
so that 1/(40) > A. Then, we see that by P(X =0) > v and P(X = —1) > ~, g(¢)
can be written in the form g(t) = v +~ve™™ + 3,5 _; axe™ with (ax)i>—1 a sequence
of nonnegative real numbers summing up to 1 — 2. By the triangular inequality,
lgt)| < v[1+e ¥ +1—2y=2ycos(t/2) + 1 — 2. Thus for A < |t| < 7 we have

lg(t)] <1 —279(1 —cos(\/2)) =: 1 —e.

We conclude that,
Vi [ dt[g(t)|" < 2m/n(1 — )" < nV?
1/(4o) <|t| <7

for all n large enough, uniformly in X. This proves the statement. 0

Proof of Lemma 5.4. — We will prove a local large deviations result that works
uniformly across the distributions defined by ¢ € [0,¢]. For s € [0, 6] we will use the
Cramer transform to apply a change of measure to X(© so that the resulting random
variable has mean —¢ + s and then we apply the uniform local limit theorem we
proved as Lemma 5.5 to this skewed random variable.

Notice that for ¢ € [0, €], the mean of X(©) is — 17‘2 —» which is increasing in c. In
particular, for any ¢ € [0, ¢], the mean of X (©) is bounded from above by the mean
of X© which equals —¢ by our assumptions.

Let G(t) = Go(t) = 1& S/, t*"'1; be the probability generating function of X (©),
and note that G has an infinite radius of convergence since X(® is bounded. Let

(1-e)G(t)+¢
l—e+c

G.(t) =

be the probability generating function of X (©.

Observe that for every s € [0,0] and ¢ € [0, €], the function bG.(b)/G.(b) is increas-
ing in b € [1,00). In addition, G/(1)/Ge(1) = E [X©] and lim, o bGL(b)/Ge(b) =
max{i:v; >0} —1 > —§ + s. This implies that the equation bG".(b)/G.(b) = =5+ s
has a unique solution on [1,00) which we denote by b. . Then, since bG.(b)/G.(b)

is increasing in b, b., is increasing in s and since bGL(b)/G.(b) = %
see that it is decreasing in ¢ so that b., is also increasing in c. Finally, since
1 < bes < b5 < 00, we see that there exists a constant C' < oo so that G.(b.s) < C

for all ¢ € [0,¢],s € [0, 9].
Now we let X(“*) be the random variable with probability generating function
Ge(thes)/Gelbes) so that by definition of b, ,, the random variable X(“*) has mean

—6 + 5. Set Sl© =", Xi(c). Also let X\ X% be i.id. copies of X and

we
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set 59 .= X Then, we get for any k € Z that

P50 =) = oo (=),

Therefore,
P(X{7 4+ X0 = ~(5 = r)n)
P(X{7 4+ X1 = (6 s)n)

_ Gulbey)" (bog) P (S = = (0 —1)n)
(ber) 17 Go(bos)™ L P (S(c,sl) ~ - s)n)

We claim that there exists a A < 1 so that

Gc(bc r) _ Gc(bc 5)
) 2\ 8 )
(bc,r)_6+r < (bc,s)_5+8

for all s > 0 and for all » with max{s,d/2} <r < ¢ and for all ¢ € [0, ]. To see this,
note that

d Gc(bc 'r)

—In|{———|=—In(b),

d’r’ n ((bc,r)_6+T> n( ’ )
so since b., = 1 for all ¢ and r that we consider,

Gc(bc,s) Gc(bc,r) T
In ((bc,s)6+s> —1In ((bc,r)‘”’" :/S dtIn(bes)

> / dt ln(bqt)
(r+s)/2

r—s

(5.8)

(5.9)

> ln(bc,(r—i—s)/Q)

r—s
ln(b€,5/4)

>

since (r +)/2 > 0/4 by our assumptions and since b. 4 is increasing in ¢ and s. This
implies the claim (5.9) with A = (b.s/4)"%/2 < 1.
Plugging this into (5.8) yields that
P (X{c) +o+ X = —(0— r)n)
P(X{7 4+ + X2 = —(6— s)n)

n—1

We will control the ratio on the right-hand side using Lemma 5.5.

We claim that we can apply Lemma 5.5 to the family of random variables {)/(\ (e5)
c € [0,e],s € [0,0]. Indeed, since X9 has support in {-1,0,..., K — 1}, we have
E [(5(\(0’5))2} < K?*and E [|5(\("”5)|3} < K3, so we can set « = K2 and 8 = K? in the
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conditions of Lemma 5.5. Then, note that

— P(X(© = —1) Vo Vo
P(XxEs) — 1) = = > = .
( ) bc,ch(bC,S) (1 —€&€+ C)bC7SGC(b075) b5=50 o= ’

Also,

= P(X(© = 0) v +c 12

P(X©) =0) = = >

( ) Ge(bes) (1—e+4¢)G.(bes) ~ C

Therefore we may set v = min{vp,y1} in the conditions of Lemma 5.5. Let ()/(\ Ec’s),i

> 1) be i.i.d. copies of X% and set S©*) := Y7 X*9 Then the lemma yields

constants A > 0 and N, > 0 so that for all n > Ny, for 0(>®) the standard deviation
of X (e),

=M > 0.

sup
c€0,e],s€[0,0],k€Z

VP (Sv(f’s) = k) —¢ ( seam )| S n

Now observe that there exists a > 0 so that ¢(* € [1/a, a] for all ¢ € [0,¢], s € [0, 6].
Therefore, we see that there exist b > 0 and N; > 0 so that for all n > Ny, ¢ € [0, ¢],
and s € [0, 6], for all k € Z for which |k +n(d —s)| < 1,

b
N

k+n(5—s)>|< A

bjﬁ <P (8¢ =k) <
Therefore,
P (Sr(f”') =—(0— T)n)
P (Sff,’sl) =—(0 — s)n)

for n > 2. This is also a constant, so, by possibly making A larger (but still less
than 1, and independently of ¢, and s), we see that there is N > 0 such that for all
n > N, for all ¢ € [0,¢], for all 0 < s < 4, for all max{s,d/2} <r <4,

P (Xfc) +o XD = (65— r)n)
P(Xl(c) + 4+ X7 = —(6— s)n) h

as claimed. O

<b*y/n/(n—1) <207

)\(rfs)n

6. Future work

We conclude by mentioning several natural directions for future research.

(1) We are curious to know whether, in Theorem 1.2, the limsups can be re-
placed by limits. Equivalently, we would like to know whether for any f(n) —
0o, there exists a critical offspring distribution such that Height(T,) =
op(f(n)Inn) and Width(T,,) = wp(n/f(n)).

(2) What are the possible asymptotic behaviours of Height(T,,)? For which func-
tions f(n) = w(1) can we find a critical offspring distribution for which
(Height(T,)/(f(n)Inn),n > 1) is a tight sequence, or converges in probabil-
ity to a constant?
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(3) The paper [AB19] asked whether it is always the case that Height(T,) -
Width(T,,) = Op(nlnn), and constructed examples where we have Height(T,,)-
Width(T,) = ©p(nlnn). Section 3.6 provides some further examples where
Height(T),) - Width(T,) = ©p(nlnn), and in Corollary 1.4 we show that an-
swer to the above question is “yes” for the class of offspring distributions
satisfying (H,). We expect that the same holds for all critical offspring distri-
butions, and suspect that it holds for all offspring distributions.

(4) Given a slowly varying function A(n) = w(Inn), is it possible to find an
offspring distribution satisfying (H,) such that Height(T,)/A(n) — 1 in
probability?
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