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Résumé. — Le théorème de reconstruction et l’estimation de Schauder multiniveaux ont
des rôles centraux dans la théorie analytique des structures de régularité de Hairer (2014).
Inspirés par les travaux d’Otto et Weber (2019), nous en donnons des preuves élémentaires
en utilisant le semigroupe d’opérateurs. Essentiellement, nous n’utilisons que la propriété du
semigroupe et les estimations supérieures des noyaux. De plus, nous affinons les différents
types de théorèmes de reconstruction de Besov considérés par Hairer–Labbé (2017) et Broux–
Lee (2022) et introduisons le nouveau cadre des « structures de régularité-intégrabilité ». Les
théorèmes analytiques de cet article sont appliqués à l’étude des EDPS quasilinéaires par
Bailleul–Hoshino–Kusuoka (2022+) et à une preuve inductive de la convergence de modèles
aléatoires par Bailleul–Hoshino (2023+).

1. Introduction

In the past decade, the theory of regularity structures [Hai14] has developed as a
basic tool for understanding the renormalizations of singular stochastic PDEs. This
theory provides a robust framework adopted to a wide class of equations, including
the KPZ equation [Hai13, HQ18], the dynamical Φ4

3 model [CMW23, HX18], the
dynamical sine-Gordon model [CHS18, HS16], and so on. An important feature of
this theory is to express the solution f of the equation as a “generalized Taylor
expansion” of the form

f(·) =
∑

τ

aτ (x)(Πxτ)(·) + O(| · −x|γ)(1.1)

at each point x of the domain, where τ runs over a finite number of abstract symbols
often represented as rooted decorated trees, (Πxτ)(·) is a given tempered distribution,
aτ (x) is a coefficient, and γ ∈ R is an order of the error term. The main difficulty
in solving nonlinear SPDEs is how to define the nonlinear functionals of unknown
distributions f . To overcome this difficulty, we consider a virtual space spanned by
the symbols τ , where the products τσ are well-defined as long as required, and lift
the distribution (1.1) to the abstract vector field

F (x) =
∑

τ

aτ (x)τ(1.2)

over the domain of x. Then the analytic problems for solving SPDEs are split into two
steps; (I) show the well-posedness of the equation at the level of vector fields (1.2),
and (II) after giving a meaning to Πxτ for all τ , glue the distributions ΠxF (x) over
all x and reconstruct the global distribution f satisfying (1.1). The step (II) is solved
by the so-called reconstruction theorem [Hai14, Section 3]. In the step (I), the most
important problem is how to lift the convolution with Green function to the operator
at the level of vector fields (1.2). The multilevel Schauder estimate [Hai14, Section 5]
gives a definition and an appropriate estimate for such an operator. These two
analytic theorems have central roles in the theory of regularity structures.

The reconstruction theorem and the multilevel Schauder estimate were first proved
by Hairer [Hai14], but the original proofs are quite long. Nowadays, several more ele-
mentary proofs are known. As for the reconstruction theorem, there are the method
by Littlewood–Paley theory [GIP15], the heat semigroup approach [BH25, OW19],
the mollification approach [ST18], and the convolution method [FH20] inspired
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by [OW19]. Without using regularity structures, Caravenna and Zambotti [CZ20]
reformulated the reconstruction theorem at the level of germ, which is a gener-
alization of the family of distributions {ΠxF (x)} as above. Moreover, the orig-
inal Besov–Hölder (B∞,∞) type result is extended to the Bp,q type Besov set-
ting [BL23, HL17, LPT21, ST18], Triebel–Lizorkin setting [HR20], the quasinormed
setting [ZK23], and Riemannian manifolds [DDD19, HS23, RS21]. As for the mul-
tilevel Schauder estimate, there is an alternative proof by the heat semigroup ap-
proach [BH25]. Also, the original estimate is extended to Besov setting [HL17],
Riemannian manifolds [DDD19, HS23], and the germ setting [BCZ24].

The main purpose of this paper is to formulate the semigroup approach as in [BH25,
OW19] in a more general setting and to provide short proofs of the reconstruction
theorem (Theorem 4.1 below) and the multilevel Schauder estimate (Theorem 5.12
below). To shorten the proof, we introduce the Besov space associated with the
semigroup of operators and reformulate the theorems in more suitable senses. In
this approach, we essentially need only the semigroup property of operators and
upper heat kernel estimates (see Definitions 2.6 and 5.1 below), and the proofs are
elementary and very short. Another remarkable point is that we allow inhomogeneous
operators; the integral kernel Qt(x, y) is not necessarily to be a function of x − y.
Such an extension is required in the study of quasilinear SPDEs [BHK24]. Moreover,
in the author’s knowledge, the semigroup approach has not been tried for the proof
of the multilevel Schauder estimate, except at [BH25].

Another purpose of this paper is to introduce the new framework which would be
more suitable for the problems involving both regularity and integrability exponents,
for example, problems involving Malliavin calculus. Since Cameron–Martin space of
Wiener space is typically an L2-Sobolev space, if we consider two different symbols Ξ
and Ξ̇ representing elements of Wiener space and Cameron–Martin space respectively,
it would be convenient to give each symbol the different integrability exponents “∞”
and “2” respectively. To describe such a situation, we introduce the “regularity-
integrability structures” in Section 3 and extend the analytic theorems to this new
structure. In the author’s knowledge, such an extension is not known in the literature.
Indeed, in the papers [HL17, LPT21, ST18], the authors considered only B∞,∞ type
models and Bp,q type modelled distributions. On the other hand, our situation seems
to be a special case of the germ setting [BL23], but in the paper [BH24], more
detailed structure on the model space is effectively used for an inductive proof of
the convergence of random models.

This paper is organized as follows. In Section 2, we define the Besov spaces asso-
ciated with the semigroup of operators. In Section 3, we introduce the regularity-
integrability structures and extend the definitions of models and modelled distri-
butions. The main parts of this paper are Sections 4 and 5, which are devoted
to the proofs of the reconstruction theorem and the multilevel Schauder estimate
respectively.

TOME 8 (2025)



154 M. HOSHINO

2. Besov spaces associated with the semigroup of operators

In this section, we define the Besov norms associated with the semigroup of oper-
ators. For the sake of generality, we define the weighted Besov norms with arbitrary
integrability exponents p, q ∈ [1, ∞].

2.1. Notations

The symbol N denotes the set of all nonnegative integers. Throughout this paper,
we fix an integer d ⩾ 1, the scaling s = (s1, . . . , sd) ∈ [1, ∞)d, and a number ℓ > 0.
We define |s| = ∑d

i=1 si. For any multiindex k = (ki)d
i=1 ∈ Nd, any x = (xi)d

i=1 ∈ Rd,
and any t > 0, we define the notations

k! :=
d∏

i=1
ki!, |k|s :=

d∑
i=1

siki, ∥x∥s :=
d∑

i=1
|xi|1/si ,

xk :=
d∏

i=1
xki

i , ts/ℓx :=
(
tsi/ℓxi

)d

i=1
, t−s/ℓx :=

(
t−si/ℓxi

)d

i=1
.

We define the set N[s] := {|k|s ; k ∈ Nd}, which will be used in Section 5. The
parameter t is not a physical time variable, but an auxiliary variable used to define
regularities of distributions. For multiindices k = (ki)d

i=1 and l = (li)d
i=1, we write

l ⩽ k if li ⩽ ki for any 1 ⩽ i ⩽ d, and then define
(

k
l

)
:= ∏d

i=1

(
ki

li

)
.

We also fix a nonnegative measurable function G : Rd → R and define for any
t > 0,

Gt(x) = t−|s|/ℓG
(
t−s/ℓx

)
.

We use the notation A ≲ B for two functions A(x) and B(x) of a variable x, if
there exists a constant c > 0 independent of x such that A(x) ⩽ cB(x) for any x.

2.2. Weighted Lp spaces

First we introduce the class of appropriate weight functions.

Definition 2.1. — A continuous function w : Rd → (0, 1] is called a weight. A
weight w is said to be G-controlled if there exists a continuous function w∗ : Rd →
[1, ∞) such that

w(x + y) ⩽ w∗(x)w(y)(2.1)

for any x, y ∈ Rd and

sup
0 < t⩽T

sup
x ∈Rd

{
∥x∥n

s w∗
(
ts/ℓx

)
G(x)

}
< ∞(2.2)

for any n ⩾ 0 and T > 0. (In the terminology of [MW17, Definition 2.3], w is said
to be w∗-moderate.)
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Definition 2.2. — For any p ∈ [1, ∞] and any weight w, we define the weighted
Lp norm of a measurable function f : Rd → R by

∥f∥Lp(w) := ∥fw∥Lp(Rd).

We denote by Lp(w) the space of all measurable functions with finite Lp(w) norms,
and define the closed subspace Lp

c(w) as the completion of the set C(Rd) ∩ Lp(w)
under the Lp(w) norm.

Note that ∥·∥Lp(w) is nondegenerate because w is fully supported in Rd by definition.
An advantage of introducing Lp

c(w) is that we can use density arguments. Although
the space L∞

c (w) is strictly smaller than L∞(w), it is often sufficient to consider
L∞

c (w) in applications to SPDEs. In the following, we prove three useful inequalities.

Lemma 2.3. — Let p, q, r ∈ [1, ∞] be such that 1/r = 1/p + 1/q. For any weights
w1, w2 and functions f ∈ Lp(w1) and g ∈ Lq(w2), we have

∥fg∥Lr(w1w2) ⩽ ∥f∥Lp(w1)∥g∥Lq(w2).

Proof. — Since ∥fg∥Lr(w1w2) = ∥(fw1)(gw2)∥Lr , the result follows from Hölder’s
inequality. □

Lemma 2.4 ([MW17, Theorem 2.4]). — Let w be a G-controlled weight. For any
T > 0, there exists a constant CT > 0 depending only on G, w∗, and T , such that,
for any t ∈ (0, T ], 1 ⩽ p ⩽ q ⩽ ∞, and f ∈ Lp(w), we have

∥Gt ∗ f∥Lq(w) ⩽ CT t− |s|
ℓ ( 1

p
− 1

q )∥f∥Lp(w).

Proof. — Since |(Gt ∗ f)(x)w(x)| ⩽ ((Gtw
∗) ∗ (|f |w))(x) by the inequality (2.1),

the result follows from Young’s inequality. The proportional constant is ∥Gtw
∗∥Lr(Rd),

where 1
r

= 1 + 1
q

− 1
p
. Since

∥Gtw
∗∥Lr(Rd) =

∥∥∥t−|s|/ℓG
(
t−s/ℓx

)
w∗(x)

∥∥∥
Lr

x(Rd)

= t− |s|
ℓ (1− 1

r ) ∥∥∥G(x)w∗
(
ts/ℓx

)∥∥∥
Lr

x(Rd)

= t− |s|
ℓ ( 1

p
− 1

q ) ∥∥∥G(x)w∗
(
ts/ℓx

)∥∥∥
Lr

x(Rd)

by the scaling property, we have the result by using the condition (2.2). □

Lemma 2.5. — Let w be a G-controlled weight. For any p ∈ [1, ∞], f ∈ Lp(w),
and h ∈ Rd, we have

∥f(· − h)∥Lp(w) ⩽ w∗(h)∥f∥Lp(w).

Proof. — The result follows from the inequality |f(x − h)|w(x) ⩽ w∗(h)|f(x −
h)|w(x − h) and the translation invariance of the unweighted Lp(Rd) norm. □

2.3. Semigroup of operators

We introduce a semigroup of operators.
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Definition 2.6. — We call a family of continuous functions {Qt : Rd × Rd →
R}t > 0 a G-type semigroup (of operators) if it satisfies the following properties.

(i) (Semigroup property) For any 0 < s < t and x, y ∈ Rd,∫
Rd

Qt−s(x, z)Qs(z, y)dz = Qt(x, y).

(ii) (Conservativity) For any x ∈ Rd,

lim
t↓0

∫
Rd

Qt(x, y)dy = 1.

(iii) (Upper G-type estimate) There exists a constant C1 > 0 such that, for any
t > 0 and x, y ∈ Rd,

|Qt(x, y)| ⩽ C1Gt(x − y).

(iv) (Time derivative) For any x, y ∈ Rd, Qt(x, y) is differentiable with respect
to t. Moreover, there exists a constant C2 > 0 such that, for any t > 0 and
x, y ∈ Rd,

|∂tQt(x, y)| ⩽ C2 t−1Gt(x − y).

Example 2.7. — We have in mind a fundamental solution of an anisotropic para-
bolic operator with bounded and Hölder continuous coefficients

∂t − P (x, ∂x) := ∂t −
∑

|k|s ⩽ ℓ

ak(x)∂k
x ,(2.3)

where we suppose that ℓ > max1⩽ i⩽ d si and P satisfies the uniform ellipticity

Re P (x, iξ) := Re
∑

|k|s ⩽ ℓ

ak(x)(iξ)k ⩽ −C∥ξ∥ℓ
s, ξ ∈ Rd

for some constant C > 0. As shown in [BHK24, Appendix A], the unique solution
Qt(x, y) of 

(
∂t − P (x, ∂x)

)
Qt(x, y) = 0, t > 0, x, y ∈ Rd,

limt↓0 Qt(x, ·) = δ(x − ·), x ∈ Rd,

(where δ is Dirac’s delta and the latter convergence is in the distributional sense)
satisfies the properties in Definition 2.6 with the function

G(x) = exp
{

− c
d∑

i=1
|xi|ℓ/(ℓ−si)

}
(2.4)

for some c > 0. An elementary example is the isotropic operator P (∂x) = ∆, where
s = (1, 1, . . . , 1) and ℓ = 2. Then Qt(x, y) is the usual heat kernel 1

(4πt)d/2 exp(− |x−y|2
4t

)
and we can choose G(x) = e−c|x|2 , where | · | is the Euclidean norm. Another example
considered in [OW19, BH25] is given by

P (∂x) := ∂2
x1 − ∆2

x′ , ∆x′ :=
d∑

i=2
∂2

xi
,
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which is more suitable for parabolic problems. Here, x1 and x′ := (xi)d
i=2 are con-

sidered as temporal and spatial variables, respectively. In this case, we can choose
s = (2, 1, 1, . . . , 1), ℓ = 4, and

G(x) = exp
{

− c
(
|x1|2 + |x′|4/3

)}
.

We return to the general case (2.3). As for G-controlled weights, the most trivial
choice is the flat function w = 1. Another weight we consider in [BH24] is the
function

w(x) = e−a∥x∥s

with some a > 0. We can easily see that w∗(x) = ea∥x∥s satisfies (2.1) by using the
triangle inequality of ∥ · ∥s. The condition (2.2) holds because the variable inside the
exponential function of (2.4) is superlinear with respect to ∥x∥s.

We identify the function Qt(x, y) with a continuous linear operator on Lp(w) by

(Qtf)(x) :=: Qt(x, f) :=
∫
Rd

Qt(x, y)f(y)dy, f ∈ Lp(w), x ∈ Rd.

Note that Qt is closed in Lp(w) because of Definition 2.6(iii) and Lemma 2.4.
Proposition 2.8. — Let w be a G-controlled weight and let p ∈ [1, ∞]. For any

f ∈ Lp(w) and t > 0, Qtf is a continuous function. In addition, if f ∈ C(Rd)∩Lp(w),
then

lim
t↓0

(Qtf)(x) = f(x)

for any x ∈ Rd.
Proof. — Let f ∈ Lp(w). To show the continuity of (Qtf)(x) with respect to x, it

is sufficient to consider the case t = 1 and x = 0. Note that, in the region ∥x∥s ⩽ 1,
we have

|Q1(x, y)f(y)w(x)| ≲ |G(x − y)w∗(x − y)||f(y)w(y)| ≲ |f(y)w(y)|
1 + ∥y∥n

s

for any n ⩾ 0 by the property (2.2). This implies that

lim
x→0

(Q1f)(x)w(x) =
∫
Rd

lim
x→0

Q1(x, y)f(y)w(x)dy = (Q1f)(0)w(0)

by Lebesgue’s convergence theorem. Since w is strictly positive and continuous, we
have limx→0(Q1f)(x) = (Q1f)(0).

Next let f ∈ C(Rd) ∩ Lp(w). To show the continuity with respect to t, it is
sufficient to consider the case x = 0. For any ε > 0, we can choose δ > 0 such that
|f(y) − f(0)| < ε for any ∥y∥s < δ, and have∣∣∣w(0)(Qtf − f)(0)

∣∣∣
= w(0)

∣∣∣∣∫
Rd

Qt(0, y)
(
f(y) − f(0)

)
dy +

(∫
Rd

Qt(0, y)dy − 1
)

f(0)
∣∣∣∣

⩽ w(0)ε
∫

∥y∥s < δ
Gt(−y)dy + w(0)

∫
∥y∥s ⩾ δ

Gt(−y)|f(y)|dy

+ w(0)
∫

∥y∥s ⩾ δ
Gt(−y)|f(0)|dy + w(0)|f(0)|

∣∣∣∣∫
Rd

Qt(0, y)dy − 1
∣∣∣∣ .
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In the far right-hand side, the only nontrivial part is the second term. We bound it
from above by∫

∥y∥s ⩾ δ
Gt(−y)w∗(−y)|f(y)|w(y)dy ⩽ ∥(Gtw

∗)(y)∥Lp′ (∥y∥s ⩾ δ)∥fw∥Lp(Rd),

where 1/p + 1/p′ = 1. We then have that ∥(Gtw
∗)(y)∥Lp′ (∥y∥s ⩾ δ) → 0 as t ↓ 0 by the

property (2.2). □

2.4. Besov spaces associated with semigroup

In what follows, we fix a G-type semigroup {Qt}t > 0 and a G-controlled weight w.
We define the weighted Besov spaces associated with {Qt}t > 0, as studied in [BB16,
BDY12, GL15].

Definition 2.9. — For every α ⩽ 0 and p, q ∈ [1, ∞], we define the Besov space
Bα,Q

p,q (w) as the completion of Lp
c(w) under the norm

∥f∥Bα,Q
p,q (w) := ∥Q1f∥Lp(w) +

∥∥∥t−α/ℓ∥Qtf∥Lp(w)

∥∥∥
Lq(0,1; t−1dt)

.

When s = (1, 1, . . . , 1), ℓ = 2, and Qt is the heat semigroup et∆, the above norm
(with α < 0 and w = 1) is equivalent to the classical Besov norm in Euclidean setting.
See e.g., [BCD11, Theorem 2.34] or [Tri92, Theorem 2.6.4].

Remark 2.10. — We can see that ∥ · ∥Bα,Q
p,q (w) is nondegenerate in Lp

c(w) by the
temporal continuity of Qt (Proposition 2.8) and the density argument. This is the
only reason why we define the Besov spaces from Lp

c(w) as above. On the other hand,
if Qt is symmetric in the sense that Qt(y, x) = Qt(x, y) for any x, y ∈ Rd, then for
any locally integrable function f and φ ∈ C∞

0 (Rd), we have∫
Rd

(Qtf)(x)φ(x)dx =
∫
Rd

f(x)(Qtφ)(x)dx
t↓0−→

∫
Rd

f(x)φ(x)dx,

which implies Qtf → f as t ↓ 0 in the distributional sense. In this case, ∥ · ∥Bα,Q
p,q (w)

is nondegenerate in whole Lp(w).
The following result implies that we can ignore the difference of the parameter

q at the cost of infinitesimal difference of the parameter α. Therefore, we pay less
attention to q in this paper and write Bα,Q

p (w) := Bα,Q
p,∞(w).

Proposition 2.11. — For any f ∈ Lp(w), the following inequalities hold.
(1) For any 1 ⩽ q1 ⩽ q2 ⩽ ∞ and α1 < α2 ⩽ 0, we have ∥f∥

B
α1,Q
p,q1 (w) ≲

∥f∥
B

α2,Q
p,q2 (w).

(2) For any α ⩽ 0, we have ∥f∥Bα,Q
p,∞(w) ≲ ∥f∥Bα,Q

p,1 (w).
Here the implicit proportional constants depend only on G, w∗, and the regularity
and integrability exponents.

Remark 2.12. — As a result of (1) and (2), we have
∥f∥Bα−2ε,Q

p,q1 (w) ≲ ∥f∥Bα−ε,Q
p,∞ (w) ≲ ∥f∥Bα−ε,Q

p,1 (w) ≲ ∥f∥Bα,Q
p,q2 (w)

for any α ⩽ 0, ε > 0, and q1, q2 ∈ [1, ∞].
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Proof. — For (1), taking r ∈ [1, ∞] such that 1/q1 = 1/r + 1/q2, we have∥∥∥t−α1/ℓ
∥∥∥Qtf∥Lp(w)

∥∥∥
Lq1 (0,1;t−1dt)

⩽
∥∥∥t(α2−α1)/ℓ

∥∥∥
Lr(0,1; t−1dt)

∥∥∥t−α2/ℓ
∥∥∥Qtf∥Lp(w)

∥∥∥
Lq2 (0,1; t−1dt)

by Hölder’s inequality. Since ∥t(α2−α1)/ℓ∥Lr(0,1; t−1dt) < ∞, we have the result. Next
we prove (2). By using Definition 2.6(iv) and Lemma 2.4, we have

∥Qtf − Q1f∥Lp(w) ⩽
∫ 1

t
∥∂sQsf∥Lp(w)ds =

∫ 1

t
∥(∂sQ)s/2Qs/2f∥Lp(w)ds

≲
∫ 1

t
∥Qs/2f∥Lp(w)

ds

s
=
∫ 1/2

t/2
∥Qsf∥Lp(w)

ds

s
.

Therefore,

t−α/ℓ∥Qtf∥Lp(w) ≲ t−α/ℓ

(
∥Q1f∥Lp(w) +

∫ 1

t/2
∥Qsf∥Lp(w)

ds

s

)

≲ ∥Q1f∥Lp(w) +
∫ 1

t/2
s−α/ℓ∥Qsf∥Lp(w)

ds

s
⩽ ∥f∥Bα,Q

p,1 (w).

By taking the supremum over t ∈ (0, 1], we have the result. □

The following result is an analogue of the classical Besov embedding.

Proposition 2.13. — Let α ⩽ 0, p, q, r ∈ [1, ∞], and r ⩾ p. For any f ∈ Lp(w),
we have the inequality

∥f∥
B

α−|s|( 1
p − 1

r ),Q

r,q (w)
≲ ∥f∥Bα,Q

p,q (w).

Proof. — Since ∥Qtf∥Lr(w) = ∥Qt/2(Qt/2f)∥Lr(w) ≲ t− |s|
ℓ

( 1
p

− 1
r

)∥Qt/2f∥Lp(w) by
Lemma 2.4, the result follows from the definition of norms. □

We have the hierarchy between Besov spaces with different parameters α.

Proposition 2.14. — Let α1 < α2 ⩽ 0 and p ∈ [1, ∞]. The identity ια1 :
Lp

c(w) ↪→ Bα1,Q
p (w) is uniquely extended to the continuous injection ια2

α1 : Bα2,Q
p (w) ↪→

Bα1,Q
p (w).

Proof. — We prove only the injectivity. Note that, for any α ⩽ 0, the operator
Qt : Lp

c(w) → Lp
c(w) is continuously extended to the operator Qα

t : Bα,Q
p (w) → Lp

c(w)
and it holds that

∥f∥Bα,Q
p (w) = ∥Qα

1 f∥Lp(w) + sup
0 < t⩽ 1

t−α/ℓ∥Qα
t f∥Lp(w)(2.5)

for any f ∈ Bα,Q
p (w). Let f ∈ Bα2,Q

p (w) be such that ια2
α1f = 0 in Bα1,Q

p (w). Taking
a sequence {fn} ⊂ Lp

c(w) such that fn → f in Bα2,Q
p (w), we have fn = ια2

α1fn → ια2
α1f

in Bα1,Q
p (w) by the continuity. By the continuity of Qαi

t (i ∈ {1, 2}), we have

Qα2
t f = lim

n→∞
Qtfn = Qα1

t

(
ια2
α1f

)
= 0

in Lp(w) for any t ∈ (0, 1]. By the identity (2.5), we have ∥f∥
B

α2,Q
p (w) = 0. □
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The extensions {Qα
t }0 < t⩽ 1 obtained in the above proof are compatible in the sense

that Qα1
t ◦ ια2

α1 = Qα2
t . Because of this, we can omit the letter α and use the notation

Qt to mean its extension Qα
t regardless of its domain. We close this section with the

continuity of Qt with respect to t in Besov norms.

Lemma 2.15. — Let α ⩽ 0 and p ∈ [1, ∞]. There exists a constant C > 0 such
that, for any f ∈ Bα,Q

p (w), t ∈ (0, 1], and ε ∈ [0, ℓ], we have

∥(Qt − id)f∥Bα−ε,Q
p (w) ⩽ C tε/ℓ∥f∥Bα,Q

p (w).

Proof. — Similarly to the proof of Proposition 2.11, we have for any s, t ∈ (0, 1],

∥Qs(Qt − id)f∥Lp(w) = ∥(Qt+s − Qs)f∥Lp(w) ⩽
∫ t+s

s
∥∂rQrf∥Lp(w)dr

≲
∫ t+s

s
∥Qr/2f∥Lp(w)

dr

r
⩽ ∥f∥Bα,Q

p (w)

∫ t+s

s
rα/ℓ−1dr.

Since
∫ t+s

s rα/ℓ−1dr ≲ (tsα/ℓ−1) ∧ sα/ℓ, we have the result by an interpolation. □

3. Basic notions of regularity-integrability structures

In this section, we extend the original definitions of regularity structures, models,
and modelled distributions in [Hai14] by taking integrability exponents into account.

3.1. Regularity-integrability structures

While the label set of the regularity structure is a set of real numbers, our label
set is a subset of R× [1, ∞]. We denote generic elements of R× [1, ∞] by bold letters
a, b, c, and so on. For each element a = (α, p) ∈ R × [1, ∞], we write α = r(a)
and p = i(a), where the letters “r” and “i” mean “regularity” and “integrability”,
respectively. We define a partial order ⪯ and a strict partial order ≺ of the set
R × [1, ∞] by

b ⪯ a def⇐⇒ r(b) ⩽ r(a), i(b) ⩾ i(a),

b ≺ a def⇐⇒ r(b) < r(a), i(b) ⩾ i(a).
Note that i(b) may be equal to i(a) even for the latter case. For any b ⪯ a, we
define the element a ⊖ b ∈ R × [1, ∞] by

a ⊖ b :=
r(a) − r(b), 1

1
i(a) − 1

i(b)

,

where 1/∞ := 0 and 1/0 := ∞. In what follows, the relations r(a) = r(a ⊖ b) + r(b)
and 1/i(a) = 1/i(a ⊖ b) + 1/i(b) are important.

Definition 3.1. — A regularity-integrability structure T = (A, T, G) consists
of the following objects.
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(1) (Index set) A is a subset of R × [1, ∞] such that, for every a ∈ R × [1, ∞],
the subset {b ∈ A ; b ≺ a} is finite.

(2) (Model space) T = ⊕
a ∈ A Ta is an algebraic sum of Banach spaces (Ta, ∥·∥a).

(3) (Structure group) G is a group of continuous linear operators on T such that,
for any Γ ∈ G and a ∈ A,

(Γ − id)Ta ⊂
⊕

b ∈ A, b ≺ a
Tb.

A regularity of T is α0 ∈ R such that (α0, ∞) ⪯ a for any a ∈ A. For any a ∈ A,
we denote by Pa : T → Ta a canonical projection and write

∥τ∥a := ∥Paτ∥a, τ ∈ T

by abuse of notation.

Obviously, the regularity structure is a particular case such that A ⊂ R × {∞}.

3.2. Models

We define the space of Besov type models on the fixed regularity-integrability
structure T = (A, T, G). For any measurable functions f on Rd taking values in a
Banach space (X, ∥ · ∥X), we use the notation

∥f∥Lp(w; X) :=
∥∥∥∥f(x)∥X

∥∥∥
Lp

x(w)

for simplicity. For two Banach spaces X and Y , we denote by L(X, Y ) the Banach
space of all continuous linear operators X → Y .

Definition 3.2. — Let w be a G-controlled weight. A smooth model M = (Π, Γ)
is a pair of two families of continuous linear operators Π = {Πx : T → C(Rd)}x ∈Rd

and Γ = {Γxy}x,y ∈Rd ⊂ G with the following properties.
(1) (Algebraic conditions) ΠxΓxy = Πy, Γxx = id, and ΓxyΓyz = Γxz for any

x, y, z ∈ Rd.
(2) (Analytic conditions) For any c ∈ R × [1, ∞],

∥Π∥c,w := max
a ∈ A, a ≺ c

sup
0 < t⩽ 1

(
t−r(a)/ℓ

∥∥∥Qt

(
x, Πx(·)

)∥∥∥
L

i(a)
x (w; T∗

a)

)

= max
a ∈ A, a ≺ c

sup
0 < t⩽ 1

t−r(a)/ℓ

∥∥∥∥∥ sup
τ ∈ Ta\{0}

|Qt(x, Πxτ)|
∥τ∥a

∥∥∥∥∥
L

i(a)
x (w)

 < ∞

and

∥Γ∥c,w := max
a,b ∈ A

b ≺ a ≺ c

sup
h ∈Rd\{0}

∥Γ(x+h)x∥
L

i(a⊖b)
x (w; L(Ta,Tb))

w∗(h)∥h∥r(a⊖b)
s

= max
a,b ∈ A

b ≺ a ≺ c

sup
h ∈Rd\{0}

 1
w∗(h)∥h∥r(a⊖b)

s

∥∥∥∥∥ sup
τ ∈ Ta\{0}

∥Γ(x+h)xτ∥b

∥τ∥a

∥∥∥∥∥
L

i(a⊖b)
x (w)

 < ∞.
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We write |||M |||c,w := ∥Π∥c,w + ∥Γ∥c,w. In addition, for any two smooth models
M (i) = (Π(i), Γ(i)) with i ∈ {1, 2}, we define the pseudo-metrics∣∣∣∣∣∣∣∣∣M (1); M (2)

∣∣∣∣∣∣∣∣∣
c,w

:=
∥∥∥Π(1) − Π(2)

∥∥∥
c,w

+
∥∥∥Γ(1) − Γ(2)

∥∥∥
c,w

by replacing Π and Γ above with Π(1) − Π(2) and Γ(1) − Γ(2) respectively. Finally, we
define the space Mw(T ) as the completion of the set of all smooth models, under
the pseudo-metrics |||·; ·|||c,w for all c ∈ R× [1, ∞]. We call each element of Mw(T ) a
model for T . We still use the notation M = (Π, Γ) to denote a generic model.

Recall that i(a ⊖ b) = ∞ if a, b ∈ R× {∞}. Therefore, in the regularity structure
case A ⊂ R × {∞}, the above definition coincides with the original definition of
models [Hai14, Definition 2.17] if we ignore the difference between local and global
bounds.

It is a subtle question in which space the operator “Πx” takes values for general
M = (Π, Γ) ∈ Mw(T ). Under some additional assumptions on weights, we can
regard Πx as a continuous linear operator from T to a Besov space.

Proposition 3.3. — Let α0 ⩽ 0 be a regularity of T . Assume that there exist
two G-controlled weights w1 and w2 such that

sup
x ∈Rd

{
∥x∥n

s w∗(x)w1(x)
}

+ sup
x ∈Rd

{
∥x∥n

s w∗
1(x)w2(x)

}
< ∞

for any n ⩾ 0, and that ww1 and ww2 are also G-controlled. Then for almost every
x ∈ Rd, the map Πx is well-defined as a continuous linear operator from Ta to
Bα,Q

i(a),1(ww1) for any a ∈ A and any α < α0. More precisely, for any c ∈ R × [1, ∞]
such that a ≺ c we have

∥Πx∥
L

i(a)
x

(
ww2; L

(
Ta,Bα,Q

i(a),1(ww1)
)) ≲ ∥Π∥c,w(1 + ∥Γ∥c,w).

Proof. — By the density argument, it is sufficient to show the inequality for smooth
models. By the algebraic relations and Lemmas 2.3 and 2.5,∥∥∥Qt

(
y, Πx(·)

)∥∥∥
L
(

Ta,L
i(a)
y (ww1)

)
= sup

τ ∈ Ta\{0}

∥Qt(y, ΠyΓyxτ)∥
L

i(a)
y (ww1)

∥τ∥a

⩽
∑

b ⪯ a

∥∥∥∥∥∥∥∥Qt

(
y, Πy(·)

)∥∥∥
T∗

b
sup

τ ∈ Ta\{0}

∥Γyxτ∥b

∥τ∥a

∥∥∥∥∥
L

i(a)
y (ww1)

⩽
∑

b ⪯ a

∥∥∥Qt

(
y, Πy(·)

)∥∥∥
L

i(b)
y (w; T∗

b)
∥∥∥∥Γyx∥L(Ta,Tb)

∥∥∥
L

i(a⊖b)
y (w1)

⩽ ∥Π∥c,w

∑
b ⪯ a

tr(b)/ℓw∗
1(x)

∥∥∥∥Γ(x+y)x∥L(Ta,Tb)

∥∥∥
L

i(a⊖b)
y (w1)

.

By Hölder’s inequality and Fubini’s theorem, we have∥∥∥∥∥∥∥Qt (y, Πx(·))
∥∥∥

L(Ta,L
i(a)
y (ww1))

∥∥∥∥
L

i(a)
x (ww2)
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⩽ ∥Π∥c,w

∑
b ⪯ a

tr(b)/ℓ∥w∗
1∥Li(b)(w2)

∥∥∥∥∥∥∥∥Γ(x+y)x∥L(Ta,Tb)

∥∥∥
L

i(a⊖b)
y (w1)

∥∥∥∥
L

i(a⊖b)
x (w)

= ∥Π∥c,w

∑
b ⪯ a

tr(b)/ℓ∥w∗
1∥Li(b)(w2)

∥∥∥∥∥∥∥∥Γ(x+y)x∥L(Ta,Tb)

∥∥∥
L

i(a⊖b)
x (w)

∥∥∥∥
L

i(a⊖b)
y (w1)

≲ ∥Π∥c,w(1 + ∥Γ∥c,w)
∑

b ⪯ a
tr(b)/ℓ

∥∥∥1 + w∗(y)∥y∥r(a⊖b)
s

∥∥∥
L

i(a⊖b)
y (w1)

≲ ∥Π∥c,w(1 + ∥Γ∥c,w) tα0/ℓ

for t ∈ (0, 1]. Note that w∗ ⩾ 1 and ∥1∥Lp(w1) < ∞ for any p ∈ [1, ∞] by an
assumption on w1. Finally, by the definition of Besov norms,∥∥∥∥∥Πx∥

L
(

Ta,Bα,Q
i(a),1(ww1)

)∥∥∥∥
L

i(a)
x (ww2)

⩽

∥∥∥∥∥∥∥∥Q1
(
y, Πx(·)

)∥∥∥
L
(

Ta,L
i(a)
y (ww1)

)
+
∫ 1

0
t−α/ℓ

∥∥∥Qt

(
y, Πx(·)

)∥∥∥
L
(

Ta,L
i(a)
y (ww1)

)dt

t

∥∥∥∥∥
L

i(a)
x (ww2)

≲ ∥Π∥c,w(1 + ∥Γ∥c,w)
(

1 +
∫ 1

0
t(α0−α)/ℓ dt

t

)
≲ ∥Π∥c,w(1 + ∥Γ∥c,w). □

Remark 3.4. — Without additional weights as above, we only know that Qt(x −
h, Πx(·)) is defined for any h ∈ Rd as an element of Li(a)

x (w2; T∗
a). Indeed, for any

smooth model and for any a ≺ c, by Lemmas 2.3 and 2.5 we have∥∥∥Qt

(
x − h,Πx(·)

)∥∥∥
L

i(a)
x (w2; T∗

a)
=
∥∥∥Qt

(
x − h, Πx−hΓ(x−h)x(·)

)∥∥∥
L

i(a)
x (w2; T∗

a)

⩽
∑

b ⪯ a

∥∥∥∥∥∥∥Qt

(
x − h, Πx−h(·)

)∥∥∥
T∗

b
∥Γ(x−h)x∥L(Ta,Tb)

∥∥∥∥
L

i(a)
x (w2)

⩽ w∗(h)
∑

b ⪯ a

∥∥∥Qt

(
x, Πx(·)

)∥∥∥
L

i(b)
x (w; T∗

b)∥Γ(x−h)x∥
L

i(a⊖b)
x (w; L(Ta,Tb))

⩽
(
w∗(h)

)2
∥Π∥c,w(1 + ∥Γ∥c,w)

∑
b ⪯ a

tr(b)/ℓ∥h∥r(a⊖b)
s < ∞.

(3.1)

Moreover, by the density argument we also have the semigroup property

Qt(x, Πxτ) =
∫
Rd

Qt−s(x, x − h)Qs(x − h, Πxτ)dh, 0 < s < t

for any models. These properties are used to prove the reconstruction theorem.

3.3. Modelled distributions

We close this section with the definition of Besov type modelled distributions and
their reconstructions. We fix two G-controlled weights w and v such that wv is also
G-controlled.
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Definition 3.5. — Let M = (Π, Γ) ∈ Mw(T ). For any c ∈ R× [1, ∞], we define
Dc

v(Γ) as the space of all functions f : Rd → T≺c := ⊕
a ∈ A, a ≺ c Ta such that

(|f |)c,v := max
a ≺ c

∥f∥Li(c⊖a)(v; Ta) < ∞,

∥f∥Γ
c,v := max

a≺c
sup

h ∈Rd\{0}

∥∥∥∆Γ
x; hf

∥∥∥
L

i(c⊖a)
x (v; Ta)

v∗(h)∥h∥r(c⊖a)
s

< ∞,

where ∆Γ
x;hf := f(x − h) − Γ(x−h)xf(x). We write |||f |||Γc,v := (|f |)c,v + ∥f∥Γ

c,v. We call
each element of Dc

v(Γ) a modelled distribution.
In addition, for any two models M (i) = (Π(i), Γ(i)) ∈ Mw(T ) and modelled distri-

butions f (i) ∈ Dc
v(Γ(i)) with i ∈ {1, 2}, we define∣∣∣∣∣∣∣∣∣f (1); f (2)
∣∣∣∣∣∣∣∣∣Γ(1); Γ(2)

c,v
:=
(∣∣∣f (1) − f (2)

∣∣∣)
c,v

+
∥∥∥f (1); f (2)

∥∥∥Γ(1); Γ(2)

c,v

by (∣∣∣f (1) − f (2)
∣∣∣)

c,v
:= max

a ≺ c

∥∥∥f (1) − f (2)
∥∥∥

Li(c⊖a)(v; Ta)
,

∥∥∥f (1); f (2)
∥∥∥Γ(1); Γ(2)

c,v
:= max

a ≺ c
sup

h ∈Rd\{0}

∥∥∥∆Γ(1)
x; h f (1) − ∆Γ(2)

x; h f (2)
∥∥∥

L
i(c⊖a)
x (v;Ta)

v∗(h)∥h∥r(c⊖a)
s

.

We omit the symbol “ Γ(1); Γ(2)” below for simplicity.

Definition 3.6. — Let α0 ⩽ 0 be a regularity of T and let c ∈ R × [1, ∞]. For
any M = (Π, Γ) ∈ Mw(T ) and f ∈ Dc

v(Γ), we call any Λ ∈ Bα0,Q
i(c) (wv) satisfying

[[Λ]]Π,f
c,wv := sup

0 < t⩽ 1
t−r(c)/ℓ

∥∥∥Qt(x, Λ) − Qt

(
x, Πxf(x)

)∥∥∥
L

i(c)
x (wv)

< ∞

a reconstruction of f for M . Furthermore, for any models M (i) = (Π(i), Γ(i)) ∈
Mw(T ), modelled distributions f (i) ∈ De

v(Γ(i)), and any reconstructions Λ(i) ∈
Bα0,Q

i(c) (wv) of f (i) for M (i) with i ∈ {1, 2}, we define

[[
Λ(1); Λ(2)

]]Π(1), f (1); Π(2), f (2)

c,wv
:= sup

0 < t⩽ 1
t−r(c)/ℓ

∥∥∥∥{Qt

(
x, Λ(1)

)
− Qt

(
x, Π(1)

x f (1)(x)
)}

−
{
Qt

(
x, Λ(2)

)
− Qt

(
x, Π(2)

x f (2)(x)
)}∥∥∥∥

L
i(c)
x (wv)

.

We also omit the symbol “ Π(1), f (1); Π(2), f (2)” below for simplicity.

Remark 3.7. — It seems more natural to write “ Qt(x, Λ − Πxf(x))”, but we
split it into two terms here to avoid the subtle question of what “ Πxf(x)” is (see
Proposition 3.3). Since Qt(x, Πx(·)) is well-defined as an element of Li(a)

x (w; T∗
a), we

can define the quantity Qt(x, Πxf(x)) by inserting f(x) into the operator Qt(x, Πx(·)).
See also the calculations at the beginning of the proof of Theorem 4.1. We can also
define Qt(x − h, Πxf(x)) for any h ∈ Rd by Remark 3.4.
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4. Reconstruction theorem

In this section, we fix a regularity-integrability structure T = (A, T, G) of reg-
ularity α0 ⩽ 0, and also fix G-controlled weights w and v such that wv is also
G-controlled.

Theorem 4.1. — Let c ∈ (0, ∞) × [1, ∞]. Then for any M = (Π, Γ) ∈ Mw(T )
and f ∈ Dc

v(Γ), there exists a unique reconstruction Rf of f for M and it holds that
∥Rf∥

B
α0,Q

i(c) (wv) ≲ ∥Π∥c,w|||f |||Γc,v,(4.1)

[[Rf ]]Π,f
c,wv ≲ ∥Π∥c,w∥f∥Γ

c,v.(4.2)
Moreover, there is an affine function CR > 0 of R > 0 such that∥∥∥Rf (1) − Rf (2)

∥∥∥
B

α0,Q

i(c) (wv)
⩽ CR

( ∥∥∥Π(1) − Π(2)
∥∥∥

c,w
+
∣∣∣∣∣∣∣∣∣f (1); f (2)

∣∣∣∣∣∣∣∣∣
c,v

)
,[[

Rf (1); Rf (2)
]]

c,wv
⩽ CR

( ∥∥∥Π(1) − Π(2)
∥∥∥

c,w
+
∥∥∥f (1); f (2)

∥∥∥
c,v

)
for any M (i) = (Π(i), Γ(i)) ∈ Mw(T ) and f (i) ∈ Dc

v(Γ(i)) with i ∈ {1, 2} such that
|||M (i)|||c,w ⩽ R and |||f (i)|||c,v ⩽ R.

Remark 4.2. — The original reconstruction theorem [Hai14, Theorem 3.10] was
extended to different types of norms [BL23, HL17, HR20]. Hairer and Labbé [HL17]
proved a reconstruction theorem for B∞,∞ type models and Bp,q type modelled dis-
tributions. Their result is a special case of Theorem 4.1 if we ignore q-exponents.
Broux and Lee [BL23] proved Besov reconstruction theorem at the level of “coher-
ent germ”, which was the notion introduced by Caravenna and Zambotti [CZ20]
to reformulate the reconstruction theorem without using regularity structures. As
seen in the following proof, our situation is contained in [BL23] as a special case
because {Fx := Πxf(x)}x ∈Rd is a coherent germ. However, the detailed regularity-
integrability structure is effectively used in the paper [BH24]. As for the different
norm, Hensel and Rosati [HR20] proved Triebel–Lizorkin type reconstruction theo-
rem for F∞,∞ type models and Fp,q type modelled distributions.

Proof. — It is sufficient to show the bounds (4.1) and (4.2) for a single model
and modelled distribution. The proofs of the local Lipschitz estimates are simple
modifications. For t > 0 and 0 < s ⩽ t ∧ 1, we define the functions

Rt
sf(x) :=


∫
Rd Qt−s(x, y)Qs

(
y, Πyf(y)

)
dy, s < t,

Qt

(
x, Πxf(x)

)
, s = t.

By Lemma 2.3, we have∥∥∥Qs

(
y, Πyf(y)

)∥∥∥
L

i(c)
y (wv)

⩽
∑
a ≺ c

∥∥∥∥∥∥∥Qs

(
y, Πy(·)

)∥∥∥
T∗

a
∥Paf(y)∥Ta

∥∥∥∥
L

i(c)
y (wv)

⩽
∑
a ≺ c

∥∥∥Qs

(
y, Πy(·)

)∥∥∥
L

i(a)
y (w; T∗

a)
∥f∥Li(c⊖a)(v; Ta)

⩽ ∥Π∥c,w(|f |)c,v

∑
a ≺ c

sr(a)/ℓ ≲ ∥Π∥c,w(|f |)c,v sα0/ℓ.
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Hence by Proposition 2.8, we have Rt
sf ∈ Li(c)

c (wv) and∥∥∥Rt
sf
∥∥∥

Li(c)(wv)
≲ ∥Π∥c,w(|f |)c,v sα0/ℓ.

We separate the proof into five steps.

(1) Coherence property. Set Fx := Πxf(x). (This is an abuse of notation as
mentioned in Remark 3.7, but it does not cause a serious problem because it always
appears in the form Qt(x − h, Fx).) By Lemmas 2.3 and 2.5, we have∥∥∥Qt(x − h, Fx − Fx−h)

∥∥∥
L

i(c)
x (wv)

=
∥∥∥Qt

(
x − h, Πx−h

{
Γ(x−h)xf(x) − f(x − h)

})∥∥∥
L

i(c)
x (wv)

⩽
∑
a ≺ c

∥∥∥Qt

(
x − h, Πx−h(·)

)∥∥∥
L

i(a)
x (w; T∗

a)

∥∥∥∆Γ
x;hf

∥∥∥
L

i(c⊖a)
x (v; Ta)

⩽ ∥Π∥c,w∥f∥Γ
c,v w∗(h)

∑
a ≺ c

tr(a)/ℓv∗(h)∥h∥r(c⊖a)
s .

(2) Convergence as s ↓ 0. By the semigroup property of {Qt}t > 0, for 0 < u <
s < t ∧ 1,∣∣∣Rt

sf(x) − Rt
uf(x)

∣∣∣ =
∣∣∣∣∣
∫

(Rd)2
Qt−s(x, y)Qs−u(y, y − h)Qu(y − h, Fy − Fy−h)dydh

∣∣∣∣∣
≲
∫

(Rd)2
Gt−s(x − y)Gs−u(h)

∣∣∣Qu(y − h, Fy − Fy−h)
∣∣∣dydh.

By applying Lemma 2.4 to the convolution with respect to y,∥∥∥Rt
uf − Rt

sf
∥∥∥

Li(c)(wv)
≲
∫
Rd

Gs−u(h)
∥∥∥Qu(y − h, Fy − Fy−h)

∥∥∥
L

i(c)
y (wv)

dh

⩽ ∥Π∥c,w∥f∥Γ
c,v

∑
a≺c

ur(a)/ℓ
∫
Rd

∥h∥r(c⊖a)
s (w∗v∗)(h)Gs−u(h)dh

≲ ∥Π∥c,w∥f∥Γ
c,v

∑
a≺c

ur(a)/ℓ(s − u)r(c⊖a)/ℓ.

In the last inequality, we use the property (2.2) for w∗v∗. Since r(a)+r(c⊖a) = r(c),
we have for any u ∈ [s/2, s),∥∥∥Rt

uf − Rt
sf
∥∥∥

Li(c)(wv)
≲ ∥Π∥c,w∥f∥Γ

c,v sr(c)/ℓ.(4.3)

Also for u ∈ (0, s/2), by taking n ∈ N such that u ∈ [s/2n+1, s/2n), we have∥∥∥Rt
uf − Rt

sf
∥∥∥

Li(c)(wv)
⩽

n−1∑
m=0

∥∥∥Rt
s/2mf − Rt

s/2m+1f
∥∥∥

Li(c)(wv)
+
∥∥∥Rt

s/2nf − Rt
uf
∥∥∥

Li(c)(wv)

≲ ∥Π∥c,w∥f∥Γ
c,v

{
n−1∑
m=0

(
s

2m

)r(c)/ℓ

+
(

s

2n

)r(c)/ℓ
}

≲ ∥Π∥c,w∥f∥Γ
c,v sr(c)/ℓ.

Moreover, the same bound for the case s = t ⩽ 1 can be obtained by a similar
argument. In the end, the bound (4.3) holds for any 0 < u < s ⩽ t ∧ 1. Since
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r(c) > 0, this implies that {Rt
sf}0 < s⩽ t ∧ 1 is Cauchy in Li(c)

c (wv) as s ↓ 0. We denote
its limit by

Rt
0f := lim

s↓0
Rt

sf.

(3) Uniform bounds. Combining the Cauchy property (4.3) with the initial
bound ∥∥∥Rt

t∧1f
∥∥∥

Li(c)(wv)
≲ ∥Π∥c,w(|f |)c,v(t ∧ 1)α0/ℓ

obtained at the beginning of the proof, we have∥∥∥Rt
0f
∥∥∥

Li(c)(wv)
≲ ∥Π∥c,w|||f |||Γc,v(t ∧ 1)α0/ℓ.(4.4)

Incidentally, we have the identity

QsRt
uf = Rt+s

u f, 0 < u ⩽ t ∧ 1, s > 0

from the semigroup property. Letting u ↓ 0, we have

QsRt
0f = Rt+s

0 f, t, s > 0.(4.5)

By (4.5) and the bound (4.4), we have the estimate of Rt
0f in the Besov norm∥∥∥Rt

0f
∥∥∥

B
α0,Q

i(c) (wv)
= sup

0 < s⩽ 1
s−α0/ℓ

∥∥∥Rt+s
0 f

∥∥∥
Li(c)(wv)

≲ ∥Π∥c,w|||f |||Γc,v.(4.6)

(4) Convergence as t ↓ 0. By the semigroup property (4.5), the uniform
bound (4.6), and Lemma 2.15, we have for any ε ∈ (0, ℓ] and any 0 < s < t,∥∥∥Rt

0f − Rs
0f
∥∥∥

B
α0−ε,Q

i(c) (wv)
= ∥(Qt−s − id)Rs

0f∥
B

α0−ε,Q

i(c) (wv) ≲ (s − r)ε/ℓ∥Π∥c,w|||f |||Γc,v.

This implies that {Rt
0f}t ∈ (0,1] is Cauchy in Bα0−ε,Q

i(c) (wv) as t ↓ 0. We denote its limit
by

Rf := lim
t↓0

Rt
0f.

Incidentally, by letting t ↓ 0 in (4.5), we have

QsRf = Rs
0f, s > 0.

Combining this with the uniform bound (4.4), we have that Rf actually belongs
to Bα0,Q

i(c) (wv) and the result (4.1) follows. On the other hand, by letting u ↓ 0 and
s = t in (4.3), we have the result (4.2).

(5) Uniqueness. Let Λ, Λ′ ∈ Bα0,Q
i(c) (wv) be reconstructions of f for M . From the

definition of reconstruction, g := Λ − Λ′ ∈ Bα0,Q
i(c) (wv) satisfies

∥Qtg∥Li(c)(wv)

⩽
∥∥∥Qt(x, Λ) − Qt

(
x, Πxf(x)

)∥∥∥
L

i(c)
x (wv)

+
∥∥∥Qt(x, Λ′) − Qt

(
x, Πxf(x)

)∥∥∥
L

i(c)
x (wv)

≲ tr(c)/ℓ.
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Then by using Lemma 2.15 again, we have that for any ε ∈ (0, ℓ]
∥g∥

B
α0−ε,Q

i(c) (wv) ⩽ ∥(Qt − id)g∥
B

α0−ε,Q

i(c) (wv) + ∥Qtg∥
B

α0−ε,Q

i(c) (wv)

≲ tε/ℓ∥g∥
B

α0,Q

i(c) (wv) + ∥Qtg∥Li(c)(wv) ≲ t(ε∧r(c))/ℓ.

Since r(c) > 0, we have g = 0 in Bα0−ε,Q
i(c) (wv) by taking the limit t ↓ 0. By

Proposition 2.14, this implies g = 0 in Bα0,Q
i(c) (wv), and thus Λ = Λ′. □

5. Multilevel Schauder estimate

In this section, we consider the integral operator of the form f 7→
∫
Rd K(·, x)f(x)dx.

The convolution with Green function of Laplacian and the spacetime convolution with
heat kernel are typical examples. We lift such an integral operator to the operator
K acting on modelled distributions and prove its continuity (Theorem 5.12).

5.1. Regularizing kernels

We have in mind the integral kernel L(x, y) typically singular at the diagonal
{x = y}, but precisely we consider its “rough part” K(x, y). As in [Hai14, Lemma 5.5],
Hairer considered a decomposition L = K + R, where R is a “smooth part” which
sends any distributions into sufficiently smooth functions, and a rough part K of
L can be decomposed into the sum ∑∞

n=0 Kn of locally supported smooth functions
Kn with good scaling properties. In this paper, we instead consider an integral
representation K =

∫ 1
0 Ktdt of K by smooth functions Kt. We impose a restrictive

assumption (Definition 5.1(i) below) for the convolution of Kt and Qs instead of
generality, but it simplifies the proof of multilevel Schauder estimate.

Definition 5.1. — Let β̄ > 0. A β̄-regularizing (integral) kernel admissible for
{Qt}t>0 is a family of continuous functions {Kt : Rd × Rd → R}t > 0 which satisfies
the following properties for some constants δ > 0 and CK > 0.

(i) (Convolution with Q) For any 0 < s < t and x, y ∈ Rd,∫
Rd

Kt−s(x, z)Qs(z, y)dz = Kt(x, y).

(ii) (Upper estimate) For any k ∈ Nd with |k|s < δ, the kth partial derivative of
Kt(x, y) with respect to x exists, and we have for any t > 0 and x, y ∈ Rd,∣∣∣∂k

x Kt(x, y)
∣∣∣ ⩽ CKt(β̄−|k|s)/ℓ−1Gt(x − y).

(iii) (Hölder continuity) For any k ∈ Nd with |k|s < δ, any t > 0 and x, y, h ∈ Rd

with ∥h∥s ⩽ t1/ℓ,∣∣∣∣∣∣∂k
x Kt(x + h, y) −

∑
|l|s < δ−|k|s

hl

l! ∂k+l
x Kt(x, y)

∣∣∣∣∣∣ ⩽ CK∥h∥δ−|k|s
s t(β̄−δ)/ℓ−1Gt(x − y).
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Remark 5.2. — The property (iii) still holds if we replace δ with arbitrary ε ∈
(0, δ). To see this, we have only to decompose

∂k
x Kt(x + h, y) −

∑
|l|s < ε−|k|s

hl

l! ∂k+l
x Kt(x, y)

=
∂k

x Kt(x + h, y) −
∑

|l|s < δ−|k|s

hl

l! ∂k+l
x Kt(x, y)

+
∑

ε−|k|s ⩽ |l|s < δ−|k|s

hl

l! ∂k+l
x Kt(x, y)

and use properties (ii), (iii), and the condition ∥h∥s ⩽ t1/ℓ.

Example 5.3. — Let {Qt}t > 0 be a G-type semigroup generated by the parabolic
operator (2.3) in Example 2.7. An example of admissible regularizing kernels is given
by

Kt(x, y) =
∑

|k|s ⩽ ℓ1

bk(x)∂k
x Qt(x, y)(5.1)

with an exponent ℓ1 < ℓ and bounded Hölder continuous coefficients bk(x). Then
{Kt}t>0 is (ℓ − ℓ1)-regularizing. The exponent δ depends on the Hölder regularity
of the coefficients bk and ak in the operator (2.3). See [BHK24, Appendix A] for
details.

There are two typical examples.
• Let s = (1, 1, . . . , 1), ℓ = 2, and P (∂x) = ∆ − 1 in (2.3). The corresponding

Qt is the heat semigroup et(∆−1). Then the inverse operator (1 − ∆)−1 has
the representation

(1 − ∆)−1 = −
∫ ∞

0
Qtdt = −

∫ 1

0
Qtdt + Q1(1 − ∆)−1.

Since Q1(1 − ∆)−1 has a sufficient regularization effect, the rough part of
(1 − ∆)−1 is represented as the integral

∫ 1
0 Ktdt with Kt = −Qt. Since this

Kt is of the form (5.1) with ℓ1 = 0, the regularizing order is β̄ = 2. Moreover,
since Kt is smooth, we can choose arbitrary large δ > 0.

• Let s = (2, 1, . . . , 1), ℓ = 4, and P (∂x) = ∂2
x1 − (∆x′ − 1)2 in (2.3). Denote

by Qt = etP (∂x) the corresponding heat semigroup. Then the inverse (∂x1 −
(∆x′ − 1))−1 of the parabolic operator (considered in (x1, x′) ∈ R×Rd−1) has
the representation(

∂x1 − (∆x′ − 1)
)−1

=
(
∂x1 + (∆x′ − 1)

)(
∂2

x1 − (∆x′ − 1)2
)−1

=
(
∂x1 + (∆x′ − 1)

) ∫ 1

0
Qtdt −

(
∂x1 + (∆x′ − 1)

)
Q1
(
P (∂x)

)−1
.

Therefore, the rough part of (∂x1 − (∆x′ − 1))−1 is also represented as the
integral

∫ 1
0 Ktdt with Kt = (∂x1 + (∆x′ − 1))Qt. Since ℓ1 = 2 in this case, the

regularizing order is β̄ = 4 − 2 = 2, and we can choose arbitrary large δ > 0.

The following result clarifies the meaning of regularizing kernels. Let w be a G-
controlled weight. For any α > 0 and p ∈ [1, ∞], we define Bα

p (w) as the space
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of all measurable functions f such that, there is a family of measurable functions
{∂kf}|k|s < α satisfying ∂0f = f and

∥∥∥T α−|k|s
x; h

(
∂kf

)∥∥∥
Lp

x(w)
:=

∥∥∥∥∥∥
(
∂kf)(x − h

)
−

∑
|l|s<α−|k|s

(−h)l

l!
(
∂k+lf

)
(x)

∥∥∥∥∥∥
Lp

x(w)

≲ w∗(h)∥h∥α−|k|s
s

for any |k|s < α. In addition, recall the definition of N[s] in Section 2.1.

Lemma 5.4. — Let {Kt}t > 0 be a β̄-regularizing kernel admissible for {Qt}t > 0.
For any function f ∈ Lp(w) and |k|s < δ, we define(

∂kKtf
)

(x) :=: ∂kKt(x, f) :=
∫
Rd

∂k
x Kt(x, y)f(y)dy, Ktf := ∂0Ktf.

Then for any α ∈ (−β̄, 0] such that α + β̄ < δ and α + β̄ /∈ N[s], the map f 7→ Kf :=∫ 1
0 Ktfdt extends to a continuous linear operator from Bα,Q

p (w) to Bα+β̄
p (w).

Proof. — By the density argument, it is sufficient to consider f ∈ Lp
c(w). By

Definition 5.1(i) and (ii), for any |k|s < δ we have∥∥∥∂kKtf
∥∥∥

Lp(w)
=
∥∥∥∥∫

Rd
∂k

x Kt/2(x, y)(Qt/2f)(y)dy
∥∥∥∥

Lp
x(w)

≲ t(β̄−|k|s)/ℓ−1
∥∥∥∥∫

Rd
Gt/2(x − y)|(Qt/2f)(y)|dy

∥∥∥∥
Lp

x(w)

≲ t(β̄−|k|s)/ℓ−1∥Qt/2f∥Lp(w) ≲ t(α+β̄−|k|s)/ℓ−1∥f∥Bα,Q
p (w).

This implies that the integral ∂kKf :=
∫ 1

0 ∂kKtfdt ∈ Lp
c(w) is well-defined for any

|k|s < α + β̄. To show the estimate of T
α+β̄−|k|s
x;h (∂kKf) for |k|s < α + β̄, we divide

the integral for t into the regions (0, t0) and [t0, 1) with t0 := ∥h∥ℓ
s ∧ 1. In the region

(0, t0), by Lemma 2.5 we have∫ t0

0

∥∥∥∥T α+β̄−|k|s
x; h

(
∂kKtf

)∥∥∥∥
Lp

x(w)
dt

≲ ∥f∥Bα,Q
p (w)

∫ t0

0

w∗(h)t(α+β̄−|k|s)/ℓ−1 +
∑

|l|s < α+β̄−|k|s

∥h∥|l|s
s t(α+β̄−|k|s−|l|s)/ℓ−1

 dt

≲ ∥f∥Bα,Q
p (w)

w∗(h)t(α+β̄−|k|s)/ℓ

0 +
∑

|l|s < α+β̄−|k|s

∥h∥|l|s
s t

(α+β̄−|k|s−|l|s)/ℓ

0


≲ ∥f∥Bα,Q

p (w)w
∗(h)∥h∥α+β̄−|k|s

s .

To consider the region [t0, 1), we replace the condition “|l|s < α + β̄ − |k|s” in the
sum for l with “|l|s < α + γ − |k|s” for some γ ∈ (β̄, δ − α). Such a choice is possible
by assumption. Since ∥h∥s = t

1/ℓ
0 ⩽ t1/ℓ if t ∈ [t0, 1), by Definition 5.1(i) and (iii) we

have
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∫ 1

t0

∥∥∥∥T α+β̄−|k|s
x; h

(
∂kKtf

)∥∥∥∥
Lp

x(w)
dt

=
∫ 1

t0

∥∥∥∥∥
∫
Rd

{
T

α+γ−|k|s
x; h

(
∂k

· Kt/2(·, y)
)}

(Qt/2f)(y)dy

∥∥∥∥∥
Lp

x(w)
dt

≲
∫ 1

t0

∥∥∥∥∫
Rd

∥h∥α+γ−|k|s
s t(β̄−γ−α)/ℓ−1Gt/2(x − y)|(Qt/2f)(y)|dy

∥∥∥∥
Lp

x(w)
dt

≲ ∥h∥α+γ−|k|s
s

∫ 1

t0
t(β̄−γ−α)/ℓ−1∥Qt/2f∥Lp(w)dt

≲ ∥f∥Bα,Q
p (w)∥h∥α+γ−|k|s

s t
(β̄−γ)/ℓ

0 = ∥f∥Bα,Q
p (w)∥h∥α+β̄−|k|s

s . □

Remark 5.5. — For the case α + β̄ < 0, we can show the continuity of K :
Bα,Q

p (w) → Bα+β̄,Q
p (w) if we assume the opposite convolution property∫

Rd
Qt−s(x, z)Ks(z, y)dz = Kt(x, y)

to Definition 5.1(i). This is the case for instance if Q and K are homogeneous;
Qt(x, y) = Qt(x − y) and Kt(x, y) = Kt(x − y). Indeed, since for any f ∈ Lp

c(w),

∥QtKf∥Lp(w) =
∥∥∥∥∥
∫ 1

0
QtKsfds

∥∥∥∥∥
Lp(w)

=
∥∥∥∥∥
∫ 1

0
Kt+sfds

∥∥∥∥∥
Lp(w)

=
∥∥∥∥∥
∫ 1

0
K(t+s)/2Q(t+s)/2fds

∥∥∥∥∥
Lp(w)

≲ ∥f∥Bα,Q
p (w)

∫ 1

0
(t + s)β̄/ℓ−1(t + s)α/ℓds ≲ t(α+β̄)/ℓ∥f∥Bα,Q

p (w),

we thus have ∥Kf∥
Bα+β̄,Q

p (w) ≲ ∥f∥Bα,Q
p (w).

We prepare useful estimates for the proof of multilevel Schauder estimate.
Lemma 5.6. — Let w and v be G-controlled weights such that w2 and wv are

also G-controlled. Let T = (A, T, G) be a regularity-integrability structure and let
M = (Π, Γ) ∈ Mw(T ). For any a ∈ A, c ∈ R × [1, ∞] such that a ≺ c, |k|s < δ,
and t ∈ (0, 1], we have∥∥∥∂kKt

(
x, Πx(·)

)∥∥∥
L

i(a)
x (w2; T∗

a)
≲ CK∥Π∥c,w(1 + ∥Γ∥c,w) t(r(a)+β̄−|k|s)/ℓ−1,

where the implicit proportional constant depends only on G, w, and A. Consequently,
if |k|s < (r(a) + β̄) ∧ δ, the operator

∂kK
(
x, Πx(·)

)
:=
∫ 1

0
∂kKt

(
x, Πx(·)

)
dt

is well-defined in the class Li(a)
x (w2; T∗

a). In addition, for any f ∈ Dc
v(Γ) with c ∈

R × [1, ∞] and its reconstruction Λ, and any |k|s < δ and t ∈ (0, 1], we have∥∥∥∂kKt(x, Λ) − ∂kKt

(
x, Πxf(x)

)∥∥∥
L

i(c)
x (wv)

≲ CK

(
[[Λ]]Π,f

c,wv + ∥Π∥c,w∥f∥Γ
c,v

)
t(r(c)+β̄−|k|s)/ℓ−1,
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where the implicit proportional constant depends only on G, w, v, and A. Conse-
quently, the function x 7→ ∂kK(x, Λ)−∂kK

(
x, Πxf(x)

)
is well-defined as an element

of Li(c)
x (wv) if |k|s < (r(c) + β̄) ∧ δ.

Proof. — By Definition 5.1(i) and (ii), for any τ ∈ Ta,∣∣∣∂kKt(x, Πxτ)
∣∣∣ =

∣∣∣∣∫
Rd

∂kKt/2(x, x − h)Qt/2(x − h, Πxτ)dh

∣∣∣∣
≲ CKt(β̄−|k|s)/ℓ−1

∫
Rd

Gt/2(h)|Qt/2(x − h, Πxτ)|dh.

By using the inequality (3.1) obtained in Remark 3.4, we have∥∥∥∂kKt

(
x, Πx(·)

)∥∥∥
L

i(a)
x (w2; T∗

a)

≲ CKt(β̄−|k|s)/ℓ−1∥Π∥c,w(1 + ∥Γ∥c,w)
∑
b⪯a

tr(b)/ℓ
∫
Rd

Gt/2(h)∥h∥r(a⊖b)
s

(
w∗(h)

)2
dh

≲ CKt(r(a)+β̄−|k|s)/ℓ−1∥Π∥c,w(1 + ∥Γ∥c,w).

For the remaining assertion, we have only to repeat the same argument as Remark 3.4,
by replacing Πxτ = Πx−hΓ(x−h)xτ at the beginning of the proof with the identity

Λ − Πxf(x) =
(
Λ − Πx−hf(x − h)

)
+ Πx−h

(
f(x − h) − Γ(x−h)xf(x)

)
. □

5.2. Abstract integrations and compatible models

Throughout this section, we fix a β̄-regularizing kernel {Kt}t > 0 admissible for
{Qt}t > 0. In addition, we assume that there exists G-controlled weights w1 and
w2 satisfying the assumption of Proposition 3.3 (only to ensure that Πxτ is an
element of some Besov space). To lift the operator K =

∫ 1
0 Ktdt into the model

space, we introduce the polynomial structure generated by symbols X1, . . . , Xd as
in [Hai14, Section 2]. For any a ∈ R × [1, ∞] and β > 0, we define the elements
a ⊕ β, a ⊖ β ∈ R × [1, ∞] by

a ⊕ β :=
(
r(a) + β, i(a)

)
, a ⊖ β :=

(
r(a) − β, i(a)

)
.

Definition 5.7. — Let T̄ = (Ā, T̄, Ḡ) be a regularity-integrability structure
satisfying the following properties.

(1) N[s] × {∞} ⊂ Ā.
(2) For each α ∈ N[s], the space T̄(α,∞) contains all Xk := ∏d

i=1 Xki
i with |k|s = α.

(3) The subspace span{Xk}k ∈Nd of T̄ is closed under Ḡ-actions.
Let T = (A, T, G) be another regularity-integrability structure. A continuous linear
operator I : T → T̄ is called an abstract integration of order β ∈ (0, β̄] if

I : Ta → T̄a⊕β

for any a ∈ A.

ANNALES HENRI LEBESGUE



A semigroup approach to the reconstruction theorem and the multilevel Schauder estimate 173

Definition 5.8. — Let T and T̄ be regularity-integrability structures as in
Definition 5.7, and let I : T → T̄ be an abstract integration of order β ∈ (0, β̄]. We
say that the pair (M, M̄) of two models M = (Π, Γ) ∈ Mw(T ) and M̄ = (Π̄, Γ̄) ∈
Mw(T̄ ) with a G-controlled weight w is compatible for I if it satisfies the following
properties.

(i) For any k ∈ Nd,(
Π̄xXk

)
(·) = (· − x)k, Γ̄yxXk =

∑
l⩽k

(
k
l

)
(y − x)lXk−l.

(ii) We define the linear map J (x) : T≺(δ−β,1) → span{Xk}|k|s < δ ⊂ T̄ by setting

J (x)τ =
∑

|k|s < r(a)+β

Xk

k! ∂kK(x, Πxτ)(5.2)

for any a ∈ A such that r(a) + β < δ and τ ∈ Ta. Then on the space
T≺(δ−β,1),

Γ̄yx

(
I + J (x)

)
τ =

(
I + J (y)

)
Γyxτ.(5.3)

In addition, if the regularity α0 of T is greater than −β̄ and

(Π̄xIτ)(·) = K(·, Πxτ) −
∑

|k|s < r(a)+β

(· − x)k

k! ∂kK(x, Πxτ),(5.4)

(recall from Proposition 3.3 and Lemma 5.4 that the right-hand side is well-defined)
for any τ ∈ Ta with r(a) + β < δ, then we say that the pair (M, M̄) is K-admissible
for I.

Remark 5.9. — The above definition is a modification of the original one [Hai14].
Indeed, the abstract integration is defined between distinct regularity-integrability
structures. Moreover, the condition (5.3) is separated from the K-admissibility of the
model, while (5.3) was a result of (5.4) in [Hai14, Lemma 5.16]. In the paper [BH24],
we consider the situation where only (5.3) holds.

Remark 5.10. — The quantity (5.2) is only defined for almost every x ∈ Rd for a
such that i(a) < ∞, since elements of Li(a)

c (w) may not be continuous. Hence there
is a subtle problem that the negligible set may depend on τ . However, since we can
define ∂kK

(
x, Πx(·)

)
as a T∗

a-valued function of class Lp(w2), the negligible set can
be chosen τ -independently. Similarly, we understand (5.3) and (5.4) as identities for
operators of τ which hold for almost every x, y ∈ Rd.

5.3. Multilevel Schauder estimate in regularity-integrability structures

In what follows, we fix regularity-integrability structures T and T̄ satisfying the
setting of Definition 5.7 and an abstract integration I. Moreover, let w and v be
G-controlled weights such that w2v is also G-controlled.
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Definition 5.11. — For any (Π, Γ) ∈ Mw(T ), f ∈ Dc
v(Γ) with c ∈ R × [1, ∞]

such that r(c) + β < δ, and its reconstruction Λ, we define

N (x; f, Λ) =
∑

|k|s < r(c)+β

Xk

k! ∂kK
(
x, Λ − Πxf(x)

)

and
Kf(x) := If(x) + J (x)f(x) + N (x; f, Λ).

Theorem 5.12. — Let c ∈ (−∞, δ−β)×[1, ∞] and assume either of the following
conditions.

(1) β < β̄.
(2) β = β̄, {r(a) + β̄ ; a ∈ A} ∩ N[s] = ∅, and r(c) + β̄ /∈ N[s].

Then for any compatible pair of models
(
M = (Π, Γ), M̄ = (Π̄, Γ̄)

)
∈ Mw(T ) ×

Mw(T̄ ), modelled distribution f ∈ Dc
v(Γ), and any reconstruction Λ of f for M , the

function Kf belongs to Dc⊕β
w2v (Γ̄), and we have

(|Kf |)c⊕β,w2v ≲ ∥I∥(|f |)c,v + CK

{
∥Π∥c,w(1 + ∥Γ∥c,w)|||f |||Γc,v + [[Λ]]Π,f

c,wv

}
,(5.5)

∥Kf∥Γ̄
c⊕β,w2v ≲ ∥I∥∥f∥Γ

c,v + CK

{
∥Π∥c,w(1 + ∥Γ∥c,w)∥f∥Γ

c,v + [[Λ]]Π,f
c,wv

}
,(5.6)

where ∥I∥ is the operator norm from T≺c to T̄≺c⊕β, and the implicit proportional
constant depends only on G, w, v, c, and A. Moreover, there is a quadratic function
CR > 0 of R > 0 such that∣∣∣∣∣∣∣∣∣Kf (1); Kf (2)

∣∣∣∣∣∣∣∣∣
c⊕β,w2v

⩽ CR

(∣∣∣∣∣∣∣∣∣M (1); M (2)
∣∣∣∣∣∣∣∣∣

c,w
+
∣∣∣∣∣∣∣∣∣f (1); f (2)

∣∣∣∣∣∣∣∣∣
c,v

+
[[
Λ(1); Λ(2)

]]
c,wv

)
for any M (i) = (Π(i), Γ(i)) ∈ Mw(T ) and M̄ (i) = (Π̄(i), Γ̄(i)) ∈ Mw(T̄ ) such that
(M (i), M̄ (i)) is compatible, any f (i) ∈ Dc

v(Γ(i)), and any reconstructions Λ(i) of f (i)

for M (i) with i ∈ {1, 2} such that |||M (i)|||c,w ⩽ R and |||f (i)|||Γ(i)
c,v ⩽ R.

Proof. — The proof of the local Lipschitz estimate is a simple modification of
those of (5.5) and (5.6). The bound (5.5) immediately follows from the continuity
of I and Lemma 5.6. In the following, we focus on the proof of (5.6). By using the
property (5.3) of compatible models, we decompose

∆Γ̄
x;hKf = Kf(x − h) − Γ̄(x−h)xKf(x)

= Kf(x − h) − Γ̄(x−h)x
(
I + J (x)

)
f(x) − Γ̄(x−h)x N (x; f, Λ)

= Kf(x − h) −
(
I + J (x − h)

)
Γ(x−h)xf(x) − Γ̄(x−h)x N (x; f, Λ)

=
(
I + J (x − h)

)
(∆Γ

x;hf) +
(
N (x − h; f, Λ) − Γ̄(x−h)x N (x; f, Λ)

)
=: I

(
∆Γ

x; hf
)

+
∑

|k|s < r(c)+β

Xk

k! Ak(x; h).
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For the I term, noting that (c ⊕ β) ⊖ a = c ⊖ (a ⊖ β) we easily obtain∥∥∥I (∆Γ
x; hf

)∥∥∥
L

i((c⊕β)⊖a)
x (v; Ta)

⩽ ∥I∥
∥∥∥∆Γ

x; hf
∥∥∥

L
i(c⊖(a⊖β))
x (v; Ta⊖β)

⩽ ∥I∥∥f∥Γ
c,v v∗(h)∥h∥r((c⊕β)⊖a)

s .

When r(c) + β ⩽ 0 the proof is completed. In the rest of the proof, we assume
r(c) + β > 0 and focus on the polynomial part. Since Xk belongs to the space
T̄(|k|s,∞) and i((c ⊕ β) ⊖ (|k|s, ∞)) = i(c), we check the Li(c)

x norm of Ak(x; h). Note
that the coefficient Ak is given by

Ak(x; h) =
∑

a ∈ A, r(a) > |k|s−β

∂kK
(
x − h, Πx−hPa∆Γ

x; hf
)

+
{

∂kK
(
x − h, ΛΠ,f

x−h

)
−

∑
|l|s < r(c)+β−|k|s

(−h)l

l! ∂k+lK
(
x, ΛΠ,f

x

)}
,

where ΛΠ.f
x := Λ−Πxf(x). According to the integral form K =

∫ 1
0 Ktdt, we decompose

Ak =
∫ 1

0 Ak
t dt =

∫ 1
0 (Bk,1

t + Bk,2
t )dt, where

Bk,1
t (x; h) :=

∑
a ∈ A, r(a) > |k|s−β

∂kKt

(
x − h, Πx−hPa∆Γ

x; hf
)
,

Bk,2
t (x; h) := ∂kKt

(
x − h, ΛΠ,f

x−h

)
−

∑
|l|s < r(c)+β−|k|s

(−h)l

l! ∂k+lKt

(
x, ΛΠ,f

x

)
.

We use this decomposition for the integral over 0 ⩽ t ⩽ t0 := ∥h∥ℓ
s ∧ 1. For the Bk,1

t

part, by Lemmas 2.5 and 5.6,
∥∥∥Bk,1

t (x; h)
∥∥∥

L
i(c)
x (w2v)

⩽
∑

r(a) > |k|s−β

∥∥∥∆Γ
x;hf

∥∥∥
L

i(c⊖a)
x (v; Ta)

∥∥∥∂kKt

(
x − h, Πx−h(·)

)∥∥∥
L

i(a)
x (w2; T∗

a)

≲ L1
(
(w∗)2v∗

)
(h)

∑
r(a) > |k|s−β

∥h∥r(c⊖a)
s t(r(a)+β̄−|k|s)/ℓ−1

⩽ L1
(
(w∗)2v∗

)
(h)

∑
r(a) > |k|s−β

∥h∥r(c⊖a)
s t(r(a)+β−|k|s)/ℓ−1,

where L1 = CK∥Π∥c,w(1 + ∥Γ∥c,w)∥f∥Γ
c,v. In the last inequality, we used t ⩽ 1 and

β ⩽ β̄. For the Bk,2
t part, by Lemmas 2.5 and 5.6,

∥∥∥Bk,2
t (x; h)

∥∥∥
L

i(c)
x (wv)

≲ L2 t(r(c)+β̄−|k|s)/ℓ−1
(

(w∗v∗)(h) +
∑

|l|s < r(c)+β−|k|s

∥h∥|l|s
s t−|l|s/ℓ

)

⩽ L2 t(r(c)+β−|k|s)/ℓ−1
(

(w∗v∗)(h) +
∑

|l|s < r(c)+β−|k|s

∥h∥|l|s
s t−|l|s/ℓ

)
,
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where L2 = CK([[Λ]]Π,f
c,wv + ∥Π∥c,w∥f∥c,v). Since all powers of t above are greater than

−1, we have the bound
∫ t0

0

∥∥∥Ak
t (x; h)

∥∥∥
L

i(c)
x (w2v)

dt ≲ (L1 + L2)
(
(w∗)2v∗

)
(h)

∑
α1+α2=r(c)+β−|k|s

∥h∥α1
s t

α2/ℓ
0

≲ (L1 + L2)
(
(w∗)2v∗

)
(h)∥h∥r(c)+β−|k|s

s .

Finally, we assume that ∥h∥s ⩽ 1 and consider the integral over t0 = ∥h∥ℓ
s ⩽ t ⩽ 1.

For this case, we use another decomposition Ak
t = Ck,1

t + Ck,2
t given by

Ck,1
t (x; h) := −

∑
a∈A, r(a)⩽ |k|s−β

∂kKt

(
x − h, Πx−hPa∆Γ

x; hf
)
,

Ck,2
t (x; h) := ∂kKt

(
x − h, ΛΠ,f

x

)
−

∑
|l|s < r(c)+β−|k|s

(−h)l

l! ∂k+lKt

(
x, ΛΠ,f

x

)
,

where we used the identity ΛΠ,f
x−h = ΛΠ,f

x −Πx−h∆Γ
x; hf to show Bk,1

t +Bk,2
t = Ck,1

t +Ck,2
t .

The bound of Ck,1
t is obtained similarly to Bk,1

t as follows.
∥∥∥Ck,1

t (x; h)
∥∥∥

L
i(c)
x (w2v)

≲ L1
(
(w∗)2v∗

)
(h)

∑
r(a)⩽ |k|s−β

∥h∥r(c⊖a)
s t(r(a)+β̄−|k|s)/ℓ−1.

However, for the integral
∫ 1

t0
Ck,1

t dt, we have to pay more attention to the powers of t.
For a such that r(a) < |k|s − β, we easily have

∫ 1

t0
∥h∥r(c⊖a)

s t(r(a)+β̄−|k|s)/ℓ−1dt ⩽
∫ 1

t0
∥h∥r(c⊖a)

s t(r(a)+β−|k|s)/ℓ−1dt

≲ ∥h∥r(c⊖a)
s t

(r(a)+β−|k|s)/ℓ
0 = ∥h∥r(c)+β−|k|s

s .

If there is a such that r(a) = |k|s − β, then since β̄ > β by assumption, we have
∫ 1

t0
∥h∥r(c⊖a)

s t(r(a)+β̄−|k|s)/ℓ−1dt =
∫ 1

t0
∥h∥r(c)+β−|k|s

s t(β̄−β)/ℓ−1dt ≲ ∥h∥r(c)+β−|k|s
s .

For the Ck,2
t part, we employ the inequality obtained in Remark 5.2 with ε = r(c)+β

(recall that we consider the case r(c) + β > 0) and have

(5.7)
∣∣∣Ck,2

t (x; h)
∣∣∣

=
∣∣∣∣∣
∫
Rd

(
∂k

y Kt/2(x − h, y) −
∑

|l|s<r(c)+β−|k|s

(−h)l

l! ∂k+l
x Kt/2(x, y)

)
Qt/2

(
y, ΛΠ,f

x

)
dy

∣∣∣∣∣
≲ CK∥h∥r(c)+β−|k|s

s t(β̄−β−r(c))/ℓ−1
∫
Rd

Gt/2(x − y)
∣∣∣Qt/2

(
y, ΛΠ,f

x

) ∣∣∣dy.
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By taking Li(c)
x (wv) norm, we have∥∥∥Ck,2

t (x; h)
∥∥∥

L
i(c)
x (wv)

≲ CK∥h∥r(c)+β−|k|s
s t(β̄−β−r(c))/ℓ−1

∫
Rd

Gt/2(z)
∥∥∥Qt/2

(
x − z, ΛΠ,f

x

) ∥∥∥
L

i(c)
x (wv)

dz

≲ L2∥h∥r(c)+β−|k|s
s t(β̄−β−r(c))/ℓ−1

∫
Rd

Gt/2(z)(w∗v∗)(z)(
tr(c)/ℓ +

∑
a ≺ c

tr(a)/ℓ∥z∥r(c⊖a)
s

)
dz

≲ L2∥h∥r(c)+β−|k|s
s t(β̄−β)/ℓ−1,

where the second inequality follows from a similar argument to (3.1) in Remark 3.4.
For the case β < β̄, we have the result by∫ 1

t0
∥h∥r(c)+β−|k|s

s t(β̄−β)/ℓ−1dt ≲ ∥h∥r(c)+β−|k|s
s .

If β = β̄, we return to (5.7) and replace the region “|l|s < r(c) + β̄ − |k|s” with
“|l|s < r(c) + γ − |k|s” for some γ > β̄. This is possible because r(c) + β̄ /∈ N[s] and
r(c) + β̄ < δ by assumption. Then by repeating the same argument as above, we
have ∫ 1

t0

∥∥∥Ck,2
t (x; h)

∥∥∥
L

i(c)
x (wv)

dt ≲ L2∥h∥r(c)+γ−|k|s
s

∫ 1

t0
t(β̄−γ)/ℓ−1dt

≲ L2∥h∥r(c)+γ−|k|s
s t

(β̄−γ)/ℓ
0 = L2∥h∥r(c)+β̄−|k|s

s . □

We close this section with the important commutation result.

Theorem 5.13. — In addition to the setting of Theorem 5.12, we assume that
α0 + β̄ ∈ (0, δ) \ N[s] for the regularity α0 of T and that (M, M̄) is K-admissible
for I. Then KΛ ∈ Bα0+β̄

i(c) (w) is the unique reconstruction of Kf ∈ Dc⊕β
w2v (Γ̄) and

[[KΛ]]Π̄,Kf
c⊕β,w2v ≲ CK

(
[[Λ]]Π,f

c,wv + ∥Π∥c,w∥f∥Γ
c,v

)
.

Moreover, a similar local Lipschitz estimate to the latter part of Theorem 5.12 holds.

Remark 5.14. — The condition on α0 is only to ensure the existence of KΛ as an
element of Besov space. If KΛ is well-defined even though α0+β̄ ⩽ 0 (cf. Remark 5.5),
the same result as above holds under the weaker condition that r(c) + β > 0 which
ensures the uniqueness of the reconstruction of Kf .

Proof. — By definition, we can write

Π̄xKf(x) = Π̄x

(
I + J (x)

)
f(x) + Π̄x N (x; f, Λ)

= K
(
·, Πxf(x)

)
+

∑
|k|s < r(c)+β

(· − x)k

k! ∂kK
(
x, ΛΠ,f

x

)
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and thus

(KΛ)Π̄,Kf
x = K

(
·, ΛΠ,f

x

)
−

∑
|k|s < r(c)+β

(· − x)k

k! ∂kK
(
x, ΛΠ,f

x

)
=
∫ 1

0
C0,2

s (x; x − ·)ds

by using the notation introduced in the proof of Theorem 5.12. By the bound of Ck,2

obtained there, when β < β̄ we have∥∥∥Qt

(
x, (KΛ)Π̄,Kf

x

)∥∥∥
L

i(c)
x (w2v)

⩽
∥∥∥∥∫ 1

0
ds
∫
Rd

Qt(x, x − h)C0,2
s (x; h)dh

∥∥∥∥
L

i(c)
x (wv)

≲
∫ 1

0
ds
∫
Rd

Gt(h)
∥∥∥C0,2

s (x; h)
∥∥∥

L
i(c)
x (wv)

dh

≲ L2

∫ 1

0
ds
∫
Rd

Gt(h)∥h∥r(c)+β
s s(β̄−β)/ℓ−1ds

≲ L2 t(r(c)+β)/ℓ.

The proof for the case β = β̄ is similar. □
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