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stationary solutions. In this paper, we prove the asymptotic stability of a wide class of stationary
solutions. We emphasize that our result includes Fermi gas at zero temperature. This is one
of the most important steady states from the physics point of view; however, its asymptotic
stability has been left open after the seminal work of Lewin and Sabin [LS14], which first
formulated this stability problem and gave significant results.

RESUME. — Nous considérons les équations de Hartree et de Schrédinger décrivant ’évo-
lution temporelle des fonctions d’onde d’un nombre infini de fermions en interaction dans un
espace tridimensionnel. Ces équations peuvent étre formulées a 1’aide d’opérateurs de densité,
et elles ont une infinité de solutions stationnaires. Dans cet article, nous prouvons la stabilité
asymptotique d’une large classe de solutions stationnaires. Nous insistons sur le fait que notre
résultat inclut le gaz de Fermi a température nulle. Il s’agit de 'un des états stationnaires
les plus importants du point de vue de la physique ; cependant, sa stabilité asymptotique est
restée ouverte apres les travaux séminaux de Lewin et Sabin [LS14], qui ont formulé pour la
premiére fois ce probléme de stabilité et ont donné des résultats significatifs.

1. Introduction

In this paper, we study the following Hartree equation in three-dimensional space:
(NLH) 0y = [-A+wx*p,,q], v:R—=B(L2).

This is a nonlinear evolution equation for operator-valued functions. We denote
the set of all bounded linear operators on L? := L*(R®) by B(L?), convolution in
space by * and commutator by [-,-]. We assume that w is a given finite signed Borel
measure on R?. For A € B(L2), pa(x) : R — C is the density function of A, that
is, pa(z) := k(z,x), where k(x,y) is the integral kernel of A. When w = £4, we
should call (NLH) the cubic nonlinear Schrédinger equation; however, we consistently
call (NLH) the Hartree equation in the rest of this paper.

We briefly explain the background and fundamental properties of (NLH) for con-
venience according to [LS15]. See [LS15, Introduction] for more details.

Wave functions of N fermions in three-dimensional space evolve according to a lin-
ear Schrodinger equation on R3V. The Hartree equation is one of the approximations
of this equation:

(1.1) iOuy(t, x)
N
= [-As+wx* D] lu;(t, 2)]* | | unlt,z), (t,x) ERxR3  (n=1,...N).
j=1
If we try to deal with the case N = 0o, namely, the Hartree equation for infinitely
many particles, it seems somewhat difficult to do our analysis in this form. Thus,
it is a good idea to rewrite the original equation (1.1). For a solution to (1.1),
(un(8))N_, € C(R, L?), define the operator-valued function v : R — B(L2) by

N
Y(#) =D [un(t)) (un(t)],
n=1
where |f){g] : ¢ = (g|¢)r2f. It is quite easy to see that v(t) solves (NLH). (NLH)

is more suitable for our analysis because it is not dependent on the number of
particles V.
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Asymptotic stability of the Hartree equation 183

The following proposition is easy to prove, but it is one of the most essential
properties of (NLH).

PROPOSITION 1.1. — Let w be a finite Borel measure on R3. Let f € Lé nLg.
Let vy := f(=iV) = F'fF. Then ~; is a stationary solution to (NLH).

By Proposition 1.1, we have infinitely many stationary solutions to (NLH). Fur-
thermore, it is known that some f are important from the physics perspective:

(1.2) f(&) = Xqep<(§), (Fermi gas at zero temperature and o > 0),

1
(1.3) f(§) = T (Fermi gas at positive temperature 7" and p € R),
e

1
(1.4) f(&) = FEET T (Bose gas at positive temperature T and p < 0),

(1.5) f(€) = e UF=m/T  (Boltzmann gas at positive temperature 7 and p € R),

where Y4 is the indicator function of A and each pu is chemical potential. Proposi-
tion 1.1 tells us that (NLH) with non-trace class initial values is important since ~;
is not compact unless f = 0.

In this paper, we study the asymptotic stability of 7;. Let Q(¢) be a perturbation
from ~yy, that is, Q(t) = v(t) — vs. Then we have

(f-NLH) i0,Q = [=A+w* pg,vr + Q).
We denote the Schatten a-class on a Hilbert space H by &*(H), that is,

(1.6) |Allee == (Tr(JA["))=

where Tr is the trace in H. We write &% := &*(L2). We refer to [Sim05] for more
details on the Schatten classes. Note that Tr A is the total number of particles
contained in the system for any density operator A, and Tr A = oo at least formally
if Ae &\ &! for some a > 1.

The well-posedness of the Cauchy problem of (NLH) with ~(0) = 7y has been
studied by [BPF74, BPF76, Cha76, Zag92|, and recently, the small data scattering is
shown in [PS21]. More precisely, the above results dealt with more general nonlinear
terms. However, they considered only trace class operators; their arguments are in the
framework of finite particle systems. We need to emphasize that Lewin and Sabin
first formulated (f-NLH) and gave significant results in [LS14, LS15]. In [LS15],
they proved the local and global well-posedness of (f-NLH) with non-trace class
initial data when the interaction potential w is in L1 N L. In [L.S14], they showed
asymptotic stability of v for small initial perturbations )y in two-dimensional space.
They assumed that interaction potential w is in the Sobolev space W1!(R?) and f
is smooth. Chen, Hong and Pavlovié¢ extended the above results. In [CHP17], they
proved the global well-posedness when the potential w is the delta measure and f is
Fermi gas at zero temperature. In [CHP18], they extended the result in [LS14] and
proved scattering when d > 3. However, they also assumed that f is smooth and
w satisfies somewhat complicated conditions. The Hartree equation with a constant
magnetic field also has infinitely many stationary solutions. In [Don21], Dong gave a
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well-posedness result of the Cauchy problem that initial data are given around these
stationary solutions.

Strichartz estimates for orthonormal functions are one of the most essential tools
for their analysis. This is first proven in [FLLS14], and developed in [BHL"19, FS17].

In relation to [L.S14, LS15], Lewin and Sabin gave rigorous proof that the semi-
classical limit of the Hartree equation for infinitely many particles is the Vlasov
equation in [L.S20]. And they get the global well-posed result for the Vlasov equation
as a by-product.

We rewrote (1.1) in terms of density operators on L2, and all of the known results
mentioned above are based on this formulation; however, de Suzzoni gave an alterna-
tive formulation by random fields in [Suz15|. She clarified the correspondence with
the formulation using density operators in detail. For example, we have infinitely
many steady states corresponding to 7 in random fields formulation. In [CdS20],
Collot and de Suzzoni proved their asymptotic stability when d > 4, and they
extended their result to d = 2,3 in [CdS22]. Remarkably, the general finite Borel
measure on R? is allowed in [CdS22].

In the previous works, the asymptotic stability of v; given by (1.3), (1.4) and (1.5),
which are physically important examples at positive temperature, was proved. How-
ever, the asymptotic stability of Fermi gas at zero temperature (1.2) has been left
open since it was mentioned as an open question in the seminal work [LS14]. More-
over, no scattering result allows singular interaction potentials at the density operator
level. In this paper, we prove the asymptotic stability of 7y when f is in a wide class
including xyj¢[2<1y, allowing general finite Borel measure on R3.

1.1. Main result

We write U(t) := e*2. Define A, B := ABA* for two operators A and B. For s > 0
and « € [1, 00|, we define the Schatten—Sobolev space H** by

(1.7) [Allgee = (V) A(V)*[| g
We write H® := H*2 For w and f, we define a linear operator £, = L{(f,w) by
t

(1) Lilglt) = p (i [ Ut = )l g(r),5ldr )

Our main result is the following:

THEOREM 1.2. — Let w be a given finite signed Borel measure on R3. Let f €
LN L satisfy || ($>2f\|L%ngo < 00. Assume that the operator £, = L1(f, w) satisfies

-1

(1.9) |1+ 21 HB(%) < 0.

Then there exists g > 0 such that the following holds. If ||Qo||31/2.32 < €9, then
there exists a unique global solution Q(t) € C(R,Hz) to (f-NLH) with Q(0) = Qq

1
such that pg € L?(R, H). Furthermore, Q(t) scatters; that is, there exist Q+ € &3
such that

(1.10) U(-)Q(t)U(t) — Q4 in & as t — Foo.
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Asymptotic stability of the Hartree equation 185

First, we discuss the invertibility of 1 + £;. Some sufficient conditions for (1 +
L£1)~' € B(L{,) are known. For example, see [LS14, Corollary 1]. Although the
author could not find any clear statement, [LS14, Proposition 1] immediately implies
the following:

PROPOSITION 1.3. — Let w be a finite signed Borel measure on R3. Let f €
Li N L be real-valued and radial. If
l@lle  |F()

(1.11)

dr <1 or leg)

/Ooo)f(r)‘dr<1

2841 Jra |z[d-2 .
3

holds, then (14 Ly(f,w))™" € B(L,).

Remark 1.4. — We identify a radial function H : R — R and h : [0,00) — R
such that H(z) = h(|z|).

Our result includes the Fermi gas at zero temperature because we have the following
criteria:

ProrosITION 1.5 ([Had23, Proposition 1.6]). — Let w be a finite signed Borel
measure on R®. Let f(£) = xyqez<1y. If @ is real-valued and

01
(log [¢])
for (small) absolute constants dg,d, > 0, then (14 Ly(f,w))™' € B(L7L?).

(1.12) —do < W(§) <

Now we give some remarks about our main results.

Remark 1.6. — When f(£) = xq¢p <1}, the scattering holds only in the focusing
case by (1.12).

Remark 1.7. — 1If we include the delta measure as an interaction potential
1

of (NLH), Theorem 1.2 is optimal, meaning cubic NLS in 3D is critical in HZ.
However, it may be an interesting problem to improve the scattering norm or the
function space that the solution @(¢) belongs to at each time. In particular, the

author suspects that it may be possible to replace &3 in Theorem 1.2 by Hz .

1.2. Summary of ideas of the proof of the main result

The rough story of the proof is the same as that of [CHP18, LS14]. First, we
reduce the Cauchy problem (f-NLH) with Q(0) = Qo to the nonlinear equation
of the density function pg (see (IVP*)). After finding a unique global solution pg,
we restore the scattering solution Q(t) € C(R,#z). See Section 2 for more details.
Most of our efforts are devoted to finding a unique global density function pg in

1
L3(R, H?).
One of the most essential tools in this paper is the Strichartz estimates for or-

thonormal functions; in particular, we essentially use the estimates proved by Bez,
Hong, Lee, Nakamura and Sawano in [BHL*19]. This is the estimate for the free
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propagator e*2, but we need to extend their result to the general propagator Uy (t)
(see (2.1) and (IVP*)). To do so, according to [CHP18, LS14], we use the wave
operator decomposition of Uy (t) (see (4.30)). We need to emphasize that [BHL19]
appeared after the important previous works [CHP18, LS14] were written, and the
estimates established in [BHL19] enabled us to get the result in this paper.

Another important ingredient in this paper is Christ—Kiselev type lemma in Schat-
ten classes (see Lemma 3.1). It is a direct corollary of the result in [GK70], and it
was obtained much earlier than Christ—Kiselev’s result [CKO01]; therefore, we should
call it Gohberg—Krein theorem. Gohberg-Krein theorem and the duality principle,
first introduced in [FS17] to prove the orthonormal Strichartz estimates, is also
very useful. The author would like to emphasize that both the duality principle and
Gohberg-Krein theorem are known results, but it was not noticed that combining
them is useful as far as the author knows. )

It is natural to find a density function pg such that w* pg € L¥(R, HZ). However,
we would like to deal with general finite signed Borel measures on R3; hence, we need

to find pg in LI (R, HZ). It means that we need to estimate ||p(Uy (t)« Q0)||L2H1/2
(see (IVP*)). One of the most dlfﬁcult parts of thls paper is to bound this term,

and the difficulty comes from Hx. If we replace Hx by H} with integer n, then
we can bound it much easier because we have the formula Vpg = p([V, Q]), and
we can easily calculate [V, Uy (t)] explicitly; however, for the fractional derivatives,
there does not exist this type of calculation as far as the author knows. Hence, we
“interpolate” the bounds of ||p(Uv(¢)+Qo)llr2r2 and ||p(Uv (¢)«Qo)|| 21, but things
do not go so straightforwardly because the bounds of these terms are nonlinear with
respect to V. To overcome this problem, we decompose Uy () into wave operators
and then multilinearize them. In this argument, Gohberg—Krein theorem (and duality
argument) plays an essential role.

Finally, we will estimate the terms including 7. In the first version of this paper,
the author said “we can bound them by simple duality arguments”. However, it is
not true. We will explain this difficulty here. We often need to get estimate in the
following form

(1.13) /°° atu (1) ((V)2v / dsU (s) W (s)U(s)
0 G
S HVHL?Lg <v>§W Lng :
In the most cases, it is pretty easy to get
(1.14) / T av ey ((V):V) (U ) / T dsU(s) W (s)U (s)
0 0 &a
S WV llzzee (V)2 W L2re

However, the author do not know any way to conclude (1.13) from (1.14) directly.

To overcome this problem, we first replace (V}é to (V)7 with j = 0,1, and then get
similar estimates. Lastly, we interpolate them. See Section 5 for detailed arguments.

ANNALES HENRI LEBESGUE



Asymptotic stability of the Hartree equation 187

1.3. Organization of this paper

This paper is organized as follows. In Section 2, we explain the outline of the proof
of the main result. We reduce the Cauchy problem (NLH) with Q(0) = Qo to the
equation of density function pg. This is the density functional method. In Section 3,
we prepare a lot of basic tools. It includes Christ—Kiselev type lemma, resolvent
expansion of the propagator Uy, and so on. In Section 4, we prove the key Strichartz
estimates in this paper. In Section 5, we show the global and unique existence of
the density function pg. Finally, in Section 6, we restore the solution Q(t) to the
original Cauchy problem from its density function pq.

2. Outline of the proof of the main result
2.1. Reduction to the equation for density functions

Let Uy (t, s) be the propagator for the following linear Schrédinger equation with
a time-dependent potential:

(2.1) (10, + A —V(t,2))u=0, u(t,r):R™ =C, V(tz):R"™ R,
namely, for any s € R, u(t) := Uy (¢, s)u(s) is a solution to (2.1).

Our strategy is the same as that of [CHP18, LS14]. First, we find a solution to the
nonlinear equation of density function pg:

t
(IVP) po = PUV(D.Q0) = p [i [ V(e 1 V(),5ldr]
(2.2) V =wx*pg.
If we find a solution pg to (IVP), then we can restore the solution to (NLH) with
Q(0) = Qo by

¢
(2.3) Qt) = Uy (8).Qo — i [ Uv(t, 7V (7). 7 ldr.
(2.4) Vi=w*pg.

We can reduce the proof of our main result to finding the solution pgy to (IVP)
because we have the following lemma:

LEMMA 2.1. — Let d = 3. Let (€)2f(§) € LiNLE, Qo € H? and V € LI(R, HZ).

Then Q(t) defined by (2.3) is in C(R, #z2). Furthermore, Q(t) scatters; that is, there
exist Q4+ € &2 such that

(2.5) U(-)Qt)U(t) — Q4 in & as t — Foo.
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2.2. Set-up for the contraction mapping argument

We transform (IVP) to a more suitable form to estimate. Note that Uy (¢, s) satisfies
¢
Uy(t,s) = Ut — ) — i / U(t — )V (7)Uy(r, s)dr
= U(t —s)+ Dy(t,s).

(2.6)

Hence, we have
t
(2.7) —i /0 Uv(t, 7). [V(7), ypldr

_ /Ot (U@ = 7) + Dy(t, D) V()37 (U — 8) + Dy (7.8) )dr

= i [ Ut =)V U( = i [ Ul = D)V (7). 51)Dy (7, t)dr

- z/ Dy (t, T)[V (1), 7¢]U (T — t)dr — @'/Ot Dy (t,7)[V(7),v¢|Dv (7, t)dr
= L [V](t) + Nl[V]( )+ No[V](2) + Ns[V](2).
We rewrite (IVP) and obtain
= p(Uv (£):Qo) + p(La[V]) + p(N1[V]) + p(N2[V]) + p(Ns[V])
p(Uy (£):Qo) — Lilpg] + p(N1[V]) + p(No[V]) + p(N5[V]).
Since we assumed (1 + £1)~" € B(L7,), we get
(IVP*)  pg = (14 L1) " (p(Uv (£)xQo) + p(N:[V]) + p(No[V]) + p(N3[V])).

Combining Theorem 2.1, we can reduce the proof of the main result to the following
theorem:

(2.8)

THEOREM 2.2. — Under the same assumptions as in Theorem 1.2, there exists a
1
unique global solution pg € L} (R, HZ) to (IVP*).

3. Preliminaries

In this section, we consider general d-dimensional spaces because there is no benefit
to limiting our argument to three-dimensional space.

3.1. Christ—Kiselev type lemma

First, we give a Christ—Kiselev type lemma in Schatten classes; however, the fol-
lowing result is already obtained in [GK70] before [CKO01]. Therefore, we should call
it Gohberg—Krein theorem. We obtain the following result by applying [BS03, Theo-
rem 7.2] (but originally by [GK70, Theorem II1.6.2]), setting £, = Fy = Pr2((au);12)
in their notations, where P, is a projection to A. Note that the integral kernel of
D =7"Tis 0(t — 7)K(t,7), where (z) = X{z >0}
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Asymptotic stability of the Hartree equation 189

THEOREM 3.1 (Gohberg—Krein). — Letd > 1. Let —oco < a < b < 00,1 <p < o0
and a € (1,00). Let (a,b)* > (t,7) — K(t,7) € B(L2) be strongly continuous.
Assume that we can write T € B(L7,) by

b

(3.1) (Tg)(t, ) = / K(t,7)g(7)dr.
If T € G°(L2,), then D defined by

(3.2) g)(t,) = | K (t,7)g(r)dr
is also in &*(L7,,), and

(3.3) Pllge(rz,) < CollTllgarz,)
holds.

3.2. Duality principle and its application

In this subsection, we assume all Hilbert spaces are separable and infinite-dimen-
sional. Let H, K be complex Hilbert spaces. Let o € [1,00] and A : H — K be
compact. We define Schatten a-norm by

(TrH (|A"‘A\%))é if 1 <a< oo,
| Al Ky if @ = oo,

(3.4) [Allse 1) = {

Note that 6*(H — H) = &*(H). Holder’s inequality for Schatten norm is well-
known. If a, g, vy € [0, 00] satisfy L = aio + ail, then it holds that
(3.5) [AoArl[ee ) < [[Aolleeo | Arllgen ().

Note that (3.5) implies the following. If «, ag, a; € [0, 00| satisfy é = O%O + a%, then
it follows that

(3.6) [AoA1lee (to—112) < | Aolleeo (11,12 [ At 2 (16— 111)-
In fact, by the singular value decomposition, we can write Ay = U;{vo, where
| Aollseo(m)y = [|Aolleeo(r—my) and U : Hy — Hy is unitary. In the same way,

Ay = AV, where ||Ay|lserny = | Arlleoraomyy and V@ Hy — Hy is unitary.
Therefore, we obtain

(3'7> HAUA1“6“(H0—>H2)
= |UAAVV ||se (o 112) = || Ao Ao (a1

< [ Aollseo (| Axlleer () = [[Allseo (- ) | Ax leor (10— 1) -

For any « € [1, 00|, define

(3.8) 6" :=6" (12— 12), &, :=6"(L],—L},),
(3.9) Gga(t,x) = 6" (L:%: - Lim) ) ?it,:c)—m: = 6" (Lim - Li) :
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Let I C R be an interval. Let A(t) € B(L2) for all t € I and sup,; ||A(t)||s < oo.
Assume that I >t — A(t) € B(L?) be strongly continuous. We define A® : L2 —
Cy(I,L2) and A® : L}(I,L2) — L? by

(3.10) (A%q) (t,2) = (A(t)uo)(x),
(3.11) (A%f) (z / A(r

Note that A and A® are formally adjoint to each other. The following lemma is very
important for our analysis, but it is essentially the same thing as [FS17, Lemma 3].

LEMMA 3.2 (Duality principle). — Let p,q,« € [1,00|. The following are equiva-
lent:

(1) For any v € 6%,

(3.12) (AN 2 (1.22) < Cllrllse-
(2) For any f € L (I, L),
O !
(3.13) |rA \G%( o S Ol 2y

(3) For any f € L{" (I, L),
(3.14) 1A% Fllezer < C IS )

Moreover, /C, C" and C" coincide.
Proof. — Assume (1). Then we have

e I N

I

GQa

- sup{tTr hA@WA@H llee < 1}
s, = sup {| [ T [A®rAQ" /O] dt]: Inlee < 1
< sup {||p(A<t>*'7)||Lf(I,Lg)||f||ifp/ (IL) v llee < 1}
< Ol 20

Therefore, we obtain

(3.16) | £A°|

\/_||f||L2p ( L2q'>'

62a
25 (ta

We can prove that (2) yields C' < (C” )? similarly. Since

(3.17) |rA°| = [|A% fllgzor

Gi‘i( ) (t,x)—x

we completed the proof. 0

The following lemma is sometimes useful:

ANNALES HENRI LEBESGUE



Asymptotic stability of the Hartree equation 191

LEMMA 3.3. — Let I C R be an interval. Assume that

(3.18) ”p(An(t)*V)HLfn([,Lgn) < Collvllgen
for n = 0,1. Then we have
(3.19) (A0 A0y, 1y < VCOCHI e,
where
1 1 1 1

3.20 —=— =4 = X =

Proof. — Let f € Lp (I,L9). f can be decomposed as f = fyf1, where
(3.21) “fHLf/ (I,LZ,) - ||f0||pr6 (I,Liqé) ”lepr/l (LLiqi)'

Then we have

322) |[ [ (A0 A(0)) (@)1t )dwdt

< | [ TeAnery Ave) st 0t

< /TrA1 £t 2) Ao(t)y )d’

< AT rAG|L. Ivllee

<P lles A5 fill 2y [ foA7
(t J.)—):L L"(t @)
< VGG leallFll - B
3.3. Resolvent expansion of the propagators
If o(p,v) = % + 2 =2 pu < ooand V € LI(R,LY), there exists a unitary
propagator Uy (t). Namely, Uy satisfies
t
(3.23) Uy (t) = U(t) —i / Ut — 7YV (7)Uy (7)dr.
0
Let Vj := |[V|"/? and V = V,V;. Multiplication with Vj yields
t
(B24)  VOUV(D) = %OU®) =i [ @U(E = nVa(r)Ve(r)Uy (7)dr.
Define D(Vy, V1) by
t

(3.25) (DVo, Vi) f)(t) 1= =i [ Vo(®U(t = T)(A()f())dr.
Then we can write (3.23) and (3.24) as
(3.26) Uy =U° +D(1,V)VoUy,

VoUy = VoU® + D(Vo, V1)V Uy
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192 S. HADAMA

Hence, we have

(3.27) (1 = D(Vo, V1))VoUy = VoU*®.

If R(Vo, V1) :== (1 = D(Vp, V1)) € B(L7,), we have

(3.28) VoUy = R(Vo, Vi))VoU".
Therefore, (3.26) and (3.28) imply

(3.29) UZ = U +D(1,V1)R(Vo, Vi) VoU®.

The following lemma justifies (3.29).

LEMMA 3.4. — Let d > 1. Let pp € [1,00) and v € [1,00] satisfy o(pu,v) = 2.
Then there exists a monotone increasing function ¢ : [0, 00) — [0, 00) such that for
any V e LY (R, LY)

(3.30) IRVo, Vills(zz ) < (IV gy
holds, where Vj := |[V|*/? and V = V, V4.

Remark 3.5. — 1In this paper, we denote monotone increasing functions by . We
use the same symbol ¢ for different monotone increasing functions. This is like the
constant C'. We do not distinguish a monotone increasing function from another one.

Proof. — It follows from the standard Strichartz estimates that

(331) Do ) logiz.) < CollV gz
Hence, if ||Vl rps < 1/(2C)) =: 0, then we have
1
(3.32) Do Vi) lagiz ) < 5
(3.33) IRV, Villg(zz ) = (1 = PV, Vi) ) <2

Thus, we can assume that ||[V[|spy > 9. There exists 0 =Ty < Ty < --- < Ty <
T'ny1 = oo such that

(3.34) g < [Vllzepoy <0 for k=0,...,N -1,
(3.35) IVl 2y ny <6,

where [, = (Ty, T+1). Therefore, we can solve the equation

(3.36) (1~ DV, Vi))u = f

uniquely on Iy. We denote this solution by ug € LZ(Iy, L?). Assume that there exists
a unique solution on [0,7}] = Iy U --- U Iy, denoted by u;,_; € L([0, Ty, L2). We
consider the equation of u on I, = [T}, Th41):

(3.37) w(t)+1i /t Vo()U(t — 7)Vi(T)u(T)dr

Tk

= 1) =i [ VOU — Vi1 ()
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This is solvable; that is, a unique solution exists u, € L?([j,L?) to (3.37). Let
ug(t) = up_1(¢) for t € [0,T;]. Then uy € LZ([0, Tyy1], L?) is the solution to (3.36).

T

We have a unique solution to (3.36) on u € LZ([0,00), L?) inductively. We can
similarly extend this solution to u € L?(R, L2).
Now we estimate the operator norm of R(Vp, V7). We have

(3.38) IR(Vo, Vi) fllez, = llullez e r2)

(3.39) < Jull z2o,00),22) + N0l L2((=00,0,22)-
By (3.37), we have

(3.40) lunll 2,e2) S W llez, + CollV g pyllun—ll ez om 22);

hence we obtain

(3.41) lunll 20, 001.22) S Iz, + (Coll VI ) lun-1l 2o m 22)-
Hence it follows from (3.40) that
(3.42) [l z2(0.00.22) S {CollV o)™ 1 £l 2 -
Since
A K
(3.43) N <2> <AV e, )
we have
< @MV,

(3.44) ||U||L§([o,oo),Lg) ~ <Co||v||L5L;> L ||f||LfI
We can bound [|u||2((—co,0),22) similarly. From the above, we have

CIVIL,,
(3.45) IRVo Villg(rz, ) S (CollVllpery) — 0" m

3.4. Propagators with time-dependent potentials
Let p,q € (1,00) and « € [1, 00]. We call (p, ¢, ) admissible when é > d—lp +% and
a < p hold. The following result is the most essential tool in this paper:

THEOREM 3.6 ([FLLS14, Theorem 1]; [FS17, Theorem 8]; [BHL*19, Theorem 1.5)).
Let d > 1. Let (p,q,«) be admissible and o(p,q) = % + g =d—2s for s € (0,d/2).
Then it holds that

(3.46) (U ()+Qo)ll 722 < [{V)iQoll o
By Theorems 3.1, 3.6 and Lemma 3.2, we obtain the following corollary.

COROLLARY 3.7. — Let d > 1. Let (pn, gn, @) be admissible and o(py, q,) = d
for n = 0, 1. Define

(3.47) Digo. 1) = [ " a(OU(t — 7)1 (r)dr
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Then we have

(348) HD(QO g1 HGQ H ||gn’ 2PnL2qn

n=0,1

where L =
o

2a6 2a1 :

Proof. — First, we consider the operator

(3.49) T(g0.90) = | (Ut = )gs(7)dr = goU°U* g1,
By Lemma 3.2 and Theorem 3.6, we obtain
(3.50) IT(g0, 9) e < 90U oy NTZ g1l e
b Gzﬁ(t x) G(t,z)ﬁz
(3.51) S 11 lgnll 2o, 2
n=0,1
Therefore, we get the desired estimate by Theorem 3.1. U

We extend Theorem 3.6 with s = 0 as follows.

LEMMA 3.8. — Letd > 1 and 0 € I C R be an interval. Let (p, q, &) be admissible
and o(p,q) = d. Let p € [1,00) and v € [1,00] satisty o(u,v) = 2. Then there exists
a monotone increasing function ¢ : [0, 00) — [0, 00) such that

(3.52) oy (&)l zpirzsy < @ (Ve ) Illse
Proof. — We use Lemma 3.2. Let f € L? (I, L?"). By (3.29), we have

(3.53) (ri&d

<]

T DU VRV, VWU .

z—(t,x)

62’ 62’

On the one hand, Lemma 3.2 and Theorem 3.6 yield
(3.54) (e

62a < HfHL?p/ (I,Liq/>.

z—(t,x)

On the other hand, we have by Lemma 3.4

(3.55) |[D(f,Vi)R(Vo, Vi) VoU®|

GZa (t.2)

< HD(faVl)”gg;’”R(%,Vi)HB(Lg)

VU

B(L%%Lf@)

S0 2y IV Mo (IVllzery) -

where we estimated ||D(f, V1) ||6§a’ in the same way as the proof of Corollary 3.7. [

Note that the “usual” Strichartz estimates also hold:

LEMMA 3.9. — Let d > 3. Let p,q,p,q € [2,00] satisty o(p,q) = o(p,q) = d/2.
Let p € [1,00) and v € [1,00] satisty o(u,v) = 2. Then there exists a monotone
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increasing function ¢ : [0,00) — [0, 00) such that

(3.56) 1Uv (t)uol|rrs <§¢><H‘/HL¢L;) [uol 2,

(3.57) H/ Uv(t,n)f(dr| <o (IVilges) 171 7,7+
R LYLd Lo
t

(3.58) H/ Ov(t, ) fdr| <o (Vi) I£1 5 -
0 L Lt Le

Proof. — The usual Strichartz estimates and (3.29) immediately imply (3.56).
(3.56) and usual duality argument imply (3.57). By the same argument that led
to (3.29), we have

(359 Upltn)f =U(=7)f =i [ Ut =n)Va)(T)m, 7,
where (T'f)(m1,7) = R(Vo, V1) (VoU(- — 7) f)(t). The standard Strichartz estimates
and (3.59) imply (3.58). O

The following lemma is also useful:

LEMMA 3.10. — Let d > 3. Let s € [0,00). Let p,v,v € (1,00) satisty L = %+§
and o(u, ) = 2. Let (p,q) be an admissible pair of the standard Strichartz estimate;
that is, p,q € [2,00] and o(p,q) = d/2. Moreover, we assume that % < % + é when
i + % < 1. Then there exists a monotone increasing function ¢ : [0,00) — [0, 00)
such that

(3.60) |70 () w4 < 0 (V12212 luollzz.
Proof. — First, we assume
1 1 1
3.61 —-<-+—-<1
(3.61) 2 p n
Since V € LIHSY < LFLY and o(u,7) = 2, the propagator Uy (t) is well-defined.
We have

(3.62) (V) Uy (£)(V) *ug

LS

< U)ol pg + H / U= )9 (VOU()T) g dr

IPLY
< Colluollzz + Co [(V)* (V(OUY (V)" uo) | ..
< Colluollzz + CCol VI pemz (V) Uv (V) uo| 4 »
where
1 1 1 1 1 1
(3.63) —=1l-——=, —i=1-z—--.
r popooc voq
(r,c) is an admissible pair of the standard Strichartz estimates. Therefore, we get
(3.64) (VY v (V) o, , < 2C0uollzz
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when [|V|[pppgv < 6 with sufficiently small 6 > 0. Let ||V[|1s((0,00),37) > 0. Then

there exist 0 =Ty < T} < --- < Ty < Txny1 = 00 such that
)
(3.65) B < HV”L;‘(IH,H;”) <9, for 0 <n < N; “VHLQ‘(INH,H;’”) <9,

where I, := [T,,, T,,+1]. First, we have

(3.66) [(V) Uy (V) uo

Ly (1o,L%) < 2Coljuollzz.

Let Vi(t) := V (t)xu, (t). Since Uy (t,T1) = Uy, (¢, T1) for t € I, and Uy, (t) = U(t) for
t € Iy, we have

(367) Uv(t) == UYV1 (t,Tl)Uv(Tl) - UYV1 (t)U(—Tl)Uv(T1>

Hence, we have

(V) Uy (£)(V) "o

< 2Co [(V) U (T1)(V)*uo

L2 (n,Ld) L2

(3.68)
< (2C0)2 fuo]l 2

In the same way, we obtain

(3.69) (V) Tv ()(V) o

p(naz) S 20" uollzs,

which implies
N

n

[V vv (V) 7w,

(3.70)
N<200>N+1||UO||L3'

N < HV||‘£r e yields the desired estimates.

Next, we consider the case i—i—% < % Let % = %— é. Then the endpoint Strichartz
estimates ([KT98]) imply

(B.71) (V)T ()(V) o

< U (Euollzs + H / Ut = )Y (VTR (V) u0) dr
< lluollzz + [(9)* (VU (V) wo) | .,
S lluollzz + 1K)V | ey <V>8Uv<t><v> g

g

LPLq ’

where (P, §) is an admissible pair of the standard Strichartz estimates. Since *+2 = 1,
Boop 2

we conclude that

(3.72) [(V)Uv (0)(V) w0

s S (IVllze2s) lluoll sz
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Finally, we consider the case i + % > 1. We have

(3.73) (V) Uy (£)(V) *uo

LPLY

<0 @uollzgas + | [ Ut =)@V V)T ua)ir

LPLY

S lluollzz + [|(V) (VU (£)(V) ~up)|

LiLg

S luollzz + IKVY V| ey |[(V) Uv (V) *ug

LfNLg ’
where (p, ) is an admissible pair of the standard Strichartz estimates. Since i—k% =1,

we conclude that
(3.74) [V U @) s

sra <2 (IVllzpre) llwollzs. 0

4. Strichartz estimates for density functions

In this section, we prove the key estimates in this paper.

THEOREM 4.1. — Let d > 3. Let 0 < § < s < 1. Let p,q, i, v, € (1, 00) satisfy
o(p,q) =d— s and o(u,v) =2+ 5. Let (p,q,«) be admissible. Assume that there
exist p;,q;,a; € (1,00) for j =0,1,2 and p;,v; € (1,00) for j = 0,1 such that

(4.1) o(pj.q;) =d—13, (pj,q;, ;) are admissible for j = 0,1, 2,

s 2 d
(4.2)  o(po,10) =2, UWhW):2+3M:2+;, L+ﬁ<;7+§,
1
1 1—s s 1 1/1 1
4.3 ~ N X:77777 :< )7 YZJJ'
(43) X X R A SR pq,Q

Then there exists a monotone increasing function ¢ : [0, 00) — [0, 00) such that

(4.4) LUy (1) Qo) r e < U1V | 112) [ Qo

HS

(4.5) [p(Uv(£):Qo0) = p(U (£)xQ0) | 7 g2
<@ (IVIIzemes + IWllzpaz ) IV = Wz

|Qol

ETEN
The following corollary is enough for our analysis:
COROLLARY 4.2. — Let d = 3. Then there exists a monotone increasing function
¢ :[0,00) — [0, 00) such that
(16) 0@ (©.Q0)l| 2 < (IV 212 ) 1@l
(A7) ||p(0v(£):Q0) = p(Uw (1):Q0)] 12

S (HvHLgH;/Q + ”WHLgH;/Q) “V - WHL%H;M”QOHHU?»S/%
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Proof. — Define exponents as follows:

1 3
(4.8) s:§:§, p=q=p=v=2, a=g,
5 5 5 15 15
(49) po:qo:gv OZOZZa pl:q1:§7 a1:§7 PZZC]Q:E)» O-/Z:Za
3

(410) Ho = U1 = 2, Vo = 3, V= 5
Then Theorem 4.1 implies the result. O

Before proving the above theorem, we define some notations. For F = (Fy,..., F},)
€ S(RY)™, define

t t1 tn—1

A1) WLF)() = (—i)" /0 dt, /0 dty - /0 dtU[F () - ULE,](t),
where U[V](t) := U(t)*V(t)U(t). And we define multilinear operators by
(4.12) TomlF, Qo, GI(t) := p(U()Wal FI(£)QoWn [G1(£) U (£)")
for F € S(R)" and G € S(R?)™. We have

LEMMA 4.3. — Under the same assumptions as in Theorem 4.1, The following
multilinear estimates hold:
(413) ([ TamlF, Qo, Glllzmze < Co ™™ TT I1F e mz 1Qollasse TT NGl Loz

j=1 k=1

Proof. — It suffices to prove the following two estimates:

(4.14) | Tom[F, Qo, Glll oo < Co ™ [T I1Ejll o 120 1Qolezo TT I1Gkll o 20,
j=1 k=1
(4'15) HTn,m[Fa Qo G] HLle;’ql S C’(7)l+m H HFjHLle};”l HQOHH}CO‘l H HGk| LM HP
j=1 k=1

We only prove (4.15) because (4.14) can be shown similarly. We have
(4.16) || T,.m[F, Qo, G]

HLle;’ql

~ [T n[F, Qo, Gl prir + (VT [F, Qo, G| 21 o
Let f € L L3 Note that (V) = (V)~! — LV with L := V(V)~!. We have
FOUGOWLEI)(V)™ = FOUGV) T (V) = LV) WL[F(6)(V) !
= W1 - WQ.

We can assume n > 1 because when n = 0, we obtain (4.25) by Theorem 3.6. W} is
a good term, and the problem is W5. We have

(4.17)

(118) Wy = FOUMY) LS WaFH (1) ()

k=1

+ f(OU@Y) LWL [FI(6)V(V)
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where F¥ = (Fy, -+ | Fy_1, VFy, Fy1, -+, F,). The last term is harmless. Let F o :=
|Fy|Y/? and F| = FioFy ;. Note that L H}" — L LY with o(uy, v1) = 2. Then we
have

(4.19) || FOU@©) L [ it / Yty / " U (1)

UV F|(tg) - - 'U[Fn}<tn)<v>il

2a1

z—(t,x)

(&)

< [rovem L [ anve)Fow)

/
V2&1
t,x

Foa(t)U (1) /0 Yty /0 " AU - UV F ()

CULR](8)(V)

B(L2—L2,)

1/2
S CollF o 2 VI

Fia(t)U () / dtsU ()

=: 1.

. / UV E(6) - / dtU[F) (8) (V)" (i5orz.)

To justify the last inequality, we used Theorem 3.1. Moreover, we have

k—1
(420) 1< C§Ifl 24 TN
t =

M1 r V1
Ly

(VEL)(t)U (tr) /Otk At U [Fopr | (tpgr) - - -

/0 "t [F](£)(V) !

B(Lg—wf’Lg.’)
<Cka” 217’ L2q1 H HF ”L‘”Hl V1

U(tx) / Aty 1 U[Frir)(thg) - - /Otn_l dt,U[F,] (tn)<V>_1

B(L2—LyLg")
< Ck”f” 217’1L2c11 H “F ||L“1H1 vy

< ewywe) /0 dilllFenl(ten) - [ dUIE) ()(9)

B(L3—LyLS) ’
where 7, ¢, r, ¢ are defined as follows. Fix r > 2 such that 1 - =< % < mln(g —
T1- ) Define 7 € [2,00] by 4 = L —I— . Then there ex1sts ¢, [ oo] such that
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o(r,c) = o(F,¢) = 4. By direct calculation, we obtain

4.21 — = =———=>0(.
( ) c* ¢ vy ¢ d
Since
t
(4.22) [ o= ne@nndr| < Colglp o Mol e

t

we have

@23) [Vt [ dteetliFinl(tn) - [ dUE)E)T)

B(L3—LyLS)

n
gcéz—k H H}WJHL?H;VI
Jj=k+1

From the above, we obtain

(4.24) ||F(OU@/(V) LWL [F¥)(1)(V) |

n
62a/1 5 Cg”fHpr’lLiq’l 1_[1 ||Fj||Lé‘1H;”’1’
]:

z—(t,x)

which yields

(425)  [FOUOWEI@V) ]

n
&2 S C(TJZ||f||pr’1]chq’1 Jl_[1 ||Fj||L§‘1Hi’”1'

z—(t,x)

Therefore, we conclude that

(4.26) || Tom[F, Qo, G| 21 1

n m
<o (H ||P}||Lg1H;m> (ol (TT Gl )

j=1 k=1

Finally, we estimate [|VT},,[F, Qo, Gl|[;1,2. In the completely same way as the
above, we get

(4.27) || Tm[F, Qo, G] ||Lf2L32

n m
sy (-Hl HFjHLng;n) s (T 1Gul o )

(128) o [VUOWLFI0(V) ™ Qu(V) WG U 1)V

PO 740
Lord

n m
sy (Hl ||Fj||L¢1H;,U1) I@olers { TT 16l g )
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Therefore, we obtain by Lemma 3.3

(4.29) IV T m[F, Qo, Glll 1
< e [VU@WLFI()QoWa G ()" U @] 121
+ P [UOWAF]() QWi GI(8) U () V]|l 121 1

< Cn+m (H HF | LulHl 1/1) HQO”’HI,al <H |’GkHLf1H;’V1> . D
k=1

j=1
Proof of Theorem 4.1. — First, we prove (4.4). We have the series decomposition
of UV (t)
(4.30) Uy(t) = S Umwy
n=0

where W‘(,n)(t) = W,[V](t) and V = (V,..., V). If [V pegsr < 1/(2Cy) =: 6,
Lemma 4.3 implies

7). Qullgas < 52 ()% [ D 07Uy,
n,m=1 t Mz
431 o
3y S D GV e 1 Qollage
n,m=0
< CllQoll

Let [|V]|Lo(0,00), 557y > 9. We can divide the interval [0, 00) such that
(432) O:T0<T1<"'<TN<TN+1:OO, I, = [Tk,Tk+1] fOI'k,’:O,...N,

J

(433) 9 < ||VHL5(IIC,H;’V) < 0 for k = 0, ey N — ].7 HVHL?(I]\UH;’U) < 0.

Define Vi, (t) := V(t)xz,(t). Then (3.67), Lemma 3.10 and N < ||V||’2¢H;,u yield
(1.31) H<V>SP[UV(?5)*Q0]HLP(0c>o) )

H p Uy, ()« (Uy,, (T1)" Uy (Th) Qo Uv (T, *Uy;, (Tk) )]

LY (Iy,L%)

<C Z |U(Tx)" Uy (Ty)QoUy (T3.)"U (T} |

Hso

CZH U (L)) 1 Qo

2 (||VHL¢H;*”) (N + D1 Qoll
o (IVIlzesze ) 1Qolla
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Finally, we prove (4.5). It suffices to show that

(4.35)  [{V)*p((Uv(t) = U (£))QoUv ()|l 10
<@ (IVIIzemzs + 1IW gz ) IV = Wil gz

Qo

Hs,a .
We have

(4.36) [I(V)*p ((Uv (1) = Uw (£))QoUv (1))l 1r g

<3 @ (U (W @) - WP ) QoW (U oy')

n,m=0

LPLY

< 3 3 [T OO QW VI U ()

nm=0 k=1 Ly
where V.= (V... V), Xj, = ((Xg)1,- -+, (Xg)n) and
(4.37) (Xp); =Vifl<j<k—1,
(4.38) (Xp); =V -Wifj=k,
(4.39) (Xp); =Wifk+1<j<n.

By Lemma 4.3, if ||V|[sps» and [[W|[sps» are sufficiently small, we obtain

(4.40)  [[(V)*p((Uv (8) — Uw (1)) QoUv (1))

Lrrs
~1 _
SV =Wihpemz Qollwse D2 >0 Co VI W I s
n,m=0 k=1
SNV = Willgegsr [ Qollwse.

The same argument as we used to prove (4.4) yields
(441) (V) p((Uv (1) = Uw (D)QoUv )], 0

<@ (VI ) IV = Wiz 1Qol

65,04 . |:|

5. Proof of Theorem 2.2

In this section, we give a proof of Theorem 2.2 by giving a nonlinear estimates:

LEMMA 5.1. — Let d = 3. If H<f>2f(f)HLgng° < 00, then there exists a monotone
increasing function ¢ : [0,00) — [0, 00) such that
(5.1) oDl goare S50 (IV e ) IVIZ,
(5.2) oV Dl S0 (Ve ) IV 12
(5.3) NV Dz S 9 (IV Iz ) IV

See (2.7) for the definition of Ny, Ny and Nj.
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LEMMA 5.2. — Letd =3. If ||<£>2f(§)||L%ngo < 00, then there exists a monotone
increasing function ¢ : [0, 00) — [0, 00) such that

(5.4) |[p(N:[V]) = p(N:[1W))

L2HY?

1 (Vs + 1V gzin ) (IV e 10l ) IV = Wl
(5:5) [ p(Na[V]) = p(N2[IW])

1/2
L2y

S (Vs + 1 gzign ) (IV e+ 19l ) IV = Wl

(5.6) Jo(N5[V]) = p(Ns(W)| 0

1 (IV sz + 10 lgign ) (IV 2 e IW 1 ) IV = Wl g

x C

First, we prove that Lemmas 5.1 and 5.2 imply Theorem 2.2.
Proof. — Let

(5.7) Dlpel(t) == (1 + L1) ™" (p(Uv (£).Q0) + p(N1[V]) + p(Na[V]) + p(N3[V])),
(5.8)  E(R) = {pQ e (R, H) Noall zp < R},

where V' = w * pg and R > 0 will be taken later. We prove ® : E(R) — E(R) is a
contraction map. Corollary 4.2, Lemma 5.1 and Young’s inequality imply

(59 Ilpalll 0
<0+ 207y (1O O-Q0l e + NNV D5
H1PVlVD g + 10N VD )
< Cre (IVlz ) (IVIZ3 e + VI 2 + [ Qollrn
< Cro(R) (R*+ R + <) .
Hence, if R > 0 and g9 > 0 are sufficiently small, then we obtain
(510 |2lpallzz, < R

Therefore, the map @ : E(R) — E(R) is well-defined. We can prove the contraction
and the uniqueness of the solution by Corollary 4.2 and Lemma 5.2. U

In the rest of this section, we prove only (5.2) because we can prove the other
estimates in the same way. Let

NVie) =i | "Dy, )y V(DU (r — t)dr — i / "Dy, PV (P Ur — t)dr
— NVI() - N3V

(5.11)
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5.1. Estimate for N,

First, note that we have the wave operator decomposition

(5.12) Uy(t,7) ZWV (t,)U(T)",

n=0

where

(5.13)  WO(t,7) =1,

(5.14)  WO(t7) / o [ " A UOUV () - UV () U ()
and U[F) == U(t)* F(t)U(t). Hence, it follows that
(5.15) p(N3[V](1))
-/ t | olov v U =)0 - ) dndr
- gjo/o 0 p[U( AW (&, YU (F) V(U (1 — 1)V (r)U (11 — t) | drdr
=3 NV)

= iy [Lan [Matae [T a0l Ul (U

and

(5AT) Nalgss - 2] 0
= [Lar [Camp[U@W® g, - gt
UG gusa(P)U(r = 2)5na(r)U (1 — 1)

t t1 tn—1 tn T
= (_Z>n/ dtl/ dtz"'/ dtn/ dT/ dm
0 0 0 0 0

Ut U[g](t1) - - Ulgn] () U (T)* gnia (T)U(T = T1)74 gns2(T1)U (11 — t)].

xp
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5.1.1. With no derivative I
Let W € C°((0,00) x R?). On the one hand, we have

(5.18) Nolgr, -+ gnaa (8, x)dxdt‘

_ |ty { /0 U)W (t,2)U(t)dt

tn—1

Ji U g1 (1)U (41)d - [ Uy gt U G,
< [V g U U@ i)V (n)dn]
Tr { [ oo weauwaw) ) [ Ut g1 () U (0)dty
[V (U [ U i gsa(r) U]
Since (V) = (V)1 + V- V(V)~1, we get

T

(5.19) \ W (t, 2)Noug1, - - - gnra) (L, x)dxdt‘
R
n+1
< Og+2||W||Lng H ||9j||L§H,},||9n+2||L§Lg-
j=1
From the above, by the duality argument, we obtain
n+1
(5.20) [Nalgis - agn+2]HLfL§ < Cg+2 H ”gj”LfH;HgnH”Lng-
j=1

On the other hand, we obtain

(5.21)

Nalgr, -y gnia (8, m)d:pdt‘
= [<V>—1 /0°° Uy WU [ U)o (1)U (1)

x /0 " () g (U (F)dr /0 U(ﬁ)wfgn+2(ﬁ)U(ﬁ)dﬁ<v>} ’

Again, by the same argument as above and the duality argument, we obtain

T

n+1

(5.22) INalgr - gnsolllizea < 2 T lgilliznzllgnsell -
j=1

Note that we used Gohberg—Krein theorem several times to get (5.22). By interpo-
lating (5.20) and (5.22), we obtain

n+2

(5.23) INalgr, - gnsalllzzez < G5 IT llgsll pa -
7j=1
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5.1.2. With no derivative 11

Next, we prove

(5.24) IValgr, - gnlll j5rs < Cg ™2 H 1951l 22 | gnall 2o | gl 20
, o
Let W e C°((0,00) x R?). Let WO := [W|z and W = WOW?'. Define ¢°,, := |g|11
and g1 = ¢¥gi. Similarly, define g}l o = |g|TT and guio = ¢%.09) ., Also, define
= \gj]% and g; = ¢)g; for j =1,...,n. Then, by Theorem 3.1, we have

(5.25) Nolgr, -+ Gnaa (8, :c)d:cdt‘

Ty [ [T oo w v | Ut g1 (00U (1) dt

- / U gt U )

tn
« /0 U(r) guis (PU(F)dr | U+ yfgnH(ﬁ)U(n)dﬁ}

t

[e=]

NEEE
Gt“;

< [loewe]

CIO

t,z—x

0

StV () /0 " U g ()i

She
-

X g}LH(T)U(T)/O dryysU(11)gp 4o(T1) e 9}L+2UO‘610t

tx z—t,x
n
2 ||1170 0
Sy Cot HW i, HWl L?,mg”gj”L%Li Int1|| 5
||97lz+1|| L2/ 92+2 L2007 g7lz+2 L3,

n
= Co Wl /2 TT Ngillzzrs lgnall 2ol gneall 2o
,T ]:1 t,x t,x

5.1.3. With derivative

Finally, we prove that

(5:26) [VA:lgn.--gusell 2

< T3l 3132 7)o 000 19 gl
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Let W € C((0,00) x R?). Let f := If|z and f = fof1. Then we have
G2n) | [7 [ a@w)ta) Mo, . ,gn+2]<t,x>dxdt]

<|m [/0 AU (£)* W /dt1 D a1(t)U (1)

4T [/OOO ALV LU () W (DU (¢ v/t AU (1) g1 (6)U (1)
/ dtaU (4 g (t)U (1)

n—+

x [ arU () g (U () /O AnU (n) 1y gns2(r)U (m) (V)] | = A+ B.

X /Otn drU(7)* gny1 (T)U(T) / dTlU(Tl)*7fgn+2(7'1)U(7'1)V] ‘

Since it follows from Theorem 3.6 and Lemma 3.3, that

(5.28) lp @ @)v0)ll 572 < 1{V)v0ll 15,
(5.29) 1@ @70l 20 < (V) 70] o
(5.30) (V) = (V)" - V- v(v)!

the duality argument and the usual Strichartz estimates implies

(5.31) A< C’S‘JFQHWHL;%/I3 IT KV g5l 2 p2r2 (V) gl 200 (V) g2l 2070,
st : :

(6532)  B<CIW s TLIV0sl 3109 gl s | (V) gl oo
,T ]:1 t—x t,x t,x

which yields the desired estimate.

5.1.4. Conclusion

By interpolating (5.24) and (5.26), we obtain

n+2

1 n
(533) H|V‘2Nn[glv s 7gn+2] 1212 < C 2 H Hg]HL2H1/2
7=1
By (5.23) and (5.33), we get
n+2
n+2
(5.34) [Nolgrs - - ,gn+2]||LgH;/2 < OOJr H ng”Lin”'
j=1
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Therefore, we have

N3 (V)

s $ 2 NGz = 32 NGV V] gy

(5.35) "0 =0

<Y vz, SV
n=0

2
1/2 1/2
L2ZHY? ~ L2H}

for sufficiently small [[V'[| ,,1/2. We can prove (5.2) in the same argument as in the
proof of Lemmas 3.4, 3.10 and Theorem 4.1.
5.2. Estimate for N2

By (5.12), we have
(5.36) NZ(V)

s t T
-y /0 /0 p[U(t)w<V">(t,T)U<T)*V(T)U(T — )V (r)y Uy — t)|drdr
=0
=> M, (V).
n=0
Define M, [g1, ..., gnio] in the same manner as N, [g1, ..., gnial-
5.2.1. With no derivative 1
In the same way as we proved (5.23), we have

n+2

(5.37) IMalgr, - gnsalllzzrs < C* T llgsll 2 e
j=1

5.2.2. With no derivative II
In the same way as we proved (5.24), we get

n
(5:38)  IMalgr, gl 2o < G5 T 105129l vzl gl o
,T ]:1 ,T ,T

5.2.3. With derivatives

We will prove

(5:39) VMl gusall o

< CF 2 TL D)5l o5 V) gl 575 (VY gl o
=1 ’ ’ ’
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LEMMA 5.3. — Let Xi,...,X,, and X be Banach spaces. Assume that bilinear
maps B, B. : L{' (R, Xy) x --- x LI" (R, X,,) = LY(R,, X) are defined by

(5.40)  B(gr,...,gn) - / At K (1) g1 (1) - / At E (b1, ) gn(t),
(541)  B<(g1,---:9n) 12/0 dt1K1(tat1)gl(t1)"'/Otn dtn K (tn-1,tn) gn(tn).

Ifp>pyand 1/p; +1/pjy1 > 1 forall j=1,--- ,n—1, then we have

”B(gl>"'vgn HL”X H ngHijXj
(5.42) Z
= [[B<(91,- - 9n)llrx S HHQJHL%X

Idea of the proof. — We can assume that n = 2. Define

~ 00 t1
(5.43) B(91,92) 1:/0 dthl(tatl)gl(t1>/0 dta Ky (t1,t2)g2(t2).

By the proof of the Christ—Kiselev lemma by the Whitney decomposition (see
[Tao00]), we have

(5.44) B is bounded = B. is bounded .
By the usual Christ-Kiselev lemma (see [CKO01]), we get
(5.45) B. is bounded = B._ is bounded. O

Hence, it suffices to prove
(5.46) [IVMlgr, - gusoll s S K9)gll e =« IV )il sl (V) gl o,

where

(5.47) Mg, .-, gusa(t) = (—i)n/o‘” dt1~-~/ooo dt, /0°° dT/O“’ dn

x p{U OU[g1](t1) -+ Ulgn) (En)U (T)" gnsr (MU (T = T1)gnr2 (1)U (11 — 1)

For simplicity, we only consider Mj[g1, go]; we can deal with the general case in the
completely same way. Let W € COO((O o0) x R3). Then we have

(5.48)

dt / AW (t, 2)V M2 [g1, ga (t, @)
0 R3

]

<|mi [Caweyrewoun )

0 &20/7
V[ dnU ) g (t)Uh) [ daU(t) ga(ta) U (1) (V)
By [CHP18, Theorem 3.1}, we have
(5.49) [Iv1zp@ @],

= AB.

&20/13

X

Y

S [¢wy ey ()|

&2’
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By interpolating

(5.50) (U@ s S IV lleo4,

(5.51) VU @) 372 < V)7 V)l /4,

we get

(5.52) [IV1Ep@ @] 50 S 90219

By interpolating (5.49) and (5.52), we obtain

(5.53) 191U @) 201 < |9 gaoris

Note that the above v does not need to be self—adpmt. Hence we have
(5.54) S HWHL2O/9

Next, we estimate B. On the one hand, we have
(5:55) Bui= | [T dnUt) ()0 [ AU () gl U ) (V)
S| vy awue @) [Tt (o)) v)h
" H/ooo AU (L) g ()U() (V) [ dtaU (1) galt2) VU (1) (V)44

Since Lemma 3.3 implies

(5.56) Hmmmwwpww<%v%
(5.57) HM()Mwm<%Vi

we have

6:58) | [T anUt) s UE)T) ! [T k) gt VU k) (7
H/ ) g1 (t)U (t1)dt1<v>_% cooyas
H<V>_ /OOO U (t2)* ga(t2) 7, VU (t2) (V) *+dt

S lgnll o gsoras llgell 2o (67 £(E)]),
s T I3

SEIGIe

&20/13

©20/13

©20/13 ’

&60/37 7

G15/11 7

©20/13

ST

&15/4

S ||<v>g1||Lf{L§||92||L§(;(9

By interpolating

(5.59) V1@ @llzz, S (V)29
(5.60) 19120 0 s < (932
we obtain |

(5.61) IV p(U(t)7) g S [\ ERTAAEaS o
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Hence, we conclude that

@&)Hwyéé w@ﬂvmmﬁwwmﬂvﬁﬁﬁgwm

Y (AR PP (RG]
Therefore, by using
(5.63) oW @ r20m S )2 100

we have

(5.64) Hﬂwth@nwﬂuﬂquVYJ

/000 dtQU(tQ)*(VQQ)(t2)7fU(t2)*<V>%+E

©20/13

~
=
N[

| [T anvy v

o0

(9074 [7 a0 () (V) (1)U )" (V)

&10/3

&20/7
S gl zrosoms [(9)iga] o [ (€210
S Kl [(9) 2] o (€] -
From the above, we get
(5.65) B S W91l zps <9092 | o [ €216 ..
On the other hand, we have
(5.66) B,
= Hv/ dt1U(t1)*91(t1)U(t1)/ dtzU(t2)*92(t2)WU(t2)*<v>%+€
0 0 ©20/13
S /0 dt,U(t1)" (V1) (1)U (1) /0 dtalU ()" ga(t2) 75U (2)" (V) 72 0713
| [T AUy a@)Un) [ dbUE) (Ve b)) (Vi
0 0 &20/13
- ‘/0 dt,U(t1)"g1(t1)U (t1) /0 dtalU ()" ga(t2) Vs U (t2)" (V) 12 2013
— O+ Cy + Cs.
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For (1, we obtain

S| [ U ) (Ve e)U ) (9

/OOO dt?U(t2>*(ng)(tQ)VfU(tZ)*<V>%+a

(5 67) ©20/13

+ ‘

/OOO dtlU(tl)*(vgl)(tl)U(t1)<v>—1

/0 dtQU(tQ)*gg<t2>V’}/fU(t2>*<v>%+€
&20/13

Since it follows from Theorem 3.6 and Lemma 3.3 that

(5.68) IOz S 1) o
(5.69) (U gorm oo S Illsors.

we conclude that

(5.70) ‘

/000 dtlU(tl)*(vgl)<t1)U(t1)<V>—1

/Ooo dtQU(tQ)*gg(tg)Vrny(tQ)*<v>%+6

S20/13

s

/OOO At U (t1)* (V1) (t)U (£) (V) ™! .
|[7 dtaU (62 gu(t2) Vs U 1) (9

@7,

SEIG]

&60/11

5 ” <V>gl||Lf/13 ng”LfO/gLio/”

S 11l 149l 2

~Y

Since it follows from Theorem 3.6 and Lemma 3.3 that

(5.71) U@ 52 S WYV lgrsre
(5:72) (U@ oy S (V¥ g,
we get

613) | [T anvo) (Ta o))

/000 dtzU(tQ)*(Vg2)(t2)fny(t2)*<v>%+5

< Vgl 2l (V) gl

S20/13

(@) .-
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From the above, we have

(5.74) C1 S IVl 132 1(V) 92| 20/

1)
In the same way, we obtain

(5.75) Gy < 1Vl 51 1{¥)gell o

©°7)

For C5, we have

|

(5.76) Cy < H/D“ AU (1) g (8) U (8)(V)

&10/3

x /O°° (V)2 U(6) (Vo) ()37 U (82) (9) 37|
Since
(5.77) 1@ @l 725017 < [H9)2 1
we have
678) | [T aavera@Uuee | Sl S 1Vl
Note that
(5.79) [(V)? / AU (1) (Vo) ()15 U (82)(9) 3|
S |07 [Tt (VEg Uy (9]
+ ey / Ao (1) (Vo) (12) V95U (02)*(9) 557
By interpolating
(5.80) V1P @iz, S [(Vy2(9) |,
(5.81) V120U 215 < [(V)2AD)2 .0
we obtain
(5.82) IV p(U(t)7) o S [(7)3) 3] -
Hence, we have |
(5.83) H )3 / AU (02)" (1912 (#2)U (1) (V)|
NHWﬁgQ pon €€ ..
H 20 ©°f(¢ HL?'
From the above, we conclude that
(5.84) GBS H<V>91HL;5||<V>392HL391/9H<€>3f(£>HL;o.
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Finally, interpolating
(6:85) Bi= | [T Ut (t)U) [ AU (®) gty ) (V)i

&20/13

S Il (V392 o €75

(5.86) HV/ Aty U (1) g1 (1)U (ty) / dtaU (ta)* ga(t2)y, U (£)* (V) 72 o
S IV >91HL3/; (Vg2 o €75 -

we obtain

(5.87) B:H %/ dt U (t1)"g1(t1)U (1)

/OOO dtQU(tz)*g2(t2)’7fU(t2)*<V>%+5

S20/13

< V)l 2119 ) gl s

(7).

5.2.4. Conclusion

By interpolating (5.38) and (5.39), we obtain

(5.88) IVIEMigr, -, ool panz S ”Hﬁ\!gj!\Lsz
j
By (5.37) and (5.88), we get
(5.89) Mg, ... a9n+2]||L§H;/2 < Cg”ﬁ ||9j||L§H;/2'
Therefore, we have -
INZ (V)2 g1 < Z IMa(V)l 2 a2 = Z MV VI e

(5.90)
< ZCSL+2||V||n+21/2 ~ ||V||L2H;/2

L?H,
n=0

for sufficiently small [|[V]| ;2. We can prove (5.2) in the same argument as in the
t
proof of Lemmas 3.4, 3.10 and Theorem 4.1.

6. Proof of Lemma 2.1

Proof. — Let
(61> Q(t) - UV(t)*QO - Z/O UV<t7 T)*[V<T)7 7f]d7—
(6.2) =: Q1(t) + Qa(1).
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First we consider Q);(t). We have

1

(6.3) (V)EQu)(V)E = ((V)EUv()(V) %) ((V)2Q0(V)?).
It is easily proven by (3.23) that (V)2Uy (¢)(V) ™2 is strongly continuous. Therefore,
Q1 (t) € C(R,Hz). Next we consider Q,(t). We obtain

Qolt + h) — Qu(t) = —i /fh Uy (£ + b, )V (7), 3]0v (7, ¢ + h)dr

(6.4) - Z‘/Ot (UV(t +h,7) = Uy(t, T)) V(7),v]Uv (7, t + h)dr

t
- z/o Uy (t, )V (r), %) (Uy (7, £ + h) = Uy (7, 8) ) dr
= A+B+C.
Lemma 3.10 and Kato—Seiler—Simon inequality ([SS75]; see also [Sim05, Theorem 4.1])
imply
1 1
(6.5) (V)2 A(V)?

62
S /tt+h [0+ (V)73 )
[(7) 20y (7, 1)(9)

B(L3)

t+h
<o IVl ) KOS ENsz [ IVl ym dr = 0 25 b =0,

x

By the similar argument and the fact that (V)zUy (¢)(V)"2 is strongly continuous,
we have

66)  |[(V)2B(V):

1

1 1
o 0ash—0, [(V)2C(v): .

, > 0ash—0,

which yields Q,(t) € C(R,H2). Therefore, we obtain Q(t) € C(R, H?2).
Next, we prove the scattering. First we consider Q;(t) € C(R, Hz2). We have
(6.7) NU(=0)@Q()U(t) = U(=5)Qu(s)U(s) ] &>
S NU=0Uv (1) = U(=5)Uv (5)]|8]| Qo
+ 1 Qollss | Uy (8) U () = Uy (s) U (s)|| .

B
Since
t
U (=00v (1) = U(=5)Uv($))uallzz = | [ UV OV (udr|
(6.8) SV Uy (T)uol| i s.,22)
S HVHL%([&tLLi)”UV(T)UoHLaLg
<o (IVIlz2ze) IV llz2 e, ol 22
we obtain

(6.9) [U(=t)Uv(t) = U(=5)Uv(s)lls < oIV |z IV ez s1.L8) = 0 as £, = oo
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Therefore, we get

(6.10) NU(=t)Q1()U(t) — U(—s)Q1(s)U()|les — 0 as t, s — 0.
Next we consider Q5(t) € C(R,Hz2). We have

(6.11) U(=t)Q()U(t) — U(=5)Q2(s)U(s) &3

< [U=0)Uv () = U(=5)Uv (s)l /Ot Uy ()" [V (), 4]0y (7)d7

S3
/ UV ’}/f]Uv( )dT
S3
+ | [ 0@ ey | 10000 - U=5)0ns) s
Let Vo := [V|5 and V = VyV;. Then we have
OyUvvdt| < | [ ave@ @] IOy ©llges
(6.12) &3 ST o (t2)

1

<o (IVllzes) €3,

f ||V||L3(I,L§)

Therefore, we obtain

[ v Vo]
o (Ve (€2 £9)],

It follows from (6.9) and (6.13) that
(6.14) NU(—=t)Q2(t)U(t) — U(—s)Q2(s)U(s)|lgs — 0 as t, s — 0. O

(6.13)

2 ||V||L$([s,t],L§) —0ast,s — o0.
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