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Résumé. — Motivés par l’étude de l’enveloppe convexe de la trajectoire d’un mouvement
brownien dans le disque unité réfléchi orthogonalement à sa frontière, nous étudions des
processus de fragmentation inhomogènes dans lesquels les particules de masse m ∈ (0, 1) se
divisent à un taux proportionnel à | log m|−1. Ces processus n’appartiennent pas à la famille
déjà bien étudiée des processus de fragmentation auto-similaires. Nos principaux résultats
caractérisent la transformée de Laplace du fragment typique d’un tel processus, à chaque
instant, et donnent son comportement en temps long.

Nous relions ce comportement asymptotique à la prédiction obtenue par des physiciens
dans [BBMS22] sur la croissance du périmètre de l’enveloppe convexe d’un mouvement brow-
nien dans le disque réfléchi à sa frontière. Nous décrivons également le comportement asymp-
totique à long terme de l’ensemble du processus de fragmentation. Afin de mettre en place
nos résultats, nous faisons une étude détaillée d’un subordinateur changé de temps, qui a son
intérêt propre.

1. Introduction and main results

1.1. On the convex hull of the Brownian motion in the plane and the
disk

Consider a Brownian particle B in the plane, which might be thought of as the
trajectory of an animal exploring its territory foraging for food. A natural way to
estimate the area covered by this animal during its search for t units of time is by
estimating the convex hull H̃ t = Hull({Bs, s ⩽ t}) of its position. Using Cauchy’
surface area formula [Cau32, TV17], the length P̃ t of the perimeter of the convex
set H̃ t can be computed as

P̃ t =
∫ 2π

0
sup

0⩽ s⩽ t
(eθ · Bs)dθ

writing eθ = (cos(θ), sin(θ)). Using the invariance by rotation of the law of B, it is
then a simple exercise (see [Let93] and the references therein) to show that in this
case

E
[
P̃ t

]
= 2π E

[
max
s⩽ t

(e0 · Bs)
]

= 2π E
[
|e0 · Bt|

]
=

√
8πt

applying the reflection principle for the unidimensional Brownian motion e0 · B.
In [BBMS22], De Bruyne, Bénichou, Majumdar and Schehr take interest in a

similar problem associated to the Brownian motion confined to the unit disk D.
Write BD for a standard Brownian motion in D, starting from 0, with orthogonal
reflection at the boundaries. To estimate the area covered by the process, they study
the convex hull H t = Hull({BD

s , s ⩽ t}). As the process BD is recurrent in D, it is
natural to expect that H t converges to D as t → ∞, hence that P t the length of the
perimeter of H t converges to 2π (see Figure 1.1).

Using again the Cauchy formula and the invariance by rotation of the process, De
Bruyne et al. [BBMS22] obtained the following exact equality for the average length
of the convex hull of {BD

s , s ⩽ t}:

E
[
P t

]
= 2π E

[
sup
s⩽ t

(
e0 · BD

s

)]
= 2π

∫ 1

0
P(τx < t)dx,
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(a) Time t = 1 (b) Time t = 4 (c) Time t = 8

(d) Time t = 16

Figure 1.1. Convex hull (in black) of the trajectory of the Brownian motion BD

(in blue) in the unit disk over the time interval [0, t].

with τx = inf{t > 0 : BD
t · e0 > x} being the first entrance time of BD inside the

spherical cap {z ∈ D : z.e0 > x}. Estimating P(τx > t) as x → 1 and t → ∞
is related to the well-known narrow escape problem [RBGV14, SSH07]. Using the
empirical approximation

(1.1) P(τx > t) ≈ exp
(

− t

− log(1 − x) + O(1)

)
as t → ∞

for x close enough to 1, justified in [BBMS22, Section 2.3], De Bruyne et al. then
make the following prediction for the asymptotic behavior of E

[
P t

]
:

(1.2) 2π − E
[
P t

]
∼

t→∞
c · t1/4e−2t1/2

for some c > 0.
We present in this article a toy-model for the evolution of the convex hull of the

Brownian motion in the disk based on time-inhomogeneous fragmentation processes,
which present a similar asymptotic behavior as t → ∞. These processes do not
belong to the well-studied family of self-similar fragmentation processes whose study
was initiated in [Ber02] and, interestingly, we still manage to obtain precise results,
both at large and fixed times. From the Brownian in the disk point of view, in
addition to the asymptotic of the mean of the perimeter, this toy model also allows
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222 B. HAAS & B. MALLEIN

us to study in depth the distribution of the length of a typical face of the convex
hull, as well as the empirical distribution of the whole set of lengths of its faces.

1.2. An inhomogeneous fragmentation approximation

1.2.1. Heuristics

Let us first observe that the asymptotic behavior of P t can heuristically be ap-
proached by a fragmentation process. Indeed, let Ct = {BD

s , s ∈ [0, t]} ∩S1 be the set
of positions at which the Brownian particle hits the boundary of D. We denote by
(ℓj(t), j ⩾ 1) the lengths of the arc intervals in S1 \ Ct, ranked in the non-increasing
order. Writing Pt and At for the length of the perimeter and the area of the convex
hull of Ct respectively, we observe that

2π − Pt =
∑
i⩾ 1

(
ℓi(t) − 2 sin(ℓi(t)/2)

)
∼

t→∞

1
24

∑
i⩾ 1

ℓi(t)3,

π − At =
∑
i⩾ 1

1
2
(
ℓi(t) − sin(ℓi(t))

)
∼

t→∞

1
12

∑
i⩾ 1

ℓi(t)3.
(1.3)

We expect H t and Hull(Ct) to be comparable sets as t → ∞, see Figure 1.2, in the
sense that the lengths of their perimeters and their areas should be asymptotically
close. In one direction, one immediately remark that Hull(Ct) ⊂ H t and Pt ⩽ P t.
Using again Cauchy’s formula and invariance by rotation, we note that

E
[
Pt

]
= 2π E

[
max
z ∈ Ct

z · e0

]
= 2π

∫ 1

0
P (τne

x < t) dx,

where τne
x = inf{t > 0 : BD

t ∈ S1 and BD
t · e0 > x} is the stopping time associated to

the narrow escape problem to a target of length 2 arccos(x) ∼ 2
√

2(1 − x) as x → 1.
Using that the boundary of D is locally well-approximated by its cord, it is argued
in [BBMS22, Section 2.1] that for x small enough,

P(τne
x > t) ≈ P(τx > t) as t → ∞.

Numerical simulations supporting that claim are given in [BBMS22, Appendix A],
showing that E[P t] and E[Pt] have similar asymptotic behaviour as t → ∞, at least
concerning the first two orders. As a result, we expect that limt→∞

E[P t]−E[Pt]
2π−E[P t] = 0.

Simulations of our own, drawn in Figure 1.2, give credit to this approximation.
We now observe that (ℓi(t), i ⩾ 1)t⩾ 0 behaves as a generalized fragmentation

process. Indeed, in this process, at random times intervals get cut by the trajectory
of BD. The time at which a fragment of length ℓ gets split has the law of Tℓ the
first hitting time by BD of a target of width ℓ on S1. Obviously, the law of this
random variable depends heavily on the starting position of BD. However, we have
maxi ℓi(t) → 0 as t → ∞, using the recurrence of BD. We therefore argue that as t →
∞, the splitting times of different intervals should become essentially independent
of one another, and the dependency on the starting position should become less
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Fragmentations and the convex hull of the Brownian motion 223

Figure 1.2. On the left-hand side: the convex hulls H t (in black) and Hull(Ct)
(in red) of the trajectory of the Brownian motion BD and of the set of points
at which the trajectory hits the boundary of D respectively. As expected, the
boundary of the two hulls become indistinguishable around points at which the
Brownian curve hits the boundary of D. On the right-hand side: the evolution
over time of 2π − P t (in black) and 2π − Pt (in red). As expected, after a short
transitory period, the two curves become indistinguishable, even on a log scale.
We additionally drew in grey an approximation of 2π − E[Pt] computed using
Monte-Carlo methods, which shows a decay of order e−c

√
t(1+o(1)).

relevant. To be more precise, assuming that BD starts from the uniform distribution
in D, we recall that (see e.g. [CC11, RBGV14, SSH07])

E [Tℓ] ∼
ℓ→0

−2 log ℓ,

with [CC11, Theorem 2] giving a closed formula for E[Tℓ] as a function of the starting
position of BD. The narrow escape approximation (1.1) consists in considering that,
as ℓ → 0, Tℓ approaches an exponential distribution with parameter (−2 log ℓ)−1.
Additionally, the scaling properties of the Brownian motion implies that once BD hits
this interval, it will split it into smaller fragments in a self-similar fashion, similarly
to a 2-dimensional Brownian motion on the half-plane hitting a domain of length ℓ
on its boundary.

In order to approach the asymptotic behavior of the process (ℓi(t)/2π, i ⩾ 1)t⩾ 0, we
therefore propose to study inhomogeneous fragmentation processes in which distinct
particles evolve independently and split in a similar fashion, with the constraint that
the rate of splitting of a particle with mass m ∈ (0, 1) is proportional to | log(m)|−1.
We now introduce such processes rigorously.

1.2.2. Fragmentation processes (ν, c, | log |−1)

We place ourselves within the framework of the theory of fragmentation processes
developed by Bertoin in the early 2000s [Ber01, Ber02, Ber03]. Let ν be a (possibly
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infinite) Radon measure on the set of (possibly improper) partition masses of the
unit interval

S =

s = (si, i ⩾ 1) ∈ [0, 1]N : s1 ⩾ s2 ⩾ · · · ,
∑
i⩾ 1

si ⩽ 1


such that
(1.4)

∫
S
(1 − s1)ν(ds) < ∞.

Before introducing inhomogeneous fragmentation processes, where the rates of
splitting depend on the masses of the particles, we first roughly recall Bertoin’s
construction of homogeneous fragmentation processes where particles of mass m get
fragmented into particles of mass ms1, ms2, . . . at the common rate ν(ds), whatever
the mass m is. Such a process is defined as a random family of pairwise disjoint
open subintervals (Ih

i (t), i ∈ N) of (0, 1), where here t denotes the time. Let N be a
Poisson point process on S × N × R+ with intensity ν(ds) ⊗ #(dk) ⊗ dt and start
at time 0 with Ih

1 (0) = (0, 1). Then for each atom (s, k, t) of N , the interval Ih
k (t−)

is fragmented at time t into subintervals of length |Ih
k (t−)|s1, |Ih

k (t−)|s2, · · · . The
intervals (Ih

i (t), i ⩾ 1) are then relabelled in decreasing order of their lengths. The
well-definition of this construction is guaranteed by assumption (1.4). Additionally,
the fragments can melt according to a parameter c ⩾ 0. We refer to [Ber01, Ber02]
for details and call here the process (|Ih

i (t)|, i ⩾ 1)t⩾ 0 a homogeneous fragmentation
process with dislocation measure ν and erosion coefficient c.

For each x ∈ [0, 1], we denote by Ih
t,x the unique interval in (Ih

j (t), j ⩾ 1) that
contains x if it exists and set Ih

t,x := ∅ otherwise. Let τ : (0, 1] → (0, ∞) be a
continuous function. An inhomogeneous fragmentation process in which particles of
mass m split at rate τ(m)ν(ds) and melt continuously at rate c can be constructed
from the above homogeneous fragmentation by using a Lamperti-type time change.
More precisely, for all x ∈ (0, 1) and all t ⩾ 0, we set

(1.5) T x
t = inf

u > 0 :
∫ u

0

1
τ
(
|Ih

r,x|
)dr > t

 .

We then consider the family(1) ∪x ∈ (0,1){Ih
T x

t ,x}, and denote by (Ii(t), i ⩾ 1) this fam-
ily of intervals ranked in the decreasing order of their lengths. The inhomogeneous
fragmentation process with parameters (ν, c, τ) is then given by (|Ii(t)|, i ⩾ 1)t⩾ 0.
Again we refer to [Ber02] for details, in particular when the functions τ are power
functions, which then lead to self-similar fragmentation processes, a family of pro-
cesses that have been intensely studied. See also [Haa03] for an extension to more
general functions τ . Here we apply this construction to τ(x) = | log(x)|−1. We
note that then τ(1) = ∞, which takes us a bit out of the previous framework,
but that does not prevent us from doing the construction. It simply implies that
(Ii(0), i ⩾ 1) = (Ih

i (T1), i ⩾ 1) when c = 0 and ν is finite, where T1 denotes the first
jump time of Ih. In other cases, we have I1(0) = (0, 1).

(1) Observe that if y ∈ Ih
T x

t
, then T y

t = T x
t , so this family indeed consists in pairwise disjoint subsets

of (0, 1).
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Fragmentations and the convex hull of the Brownian motion 225

From now on, we focus on such inhomogeneous fragmentation processes with
parameters (

ν, c, | log |−1
)

.

For t ⩾ 0 and i ⩾ 1, we write Fi(t) for the size at time t of the ith largest element
of the fragmentation. We wish to study the properties of such a process, starting
with the law of its typical fragment, defined as the trajectory of the process t 7→
|IT x

t ,U |, where U is uniformly sampled in (0, 1). Following [Ber02, Haa03], there is
the following classical representation of this trajectory.

Proposition 1.1 ([Ber02, Haa03]). — Let ξ(ν,c) be a subordinator with Laplace
exponent

ϕ(ν,c)(q) = − logE
[
e−qξ

(ν,c)
1

]
:= c(q + 1) +

∫
S

1 −
∑
i⩾ 1

sq+1
i

 ν(ds), q ⩾ 0.

Let ρ(t) := inf{u ⩾ 0 :
∫ u

0 ξ(ν,c)
r dr ⩾ t}, t ⩾ 0, with the convention inf{∅} = ∞.

Then for any measurable bounded function f : [0, 1] → R, one has

E
[
f
(

e
−ξ

(ν,c)
ρ(t)

)]
= E

∑
i⩾ 1

Fi(t)f (Fi(t))
 .

In other words, the law of a typical fragment at time t, chosen proportionally to
its weight, is distributed as e

−ξ
(ν,c)
ρ(t) . Recalling the estimate (1.3), we observe that for

all q ⩾ 0

(1.6) E

∑
i⩾ 1

Fi(t)q+1

 = E
[
e

−qξ
(ν,c)
ρ(t)

]
.

One of our objectives is therefore to study the Laplace transforms of the time-changed
subordinator ξ

(ν,c)
ρ(t) , at any time t. We will undertake this study for all subordinators,

and not necessarily those having a Laplace exponent of the form ϕ(ν,c).

1.3. Main results

Motivated by the previous discussion, we consider now a generic subordinator ξ,
with Laplace exponent

ϕ(q) = − logE
[
e−qξ1

]
= κ + cq +

∫ ∞

0
(1 − e−qx)π(dx)

where κ ⩾ 0, c ⩾ 0 and π is a measure on (0, ∞) such that
∫∞

0 (1 ∧ x)π(dx) < ∞.
We refer to π as the Lévy measure of ξ, c its drift and κ its death rate. We define
then the time change ρ by

ρ(t) := inf
{

r ⩾ 0 :
∫ r

0
ξudu ⩾ t

}
, t ⩾ 0,

with the convention inf ∅ = ∞. Our first main result gives the following exact
expression for the Laplace transform of ξρ(t), for any t ⩾ 0.
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226 B. HAAS & B. MALLEIN

Theorem 1.2. — Let Φ(q) =
∫ q

0 ϕ(s)ds, q ⩾ 0 and Φ−1 : [0, ∞) 7→ [0, ∞) be the
inverse of Φ. Then the function Φ−1 is the Laplace exponent of a subordinator, with
a Lévy measure that we denote L, and for all q > 0 and t ⩾ 0, we have

(1.7) E
[
e−qξρ(t)

]
= ϕ(q)

∫ ∞

0
e−Φ(q)x− t

x xL(dx).

This result relies on a surprising connection between the law of ξρ(t) and a spectrally
negative Lévy process X with Laplace exponent Φ. This will be discussed in Section 2.
Although the Lévy measure L is generally quite abstract, this result allows us to
obtain precise estimates on E[e−qξρ(t) ]. We first obtain an upper bound for E[e−qξρ(t) ]
which is not sharp but is valid for any subordinator ξ:

Proposition 1.3. — For all q > 0, there exists a(q) ∈ (0, ∞) such that for all
t ⩾ 0

E
[
e−qξρ(t)

]
⩽ a(q) ·

(
1 + t1/8

)
e−2

√
Φ(q)t.

In particular, this shows with the relation (1.6) and the estimate (1.3), that our
toy-model can capture the exponential decay rate found in (1.2), but the prefactor
t1/4 cannot be recovered from such a simple model. We indicate in the final Section 5
some possible causes for this discrepancy.

Remark 1.4. — Observe that when κ > 0, ξρ(t) may be infinite. Letting q ↓ 0
in (1.7), we see that

P
(
ξρ(t) < ∞

)
= κ

∫ ∞

0
e− t

x xL(dx), for all t ⩾ 0

(we will see further that the measure xL(dx) is finite if and only if κ > 0).
Under some more precise regularity conditions, we can compute the asymptotic

behavior of the Laplace transform of ξρ(t) as t → ∞. We first assume that
(Hγ) ϕ is regularly varying at 0 with index γ ∈ (0, 1],
i.e. that the subordinator ξ belongs to the domain of attraction of a stable random
variable with index γ. We recall that a function f is called regularly varying at 0
with index α ∈ R if for all λ > 0,

lim
x→0

f(λx)
f(x) = λα,

and refer to the book of Bingham, Goldie and Teugels [BGT87] for background on
regularly varying functions. In particular, observe that under assumption (Hγ), we
have κ = 0. In addition to the regular variation of ϕ, we require an extra technical
assumption, which guarantees that the law of X1 is strongly non-lattice, namely that
the three following conditions hold

(Htech)
∫ ∞

0

π(dx)
x

= ∞,∫ ∞

1
ea Re(Φ(ix))dx < ∞ for some a > 0, lim sup

x→∞
Re(Φ(ix)) < 0.

These conditions come from our use of results by Doney and Rivero [DR13, DR16],
but we are not convinced that they are necessary for the following result to hold.
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Theorem 1.5. — Assume (Hγ) and (Htech) and define for all q > 0

b(q) :=
√

π

(γ + 1)Γ
(

γ
γ+1

) · ϕ(q)Φ(q)
1

2(γ+1) − 3
4 .

Then we have
E
[
e−qξρ(t)

]
∼

t→∞
b(q) · t1/4Φ−1

(
t−1/2

)
e−2

√
Φ(q)t.

Remark 1.6. — Note that under assumption (Hγ), Φ and Φ−1 are both regularly
varying at 0 with respective indices γ + 1 ∈ (1, 2] and 1

γ+1 ∈ [1/2, 1). Therefore,
Theorem 1.5 implies that

e2
√

Φ(q)t E
[
e−qξρ(t)

]
is regularly varying at ∞ with index 1

4 − 1
2(γ+1) ∈ (−1

4 , 0]. It hints at the fact that
the bound in Proposition 1.3 is not optimal.

Letting next q depends on t in (1.7), we further obtain the large time scaling limit
of ξρ. To describe it, let Dγ denote the distribution on (0, ∞) with Laplace transform

q ∈ (0, ∞) 7→ qγ

Γ
(

γ
γ+1

) ∫ ∞

0
e−qγ+1u− 1

u
du

u
1

1+γ

.

This distribution will be introduced in Section 2.2 as the stationary distribution of
the process (t−1/(γ+1)ξ

(γ)
ρ(t), t ⩾ 0), where ξ(γ) is a γ-stable subordinator.

Theorem 1.7. —
(i) Under assumption (Hγ),

Φ−1(1/t)ξρ(t)
(d)−→

t→∞
Zγ,

where Zγ is a random variable with law Dγ.
(ii) (Strong law of large numbers and fluctuations when γ = 1). When γ = 1,

this reads Φ−1(1/t)ξρ(t) → 2 in probability, since D1 = δ1/2. If we assume
additionally that m := c +

∫∞
0 xπ(dx) < ∞, then Φ−1(1/t) ∼

√
2/mt and the

convergence holds almost surely:
ξρ(t)√

t

a.s.−→
t→∞

√
2m.

Assuming further that a :=
∫∞

0 x2π(dx) < ∞ and (Htech), we have a central
limit theorem:

t1/4
(

ξρ(t)√
t

−
√

2m

)
(d)−→

t→∞
N

(
0,

√
2a

3
√

m

)
,

where N
(
0,

√
2a

3
√

m

)
is a centered Gaussian random variable with variance

√
2a

3
√

m
.

Remark 1.8. — The strong law of large numbers when γ = 1 and m is finite is an
immediate consequence of the strong law of large numbers for ξ, which implies that

lim
ρ→∞

1
ρ2

∫ ρ

0
ξrdr = m/2 a.s.,
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228 B. HAAS & B. MALLEIN

and therefore ρ(t)/
√

2t/m → 1 a.s. as t → ∞. Moreover, when the variance of ξ is
finite, the central limit theorem and simple computations give that

t1/4

ξ√
2t/m√
t

−
√

2m

 (d)−→
t→∞

N
(
0,

√
2a/

√
m
)

,

and the functional central limit theorem for ξ shows that

t−1/4(mρ(t) −
√

2tm) (d)−→
t→∞

N
(
0,

√
2a/3

√
m
)

.

Although it would be tempting to then decompose ξρ(t)√
t

−
√

2m as(
ξρ(t)√

t
− m

ρ(t)√
t

)
+
(

m
ρ(t)√

t
−

√
2m

)
and study the joint convergence of distributions of these quantities to obtain Theo-
rem 1.7(ii) without (Htech), the correlation structure of these two components turns
out to be quite complex to analyse (in particular, observe that the limit in distribu-
tion of the sum obtained in Theorem 1.7(ii) is identical to the limit in distribution
of the second term). So we prefer to proceed with the Laplace exponent of ξρ(t) and
Theorem 1.2.

Finally, we return to our fragmentation model by considering a fragmentation pro-
cess F with parameters (ν, c, | log |−1) and its typical fragment e−ξ

(ν,c)
ρ . The last theo-

rem can be used to describe the large time asymptotics of the empirical distribution
of the whole fragmentation process, following standard methods developed in [Ber03].
In the forthcoming proposition, we let ϕ(ν,c)(q) = c(q + 1) +

∫
S(1 −∑

i⩾ 1 sq+1
i )ν(ds)

denote the Laplace exponent of ξ(ν,c) and define m and a from its drift and Lévy
measure as above in the previous theorem. We also let Φ(ν,c) be the primitive of
ϕ(ν,c) null at 0 and Φ−1

(ν,c) its inverse. The limits below hold for the topology of weak
convergence of probability measures.

Proposition 1.9. —
(i) Assume that ϕ(ν,c) is regularly varying at 0 with index γ ∈ (0, 1]. Then,∑

i⩾ 1
Fi(t)δΦ−1

(ν,c)(1/t)|log Fi(t)|
P−→

t→∞
Dγ.

(ii) Assuming further that γ = 1, a < ∞ (so m < ∞) and (Htech) for ϕ(ν,c),

∑
i⩾ 1

Fi(t)δ |log Fi(t)|−t1/2√
2m

t1/4

P−→
t→∞

N

0,

√
2a

3
√

m

.

1.4. Related results on (in)homogeneous fragmentation processes

To conclude, we compare the large time behavior of the inhomogeneous frag-
mentation processes we considered here, where particles with mass m split at rate
proportional to | log m|−1, to related works on (in)homogeneous fragmentation pro-
cesses. The most classical class of (in)homogeneous fragmentations are self-similar
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fragmentations, in which particles of mass m split at rate proportional to mα for some
α ∈ R. When α = 0, one recovers the homogeneous fragmentation processes intro-
duced in Section 1.2. When α ̸= 0, the processes are constructed from homogeneous
ones via the time-change (1.5) with τ(m) = mα. These processes naturally satisfy a
self-similarity property and as so play an important role as scaling limits of various
models. Their large time behaviors have been well-studied, see notably [Ber03], and
can be summarized as follows when the logarithm of the jumps of a typical fragment
has a finite mean:

• when α = 0, the masses of particles are asymptotically proportional to e−vt

for some v > 0, where t denotes the time: see [Ber03, Theorem 1] for the
analogue of Proposition 1.9 in this situation; see further [B03, Kre08] for a
deep analysis of the different possible exponential rates of decrease;

• when α > 0, the masses of particles are asymptotically proportional to t−1/α:
see [Ber03, Theorem 3] for the analogue of Proposition 1.9 in this situation;

• when α < 0, the processes go extinct in finite time: see [Ber03, Proposition 2];
see further [Haa03, Haa23] for information on the extinction times and [GH10,
GH16] for the behavior of the processes in the neighborhood of their extinction
time.

Processes with fragmentation rates proportional to | log m|−1, where our results
roughly says that the masses are asymptotically proportional to e−v

√
t for some

v > 0 (when the logarithm of the jumps of a typical fragment has a finite mean) can
therefore be interpreted as an interpolation between homogeneous fragmentations
and self-similar fragmentations with a positive index α. Note however that our
Proposition 1.9(i) is relatively simple to implement and that the main results of
this paper concern the exact computation, at any time t, of the positive powers of
the typical fragment (via Theorem 1.2) and their asymptotic behaviors as t → ∞
(Theorem 1.5). Similar results can trivially be settled for homogeneous fragmentations
but seem less obvious for self-similar ones with indices α ̸= 0.

In a related way, we observe that “dual” fragmentation processes in which particles
with mass m split at rate proportional to | log m| also appeared in the literature under
another guise. Indeed, the time-change (1.5) with τ(m) = | log m| leads to a typical
fragment e−ξη where ξ is still a subordinator and η(t) = inf{r ⩾ 0 :

∫ r
0 (ξu)−1du ⩾ t}.

We recognize here the celebrated Lamperti’s transform relating Lévy processes with
no negative jumps to continuous-state branching processes, see e.g. [CLB09, Lam67a].
In other words, ξη is a CSBP and one can compute explicitly the Laplace transforms
of ξη(t) at any time t when ξ0 = x > 0. Indeed, it is well-known that then E[e−λξη(t) ] =
e−xut(λ), where the function t 7→ ut(λ) is characterized by the equation

∂ut(λ)
∂t

= ϕ(ut(λ)), u0(λ) = λ,

with ϕ the Laplace exponent of ξ.
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Organization of the paper

We prove in Section 2 Theorem 1.2 and Proposition 1.3. This is then exploited
in Section 3 to obtain Theorem 1.5 and Theorem 1.7. This last result will in turn
allow us to describe the asymptotic behavior of the whole fragmentation process in
Section 4 by proving Proposition 1.9. Last, Section 5 gathers some final discussions
on the model and possible extensions to higher dimensional settings.
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2. The time-changed subordinator ξρ and its Laplace
exponent

In this and the next section, we work with ξ a generic subordinator with Laplace
exponent

ϕ(q) = κ + cq +
∫ ∞

0
(1 − exp(−qx)) π(dx), q ⩾ 0

where κ ⩾ 0, c ⩾ 0 and π is a measure on (0, ∞) such that
∫∞

0 (1 ∧ x)π(dx) < ∞. We
assume throughout that π(0, ∞) > 0 and ξ0 = 0. We recall that ρ(t) is the stopping
time defined by

(2.1) ρ(t) = inf
{

u ⩾ 0 :
∫ u

0
ξrdr > t

}
for all t ⩾ 0.

Observe that ρ(0) = inf{u ⩾ 0 : ξu > 0} is either null almost surely, if c > 0 or
π((0, ∞)) = ∞, or is strictly positive almost surely, when c = 0 and π is finite. In
the latter case, it equals the first jump time of ξ, therefore ξρ(0) is equal to the first
jump of ξ. Observe also that∫ ρ(t)

0
ξrdr = t for all t <

∫ e(κ)

0
ξrdr,

where e(κ) := inf{t ⩾ 0 : ξt = ∞} denotes the death time of ξ. In particular when
κ = 0, e(κ) = ∞ and we see that the process ξρ increases asymptotically much
slower than ξ. Indeed, using the strong law of large numbers for ξ, as mentioned in
Remark 1.8, almost surely,

lim
ρ→∞

ρ−2
∫ ρ

0
ξsds = E[ξ1]

2
and hence ρ(t) ∼

√
2t/E[ξ1] a.s. Whilst if the mean of ξ is infinite, the above estimate

is still true and ρ(t) tends to infinity at a slower rate than
√

t. Theorem 1.7 gives
a precise estimate of the asymptotic behavior of ξρ under the hypothesis of regular
variation (Hγ).
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The main objective of this section is to compute the Laplace transform of ξρ(t) for
any t ⩾ 0 by proving Theorem 1.2, and then to prove the upper bound settled in
Proposition 1.3. We will first start by introducing the measure L in Section 2.1. It
is worth noting that an explicit formula for this measure is generally inaccessible.
However, before turning to the proof of Theorem 1.2, we consider in Section 2.2 a
situation in which all quantities can be made explicit: this is the case when ξ is a
stable subordinator. In this case we also note that the process (t−1/(1+γ)ξρ(t), t > 0)
is stationary, where γ is the index of stability of ξ. The proof of Theorem 1.2 is then
undertaken in Section 2.3 and that of Proposition 1.3 in Section 2.4.

2.1. Definition and first properties of the measure L

We recall from the statement of Theorem 1.2 that Φ is the primitive of ϕ satisfying
Φ(0) = 0, i.e.

Φ(q) = κq + c

2q2 +
∫
R+

(
q − (1 − exp(−qx))

x

)
π(dx)(2.2)

= κq + c

2q2 + qπ([1, ∞)) +
∫ ∞

0

(
qx1{x < 1} − (1 − exp(−qx))

) π(dx)
x

.

A key remark is that Φ is the Laplace transform of a Lévy process with diffusion
coefficient c, drift κ + π([1, ∞)) and a Lévy measure given by the image of π(dx)/x
by x 7→ −x. We denote X such a process, satisfying

E
[
eqXt

]
= etΦ(q) for all q, t ⩾ 0.

This class of processes, usually called spectrally negative Lévy processes, has remark-
able properties and has been studied extensively. We refer to Bertoin’s book [Ber98,
Chapter VII] for background. Here, we note that either X oscillates (lim supt→∞ Xt =
− lim inft→∞ Xt = +∞) when κ = 0, or tends to +∞ (limt→∞ Xt = +∞) when κ > 0,
using that Φ′(0) = ϕ(0) = κ. It is well known that Φ−1 : [0, ∞) 7→ [0, ∞) is the
Laplace exponent of a subordinator. More precisely,

Lemma 2.1 ([Ber98, Theorem 1, Chapter VII]). — The process σ defined for
t ⩾ 0 by

σt = inf{s > 0 : Xs > t} = inf{u > 0 : Su > t},

where St = sups⩽ t Xs, is a subordinator with Laplace exponent Φ−1. Moreover S is
a local time at 0 of the reflected process S − X. Therefore, if we let L denote the
Lévy measure of σ, we have

L(dx) = n(ζ ∈ dx)
where n denotes the excursion measure away from 0 of S − X and ζ the lifetime of
an excursion.

Since Φ−1(0) = 0 and, as q → ∞, Φ−1(q)/q converges to (κ + π(0, ∞))−1 when
c = 0 and to 0 otherwise, the subordinator σ has no killing term and a drift equal to
1{c=0}(κ + π(0, ∞))−1. Consequently the function Φ−1 can be written for all q ⩾ 0 as

(2.3) Φ−1(q) = q1{c=0}

κ + π(0, ∞) +
∫ ∞

0
(1 − exp(−qx)) L(dx).
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The measure L plays an important role in our study. We underline below a few
simple observations. A first one, which will be useful for the proof of Proposition 1.3,
is the following connection with a renewal measure.

Lemma 2.2. — Let U be the renewal measure of the subordinator σ ◦ ξ when we
consider independent copies of ξ and σ, and set V (dx) := xL(dx). Then

U = V + 1{c=0}

κ + π(0, ∞)δ0.

Consequently, the function V , defined by V (x) := V ([0, x]) for x ⩾ 0, satisfies:

V (x + y) ⩽ V (x) + V (y) + 1{c=0}

κ + π(0, ∞) for all x, y ⩾ 0.

Proof. — For background on renewal measures of subordinators we refer to [Ber98,
Chapter 3] or [Kyp14, Chapter 5]. By differentiating (2.3), we note that

1
ϕ ◦ Φ−1(q) =

(
Φ−1

)′
(q) = 1{c=0}

κ + π(0, ∞) +
∫ ∞

0
e−qxV (dx).

The function ϕ ◦ Φ−1 being the Laplace transform of the subordinator σ ◦ ξ when
we consider independent copies of ξ and σ, this implies that the measure V is the
contribution on (0, ∞) of the renewal measure U of σ ◦ ξ and that U({0}) = 1{c=0}

κ+π(0,∞) .
It is well-known that the distribution function x 7→ U([0, x]) is then subadditive.
This has the particular consequence that the function V satisfies

V (x+y)+ 1{c=0}

κ + π(0, ∞) ⩽ V (x)+ 1{c=0}

κ + π(0, ∞) +V (y)+ 1{c=0}

κ + π(0, ∞) for all x, y ⩾ 0.

□

We finish with easy integrability properties of L. Using that Φ−1 is the Laplace
exponent of the subordinator σ of first passage times of the Lévy process X, we
remark that the process t 7→ σt − t1{c=0}

κ+π(0,∞) is a compound Poisson process if and
only if the diffusion coefficient c of X is null and its Lévy measure is finite, that is

L(0, ∞) < ∞ if and only if c = 0 and
∫ ∞

0
x−1π(dx) < ∞.

Moreover, in this case we have

L(0, ∞) = lim
q→∞

(
Φ−1(q) − q

κ + π(0, ∞)

)
= 1

κ + π(0, ∞)

∫ ∞

0
x−1π(dx).

Similarly, we have
∫∞

0 xL(dx) < ∞ if and only if E[σt] < ∞ for all t. Differentiat-
ing (2.3), we see that∫ ∞

0
xL(dx) = (Φ−1)′(0) −

1{c=0}

κ + π(0, ∞) = 1
κ

−
1{c=0}

κ + π(0, ∞) .

In particular,
∫∞

0 xL(dx) < ∞ if and only if κ > 0.
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2.2. An explicit example: the stable subordinator

We assume here that ξ is a stable subordinator with parameter γ ∈ (0, 1]. Since
the multiplication of the Laplace exponent ϕ by a positive constant results in a
multiplication of time by the same constant in the time-changed subordinator, we
restrict ourselves, with no loss of generality, to the canonical case

ϕ(q) = (γ + 1)qγ, q ⩾ 0.

We let ξ(γ) denote a subordinator with this Laplace exponent. In this case, one has

Φ(q) = qγ+1 and Φ−1(q) = q
1

γ+1 = 1
(γ + 1)Γ

(
γ

γ+1

) ∫ ∞

0

(
1 − e−qx

) dx

x
1

γ+1 +1
.

In particular, the Lévy measure of Φ−1 is L(dx) = 1
(γ+1)Γ( γ

γ+1 ) · dx

x
1

γ+1 +1 . Therefore,
applying Theorem 1.2, the following holds.

Corollary 2.3. — The process (t− 1
γ+1 ξ

(γ)
ρ(t), t > 0) is stationary, and its station-

ary distribution Dγ is characterized by its Laplace transform

q 7→ qγ

Γ
(

γ
γ+1

) ∫ ∞

0
e−qγ+1u− 1

u
du

u
1

1+γ

= 2
Γ
(

γ
γ+1

)q
γ
2 K γ

γ+1

(
2q

γ+1
2
)

where, for all α ⩾ 0, Kα denotes the modified Bessel function of the second kind.
We recall from [AS64, Chapter 9.6] that the modified Bessel functions of the second

kind of order α is the function defined for x ∈ (0, ∞) by

Kα(x) =
∫ ∞

0
e−x cosh(u) cosh(αu)du, x > 0,

and that its asymptotic behaviors near ∞ and 0 are given by

Kα(x) ∼
x→∞

√
π

2x
e−x

(
1 + 4α2 − 1

8x
+ O(x−2)

)
and Kα(x) ∼

x→0

Γ(α)
2

(2
x

)α

.

Remark 2.4. — The modified Bessel function of the second kind of order α = 1/2
simply rewrites K1/2(x) =

√
π
2x

e−x, x > 0. Note that this implies that in Corollary 2.3
D1 = δ2.

Of course, this is consistent with the definition of the process ξ(1)
ρ , since ξ

(1)
t = 2t

and then ρ(t) =
√

t, t ⩾ 0.
Proof of Corollary 2.3. — The main point of this result concerns the identification,

via its Laplace transform, of the stationary law Dγ . Indeed, even if the stationarity of
(ξ(γ)

ρ(t)t
− 1

γ+1 ) is an immediate consequence of Theorem 1.2, it can also be seen directly
from the definition (2.1) of the time change ρ and the self-similarity of ξ(γ), since for
all a > 0, (a− 1

γ ξ
(γ)
at , t ⩾ 0) is distributed as ξ(γ). Using this identity in law of processes

and the definition of the time change ρ, we note that ξ(γ)
ρ itself is a non-decreasing

self-similar Markov process: for all a > 0,(
a− 1

1+γ ξ
(γ)
ρ(at), t ⩾ 0

)
(d)= ξ(γ)

ρ .
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We now apply Theorem 1.2 to compute the distribution Dγ of ξ
(γ)
ρ(1): for q > 0,

E
[
e

−qξ
(γ)
ρ(1)

]
= ϕ(q)

∫ ∞

0
e−Φ(q)x− 1

x xL(dx)

= qγ

Γ
(

γ
γ+1

) ∫ ∞

0
e−qγ+1x− 1

x
dx

x
1

γ+1
.

Therefore, using that for all α > 0 and r, s > 0, one has∫ ∞

0
xα−1e−rx− s

x dx = 2
(

s

r

)α
2

Kα

(
2
√

rs
)

,

see e.g. [Tem90], we obtain the Laplace transform of the distribution Dγ. □

2.3. Proof of Theorem 1.2

We now prove Theorem 1.2. In that aim we first introduce, for all t ⩾ 0, q > 0,

(2.4) f(t, q) := (Φ−1)′(q)E
[
e−Φ−1(q)ξρ(t)

]
and observe that this bivariate function f is the solution to a simple PDE.

Lemma 2.5. — The function f is a strong solution to the equation
(2.5) ∂q∂tf = ∂t∂qf = f.

Additionally, the function t ∈ [0, ∞) 7→ f(t, q) is C1 on (0, ∞) and continuous at 0,
with f(0, q) =

∫∞
0 xe−qxL(dx), for all q > 0.

In the proof of this lemma, we will note some regularity properties of f that are a
bit more precise than those stated here. Moreover, we will see further with Lemma 2.9
that f is infinitely differentiable on (0, ∞)2.

Remark 2.6. — The form (2.5) of the partial differential equation solved by f
comes from the time change | log |−1 in the fragmentation process. If we have used
a time change of the form | log |−k for some k ∈ N, we would have obtained for the
Laplace transform h(t, q) := E[e−qξρ(t) ] the equation

∂k
q

(
∂th

ϕ(q)

)
= (−1)k+1h,

with similar arguments.

Remark 2.7. — Observe that the infinitesimal generator Gexp(−ξρ) of exp(−ξρ) is
given for functions g in its domain by

Gexp(−ξρ)(g)(x) = 1
|log(x)|

(
−κg(x) − cxg′(x) +

∫ ∞

0
(g(x exp(−y)) − g(x)) π(dy)

)
,

using the formula for the generator of a Lévy process and classical results on time-
changed processes from Lamperti [Lam67b]. Lemma 2.5 could therefore alternatively
be proven by applying Kolmogorov’s forward equation to the functions x 7→ xq,
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q > 0, which are indeed in the domain of the infinitesimal generator. This can be
seen by using that (

e−qξρ(t) − ϕ(q)
∫ ρ(t)

0
e−qξsds, t ⩾ 0

)
is a martingale, by Campbell’s Lemma, and then optional stopping.

Instead of using this approach based on the infinitesimal generator, we prefer to
use a more elementary method, which consists in rewriting the function f as follows.

Lemma 2.8. — For all t ⩾ 0 and q > 0, the function f defined in (2.4) satisfies

f(t, q) =
∫ ∞

t
E
[

e−Φ−1(q)ξρ(s)

ξρ(s)

]
ds.

Proof. — Fix q > 0, t ⩾ 0. We first observe that the change of variable ρ(s) = u
leads to ∫ ∞

t

e−Φ−1(q)ξρ(s)

ξρ(s)
ds =

∫ ∞

ρ(t)
e−Φ−1(q)ξudu.

We underline that when κ > 0 the subordinator ξ reaches ∞ in finite time and
that the identity above is valid by using the convention e−∞ = 0. Then by Fubini’s
theorem ∫ ∞

t
E
[

e−Φ−1(q)ξρ(s)

ξρ(s)

]
ds = E

[∫ ∞

ρ(t)
e−Φ−1(q)ξudu

]
.

Applying the strong Markov property for Lévy processes to the stopping time ρ(t),
we obtain

E
[∫ ∞

ρ(t)
e−Φ−1(q)ξudu

]
= E

[
e−Φ−1(q)ξρ(t)

∫ ∞

0
e−Φ−1(q)(ξu+ρ(t)−ξρ(t))du

]
= E

[
e−Φ−1(q)ξρ(t)

] ∫ ∞

0
E
[
e−Φ−1(q)ξu

]
du.

Observing that E[e−Φ−1(q)ξt ] = e−tϕ(Φ−1(q)) = e−tΦ′(Φ−1(q)), we conclude that∫ ∞

t
E
[

e−Φ−1(q)ξρ(s)

ξρ(s)

]
ds = 1

Φ′ ◦ Φ−1(q) E
[
e−Φ−1(q)ξρ(t)

]
= f(t, q). □

Proof of Lemma 2.5. — Using that for all a, b > 0, x 7→ xae−bx is bounded on R+,
we obtain easily that the function q ∈ (0, ∞) 7→ f(t, q) is infinitely differentiable.
Moreover, by Lemma 2.8, for all t ⩾ 0, q > 0,∫ ∞

t
E
[

e−Φ−1(q)ξρ(s)

ξρ(s)

]
ds = f(t, q) < ∞,

therefore E[e−Φ−1(q)ξρ(t)/ξρ(t)] < ∞ for almost all t ⩾ 0. Remarking that the function
t 7→ e−Φ−1(q)ξρ(t)/ξρ(t) is non-increasing, t 7→ E[e−Φ−1(q)ξρ(t)/ξρ(t)] is a non-increasing
function. As a consequence, t ∈ (0, ∞) 7→ f(t, q) is a convex decreasing function and
differentiable almost everywhere with

∂tf(t, q) = −E
[

e−Φ−1(q)ξρ(t)

ξρ(t)

]
for almost all t > 0.
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We then observe that for all t, q > 0, using Fubini’s theorem∫ ∞

q
f(t, r)dr =

∫ ∞

q
(Φ−1)′(r)E

[
e−Φ−1(r)ξρ(t)

]
dr

= E
[∫ ∞

q
(Φ−1)′(r)e−Φ−1(r)ξρ(t)dr

]
= E

[
e−Φ−1(q)ξρ(t)

ξρ(t)

]
.

The function t ∈ (0, ∞) 7→ E[e−Φ−1(q)ξρ(t)/ξρ(t)] is therefore continuous, and conse-
quently the function t ∈ (0, ∞) 7→ f(t, q) is C1 for all q > 0 and

∂tf(t, q) = −
∫ ∞

q
f(t, r)dr.

Note that this implies that q ∈ (0, ∞) 7→ ∂tf(t, q) is infinitely differentiable. Then,
differentiating the above expression with respect to q shows that ∂q∂tf(t, q) = f(t, q).

Similarly, by Fubini’s theorem and the change of variables ρ(s) = u,∫ ∞

t
f(s, q)ds = (Φ−1)′(q)E

[∫ ∞

t
e−Φ−1(q)ξρ(s)ds

]
= (Φ−1)′(q)E

[∫ ∞

ρ(t)
ξue−Φ−1(q)ξudu

]
for t, q > 0. Moreover, we note that for u > 0

E
[
ξρ(t)+ue−Φ−1(q)ξρ(t)+u

]
= E

[(
ξρ(t) +

(
ξρ(t)+u − ξρ(t)

))
e−Φ−1(q)ξρ(t)e−Φ−1(q)(ξρ(t)+u−ξρ(t))

]
= E

[
ξρ(t)e

−Φ−1(q)ξρ(t)
]

e−uϕ(Φ−1(q)) + E
[
e−Φ−1(q)ξρ(t)

]
uϕ′

(
Φ−1(q)

)
e−uϕ(Φ−1(q)).

This leads to∫ ∞

t
f(s, q)ds

= (Φ−1)′ (q)
ϕ (Φ−1(q)) E

[
ξρ(t)e

−Φ−1(q)ξρ(t)
]

+ ϕ′
(
Φ−1(q)

) (Φ−1)′ (q)
ϕ (Φ−1(q))2 E

[
e−Φ−1(q)ξρ(t)

]
= −∂qf(t, q),

since by definition of f

∂qf(t, q) = (Φ−1)′′(q)E
[
e−Φ−1(q)ξρ(t)

]
− (Φ−1)′(q)2 E

[
ξρ(t)e

−Φ−1(q)ξρ(t)
]

and (Φ−1)′ = 1/ϕ(Φ−1). Differentiating with respect to t shows that we also have
∂t∂qf(t, q) = f(t, q).

The continuity at 0 of t 7→ f(t, q) is obvious, for all q > 0, by using the expression of
f as an integral as noticed in Lemma 2.8. It remains to identify the initial expression
for f(0, q) in terms of the measure L. Since ξρ(0) = 0 when c > 0 or π is infinite, and
ξρ(0) is the first jump time of ξ otherwise, one has

E
[
e−qξρ(0)

]
=
{

1 when c > 0 or π is infinite
1

κ+π(0,∞)
∫∞

0 e−qxπ(dx) when c = 0 and π is finite.
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When c > 0 or π is infinite, recalling (2.3), this indeed yields

f(0, q) = (Φ−1)′(q) =
∫ ∞

0
xe−qxL(dx).

When c = 0 and π is finite, we have

f(0, q) = (Φ−1)′(q) 1
κ + π(0, ∞)

∫ ∞

0
e−Φ−1(q)xπ(dx).

Using that in this case Φ(q) = (κ + π(0, ∞))q −
∫∞

0 (1 − e−qx)π(dx)/x, we see that

q = (κ + π(0, ∞))Φ−1(q) −
∫ ∞

0

(
1 − e−Φ−1(q)x

)
π(dx)/x,

which, by differentiating, leads us to

f(0, q) = (Φ−1)′(q) 1
κ + π(0, ∞)

∫ ∞

0
e−Φ−1(q)xπ(dx) = (Φ−1)′(q) − 1

κ + π(0, ∞) .

By (2.3) and since c = 0, this last expression is equal to
∫∞

0 xe−qxL(dx) as expected.
□

Solving the partial differential equation of Lemma 2.5, we obtain an expression for
the Laplace transform of the function t 7→ f(t, q) for each q > 0. This leads to an
explicit expression of f(t, q) in terms of the measure L, which proves Theorem 1.2.

Lemma 2.9. — For λ > 0, we write Fλ : q ∈ (0, ∞) 7→
∫∞

0 e−λtf(t, q)dt. Then for
all fixed q > 0, we have

(2.6) Fλ(q) =
∫ ∞

0

(∫ ∞

0
e−qx− t

x xL(dx)
)

e−λtdt, ∀ λ > 0

which implies that f(t, q) =
∫∞

0 e−qx− t
x xL(dx) for all t ⩾ 0, q > 0. In particular, f is

infinitely differentiable on (0, ∞)2.

Proof. — Fix λ > 0 and note that Fλ(q) is finite for all q > 0, since the function
t ∈ (0, ∞) 7→ f(t, q) is bounded. An integration by part gives

Fλ(q) =
[
−e−λt

λ
f(t, q)

]t=∞

t=0
+ 1

λ

∫ ∞

0
e−λt∂tf(t, q)dt

= 1
λ

∫ ∞

0
xe−qxL(dx) + 1

λ

∫ ∞

0
e−λt∂tf(t, q)dt,

using that e−λtf(t, q) → 0 as t → ∞, and that f(t, q) →
∫∞

0 xe−qxL(dx) as t → 0 by
Lemma 2.5. We then have, for all q > 0,

∂qFλ(q) = −1
λ

∫ ∞

0
x2e−qxL(dx) + 1

λ

∫ ∞

0
e−λt∂q∂tf(t, q)dt

= −1
λ

∫ ∞

0
x2e−qxL(dx) + 1

λ
Fλ(q),

using again Lemma 2.5 (we can apply Lebesgue’s dominated convergence theorem
since, for all q0 > 0 and t > 0,

sup
q ⩾ q0

∣∣∣e−λt∂q∂tf(t, q)
∣∣∣ = sup

q ⩾ q0

∣∣∣e−λtf(t, q)
∣∣∣ = e−λtf(t, q0),

since (Φ−1)′ is decreasing and Φ−1 is increasing).
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The function q ∈ (0, ∞) 7→ Fλ(q) is therefore a solution to a linear differential
equation of the first order. By standard arguments, it follows that

Fλ(q) = e
q
λ

∫ ∞

q
e− u

λ

(1
λ

∫ ∞

0
x2e−uxL(dx)

)
du.

Using Fubini’s theorem and the change of variable t = (u − q)x/λ, we then get the
expression (2.6) for all q, λ > 0. The final equation follows from Laplace inversion
theorem and the fact that the functions t 7→ f(t, q) and t 7→

∫∞
0 e−qx− t

x xL(dx) are
continuous on (0, ∞). □

Proof of Theorem 1.2. — Observe that the definition (2.4) of f implies that

f(Φ(q), t) = (Φ−1)′(Φ(q))E
[
e−qξρ(t)

]
= 1

ϕ(q) E
[
e−qξρ(t)

]
.

As a result, Lemma 2.9 yields

E
[
e−qξρ(t)

]
= ϕ(q)f (t, Φ(q)) = ϕ(q)

∫ ∞

0
e−Φ(q)x− t

x xL(dx), ∀ t ⩾ 0, q > 0,

which completes the proof. □

2.4. Proof of Proposition 1.3

The proof of Proposition 1.3 relies on Theorem 1.2 and Lemma 2.2. In fact, we use
the forthcoming Lemma 3.1, an immediate corollary of Theorem 1.2, which rewrites
in a more convenient way the expression of the Laplace transform of ξρ(t). From this
lemma and Lemma 2.2, we note that for all t ⩾ 0, q > 0

(2.7) E
[
e−qξρ(t)

]

⩽ ϕ(q)e−2
√

Φ(q)t
∫ ∞

0
2ue−u2

V

2


√

u4 + 4u2
√

Φ(q)t
2Φ(q)


+ 1{c=0}

κ + π(0, ∞)

 du,

where we recall that V (x) =
∫

[0,x] uL(du). It remains to bound V from above to
conclude. Since ϕ is concave, the function q 7→ ϕ(q)/q is decreasing on (0, ∞) and
limq↓0 ϕ(q)/q ∈ (0, ∞]. Consequently there exists c1 ∈ (0, ∞) such that for all
q ∈ [0, 1], we have Φ−1(q) ⩽ c1

√
q. Then write for x ⩾ 1,

V (x) = x
∫

[0,x]

u

x
L(du) ⩽ 3x

∫
[0,x]

(
1 − e− u

x

)
L(du) ⩽ 3xΦ−1(1/x) ⩽ 3c1

√
x

where we have used for the first inequality that y ⩽ 3(1 − e−y) for y ∈ [0, 1] and (2.3)
for the second inequality. This leads to the existence of c2 ∈ (0, ∞) such that

V (x) ⩽ c2
(
1 +

√
x
)

, ∀ x ⩾ 0,

which in turn implies that for all u, t ⩾ 0, q > 0,

V

2


√

u4 + 4u2
√

Φ(q)t
2Φ(q)


 ⩽ c2

1 + u +
√

2u Φ(q)1/8t1/8√
Φ(q)

 .
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And then, with (2.7), we get the upper bound

E
[
e−qξρ(t)

]
⩽ c3

(
1 + (Φ(q))−1/2 + (Φ(q))−3/8t1/8

)
ϕ(q)e−2

√
Φ(q)t

for some c3 > 0, as expected.

3. Asymptotics of ξρ

Theorem 1.2 will allow us to obtain the asymptotic behavior of E[exp(−qξρ(t))] as
t → ∞, both when q is fixed or when q = q(t) is an appropriate function of t chosen
to obtain the scaling limit of ξρ(t). Indeed, observe that in the expression

(3.1) E
[
e−qξρ(t)

]
= ϕ(q)

∫ ∞

0
e−Φ(q)x− t

x xL(dx)

the function x 7→ e−Φ(q)x− t
x attains its maximum at x =

√
t/Φ(q), which is equal to

e−2
√

Φ(q)t.

Therefore, as long as L is regular enough that we may apply Laplace’s saddle point
method, we expect the leading term in the asymptotic behavior of E[e−qξρ(t) ] to be
e−2

√
Φ(q)t, with a polynomial correction. The first aim of this section is to prove

Theorem 1.5, i.e. that under conditions (Hγ) and (Htech), an equivalent of E[e−qξρ(t) ]
as t → ∞ can be computed explicitly. Then, with very similar computations, we will
be able to obtain the scaling limit of ξρ(t) as t → ∞ and prove Theorem 1.7.

The starting point of the proofs of Theorem 1.5 and Theorem 1.7 rely on the
following alternative expression for the Laplace transform (3.1). Let us recall the
notation V (dx) = xL(dx), and for x ⩾ 0

V (x) = V ([0, x]) and L(x) := L(x, ∞).

Lemma 3.1. — For u, t, q > 0, let

au,t,q =
u2 + 2

√
Φ(q)t

2Φ(q) and bu,t,q =

√
u4 + 4u2

√
Φ(q)t

2Φ(q) ,

(note that au,t,q > bu,t,q)(2) . We then have

E
[
e−qξρ(t)

]
= ϕ(q)e−2

√
Φ(q)t

∫ ∞

0
2ue−u2 (

V (au,t,q + bu,t,q) − V (au,t,q − bu,t,q)
)

du.

(2) More precisely, we have (2Φ(q)au,t,q)2 − (2Φ(q)bu,t,q)2 = 4Φ(q)t. In particular, 2Φ(q)(au,t,q −
bu,t,q) → ∞ as long as 4Φ(q)t → ∞, uniformly in u.
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Proof. — Since Φ(q)x + t
x

= 2
√

Φ(q)t + (
√

Φ(q)x −
√

t
x
)2, we can rewrite (3.1) as

E
[
e−qξρ(t)

]
ϕ(q)e−2

√
Φ(q)t

=
∫ ∞

0
e

−
(√

Φ(q)x−
√

t
x

)2

xL(dx)

=
∫ ∞

0

∫ ∞∣∣∣√Φ(q)x−
√

t
x

∣∣∣ 2ue−u2du xL(dx)

=
∫ ∞

0
2ue−u2

∫ ∞

0
1{∣∣∣∣√Φ(q)x−

√
t
x

∣∣∣∣⩽u

}xL(dx)
du,

by Fubini’s theorem. Note then thatx ∈ R :

∣∣∣∣∣∣
√

Φ(q)x −
√

t

x

∣∣∣∣∣∣ ⩽ u

 =
[
au,t,q − bu,t,q, au,t,q + bu,t,q

]
and that the Lebesgue measure of {u > 0 : V ({au,t,q −bu,t,q}) > 0} is null to complete
the proof of Lemma 3.1. □

The function V is regularly varying at ∞ under (Hγ) which is important but
not sufficient for our purpose, as we have to control the increments of V . To that
end, we apply a result of Doney and Rivero [DR13] in the next section, which
relies on (Htech). We then complete the proofs of Theorem 1.5 in Section 3.2 and
Theorem 1.7 in Section 3.3.

3.1. Preliminaries: regular variation and asymptotic behavior of the
increments of V

We first study the regular variation of V and L.

Lemma 3.2. — If ϕ is regularly varying at 0 with index γ ∈ [0, 1], the function
V is regularly varying at ∞ with index γ

γ+1 ∈ [0, 1/2]. More precisely:
(i) When γ > 0, L is also regularly varying at ∞, with index −1

γ+1 ∈ (−1, −1/2],
and

L(x) ∼
x→∞

1
Γ
(

γ
1+γ

) · Φ−1
(1

x

)
∼

x→∞

γV (x)
x

.

(ii) When γ = 0, L(x) ≪ V (x)/x and we still have the above behavior for V
when moreover κ = 0:

V (x) ∼
x→∞

xΦ−1
(1

x

)
whereas when κ > 0,

V (x) →
x→∞

1
κ

−
1{c=0}

κ + π(0, ∞) .
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These results on the links between the asymptotics of the tail of the Lévy measure
of a subordinator and its Laplace exponent are classical. We prove them quickly for
the sake of completeness and to integrate the function V . Note that xΦ−1

(
1
x

)
→ 1

κ

as x → ∞ when κ > 0, so in general the two assertions of (ii) cannot be merged.
Proof. — We rewrite (2.3) as

Φ−1(q) = q1{c=0}

κ + π(0, ∞) +
∫ q

0

(∫ ∞

0
e−xuV (dx)

)
du

= q1{c=0}

κ + π(0, ∞) + q
∫ ∞

0
e−quL(u)du,

(3.2)

using Fubini’s theorem.
We first assume that κ = 0. In this case, Φ(q)/q → 0 as q → 0, therefore Φ−1(q) ≫ q

when q → 0. Consequently,

(3.3) Φ−1(q) ∼
q→0

∫ q

0

(∫ ∞

0
e−xuV (dx)

)
du.

As ϕ is regularly varying at 0 with index γ, Φ−1 is regularly varying at 0 with index
(γ + 1)−1, therefore so is the integral on the right-hand side. Since the function
u 7→

∫∞
0 e−xuV (dx) is monotone (decreasing), it is also regularly varying at 0, with

index (γ + 1)−1 − 1, by the monotone density theorem ([BGT87, Theorem 1.7.2b])
and ∫ ∞

0
e−xqV (dx) ∼

q→0

q−1

γ + 1

∫ q

0

(∫ ∞

0
e−xuV (dx)

)
du ∼

q→0

q−1

γ + 1Φ−1(q).

It is then sufficient to use Karamata’s Tauberian theorem ([BGT87, Theorem 1.7.1])
to deduce from this the regular variation of V and the equivalence settled in the
statements (i) and (ii) of the lemma, regarding V .

The behavior of L is obtained in a similar fashion. Using (3.2) and that Φ−1(q) ≫ q
as q → 0, we have

Φ−1(q) ∼
q→0

q
∫ ∞

0
e−quL(u)du.

Hence, applying Karamata’s tauberian theorem we obtain that∫ x

0
L(u)du ∼

x→∞

1
Γ
(
1 + γ

1+γ

) · xΦ−1(1/x),

those two functions being regularly varying with index γ/(1 + γ). And then applying
the monotone density theorem to get the remaining parts of assertions (i) and (ii),
still when κ = 0.

We now turn to the case κ > 0. In this situation

lim
x→∞

V (x) =
∫ ∞

0
yL(y)dy = 1

κ
−

1{c=0}

κ + π(0, ∞) ,

as noticed at the end of Section 2.1. □

To get some information on the asymptotic behavior of the increments of V , or
equivalently of L, we recall from Section 2 that the measure L can be interpreted as
the image measure of the excursion measure, noted n, of a spectrally negative Lévy
process X with Laplace exponent Φ reflected below its maximum by the application
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ζ associating to an excursion its lifetime. In other words, we have L(x) = n(ζ > x).
We can therefore apply a result of Doney and Rivero [DR13, DR16] to obtain the
following local properties.

Lemma 3.3. — Assume (Hγ) and (Htech).
(i) For any ∆(x) > 0 such that ∆(x) = o(x) as x → ∞,

sup
∆ ∈ (0,∆(x)]

∣∣∣∣∣ x

L(x)
· L(x) − L(x + ∆)

∆ − 1
1 + γ

∣∣∣∣∣ →
x→∞

0.

(ii) There exists x0 > 0 such that

sup
∆ > 0

∣∣∣L(x) − L(x + ∆)
∣∣∣ ⩽ 2∆L(x)

x
for all x ⩾ x0.

Proof. — By [DR13, Theorem 1(iii)] and the erratum [DR16], under the hypothe-
ses (Hγ) and (Htech),

sup
∆ ∈ (0,∆0]

∣∣∣∣∣ x

L(x)
· L(x) − L(x + ∆)

∆ − 1
1 + γ

∣∣∣∣∣ →
x→∞

0

for any fixed ∆0 > 0 (note that with the notation α, ρ of [DR13], we have here
α = 1 + γ and ρ = 1

1+γ
). Now fix ε > 0 and let xε > 0 be such that for x ⩾ xε

sup
∆ ∈ (0,1]

∣∣∣∣∣ x

L(x)
· L(x) − L(x + ∆)

∆ − 1
1 + γ

∣∣∣∣∣ ⩽ ε.

Then for any ∆ > 0 and all x ⩾ xε

L(x) − L(x + ∆) =
⌊∆⌋−1∑

k=0

(
L(x + k) − L(x + k + 1)

)
+ L(x + ⌊∆⌋) − L(x + ∆)

⩽

(
1

1 + γ
+ ε

)⌊∆⌋−1∑
k=0

L(x + k)
x + k

+ L(x + ⌊∆⌋)
x + ⌊∆⌋

· (∆ − ⌊∆⌋)


⩽

(
1

1 + γ
+ ε

)
L(x)

x
· ∆

where for the last inequality we use that x 7→ L(x)/x is decreasing. This implies the
point (ii) of the lemma and is a first step in the proof of the point (i). To complete the
proof of the uniform convergence on intervals of the form (0, ∆(x)] with ∆(x) = o(x),
we note, similarly as above, that for any ∆ ∈ (0, ∆(x)] and all x ⩾ xε,

L(x) − L(x + ∆) ⩾
(

1
1 + γ

− ε

)⌊∆⌋−1∑
k=0

L(x + k)
x + k

+ L(x + ⌊∆⌋)
x + ⌊∆⌋

· (∆ − ⌊∆⌋)


⩾

(
1

1 + γ
− ε

)
L(x + ∆(x))

x + ∆(x) · ∆.

Now, since the function x 7→ L(x)/x is regularly varying as x → ∞ with in-
dex − 1

1+γ
− 1, by the Uniform Convergence Theorem ([BGT87, Theorem 1.5.2]),
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for all x large enough

L(x + ∆(x))
x + ∆(x) · x

L(x)
⩾

1(
1 + ∆(x)

x

) 1
1+γ

+1
− ε.

Taking x larger if necessary, we may assume that this last lower bound is in turn
larger than 1 − 2ε since ∆(x) = o(x). So, finally we have that for all x large enough
and then all ∆ ∈ (0, ∆(x)],

L(x) − L(x + ∆) ⩾
(

1
1 + γ

− ε

)
(1 − 2ε)L(x)

x
· ∆

as expected. □

This readily yields the following uniform behavior of the increments of V .

Corollary 3.4. — Assume (Hγ) and (Htech).
(i) For any ∆(x) > 0 such that ∆(x) = o(x) as x → ∞,

sup
∆ ∈ (0,∆(x)]

∣∣∣∣∣V (x + ∆) − V (x)
∆L(x)

− 1
1 + γ

∣∣∣∣∣ →
x→∞

0.

(ii) There exists x1 > 0 such that

sup
∆ > 0

∣∣∣V (x) − V (x + ∆)
∣∣∣ ⩽ 2∆L(x) + 2L(x)

x
∆2 for all x ⩾ x1.

Proof. — Recall that V (dx) = xL(dx), so that

(3.4) V (x + ∆) − V (x) = x
(
L(x) − L(x + ∆)

)
+
∫ ∆

0

(
L(x + y) − L(x + ∆)

)
dy.

From Lemma 3.3(i), we have on the one hand that

sup
∆ ∈ (0,∆(x)]

∣∣∣∣∣∣
x
(
L(x) − L(x + ∆)

)
∆L(x)

− 1
1 + γ

∣∣∣∣∣∣ →
x→∞

0

and on the other hand that for x large enough and then all ∆ ∈ (0, ∆(x)]∣∣∣∣∣
∫ ∆

0

(
L(x + y) − L(x + ∆)

)
dy

∣∣∣∣∣ ⩽ 2
1 + γ

∫ ∆

0

L(x + y)
x + y

(∆ − y)dy

⩽
1

1 + γ
· L(x)

x
· (∆)2 ,

hence

sup
∆ ∈ (0,∆(x)]

∣∣∣∫∆
0

(
L(x + y) − L(x + ∆)

)
dy
∣∣∣

∆L(x)
⩽

1
1 + γ

· ∆(x)
x

−→ 0.

This gives (i). The upper bound in (ii) is obtained in a similar way, by combining
Lemma 3.3(ii) with (3.4). □
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3.2. Asymptotics of E[exp(−qξρ(t))] when t → ∞

In this section q > 0 is fixed and we let t → ∞. We have set up all the key elements
necessary for the proof of Theorem 1.5, which ends as follows.

Proof of Theorem 1.5. Set for u, t, q > 0,

Iu,t,q := V (au,t,q + bu,t,q) − V (au,t,q − bu,t,q) ,

with the notation a, b of Lemma 3.1, so that

E
[
e−qξρ(t)

]
= ϕ(q)e−2

√
Φ(q)t

∫ ∞

0
2ue−u2

Iu,t,qdu.

Then first note that for each fixed u, q > 0,

au,t,q ∼
t→∞

√
t√

Φ(q)
and bu,t,q ∼

t→∞

ut1/4

(Φ(q))3/4

and that Corollary 3.4(i) yields

Iu,t,q ∼
t→∞

2bu,t,qL(au,t,q − bu,t,q)
1 + γ

.

Together with the regular variation of L at ∞ (Lemma 3.2(i)), we get that
Iu,t,q

t1/4L(
√

t)
−→
t→∞

2u

1 + γ
· Φ(q)

1
2(1+γ) − 3

4 .

It remains to conclude using the dominated converge theorem that this implies

(3.5)
∫∞

0 2ue−u2
Iu,t,qdu

t1/4L(
√

t)
−→
t→∞

1
1 + γ

· Φ(q)
1

2(1+γ) − 3
4

∫ ∞

0
4u2e−u2du.

The convergence indeed gives Theorem 1.5 since Γ( γ
γ+1)L(

√
t) ∼t→∞ Φ−1(1/

√
t) by

Lemma 3.2(i) and
∫∞

0 4u2e−u2du =
√

π.
To apply the dominated convergence theorem and get (3.5), we need to split the

term under the integral into two pieces, according to whether u ⩽ ut := (Φ(q)t)1/4 /2
or u > ut. First, for u ⩽ ut, we note that

au,t,q − bu,t,q ⩾
2
√

Φ(q)t − 2u (Φ(q)t)1/4

2Φ(q) ⩾

√
t

2
√

Φ(q)
.

So, by Corollary 3.4(ii), we have that for t large enough and all u ⩽ ut,

|Iu,t,q| ⩽4bu,t,qL (au,t,q − bu,t,q)
(

1 + 2bu,t,q

au,t,q − bu,t,q

)

⩽4bu,t,q

(
1 + 2Φ(q)bu,t,q(au,t,q + bu,t,q)

t

)
L

 √
t

2
√

Φ(q)
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using that L is non-increasing and that (au,t,q −bu,t,q)(au,t,q +bu,t,q) = t/Φ(q). Besides,
as a consequence of the regular variation of L with index −1/(1 + γ), we have that
for all x ⩾ y both sufficiently large,

L(y)
L(x)

⩽ 2
(

x

y

) 2
(1+γ)

,

applying classical Potter’s bounds for regularly varying functions ([BGT87, Theo-
rem 1.5.6]). Therefore, taking t larger if necessary, we also have that

L

 √
t

2
√

Φ(q)

 ⩽ c1(q)L(
√

t))

for a constant c1(q) depending only on q (using Potter’s bounds when 2
√

Φ(q) ⩾ 1
and that L is non-increasing when 2

√
Φ(q) ⩽ 1). Using the definitions of au,t,q, bu,t,q,

we then deduce from these bounds that for t large enough and all u ⩽ ut,

|Iu,t,q| ⩽ c2(q)t1/4L
(√

t
)
P (u),

where P is a polynomial and c2(q) does not depend on t and u ⩽ ut. We can therefore
apply the dominated convergence theorem and get that∫∞

0 2ue−u2
Iu,t,q1{u⩽ut}du

t1/4L(
√

t)
−→
t→∞

1
1 + γ

· Φ(q)
1

2(1+γ) − 3
4

∫ ∞

0
4u2e−u2du.

It remains to show that
∫∞

0 2ue−u2
Iu,t,q1{u > ut}du = o(t1/4L(

√
t)). In that aim, note

that for u > ut, one has au,t,q + bu,t,q ⩽ c3(q)u2 for some constant c3(q) depending
only on q. And also that V (x) ⩽ κ

√
x for some κ ∈ (0, ∞) and all x large enough.

This is clear by the regular variation property of V with an index less or equal to
1/2 (and more generally without the assumption of regular variation, as noticed in
the proof of Proposition 1.3). Consequently, for t large enough and u > ut,

Iu,t,q ⩽ V (au,t,q + bu,t,q) ⩽ κ
√

c3(q)u.

This leads to ∫∞
0 2ue−u2

1{u > ut}Iu,t,qdu

t1/4L(
√

t)
= O

 e−
√

tΦ(q)
8

t1/4L(
√

t)

 −→
t→∞

0

as required. □

3.3. Convergence in distribution of Φ−1(1/t)ξρ(t)

This section is devoted to the proof of Theorem 1.7, i.e. the scaling limit of ξρ(t)
as t → ∞. This is done using Theorem 1.2 to study the joint asymptotic behavior
of the Laplace transform of ξρ(t) as t → ∞ and q → 0.
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3.3.1. Proof of Theorem 1.7(i)

In this part, we only assume (Hγ). The convergence of the distribution of
Φ−1(1/t)ξρ(t) to Dγ could certainly be proved by using that under (Hγ) ξ is in
the domain of attraction of a stable subordinator and the definition of the time
change ρ. We present here an alternative proof, which is based on Theorem 1.2. We
use again the rewriting of Lemma 3.1 which gives for λ, t > 0

(3.6) E
[
e−λΦ−1(1/t)ξρ(t)

]
= ϕ

(
λΦ−1(1/t)

)
e−2

√
Φ(λΦ−1(1/t))t

∫ ∞

0
2ue−u2

Ju,tdu

with

Ju,t = V
(
au,t,λΦ−1(1/t) + bu,t,λΦ−1(1/t)

)
− V

(
au,t,λΦ−1(1/t) − bu,t,λΦ−1(1/t)

)
with the notation a, b of Lemma 3.1.

In what follows λ is fixed. Under the regular variation hypothesis (Hγ) we clearly
have that when t → ∞, Φ (λΦ−1(1/t)) t → λγ+1 and

ϕ
(
λΦ−1(1/t)

)
∼ (γ + 1) Φ (λΦ−1(1/t))

λΦ−1(1/t) ∼ (γ + 1)λγ

tΦ−1(1/t) ∼ (γ + 1)λγ

γΓ
(

γ
γ+1

)
· V (t)

the last equivalence being a consequence of Lemma 3.2(i). Using further the regular
variation of V , we note that

Ju,t ∼ A(u, λ) · V (t)

where

A(u, λ) :=

u2 + 2λ
γ+1

2 + u
√

u2 + 4λ
γ+1

2

2λγ+1


γ

γ+1

−

u2 + 2λ
γ+1

2 − u
√

u2 + 4λ
γ+1

2

2λγ+1


γ

γ+1

,

and also that according to Potter’s bounds ([BGT87, Theorem 1.5.6])

Ju,t

V (t)
⩽

2γ

1 + γ

u2 + 2λ
γ+1

2 + u
√

u2 + 4λ
γ+1

2

2λγ+1


γ

γ+1

for all t large enough and then all u > 0. We can therefore apply the dominated
convergence theorem and obtain from (3.6) that

lim
t→∞

E
[
e−λΦ−1(1/t)ξρ(t)

]
= (γ + 1)λγ

γΓ
(

γ
γ+1

) · e−2λ
γ+1

2 ·
∫ ∞

0
2ue−u2

A(u, λ)du.

We conclude by noticing that this last expression is the Laplace transform E[e−λξ
(γ)
ρ(1) ]

when ξ(γ) is a subordinator with Laplace exponent q 7→ (γ + 1)qγ, i.e. the Laplace
transform of the distribution Dγ. This is easily seen by using the expression of the
Lévy measure L associated to ξ(γ), see the paragraph preceding Corollary 2.3, and
Lemma 3.1.
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3.3.2. Proof of Theorem 1.7(ii)

We assume now that (Hγ) holds with γ = 1. As noticed at the beginning of this
paper, the almost sure convergence when m = c+

∫∞
0 xπ(dx) is finite follows trivially

from the almost sure convergence of t−1ξt to m and the definition (2.1) of ρ which
then yields mρ(t)2/2 ∼ t as t → ∞.

Assuming additionally that a =
∫∞

0 x2π(dx) < ∞, we want to prove a central limit
theorem. We first note that under this hypothesis:

(3.7) ϕ(q) =
q→0

mq − a

2q2 +o(q2), Φ(q) =
q→0

m

2 q2 − a

3!q
3 +o(q3), Φ−1(q) ∼

q→0

√
2
m

q.

By Lemma 3.1, for all λ > 0 and all t > 0

E
[
e

−λt1/4
(

ξρ(t)√
t

−
√

2m

)]
= eλt1/4√

2mϕ
(
λt−1/4

)
e

−2
√

Φ(λt−1/4)t
∫ ∞

0
2ue−u2

Ku,tdu

where
Ku,t := V

(
au,t,λt−1/4 + bu,t,λt−1/4

)
− V

(
au,t,λt−1/4 − bu,t,λt−1/4

)
.

Using the asymptotic expansion at 0 of Φ and
√

1 − x = 1 − x
2 + o(x) as x → 0, we

immediately get that

eλt1/4√
2me

−2
√

Φ(λt−1/4)t −→
t→∞

e
a

3
√

2m
λ2

,

where we recognize in the right-hand side the Laplace transform of a centered
gaussian distribution with variance

√
2a

3
√

m
. It remains to prove that

(3.8) ϕ
(
λt−1/4

) ∫ ∞

0
2ue−u2

Ku,tdu −→
t→∞

1.

We proceed as in the proof of Theorem 1.5, relying on Corollary 3.4. First, note that
by (3.7), for each fix u > 0,

au,t,λt−1/4 ∼
t→∞

√
2
m

· t3/4

λ
and bu,t,λt−1/4 ∼

t→∞
u
( 2

m

)3/4
· t5/8

λ3/2 .

Consequently, for each fixed u > 0, by Corollary 3.4(i) (since bu,t,λt−1/4 = o(au,t,λt−1/4)
and γ = 1)

Ku,t ∼
t→∞

bu,t,λt−1/4L
(
au,t,λt−1/4 − bu,t,λt−1/4

)
∼

t→∞
bu,t,λt−1/4

√
2

√
mπau,t,λt−1/4

∼
t→∞

u√
π

· 2
m

· t1/4

λ

where in the second line we used Lemma 3.2(i) and (3.7) to get that

L(x) ∼
x→∞

1
Γ(1/2) · Φ−1

(1
x

)
∼

x→∞

√
2√

mπx
.
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If we could apply the dominated convergence theorem, this would indeed imply (3.8)
since ϕ(λt−1/4) ∼ mλt−1/4 and

∫∞
0 2u2e−u2du =

√
π/2. The proof to dominate appro-

priately ϕ(λt−1/4)Ku,t holds in a similar way as we did in the proof of Theorem 1.5.
We leave the details to the reader.

4. Asymptotics of the whole fragmentation process

Let F be a fragmentation process with characteristics (ν, c, | log |−1) and recall the
notation

ϕ(ν,c)(q) = c(q + 1) +
∫

S

1 −
∑
i⩾ 1

sq+1
i

 ν(ds),

Φ(ν,c) for the primitive of ϕ(ν,c) null at 0 and Φ−1
(ν,c) for the inverse of Φ(ν,c). The

computations of the previous section show that the logarithm of the size of a typical
fragment of the process F at a large time t will typically be of order −1/Φ−1

(ν,c)(1/t).
We thus take interest in the following random probability point measure on (0, ∞),
which captures the distribution of the population at a large time

Et :=
∑
i⩾ 1

Fi(t)δΦ−1
(ν,c)(1/t)| log Fi(t)|.

Our goal is to prove the asymptotics of this measure settled in Proposition 1.9 and
for this we follow the same strategy as that of the proof of [Ber03, Theorem 1] by con-
sidering one and then two typical fragments. It is worth noting that Proposition 1.1
and Theorem 1.7(i) immediately imply that for all continuous bounded functions
f : (0, ∞) → R, when ϕ(ν,c) is regularly varying at 0 with index γ ∈ (0, 1],

(4.1) E
[∫

fdEt

]
= E

[
f
(
Φ−1

(ν,c)(1/t)ξρ(ν,c)(t)

)]
−→
t→∞

∫
fdDγ.

Therefore, to complete the proof of Proposition 1.9(i), it will be enough to show that∫
fdEt is well-concentrated around its mean. To do so, we study the asymptotics of

the second moment of this quantity.

Lemma 4.1. — Assume that ϕ(ν,c) is regularly varying at 0 with index γ ∈ (0, 1].
Then for all continuous bounded functions f : (0, ∞) → R

E
[(∫

fdEt

)2
]

−→
t→∞

(∫
fdDγ

)2
.

Using this lemma, the proof Proposition 1.9(i) follows straightforwardly.
Proof of Proposition 1.9(i). — Using Lemma 4.1 together with (4.1), we see that∫
fdEt →

∫
fdDγ in L2. Applying this result to x 7→ eiax, we deduce that the Fourier

transform of Et converges pointwise in probability to the Fourier transform of Dγ.
As a result, Et converges pointwise in probability to Dγ. □

We now turn to the proof of Lemma 4.1.
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Proof of Lemma 4.1. — We use the construction of the fragmentation from its
homogeneous counterpart as detailed in Section 1.2. Consider (Ih

j (t), j ⩾ 1) an
interval version of this homogeneous fragmentation with dislocation measure ν and
erosion coefficient c. Let U and U ′ be two independent uniformly distributed on (0, 1)
random variables, independent of Ih, and define

ξt = − log
∣∣∣Ih

t,U

∣∣∣ and ξ′
t = − log

∣∣∣Ih
t,U ′

∣∣∣ ,
where Ih

t,U , respectively Ih
t,U ′ , stands from the unique interval at time t containing U ,

resp. U ′. We note that ξ and ξ′ are two subordinators with Laplace exponent ϕ(ν, c),
which are not independent. However, writing

T := inf
{
t > 0 : Ih

t,U ̸= Ih
t,U ′

}
,

we note that (ξT +t − ξT , t ⩾ 0) and (ξ′
T +t − ξ′

T , t ⩾ 0) are i.i.d. subordinators, by the
strong Markov property. It is then a simple computation to remark, with transparent
notation, that

E
[(∫

fdEt

)2
]

= E
[
f
(
Φ−1

(ν,c)(1/t)ξρ(t)
)

f
(
Φ−1

(ν,c)(1/t)ξ′
ρ′(t)

)]
.

Since ρ(T ) = ρ′(T ) is an a.s. finite stopping time and Φ−1
(ν,c)(1/t) → 0, we conclude

that Φ−1
(ν,c)(1/t)ξρ(t) and Φ−1

(ν,c)(1/t)ξ′
ρ′(t) are asymptotically independent, yielding

E
[(∫

fdEt

)2
]

−→
t→∞

(∫
fdDγ

)2
,

which completes the proof. □

To finish, the proof of Proposition 1.9(ii) holds very similarly by combining Propo-
sition 1.1 and Theorem 1.7(ii) with a concentration result which is proved by using
2 typical fragments. This is left to the reader.

5. Comparison with the convex hull asymptotic

We return to our initial motivation and finish with some informal thoughts, notably
regarding the observed discrepancy between our result in Proposition 1.3 and the
prediction in [BBMS22]. Indeed, recall that the physicists predicted that

2π − E[P t] ∼
t→∞

ct1/4e−2t1/2
,

while we show that for the fragmentation toy-model, choosing Φ so that Φ(2) = 1,
we have

E

∑
i⩾ 1

Fi(t)3

 ⩽ C
(
1 + t1/8

)
e−2t1/2

.

Several factors might explain the difference in the asymptotic behavior of the convex
hull of the Brownian motion and our simplified model, we list here some potential
explanations.
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Exponential distribution in the narrow escape problem. We use the ap-
proximation (1.1) in the narrow escape problem to approach the first hitting time
of an interval of length ε by BD by an exponential random variable with parameter
(−2 log ε)−1. It is possible that using a different rate of division might lead us to the
correct asymptotic. However, note that this hypothesis is identical to the one made
in [BBMS22] to obtain (1.2).

Correlations between the hitting times of distinct intervals. Contrarily
to our modeling assumptions, the hitting time of distinct intervals are not inde-
pendent in general. In fact, hitting times of neighboring intervals should be quite
close with positive probability in the limit of small intervals. However, for one part
the asymptotic independence assumption should hold as long as intervals are not
geographically close to one another, and from the other part, by linearity of the
expectation, considering a model with correlated fragmentation times should not
modify the value of E[∑i⩾ 1 Fi(t)q+1].

Choice of the fragmentation distribution. The choice of a self-similar frag-
mentation procedure has been guided by the following heuristic picture. Consider
the set of points visited by the Brownian motion BD on ∂D after its first hitting time
of a very small interval of length m. Using the Brownian scaling, we think of these
points as a scaled analogue of the set of positions in {0} × [0, 1] hit by the Brownian
motion BH in the half-plane H = R+ × R, reflected at its boundary, started from
a uniform point in {0} × [0, 1]. However, this process being recurrent, we need to
introduce a cutoff time in order to define a proper fragmentation distribution. For
example, we may set νA for the fragmentation corresponding to the hitting positions
of BH before its exit of B(0, A). Note that νA converges to (0, 0, · · · ) as A → ∞, but
we might wish to correct our toy model by splitting an interval of size ε according to
the distribution νA(ε) with A(ε) → ∞ as ε → 0. This inhomogeneous fragmentation
model might have an asymptotic behavior closer to the one observed in [BBMS22].

We end our discussion with the observation that in dimension greater than 2, a
similar analysis might be doable, but the cutoff mentioned above would no longer
be needed as for a Brownian motion W in the half-space R+ × Rd−1 with reflection
at its boundary, the quantity

Dd :=
{
Wt : t ⩾ 0, Wt ∈ {0} × Rd−1

}
gives a well-defined set of points. We could therefore define a fragmentation process
approaching the behavior of the convex hull of a Brownian motion in the ball of
dimension d with orthogonal reflection at its boundary.

For example, in dimension 3, we write B for the ball of unit radius centered
at 0, and BB for the Brownian motion in the ball with orthogonal reflection at its
boundary. The fragmentation associated to the study of {BB

s , s ⩽ t} would be a
time-inhomogeneous process of triangles on the sphere. Each fragment would be a
triangle T , and at a rate given by the asymptotic behavior of the probability for the
Brownian motion to hit this triangle, specifically

P(τ > t) ∼
t→∞

exp (−c(T )t) ,
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the element would be divided into fragments given by the Delaunay triangulation
of T with vertices given by an i.i.d copy of D3 ∩ T . Here c(T ) behaves proportionally
to the area of T , see [SSHE06]. It would connect the growth of the area of the
boundary of the convex hull of a Brownian motion in dimension 3 to a self-similar
fragmentation process with index 1.

In this situation, writing At for the area of the convex hull Ct of {BB
s , 0 ⩽ s ⩽ t},

and using the same computations as in the introduction, we remark that
4π − At ≈

∑
A(T )2

where A(T ) represents the area of the triangle T , and the sum is taken over all frag-
ments of the triangulation. We recall that for a self-similar fragmentation process F
with index 1, there exists C > 0 such that∑

i⩾ 1
Fi(t)2 ≈ C/t,

by [Ber03, Theorem 3]. It allows us to predict that 4π − At should be of order 1/t
as t → ∞.

Note that Cauchy’s surface area formula extends in higher dimension [TV17],
allowing us the exact computation

E[At] = 4E (λ(ΠCt)] ,

where λ is the Lebesgue measure on R2 and ΠCt is an orthogonal projection of Ct

onto R2, using again the invariance by rotation of the law of the Brownian motion.
Estimating the difference between the volume of the convex subset of D by twice
the difference of perimeters, we would obtain

4π − E[At] ≈
∫ 1

0
P(τx > t)dx as t → ∞

where τx stands here for inf{t > 0 : (1, 0, 0) ·BB
t > x}. Using again the narrow escape

approximation, we can heuristically estimate this integral as∫ 1

0
e−ct(1−x2)dx ∼

t→∞

1
2ct

which is consistent with our prediction.
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