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Résumé. — Nous considérons une théorie du scattering pour les opérateurs aux différences
sur H = ℓ2(Zd;Cn) perturbés par un potentiel à longue portée V : Zd → Rn. Un des exemples
motivants est celui des opérateurs de Schrödinger discrets sur des graphes Zd-périodiques. Nous
construisons des modificateurs indépendants du temps, appelés modificateurs d’Isozaki–Kitada,
et nous prouvons que les opérateurs d’onde modifiés avec les modificateurs d’Isozaki–Kitada
mentionnés ci-dessus existent et qu’ils sont complets.

1. Introduction

The aim of the present article is to construct a long-range scattering theory for
difference operators on the space of vector-valued functions on Zd. This problem is
motivated by discrete Schrödinger operators on an arbitrary non-primitive lattice,
e.g., hexagonal lattice, diamond lattice, Kagome lattice and graphite (see [AIM16]
for more examples). Note that the cases of primitive lattices and the hexagonal
lattice are considered in [Tad19a, Tad19b], respectively.

Let H = ℓ2(Zd;Cn), where d and n are positive integers. For u ∈ H, we use the
notation

u =


u1
u2
...
un

 , uj ∈ ℓ2
(
Zd
)

= ℓ2
(
Zd;C

)
.

We consider a generalized form of discrete Schrödinger operators on H:
H = H0 + V.

The unperturbed operator H0 is defined as a convolution operator by (fjk)1⩽ j, k ⩽n,
that is,

H0u =


H0,11 H0,12 · · · H0,1n

H0,21 H0,22 · · · H0,2n
... ... . . . ...

H0,n1 H0,n2 · · · H0,nn

u, u ∈ H,

H0,jkuk(x) =
∑

y ∈Zd

fjk(x− y)uk(y), uk ∈ ℓ2
(
Zd
)
.

Here each fjk : Zd → C is a rapidly decreasing function, i.e.,
sup

x ∈Zd

⟨x⟩m |fjk(x)| < ∞

for any m ∈ N, where ⟨x⟩ = (1 + |x|2) 1
2 . The perturbation V is a multiplication

operator by V = t(V1, · · · , Vn) : Zd → Rn,

V u(x) =


V1(x)u1(x)
V2(x)u2(x)

...
Vn(x)un(x)

 , u ∈ H.
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Isozaki–Kitada modifiers on general lattices 257

We denote the discrete Fourier transform by F ;

Fu(ξ) =


Fu1(ξ)
Fu2(ξ)

...
Fun(ξ)

 , ξ ∈ Td := [−π, π)d,

Fuj(ξ) = (2π)− d
2
∑

x ∈Zd

e−ix·ξuj(x),

for u ∈ ℓ1(Zd;Cn). Then F is extended to a unitary operator from H onto Ĥ =
L2(Td;Cn), and we denote its extension by the same symbol F . We easily see that
F ◦H0 ◦ F∗ is the multiplication operator on Td by the matrix-valued function

H0(ξ) =


h11(ξ) h12(ξ) · · · h1n(ξ)
h21(ξ) h22(ξ) · · · h2n(ξ)

... ... . . . ...
hn1(ξ) hn2(ξ) · · · hnn(ξ)

 ,
where

hjk(ξ) :=
∑

x ∈Zd

e−ix·ξfjk(x).

Since fjk’s are assumed to be rapidly decreasing, hjk’s are smooth functions on Td.
Note that σ(H0) = {λ | det(H0(ξ) −λ) = 0 for some ξ ∈ Td} and H0 is a self-adjoint
operator if and only if H0(ξ) is a symmetric matrix for any ξ ∈ Td, i.e., by the
definition of H0(ξ),

fjk(−x) = fkj(x), x ∈ Zd, 1 ⩽ j, k ⩽ n.(1.1)
In this paper, we assume the following assumption concerning the self-adjointness

of H0 and a long-range condition of V .

Assumption 1.1. —
(1) fjk’s are rapidly decreasing functions satisfying (1.1).
(2) V = t(V1, · · · , Vn) has the following representation

V = VL + VS,

where each entry of VL is the same, i.e., VL = t(Vℓ, · · · , Vℓ) with some Vℓ :
Zd → R. Furthermore, there exist ρ > 0 and C,Cα > 0 such that∣∣∣∂̃α

xVℓ(x)
∣∣∣ ⩽ Cα⟨x⟩−ρ−|α|,(1.2)

|VS(x)| ⩽ C⟨x⟩−1−ρ(1.3)

for any x ∈ Zd and α ∈ Zd
+. Here ∂̃α

x = ∂̃α1
x1 · · · ∂̃αd

xd
, ∂̃xj

V (x) = V (x)−V (x−ej)
is the difference operator with respect to the jth variable.

Assumption 1.1 implies that V is a compact operator on H and hence
σess(H) = σess(H0),

where σess(H) (resp. σess(H0)) denotes the essential spectrum of H (resp. H0).
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258 Y. TADANO

We denote the union of Fermi surfaces corresponding to the energies in Γ ⊂ R by

Ferm(Γ) :=
{
p = (ξ, λ) ∈ Td × Γ

∣∣∣λ is an eigenvalue of H0(ξ)
}

=
{
p = (ξ, λ) ∈ Td × Γ

∣∣∣ det (H0(ξ) − λ) = 0
}
.

Before describing the main theorem, we prepare the notation of non-threshold ener-
gies.

Definition 1.2. — λ0 ∈ σ(H0) is said to be a non-threshold energy of H0 if the
following properties (1) and (2) hold:

(1) For any ξ0 ∈ Td such that det(H0(ξ0) − λ0) = 0, there exists an open neigh-
borhood G ⊂ Td × R of p = (ξ0, λ0) such that Ferm(R) ∩ G has a graph
representation, i.e.

Ferm(R) ∩G = {(ξ, λ(ξ)) | ξ ∈ U}(1.4)

with some U ∋ ξ0 and λ ∈ C∞(U).
(2) Let ξ0 be arbitrarily fixed so that det(H0(ξ0) − λ0) = 0 holds, and let λ(ξ) be

as in (1.4). Then ∇ξλ(ξ0) ̸= 0 holds.

Remark 1.3. — There is a sufficient condition of non-threshold energies:
∇ξ det(H0(ξ) − λ0) ̸= 0 for any ξ ∈ Td such that det(H0(ξ) − λ0) = 0,

see Condition (A-3) in [AIM16, Sections 6 and 7]. The principal difference is that Def-
inition 1.2 covers the case where H0(ξ) has degenerate eigenvalues but no branching
occurs.

On the other hand, the set of non-threshold energies in the present paper can be
smaller than that of [PR18, Definition 5.5]. Definition 1.2 is assumed in order for
each eigenvalue and its associated eigenprojection of the Fourier symbol H0(ξ) of H0
to be smooth with respect to ξ on the non-threshold energy level, which is needed
to construct modifiers and to show some lemmas by the pseudodifferential calculus.

Let Γ(H0) be the set of non-threshold energies of H0. Then Γ(H0) is an open set
of R and Γ(H0) ⊂ σ(H0). Note that H0 has purely absolutely continuous spectrum
on Γ(H0), i.e., σpp(H0) ∩ Γ(H0) = σsc(H0) ∩ Γ(H0) = ϕ (see Remark 3.2).

The main theorem of this paper is the following.

Theorem 1.4. — Suppose Assumption 1.1 and Γ ⋐ Γ(H0). Then there are
bounded operators J± = J±,Γ on H, called Isozaki–Kitada modifiers, such that the
modified wave operators exist:

W±
IK(Γ) = s-lim

t→±∞
eitHJ±e

−itH0EH0(Γ),(1.5)

where EH0 denotes the spectral measure of H0, and that the following properties
hold:

(i) Intertwining property: HW±
IK(Γ) = W±

IK(Γ)H0.
(ii) Partial isometries: ∥W±

IK(Γ)u∥ = ∥EH0(Γ)u∥.
(iii) Completeness: RanW±

IK(Γ) = EH(Γ)Hac(H).
Here Hac(H) denotes the absolutely continuous subspace of H.
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Various examples of unperturbed operators H0 are given by Ando, Isozaki and
Morioka [AIM16, Section 3]. Note that, if the perturbation V is short-range, i.e.,
VL = 0, we can set J± = IdH, thus there exist the wave operators in this case.
See [PR18] for short-range scattering theory for discrete Schrödinger operators on
various lattices. We also note that a long-range scattering theory in the case of
n = 1, e.g., discrete Schrödinger operators on square and triangular lattices, is
considered by Nakamura [Nak14] and the author [Tad19a]. Moreover, Theorem 1.4
covers an arbitrary periodic lattice L with each primitive unit cell L/Γ containing
finite elements, where Γ ∼= Zd denotes the transformation group associated to L. In
particular, it includes the result by the author [Tad19b], where a long-range scattering
theory for discrete Schrödinger operators on the hexagonal lattice is studied. See
also [DG97, RS79, Yaf10] and references therein for scattering theory of Schrödinger
operators on Rd.

The key idea of the present paper is to locally observe the eigenvalues λk(ξ) of
H0(ξ). This enables us to construct modifiers via the Hamilton flow on T ∗Td =
Rd × Td associated with λk(ξ) + Ṽℓ(x), where Ṽℓ is a smooth extension of Vℓ onto
Rd satisfying |∂α

x Ṽℓ(x)| ⩽ C ′
α⟨x⟩−ρ−|α|, as well as to have the limiting absorption

principle and the radiation estimate. For local observation of eigenvalues, we need
to use the eigenprojections of H0(ξ) depending smoothly on ξ. We note that the
concrete diagonalization of H0(ξ) is employed in [Tad19b], where the representation
of diagonalization is smoothly defined globally away from the Dirac points.

The organization of this paper is as follows. We first prepare notations and proper-
ties of pseudodifference operators in Section 2. In Section 3, the limiting absorption
principle and the propagation estimate for H are studied. We use the Mourre theory
and a standard argument of the propagation of wave packets as in Yafaev [Yaf10,
Chapter 10]. The construction of conjugate operators is essentially due to Parra and
Richard [PR18]. Section 4 is devoted to constructing phase functions which are given
as local solutions to eikonal equations corresponding to each fiber of eigenvalues of
H0(ξ). The construction of phase functions is due to [Nak22]. In Section 5, using
the phase functions in the previous section, we construct Isozaki–Kitada modifiers.
Finally in Section 6, we use lemmas in the previous section to prove Theorem 1.4.
The proof is based on Kato’s smooth perturbation theory, and is an analogue of that
in long-range scattering theory for Schrödinger operators on Rd (see [Yaf10]).

2. Preliminaries

2.1. Representations of fibers

Let Γ be as in Theorem 1.4, and let I ⋐ Γ(H0) be fixed so that Γ ⋐ I ⋐ Γ(H0).
For each p = (ξ0, λ0) ∈ Ferm(Γ(H0)), let G = Gp be as in Definition 1.2. Then

{Gp}p ∈ Ferm(Γ(H0)) is an open covering of Ferm(Γ(H0)). Since Ferm(I) is compact, we
can take a finite family {Gj}J

j=1 = {Gpj
}J

j=1 of open sets which covers Ferm(I).
Note that {Gj ∩ Ferm(R)}J

j=1 is also a covering family of Ferm(I). Let G′
k, k =

1, . . . , K, be the connected components of ∪J
j=1Gj ∩ Ferm(R). We see that each G′

k
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remains to have a graph representation
G′

k = {(ξ, λk(ξ)) | ξ ∈ Uk}(2.1)
with some open set Uk ⊂ Td and λk ∈ C∞(Uk). We denote by Pk(ξ) the projection
matrix onto Ker(H0(ξ) − λk(ξ)) for ξ ∈ Uk. Then we have for ψ ∈ C∞

c (I)

ψ(H0(ξ)) =
K∑

k=1
ψ(λk(ξ))Pk(ξ)χUk

(ξ).(2.2)

2.2. Pseudodifference calculus

For a : Zd × Td → Mn(C) ∼= Cn×n,

a(x,Dx)u(x) := (2π)− d
2

∫
Td
eix·ξa(x, ξ)Fu(ξ)dξ, u ∈ H,

denotes the pseudodifference operator on Zd with symbol a(x, ξ). If a depends only
on ξ, we denote by a(Dx) = F∗ ◦ a(·) ◦ F the Fourier multiplier associated with a(ξ)
in short.

We cite a lemma concerning the pseudodifference calculus on H (see [RT09, Theo-
rem 4.2.10] and the proof of [Tad19a, Lemma 2.2]).

Lemma 2.1. — Let a : Zd ×Zd ×Td → Mn(C) be a smooth function with respect
to Td, and let

Au(x) = (2π)−d
∫
Td

∑
y ∈Zd

ei(x−y)·ξa(x, y, ξ)u(y)dξ.

Suppose that for any α ∈ Zd
+

sup
(x,y,ξ) ∈Zd×Zd×Td

∣∣∣∂α
ξ a(x, y, ξ)

∣∣∣ < ∞.(2.3)

Then A is a bounded operator on ℓ2(H).
Let Sm be the symbol class of order m ∈ R, i.e.,

Sm =


a : Zd × Td → Mn(C)

∣∣∣∣∣∣∣∣∣∣∣

a(x, ·) ∈ C∞
(
Td;Mn(C)

)
, ∀ x ∈ Zd,

sup
(x,ξ) ∈Zd×Td

⟨x⟩−m+|α|
∣∣∣∂̃α

x∂
β
ξ a(x, ξ)

∣∣∣
< ∞, ∀ α, β ∈ Zd

+


,

where ∂̃α
x denotes the difference operator as in (1.2).

The following two assertions are analogous to the composition formula for pseudo-
differential operators. See [RT09, Theorems 4.7.3 and 4.7.10] for the proofs.

Lemma 2.2. — Let a ∈ Sm and b ∈ Sℓ. Then a(x,Dx)b(x,Dx) = c(x,Dx) with
some c ∈ Sm+ℓ satisfying the asymptotic expansion

c(x, ξ) −
∑

|α|⩽M

∂α
ξ a(x, ξ)∂̃α

x b(x, ξ) ∈ Sm+ℓ−M−1

for any M ∈ Z+.
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Lemma 2.3. — Let a ∈ Sm. Then there exists b ∈ Sm such that a(x,Dx)∗ =
b(x,Dx) and b(x, ξ) − a(x, ξ)∗ ∈ Sm−1.

2.3. Kato’s smooth perturbation theory

For a self-adjoint operator H and an H-bounded operator G, we say that G is
H-smooth if

1
2π sup

∥u∥H=1,u ∈ D(H)

∫ ∞

−∞

∥∥∥Ge−itHu
∥∥∥2
dt < ∞.(2.4)

For a Borel set I ⊂ R, we say that G is H-smooth on I if GEH(I) is H-smooth, and
we also say that G is locally H-smooth on I if G is H-smooth on I ′ for any I ′ ⋐ I.

There are several conditions equivalent to (2.4) (see e.g. [Yaf92]), and the one we
need in the following is:

sup
λ ∈R, ε > 0

∥Gδε(λ,H)G∗∥ < ∞,(2.5)

where δε(λ,H) = 1
2πi

{(H − λ− iε)−1 − (H − λ+ iε)−1}.

3. Limiting absorption principle and radiation estimates

In this section, we consider the limiting absorption principle and radiation estimates
for the proof of Theorem 1.4.

3.1. Limiting absorption principle

For a self-adjoint operator A and m ∈ N, let
Cm(A) =

{
S ∈ B(H)

∣∣∣R → B(H), t 7→ e−itASeitA is strongly of class Cm
}
,

and C∞(A) = ∩m ∈NC
m(A). We denote by C1,1(A) the set of the operators S satis-

fying ∫ 1

0

∥∥∥e−itASeitA + eitASe−itA − 2S
∥∥∥ dt
t2
< ∞.

We set the Besov space
B := (D(⟨x⟩),H) 1

2 ,1,

where we have used the notation of real interpolation (·, ·)θ,p between Banach spaces
(see [ABdMG96, Section 2.1]).

The following proposition is called the limiting absorption principle. The proof is
given by the Mourre theory, and the construction of conjugate operators is essentially
due to [PR18, Lemma 6.2].

Proposition 3.1. — Suppose Assumption 1.1. Then:
(1) The set of eigenvalues of H is locally finite in Γ(H0) with counting multiplic-

ities.

TOME 8 (2025)



262 Y. TADANO

(2) For any λ ∈ Γ(H0)\σpp(H), there exist the weak-* limits in B(B,B∗)

w*- lim
ε→+0

(H − λ∓ iε)−1.

Moreover, each convergence is locally uniform in λ ∈ Γ(H0)\σpp(H). In par-
ticular, for any Γ ⋐ Γ(H0)\σpp(H),

sup
λ ∈ Γ, ε > 0

∥∥∥(H − λ∓ iε)−1
∥∥∥

B(B,B∗)
< ∞.(3.1)

Proof. — Let Γ ⋐ Γ(H0) be arbitrarily fixed, and recall the representation (2.2).
We set χk ∈ C∞

c (Uk) so that χk = 1 on λ−1
k (Γ). We also set the conjugate operator

A by

A =
K∑

k=1
Pk(Dx)χk(Dx)i

[
λk(Dx), |x|2

]
Pk(Dx)χk(Dx)

=
K∑

k=1
Pk(Dx)χk(Dx)MkPk(Dx)χk(Dx),

where
Mk = x · ∇ξλk(Dx) + ∇ξλk(Dx) · x.

Now we employ the Mourre theory ([ABdMG96, Proposition 7.1.3, Corollary 7.2.11,
Theorem 7.3.1], see also [Tad19b, Theorem A.1]). Then, since A is ⟨x⟩-bounded, it
suffices to show that H ∈ C1,1(A) and that, for any ψ ∈ C∞

c (Γ), there exist c > 0
and a compact operator K such that the Mourre inequality holds:

ψ(H)i[H,A]ψ(H) ⩾ cψ(H)2 +K.(3.2)

For the first assertion, we easily see H0 ∈ C∞(A), and V ∈ C1,1(A) is proved
by (1.2), (1.3) and Lemma 2.2 (see [PR18, Tad19b] for details of the proof).

For the proof of (3.2), we learn by Definition 1.2(2) that

(3.3) ψ(H0)i[H0, A]ψ(H0)

= 2
K∑

k=1
Pk(Dx)ψ

(
λk(Dx)

)
χk(Dx)|∇ξλk(Dx)|2Pk(Dx)ψ

(
λk(Dx)

)
χk(Dx)

⩾ c
K∑

k=1
Pk(Dx)ψ

(
λk(Dx)

)2
χk(Dx)2 ⩾ cψ(H0)2.

It follows from (1.2) and (1.3) that i[V,A] and ψ(H)−ψ(H0) are compact, and hence
we have (3.2). □

Remark 3.2. — If we adopt the Mourre theory to H = H0, (3.3) implies that H0
has purely absolutely continuous spectrum on Γ(H0).

Since B ⊃ ⟨x⟩sH and B∗ ⊂ ⟨x⟩−sH hold for any s > 1
2 (see, e.g., [ABdMG96,

Theorem 3.4.1]), (3.1) and the equivalence between (2.4) and (2.5) imply the following
corollary.

Corollary 3.3. — For any s > 1
2 , ⟨x⟩−s is locally H-smooth on Γ(H0)\σpp(H).
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3.2. Radiation estimates

In order to prove the existence and completeness of modified wave operators, we
use, in addition to the limiting absorption principle, other propagation estimates
called radiation estimates (see [Yaf10, Theorem 10.1.7]).

Proposition 3.4. — Let Γ ⋐ Γ(H0) be fixed, and let λk(ξ), k = 1, . . . , K, be as
in (2.1). We set for k = 1, . . . , K and j = 1, . . . , d,

∇⊥
k,j :=

{(
∂ξj
λk

)
(Dx) − χ{x̸=0}|x|−2xj⟨x, (∇ξλk)(Dx)⟩

}
Pk(Dx)χk(Dx),

where χk ∈ C∞
c (Uk) is fixed arbitrarily so that χk = 1 on λ−1

k (Γ). Then

χ{x ̸=0}|x|−
1
2 ∇⊥

k,j(3.4)
is locally H-smooth on Γ(H0)\σpp(H).

Proof. — Fix k = 1, . . . , K. For simplicity of notation, we write λ, P , χ and ∇⊥
j

instead of λk, Pk, χk and ∇⊥
k,j, respectively.

Let a ∈ C∞(Rd) be fixed so that a(x) = |x| for |x| ⩾ 1, and let
aj := ∂xj

a, vj := ∂ξj
λ.

We set

A := (Pχ)(Dx)
d∑

j=1
{aj(x)vj(Dx) + vj(Dx)aj(x)} (Pχ)(Dx).

Then A is a bounded symmetric operator. It follows from [Yaf10, Proposition 0.5.11]
and Corollary 3.3 that we only have to show

(u, i[H,A]u) ⩾ 2
d∑

j=1

∥∥∥χ{x ̸=0}|x|−1/2∇⊥
j u
∥∥∥2

− C∥⟨x⟩−µu∥2(3.5)

with some C > 0, where µ = min(ρ+1
2 , 1) > 1

2 .
We show (3.5) in the rest of the proof. The representation (2.2) implies

i[H0,A] = (Pχ)(Dx) ·M · (Pχ)(Dx),
where

M =
d∑

j=1
{i [λ(Dx), aj(x)] · vj(Dx) + vj(Dx) · i [λ(Dx), aj(x)]} .

It follows from Lemma 2.2 that, formally,

M = 2
d∑

j=1

d∑
ℓ=1

vℓ(Dx)ajℓ(x)vj(Dx) +R1,

where ajℓ := ∂xℓ
∂xj

a, and R1 satisfies ⟨x⟩2(Pχ)(Dx)R1(Pχ)(Dx) ∈ B(H). Since for
|x| ⩾ 1

ajℓ(x) = ∂xℓ
∂xj

(|x|) = −xjxℓ

|x|3
+ δjℓ|x|−1,
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we learn

(u, i[H0,A]u) = −2
d∑

j=1

d∑
ℓ=1

(
uℓ,

xjxℓ

|x|3
χ{x ̸=0}u

j

)

+ 2
d∑

j=1

(
uj, |x|−1χ{x ̸=0}u

j
)

+
(
(Pχ)(Dx)u,R2(Pχ)(Dx)u

)
,

(3.6)

where
uj := (vjPχ)(Dx)u,

and

R2 = R1 + 2
d∑

j=1

d∑
ℓ=1

ajℓ(0)vℓ(Dx)χx=0(x)vj(Dx)

also satisfies ⟨x⟩2(Pχ)(Dx)R2(Pχ)(Dx) ∈ B(H).
On the other hand, a direct computation implies for x ̸= 0
∣∣∣∇⊥

j u(x)
∣∣∣2 =

∣∣∣uj(x)
∣∣∣2 − |x|−2xj

d∑
ℓ=1

xℓ

(
uℓ(x)uj(x) + uℓ(x)uj(x)

)

+ |x|−4xj
2

d∑
ℓ=1

d∑
m=1

xℓxmuℓ(x)um(x).

Summing up over j = 1, . . . , d, we learn
d∑

j=1

∣∣∣∇⊥
j u(x)

∣∣∣2 =
d∑

j=1

∣∣∣uj(x)
∣∣∣2 − |x|−2

d∑
j=1

d∑
ℓ=1

xjxℓ

(
uℓ(x)uj(x) + uℓ(x)uj(x)

)

+ |x|−2
d∑

ℓ=1

d∑
m=1

xℓxmuℓ(x)um(x)

=
d∑

j=1

∣∣∣uj(x)
∣∣∣2 − |x|−2

d∑
ℓ=1

d∑
m=1

xℓxmuℓ(x)um(x), x ̸= 0.

(3.7)

Combining (3.7) with (3.6), we obtain

(u, i[H,A]u)

= 2
d∑

j=1

∥∥∥χ{x ̸=0}|x|−1/2∇⊥
j u
∥∥∥2

+
(
(Pχ)(Dx)u,R2(Pχ)(Dx)u

)
+ (u, i[V,A]u).

We see that ⟨x⟩1+ρ[V,A] ∈ B(H) by (1.2), (1.3) and Lemma 2.2. Finally we ob-
tain (3.5). □

4. Classical mechanics

In this section, we construct phase functions used for the definition of time-
independent modifiers J± in (1.5). For the precise definition of J±, see (6.1).
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Let λk(ξ) : Uk → R, k = 1, . . . , K, be the functions in (2.1). The next proposition
concerns the classical scattering problem with respect to the Hamiltonian λk(ξ)+Ṽℓ(x)
on T ∗Uk = Rd

x × Uk, where Ṽℓ is a smooth extension of Vℓ onto Rd such that
|∂α

x Ṽℓ(x)| ⩽ C ′
α⟨x⟩−ρ−|α| holds. See [Nak14, Lemma 2.1] for a concrete construction

of Ṽℓ.
The proof of the following proposition is given by [Nak22, Section 2] (see also [IK85,

Tad19a]).
Proposition 4.1. — Let λk(ξ) : Uk → R, k = 1, . . . , K, be fixed. Then for any

open set U ⋐ Uk and ε ∈ (0, 2), there exist R > 0 and smooth functions φk
±(x, ξ)

defined on a neighborhood of
Dk,± =

{
(x, ξ) ∈ Rd × U

∣∣∣ |x| ⩾ R, ± cos(x,∇λk(ξ)) ⩾ −1 + ε
}
,

where

cos(x,∇λk(ξ)) := x · ∇λk(ξ)
|x||∇λk(ξ)| ,

such that
λk

(
∇xφ

k
±(x, ξ)

)
+ Ṽℓ(x) = λk(ξ), (x, ξ) ∈ Dk,±.(4.1)

Furthermore, φk
± satisfy for (x, ξ) ∈ Dk,±∣∣∣∂α

x∂
β
ξ

[
φk

±(x, ξ) − x · ξ
]∣∣∣ ⩽ Cαβ⟨x⟩1−ρ−|α|,(4.2) ∣∣∣t∇x∇ξφ

k
±(x, ξ) − I

∣∣∣ < 1
2 .(4.3)

5. Construction of Isozaki–Kitada modifiers

Let Γ ⋐ Γ(H0) be fixed. Let λk ∈ C∞(Uk), k = 1, . . . , K, be as in (2.1), and let
φk

± be the phase functions constructed in Proposition 4.1 with setting ε = 1
4 and U

so that λ−1
k (Γ) ⋐ U ⋐ Uk.

We take functions χk ∈ C∞
c (U ; [0, 1]), η ∈ C∞(Rd) and σ± ∈ C∞(R; [0, 1]) such

that
χk(ξ) = 1, ξ ∈ λ−1

k (Γ),(5.1)

η(x) =

1 if |x| ⩾ 2R,
0 if |x| ⩽ R,

(5.2)

σ±(θ) =

1 if ± θ ⩾ 1
2 ,

0 if ± θ ⩽ −1
2 ,

(5.3)

σ+(θ)2 + σ−(θ)2 = 1, θ ∈ R,(5.4)
where R > 0 is the constant in Proposition 4.1. Then we define the Isozaki–Kitada
modifiers Jk

± associated with the pair (Pk, λk,Uk) by

Jk
±u(x) := (2π)− d

2

∫
Td
eiφk

±(x,ξ)sk
±(x, ξ)Fu(ξ)dξ,(5.5)
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where

sk
±(x, ξ) := η(x)σ±

(
cos(x,∇λk(ξ))

)
Pk(ξ)χk(ξ).

We recall that Pk(ξ) is the projection matrix onto Ker(H0(ξ) −λk(ξ)), and note that
supp sk

± ⊂ Dk,± holds. Their formal adjoints are given by

(
Jk

±

)∗
u(x) = F∗

(2π)− d
2
∑

y ∈Zd

e−iφk
±(y,·)sk

±(y, ·)u(y)
 .

Direct computations imply

sup
(x,ξ) ∈Rd×Td

⟨x⟩|α|
∣∣∣∂α

x∂
β
ξ s

k
±(x, ξ)

∣∣∣ < ∞,(5.6)

in particular (2.3) holds.
The next lemma follows from an analogue of the argument of calculus of Fourier

integral operators (see [IK85, Tad19a]).

Lemma 5.1. — Let k = 1, . . . , K be fixed, and let ρ > 0 be the constant in
Assumption 1.1(2). Then:

(1) Jk
± are bounded operators on H.

(2) The operators

⟨x⟩ρ
(
Jk

±

(
Jk

±

)∗
− sk

±(x,Dx)sk
±(x,Dx)∗

)
,(5.7)

⟨x⟩ρ
((
Jk

±

)∗
Jk

± − sk
±(x,Dx)∗sk

±(x,Dx)
)

(5.8)

are bounded on H.
(3) For any q ⩾ 0,

⟨x⟩−qJk
±⟨x⟩q,(5.9)

is bounded on H.
(4) Suppose that ψ = ψ(ξ) ∈ C∞(Td;Mn(C)) commutes with sk

±(x, ξ) for any
(x, ξ) ∈ Zd × Td. Then

⟨x⟩ρ
[
Jk

±, ψ(Dx)
]

(5.10)

is bounded on H. In particular, [Jk
±, ψ(Dx)] are compact.

(5) If k ̸= ℓ, then Jk
±(J ℓ

±)∗ = 0, and (Jk
±)∗J ℓ

± are compact on H.

Proof. — (1) We compute

Jk
±

(
Jk

±

)∗
u(x) = (2π)−d

∫
Td

∑
y ∈Zd

ei(φk
±(x,ξ)−φk

±(y,ξ))sk
±(x, ξ)sk

±(y, ξ)u(y)dξ.

We set φk
±(x, ξ) − φk

±(y, ξ) = (x− y) · ζ(ξ;x, y), where

ζ(ξ;x, y) :=
∫ 1

0
∇xφ

k
±(y + θ(x− y), ξ)dθ.
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Then Proposition 4.1 implies that the mapping ξ 7→ ζ(ξ;x, y) is a diffeomorphism
from U into ζ(U) for any x, y ∈ Zd. Thus we have

Jk
±

(
Jk

±

)∗
u(x) = (2π)−d

∫
Td

∑
y ∈Zd

ei(x−y)·ζtk±(x, y, ζ)u(y)dζ,

where

tk±(x, y, ζ) := sk
±(x, ξ(ζ;x, y))sk

±(y, ξ(ζ;x, y))
∣∣∣∣∣det

(
dξ

dζ

)∣∣∣∣∣ .
Since |dζ

dξ
(ξ) − I| < 1

2 by Proposition 4.1, (5.6) implies |∂α
ζ t

k
±(x, y, ζ)| ⩽ Cα for any

α. Therefore Jk
± are bounded by Lemma 2.1.

(2) The same argument as in (1) implies(
Jk

±

(
Jk

±

)∗
− sk

±(x,Dx)sk
±(x,Dx)∗

)
u(x) = (2π)−d

∫
Td

∑
y ∈Zd

ei(x−y)·ζr(x, y, ζ)u(y)dζ,

where
r(x, y, ζ) = tk±(x, y, ζ) − sk

±(x, ζ)sk
±(y, ζ).

Since |∂α
ξ r(x, ζ, y)| ⩽ C ′

α⟨x⟩−ρ, Lemma 2.1 implies the boundedness of (5.7).
The other case (5.8) can be treated similarly if we consider the justification of PDO

calculus; the argument using Poisson’s summation formula as in [Nak22, Lemma 7.1]
(see also [Tad19a, Lemma 2.3]) implies

F
(
Jk

±

)∗
Jk

±F∗f(ξ)

= (2π)−d
∫
Rd

∫
Td
ei(−φk

±(x,ξ)+φk
±(x,η))sk

±(x, ξ)sk
±(x, η)f(η)dηdx+K1f(ξ),

Fsk
±(x,Dx)∗sk

±(x,Dx)F∗f(ξ)

= (2π)−d
∫
Rd

∫
Td
eix·(−ξ+η)sk

±(x, ξ)sk
±(x, η)f(η)dηdx+K2f(ξ),

where Kj, j = 1, 2, is a smoothing operator in the sense that ⟨Dx⟩NKj ∈ B(H)
for any N > 0. Then by changing variables x 7→

∫ 1
0 ∇ξφ

k
±(x, ξ + θ(η − ξ))dθ, PDO

calculus on Td implies the boundedness of (5.8).
(3) By a complex interpolation argument, it suffices to show (5.9) for q ∈ 2Z+.

Note that for α ∈ Zd
+

Jk
±x

αu(x) = (2π)− d
2

∫
Td
eiφk

±(x,ξ)sk
±(x, ξ)i|α|∂α

ξ Fu(ξ)dξ

= (−i)|α|(2π)− d
2

∫
Td
∂α

ξ

(
eiφk

±(x,ξ)sk
±(x, ξ)

)
Fu(ξ)dξ.

Then we learn for any N ∈ Z+,

Jk
±⟨x⟩2Nu(x) = (2π)− d

2

∫
Td
eiφk

±(x,ξ)
(
LNsk

±

)
(x, ξ)Fu(ξ)dξ,

where L := ⟨∇ξφ
k
±⟩2 − i∆ξφ

k
± − 2i⟨∇ξφ

k
±,∇ξ⟩ − ∆ξ. Since∣∣∣∂β

ξ

(
LNsk

±

)
(x, ξ)

∣∣∣ ⩽ Cp,β,N⟨x⟩2N
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for any β ∈ Zd
+, we have the boundedness of (5.9).

(4) It suffices to show the boundedness of ⟨Dξ⟩ρ[Ĵk
±, ψ(ξ)] as an operator on

L2(Td;Cn), where Ĵk
± := FJk

±F∗. A direct computation implies

⟨Dξ⟩ρ
[
Ĵk

±, ψ(ξ)
]
f(ξ)

= (2π)−d
∑

x ∈Zd

∫
Td
ei(−x·ξ+φk

±(x,η))⟨x⟩ρ
(
ψ(η) − ψ(ξ)

)
sk

±(x, η)f(η)dη

= (2π)−d
∑

x ∈Zd

∫
Td
ei(−x·ξ+φk

±(x,η))⟨x⟩ρΨ1(x, η)sk
±(x, η)f(η)dη

+ (2π)−d
∑

x ∈Zd

∫
Td
ei(−x·ξ+φk

±(x,η))⟨x⟩ρΨ2(x, ξ, η)sk
±(x, η)f(η)dη,

where
Ψ1(x, η) :=ψ(η) − ψ

(
∇xφ

k
±(x, η)

)
,

Ψ2(x, ξ, η) :=ψ
(
∇xφ

k
±(x, η)

)
− ψ(ξ).

The first term is treated similarly to (2), since |∂α
η Ψ1(x, η)| ⩽ Cα⟨x⟩−ρ by (4.2). For

the second term, we first employ the argument in the proof of boundedness of (5.8)
to replace the summation over Zd by the integral on Rd modulo smoothing operators.
Then, since

Ψ2(x, ξ, η) =
(
∇xφ

k
±(x, η) − ξ

)
·
∫ 1

0
∇ξψ

(
ξ + θ

(
∇xφ

k
±(x, η) − ξ

))
dθ,

we have

(2π)−d
∫
Rd

∫
Td
ei(−x·ξ+φk

±(x,η))⟨x⟩ρΨ2(x, ξ, η)sk
±(x, η)f(η)dηdx

= i(2π)−d
∫
Rd

∫
Td
ei(−x·ξ+φk

±(x,η))a(ξ, η, x)f(η)dηdx,

where

a(ξ, η, x) = ∇x ·
(

⟨x⟩ρsk
±(x, η)

∫ 1

0
∇ξψ

(
ξ + θ

(
∇xφ

k
±(x, η) − ξ

))
dθ
)

satisfies |∂α
ξ ∂

β
η ∂

γ
xa(ξ, η, x)| ⩽ Cα,β,γ. Finally we apply [AF78, Theorem 2.1] to obtain

the boundedness of the second term.
(5) The first assertion follows from s±

k (x, ξ)s±
ℓ (y, ξ) = 0 for any x, y and ξ. For

the second assertion, we set ψk ∈ C∞(Td;Mn(C)) so that ψk(ξ) = Pk(ξ) on suppχk.
Then we use the equality Jk

± = Jk
±ψk(Dx) and compactness of [Jk

±, ψk(Dx)], which
follows from (4). □

Now we prove the existence of the following (inverse) local wave operators
W±(J ) := s-lim

t→±∞
eitHJ e−itH0EH0(Γ),(5.11)

I±(J ) := s-lim
t→±∞

eitH0J ∗e−itHEac
H (Γ),(5.12)

for J = Jk
# with k = 1, . . . , K and # ∈ {+,−}. Note that, if J is compact, then

W±(J ) = I±(J ) = 0.
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We set χ̃k ∈ C∞
c (Uk) so that χ̃k = 1 on suppχk. Since

(Pkχ̃k)(Dx)Jk
# − Jk

# =
[
(Pkχ̃k)(Dx), Jk

#

]
is compact by Lemma 5.1(4), we have

W±
(
Jk

#

)
= W±

(
(Pkχ̃k) (Dx)Jk

#

)
,

I±
(
Jk

#

)
= I±

(
(Pkχ̃k) (Dx)Jk

#

)
,

and thus it suffices to show the existence of (5.11) and (5.12) for

J = (Pkχ̃k)(Dx)Jk
#.

Lemma 5.2. —(
H(Pkχ̃k)(Dx)Jk

± − (Pkχ̃k)(Dx)Jk
±H0

)
u(x)

= (2π)−d
∫
Td

∑
y ∈Zd

ei(φk
±(x,ξ)−y·ξ)ak

±(x, ξ)u(y)dξ,

where

(5.13) ak
±(x, ξ) = −iη(x)σ′

±

(
cos(x,∇ξλk(ξ))

)
|∇ξλk(ξ)|2 − |x|−2(x · ∇ξλk(ξ))2

|x||∇ξλk(ξ)| Pk(ξ)χk(ξ) + rk
±(x, ξ)

and |∂β
ξ r

k
±(x, ξ)| ⩽ Cβ⟨x⟩− min(1+ρ,2).

Proof.
Step 1. — Let

g(x) := (2π)−d
∫
Td
eix·ξH0(ξ)Pk(ξ)χ̃k(ξ)dξ

= (2π)−d
∫
Td
eix·ξλk(ξ)Pk(ξ)χ̃k(ξ)dξ.

Then we learn

H0(Pkχ̃k)(Dx)Jk
±u(x) = (2π)−d

∫
Td

∑
y ∈Zd

ei(φk
±(x,ξ)−y·ξ)ak,1

± (x, ξ)u(y)dξ,

where

ak,1
± (x, ξ) =

∑
y ∈Zd

g(y)ei(φk
±(x−y,ξ)−φk

±(x,ξ))sk
±(x− y, ξ)

=
∑

y ∈Zd

g(y)e−iy·∇xφk
±(x,ξ)(1 +R(x, y, ξ))sk

±(x− y, ξ),

and

R(x, y, ξ) := exp
[
i
(
φk

±(x− y, ξ) − φk
±(x, ξ) + y · ∇xφ

k
±(x, ξ)

)]
− 1.
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Since
∣∣∣∂β

ξ

[
φk

±(x− y, ξ) − φk
±(x, ξ) + y · ∇xφ

k
±(x, ξ)

]∣∣∣
=
∣∣∣∣y ·

∫ 1

0
∂β

ξ

(
∇xφ

k
±(x, ξ) − ∇xφ

k
±(x− θy, ξ)

)
dθ

∣∣∣∣
=
∣∣∣∣y ·

∫ 1

0

(∫ 1

0
∂β

ξ ∇2
xφ

k
±(x− ϕθy, ξ)dϕ

)
θydθ

∣∣∣∣
⩽ Cβ⟨x⟩−1−ρ⟨y⟩3+ρ,

we learn |∂β
ξ R(x, y, ξ)| ⩽ C ′

β⟨x⟩−1−ρ⟨y⟩(3+ρ) max{1,|β|}, and thus
∣∣∣∣∣∣∂β

ξ

∑
y ∈Zd

g(y)e−iy·∇xφk
±(x,ξ)R(x, y, ξ)sk

±(x− y, ξ)

∣∣∣∣∣∣ ⩽ C ′′
β⟨x⟩−1−ρ.

Furthermore, since (5.6) implies the similar inequality

∣∣∣∂β
ξ

[
sk

±(x− y, ξ) − sk
±(x, ξ) + y · ∇xs

k
±(x, ξ)

]∣∣∣
=
∣∣∣∣y ·

∫ 1

0

(∫ 1

0
∂β

ξ ∇2
xs

k
±(x− ϕθy, ξ)dϕ

)
θydθ

∣∣∣∣ ⩽ Cβ⟨x⟩−2⟨y⟩4,

we have

∑
y ∈Zd

g(y)e−iy·∇xφk
±(x,ξ)sk

±(x− y, ξ)

=
∑

y ∈Zd

g(y)e−iy·∇xφk
±(x,ξ)

(
sk

±(x, ξ) − y · ∇xs
k
±(x, ξ)

)
+O

(
⟨x⟩−2

)
= (λkPkχ̃k)

(
∇xφ

k
±(x, ξ)

)
sk

±(x, ξ) − i∇ξ(λkPkχ̃k)
(
∇xφ

k
±(x, ξ)

)
· ∇xs

k
±(x, ξ)

+O
(
⟨x⟩−2

)
.

Thus we obtain

ak,1
± (x, ξ) = (λkPkχ̃k)

(
∇xφ

k
±(x, ξ)

)
sk

±(x, ξ)

− i∇ξ(λkPkχ̃k)
(
∇xφ

k
±(x, ξ)

)
· ∇xs

k
±(x, ξ) +O

(
⟨x⟩− min(1+ρ,2)

)
.

Similar computations imply that

V (Pkχ̃k)(Dx)Jk
±u(x) = (2π)−d

∫
Td

∑
y ∈Zd

ei(φk
±(x,ξ)−y·ξ)ak,2

± (x, ξ)u(y)dξ,

(Pkχ̃k)(Dx)Jk
±H0u(x) = (2π)−d

∫
Td

∑
y ∈Zd

ei(φk
±(x,ξ)−y·ξ)ak,3

± (x, ξ)u(y)dξ,
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where

ak,2
± (x, ξ)

=V (x)
(
(Pkχ̃k)

(
∇xφ

k
±(x, ξ)

)
sk

±(x, ξ) − i∇ξ(Pkχ̃k)
(
∇xφ

k
±(x, ξ)

)
· ∇xs

k
±(x, ξ)

)
+O

(
⟨x⟩−ρ−min(1+ρ,2)

)
,

ak,3
± (x, ξ)

=λk(ξ)(Pkχ̃k)
(
∇xφ

k
±(x, ξ)

)
sk

±(x, ξ) − iλk(ξ)∇ξ(Pkχ̃k)
(
∇xφ

k
±(x, ξ)

)
· ∇xs

k
±(x, ξ)

+O
(
⟨x⟩− min(1+ρ,2)

)
.

Step 2. — Step 1 implies

ak
±(x, ξ)

= (Pkχ̃k)
(
∇xφ

k
±(x, ξ)

)
sk

±(x, ξ)
(
λk

(
∇xφ

k
±(x, ξ)

)
+ V (x) − λk(ξ)

)
− i∇ξ(Pkχ̃k)

(
∇xφ

k
±(x, ξ)

)
· ∇xs

k
±(x, ξ)

(
λk

(
∇xφ

k
±(x, ξ)

)
+ V (x) − λk(ξ)

)
− i(Pkχ̃k)

(
∇xφ

k
±(x, ξ)

)
∇ξλk

(
∇xφ

k
±(x, ξ)

)
· ∇xs

k
±(x, ξ)

+O
(
⟨x⟩− min(1+ρ,2)

)
.

The first and second terms are of order ⟨x⟩−1−ρ by (4.1) and (1.3). Moreover simple
computations imply that, setting v := ∇ξλk(ξ),

∇xs
k
±(x, ξ) = η(x)σ′

±

(
cos(x, v)

)( 1
|x||v|

v − x · v
|x|3|v|

x

)
Pk(ξ)χk(ξ) +O

(
⟨x⟩−∞

)
,

and therefore

ak
±(x, ξ) = − i(Pkχ̃k)(ξ)∇ξλk(ξ) · ∇xs

k
±(x, ξ) +O

(
⟨x⟩− min(1+ρ,2)

)
= − iη(x)σ′

±

(
cos(x, v)

)( |v|
|x|

− (x · v)2

|x|3|v|

)
Pk(ξ)χk(ξ) +O

(
⟨x⟩− min(1+ρ,2)

)
.

Here we have used (4.2) in the first equality to replace ∇xφ
k
±(x, ξ) by ξ. □

Proposition 5.3. — For any k = 1, . . . , K, there exist the limits (5.11) and (5.12)
with J = Jk

±.

Proof. — We only prove the existence of (5.11), since the other is done in the
same way.

We may assume ρ < 1 without loss of generality. The standard argument of
existence of (modified) wave operators (see, e.g., [Yaf10, Lemmas 10.2.1 and 10.2.2,
Theorem 0.5.4] and [RS78, Theorem XIII. 24]) implies that it suffices to prove that
H(Pkχ̃k)(Dx)Jk

± − (Pkχ̃k)(Dx)Jk
±H0 is a finite sum of the form G∗

jBjG
′
j with Gj

(resp. G′
j) being H-(resp. H0-) smooth in Γ and Bj ∈ B(H).
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We set

ak
j (x, ξ) = η(x)|x|−

1
2
(
∂ξj
λk(ξ) − |x|−2xj (x · ∇ξλk(ξ))

)
Pk(ξ)χ̃k(ξ),

bk
±(x, ξ) = −iη(x)σ′

±

(
cos(x,∇ξλk(ξ))

)
Pk(ξ)χk(ξ).

Then we observe that

ak
j (x,Dx) = η(x)|x|−

1
2 ∇⊥

k,j,

where ∇⊥
k,j is as in Proposition 3.4. Moreover we have by the definition (5.13) of

ak
±(x, ξ)

ak
±(x, ξ) = bk

±(x, ξ)
d∑

j=1
ak

j (x, ξ)2 + rk
±(x, ξ),

where ∂α
ξ r

k
±(x, ξ) = O(⟨x⟩−2).

We take functions ˜̃χk ∈ C∞
c (Uk) and σ̃±(θ) ∈ C∞(R) such that

σ̃±(θ) =

1 if ± θ ⩾ −1
2 ,

0 if ± θ ⩾ −3
4 ,

˜̃χk(ξ) = 1, ξ ∈ supp χ̃k.

We set

s̃k(x, ξ) = η(x)Pk(ξ) ˜̃χk(ξ),

φ̃k
±(x, ξ) = η(x)σ̃±

(
cos(x,∇λk(ξ))

)
φk

±(x, ξ) +
(

1 − η(x)σ̃±
(
cos(x,∇λk(ξ))

))
x · ξ,

and

J̃k
±u(x) = (2π)− d

2

∫
Td
eiφ̃k

±(x,ξ)s̃k(x, ξ)Fu(ξ)dξ,

Ak
±,ju(x) = (2π)− d

2

∫
Td
eiφ̃k

±(x,ξ)ak
j (x, ξ)Fu(ξ)dξ,

Ck
±,ju(x) = (2π)− d

2

∫
Td
eiφk

±(x,ξ)bk
±(x, ξ)ak

j (x, ξ)2Fu(ξ)dξ.

Then it follows from the same argument as Lemma 5.1(2) that

J̃k
±(J̃k

±)∗ = s̃k(x,Dx)2 +Rk
±,j,1,

(J̃k
±)∗Ak

±,j = ak
j (x,Dx) +Rk

±,j,2,

(J̃k
±)∗Ck

±,j = ak
j (x,Dx)bk

±(x,Dx)ak
j (x,Dx) +Rk

±,j,3,

where ⟨x⟩ 1+ρ
2 Rk

±,j,ℓ⟨x⟩ 1+ρ
2 ∈ B(H), ℓ = 1, 2, 3. Moreover we learn by the argument in

Lemma 5.1(4) that

s̃k(x,Dx)2Ak
±,j = Ak

±,j +Rk
±,j,4,

s̃k(x,Dx)2Ck
±,j = Ck

±,j +Rk
±,j,5,
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where ⟨x⟩ 1+ρ
2 Rk

±,j,ℓ⟨x⟩ 1+ρ
2 ∈ B(H), ℓ = 4, 5. Thus we have, modulo operators of the

form ⟨x⟩− 1+ρ
2 B⟨x⟩− 1+ρ

2 with B ∈ B(H),

H(Pkχ̃k)(Dx)Jk
± − (Pkχ̃k)(Dx)Jk

±H0 ≡
d∑

j=1
Ck

±,j

≡
d∑

j=1
s̃k(x,Dx)2Ck

±,j

≡
d∑

j=1
J̃k

±(J̃k
±)∗Ck

±,j

≡
d∑

j=1
J̃k

±a
k
j (x,Dx)bk

±(x,Dx)ak
j (x,Dx)

≡
d∑

j=1
J̃k

±(J̃k
±)∗Ak

±,jb
k
±(x,Dx)ak

j (x,Dx)

≡
d∑

j=1
s̃k(x,Dx)2Ak

±,jb
k
±(x,Dx)ak

j (x,Dx)

≡
d∑

j=1
Ak

±,jb
k
±(x,Dx)ak

j (x,Dx).

Since bk
±(x,Dx) ∈ B(H) and Proposition 3.4 implies ak

j (x,Dx) is H0-smooth on Γ,
it remains to prove that Ak

±,j is H-smooth on Γ. However, the proof is completed if
we observe that ak

j (x,Dx) and ⟨x⟩ 1+ρ
2 are H-smooth on Γ and that(

Ak
±,j

)∗
Ak

±,j = ak
j (x,Dx)∗ak

j (x,Dx) +R′′
j ,

where ⟨x⟩ 1+ρ
2 R′′

j ⟨x⟩ 1+ρ
2 ∈ B(H). □

6. Proof of Theorem 1.4

We set

J± :=
K∑

k=1
Jk

±,(6.1)

where Jk
±’s are given by (5.5). Then Proposition 5.3 implies the existence of the

modified wave operators (1.5). The proof of the intertwining property is skipped
since it is easily proved.

Proposition 6.1. — W±(J∓) = I±(J∓) = 0.

Proof. — For the first assertion, it suffices to prove limt→±∞ Jk
∓e

−itH0u = 0 for any
u satisfying

(Pkχk)(Dx)u = u.
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We easily see that

Jk
∓e

−itH0u(x) = (2π)− d
2

∫
Td
ei(φk

∓(x,ξ)−tλk(ξ))η(x)σ∓
(
cos(x,∇λk(ξ))

)
Fu(ξ)dξ.

The estimate (4.2) and the conditions (5.2) and (5.3) imply there is a constant c > 0
such that on the support of the integrand∣∣∣∇ξφ

k
∓(x, ξ) − t∇λk(ξ)

∣∣∣ ⩾ |x− t∇λk(ξ)| −
∣∣∣x− ∇ξφ

k
∓(x, ξ)

∣∣∣
⩾

√
1 − cos(x,±∇λk(ξ))

2 |x||t∇λk(ξ)| − C⟨x⟩1−ρ

⩾ c
(
|x| + |t||∇λk(ξ)|

)
for sufficiently large ±t ⩾ 0. The non-stationary phase method implies that∣∣∣Jk

∓e
−itH0u(x)

∣∣∣ ⩽ CN(1 + |x| + |t|)−N , x ∈ Zd, ±t ⩾ 0,

for any N ⩾ 1. Thus we obtain ∥W±(J∓)u∥ = 0.
For the other assertion I±(J∓) = 0, the intertwining property implies

I±(J ) = I±(J )EH(Γ) = EH0(Γ)I±(J ).

Thus we learn that for any v ∈ H(
I±(J∓)u, v

)
=
(
EH0(Γ)I±(J∓)u, v

)
= lim

t→±∞

(
eitH0J∗

∓e
−itHEac

H (Γ)u,EH0(Γ)v
)

= lim
t→±∞

(
Eac

H (Γ)u, eitHJ∓e
−itH0EH0(Γ)v

)
=
(
Eac

H (Γ)u,W±(J∓)v
)

= 0

by the first assertion. □

Proposition 6.2. — For any u ∈ H,∥∥∥W±(J±)u
∥∥∥ = ∥EH0(Γ)u∥ ,(6.2) ∥∥∥I±(J±)u
∥∥∥ = ∥Eac

H (Γ)u∥ .(6.3)

Proof. — We learn∥∥∥W±(J )u
∥∥∥2

= lim
t→±∞

∥∥∥J e−itH0EH0(Γ)u
∥∥∥2

= lim
t→±∞

(ut,J ∗J ut) ,
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where ut := e−itH0EH0(Γ)u. Thus Lemmas 2.3, 2.2, 5.1(2), (5) and (2.2), (5.1), (5.4)
imply∥∥∥W±(J+)u

∥∥∥2
+
∥∥∥W±(J−)u

∥∥∥2

= lim
t→±∞

(
ut,
(
J∗

+J+ + J∗
−J−

)
ut

)
= lim

t→±∞

(
ut,

(
K∑

k=1

(
Jk

+

)∗
Jk

+ +
(
Jk

−

)∗
Jk

−

)
ut

)

= lim
t→±∞

(
ut,

(
K∑

k=1
sk

+(x,Dx)sk
+(x,Dx)∗ + sk

−(x,Dx)sk
−(x,Dx)∗

)
ut

)

= lim
t→±∞

(
ut, η(x)2

K∑
k=1

(
Pkχ

2
k

)
(Dx)ut

)

= lim
t→±∞

(
ut, η(x)2ut

)
= ∥EH0(Γ)u∥2 .

Here we have used (2.2) and (5.2) to obtain ∑K
k=1(Pkχ

2
k)(Dx)EH0(Γ) = EH0(Γ) and

compactness of 1−η(x)2. Therefore we have the first equality (6.2) by Proposition 6.1.
The other equality (6.3) is obtained by the similar argument and the compactness

of ψ(H) − ψ(H0) for ψ ∈ C∞
c (R). □

It remains to prove the completeness of (1.5). However it is proved by the existence
of I±(J±) and (6.3).
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