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278 J. CHENAL

Résumé. — Dans un premier temps nous présentons une version du théorème de Poincaré–
Lefschetz pour certains cofaisceaux cellulaires d’une subdivision particulière d’un CW-com-
plexe K. Ce théorème établie un isomorphisme entre la cohomologie à support compact d’un
faisceau cellulaire construit à partir du cofaisceau initial. Dans un second temps nous utilisons
ce résultat afin de généraliser le théorème d’hyperplan de Lefschetz tropical à certaines variétés
toriques singulières munies d’hypersurfaces tropicales quelconques.

1. Introduction

In this article we study a property of duality between sheaves and their dual
objects, cosheaves, and then apply the said property in order to extend a classical
theorem of complex geometry to polyhedral subdivisions of polytopes. Philosophi-
cally, sheaves can be seen as a generalisation of the concept of functions. They are
extensively used in algebraic geometry and their cohomology, at least over C, can be
used to recover some of the algebro-topological properties of the analytification of
the variety supporting them. Our final goal here will be to generalise a theorem that
mimics the Lefschetz Hyperplane Theorem for subdivided integral polytopes endowed
with the tropical sheaves of I. Itenberg, Katzarkov, G. Mikhalkin and I. Zharkov.
We want to provide some context about these objects and explain why a theorem of
complex geometry might apply to them. Given an algebraic hypersurface Z ⊂ (C×)n,
I. Gelfand, M. Kapranov, and A. Zelevinsky introduced its amoeba A ⊂ Rn. This
amoeba is the image of Z under the map log : (z1; . . . ; zn) 7→ (log |z1|; . . . ; log |zn|).
Its complementary set has convex connected components that are associated to
specific properties of the polynomial that defines Z. Further, the renormalised limit
sets limt→+∞

log Zt

log(t) of families of hypersurfaces (Zt)t > 1 came into play and it birthed
tropical geometry. At first glance, tropical geometry can be seen as the geome-
try of these limit sets. This theory has nice ties to convex affine geometry and
can be interpreted as the algebraic geometry of varieties over the tropical “field”.
The latter is not a field per se but, if we continue the analogy, the role of polynomials
would be played by some piecewise affine convex functions. The main protagonists
of tropical geometry are polyhedral complexes endowed with sheaves. Here we will
be given a polytope P and a tropical hypersurface X that respectively correspond
to the “tropical” locus of a toric variety Y and the limit set limt→+∞

log Zt

log(t) of a
family of hypersurfaces (Zt)t > 1 of Y . In favorable cases, the cohomology of these
sheaves respectively recovers the Hodge numbers of Y and of a generic member Zt

of the family that converges to X. It rose the question: Which theorems of complex
geometry extend to these objects? C. Arnal, A. Renaudineau and K. Shaw proved
the first tropical version of the Lefschetz Hyperplane Theorem. We generalise it here.
Ultimately, the objects of interest are CW-complexes endowed with a special kind
of sheaves that are adapted to the cellular structure.

Given a regular CW-complex K, we define dihomologic cosheaves on K to be a mild
generalisation of the concept of cellular cosheaves on a CW-complex. These objects
can be seen as systems of coefficients that associate a group to every pair of adjacent
cells of the complex K. For a broad variety of examples these cosheaves correspond
to classical cellular cosheaves on a suitable subdivision of K. Let F be a dihomologic
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cosheaf on a regular CW-complex K. We tackled the question: Can we compute the
homology of F from a reduced quantity of data? Given a set of hypotheses on the
local homology of F , we are able to construct a cellular sheaf Hn(F∗) on K whose
cohomology with compact support is isomorphic to the homology of F . This sheaf
represents the homology of F in neighbourhoods of cells of K. We went from data
carried by adjacent pairs of cells in K to data carried by individual cells.

Theorem 1 (Cellular Poincaré–Lefschetz Theorem). — Let K be a finite dimen-
sional, locally finite and regular CW-complex, n be a non-negative integer, and F
be a dihomologic cosheaf on K whose sheaves of local homology(1) Hq(F∗) vanish for
all q ̸= n. Then, for all integers k, Hk(K;F ) and Hn−k

c (K;Hn(F∗)) are canonically
isomorphic. In particular, Hk(K;F ) vanishes for all k > n. If in addition K has
dimension n, then this isomorphism comes from an injective quasi-isomorphism from
the complex of compactly supported cellular cochains with values in Hn(F∗) to the
complex of dihomologic chains with values in F .

This statement reminded us of the Poincaré–Lefschetz duality which can be found
as one of its direct corollaries.

Corollary 1. — If X is a homology n-manifold in the sense of Definition 2.20
then Hk(X;Z) ∼= Hn−k

c (X; ∂X; oZ) where oZ denotes the system of local orientations
defined on X \ ∂X by x 7→ Hn(X;X − x;Z).

This is the application of Theorem 3.3 to the constant cosheaf Z. In this special
case, the proof is the same as the one given by Zeeman in [Zee63, Theorem 1 p. 159].
We want to emphasise that we chose the name dihomologic in reference to Zeeman’s
theory of dihomology [Zee62a, Zee62b, Zee63]. A generalisation of Theorem 3.3
could be stated without the assumptions(2) on the sheaves of local homology of F .
However, in this case, we would associate a complex of cellular sheaves on K to F
whose cohomology with compact support (or more precisely hypercohomology) would
be isomorphic to the homology of F . If we follow this road and further assume that
F is the subdivision of a cosheaf on K then the generalisation would be very close
to the Verdier duality of cellular cosheaves given by J. Curry in [Cur14]. Another
corollary of Theorem 3.3 is a version of Serre duality for flat vector bundles on
homology manifolds.

Corollary 2. — Let X be a homology n-manifold in the sense of Definition 2.20,
F be a field, and E be a flat bundle of F-vector spaces of finite rank over X. For all
integers k, we have:

Hk(X;E) ∼=
(
Hn−k

c (X; ∂X; oF ⊗F E
∗)
)∗
.

Following the two first sections, we generalise the tropical version of the Lefschetz
Hyperplane Theorem given by C. Arnal, A. Renaudineau and K. Shaw in [ARS21,
Theorem 1.2.1349] and its extension by E. Brugallé, L. Lopez de Medrano and J. Rau
in [BLdMR22, Proposition 3.2 p. 15]. Let P be a full dimensional polytope of Rn

(1) C.f. Definition 3.2.
(2)“Hq(F∗) vanishes for all q ̸= n”.
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280 J. CHENAL

whose vertices lie in Zn. Let K be a polyhedral subdivision of P whose vertices also
lie in Zn. In tropical geometry, K needs to be convex i.e. obtained by projection
of the bottom faces of a polytope Q living above P in Rn+1. The subdivision K
is determined by a tropical hypersurface of P and contains all the information we
need about this hypersurface. For instance, we can associate a subcomplex X of
the barycentric subdivision of K that is isotopic to the tropical hypersurface. This
subcomplex is called the dual hypersurface of K. In this framework, the tropical
homology of X and P is defined as the homology of certain dihomologic cosheaves
FX

p ⊂ F P
p on K, for all non-negative integers p. They were introduced in [IKMZ19]

by I. Itenberg, Katzarkov, G. Mikhalkin and I. Zharkov. To keep the analogy with
complex geometry going, they play the role of the sheaves of holomorphic forms
on X and P respectively. We note that if we drop the convexity assumption on K
the definition of the dual hypersurface X, as well as the definition of I. Itenberg et
al.’s cosheaves are still making sense. However, without convexity the pair (P ;X) is
beyond the scope of tropical geometry. Nonetheless, we will place ourselves here in
this level of generality. The tropical version of the Lefschetz Hyperplane Theorem
describes the nature of the morphisms induced in homology by the inclusions:

Hp,q(X;Z) := Hq

(
K;FX

p

)
→ Hq

(
K;F P

p

)
=: Hp,q(P ;Z).

C. Arnal, A. Renaudineau and K. Shaw showed in [ARS21] that, when the toric
variety associated with P is smooth and K is a convex unimodular triangulation(3) ,
these morphisms are isomorphisms when p + q < dimP − 1 and surjective when
p + q = dimP − 1. Later, E. Brugallé, L. Lopez de Medrano and J. Rau showed
that this statement remains true when the convexity hypothesis is dropped. Using
Theorem 3.3 we are able to extend the statement to polytopes with orbifold toric
varieties modulo a change of coefficients and of cosheaves FX

p . The toric variety
associated with P is orbifold when the polytope P is simple(4) . When P is simple
we define an integer δ(P ) ⩾ 1 that gives a “measure” of the singularities of the toric
variety of P . Then, we introduce the saturated tropical cosheaves of X:

FX
p ⊂ F̂X

p ⊂ F P
p , p ∈ N,

for which the following theorem holds.
Theorem 2. — Let P be an n-dimensional integral polytope endowed with an

integral polyhedral subdivision K, X be the dual hypersurface of K, and R be a
ring in which δ(P ) is invertible. The homological morphisms:

ı̂p,q : Ĥp,q(X;R) := Hq

(
K; F̂X

p ⊗R
)
→ Hp,q(P ;R) := Hq

(
K;F P

p ⊗R
)
,

induced by the inclusions ı̂p : F̂X
p → F P

p are isomorphisms for all p+ q < n− 1, and
surjective for all p+ q = n− 1.

The number δ(P ) equals 1 if and only if the toric variety of P is smooth. Moreover,
we determine a number θ(K) ⩾ 1 associated to the subdivision K such that FX

p ⊗R

(3) I.e. K is made of primitive simplices. A simplex is primitive if its vertices belong to the lattice
and its volume is minimal among such simplices.
(4) I.e. every face of codimension q of P is the intersection of exactly q faces of codimension 1.
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equals F̂X
p ⊗R for all non-negative integers p if and only if θ(K) is invertible in the

ring R. The number θ(K) equals 1 on every unimodular triangulations, the usual
definition of smoothness for subdivisions, but the converse does not even imply that
K is a triangulation.

In addition of Theorem 4.23 we recover the formulæ giving the dimensions of the
homology groups Hp,q(P ;Q), corresponding to the rational Betti numbers of the
toric variety of P .

Proposition 3.9. — Let P be a simple integral polytope and R be a principal
ideal domain in which δ(P ) is invertible. For all p ∈ N, the only non-trivial homology
group of the cosheaf F P

p ⊗R is in dimension p. Moreover, this R-module is free and
its rank is given by the following formula:

rkR Hp,p(P ;R) =
p∑

k=0
(−1)p−k

(
n− k
p− k

)
fn−k(P ) ,

where fk(P ) denotes the number of k-faces of P .

2. CW-Complexes and Cellular Homology
CW-complexes were introduced by J. H. C. Whitehead in Combinatorial homo-

topy. I, [Whi49]. Their underlying topological spaces, their supports, form a broad
family of spaces usually considered well-behaved. Some of the sheaves defined on
their support are particularly adapted to their structure. They can be described by
a relatively small amount of data and their cohomology can be computed by the
techniques of cellular cohomology. In the following paragraphs we give a succinct
presentation of the objects at play in this text.

2.1. CW-Complexes

Definition 2.1 (CW-Complex). — A CW-complex K is the data of a Hausdorff
topological space |K|, called the support of K, filtered by closed subsets ∅ = K(−1) ⊂
K(0) ⊂ · · · ⊂ K(k) ⊂ · · · ⊂ |K| called the skeleta of K whose union covers |K|. Such
filtration has to satisfy the additional properties:

(1) For every k ⩾ 0 and every connected component ek of K(k) \K(k−1), called
an open k-cell, there exists a surjective continuous map from the closed
k-dimensional ball onto the closure ēk that carries homeomorphically the
open ball onto ek, such a map is called a characteristic map of the open
cell ek;

(2) |K| has the weak topology: a subset A ⊂ |K| is closed if and only if its
intersection A ∩ ēk with every closed cell is closed;

(3) Every skeleton K(k) has the weak topology in the same sense as in point 2.
We call the dimension of K, dimK, the smallest integer from which the filtration
(K(k))k ⩾−1 is stationary. It might be ∞. A sub-complex L of K is determined by a
closed subset |L| for which the induced filtration:
∅ = L(−1) ⊂ L(0) ⊂ · · · ⊂ L(k) ⊂ · · · ⊂ |L| where L(k) := |L| ∩K(k) for all k ∈ N,
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turns it into a CW-complex of its own right. The intersection of some sub-complexes
is again a sub-complex. For all subsets A of |K| we set K(A) to be the smallest
sub-complex containing A in its support i.e. the intersection of all the sub-complexes
containing A in their support.

Definition 2.2 (Simplicial Complex). — A simplicial complex S is a collection V
of vertices and a collection T of finite subsets of V , called simplices, such that:

∀ σ ∈ T, τ ⊂ σ ⇒ τ ∈ T.
The geometric realisation of S is the set:⋃

σ ∈ T

Conv.Hull(v ∈ σ) ⊂
⊕
V

R,

with the induced product topology.

Example 2.3. — The most basic examples (of CW-complexes) are given by sim-
plices and all the geometric realisations of simplicial complexes as defined in [Whi39],
c.f. Definition 2.2. More generally, a polyhedral complex is an example of CW-
complex. By a polyhedral complex we mean a collection K of polytopes(5) in a real
vector space that contains all the faces of its polytopes and in which two distinct
polytopes intersect on a common face (which might be empty). In a polyhedral
complex the open cell corresponding to a polytope is its relative interior, that is to
say, the topological interior of the polytope in the affine space it spans.

Example 2.4. — Some extremely classical examples are given by the real projec-
tive spaces. They filter themselves RP0 ⊂ RP1 ⊂ · · · ⊂ RPn by inclusion on the first
coordinates. The induced partition of RPn into open cells corresponds to a decompo-
sition into affine spaces, one for every 0 ⩽ k ⩽ n. By extension, the inductive limit
RP∞ is also a CW-complex for the induced filtration.

Definition 2.5. — A CW-complex in which every point has a neighbourhood
that meets only finitely many open cells is called locally finite.

Any finite (with finitely many cells) CW-complex is obviously locally finite. Among
our examples, RP∞ is not locally finite as the neighbourhood of a point in the open
cell Rk will meet all the open cells Rn for all n ⩾ k.

Proposition 2.6 ([Whi49, (G), pp. 225-227, (M), pp. 230-231]). — A CW-
complex is a normal and locally contractible topological space.

Definition 2.7. — A regular CW-complex is one that admits for each cell a
characteristic map that is a homeomorphism over the entire closed ball.

In particular, every closed cell of a regular CW-complex is homeomorphic to a
closed ball. It excludes the CW-complex structure of the real projective spaces (apart
from the trivial case RP0) given by affine spaces as every positive dimensional closed
cell is a projective space, different from a closed ball. An important example of
regular CW-complex is given by geometric realisations of simplicial complexes in

(5)A convex hull of a finite number of vertices.
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which every closed cell is a closed simplex, hence topologically a closed ball. Likewise,
a polyhedral complex is necessarily a regular CW-complex.

Given a general CW-complex, the formula e1 ⩽ e2 ⇐⇒ ē1 ⊂ ē2 defines an order
on its cells. When the CW-complex is regular this order shares the same properties
as the inclusion of faces in a simplicial complex.

Lemma 2.8. — For any two open cells e1, e2 of K, a regular CW-complex, e1
meets the closure of e2 if and only if it is fully contained in it:

e1 ∩ ē2 ̸= ∅ ⇐⇒ e1 ⊂ ē2.

One can find a proof in [CF67, pp. 229-230, R.R.1]. Therefore, in a regular CW-
complex, whenever a cell e1 meets the closure of another one e2 we have e1 ⩽ e2 and
we say that e1 is a face of e2. If e1 is distinct from e2 we say that e1 is a proper face
of e2 and denote it by e1 < e2. Furthermore, if e1 ⩽ e2 or e2 ⩽ e1 we say that e1 and
e2 are adjacent.

Lemma 2.9. — Let K be a regular CW-complex. For all cells e of K, the support
of the sub-complex K(e) is the closure ē.

Lemma 2.10. — Let k ∈ N and ek+2 be an open cell of a regular CW-complex K.
For all faces of codimension 2, ek of ek+2 there are exactly two cells of codimension 1
between ek and ek+2:

card
{
ek+1

∣∣∣ ek < ek+1 < ek+2
}

= 2.

Lemma 2.11 (Open Star). — Let e be a cell of a regular CW-complex K. The
union of all the cells having e as a face, called the open star of e, is an open subset
of |K|.

Proofs of these statements are given in [CF67, Proposition 1.6, p. 30, Theorem 4.2,
pp. 231-232, Lemma 4.1, p. 230]. In a locally finite CW-complex K, the open star
of a cell is a finite union of cells, so its closure, the closed star of the cell, is a finite
sub-complex of K. The collection K − e of all the cells whose closure avoids e is
the complement of the open star of e and is a sub-complex of K. Its underlying
topological space is a deformation retract of |K| \ e and is the largest sub-complex
of K contained in the complement |K| \ e. For all subsets A of |K|, we denote by
K − A the largest sub-complex of K contained in |K| \ A.

Definition 2.12 (Subdivisions). — A subdivision K ′ of a CW-complex K is a
CW-complex on the same support |K ′| = |K| in which every cell e′ ∈ K ′ is contained
in a cell e ∈ K. Another way of saying it is that the partition of |K| into open cells
of K ′ is finer than the partition given by the open cells of K.

A common example of subdivision is given by the barycentric subdivision SdS of a
simplicial complex S, see for instance Figure 2.1. It is described abstractly as follows:
the vertices of SdS are given by the simplices of S and the simplices of SdS by the
flags of simplices of S. More concretely, a collection of simplices {σ0, . . . , σk} is a
simplex of SdS if and only if it can be totally ordered i.e. there is a permutation π
of the indices {0, . . . , k} such that:

σπ(0) < · · · < σπ(n).
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Figure 2.1. The barycentric subdivision of the triangle.

One can define a homeomorphism between the geometric realisation of SdS and
the geometric realisation of S by sending each vertex of SdS to the barycenter of
its corresponding simplex in S and extending this map by linearity. An example is
depicted in Figure 2.2.

Figure 2.2. The homeomorphism from the barycentric subdivision of the segment
to the initial segment.

The image of the skeletal filtration of SdS under this homeomorphism defines a
subdivision of the CW-complex induced by S in the sense of the previous definition.
Note that if instead we chose to send each vertex of SdS to an arbitrary point in the
open cell defined by the corresponding simplex in S (and then extending the map
by linearity) we would also have defined a subdivision of S that is equivalent, in a
combinatorial way, to the previous one. We could say that the barycentric subdivision
is only defined unequivocally on the abstract level. The same abstract procedure can
be performed with a regular CW-complex K. The barycentric subdivision SdK of
K is defined to be the following simplicial complex:

(1) Every cell of K corresponds to a vertex of SdK;
(2) A finite set of cells of K corresponds to a simplex of SdK if and only if it is

totally ordered by adjacency.

Proposition 2.13. — Let K be a regular CW-complex. The geometric reali-
sation of SdK is homeomorphic to |K| in such a way that SdK can be seen as a
subdivision of K.

This proposition, proven in [LW69, Theorem 1.7, pp. 80-81.], allows us to see
a regular CW-complex as “a simplicial complex in which the simplexes are more
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efficiently combined into closed cells.”(6) Another feature of simplicial complexes
shared by regular complexes is the following:

Proposition 2.14. — In a regular CW-complex the open stars of cells are con-
tractible.

Proof. — The geometric realisation of SdK lives in the real vector space V spanned
by the cells of K. We use the same symbol to denote a cell ek and its associated
generator in V . Hence, an element of V is a formal finite linear combination of the
cells of K. We endow this vector space with the norm 1:∥∥∥∥∥∑

e ∈ K

xee

∥∥∥∥∥
1

=
∑

e ∈ K

|xe|.

The geometric realisation | SdK| is the union of the convex hulls of the sets of cells
{ek0 , . . . , ekn} corresponding to barycentric simplices i.e. flags of cells. It is a subset
of the intersection of the unit sphere with the positive ortant V+ := {∑e ∈ K xee ∈
V | xe ⩾ 0}. For a flag of cells ek0 < · · · < ekn let us denote here the corresponding
open simplex by:(

ek0 ; . . . ; ekn

)
:=
{

n∑
i=0

xie
ki

∣∣∣∣∣ ∀ i, xi > 0 and
n∑

i=0
xi = 1

}
.

An open cell ek of K corresponds under the homeomorphism of Proposition 2.13
to the union of the open barycentric simplices (ek0 ; . . . ; ekn) for which ekn = ek.
Therefore, the open star S of ek is in this context:

S =
⋃

ek0 < ... < ekn

ek ⩽ ekn

(
ek0 ; . . . ; ekn

)
.

We consider the family of bounded linear operators (Φt : V → V )0⩽ 1⩽ t defined by
Φt = (id−π) + tπ, where π denotes the projection to the sub-space spanned by the
cells that do not contain ek parallely to the sub-space spanned by those that contain
it. Let U be the open set of V+ of vectors that have at least one positive coordinate
indexed by a cell that contains ek. We have S = | SdK| ∩ U . For all t ∈ [0; 1], the
map:

Ψ : [0; 1]× U −→ U

u 7−→ ∥u∥1
∥Φt(u)∥1

Φt(u) ,
is continuous and every partial map Ψ(t;−) stabilises S. The image Ψ(0;S) is the
union of the open barycentric simplices (ek0 ; . . . ; ekn) for which ek ⩽ ek0 . Note
that the restriction of every map Ψ(t;−) is constant on this set. Therefore Ψ(0;S)
is a deformation retract of S. Now this set retracts on the barycentre of ek by
simple convex interpolation (t;u) ∈ [0; 1] × Ψ(0;S) 7→ (1 − t)u + tek, thus S is
contractible. □

When we consider the barycentric subdivision of a finite regular CW-complex
we increase considerably the number of cells. There is, however, a less expensive
procedure that builds a “pseudo-subdivision” for any regular CW-complex K that
(6) Ibid. p. 77.
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sits between K and SdK. By pseudo-subdivision we mean a certain recombination
of the barycentric simplices that looks a lot like a regular subdivision.

Definition 2.15 (Dihomologic Pseudo-subdivision). — Let K be a regular CW-
complex. Let ep ⩽ eq be a pair of adjacent cells, we define its associated dihomologic
pseudo-cell to be the union of the open barycentric simplices(7) associated with the
flags ek1 < · · · < ekn for which ep = ek1 and ekn = eq. These “open” pseudo-cells form
a partition of the simplicial complex SdK. We call such partition the dihomologic
pseudo-subdivision of K. We say that the dihomologic pseudo-cell associated with
the pair ep ⩽ eq has dimension q − p. Figure 2.3 illustrates this procedure on a disc.

Figure 2.3. The dihomologic pseudo-subdivision of a regular CW-complex struc-
ture of the disc.

As every open dihomologic pseudo-cell is a union of open barycentric simplices
their closures are naturally supports of sub-complexes of the barycentric subdivision.
We always endow the closed dihomologic pseudo-cell with this particular simplicial
structure. The dihomologic pseudo-subdivision shares many properties with a regular
subdivision of K but may fail to define a CW-complex structure on |K|. We do not
know if closures of dihomologic pseudo-cells are always homeomorphic to closed balls.
However, for a broad variety of examples as we will see, this is indeed the case and
the dihomologic pseudo-subdivision is a regular subdivision of K.

Remark 2.16. — We chose to use the terminology “dihomologic” because Zeeman’s
dihomology bicomplex, c.f. [Zee62a, Zee62b, Zee63], would be the cellular chain
complex of this pseudo-subdivision. This bicomplex was latter (dually) rediscovered
by Forman in [For02] under the name of “combinatorial differential forms”.

Definition 2.17 (Collapse). — Let S = (V ;T ) be a simplicial complex. A free
simplex of S is a simplex σ ∈ T strictly contained in exactly one maximal simplex
of S. An elementary collapse of S is the operation:

S 7→
(
V ;T \ {τ : σ ⊂ τ}

)
,

(7)The open simplex on a vertex set v0, . . . , vn is the set{
n∑

i=0
tivi

∣∣∣∣∣ ∀ i, ti > 0 and
n∑

i=0
ti = 1

}
.
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where σ is a free simplex of S. A collapse is a composition of elementary collapses.
A complex is called collapsible if it can be collapsed to a single vertex.

Proposition 2.18. — Let ep ⩽ eq be a pair of adjacent cells of K. The closure
of the pseudo-cell associated with ep ⩽ eq, is a collapsible simplicial complex of pure
dimension q − p. Moreover, any codimension 1 simplex of the open pseudo-cell is
exactly contained in two of its maximal simplices.

Proof. — Let ep ⩽ eq be a pair of adjacent cells. If ep = eq the associated pseudo-
cell is a single vertex and the statement of the proposition is true. Now suppose ep

is a proper face of eq. The closure of the associated pseudo-cell is the union of the
barycentric simplices whose flags ek1 < · · · < ekn satisfy ep ⩽ ek1 < · · · < ekn ⩽ eq.
This is a simplicial sub-complex of SdK. A maximal simplex of this closed pseudo-cell
is given by a maximal flag of adjacent cells of K starting with ep and ending with eq.
Since K is regular such flag has necessarily length q − p + 1, so the corresponding
simplex has dimension q−p. Hence, the closed pseudo-cell is a pure (q−p)-dimensional
simplicial complex. If q − p = 1, this closed pseudo-cell corresponds to the closed
barycentric edge ep < eq. This is a collapsible complex. If q − p > 1, the maximal
simplices of the closed pseudo-cell correspond to flags ep < ep+1 < · · · < eq−1 < eq.
They all have a codimension 2 free face, associated with ep+1 < · · · < eq−1. If we
collapse all such simplices we obtain the union of the closed (q − p − 1)-simplices
associated with the flags of the form ep < ek1 < · · · < ekq−p−2 < eq. All such
simplices are now maximal and contain each a free face of codimension 2, namely
ek1 < · · · < ekq−p−2 . We can recursively perform such collapses to end up with
the barycentric edge ep < eq. Thus, the closed pseudo-cell of the pair ep ⩽ eq is
collapsible. For the final part, a simplex of codimension 1 of the open pseudo-cell
is given by a flag ep < ek1 < · · · < ekq−p−2 < eq of length q − p and has the form
ep < · · · < ei < ei+2 < · · · < eq. Since K is regular there are exactly two (i+ 1)-cells
between ei and ei+1, hence two (q − p)-simplices. □

Proposition 2.19. — The open pseudo-cell associated with the pair ep ⩽ eq

meets the closed pseudo-cell indexed by the pair ep′
⩽ eq′ if and only if ep′

⩽ ep and
eq ⩽ eq′ . This means that every open barycentric simplex of the former is contained
in the latter. Moreover, if ϵ0 is an open pseudo-cell of dimension k included in a
closed pseudo-cell ϵ̄2 of dimension k+ 2 then there are exactly two open pseudo-cells
ϵ1 of dimension k + 1 such that ϵ0 ⊂ ϵ̄1 and ϵ1 ⊂ ϵ̄2.

Proof. — The first part is a consequence of the definition. For the second part,
we choose ϵ0 corresponding to a pair ep+a ⩽ ep+a+k and ϵ2 to a pair ep ⩽ ep+a+k+b

satisfying ep ⩽ ep+a ⩽ ep+a+k ⩽ ep+a+k+b. By assumption, we have a + b = 2 and
three different cases can occur: one of the two numbers a, b is 2 and the other 0
or both equal 1. The two first cases are symmetric. If it’s a that equals 2 we have
ep ⩽ ep+2 ⩽ ep+2+k ⩽ ep+2+k and the two (k + 1)-pseudo-cells between ϵ0 and ϵ1 are
those associated with the two pairs ep+1 ⩽ ep+2+k with ep ⩽ ep+1 ⩽ ep+2. If both
a and b equal 1 then we have ep ⩽ ep+1 ⩽ ep+1+k ⩽ ep+2+k and the two (k + 1)-
pseudo-cells between ϵ0 and ϵ2 are those associated with the two pairs ep ⩽ ep+1+k

and ep+1 ⩽ ep+2+k. □
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In the light of this property it makes sense to talk about adjacent pseudo-cells
as we do for cells of regular CW-complexes. As in the regular case, if ϵ and ϵ′ are
adjacent pseudo-cells with ϵ ⊂ ϵ′ we say that ϵ is a face of ϵ′. If in addition ϵ ̸= ϵ′ we
say that ϵ is a proper face of ϵ′. Also we see here that two dihomologic pseudo-cells
meet on a common face if their intersection is non-empty. Note that this property
might not be true in K, two closed cells meet on the union of their common faces
if the intersection is non-empty. Let ep < eq be a proper adjacent pair of cells of K
and ϵ denote its associated pseudo-cell. The simplicial complex supported on the
closure, (SdK)(ϵ), is the join of the barycentric edge ep < eq and a sub-complex
A(ep; eq) ⊂ SdK. This sub-complex is the collection of all the barycentric simplices
indexed by the flags ek1 < · · · < ekn for which ep < ek1 and ekn < eq.

Definition 2.20 (Homology Manifold). — A homology manifold of dimension
n ∈ N is the support X of a regular, finite dimensional, locally finite CW-complex
for which the graded local homology group H∗(X;X \ {x};Z) of every point x ∈ X
is isomorphic to either H∗(Rn;Rn \ {0};Z) or 0. The boundary of X, denoted by
∂X, is the set of points x ∈ X for which H∗(X;X \ {x};Z) = 0.

Proposition 2.21. — The support of A(ep; eq) is a connected homology manifold
of dimension (q− p− 2) whose (p+ 1)-fold suspension is homeomorphic to a (q− 1)-
sphere.

Proof. — Let B denote the simplicial complex (SdK)(ēq \eq) and e0 < · · · < ep be
a complete flag of cells of K. The simplicial complex A(ep; eq) is the link in B of the
barycentric simplex associated with e0 < · · · < ep. B is a simplicially triangulated
(q − 1)-sphere thus in application of [GS80, Proposition 1.3 p. 5] the (p + 1)-fold
suspension of A(ep; eq) is homeomorphic to a (q − 1)-sphere. The Mayer-Vietoris
long exact sequence in singular homology implies that, if ΣA is the suspension of a
topological space A, we have H0(ΣA;Z) = Z, Hk(ΣA;Z) ∼= Hk−1(A;Z) for all k ⩾ 2
and the exact sequence:

0→ H1(ΣA;Z)→ H0(A;Z)→ Z→ 0 .

So A has the homology of a k-sphere if and only if the l-fold suspension ΣlA has the
homology of an (l + k)-sphere. Therefore, the simplicial complex A(ep; eq) has the
integral homology of a (q − p− 2)-sphere. For the remaining part of the proposition
we note that if the barycentric n-simplex with indexing flag ek0 < · · · < ekn belongs
to A(ep; eq) then its link L in this complex is the join:

A
(
ep; ek0

)
∗ A

(
ek0 ; ek1

)
∗ · · · ∗ A

(
ekn−1 ; ekn

)
∗ A

(
ekn ; eq

)
.

Hence, its (p+n+ 2)-fold suspension is homeomorphic to a (q− 1)-sphere and L has
the integral homology of a (q−p−n−3)-sphere. Now A(ep; eq) is a simplicial complex
of pure dimension (q − p− 2) in which the link of every n-dimensional simplex has
the homology of a (q − p− n− 3)-sphere. This is a homology manifold of dimension
(q − p− 2). Indeed, if x is a point of |A(ep; eq)| that belongs to the relative interior
of the barycentric n-simplex σ, then, by excision, Hk(|A(ep; eq)|; |A(ep; eq)| \ {x};Z)
equals Hk(|S|; |S| \ {x};Z) for all k where S is the closed star of σ. Note that
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|S| is contractible and |S| \ {x} is non-empty. Hence H0(|S|; |S| \ {x};Z) vanishes,
Hk(|S|; |S| \ {x};Z) equals Hk−1(|S| \ {x};Z) for all k ⩾ 2, and:

0→ H1(|S|; |S| \ {x};Z)→ H0(|S| \ {x};Z)→ Z→ 0 .
Since |S| is homeomorphic to the topological join σ ∗ |L| where L is the link of σ,
|S| \ {x} is homotopic to the n-fold suspension of |L|. By assumption |L| has the
homology of a (q−p−n−3)-sphere so |S|\{x} has the homology of a (q−p−3)-sphere.
Combining this with the relation observed by the relative homology of (|S|; |S| \{x})
with the homology of |S| \ {x} we find that Hk(|A(ep; eq)|; |A(ep; eq)| \ {x};Z) is
isomorphic to Hk(Rq−p−2;Rq−p−2 \ {0};Z) for all k, and that A(ep; eq) is a compact
(q − p− 2)-homology manifold without boundary. □

As a direct consequence we get that:

Proposition 2.22. — The closed pseudo-cells associated with the adjacent pairs
of the form e0 ⩽ ep are homeomorphic to closed balls.

Proof. — It follows from the previous observation that the support of this closed
pseudo-cell is homeomorphic to the topological join [0; 1] ∗ |A(e0; ep)| which is the
cone over the suspension of |A(e0; ep)|. By the last proposition, this suspension is a
(p− 1)-sphere so the closed pseudo-cell is actually a closed ball. □

Let ϵ be a dihomologic pseudo-cell associated with a pair ep ⩽ eq, its “boundary”
ϵ̄ \ ϵ is the support of the simplicial join of the union of the barycenters of ep and eq

with A(ep; eq) (so the suspension of A(ep; eq)). From that description, we see that it
is the union of dihomologic pseudo-cells that are faces of ϵ.

We will see further that the dihomologic pseudo-subdivision also shares a lot of
homological features with a regular subdivision. Now we state a condition that
ensures the regularity of this pseudo-complex.

Proposition 2.23. — If K is not only regular but also satisfies that the induced
CW-complex on every closed cell K(e) is shellable in the sense of [Bjö84] then every
closed dihomologic pseudo-cell is also shellable. As a consequence, the geometric
realisation of every closed pseudo-cell is actually homeomorphic to a closed ball
making the dihomologic pseudo-subdivision a regular subdivision of K.

Proof. — Let eq be a cell of K. From the first part of [Bjö84, Proposition 4.4
p. 12] we know that the barycentric subdivision of K(eq) is a shellable simplicial
complex. Let ep be a face of eq, we expressed the associated closed dihomologic
pseudo-cell ϵ̄ as the simplicial join of a closed interval and the simplicial complex
A(ep; eq). As in the proof of Proposition 2.21, we can write this complex as the link of
a barycentric simplex σ with indexing flag e0 < e1 < · · · < ep < eq in Sd(K(eq)). The
link of σ is shellable by [Zie95, Lemma 8.7 p. 237]. The complex A(ep; eq) is a pure
(q − p − 2)-dimensional shellable simplicial complex in which every codimension 1
simplex belongs to exactly two maximal simplices, hence it is homeomorphic to a
sphere by [Bjö84, Proposition 4.3 p. 12]. Finally, the closed dihomologic pseudo-cell
ϵ̄ is the support of a shellable simplicial complex homeomorphic to a closed ball. □

When K is a polyhedral complex, the theorem of Bruggesser and P. Mani [BML72,
Corollary p. 203] ensures that it satisfies the hypotheses of the last proposition
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Figure 2.4. The dihomologic subdivision of the triangle.

and the dihomologic pseudo-subdivision is an actual regular subdivision. This is
especially the case when K is a simplicial complex. In this particular case, the
associated dihomologic subdivision even has the structure of a cubical complex, c.f.
Figure 2.4. It comes from the following triangulation of the cube [0; 1]n: order its
vertex set {0; 1}n with the product order(8) and consider the convex hulls of the
flags of such vertices as the simplices of the triangulation. The triangulation of the
3-dimensional cube is illustrated in Figure 2.5.

Figure 2.5. The subdivision of a cube into six tetrahedra, the convex hull of
{(0; 0; 0); (1; 0; 0); (1; 0; 1); (1; 1; 1)} is marked.

It produces a triangulation of the n-cube into n! simplices. Observe now that the
ordered set of vertices of [0; 1]n is naturally isomorphic to the lattice of subsets of
a set with n elements. Moreover, if σ ⩽ τ is a pair of adjacent simplices of relative
codimension n, the lattice of intermediary simplices {σ ⩽ ν ⩽ τ} is the same as the
lattice of faces of the link of σ in τ (empty face included) i.e. the lattice of subsets
of a set with dim(τ) + 1− (dim(σ) + 1) = n elements. For more general polyhedral
complexes, the shapes of the pseudo-cells can be different, as shown in Figure 2.6.

However, even when K doesn’t satisfy the hypotheses of the Proposition 2.23 all
the 2-dimensional dihomologic pseudo-cells are squares because of Lemma 2.10, c.f.
Figure 2.7. Finally, in low dimension the pseudo subdivision is always regular:

Proposition 2.24. — Let ep ⩽ eq be a pair of cells of K. If, 2 ⩽ q − p ⩽ 4,
then A(ep; eq) is homeomorphic to a sphere. If q = p+ 5, A(ep; eq) is a 3-dimensional
integral homology sphere.

(8) (xi)1 ⩽ i ⩽ n ⩽ (yi)1 ⩽ i ⩽ n if and only if xi ⩽ yi, for all 1 ⩽ i ⩽ n.
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Figure 2.6. The dihomologic subdivision of an octahedron.

ek

ek+1
1 ek+1

2

ek+2

⩾ ⩽

⩾ ⩽

ek

ek+1
1

ek+2

ek+1
2

Figure 2.7. The lattice of faces and the dihomologic square associated with a
pair of relative codimension 2.

Proof. — As shown in Figure 2.7, the simplicial complex A(ep; ep+2) consists of
two vertices and is therefore a 0-sphere. If we look at A(ep; ep+3) the link of every
simplex is either empty or a A(ek; ek+2), so A(ep; ep+3) is actually a manifold by
Proposition 1.3 of [GS80, Proposition 1.3 p. 5]. Therefore, by Proposition 2.21, it is
a 1-dimensional integral homology sphere, so a circle. Now for A(ek; ek+4) we have
from the proof of Proposition 2.21 that the link of every simplex is either empty or
a join of a A(ek; ek+2) with a A(ek; ek+3) which we have just shown to be spheres.
Therefore, A(ek; ek+4) is a 2-dimensional integral homology sphere. By classification
of compact orientable 2-dimensional manifolds it is homeomorphic to a 2-sphere. For
the last part our previous arguments show that the A(ep; ep+5) are 3-dimensional
integral homology spheres. □

Remark 2.25. — The 3-dimensional closed pseudo-cells are not only closed balls
but even trapezohedra i.e. similar to Figure 2.8. The family of such polyhedra is
indexed by integers n at least equal to 3 (for which we find “the cube”).
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e0

e3

e0

e3

Figure 2.8. The shape of the dihomologic cell associated with the adjacent pair
e0 ⩽ e3.

A direct consequence of Proposition 2.24 and Proposition 2.22 is the proposition
below.

Proposition 2.26. — If dimK is at most 5 then its dihomologic pseudo-subdivi-
sion is a regular subdivision.

2.2. Cellular Sheaves and Cosheaves

In this paragraph K denotes a regular CW-complex.

Definition 2.27 (Constructible Sheaves). — A sheaf F on |K| is called con-
structible with respect to the CW-complex structure if its restriction to every open
cell is constant.

Such sheaves are among the “simplest ones” on |K| as they are reducible to
combinatorial data. The knowledge of their section groups above every open star
as well as the restrictions morphisms between these stars is enough to characterise
the sheaf completely up to isomorphism. The key fact about these sheaves is the
following: for every cell e of K, if S denotes its open star and x ∈ e then the two
following morphisms are isomorphisms:

F (S) F |e(e) Fx.rest. stalk

See for instance [Kas84, Proposition 1.3 p. 323]. Since e is connected and locally
connected, the fact that F |e(e)→ Fx is an isomorphism follows from the constance of
F |e. Let F (e) denote the group F |e(e) of values of F |e. From the previous observation,
we gain a “restriction map” from F (ep) and F (eq) for all pairs of adjacent cells ep ⩽ eq
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that comes from the following commutative diagram:

F (ep) F (eq)

F (Sep) F (Seq)

rest. to F |ep (ep) ∼=

Seq ⊂ Sep

rest.

rest. to F |eq (eq)∼=

where Sep and Seq are the respective open stars of ep and eq. The data of the groups
F (ep) together with the morphisms connecting them, defined from the topological
sheaf F , is called a cellular sheaf:

Definition 2.28 (Cellular Sheaf). — A cellular sheaf on K is the data of a
covariant functor:

F : Cell K →ModR,

from the category of cells of K with arrows given by adjacency to the category of
R-modules (for some commutative ring R). We call the images of the arrows by such
functor its restriction morphisms. For two adjacent cells ep ⩽ eq and f ∈ F (ep) we
will denote by f |eq

ep the image of f in F (eq) by the restriction morphism.

Definition 2.29 (Cellular Cosheaf). — A cellular cosheaf on K is the data of a
contravariant functor:

F : Cell K →ModR,

from the category of cells of K with arrows given by adjacency to the category of
R-modules (for some commutative ring R). We call the images of the arrows by such
functor its extension morphisms. For two adjacent cells ep ⩽ eq and f ∈ F (eq) we
will denote by f |eq

ep the image of f in F (ep) by the extension morphism.

Every functorial operation performed on Abelian groups, or more generally on
modules over a given commutative ring, such as direct sums, products, tensor prod-
ucts, etc. can be performed as well on cellular sheaves and cosheaves by performing
it group by group over every cell. Also, we can construct a cosheaf from a sheaf F by
considering, for G a fixed group, the contravariant functor e 7→ Hom(F (e);G) with
adjoint arrows. This construction also goes the other way around when one starts
with a cosheaf.

Definition 2.30 (Morphisms of Sheaves and Cosheaves). — A morphism of
cellular sheaves (or cellular cosheaves) f : F → F ′ is a natural transformation. Such
morphism is said to be injective (resp. surjective, resp. invertible) if the associated
morphisms fe : F (e) → F ′(e) are injective (resp. surjective, resp. invertible) for
all cells e. The kernel, image, and cokernel of such morphism f are the “cell-wise”
kernel, image, and cokernel. They are sheaves/cosheaves themselves with the induced
restriction/extension morphisms because f is a natural transformation.

The most basic examples of such objects are given by local systems of coefficients.
We see such local systems as fibre bundles of discrete groups above |K|. Since every
cell is connected and contractible the restriction of its sheaf of continuous sections to
any cell is constant. Therefore, it satisfies the hypothesis of the definition and induces
a cellular sheaf. It has the property that all its restriction morphisms are invertible.
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This is even a way to characterise such local systems. This special property also allows
us to see it as a cellular cosheaf by inverting every arrows. Indeed, the commutativity
conditions on the composition of such morphisms are automatically satisfied from
the ones given by the cellular sheaf structure. Another family of examples is given
by the characteristic cosheaves associated with sub-complexes:

Definition 2.31. — Let K ′ be a sub-complex of K and G be an Abelian group
(or a module over a commutative ring) we denote by [K ′;G] the cellular cosheaf
defined by:

e ∈ K 7−→
{
G if e ∈ K ′

0 otherwise .

Its extension morphisms are given either by the identity of G or by the zero morphism
whenever one of the two groups involved is trivial. If a cell belongs to K ′ then all of its
faces belong to it too. As a consequence the commutativity conditions are satisfied
for every triplet of adjacent cells gives rise to one of the following commutative
diagrams:

G 0 0 0

G G 0 0

G G G 0

id

id

0

0

0

0

0

0

id id 0 0

Whenever K ′′ is a sub-complex of K ′, we have a natural injective morphism of
cosheaves [K ′′;G]→ [K ′ ;G]. Over a cell it is either given by the 0 morphism or by
the identity of G. We will denote the resulting quotient by [K ′;K ′′;G]. It is G on
the cells of K ′ not contained in K ′′ and 0 elsewhere. A sub-family of these examples
will be of particular interest. They are the “local” cosheaf [K;K − e ;G], for all cells
e of K. Its value is G only on the cells containing e. For all cells e, the cosheaves
[K(e) ;G] and [K;K − e ;G] are the dual constructions of the elementary cellular
sheaves considered by A. Shepard in his thesis [She85]. They were also considered
later by J. Curry (in [Cur14] for instance).

Definition 2.32 (Localisation of a Cellular Cosheaf). — Let F be a cellular
cosheaf on K and e be a cell. We denote by Fe the tensor product F ⊗Z [K;K−e ;Z]
and call it the localisation of F at e. For all cells e′, Fe(e′) is F (e′) if e′ ⩾ e and 0
otherwise, its extension morphisms are then appropriately given by the extension
morphisms of F or 0. Moreover, the natural projection [K;K−e ;Z]→ [K;K−e′ ;Z]
for adjacent cells e ⩽ e′ induces a surjective localisation morphism Fe → Fe′ .

Definition 2.33 (Subdivision). — If K ′ is a subdivision of K, there is a subdi-
vision functor from the category of cellular cosheaves on K (resp. cellular sheaves)
to the category of cellular cosheaves on K ′ (resp. cellular sheaves). If F is a cosheaf
(resp. sheaf) on K, its subdivision F ′ is given, for all cells e′ ∈ K ′, by:

F ′(e′) = F (e),
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where e denotes the only cell of K containing e′. The extension (resp. restriction)
morphisms are then adequately derived from those of F . If e′

0 ⩽ e′
1 are contained in

the same cell, the morphism is the identity. If this is not the case, then it is given by
the morphism associated with the only pair of cells e0 ⩽ e1 of K satisfying e′

0 ⊂ e0
and e′

1 ⊂ e1.

Definition 2.34 (Dihomologic Cellular Sheaves and Cosheaves). — A dihomo-
logic cellular cosheaf (resp. sheaf) on K is the data of a contravariant (resp. covariant)
functor F from the category associated with the set of dihomologic pseudo-cells of K
ordered by adjacency to the category of R-modules. As in the case of cellular sheaves
and cosheaves a morphism of such objects is defined to be a natural transformation
of functors. The notions of injectivity, surjectivity and invertibility are also defined
“cell-wise” and so are the kernels, images and cokernels.

Formally, a dihomologic cellular cosheaf consists of an assignment of a module
F (ep; eq) to every pair of adjacent cells ep ⩽ eq and morphisms connecting them.
Because of the commutativity conditions on the compositions of such morphisms, it
is only necessary to define them on elementary adjacency relations. By that, we mean
that if the dihomologic pseudo-cell of the pair ep ⩽ eq is a face of the pseudo-cell
ep′

⩽ eq′ then we have ep′
⩽ ep ⩽ eq ⩽ eq′ and the commutative diagram of extension

morphisms:
F (ep′ ; eq′)

F (ep; eq′) F (ep′ ; eq)

F (ep; eq)

(5)

(3)(1)

(2) (4)

Knowing the morphism (5) only amounts to knowing the composition of (1) and (2)
or (3) and (4). So to describe such F completely we can only provide the groups and
the extension morphisms when we “increase the first coordinate” and “decrease the
second one” and verify that these satisfy the commutative diagram:

F (ep′ ; eq′)

F (ep; eq′) F (ep′ ; eq)

F (ep; eq)

Definition 2.35 (Dihomologic Subdivision of Cellular Sheaves and Cosheaves).
Let F be a cellular cosheaf (resp. sheaf) on K, its dihomologic subdivision F ′ is the
dihomologic cellular cosheaf (resp. sheaf) that associates to every pair of adjacent
cells ep ⩽ eq the module:

F ′(ep; eq) := F (eq),
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with extension (resp. restriction) morphisms coming from those of F and illustrated
in the following commutative diagram (resp. with opposite arrows) for the elementary
adjacency relations ep′

⩽ ep ⩽ eq ⩽ eq′ :

F (eq′)

F ′(ep′ ; eq′)

F (eq′) F ′(ep; eq′) F ′(ep′ ; eq) F (eq)

F ′(ep; eq)

F (eq)

id

∣∣∣eq′

eq

∣∣∣eq′

eq

id

Whenever the dihomologic pseudo-subdivision of K is a regular subdivision this
construction corresponds to the usual subdivision of cosheaves (resp. sheaves) of
Definition 2.33. The open cell eq is covered by the open dihomologic (pseudo)-cells
associated with the adjacent pairs of the form ep ⩽ eq.

Definition 2.36 (Localisation by fixing the first coordinate). — Let F be a
dihomologic cosheaf on K and e be a cell of K. We define the local cellular cosheaf
Fe on K by the formula:

e′ ∈ K 7−→
{
F (e; e′) if e′ ⩾ e

0 otherwise ,

with extension morphisms either 0 or given by F . We call it local as it is invariant by
the operation of localisation at e: (Fe)e = Fe. Moreover, if we apply this process to a
dihomologic cosheaf F ′ obtained by subdividing a cellular cosheaf F , we recover the
localisation operation previously defined. The situation is illustrated in the following
commutative diagram:

(D1)

{
Cosheaves of K

} {
Dihomologic cosheaves of K

}

{
Cosheaves of K

} {
Dihomologic cosheaves of K

}
loc. at e

subd.

fix. loc. at e loc. at (e⩽ e)

subd.

2.3. Cellular Homology and Cohomology

In this paragraph, K denotes a locally finite regular CW-complex. When one
computes the homology of the CW-complex K cellularilly by filtering, the singular
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chain complex for instance, by its skeleta, one ends up on the E1-page with the
cellular chain complex of K. The k-th group of this complex is given by the direct
sum of free Abelian groups of rank 1, one for each k-cell. These groups, that we
redefine below, are a key ingredient in cellular homology. They all have two generators
that corresponds to the two orientations of the cell.

Definition 2.37 ([Mun84, §39. pp. 222-231]). — Let e be a k-cell of K. We call
an orientation of e a generator of the group Z(e) := Hk(|K|; |K|\e;Z) = Hk(ē; ē\e;Z)
computed by singular homology. We will call the latter group the group of oriented
coefficients of e and say that [e] is an oriented k-cell when [e] is an orientation of the
k-cell e. Whenever ep−1 is a codimension 1 face of ep, we have a boundary morphism
Z(ep)→ Z(ep−1) defined by the following composition:

Hk(ē p; ē p \ ep) Hk−1(ē p \ ep)

Hk−1
(
ē p \ ep; ē p \ (ep ∪ ep−1)

)
Hk−1 (ē p−1; ē p−1 \ ep−1) ,

(1)

(2)

(3)

where all four homology groups are computed with integer coefficients. The morphism
(1) is the connection morphism of the homological long exact sequence associated
with the pair (ē p \ ep) ⊂ ē p, (2) is the reduction modulo ē p \ (ep ∪ ep−1), and
(3) is the inverse of the excision isomorphism. The image of an orientation [ep]
under this morphism is by definition the Z(ep−1)-component of its boundary. It is
a generator of Z(ep−1). The first map, the connection morphism, comes from the
boundary operator of the singular homology chain complex and therefore relies on the
canonical orientation of Rn. Let σ : Conv({0, . . . , n}) → |K| be a singular simplex,
we have the following formula:

∂σ =
n∑

i=0
(−1)iσi ,

where σi denotes the restriction of σ to Conv({0, . . . , n}\{i}). The convention on the
orientation of such restriction σi is then given by “outward pointing normal vector”
as illustrated in Figure 2.9.

0

2

1

∂

0

2

1

Figure 2.9. The orientation of the boundary.
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These boundary morphisms satisfy the well known property that if ep is a codi-
mension 2 face of some cell ep+2 and ep+1

1 , ep+1
2 denote the two codimension 1

faces of ep+2 adjacent to ep then the two compositions of boundary morphisms
Z(ep+2) → Z(ep+1

1 ) → Z(ep) and Z(ep+2) → Z(ep+1
2 ) → Z(ep) are opposite of each

other. In particular, composing boundary morphisms between oriented coefficients
does not define a cellular cosheaf.

Definition 2.38 (Dihomologic Orientations). — Let ϵ be the dihomologic pseu-
do-cell associated with an adjacent pair ep ⩽ eq, we define its group of oriented
coefficients to be:

Z(ϵ) = Z(ep; eq) := Hom(Z(ep);Z(eq)).
We call a generator of such group an orientation of ϵ or a relative orientation of the
pair ep ⩽ eq and denote such an element by the symbol [ep; eq]. If ϵ′ is a codimension 1
face of the pseudo-cell ϵ, we also have a boundary morphism Z(ϵ)→ Z(ϵ′) defined
by the boundary morphisms between the groups of oriented coefficients of cells of K
and, up to sign, by the functorial properties of Hom. They are shown in the diagram
below.
(D2)

Z (ep; eq) Z (ep+1) Z (eq)

Z (ep+1; eq) Z (ep; eq−1) Z (ep) Z (eq−1)

(−1)p+1 Hom(∂ ; id) (−1)p Hom(id ; ∂′)
∂ ∂′

Note that if ϵ is a dihomologic pseudo-cell of dimension k, its closure can be
expressed as the cone over a space that has the homology of a (k − 1)-sphere. In
this description, ϵ corresponds to the open cone. Therefore, the singular homology
of ϵ̄ relatively to ϵ̄ \ ϵ is isomorphic to the singular homology of a k-ball relatively
to its boundary. Thus, we could equivalently define Z(ϵ) to be Hk(ϵ̄; ϵ̄ \ ϵ;Z) as in
the case of a regular CW-complex. Indeed, if ep ⩽ eq is the indexing pair of the
pseudo-cell ϵ, there is a canonical isomorphism between the groups Hq−p(ϵ̄; ϵ̄ \ ϵ;Z)
and Hom(Z(ep);Z(eq)). If we represent a cell ep by a p-dimensional real vector space
inside a q-dimensional vector space (representing eq) then the dihomologic pseudo-
cell ϵ indexed by ep ⩽ eq represents a supplementary sub-space of the former in the
latter. An orientation of such supplementary space allows by wedge product to orient
the q-dimensional vector space from an orientation of the p-dimensional one. The
situation is explained by the cohomological bilinear cup product:

∪ : Hp (ē p; ē p \ ep)⊗Hq−p (ϵ̄; ϵ̄ \ ϵ)→ Hq (ē q; ē q \ eq) .

It is non-degenerate. To see it one can notice that all the spaces considered are
supports of simplicial complexes so each of these groups can be computed simplicially.
A generator of Hp(ē p; ē p\ep) is represented by the simplicial cocycle whose value is 1
on the barycentric simplex indexed by a complete flag e0 < · · · < ep and 0 elsewhere.
Likewise, a generator of Hq−p(ϵ̄; ϵ̄ \ ϵ) is represented by the simplicial cocycle whose
value is 1 on the barycentric simplex indexed by a complete flag ep < · · · < eq and
0 elsewhere. Their cup product is the simplicial cocycle whose value is 1 on the
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barycentric simplex indexed by the complete flag e0 < · · · < ep < · · · < eq and 0
elsewhere. It represents a generator of Hq(ē q; ē q \eq). It gives rise to an isomorphism:

Hq−p(ϵ̄; ϵ̄ \ ϵ) ∼= Hom
(
Hp (ē p; ē p \ ep) ;Hq (ē q; ē q \ eq)

)
.

Using the universal coefficients theorem [CE56, Theorem 3.3 p. 113] three times this
isomorphism becomes:

Z(ϵ) ∼= Hom
(

Hom
(

Hom(Z(ep);Z); Hom(Z(eq);Z)
)

;Z
)
.

Since all the groups involved are free, we can compose it with the musical isomorphism
of the trace scalar product:

Hom
(

Hom
(

Hom(Z(ep);Z); Hom(Z(eq);Z)
)

;Z
)

∼= Hom
(

Hom(Z(eq);Z); Hom(Z(ep);Z)
)
,

and then with the transposition:

Hom
(

Hom(Z(eq);Z); Hom(Z(ep);Z)
)
∼= Hom

(
Z(ep);Z(eq)

)
,

to finally find our desired isomorphism Z(ϵ) ∼= Hom(Z(ep);Z(eq)). Note that the
signs in the Definition 2.38, diagram (D2), of the boundary morphisms between the
groups of oriented coefficients of dihomologic pseudo-cells come from this description
and the relations:

d1α ∪ β + (−1)pα ∪ d2β = 0 and d3(α ∪ γ) = 0 + (−1)pα ∪ d4γ,

that come from the graded Leibniz rule. They are satisfied by all α ∈ Hp(ē p; ē p \ ep),
β ∈ Hq−p−1(ϵ̄1; ϵ̄1 \ ϵ1) and γ ∈ Hq−p−1(ϵ̄2; ϵ̄2 \ ϵ2), where:

(1) ϵ1 and ϵ2 are adjacent dihomologic pseudo-cells respectively indexed by the
pairs ep+1 ⩽ eq and ep ⩽ eq−1;

(2) d1 and d3 are respectively transpose of the orientation boundary morphisms
∂1 : Z(ep+1)→ Z(ep) and ∂3 : Z(eq)→ Z(eq−1);

(3) d2 : Hq−p−1(ϵ̄1; ϵ̄1 \ ϵ1) → Hq−p(ϵ̄3; ϵ̄3 \ ϵ3) and d4 : Hq−p−1(ϵ̄2; ϵ̄2 \ ϵ2) →
Hq−p(ϵ̄3; ϵ̄3 \ ϵ3) where ϵ3 is indexed by the pair ep ⩽ eq.

If [ep] ∈ Z(ep) is an orientation of ep and [ep; eq] ∈ Z(ep; eq) is a relative orientation,
we denote by [ep][ep; eq] the associated orientation of eq. For all pairs ep ⩽ ep+1 of
relative codimension 1, the inverse of the boundary morphism ∂ : Z(ep+1)→ Z(ep)
defines a canonical relative orientation. We will always denote it by the symbol
[ep; ep+1] but we should emphasise that for any other positive dimensional dihomologic
pseudo-cell the similar notation denotes an arbitrary orientation, possibly subject to
conditions, as there are no canonical orientation for them. We can compose relative
orientations in their morphism representations, we adopt the convention [ep; eq][eq; er]
to denote [eq; er] ◦ [ep; eq]. In these notations, one can rewrite the anti-commutativity
of the boundary morphisms as follows: for all adjacent pairs ep ⩽ ep+2 of relative
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codimension 2 we have: ∑
ep ⩽ ep+1 ⩽ ep+2

[
ep; ep+1

] [
ep+1; ep+2

]
= 0.

Definition 2.39 (Cellular Chain and Cochain Complexes). — Let F be a cellular
cosheaf on K and k ∈ N. We define the group of cellular k-chains of K with
coefficients in F to be:

Ck(K;F ) :=
⊕

dim e=k

F (e)⊗Z Z(e).

Moreover, if [e] is an oriented k-cell of K and c is a k-chain with coefficients in F
we denote by ⟨c, [e]⟩ the unique element of F (e) satisfying ce = ⟨c, [e]⟩ ⊗ [e]. We also
define the boundary operator ∂ : Ck(K;F )→ Ck−1(K;F ) by the formula:

∂f :=
∑

ek−1 < ek

〈
f, [ek]

〉 ∣∣∣ek

ek−1
⊗
[
ek−1

]
,

for all f ∈ F (ek)⊗ZZ(ek) where [ek−1] is the image of [ek] by the boundary morphism.
This relation can be written as [ek−1][ek−1; ek] = [ek] where [ek−1; ek] is the canonical
relative orientation. The anti-commutativity of the boundary morphisms between
oriented coefficients implies that ∂2 = 0. Thus (Ck(K;F ); ∂)k ⩾ 0 is a chain complex.

Dually, when F is a cellular sheaf, we have a cochain complex with coefficients in
F . For all k ∈ N, the group of cellular k-cochains is given by:

Ck(K;F ) :=
∏

dim e=k

Hom(Z(e);F (e)).

For all k-cochains α with coefficients in F and all oriented k-cells [e], we denote by
α[e] ∈ F (e) the value of the e-component of α evaluated at [e]. The coboundary
operator or differential d : Ck(K;F )→ Ck+1(K;F ) is given for all k-cochains α and
all oriented (k + 1)-cells [ek+1] by:

dα
[
ek+1

]
=

∑
ek < ek+1

α
[
ek
] ∣∣∣ek+1

ek
,

where [ek] denotes the only orientation of ek whose image by the boundary morphism
is [ek+1], i.e. [ek][ek; ek+1] = [ek+1].

The last cochain complex we define here is the complex of cellular cochains with
compact support. It is a sub-complex of (Ck(K;F ); d)k ⩾ 0 whose groups are given
for all k ∈ N, by:

Ck
c (K;F ) :=

⊕
dim e=k

Hom(Z(e);F (e)).

The image of Ck
c (K;F ) under d is contained in Ck+1

c (K;F ) only because we assumed
K to be locally finite. A morphism of cosheaves or sheaves gives rise to a morphism
of chain or cochain complexes, respectively. In a more categorical language, the
association F 7→ (Ck(K;F ); ∂)k ⩾ 0 for F a cosheaf and G 7→ (Ck

(c)(K;G); d)k ⩾ 0 for
G a sheaf are covariant functors.
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Definition 2.40 (Dihomologic chain complex). — Let F be a dihomologic cel-
lular cosheaf on K. We define the group of dihomologic cellular k-chains of K with
coefficients in F to be:

Ωk(K;F ) :=
⊕

dim ϵ=k

F (ϵ)⊗Z Z(ϵ),

If [ϵ] is an oriented k-pseudo-cell of K and c a k-chain with coefficients in F we
denote by ⟨c, [ϵ]⟩ the unique element of F (ϵ) satisfying cϵ = ⟨c, [ϵ]⟩ ⊗ [ϵ]. We also
define the boundary operator ∂ : Ωk(K;F )→ Ωk−1(K;F ) by the formula:

∂
(
f ⊗ [ϵk]

)
:=

∑
ϵk−1 < ϵk

〈
f, [ϵk]

〉 ∣∣∣ϵk

ϵk−1
⊗
[
ϵk−1

]
,

for all f ⊗ [ϵk] ∈ F (ϵk) ⊗Z Z(ϵk), where [ϵk−1] is the image of [ϵk] by the boundary
morphism.

Remark 2.41. — If the dihomologic pseudo-subdivision of K is a regular subdivi-
sion of K the last definition is identical to the definition of the cellular chain complex
with coefficients in a cellular cosheaf on a CW-complex.

Definition 2.42. — Let F be a cellular cosheaf (resp. a cellular sheaf). We
define its homology (resp. cohomology, resp. cohomology with compact support)
to be the homology of its cellular chain complex (resp. cohomology of its cellular
cochain complex, resp. cohomology of its cellular cochain complex with compact
support). We also define the homology of a dihomologic cosheaf to be the homology
of the associated chain complex.

Example 2.43. — Given two sub-complexes K1 ⩽ K2 of K and an Abelian
group G, the homology of [K2;K1;G] is exactly the same as the cellular homol-
ogy of K2 relatively to K1 with coefficients in G.

The following propositions illustrate the usefulness of these cellular constructions:

Proposition 2.44. — If F is a sheaf of Abelian groups on |K|, constructible
with respect to the skeletal filtration, then the sheaf cohomology of F is isomorphic
to the cellular cohomology of the cellular sheaf associated to F .

The proof of this fact is easily derived from the fact that the open cover of |K|
by the open stars of its vertices is a Leray cover for F and that the cellular cochain
complex of its associated cellular sheaf is the complex of its Čech cochains, see [God58,
Théorème 5.10.1 p. 228] for instance.

Proposition 2.45. — Whenever F is the cellular cosheaf arising from a local
system of coefficients L on |K| there is a canonical isomorphism from the cellular
homology of F to the singular homology of |K| with coefficients in L.

The result follows directly from the description in [Hat02, Section 3.H. Local
Coefficients pp. 327-337.] of the complex of singular chains with coefficients in L
and an adaptation of the classical proof relating singular homology and cellular
homology.
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Proposition 2.46. — Let K ′ be a subdivision of K and F be a cellular cosheaf
on K. If F ′ denotes the subdivision of F we have the following injective morphism
of chain complexes:

Ck(K;F ) −→ Ck(K ′;F ′)

c 7−→
∑

ek ∈ K

 ∑
e′k ⊂ ek

e′k ∈ K′

〈
c ; [ek]

〉
⊗ [e′k]


where the orientations are defined as follows: if [ek] is an orientation of ek then [e′k] is
the image of such orientation under the isomorphism Hk(ē k; ē k\ek)→ Hk(ē′k; ē′k\e′k)
inverse of the map induced by the inclusion (ē′k \ ek; ē′k) ⊂ (ē k \ e′k; ē k). This is a
quasi-isomorphism of chain complexes.

A proof of this can be found in [She85, Theorem 1.5.2 p. 31] in the dual context of
cellular sheaves. The same proposition holds for dihomologic subdivisions of cellular
cosheaves on K. A proof of the specific case of the constant sheaf on the dihomologic
subdivision is given in [For02, Theorem 1.2 p. 12].

Proposition 2.47. — Let F be a cellular cosheaf on K. If F ′ denotes the
dihomologic subdivision of F we have the following injective morphism of chain
complexes:

Ck(K;F ) −→ Ωk(K;F ′)

c 7−→
∑

e0 ⩽ ek

〈
c ; [ek]

〉
⊗
[
e0; ek

]

where the orientations are defined as follows: if [ek] is an orientation of ek then [e0; ek]
is the relative orientation defined by the relation [e0][e0; ek] = [ek] where [e0] is the
canonical orientation of the vertex e0 of K. This is a quasi-isomorphism of chain
complexes.

This is an adaptation of the proof given by R. Forman.
Proof. — Let us denote by f the morphism of chain complexes given in the state-

ment of the proposition. For all q ∈ N, we have natural inclusions of the dihomologic
complexes associated with the restrictions of F ′ to the skeleta of K:

Ω∗
(
K(q);F ′

)
⊂ Ω∗

(
K(q+1);F ′

)
.

We note that for every k ∈ N, f maps Ck(K;F ) to Ωk(K(k);F ′). Now we consider
the spectral sequence associated with this filtration:

Er
p,q :=

Zr
p,q + Ωq−p

(
K(q−1);F ′

)
∂Zr−1

p+r−2,q+r−1 + Ωq−p (K(q−1);F ′)
,

where Zr
p,q = {c ∈ Ωq−p(K(q);F ′) | ∂c ∈ Ωq−p−1(K(q−r);F ′)}. The boundary operator

∂r
p,q : Er

p,q → Er
p−r+1,q−r applied to an element c ∈ Er

p,q is given by computing
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∂c′ ∈ Ωq−p−1(K;F ′) for any lift c′ ∈ Zr
p,q and then projecting to Er

p−r+1,q−r. The
term E0

p,q is written as:

E0
p,q =

⊕
ep ⩽ eq

F ′(ep; eq)⊗ Z(ep; eq),

where F ′(ep; eq) = F (eq) by assumption. The boundary ∂0
p,q acts on the element

v ⊗ [ep; eq] of the group F ′(ep; eq)⊗ Z(ep; eq) = F (eq)⊗ Z(ep; eq) as follows:
∂0

p,q (v ⊗ [ep; eq]) =
∑

ep ⩽ ep+1 ⩽ eq

v ⊗
[
ep+1; eq

]
∈

⊕
ep ⩽ ep+1 ⩽ eq

F ′
(
ep+1; eq

)
⊗ Z

(
ep+1; eq

)
,

where [ep+1; eq] is the image of [ep; eq] by the boundary ∂ : Z(ep; eq) → Z(ep+1; eq).
This morphism is given by (−1)p+1 Hom(∂′; id) with ∂′ : Z(ep+1)→ Z(eq). Therefore,
if we decide to write [ep; eq] in the form α ⊗ [eq] ∈ Hom(Z(ep);Z) ⊗ Z(eq) we have
[ep+1; eq] = (−1)p+1(α ◦ ∂′) ⊗ [eq]. As a consequence, we see that the line of index
q of the E0-page of the spectral sequence splits into the direct sum of the cellular
cochain complexes of the K(eq)’s with coefficients in the constant cellular sheaves
F (eq)⊗ Z(eq) with coboundary operator d twisted by (−1)p+1:

· · · −→ E0
p,q E0

p+1,q −→ · · ·

⊕
eq ∈ K

Cp
(
K(eq);F (eq)⊗ Z(eq)

) ⊕
eq ∈ K

Cp+1
(
K(eq);F (eq)⊗ Z(eq)

)
∂0

⊕(−1)p+1 d

Since the support of K(eq) is the closure of eq, the E1-page of the spectral sequence
is concentrated on the 0th column and satisfies:

E1
0,q =

⊕
eq ∈ K

H0
(
K(eq);F (eq)⊗ Z(eq)

)
.

We note that E1
0,q ⊂ E0

0,q and is precisely the image of f . It defines an isomorphism
between this 0th column and C∗(K;F ) and therefore between the homology of F
and the homology of its subdivision F ′. Moreover, we deduce that our filtration
is adapted to the cokernel of f and that computing the first page of the induced
spectral sequence amounts to replace in our computations the cohomology groups of
theK(eq)’s with coefficients in the group F (eq)⊗Z(eq) with their reduced cohomology
groups. Since the |K(eq)|’s are contractible, they all vanish. Thus, the cokernel of f
has trivial homology and f is a quasi-isomorphism. □

3. A Poincaré–Lefschetz Theorem for Dihomologic Cellular
Cosheaves

Let K be a locally finite regular CW-complex and F be a dihomologic cosheaf on K.
The chain complex (Ωk(K;F ); ∂)k ⩾ 0 is actually the total complex of a bicomplex.
The k-dimensional dihomologic pseudo-cells are represented by adjacent pairs of cells
ep ⩽ eq with q − p = k. Hence, their set is partitioned into sets of pseudo-cells of
different types. If we say that a dihomologic pseudo-cell indexed by ep ⩽ eq has type
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(p, q), the set of k-dimensional dihomologic pseudo-cells is the disjoint union of the
set of pseudo-cells of type (p, q) for all q−p = k. Similarly the group Ωk(K;F ) splits
into the following direct sum:

Ωk(K;F ) =
⊕

q−p=k

Ωp,q(K;F ),

where:
Ωp,q(K;F ) :=

⊕
ep ⩽ eq

F (ep; eq)⊗ Z(ep; eq),

for all p, q ∈ N. A codimension 1 face of ep ⩽ eq either starts with ep or ends with
eq and therefore the restriction of the boundary operator to Ωp,q(K;F ) takes its
values in the sum Ωp+1,q(K;F ) ⊕ Ωp,q−1(K;F ). The operator ∂ is the sum of an
operator ∂1 of bidegree (+1; 0) and an operator ∂2 of bidegree (0;−1). With this
additional structure, we can consider the two canonical filtrations and associated
spectral sequences. We will only look at the (decreasing) horizontal filtration, that
is to say, the one filtered by the index p. The filtering pieces are, for all k, l ∈ N:

Ω(l)
k (K;F ) :=

⊕
q−p=k

p⩾ l

Ωp,q(K;F ).

The associated spectral sequence is given for all p, q ∈ Z by:

Er
p,q :=

Zr
p,q + Ω(p+1)

q−p (K;F )
∂Zr−1

p−r+1,q−r+2 + Ω(p+1)
q−p (K;F )

,

where Zr
p,q denotes {c ∈ Ω(p)

q−p(K;F ) | ∂c ∈ Ω(p+r)
q−p−1(K;F )}. The boundary operator

∂r
p,q : Er

p,q → Er
p+r,q+r−1 applied to an element c ∈ Er

l,k is given by computing
∂c′ ∈ Ω(p+r)

q−p−1(K;F ) for any lift c′ ∈ Zr
p,q and then projecting to Er

p+r,q+r−1.

Proposition 3.1. — If there is an n ∈ N such that for every cell e of K the
local cosheaf Fe has its homology concentrated in dimension n then the horizontal
spectral sequence of Ω(K;F ) degenerates at the second page.

Proof. — We have:
E0

p,q
∼= Ωp,q(K;F ),

and ∂0
p,q corresponds to the vertical component, ∂2, of the total boundary operator, ∂,

of (Ωk(K;F ); ∂)k ∈N. The following page (E1
p,q)p,q ∈N is given by the homology groups

of the column complexes of the bicomplex (Ωp,q(K;F ); ∂1; ∂2)p,q ∈N. Let p, q ∈ N and
let’s consider the morphism:

Φp,q : Ωp,q(K;F )→
⊕

ep ∈ K

Hom
(
Z(ep);Cq(K;Fep)

)
,

for which the (ep)-component of the image of an element c is given by the linear
map:

[ep] 7→ (−1)
p(p+1)

2 + q(q+1)
2

∑
eq > ep

⟨c, [ep; eq]⟩ ⊗ [eq],

where [ep; eq], [eq] are some choices of orientations satisfying [ep][ep; eq] = [eq] (the
map does not depend on such choices). For a fixed p ∈ N, the collection (Φp,q)q ∈N
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is almost a chain complex isomorphism between the pth column of the bicomplex
of F -valued dihomologic chains (Ωp,q(K;F ); ∂2)q ⩾ 0 and the direct sum over the
p-cells ep of the complexes (Hom(Z(ep);Cq(K;Fep)); Hom(Z(ep); ∂))q ⩾ 0. We have
∂Φp,q = (−1)q−pΦp,q−1∂2 so (Φp,q)q ∈N still defines an isomorphism in homology. Each
of the Φp,q being individually an isomorphism is a matter of bookkeeping. On the
left hand side we sum the groups F (ep, eq)⊗ Z(ep, eq) over all ordered pairs of cells
ep ⩽ eq and on the right hand side we sum the groups Hom(Z(ep);F (ep, eq)⊗Z(eq))
over the same index set but in a different order, Φp,q then sends bijectively each one
of the former summands to one of the latter summands by means of the composition:

F (ep, eq)⊗ Z(ep, eq)

= F (ep, eq)⊗ Hom(Z(ep);Z(eq)) ±1−→ Hom(Z(ep);F (ep, eq)⊗ Z(eq)).
Let us now prove the claim about the “commutativity” relation with the boundary
operators. Let c be a chain of type (p; q). On the one hand, for all p-cells ep of K,
the value of the (ep)-component of Φp,q−1(∂2c) on an orientation [ep] is given by the
following formula:

Φp,q−1(∂2c)[ep] = (−1)
p(p+1)

2 + q(q−1)
2

∑
eq−1 > ep

 ∑
eq > eq−1

⟨c, [ep; eq]⟩
∣∣∣∣ep,eq

ep,eq−1

⊗ [eq−1
]
,

where [ep][ep, eq−1] = [eq−1] and [ep, eq] = (−1)p[ep, eq−1][eq−1, eq]. That is to say:

Φp,q−1(∂2c)[ep] = (−1)
p(p−1)

2 + q(q−1)
2

∑
eq−1 > ep

 ∑
eq > eq−1

⟨c, [ep; eq]⟩
∣∣∣∣ep,eq

ep,eq−1

⊗ [eq−1
]
,

where [ep][ep, eq] = [eq−1][eq−1, eq]. Since we changed the equation defining the orien-
tation, we had to compensate with the multiplication by a factor (−1)p which turned
(−1)

p(p+1)
2 into (−1)

p(p−1)
2 . On the other hand, the value of the (ep)-component of

∂Φp,q(c) on [ep] is the same as the boundary of Φp,q(c)[ep]:

∂Φp,q(c)[ep] = (−1)
p(p+1)

2 + q(q+1)
2

∑
eq > ep

 ∑
eq−1 < eq

⟨c, [ep, eq]⟩
∣∣∣∣eq

eq−1
⊗
[
eq−1

] ,
where [ep][ep; eq] = [eq] and [eq−1][eq−1; eq] = [eq], i.e. [ep][ep, eq] = [eq−1][eq−1, eq]. The
element ⟨c, [ep, eq]⟩ of F (ep, eq) in the last formula is understood as an element of
Fep(eq) hence we have to apply the extension morphisms of Fep and this is why we
wrote ⟨c, [ep, eq]⟩|eq

eq−1 . However, these extension morphisms are zero whenever eq−1

doesn’t contain ep and identical to those of F in the opposite case. Therefore, we
can write:

∂Φp,q(c)[ep] = (−1)
p(p+1)

2 + q(q+1)
2

∑
eq > ep

 ∑
ep < eq−1 < eq

⟨c, [ep, eq]⟩
∣∣∣∣ep,eq

ep,eq−1
⊗
[
eq−1

]
= (−1)

p(p+1)
2 + q(q+1)

2
∑

eq−1 > ep

 ∑
eq > eq−1

⟨c, [ep; eq]⟩
∣∣∣∣ep,eq

ep,eq−1

⊗ [eq−1
]

= (−1)q−pΦp,q−1(∂2c)[ep].
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For each p-cell, the group Z(ep) is free so the Universal Coefficient Theorem ensures
that E1

p,q is isomorphic to the direct sum of the Hom(Z(ep);Hq(K;Fep))’s. By as-
sumptions, Hq(K;Fep) is trivial as soon as q is not n. As a consequence, all pages
following E1 are concentrated on the horizontal line {q = n}. Since ∂r

p,q has bidegree
(r, r − 1), the spectral sequence degenerates at the second page. □

Definition 3.2. — Let F be a dihomologic cosheaf of a regular CW-complex K
and q be a non-negative integer. The qth sheaf of local homology of F is denoted by
Hq(F∗). It is a cellular sheaf on K and it is given by the groups:

Hq(F∗) : ep 7→ Hq(K;Fep).

Its restriction morphisms are induced in homology by the localisation morphisms
Fep1 → Fep2 for all cells ep1 ⩽ ep2 .

Theorem 3.3 (Cellular Poincaré–Lefschetz Theorem). — Let K be a finite di-
mensional, locally finite and regular CW-complex, n be a non-negative integer, and
F be a dihomologic cosheaf on K whose sheaves of local homology Hq(F∗) vanish for
all q ̸= n. Then for all integers k, Hk(K;F ) and Hn−k

c (K;Hn(F∗)) are canonically
isomorphic. In particular, Hk(K;F ) vanishes for all k > n. If in addition K has
dimension n, then this isomorphism comes from an injective quasi-isomorphism:(

Cn−k
c

(
K;Hn(F∗)

)
; d
)

k ⩾ 0
→
(
Ωk(K;F ); ∂

)
k ⩾ 0

.

Proof. — Let d denote dimK. We consider the horizontal filtration of the homology
of F :

0 ⊂ Hk(K;F )(d) ⊂ · · · ⊂ Hk(K;F )(n−k) ⊂ · · · ⊂ Hk(K;F )(0),

whose graded pieces:

E∞
d,k+d · · · E∞

n−k,n · · · E∞
0,k,

satisfy, in light of the last proposition, E∞
p,q = E2

p,q = 0 as soon as q is different from
n. Therefore, for all integers k, Hk(K;F ) = Hk(K;F )(n−k) = E∞

n−k,n = E2
n−k,n. Now

because of the isomorphisms (Φp,q)p,q ∈N given in the last proof, we recognise that
E1

p,q
∼= Cp

c (K;Hq(F∗)). Then it remains only to show that the boundary operator ∂1
p,q

of the spectral sequence is mapped to the coboundary operator d. If c′ ∈ Ωp,q(K;F )
is a ∂2-cycle representing an element c ∈ E1

p,q then ∂1c
′ is a ∂2-cycle representing

∂1
p,qc. We have: 〈

∂1c
′, [ep+1; eq]

〉
=

∑
ep < ep+1

⟨c′, [ep; eq]⟩
∣∣∣∣ep,eq

ep+1;eq
,

where [ep; eq] = (−1)p+1[ep; ep+1][ep+1; eq]. Hence the image of ∂1c
′ under Φ satisfies:

Φp+1,q(∂1c
′)
[
ep+1

]
= (−1)

(p+2)(p+1)
2 + q(q+1)

2
∑

eq > ep+1

 ∑
ep < ep+1

⟨c′, [ep; eq]⟩
∣∣∣∣ep,eq

ep+1;eq

⊗ [eq],
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where [ep+1][ep+1; eq] = [eq] and [ep; eq] = (−1)p+1[ep; ep+1][ep+1; eq]. Which can be
written as:

Φp+1,q(∂1c
′)
[
ep+1

]
= (−1)

p(p+1)
2 + q(q+1)

2
∑

ep < ep+1

 ∑
eq > ep+1

⟨c′, [ep; eq]⟩
∣∣∣∣ep,eq

ep+1;eq
⊗ [eq]


= (−1)

p(p+1)
2 + q(q+1)

2
∑

ep < ep+1

Ψep+1

ep

( ∑
eq > ep

⟨c′, [ep; eq]⟩ ⊗ [eq]
)
,

where [ep+1][ep+1; eq] = [eq], [ep; eq] = [ep; ep+1][ep+1; eq], and Ψep+1
ep is the chain

complex morphism associated with the cosheaf morphism Fep → Fep+1 . Therefore,
Φp+1,q(∂1

p,qc) is the (p+1)-cochain with compact support that associates to an oriented
cell [ep+1] the sum, over its codimension 1 faces, of the images in Hq(K;Fep+1) of
the homology classes [(−1)

p(p+1)
2 + q(q+1)

2
∑

eq > ep⟨c′, [ep; eq]⟩ ⊗ [eq]] ∈ Hq(K;Fep) where
[ep; eq] = [ep; ep+1][ep+1; eq] and [ep; eq] = [ep; ep+1][ep+1; eq]. Finally, this is precisely
d Φp,q(c) for:

d Φp,q(c)[ep+1] =
∑

ep < ep+1

Φp,q(c)[ep],

where [ep][ep; ep+1] = [ep+1] and Φp,q(c)[ep] = [(−1)
p(p+1)

2 + q(q+1)
2

∑
eq > ep⟨c′, [ep; eq]⟩

⊗ [eq]].
To prove the second part of the statement, when dimK = n, we need to remember

that Φ provided us with an isomorphism between the chain complexes (E1
n−k,n; ∂1)k ⩾ 0

and (Cn−k
c (K;Hn(F∗)); d)k ⩾ 0. Also, in the special context of spectral sequences of

bicomplexes we know that E1
n−p,n is the nth homology group of the (n− k)th column

of (Ωp,q(K;F ); ∂1; ∂2)p,q ⩾ 0. With the dimensional assumption, this is the homology
group of highest dimension and therefore the same as the group of cycles. We have an
inclusion of E1

n−k,n in Ωn−k,n(K;F ) as the kernel of the vertical part of the boundary
operator, namely ∂2. With this description, it is clearly an injective morphism of
chain complexes whose cokernel inherits a bicomplex structure. By construction, all
the columns of this bicomplex are exact and so is its total complex. Our injective
quasi-isomorphism is then the composition of Φ with the inclusion of (En−k,n; ∂1)k ⩾ 0
in the total complex (Ωk(K;F ); ∂)k ⩾ 0. □

Remark 3.4. — In the proof of Theorem 3.3 we did not actually used that c′ was
a ∂2-cycle and have actually proved that Φ is a bicomplex isomorphism. Indeed, we
have (∑q−p=k Φp,q) ◦ (∂1 + ∂2) = (d +(−1)q−p∂) ◦ (∑q−p=k+1 Φp,q). So if we no longer
assume the vanishing hypotheses on the local homology of F what we get instead is a
complex of cellular sheaves e 7→ C∗(K;Fe) whose cohomology (or hypercohomology)
with compact support corresponds to the homology of F .

A direct consequence of the last corollary is the already known Poincaré-Lefschetz
theorem:

Corollary 3.5. — If X is a homology n-manifold in the sense of Definition 2.20
then Hk(X;Z) ∼= Hn−k

c (X; ∂X; oZ) where oZ denotes the system of local orientations
defined on X \ ∂X by x 7→ Hn(X;X − x;Z).
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Proof. — We consider the local system oZ on X \ ∂X given by:

x 7→ Hn(X;X \ {x};Z).

We denote by K a locally finite, regular, finite dimensional CW-complex whose
support is X. We have, by hypotheses, that for every cell e of K, Hk(K;K − e;Z)
vanishes as soon as k does not equal n. Then by Theorem 3.3 we have:

Hk(K;Z) ∼= Hn−k
c

(
X;Hn(Z∗)

)
.

The cellular sheaf Hn(Z∗) vanishes on the boundary and corresponds to the local
system oZ elsewhere, hence the corollary follows. □

An interesting corollary is a version of Serre duality for flat vector bundles over a
field F where oF = oZ ⊗ F plays the role of the canonical line bundle:

Corollary 3.6. — Let X be a homology n-manifold in the sense of Defini-
tion 2.20, F be a field, and E be a flat bundle of F-vector spaces of finite rank over
X. For all integers k, we have:

Hk(X;E) ∼=
(
Hn−k

c (X; ∂X; oF ⊗F E
∗)
)∗
.

Proof. — Let K denote a locally finite, regular, finite dimensional CW-complex
whose support is X. By the Universal Coefficients Theorem (c.f. [CE56, Theo-
rem 3.3 p. 113]) we have, after noticing that (Ck(K;E); d)k⩾0 is dual to the complex
(Ck(K;E∗); ∂)k ⩾ 0, that Hk(X;E) ∼= (Hk(X;E∗))∗. Let e be a cell of K, we define
an isomorphism of cosheaves ϕe : [K;K − e;E∗(e)] → E∗

e given by the inverses of
the extension morphisms, i.e. its restriction morphisms, E∗(e′)→ E∗(e) for all cells
e′ ⩾ e. This being done, we have the isomorphism:

Hk(K;K − e;E∗) ∼= Hk(K;K − e;E∗(e)) ∼= Hk(K;K − e;F)⊗F E
∗(e).

By hypotheses these groups are all 0 as soon as k does not equal n, hence the dihomo-
logic pseudo-subdivision of the cosheaf E∗ satisfies the conditions of Proposition 3.1.
Therefore, Theorem 3.3 applies. In addition, for all ep ⩽ eq, we have the following
commutative square: [

K;K − ep;E∗(ep)
]

E∗
ep

[
K;K − eq;E∗(eq)

]
E∗

eq

ϕep

loc. at eq

ϕeq

where the unlabelled morphism is given by the tensor product of the extension
E∗(ep) → E∗(eq) with the localisation morphism [K;K − ep;F] → [K;K − eq;F].
It appears that the cellular sheaf Hn(E∗

∗) is isomorphic to the tensor product
Hn(F∗)⊗F E

∗. By Theorem 3.3, we get:

Hk(X;E) ∼=
(
Hn−k

c

(
X;Hn(E∗

∗)
))∗
∼=
(
Hn−k

c (X;Hn(F∗)⊗F E
∗)
)∗
.
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The sheaf Hn(F∗) vanishes on ∂X and its restriction to X \ ∂X is given by the local
system oF, so finally:

Hk(X;E) ∼=
(
Hn−k

c (X; ∂X; oF ⊗F E
∗)
)∗
. □

4. Application to Tropical Homology: Lefschetz Hyperplane
Section Theorem

In this section we apply Theorem 3.3 to the cosheaves arising from tropical geom-
etry. In a first paragraph, we will state and prove three preliminary lemmata. Then,
we will define the objects at play. Finally, we will state and prove Theorem 4.23.

4.1. Three Lemmata

Definition 4.1. — Let V be an R-module, G ⊂ V be a finite subset, and p ⩾ 0
be an integer. We define the complex of R-modules C(V ;G; p) := (Ck, ∂k)k ⩾ 0 as
follows:

Ck :=
⊕

F ⊂ G
|F |=k

p−k∧
VF ,

where VF denotes the quotient of V by the sub-module spanned by F . The boundary
operator ∂k : Ck → Ck−1 is the sum of the following maps:

p−k∧
VF −→

⊕
f ∈ F

p−(k−1)∧
VF \f

v 7−→
∑

f ∈ F

f ∧ v .

Because of the antisymmetry of the wedge product, ∂2 vanishes. Moreover, it is
worth noticing that when G′ is a subset of G the complex C(V ;G′; p) is naturally a
sub-complex of C(V ;G; p).

Lemma 4.2. — Let V be a free R-module of finite rank and p ⩾ 0 be an integer.
If G is a linearly independent finite subset of V spanning a free summand of V , then
the only non-trivial homology group of C(V ;G; p) is in dimension 0. Moreover, this
H0 is equal to the pth exterior power of VG. In other words:

0←
p∧
VG ← C0 ← · · · ← C|G| ← 0 ,

is a free resolution of ∧p VG. (The augmentation morphism is the reduction modulo
the module spanned by G.)

Proof. — By hypotheses, one can find a subset G′ ⊂ V disjoint from G such that
G ∪ G′ is a basis of V . Let us denote by g1, . . . , gn (resp. g′

1, . . . , g
′
n′) the elements

of G (resp. G′). Let F be a subset {gi : i ∈ I} ⊂ G where |I| equals k. A basis
of the (p − k)th exterior power of VF is given by the elements (gP \I ∧ g′

Q) for all
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I ⊂ P ⊂ {1, . . . , n}, and all Q ⊂ {1, . . . , n′} such that |P |+ |Q| = p. Moreover, the
image of the generator gP \I ∧ g′

Q under the boundary map is:

∂(gP \I ∧ g′
Q) =

∑
i ∈ I

gi ∧ gP \I ∧ g′
Q ∈

⊕
i ∈ I

p−(k−1)∧
VF \gi

.

Therefore, if we fix P and Q with |P | + |Q| = p and see P as an abstract simplex,
we have an injective morphism of chain complexes from the reduced simplicial chain
complex of P to C(V ;G; p) given by:

C̃k(P ;R) −→ Ck+1
I 7−→ gP \I ∧ g′

Q .

By construction, C(V ;G; p) is the direct sum of the images of these complexes,
hence it only has homology in dimension 0. Furthermore, the only summands that
contribute are the ones for which P is empty: there is exactly one free summand of
rank 1 for every basis element of ∧p VG, although a very quick computation shows
that B0 = ⟨G⟩ ∧ ∧p−1 V . □

Lemma 4.3 (Homology Shift). — Let n ⩾ 0 be an integer and:

(S) 0 C(n) C(n− 1) · · · C(1) C(0) 0 ,an an−1 a2 a1

be an exact sequence of chain complexes. If C(i) is exact for all 1 ⩽ i ⩽ n− 1, then
the homology of C(0) is the one of C(n) shifted by 1− n:

H(0) = H(n)[1− n] .

Proof. — For all 1 ⩽ i ⩽ n, let A(i) denote the kernel complex of ai. Since (S) is
an exact sequence, all the columns of the following diagram are exact:

0 0 0 0

0 A(n− 1) · · · A(i) · · · A(1) A(0)

0 C(n) C(n− 1) · · · C(i) · · · C(1) C(0) 0

A(n− 1) A(n− 2) · · · A(i− 1) · · · A(0) 0

0 0 0 0

an

an

an−1

an−1 ai+1

ai

ai a2

a1

a1

By assumption, H(i) vanishes for all 1 ⩽ i ⩽ n− 1. Hence, by the homological long
exact sequence of the ith column, H(A(i− 1)) equals H(A(i))[−1]. A finite recursion
implies that:

H(0) = H(A(0)) = H(A(n− 1))[1− n] = H(n)[1− n] . □
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Lemma 4.4 (Double Localisation). — Let F be a cellular cosheaf on a regular
CW-complex K, and K ′ be a subdivision of K. If e is a cell of K and e′ is a cell of K ′

contained in e then the local homology of F at e is identical to the local homology
of the subdivision of F at e′. More precisely, if F ′ is the subdivision of F there is a
canonical quasi-isomorphism between (Ck(K ;Fe))k ⩾ 0 and (Ck(K ′;F ′

e′))k ⩾ 0.

Proof. — We denote by (Fe)′ the subdivision of Fe. We have the following com-
mutative square of cellular cosheaves on K ′:

F ′ (F ′)e′

(Fe)′ (Fe)′
e′

where all four morphisms come from localisations and subdivisions. The two cosheaves
on the right hand column are actually equal and the arrow is rigorously the identity
between them. Indeed, every cell ẽ′ of K ′ that contains e′ has to be contained in
a cell ẽ of K that contains e. Hence, (F ′)e′(ẽ′) equals F (ẽ). We have the following
commutative diagram of chain complexes: (

Ck(K ′; (F ′)e′

)
k ⩾ 0

(
Ck(K ;Fe)

)
k ⩾ 0

(
Ck(K ′; (Fe)′)

)
k ⩾ 0

(
Ck(K ′; (Fe)′

e′)
)

k ⩾ 0subd.
f

h

loc.
g

where h is the canonical quasi-isomorphism announced in the statement of the propo-
sition. Since f is a subdivision morphism it is automatically a quasi-isomorphism.
We only need to show that the localisation morphism g is a quasi-isomorphism. This
is a surjective morphism since localisations are quotients. By definition, we have the
following short exact sequence of cosheaves:

0→ (Fe)′ ⊗
[
K ′ − e′;Z

]
→ (Fe)′ → (Fe)′

e′ → 0 .
Hence g is a quasi-isomorphism if and only if the kernel cosheaf has trivial homology.
The cosheaf (Fe)′ equals F ′ ⊗ [K ′;K ′ − e;Z] for K ′ − e is the subdivision of the
sub-complex K − e. Consequently:
(Fe)′⊗

[
K ′− e′;Z

]
= F ′⊗

[
K ′;K ′− e;Z

]
⊗
[
K ′− e′;Z

]
= F ′⊗

[
K ′− e′;K ′− e;Z

]
.

By a process similar to excision, we see that:[
K ′ − e′;K ′ − e;Z

]
=
[
K ′(e)− e′;K ′(e)− e;Z

]
.

Indeed, K ′(e) is the smallest sub-complex of K ′ containing e in its support and any
cell not in it falls into K ′ − e. We note that [K ′(e) − e′;K ′(e) − e;Z] can only be
non-zero on the cells of K ′ contained in e. Therefore:

(Fe)′ ⊗
[
K ′ − e′;Z

]
= F ′ ⊗

[
K ′ − e′;K ′ − e;Z

]
=
[
K ′(e)− e′;K ′(e)− e;F (e)

]
.

Now because K is regular, |K ′(e)| is a closed ball B, |K ′(e) − e| is its bound-
ary ∂B, and |K ′(e) − e′| sits somewhere between ∂B and B punctured at one
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point. Since the latter retracts by deformation on the former, the homology of
[K ′(e)− e′;K ′(e)− e;F (e)] is trivial. □

4.2. Hodge Theory and Tropical Homology

Let P be a full dimensional integral polytope(9) in a finite dimensional real vector
space t∗(R) endowed with a lattice t∗(Z). Its corresponding toric variety is a projective
algebraic variety defined over the integers. The tropical locus Y of such a toric variety
can be seen as a compactification of the tropical torus t(R) = HomR(t∗(R);R).
Moreover, the moment map provides an isomorphism between Y and the polytope
P itself. The real or complex toric variety defined by an integral polytope comes
equipped with an ample line bundle. The space of global sections of this line bundle
is naturally isomorphic to the vector space of Laurent polynomials whose exponents
are integer points of P . The “tropical sections” of this line bundle are likewise defined
as tropical Laurent polynomials whose exponents are integer points of P i.e. the
convex piecewise affine functions of the following form:

f : t(R) −→ T = R ∪ {−∞}
v 7−→ max

α ∈ P ∩ t∗(Z)
(aα + α(v)) ,

where the aα’s are tropical numbers. The tropical hypersurface X of Y defined by
this equation is the topological closure of the non-differentiability locus of f in Y .
As usual the Newton polytope of f is the convex hull of the α ∈ P ∩ t∗(Z) whose
associated coefficient aα is different from −∞. By [MR18, Theorem 2.3.7 p. 44] of
G. Mikhalkin and J. Rau, any tropical hypersurface X of Y defined by an equation
f whose Newton polytope is P , is dual to an integer convex polyhedral subdivision
K of P . This means that X is homeomorphic to the sub-complex of the dihomologic
subdivision(10) of K consisting of the union of the closed dihomologic cells indexed
the adjacent pairs e1 ⩽ ep. The situation is illustrated in Figure 4.1. The theory
of tropical homology defined by I. Itenberg, L. Katzarkov, G. Mikhalkin, and I.
Zharkov for both X and Y can be expressed as the homology of some dihomologic
cosheaves on K. Moreover, the data of the polyhedral subdivision K alone is enough
to define these cosheaves. We will adopt this point of view and state our result
in terms of cosheaves associated to an integral polyhedral subdivision K of an
integral polytope P . As noted by E. Brugallé, L. López de Medrano and J. Rau
in [BLdMR22], the tropical cosheaves can be associated to any integral polyhedral
subdivision regardless of its convexity and most of the results about the tropical
homology of tropical hypersurfaces apply to them. Theorem 4.23 is no exception to
that observation. We will not assume the subdivision to be convex and therefore the
theorem will not be stated in the framework of tropical hypersurfaces.

(9)The convex hull of a finite number of vertices.
(10) Here K is polyhedral so its dihomologic pseudo-subdivision is an actual regular subdivision
of K.
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(a) The polytope P and
the dual subdivision K of
the curve X.

(b) The subcomplex of
the dihomologic subdivi-
sion of K isomorphic to the
curve X.

(c) The curve X in the
tropical locus of the toric
surface associated to P .

Figure 4.1. A singular curve X of bidegree (2 ; 2) in the tropical locus of P1×P1.

Notation 4.5. —
(1) t∗(Z) is a lattice of finite rank n ∈ N with dual lattice t(Z);
(2) Let R be a commutative ring with unit, t∗(R) (resp. t(R)) denotes the asso-

ciated free R-module t∗(Z)⊗R (resp. t(Z)⊗R);
(3) Let V be a subspace of t(R) (or t∗(R)) that is rational with respect to the

lattice t(Z) (resp. t∗(Z)). We denote its lattice V ∩ t(Z) (resp. V ∩ t∗(Z)) by
V (Z);

(4) P is a full dimensional polytope of t∗(R) whose vertices lie in the lattice t∗(Z);
(5) K is an integral polyhedral subdivision of P , i.e. a polyhedral subdivision

with K(0) ⊂ t∗(Z). (Note that every cell eq of K is the relative interior of
a q-dimensional polytope whose tangent space Teq is rational relatively to
t∗(Z), i.e. Teq(Z) is free of rank q and, in particular, the quotient of t∗(Z) by
this sub-group is free of rank n− q);

(6) We denote by X the dual hypersurface of K. It is made of all the dihomologic
cells of type (p; q) with p at least equal to 1.

Definition 4.6 (Tropical Cosheaves, [IKMZ19, Definition 13 p. 10].). —
(1) The first cosheaf we define is called the sedentarity. It represents the stabil-

isators of the action of the different loci of the algebraic torus of the toric
variety of P . We denote it by Sed. It is defined on the CW-complex associated
with the polytope P . If Q is a face of P we set:

Sed(Q) := TQ⊥(Z) = {v ∈ t(Z) |α(v) = 0, ∀ α ∈ TQ} ⊂ t(Z) .

The cosheaf Sed(Q) consists of the integral vectors orthogonal to TQ. So,
whenever Q′ is a face of Q, Sed(Q) is a sub-module of Sed(Q′). The extension
morphisms are simply given by these inclusions. We denote all its subdivisions
by the same symbol Sed;
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dx
d y

d z Q2

Q1

(a) The polytope in t∗(R).

Sed(Q2)

Sed(Q1) ∂x

∂y

∂z

(b) The sedentarity groups in t(R).

Figure 4.2. An edge Q1 of a 2-dimensional face Q2 and their respective seden-
tarity.

(2) Let p ⩾ 0 be an integer. The pth tropical cosheaf F P
p associated to P

is defined by the following formula:

F P
p :=

p∧
t(Z) /Sed .

We denote all its subdivisions by the same symbol F P
p ;

2∧Z3 /
Z∂y

2∧Z3 /Z3 = 0

2∧
Z3

2∧Z3 /
Z∂y + Z∂z

= 0

Figure 4.3. A cube and the groups associated by F P
2 to some of its faces.

(3) Let p ⩾ 0 be an integer. The pth tropical cosheaf associated to the dual
hypersurface X is denoted by FX

p . It is a dihomologic cosheaf on K. For all
pairs eq < eq′ of cells of K, the group FX

p (eq; eq′) is given by the following
formula:

(F) FX
p (eq; eq′) :=

∑
e1 ⩽ eq

p∧ (Te1)⊥(Z)
/

Sed(eq′) ⊂ F P
p (eq; eq′) .

As pointed out in Definition 2.34, the extension morphisms need only be
defined on elementary adjacencies. Let eq1 ⩽ eq2 ⩽ eq3 ⩽ eq4 be four cells of K
(maybe with repetitions). The elementary extension morphisms are depicted
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in the following diagram:

FX
p (eq1 ; eq4)

FX
p (eq2 ; eq4) FX

p (eq1 ; eq3)

FX
p (eq2 ; eq3)

gf

h t

where:
(a) The morphisms f and t are the inclusions coming from the definition of

the groups, c.f. (F);
(b) The morphisms g and h are the reductions modulo Sed(eq3). More pre-

cisely they correspond to the canonical projection:
p∧ (Te1)⊥(Z)

/
Sed(eq4) →

p∧ (Te1)⊥(Z)
/

Sed(eq3) ,

on every summand of (F).
By the nature of the morphisms involved, the diagram is commutative. It is
a sub-cosheaf of F P

p and we denote the inclusion by ip : FX
p → F P

p . Even if
it is defined on the dihomologic subdivision of K it is supported on X. The
Figure 4.4 illustrates the values taken by the cosheaf FX

1 on a triangle with
trivial subdivision K.

0

0

Z∂x

/
Z∂x

= 0

Z∂x

0
0 = Z(∂x − ∂y)

/
Z(∂x − ∂y)

Z(∂x − ∂y)

Z2

Figure 4.4. A triangle and the groups associated by FX
1 to some of its dihomologic

cells.

Definition 4.7 (Contraction). — Let M be a free module of finite rank over a
ring R, and k, l ∈ N be integers. For all α ∈ ∧l HomR(M ;R) and v ∈ ∧l+k M the
contraction α · v is the only element of ∧k M satisfying:

β(α · v) = (β ∧ α)(v) ,

for all β ∈ ∧k HomR(M ;R). This construction is dual to the interior product.
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Definition 4.8. — Let P be an integral polytope of t∗(R), K be an integral
subdivision of P , and p ⩾ 0 be an integer. The pth saturated tropical cosheaf of the
dual hypersurface X is the dihomologic cosheaf denoted by F̂X

p that is defined for
all pairs eq ⩽ er by the following formula:

F̂X
p (eq; er) :=

{
v ∈ F P

p (eq; er)
∣∣∣∣ ω · v = 0, ∀ ω ∈

q∧
Teq(Z)

}
.

The contraction ω · v is well defined since Sed (er) is included in the orthogonal of
Teq(Z). Let eq ⩽ eq+1 ⩽ er be a triple of cells of K. There is a form α ∈ t∗(Z)
for which [ω 7→ α ∧ ω] is an isomorphism from ∧q Teq(Z) to ∧q+1 Teq+1(Z). Hence
F̂X

p (eq+1; er) is included in F̂X
p (eq; er) and F̂X

p is a sub-cosheaf of the dihomologic
subdivision of F P

p . We denote by ı̂p the inclusion of F̂X
p in F P

p . A direct computation
shows that FX

p is included in F̂X
p .

Lemma 4.9. — Let M be a free Abelian group of finite rank and some linear
forms α1, . . . , αk ∈ Hom(M ;Z) \ {0}. If ω is a generator of the last exterior power
of the group spanned by the αi’s then for all p ∈ N, the quotient:

G :=
{
v ∈

p∧
M

∣∣∣∣ ω · v = 0
}/

k∑
i=1

p∧
ker(αi) ,

is a finite group.

Proof. — We notice that for every 1 ⩽ i ⩽ k, the form αi divides a non-zero
multiple of ω in the exterior algebra of Hom(M ;Z). It follows that all p-elements
of ker(αi) contract to 0 against ω. We assume now that r ⩾ 1 is the rank of the
sub-group spanned by the αi’s and that α1 ∧ · · · ∧ αr = mω with m ̸= 0. Then we
have: {

v ∈
p∧
M

∣∣∣∣ ω · v = 0
}

=
{
v ∈

p∧
M

∣∣∣∣ (α1 ∧ · · · ∧ αr) · v = 0
}
.

We can complete the set {α1, . . . , αr} with a set {β1, . . . , βs} ⊂ Hom(M ;Z) to form
a basis of the rational vector space Hom(M ;Q). For all p-elements v ∈ ∧p M , seen
as p-vectors in ∧p

Q(M ⊗Q), we have:

(α1 ∧ · · · ∧ αr) · v =
∑

|J |=p−r

(α1 ∧ · · · ∧ αr ∧ βJ)(v)fJ ,

where {e1, . . . , er, f1, . . . , fs} denotes the dual basis of {α1, . . . , αr, β1, . . . , βs}. As a
consequence, we have:{

v ∈
p∧
M

∣∣∣∣ ω · v = 0
}
⊗Q =

〈
eI ∧ fJ : |I| < r and |I|+ |J | = p

〉
Q
.

It implies the equality of ker(αi)⊗Q, ker(αi⊗1), and ⟨ej, fk : j ̸= i and 1 ⩽ k ⩽ s⟩Q.
Hence: {

v ∈
p∧
M

∣∣∣∣ ω · v = 0
}
⊗Q =

(
k∑

i=1

p∧
ker(αi)

)
⊗Q ,

and G⊗Q vanishes. Since G is finitely generated, it is finite. □
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Proposition 4.10. — Let P be an integral polytope of t∗(R), K be an integral
subdivision of P , and p ⩾ 0 be an integer. The cosheaf F̂X

p is the saturation of FX
p

in F P
p , i.e. for all pairs eq ⩽ er, we have:

F̂X
p (eq; er) =

{
v ∈ F P

p (eq; er)
∣∣∣ ∃ k ∈ Z, kv ∈ FX

p (eq; er)
}
.

Proof. — Let eq ⩽ er be two cells of K. Lemma 4.9 implies that FX
p (eq; er) is

of finite index in F̂X
p (eq; er). Hence, these two groups have same rank and same

saturation in F P
p (eq; er). The module F̂X

p (eq; er) is the kernel of a morphism between
two free Abelian groups, thus it is saturated. □

Definition 4.11. — Let P be an integral polytope of t∗(R) and K be an integral
polyhedral subdivision of P . We denote by θ(K) the least common multiple of the
exponents(11) of the quotients of F̂X

p (eq; er) by FX
p (eq; er), for all integers p ⩾ 0 and

all pairs of cells eq ⩽ er of K. If P is endowed with its trivial subdivision Π we
denote θ(Π) by θ(P ).

Proposition 4.12. — Let P be an integral polytope endowed with an integral
polyhedral subdivision K. Let R be a ring in which θ(K) is invertible. Then FX

p ⊗R
equals F̂X

p ⊗R, for all integers p ⩾ 0.

Proof. — We have the following exact sequence of cosheaves of R-modules:

0→ Tor
(
F̂X

p

/
FX

p
;R
)
→ FX

p ⊗R→ F̂X
p ⊗R→ F̂X

p

/
FX

p
⊗R→ 0 .

Since θ(K) is invertible in R, both Tor(F̂X
p /F

X
p ;R) and F̂X

p /F
X
p ⊗R vanish. □

Definition 4.13 (Tropical Homology Groups). — Let R be a commutative ring,
P be an integral polytope, K be an integral polyhedral subdivision of P , and X be
the dual hypersurface of K. The tropical homology groups of P are defined, for all
p, q ∈ N, by:

Hp,q(P ;R) := Hq

(
K;F P

p ⊗R
)
.

Likewise, the tropical homology groups of X are given for all p, q ∈ N, by:

Hp,q(X;R) := Hq

(
K;FX

p ⊗R
)
.

The saturated tropical homology groups of X are given for all p, q ∈ N, by:

Ĥp,q(X;R) := Hq

(
K; F̂X

p ⊗R
)
.

Moreover, the inclusions FX
p ⊂ F̂X

p ⊂ F P
p for all p ∈ N, induce morphisms in

homology:
Hp,q(X;R)

Ĥp,q(X;R) Hp,q(P ;R)

ip,q

ı̂p,q

(11)We recall that the exponent of an Abelian group M is the smallest, if any, e ∈ N \ {0} for which
em vanishes for all m ∈M .
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4.3. A Lefschetz Hyperplane Section Theorem in Simple Polytopes

Definition 4.14. — A polytope P is simple if every face of codimension q of P
is the intersection of exactly q faces of codimension 1.

Definition 4.15. — Let P be a simple integral polytope, we denote by Sed(1)
the cosheaf:

Sed(1) :=
⊕

Q < P
codim Q=1

[
Q ; Sed(Q)

]
.

If Q is a codimension 1 face of P there is a natural injective cosheaf morphism
[Q ; Sed(Q) ]→ Sed. If Q′ is a face of P the group [Q ; Sed(Q) ](Q′) is either Sed(Q)
or 0. The former only happens when Q′ is a face of Q. In this case, the morphism is
given by the inclusion. Summing all these morphisms yields a morphism:

Sed(1) → Sed .
It is injective because the polytope P is simple: if Q′ < P has codimension q it is
the intersection of exactly q faces of codimension 1 and:(

TQ′
)⊥

=
⊕

Q < P
codim Q=1

TQ⊥,

so the Sed(Q)’s are in direct sum inside Sed(Q′). For the same reason the quotient ∆
of Sed by Sed(1) is a cosheaf of finite groups. We denote by δ(P ) the least common
multiple of the exponents of the groups ∆(Q) for all Q ⩽ P .

Remarks 4.16. — Let P be a simple integral polytope:
(1) The cosheaf of finite groups ∆ encodes the singularities of the toric variety

associated with P . The set of complex points of the affine open set associated
with the face Q of P is the quotient of (C×)k × Cn−k by an algebraic action
of the group ∆(Q) (c.f. [Ful93, Section 2.2 p. 34]).

(2) Let Q1 < Q2 be two faces of P , the Snake Lemma implies that the following
commutative diagram of exact sequences:

0 Sed(1)(Q2) Sed(Q2) ∆(Q2) 0

0 Sed(1)(Q1) Sed(Q1) ∆(Q1) 0

f g h

gives rise to the following exact sequence:
0→ 0︸︷︷︸

ker(f)

→ 0︸︷︷︸
ker(g)

→ ker(h)→
⊕

Q1 < Q < P
Q≯Q2

codim Q=1

Sed(Q)

︸ ︷︷ ︸
coker(f)

→ Sed(Q1)/ Sed(Q2)︸ ︷︷ ︸
coker(g)

→ coker(h)→ 0 .
However, ker(h) is a finite group and coker(f) is free, so ker(h) = 0 and
h is injective. As a consequence, δ(P ) is the least common multiple of the
exponents of the groups ∆(V ) for all vertices V of P .
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(3) Let R be a commutative ring, the classification of finite Abelian groups implies
that the vanishing of both ∆(V )⊗R and Tor(∆(V );R) is equivalent to the
invertibility of the exponent of the group ∆(V ) in R. When R is a field this
is equivalent to the coprimality of this exponent with the characteristic of R.

Proposition 4.17. — Let P be a simple integral polytope endowed with an
integral polyhedral subdivision K. For all rings R in which δ(P ) is invertible, the
dihomologic subdivisions of the cosheaves (F P

p ⊗ R)p⩾ 0 satisfy the hypotheses of
Proposition 3.1 i.e. the sheaves Hk((F P

p ⊗R)∗) vanish for all integers p and all integers
k different from dimP .

Proof. — Let F denote one of the cosheaves (F P
p )0⩽ p⩽n on P . The polyhedral

subdivision K of P first and then its dihomologic subdivision give rise to two
consecutive subdivisions of cosheaves F 7→ F ′ and F ′ 7→ F ′′. Let e be a cell of K,
the localisation process for dihomologic cosheaves consisting in “fixing the first
coordinate” G 7→ Ge applied to a subdivided cosheaf is equivalent to the localisation
of the initial cosheaf, c.f. diagram (D1). Consequently, the cosheaf F ′′

e is the same
as F ′

e. In the light of Lemma 4.4 on double localisation, showing that F ′
e can only

have non-trivial homology in degree n = dimP for all cells e ∈ K is equivalent
to showing that FQ can only have non-trivial homology in degree n for all faces Q
of P . Since P is simple, we have the following exact sequence of cosheaves of abelian
groups:

0→ Sed(1) → Sed→ ∆→ 0,
which is tensorised to the following exact sequence of cosheaves of R-modules:

0→ Tor(∆;R)→ Sed(1)⊗R→ Sed⊗R→ ∆⊗R→ 0.

By hypothesis on δ(P ), Sed⊗R is isomorphic to Sed(1)⊗R and F P
p ⊗R is isomorphic

to:
p∧
t(R)

/
(Sed(1)⊗R) .

The cosheaf Sed(1) can be described as follows: we choose, for every codimension 1
face Q(1) of P , a generator gQ(1) of Sed(Q(1)) ∼= Z, and associate to all faces Q of P
the set G(Q) of the gQ(1) ’s for which Q < Q(1). The association G : Q 7→ G(Q)
is a cosheaf of sets with inclusions as extension maps. In these notations, Sed(1)
is the cosheaf that associates to Q the sub-module of t(Z) spanned by G(Q) and
with extension morphisms given by inclusions. We can consider the cosheaf of chain
complexes Q 7→ C(t(Z);G(Q); p) of Definition 4.1. It has an augmentation morphism:

0←
p∧
t(Z)

/
Sed(1) ← C(t(Z);G; p) ,

and becomes a resolution once we tensorise every group by R. Indeed, for all Q the
set G(Q)⊗R is linearly independent in t(R) and Sed(1)(Q)⊗R = Sed(Q)⊗R is a
free summand of t(R) since t(R)/(Sed(Q)⊗R) is isomorphic to Hom(TQZ ;R), thus
free. Hence Lemma 4.2 applies. For this reason, we set Resp to be C(t(Z);G; p)⊗R
and we have a resolution of cosheaves:
(R) 0← F P

p ⊗R← Resp .
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Localising at a face Q amounts to tensorisation by a cosheaf of free modules, therefore
it is an exact endofunctor of the category of cellular cosheaves. To avoid confusion we
will denote, from now on, the CW-complex defined by the polytope P by Π and every
face Q ⩽ P is meant to be open. In particular, Π(Q) is the smallest sub-complex of
Π containing the open face Q, that is to say the collection of its faces. Let Q be a
face of P , we have the following local resolution:

0←
(
F P

p ⊗R
)

Q
←
(

Resp

)
Q
,

and for all integers q ⩾ 0:(
Resp,q

)
Q

=
⊕

Q(q) < P
codim Q(q)=q

[
Π(Q(q)) ;

(p−q∧
t(Z)

/
Sed(1)(Q(q))

)
⊗R

]
⊗R

[
Π ; Π−Q ;R

]

=
⊕

Q < Q(q) < P
codim Q(q)=q

[
Π(Q(q)) ; Π(Q(q))−Q ;

(p−q∧
t(Z)

/
Sed(1)(Q(q))

)
⊗R

]
.

IfQ is a proper face ofQ(q) then |Π(Q(q))|, the closure ofQ(q), retracts on |Π(Q(q))−Q|
and the cosheaf:[

Π(Q(q)) ; Π(Q(q))−Q ;
(p−q∧

t(Z)
/

Sed(1)(Q(q))
)
⊗R

]
,

has trivial homology. When Q(q) equals Q, we are computing the homology of a closed
(n−q)-ball relatively to its boundary. The homology is concentrated in top dimension
n− q. In application of Lemma 4.3, the homology of

(
F P

p ⊗R
)

Q
is the shift by q of

(Resp,q)Q and therefore has homology concentrated in dimension (n− q) + q = n. □

Remark 4.18. — In the previous proof we have defined a resolution (R) of the
cosheaf F P

p ⊗R, denoted by:

0← F P
p ⊗R← Resp .

Proposition 4.19. — Let P be a simple integral polytope endowed with an
integral polyhedral subdivision K, and X be the dual hypersurface of K. For all
rings R in which δ(P ) is invertible, for all integers p, and all integers k different from
dimP , the sheaves of local homology Hk((F̂X

p ⊗R)∗) vanish.

Proof. — Let p be a non-negative integer. Proposition 4.19 follows from Proposi-
tion 4.17 and the fact that F̂X

p ⊗ R is locally a direct summand of F P
p ⊗ R. More

precisely, we will show that for all cells eq of K, the cosheaf (F̂X
p ⊗R)eq is a direct

summand of the cosheaf (F P
p ⊗ R)eq . This statement implies that the homology of

the former is a direct summand of the latter. By Proposition 4.17, the latter can
only have non-vanishing homology in dimension n = dimP and therefore so can the
former.
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Let eq be a cell of K and A denote (Teq)⊥(Z). Now let us choose B a supplementary
sub-module(12) of A in t(Z). We consider the two cosheaves A /Sed and B /Sed
that are the respective images of the constant cosheaves [K;A] and [K;B] in the
quotient t(Z)/Sed. We note that if er is a cell containing eq then Sed(er) ⊂ A and
the projection B → B/Sed(er) is an isomorphism. These projections induce an
isomorphism of cosheaves:[

K;K − eq;B
] ∼=−→

(
B /Sed

)
eq
.

Therefore, the cosheaf t(Z) /Sed splits around eq into the following direct sum:(
t(Z) /Sed

)
eq

=
(
A /Sed

)
eq
⊕
(
B /Sed

)
eq
.

For all p ⩾ 0, we have the decomposition:( p∧
t(Z) /Sed

)
eq

=
⊕

pA+pB=p

(pA∧
A /Sed

)
eq

⊗
(pB∧

B /Sed
)

eq

.

All the cosheaves involved are made of free groups. Thus the decomposition remains
valid after tensorisation by R:( p∧

t(Z) /Sed
)

eq

⊗R =
⊕

pA+pB=p

(pA∧
A /Sed

)
eq

⊗
(pB∧

B /Sed
)

eq

⊗R .

Let er ⩾ eq be a pair of cells of K. Definition 4.8 implies that if ω is a generator of∧q Teq(Z), the group F̂X
p (eq; er), consists of the p-elements of ∧p t(Z)/Sed(er) whose

contraction against ω vanishes. Thus the localisation (F̂X
p )eq ⊗R can be expressed

as: (
F̂X

p

)
eq
⊗R =

⊕
pA+pB=p

pB < q

(pA∧
A /Sed

)
eq

⊗
(pB∧

B /Sed
)

eq

⊗R ,

and is a direct summand of (F P
p )eq ⊗R. □

Proposition 4.20. — Let P be a simple integral polytope and R be a principal
ideal domain in which δ(P ) is invertible. For all p ∈ N, the only non-trivial homology
group of the cosheaf F P

p ⊗R is in dimension p. Moreover, this R-module is free and
its rank is given by the following formula:

rkR Hp,p(P ;R) =
p∑

k=0
(−1)p−k

(
n− k
p− k

)
fn−k(P ) ,

where fk(P ) denotes the number of k-faces of P .

Proof. — Since F P
p ⊗R is originally defined on the CW-structure induced by the

faces of P , we can compute its homology on Π the CW-complex induced on P by
its faces. We note, on the one hand, that from the Definition 4.6 the groups F P

p (Q)
vanish for all faces Q of dimension q < p. Therefore, Hq(Π;F P

p ⊗R) vanishes for all
q < p. On the other hand, we have the resolution of Remark 4.18:

0← F P
p ⊗R← Resp .

(12) It can be done for (Teq)⊥ is a rational sub-space of t(R).
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This is an acyclic(13) resolution(14) . Indeed, the cosheaves (Resp,q) are sums of ele-
mentary cosheaves [Π(Q);M ] where Q is a face of P and M a free R-module. All the
sub-complexes Π(Q) are contractible. Hence, these cosheaves only have non-trivial
homology in dimension 0. The cosheaf resolution becomes a resolution of chain
complexes:

0←
(
Ck(Π;F P

p ⊗R); ∂
)

k ⩾ 0
←
(
Ck(Π; Resp,0); ∂

)
k ⩾ 0

←
(
Ck(Π; Resp,1); ∂

)
k ⩾ 0

← · · · .

Since the complexes (Ck(Π; Resp,q); ∂)k ⩾ 0 are acyclic, the homology of the complex
(Ck(Π;F P

p ⊗R); ∂)k ⩾ 0 is isomorphic to the homology of the complex:

0← H0 (Π; Resp,0)← H0 (Π; Resp,1)← · · · .
The cosheaves Resp,q vanish for all q > p. Indeed, we have:

Resp,q =
⊕

Q(q) < P
codim Q(q)= q

Π(Q(q)) ;
(p−q∧

t(Z)
/

Sed(1)(Q(q))
)

︸ ︷︷ ︸
= 0 if q > p

⊗R

 .

Therefore, the only possibly non-trivial homology group of F P
p ⊗R is in dimension p.

Using again the resolution to compute this group, we see that it coincides with a
group of cycles:

Hp

(
Π;F P

p ⊗R
) ∼= ker

(
∂ : H0 (Π; Resp,p)→ H0 (Π; Resp,p−1)

)
.

Hence Hp(Π;F P
p ⊗ R) is free and its rank equals the dimension of Hp(Π;F P

p ⊗ R0)
where R0 is the fraction field of R. Because F P

p ⊗ R0 can only have non-trivial
homology in dimension p, we have:

dimR0 Hp

(
Π;F P

p ⊗R0
)

= (−1)p
n∑

k=0
(−1)k dimR0 H0 (Π; Resp,k⊗RR0)

=
p∑

k=0
(−1)p−k

(
n− k
p− k

)
fn−k(P ) . □

Definition 4.21. — Let en be a cell of K. Since the closure of en is a full
dimensional polytope of t∗(R) there is a canonical isomorphism f between ∧n t(Z)
and Z(en). Let [t(Z)] be a generator of ∧n t(Z) and σn be a barycentric simplex
[v0; . . . ; vn] of the closure of en. Since en is a polytope, its barycentric simplices
define singular simplices of its support by convex interpolation(15) . We denote by
[t(Z)](σn) the sign of the number (∧n

i=1(vi − v0))[t(Z)] ∈ R. The morphism f sends
the generator [t(Z)] to the orientation of en defined by the class of the singular chain∑

σn ∈ Sd(K(en))[t(Z)](σn)σn. We denote by [t(Z)]en the image f [t(Z)].
(13)A cosheaf is acyclic if it has trivial homology in dimension at least 1.
(14)This is even a projective resolution, c.f. [She85] in the dual setting of cellular sheaves.
(15) the vertices of a barycentric simplex are canonically ordered.

ANNALES HENRI LEBESGUE



Poincaré–Lefschetz duality and Tropical Homology 323

Lemma 4.22. — Let P be an n-dimensional integral polytope endowed with an
integral polyhedral subdivision K, X be the dual hypersurface of K, 0 ⩽ p ⩽ n be
an integer, and R be a ring in which δ(P ) is invertible.

(1) The morphism of cellular sheaves jp : Hn((F̂X
p ⊗R)∗)→ Hn((F P

p ⊗R)∗) in-
duced from ı̂p : F̂X

p → F P
p is injective;

(2) For all cells eq of K there is an isomorphism:

ψR
p (eq) : Hn

(
K;

(
F P

p ⊗R
)

eq

) ∼=−→
n∧
t(Z)⊗

(
s∧

Sed(eq) ∧
p−s∧

t(Z)
)
⊗R ,

where s denotes the rank of Sed(eq);
(3) The image of the composition ψR

p (eq) ◦ jp(eq) is the tensor product of ∧n t(Z)
with the kernel of the contraction against ω, a generator of ∧q Teq(R), re-
stricted to (∧s Sed(eq)∧∧p−s t(Z))⊗R. In particular, jp(eq) is an isomorphism
whenever q is greater that p.

Proof. —
(1) The morphism jp(eq) is injective because K has dimension n. Since it is

induced in homology by the injective morphism ip, the associated long exact
sequence in homology ensures that jp is injective.

(2) Let eq be a cell of K. Since K has dimension n, Hn(K; (F P
p ⊗R)eq) is the

same as Zn(K; (F P
p ⊗ R)eq). Let c ∈ Cn(K; (F P

p ⊗ R)eq) and [en−1] be an
oriented cell adjacent to eq. If en−1 does not belong to ∂K, there are two
n-cells en

± adjacent to en−1. In this case, we have:〈
∂c; [en−1]

〉
=
〈
c; [en−1][en−1; en

+]
〉

+
〈
c; [en−1][en−1; en

−]
〉
,

since the extension morphism (F P
p ⊗R)eq(en

±)→ (F P
p ⊗R)eq(en−1) is the

identity. Any two n-cells adjacent to eq can be joined by a sequence en
1 , . . . , e

n
k ,

with k ⩾ 1, of n-cells such that en
i and en

i+1 are adjacent to the same cell
en−1

i ⩾ eq, for all 1 ⩽ i ⩽ k − 1. Therefore, if ∂c vanishes we can find a
p-element v ∈ ∧p t(R) such that c = ∑

en ⩾ eq v ⊗ [t(Z)]en where [t(Z)] is a
choice of generator of ∧n t(Z). If now en−1 belongs to ∂K we have:

〈
∂c; [en−1]

〉
= ±v

 mod
Sed(en−1) ∧

p−1∧
t(Z)

⊗R
 .

It follows that ∂c vanishes if and only if v is divisible in the exterior algebra
by the generators of Sed(en−1)⊗R, for all eq ⩽ en−1 ∈ ∂K. Since δ(P ) is
invertible in R, Sed(eq)⊗R is equal to Sed(1)(eq)⊗R. Thus the latter condition
is equivalent to v being divisible by the generators of ∧s Sed(eq)⊗R, where
s denotes the dimension of Sed(eq). The inverse of the isomorphism ψR

p (eq) is
given by the following formula:

(Ψ) [t(Z)]⊗ v ∈
n∧
t(Z)⊗

((
s∧

Sed(eq) ∧
p−s∧

t(Z)
)
⊗R

)
7−→

∑
en ⩾ eq

v ⊗ [t(Z)]en .
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(3) The groups F̂X
p (eq; en) are all equal. They are the kernel of the contraction

ω · − : ∧p t(R) → ∧p−q t(R), where ω is a generator of ∧q Teq(R), c.f. Def-
inition 4.8. Combining this fact with the formula (Ψ) we find the desired
description of the image of ψR

p (eq) ◦ jp(eq). □

Theorem 4.23. — Let P be an n-dimensional integral polytope endowed with
an integral polyhedral subdivision K, X be the dual hypersurface of K, and R be a
ring in which δ(P ) is invertible. The homological morphisms:

ı̂p,q : Ĥp,q(X;R)→ Hp,q(P ;R) ,

induced by the inclusions ı̂p : F̂X
p → F P

p are isomorphisms for all p+ q < n− 1, and
surjective for all p+ q = n− 1.

Proof. — In the light of Theorem 3.3, Proposition 4.17, and Proposition 4.19 we
can write: 

Hp,q(P ;R) ∼= Hn−q
c

(
K;Hn

((
F P

p ⊗R
)

∗

) )

Ĥp,q(X;R) ∼= Hn−q
c

(
K;Hn

((
F̂X

p ⊗R
)

∗

) ) .

Since K is finite (P being compact), cohomology with compact support is the same
as cohomology. Let us denote by GP

p (resp. GX
p ), the sheaf Hn((F P

p ⊗ R)∗) (resp.
Hn((F̂X

p ⊗R)∗)). We have the following commutative square relating the homological
and cohomological counterparts of ı̂p and jp:

Hq

(
K; F̂X

p ⊗R
)

Hq

(
K;F P

p ⊗R
)

Hn−q
(
K;GX

p

)
Hn−q

(
K;GP

p

)
ı̂p

jp

∼= ∼=

where the vertical isomorphisms are induced by the quasi-isomorphisms given by
the second part of Theorem 3.3. We will prove that the commutativity is already
satisfied on the level of chain and cochain complexes. Let us consider the following
diagram:

Ωq

(
K; F̂X

p ⊗R
)

Ωq

(
K;F P

p ⊗R
)

Ωn−q,n

(
K; F̂X

p ⊗R
)
∩ ker(∂2) Ωn−q,n

(
K;F P

p ⊗R
)
∩ ker(∂2)

E1
n−q,n E1

n−q,n

Cn−q
(
K;GX

p

)
Cn−q

(
K;GP

p

)

ı̂p

q.i.

rest.
ı̂p

q.i.

Φ

jp

Φ
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We will show that its two squares are commutative. The morphisms Φ and the
quasi-isomorphic inclusions come from Proposition 3.1. Let F denote either F̂X

p ⊗R
or F P

p ⊗R and G respectively designating GX
p or GP

p . We have:
Ωn−q,n(K;F ) =

⊕
en−q ⩽ en

F
(
en−q; en

)
⊗ Z

(
en−q; en

)
,

Ωn−q,n−1(K;F ) =
⊕

en−q ⩽ en−1

F
(
en−q; en

)
⊗ Z

(
en−q; en−1

)
.

In this description, both these groups have a direct sum decomposition indexed by
the (n− q)-cells of K. Both the morphisms ip and ∂2 respect these decompositions
which explains the commutativity of the upper square of the last diagram. Also in
that setting, the value Hom(Z(en−q);G(en−q)), on some cell en−q, is, modulo the
action of the isomorphism Φ, the kernel of ∂2 restricted to the (en−q)-component of
Ωn−q,n(K;F ). By construction, jp is the restriction of ı̂p to the (en−q)-component of
the kernel of ∂2, so the bottom square also commutes.

Because of Lemma 4.22, the morphism jp(er) : GX
p (er)→ GP

p (er) is an isomorphism
for all r-cells er of dimension r > p. This implies that the cokernel of jp is trivial in
dimension greater than p. By means of the long exact sequence induced in cohomology
by the injective morphism jp, we find that jr

p : Hr(K;GX
p )→ Hr(K;GP

p ) is surjective
when r = p+1 and invertible for all r > p+1. Theorem 4.23 follows after performing
the change of variables r = n− q. □

We would like to conclude with few remarks on the numbers δ(P ) and θ(K) and
the definition of the cosheaves (FX

p )p ∈N. Let us assume that K is convex so we can
speak in the terms of Tropical Geometry. From its definition the number δ(P ) equals
1 if and only if the toric variety associated with P is smooth. Therefore, assuming
δ(P ) = 1 puts us closer to the Tropical Lefschetz Hyperplane Section Theorem of
C. Arnal, A. Renaudineau and K. Shaw [ARS21, Theorem 1.2 p. 1349]. However,
assuming δ(P ) = θ(K) = 1 does not implies that the dual hypersurface X is smooth.
The hypersurface X is said to be smooth when K is an unimodular triangulation.
In this case θ(K) = 1. Therefore, assuming both δ(P ) and θ(K) to be 1 already
generalises the statement of C. Arnal, A. Renaudineau and K. Shaw to some singular
tropical hypersurfaces.

For a general polytope Q, the number θ(Q) seems difficult to compute. However,
it seems computable for simplices. For segments it is always 1. For a triangle T , a
direct computation yields:

θ(T ) = 2 · volZ(T ) ·GCD{volZ(E) : E edge of T}∏
E ⩽T

volZ(E)
,

where volZ(Q) denotes the integral volume of an integral polytope Q, i.e. its Lebesgue
measure in the affine sub-space it spans normalised so that a parallelogram on a
basis of the induced lattice has measure 1.

When θ(K) equals 1, Lemma 4.9 and Definition 4.11 describe the cosheaf ⊕p ∈N F
X
p

as the kernel of a contraction. When θ(K) is greater than 1 the latter is the saturation
of the former. Theorem 4.23 suggests that if we alternatively defined the cosheaf⊕

p ∈N F
X
p as the kernel of a contraction then every tropical hypersurface dual to a
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polyhedral subdivision (combinatorially ample in the terminology of [ARS21]) in a
projective non-singular tropical toric variety would satisfy the Tropical Lefschetz
Hyperplane Section Theorem with integral coefficients.
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