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Résumé. — Soit S une surface fermée de genre g ⩾ 2, munie d’une mesure de probabilité
borélienne λ de support total. Nous montrons que si f est un homéomorphisme préservant
λ isotope à l’identité tel que le vecteur de rotation rotf (λ) ∈ H1(S,R) est le multiple d’un
élément de H1(S,Z), alors f a une infinité d’orbites périodiques.

De plus, on peut supposer que ces orbites périodiques ont leur vecteur de rotation arbi-
trairement proche du vecteur rotation de toute mesure de probabilité borélienne et ergodique
fixée.
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1. Introduction

1.1. Rotation vector

If S is a smooth compact boundaryless oriented surface of genus g, we denote
Homeo(S) the space of homeomorphisms of S furnished with the C0-topology. This
topology coincides with the uniform topology because S is compact. The path-
connected component of the identity map Id, usually called the space of homeo-
morphisms isotopic to the identity, will be denoted Homeo∗(S). A continuous path
I = (ft)t ∈ [0,1] joining the identity to a map f ∈ Homeo∗(S) is called an identity
isotopy of f . We call trajectory of a point z ∈ S defined by I the path I(z) : t 7→ ft(z)
joining z to f(z).

By compactness of S, one knows by Krylov–Bogolioubov’s theorem that the set
M(f) of f -invariant Borel probability measures is not empty. More precisely it is
a non empty compact convex subset of the space M of Borel probability measures
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Conservative surface homeomorphisms with rational rotation 331

furnished with the weak∗ topology. Remind that the support of µ, denoted supp(µ),
is the smallest closed set of µ-measure 1.

Let us recall the definition of the rotation vector of a measure µ ∈ M(f) (see
[Mat97, Pol92] or [Sch57]). Let I = (ft)t ∈ [0,1] be an identity isotopy of f . Fix z ∈ S.
The homotopy class of I(z), relative to the endpoints, contains a smooth path γ
joining z to f(z). If α is a closed 1-form, the quantity

∫
γ α does not depend on the

choice of γ and we denote it
∫

I(z) α. It is equal to h(f(z))−h(z) if α is exact and h is
a primitive of α. One gets a real valued morphism α 7→

∫
S(
∫

I(z) α) dµ(z) defined on
the space of closed 1-forms, that vanishes on the space of exact 1-forms because µ is
invariant by f . So, it induces a natural linear form on the first cohomology group
H1(S,R). Hence, there exists a homology class rotI(µ) ∈ H1(S,R), uniquely defined
by the equation

⟨[α], rotI(µ)⟩ =
∫

S

(∫
I(z)

α

)
dµ(z),

where α is any closed 1-form, [α] ∈ H1(S,R) its cohomology class and
⟨ , ⟩ : H1(S,R) ×H1(S,R) → R

the natural bilinear form. By definition rotI(µ) ∈ H1(S,R) is the rotation vector of
µ (for the isotopy I). It is well known that two identity isotopies of f are homotopic
relative to the ends if the genus of S is larger than 1 (see [Ham66]). In that case,∫

I(z) α does not depend on I and one can write

rotf (µ) = rotI(µ).
If O is a periodic orbit of f , one can define the rotation vector rotI(O) of O (or
rotf(O) if the genus of S is larger than 1) as being equal to the rotation vector of
µO, where µO is the probability measure equidistributed on O. In particular we have
rotI(O) = 0 if O is a contractible periodic orbit, which means that the loop Iq(z) is
homotopic to zero, if z ∈ O.

Let us give an equivalent definition. Furnish S with a Riemannian metric and for
every points z, z′ in S, choose measurably a path γz,z′ joining z to z′ in such a way
that the lengths of the paths γz,z′ are uniformly bounded. For every z ∈ S, and every
n ⩾ 1, consider the path

In(z) = I(z)I(f(z)) · · · I
(
fn−1(z)

)
defined by concatenation, and the loop

Γn(z) = In(z)γfn(z),z.

Let us explain why there exists a µ-integrable function rotI : S → H1(S,R) such
that for µ-almost every point z ∈ S, the sequence [Γn(z)]/n converges to rotI(z).
Moreover we will get that

rotI(µ) =
∫

rotI(z) dµ(z).

Indeed, if α is a closed 1-form, the function z 7→
∫

I(z) α is well defined and continuous
on S. By Birkhoff Ergodic Theorem, there exists an integrable function Iα

∗ satisfying∫
S I

α
∗ dµ = ⟨[α], rotI(µ)⟩ such that for µ-almost every point z ∈ S, the sequence
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(
∫

In(z) α)/n converges to Iα
∗ (z). In that case, the sequence (

∫
Γn(z) α)/n also converges

to Iα
∗ (z) because the lengths of the γz,z′ are uniformly bounded. Moreover we have∫

Γn(z) α = ⟨[α], [Γn(z)]⟩. Now, consider a family (αi)1⩽ i⩽ 2g of closed 1-forms whose
cohomology classes generate H1(S,R). For µ-almost every point z ∈ S, each sequence
⟨[αi], [Γn(z)]/n⟩ converges to Iαi

∗ (z). It implies that the sequence [Γn(z)]/n converges
in H1(S,R). Noting rotI(z) its limit, we have

⟨[αi], rotI(µ)⟩ =
∫
Iαi

∗ (z) dµ(z) =
∫

⟨[αi], rotI(z)⟩ dµ(z)

which means that
rotI(µ) =

∫
rotI(z) dµ(z).

Let us give a last definition that will be used in this article. In the whole text
we will write [Γ] ∈ H1(S,Z) for the homology class of an oriented loop Γ ⊂ S. Let
U ⊂ S be a topological open disk (meaning a simply connected domain) such that
µ(U) ̸= 0. Write φU : U → U for the first return map of f and τU : U → N \ {0}
for the time of first return map. These maps are defined µ-almost everywhere on U .
Kac’s Lemma [Kac47] tells us that φU preserves the measure µ|U and that τU is
µ|U -integrable, and that moreover∫

U
τU dµ = µ

 ⋃
k ⩾ 0

fk(U)
 = µ

 ⋃
k ∈Z

fk(U)
 .

We also denote by µU the normalized probability measure µ|U/µ(U). One can con-
struct a map ρU : U → H1(S,Z) defined µU -almost everywhere as follows: if φU(z)
is well defined, one closes the trajectory IτU (z)−1(z) with a path γ contained in U
that joins φU(z) to z, and set ρU(z) = [IτU (z)−1(z)γ], noting that [IτU (z)−1(z)γ] is
independent of the choice of γ. If the genus of S is bigger than 1 (what we suppose
from now), then this map does not depend on the choice of I. It is easy to prove that
the map ρU/τU is uniformly bounded on U and consequently that ρU is µU -integrable.
So, by Birkhoff’s theorem, there exist µU -integrable functions ρU

∗ : U → H1(S,R)
and τU

∗ : U → R such that for µU -almost every point z it holds that

(1.1) lim
n→+∞

1
n

n−1∑
k=0

ρU

(
φk

U(z)
)

= ρU
∗(z), lim

n→+∞

1
n

n−1∑
k=0

τU

(
φk(z)

)
= τU

∗(z).

These quantities are related to the rotation number by the fact that for µU -almost
every point z, we have rotf (z) = ρU

∗(z)/τU
∗(z).

1.2. The main theorem

Let us begin this section by introducing the notion of homotopical interval of
rotation, that is inspired by the conclusion of Poincaré–Birkhoff theorem. If S is
an oriented closed surface, denote FHL(S) the free homotopy loop space of S. For
every κ ∈ FHL(S) and every Γ ∈ κ, the homology class [Γ] ∈ H1(S,Z) does not
depend on the choice of Γ, we denote it [κ]. If Γ : R/Z → S is a loop and k an
integer, we can define the loop Γk : t 7→ Γ(kt). For every κ ∈ FHL(S), every Γ ∈ κ

ANNALES HENRI LEBESGUE
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and every k ∈ Z, the free homotopy class of Γk does not depend on the choice of Γ,
we denote it κk. A homotopical interval of rotation of f ∈ Homeo∗(S) is a couple
(κ, r), where κ ∈ FHL(S) and r is a positive integer, that satisfies the following:
there exists an integer s > 0 such that for every p/q ∈ [0, 1] ∩ Q, one can find a
point z ∈ S of period at least ⌈q/s⌉, such that the loop naturally defined by Irq(z)
belongs to κp. In particular, we have rotf (z) = p/(rq)[κ].

Let us state the main result of the article.

Theorem 1.1. — Let S be an oriented closed surface of genus g ⩾ 2. If f ∈
Homeo∗(S) preserves a Borel probability measure λ such that supp(λ) = S and
rotf (λ) ∈ RH1(S,Z), then f has infinitely many periodic points.

More precisely, for every ergodic measure ν ∈ M(f) that is not a Dirac measure
at a contractible fixed point and every neighborhood U of rotf (ν) in H1(S,R), there
exists a homotopical interval of rotation (κ, r) such that [κ]/r ∈ U .

Note that if f satisfies the hypotheses of the theorem and is different from identity,
then by ergodic decomposition it has an ergodic invariant probability measure ν that
is not supported on a fixed point. Theorem 1.1 applies and implies the existence of
a homotopical interval of rotation; in particular f has an infinite number of periodic
points, of arbitrarily large period, and of rotation vector arbitrarily close to 0. If
rotf (λ) ̸= 0, the measure ν can be chosen such that rotf (ν) ̸= 0 and consequently, f
has periodic orbits of arbitrary large period and with non zero rotation vector. In
any case, any ergodic Borel probability measure, supported on a contractible fixed
point or not, has its rotation vector approximated by rotation vectors of an infinite
number of periodic points. Remark that this property is also true for f equal to the
identity.

Before explaining what are the two different sources of creation of homotopical
interval of rotation in Subsection 1.3, let us comment Theorem 1.1. We start by giving
a direct application. If ω is a smooth area form on S, denote Diffr

ω(S), 1 ⩽ r ⩽ ∞,
the space of Cr diffeomorphisms of S preserving ω, endowed with the Cr-topology,
and Diffr

ω,∗(S) the connected component of Diffr
ω(S) that contains the identity. It is

a classical fact that Diffr
ω,∗(S) = Diffr

ω(S) ∩ Homeo∗(S).

Corollary 1.2. — Suppose that g ⩾ 2. Then, for any 1 ⩽ r ⩽ ∞, the set of
maps f ∈ Diffr

ω,∗(S) that have infinitely many periodic points is dense in Diffr
ω,∗(S).

Proof. — There is no loss of generality by supposing that the measure µω naturally
defined by ω is a probability measure. Note that the map f 7→ rotf (µω) is a continuous
morphism defined on Diffr

ω(S). The continuity of this map can be obtained from the
first definition of rotation number, and the fact that for hyperbolic surfaces, the lifts
of homeomorphisms that are C0-close to the universal cover are themselves C0-close.

One can find a family of simple loops (Γi)1⩽ i⩽ 2g in S such that the family
([Γi])1⩽ i⩽ 2g generates H1(S,R). For every i ∈ {1, . . . , 2g} consider a closed tubular
neighborhood Wi of Γi. It is easy to construct a divergence free smooth vector field
ζi supported on Wi with an induced flow (ht

i)t ∈R satisfying rotht
i
(µω) = t[Γi]. For
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every t = (t1, . . . , t2g) ∈ R2g, define f t = ht1
1 ◦ · · · ◦ ht2g

2g ◦ f . We have

rotf t(µω) = rotf (µω) +
2g∑

i=1
rot

h
ti
i

(µω) = rotf (µω) +
2g∑

i=1
ti[Γi].

So, we can find t “arbitrarily small” such that rotf t(µω) ∈ H1(S,Q). □

Remark. — A very close version of the theorem has been proved independently
by Rohil Prasad. A very strong recent result of Cristofaro–Gardiner–Prasad–Zhang
[CGPZ22], whose proof uses Periodic Floer Homology theory, asserts that if ω is a
smooth area form on S, then for every k ∈ N ∪ {∞}, the set of maps f ∈ Diffk

ω(S)
that have a dense set of periodic points is dense in Diffk

ω(S) (which of course implies
that Corollary 1.2 holds in the smooth category, see also [CGPPZ, EH22]). The
following result is used in their proof: in the case where f ∈ Diff∞

ω,∗(S) and rotf (µω) ∈
H1(S,Q)\{0}, the map f has a periodic orbit with non zero rotation vector. Moreover
they find an explicit upper bound of the period related to rot(µω) and to the genus
of S. As explained by Prasad [Pra25] in a recent note, a simple approximation process
permits to extend this result to the case where f ∈ Homeo∗(S) preserves µω and
satisfies rotf (µω) ∈ H1(S,Q) \ {0}. Moreover a blow-up argument allows to extend
the result in the case where rotf (µω) ∈ RH1(S,Z) \ {0}. Consequently it holds that
f has infinitely many periodic orbits of period arbitrarily large. This last point is a
consequence of previous works where area preserving homeomorphisms with finitely
many periodic points are characterized ([TAZ07] in the case of the torus, [Cal22] in
the case of surfaces with higher genus). Using Oxtoby–Ulam theorem [OU41] and
the fact that every invariant probability measure is the barycenter of two invariant
probability measures, the first one atomic and the second one with no atom, the
measure µω can be replaced with any probability measure with total support. In the
present article, we give some precisions about the structure of the periodic points.

Remark. — The theorem is untrue in the sphere and in the torus. Indeed, suppose
that α ∈ R \ Q.

The diffeomorphism fα of the Riemann sphere S2 defined as follows

fα(z) =

∞ if z = ∞,

e2iπαz if z ∈ C,

preserves a probability measure µω associated to an area form and has no periodic
point but 0 and ∞. If I is an identity isotopy of f , then rotI(µω) = 0 because
H1(S2,R) = 0.

The diffeomorphism
gα : R2/Z2 −→ R2/Z2

(x, y) 7−→ (x+ (α + Z), y)
preserves the area form ω = dx ∧ dy and has no periodic orbit. If I = (gtα)t ∈ [0,1],
then we have rotI(µω) = α(1, 0) ∈ RH1(T2,Z).

Remark. — In particular, the theorem asserts that if rotf(λ) = 0, then there
exists infinitely many periodic orbits. Moreover the set of periods is infinite if f is
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not the identity because there exist ergodic invariant measures that are not Dirac
measures at a fixed point. This result, that admits a version for the case g = 1, was
already known (see [Cal06]). It is a generalization of a result stated in the differential
setting (see [FH03]) which itself is the two dimensional version of what is called
Conley conjecture, later proved in any dimension (see [Gin10, Hin09]). Note that
in [Cal06] it is proved that if f has finitely many fixed points, then there are infinitely
many contractible periodic orbits.

Remark. — The theorem was well known for the time one map of a conservative
flow. Indeed, let X be a (time independent) vector field of class C1 whose flow
preserves ω. The equalities 0 = LXω = iXdω+diXω tell us that the 1-form β = iXω is
closed. Moreover it is invariant by the flow of X because LXβ = iXdβ+diX(iXω) = 0.
If f is the time one map of the flow (f t)t ∈R of X, then, denoting I = (f t)t ∈ [0,1], we
know that for every closed 1-form α, we have

⟨[α], rotI(µω)⟩ =
∫

S

(∫
I(z)

α

)
dµω(z)

=
∫

S

(∫ 1

0
α(X(ft(z))dt

)
dµω(z)

=
∫ 1

0

(∫
S
α(X(ft(z))dµω(z)

)
dt

=
∫

S
α(X(z))dµω(z)

.

Noting that 0 = iX(α ∧ ω) = iXα ∧ ω − α ∧ iXω we deduce that

⟨[α], rotI(µω)⟩ =
∫

S
α ∧ β.

The fact that rotI(µω) ∈ RH1(S,Z) implies that [β] ∈ RH1(S,Z). Suppose for
instance that [β] ∈ H1(S,Z). Then there exists a function H : S → R/Z of class C2

such that β = dH. Indeed, let us fix z0 ∈ S. For every point z ∈ M , the value
modulo 1, denoted H(z), of

∫
γ β does not depend on the C1 path γ joining z0 to z.

We get in that way a function H : S → R/Z of class C2 such that β = dH. It is
invariant by the flow of X because

LXH = iXdH + diXH = iXβ = iX(iXω) = 0.
Denote sing(X) the set of singular points of X. Remind that the α-limit set α(z)

and the ω-limit set ω(z) of a point z ∈ S are the sets of subsequential limits of the
sequences (f−n(z))n⩾ 0 and (fn(z))n⩾ 0 respectively. Note that by the definition of H,
a point of S is singular for X iff it is a critical point of the flow-invariant map H.
This implies that if z is not singular, then either the orbit of z is periodic, or its
limit sets α(z) and ω(z) are contained in sing(X). In particular the ergodic invariant
probability measures that are non supported on a singular point are supported on
a periodic orbit of f lying on a periodic orbit of the flow with rational period, or
supported on a whole periodic orbit of the flow with irrational period.

The union W of periodic orbits of the flow is non empty (by Sard’s theorem)
and open (again, this is a consequence of the fact that H is invariant by the flow).
Moreover every connected component V of W is annular (meaning homeomorphic
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to R/Z × R). The genus being at least two, there exist singular points. Furthermore
S is not a sphere. It implies that there exists at least one end of V such that
for every sequence (zn)n⩾ 0 in V converging to this end, the period of z (for the
flow) converges to +∞. So the period is not constant on V . It implies that f has
periodic points of arbitrarily large period. More precisely, the loops Γ that appear
in the theorem are the simple loops contained in such a component V that are non
homotopic to zero in V and suitably oriented. Note that if rotI(µω) ̸= 0, there exits
at least one connected component V of W such that i∗(H1(V,Z)) ̸= {0}, where
i∗ : H1(V,Z) → H1(S,Z) is the morphism naturally defined by the inclusion map
i : V → S, meaning that the periodic points in V have non zero rotation vector.

Remark. — The hypothesis rotf (λ) ∈ RH1(S,Z) is necessary to get the theorem.
Indeed one can find smooth vector fields with finitely many singular points, whose
flows preserves an area form ω and such that every orbit is dense if not reduced to
a singular point. The time one map of this flow f has no periodic points but the
singular points. Of course it holds that rotf (λ) ̸∈ RH1(S,Z). Classical examples are
given by translation flows in a minimal direction.

Remark. — Corollary 1.2 was already known. In fact we have a much stronger
result: the set of maps f ∈ Diffr

ω(S) that have a hyperbolic periodic point with trans-
verse homoclinic intersection, is an open and dense subset of Diffr

ω(S) (see [CS22]).
This result has been known for a long time in the case where g ⩽ 1 (see [AZ03,
Doe97, Oli87, Oli00, Pix82, Rob73, TAZ07]). A difficult step in the proof of the case
g ⩾ 2 is to show that the set of maps f ∈ Diffr

ω,∗(S) having at least 2g − 1 periodic
points is dense in Diffr

ω,∗(S).

1.3. Proof strategy

The main tool of the proof is the forcing theory developed in [CT18, CT22, Lel23],
which we introduce in Subsections 3.1 and 4.1. Using this tool, we analyse the
possible configurations that can occur under the hypotheses of Theorem 1.1. In most
of the cases, we will find a rotational horseshoe (defined in Subsection 2.5), which
will allow us to get the conclusion of the theorem. In only one case we will not be able
to find such a horseshoe and indeed, there are some examples of homeomorphisms
satisfying the hypotheses of Theorem 1.1 and without topological horseshoe, for
example time one maps of area preserving flows. The conclusion will be obtained
using an improved version of Poincaré–Birkhoff Theorem 2.1 in a suitable annulus.
Caratheodory’s theory of prime ends (see Subsection 2.4) will be used in this last
case.

More precisely, one can find a suitable identity isotopy I of f and a singular ori-
ented foliation F on S whose regular set coincides with the set dom(I) of points
with non trivial trajectory under the isotopy, that satisfy the following fundamen-
tal property: every non trivial trajectory I(z) is homotopic in dom(I) to a path
transverse to F . Given an f -invariant ergodic probability measure ν such that
ν(dom(I)) = 1, the proof starts by building an approximation of a typical orbit
for ν (Lemma 5.1): it is an oriented loop Γ∗ transverse to F , such that [Γ∗] is
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close to rotf(ν), and such that, for ν-almost every point z, the transverse path
defined naturally by the whole orbit of z draws this loop. We will consider an an-
nular covering space d̂om(I) of dom(I) where Γ∗ is lifted to a non contractible
simple loop Γ̂∗. The isotopy I|dom(I) and the foliation F can be lifted to d̂om(I).
The union of leaves that meet Γ̂∗ is an open annulus B̂. Depending of the properties
of the trajectories of typical points for the measure ν with respect to this annulus B̃,
we get different conclusions: if they cross or visit this annulus (see Subsection 3.3 for
definitions), then we are able to find a topological rotational horseshoe, by means
of the forcing theory results proved in Subsection 4.2; if they stay forever in this
annulus then we prove that Poincaré–Birkhoff Theorem 2.1 applies and implies the
existence of an infinite number of periodic orbits.

We strongly use, or develop, the results proved by Gabriel Lellouch in his PhD
thesis [Lel23]. In particular we will need the main result of [Lel23], where ∧ denotes
the natural intersection form on H1(S,R) (see Subsection 4.1): if µ and µ′ are
two invariant probability measures such that rotf(µ) ∧ rotf(µ′) ̸= 0, then f has a
rotational horseshoe. The hypothesis rotf (λ) ∈ RH1(S,Z) will be used once: with the
help of Atkinson’s theorem [Atk76], it will permit us to assume that [Γ∗]∧rotf (λ) = 0
(where Γ∗ is the approximation defined above.).
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2. Definitions, notations and preliminaries

In the sequel, the letter S will refer to a closed surface while the letter Σ will
refer to any surface (not necessarily compact, not necessarily connected). If f is a
surface homeomorphism, µ will refer to any f -invariant measure, λ to an f -invariant
measure with total support, and ν to an f -invariant ergodic measure.

2.1. Loops and paths

Let Σ be an oriented surface (not necessarily closed, not necessarily boundaryless,
not necessarily connected). A loop of Σ is a continuous map Γ : T → Σ, where
T = R/Z. It will be called essential if it is not homotopic to a constant loop. A path
of Σ is a continuous map γ : I → Σ where I ⊂ R is an interval. A loop or a path
will be called simple if it is injective. The natural lift of a loop Γ : T → Σ is the path
γ : R → Σ such that γ(t) = Γ(t + Z). A segment is a simple path σ : [a, b] → Σ,
where a < b. The points σ(a) and σ(b) are the endpoints of σ. We will say that σ
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joins σ(a) to σ(b). More generally if A and B are disjoint, we will say that σ joins
A to B, if σ(a) ∈ A and σ(b) ∈ B. A line is a proper simple path λ : R → Σ. As
it is usually done we will use the same name and the same notation to refer to the
image of a loop or a path γ.

Note that a simple loop or a simple path is naturally oriented by its parametrization
(the increasing one). Let Γ be a simple loop of Σ, and denote Σ′ the connected
component of Σ it belongs to. If Σ′ \ Γ has two connected components, we say that
Γ separates Σ; in this case the connected component that is located on the right
of Γ will be denoted R(Γ) and the other one L(Γ). We will use the same notations
R(λ), L(λ) for a line λ that separates the connected component it belongs to. In
both cases, if γ is a segment that joins R(Γ) to L(Γ), then it holds that the algebraic
intersection number between Γ and γ is 1.

Let f be an orientation preserving homeomorphism of Σ. A Brouwer line of f is a
line λ that separates Σ such that f(λ) ⊂ L(λ) and f−1(λ) ⊂ R(λ). Equivalently it
means that f(L(λ)) ⊂ L(λ) or that f−1(R(λ)) ⊂ R(λ).

2.2. Poincaré–Birkhoff theorem

Let us consider the annulus A = T × I, where (0, 1) ⊂ I ⊂ [0, 1], and its universal
covering space Ã = R × I. We define the covering projection π̃ : (x, y) 7→ (x+ Z, y)
and the generating covering automorphism T : (x, y) 7→ (x + 1, y). We denote
p̃1 : Ã → R the projection on the first factor.

Let f be a homeomorphism of A isotopic to the identity (meaning orientation-
preserving and fixing the boundary circles or ends) and f̃ a lift of f to Ã. The map
p1 ◦ f̃ − p1 lifts a continuous function ψf̃ : A → R because f̃ and T commute. In
particular, for every z ∈ A, for every lift z̃ ∈ Ã of z and every n ⩾ 1, we have

n−1∑
i=0

ψf̃

(
f i(z)

)
= p1

(
f̃n(z̃)

)
− p1(z̃).

Let z be a positively recurrent point. Say that f has rotf̃(z) ∈ R as a rotation
number if for every subsequence (fnk(z))k⩾0 of (fn(z))n⩾0 that converges to z, we
have

lim
k→+∞

1
nk

nk−1∑
i=0

ψf̃

(
f i(z)

)
= rotf̃ (z).

If O is a periodic point of f of period q, then there exists p ∈ Z such that for every
z̃ ∈ π̃−1(O) we have f̃ q(z̃) = T p(z̃). In this case, p/q is the rotation number of O
for the lift f̃ . We will use the following extension of the classical Poincaré–Birkhoff
Theorem (see for example [Cal05]):

Theorem 2.1. — Let f be a homeomorphism of A isotopic to the identity and f̃
a lift of f to Ã. We suppose that there exist two positively recurrent points z1 and
z2, such that rotf̃ (z1) < rotf̃ (z2). Then:

• either, for every rational number p/q ∈ (rotf̃(z1), rotf̃(z2)), written in an
irreducible way, there exists a periodic orbit O of f of period q and rotation
number p/q for f̃ ;
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• or there exists an essential simple loop Γ ⊂ T× (0, 1) such that f(Γ) ∩ Γ = ∅.

Of course, we have a similar result in an abstract annulus, meaning a topological
space homeomorphic to A.

2.3. Homeomorphisms of hyperbolic surfaces

Let Σ be a connected oriented hyperbolic surface without boundary, meaning
different from the sphere, the plane, the open annulus or the torus. One can furnish
Σ with a complete Riemannian metric of constant negative curvature −1. The
universal covering space of Σ is the disk D = {z ∈ C | |z| < 1} and the group of
covering transformations, denoted G, is composed of Möbius automorphisms of D.
One can suppose that the metric is of first type, meaning that the closure in C
of every G-orbit contains S1 = {z ∈ C | |z| = 1} (see [Mat00] for instance). Every
hyperbolic element T ∈ G can be extended to a homeomorphism of D having two
fixed points on the boundary: a repelling fixed point α(T ) and an attracting fixed
point ω(T ) (see [Eis95, Theorem 4.3.10]). For every z ∈ D \ {α(T ), ω(T )}, it holds
that

lim
k→−∞

T kz = α(T ), lim
k→+∞

T kz = ω(T ).

The metric being of first type, the set of points α(T ) and the set of points ω(T ), T
among all hyperbolic automorphism, is dense in S1. Every parabolic element T ∈ G
can be extended to a homeomorphism of D having one fixed point αω(T ) on the
boundary (see [Eis95, Theorem 4.3.10]). For every z ∈ D \ {αω(T )}, it holds that

lim
k→±∞

T kz = αω(T ).

A homeomorphism f of Σ isotopic to the identity has a unique lift f̃ to D that
commutes with the covering automorphisms. We will call it the canonical lift of f . It
is well known that f̃ extends to a homeomorphism f̃ of D that fixes every point of
S1. If T ∈ G is hyperbolic, then f̃ lifts a homeomorphism f̂ of Σ̂ = Σ̃/T . Moreover f̂
extends to a homeomorphism of the compact annulus Σ̂ obtained by adding the two
circles Ĵ = J̃/T and Ĵ ′ = J̃ ′/T , where J̃ and J̃ ′ are the two connected components
of S1 \ {α(T ), ω(T )}. Note that every point of Ĵ ∪ Ĵ ′ is fixed, with a rotation number
equal to zero for the lift f̃ |D\{α(T ), ω(T )}. Similarly, if T ∈ G is parabolic, then f̃ lifts
a homeomorphism f̂ of Σ̂ = Σ̃/T that extends to a homeomorphism of Σ̂ obtained
by adding the circle (S1 \ {αω(T )})/T at one end of Σ̂. Every point of this circle is
fixed, with a rotation number equal to zero for the lift f̃ |D\{αω(T )}.

2.4. Caratheodory theory of prime ends

In this small subsection we state a result that will be used once in the article,
consequence of what is called prime end theory (see [Mat82] for instance). Let S be
a closed surface of genus ⩾ 1 and U an open annulus of S. Say that an end e of
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U is singular if there exists a point z ∈ S and a neighborhood of e in U that is a
punctured neighborhood of z in S. Otherwise say that e is regular. There is at least
one regular end because S is not the 2-sphere. Suppose that U is invariant by an
orientation preserving homeomorphism f . Then the homeomorphism f |U extends to
a homeomorphism fU of a larger annulus Upe obtained by blowing up each regular
end of U and replacing it with the associated circle of prime ends. Moreover if U is
a connected component of the complement of a closed subset X of fix(f), then the
extended map fixes each point of the circles of prime ends. More precisely, suppose
that I = (ft)t∈[0,1] is an identity isotopy of f , such that ft(U) = U and X ⊂ fix(ft)
for every t ∈ [0, 1]. Then, the rotation number of the points on the added circles
(they are fixed) is equal to 0, for the lift of fU to the universal covering space of Upe,
that extends the lift of f |U to the universal covering space of U , naturally defined
by I|U .

2.5. Rotational topological horseshoes

Let Σ be a connected oriented surface. Say that Y ⊂ S is a topological horseshoe
of f ∈ Homeo∗(S) if Y is closed, invariant by a power f r of f , and if f r|Y admits a
finite extension g : Z → Z on a Hausdorff compact space Z such that:

• g is an extension of the Bernoulli shift σ : {1, . . . ,m}Z → {1, . . . ,m}Z, where
m ⩾ 2;

• the preimage of every s-periodic sequence of {1, . . . ,m}Z by the factor map
contains at least one s-periodic point of g.

It means that g is a homeomorphism of Z that is semi-conjugated to f r|Y and
that the fibers of the factor map are all finite with an uniform bound M in their
cardinality. Note that, if h(f) denotes the topological entropy of f , then it holds
that

rh(f) = h(f r) ⩾ h (f r|Y ) = h(g) ⩾ h(σ) = log q,
and that f r has at least qn/M fixed points for every n ⩾ 1.

Suppose now that S is a connected closed oriented surface. Say that a topological
horseshoe Y of f ∈ Homeo∗(S) is a rotational topological horseshoe of type (κ, r),
where κ ∈ FHL(S) and r is a positive integer, if there exists a positive integer s such
that for every p/q ∈ [0, 1]∩Q, there exists a point z ∈ Y of period at least ⌈q/s⌉, such
that the loop naturally defined by Irq(z) belongs to κp. In particular the horseshoe
defines a homotopical interval of rotation. The rotational topological horseshoes
that appear in the present article will be constructed in an annular covering of an
invariant open set, satisfying the geometric definition given in [PPS18].

3. Foliations on surfaces

In this section we will consider an oriented boundaryless surface Σ, not necessarily
closed, not necessarily connected, and a non singular oriented topological foliation
F on Σ. We will consider:
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• the universal covering space Σ̃ of Σ;
• the covering projection π̃ : Σ̃ → Σ;
• the group G of covering automorphisms of this cover;
• the lifted foliation F̃ on Σ̃.

For every point z ∈ Σ, we denote ϕz the leaf of F that contains z. If ϕz : R → Σ
is a parametrization of ϕz inducing the orientation, such that ϕz(0) = z, we set
ϕ+

z = ϕz|[0,+∞) and ϕ−
z = ϕz|(−∞,0]. Similarly, for every point z̃ ∈ Σ̃, we denote ϕ̃z̃ the

leaf of F̃ that contains z̃ and we define in the same way ϕ̃+
z̃ and ϕ̃−

z̃ . The foliation
F̃ being defined on a union of topological planes and being non singular, it has no
closed leaf. Moreover a leaf cannot accumulate on a point, it must be proper. So it is
a line and consequently it separates the connected component of Σ̃ it belongs to (by
Jordan theorem, because this connected component has to be a topological plane).

3.1. F-transverse intersections

A path γ : J → Σ is positively transverse(1) to F if it locally crosses each leaf of
F from the right to the left. Observe that every lift γ̃ : J → Σ̃ of γ is positively
transverse to F̃ and that for every a < b in J :

• γ̃|[a,b] meets once every leaf ϕ̃ such that R(ϕ̃γ̃(a)) ⊂ R(ϕ̃) ⊂ R(ϕ̃γ̃(b));
• γ̃|[a,b] does not meet any other leaf.

Two transverse paths γ̃1 : J1 → Σ̃ and γ̃2 : J2 → Σ̃ are said equivalent if they
meet the same leaves of F̃ . Two transverse paths γ1 : J1 → Σ and γ2 : J2 → Σ are
equivalent if there exists a lift γ̃1 : J1 → Σ̃ of γ and a lift γ̃2 : J2 → Σ̃ of γ2 that are
equivalent.

Let γ̃1 : J1 → Σ̃ and γ̃2 : J2 → Σ̃ be two transverse paths such that there exist
t1 ∈ J1 and t2 ∈ J2 satisfying γ̃1(t1) = γ̃2(t2). We will say that γ̃1 and γ̃2 have
a F̃-transverse intersection at γ̃1(t1) = γ̃2(t2) if there exist a1, b1 ∈ J1 satisfying
a1 < t1 < b1 and a2, b2 ∈ J2 satisfying a2 < t2 < b2 such that:

• ϕ̃γ̃1(a1) ⊂ L(ϕ̃γ̃2(a2)), ϕ̃γ̃2(a2) ⊂ L(ϕ̃γ̃1(a1));
• ϕ̃γ̃1(b1) ⊂ R(ϕ̃γ̃2(b2)), ϕ̃γ̃2(b2) ⊂ R(ϕ̃γ̃1(b1));
• every path joining ϕ̃γ̃1(a1) to ϕ̃γ̃1(b1) and every path joining ϕ̃γ̃2(a2) to ϕ̃γ̃2(b2)

must intersect.
It means that there is a “crossing” between the two paths naturally defined by γ̃1

and γ̃2 in the space of leaves of F̃ , which is a one-dimensional topological manifold,
usually non Hausdorff (see Figure 3.1).

Now, let γ1 : J1 → Σ and γ2 : J2 → Σ be two transverse paths such that there exist
t1 ∈ J1 and t2 ∈ J2 satisfying γ1(t1) = γ2(t2). Say that γ1 and γ2 have a F-transverse
intersection at γ1(t1) = γ2(t2) if γ̃1 and γ̃2 have a F̃-transverse intersection at
γ̃1(t1) = γ̃2(t2), where γ̃1 : J1 → Σ̃ and γ̃2 : J2 → Σ̃ are lifts of γ1 and γ2 such that
γ̃1(t1) = γ̃2(t2). If γ1 = γ2 one speaks of a F-transverse self-intersection. This means

(1) In the whole text, “transverse” will mean “positively transverse”.
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γ̃1(t1) = γ̃2(t2)

γ̃1

γ̃2

γ̃2(b2)

γ̃1(b1)γ̃2(a2)

γ̃1(a1)

Figure 3.1. Example of F̃ -transverse intersection.

that if γ̃1 is a lift of γ1, there exists T ∈ G such that γ̃1 and T γ̃1 have a F̃ -transverse
intersection at γ̃1(t1) = T γ̃1(t2).

3.2. Recurrence, equivalence and accumulation

A transverse path (with respect to the foliation F) γ : R → Σ is positively
recurrent if, for every a < b, there exist c < d, with b < c, such that γ|[a,b] and γ|[c,d]
are equivalent. Similarly γ is negatively recurrent if, for every a < b, there exist c < d,
with d < a, such that γ|[a,b] and γ|[c,d] are equivalent. Finally γ is recurrent if it is
both positively and negatively recurrent.

Two transverse paths γ1 : R → Σ and γ2 : R → Σ are equivalent at +∞ if there
exists a1 and a2 in R such that γ1|[a1,+∞) and γ2|[a2,+∞) are equivalent. Similarly γ1
and γ2 are equivalent at −∞ if there exists b1 and b2 in R such that γ1|(−∞,b1] and
γ2|(−∞,b2] are equivalent.

A transverse path γ1 : R → Σ accumulates positively on the transverse path
γ2 : R → Σ if there exist real numbers a1 and a2 < b2 such that γ1|[a1,+∞) and
γ2|[a2,b2) are equivalent. Similarly, γ1 accumulates negatively on γ2 if there exist real
numbers b1 and a2 < b2 such that γ1|(−∞,b1] and γ2|(a2,b2] are equivalent. Finally γ1
accumulates on γ2 if it accumulates positively or negatively on γ2.

3.3. Strips

We fix T ∈ G \ {0} and consider
• the annulus Σ̂ = Σ̃/T (or, if Σ̃ is not connected, the connected component of

Σ̃/T that is an annulus);
• the covering projections π : Σ̃ → Σ̂ and π̂ : Σ̂ → Σ;
• the foliation F̂ on Σ̂ induced by F̃ .

Suppose that Γ̂∗ is a simple loop transverse to F̂ . Then, Γ̂∗ is essential and γ̃∗ =
π−1(Γ̂∗) can be seen as an oriented line of Σ̃, invariant by T and transverse to F̃ .
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The set
B̂ =

{
ẑ ∈ Σ̂

∣∣∣ ϕ̂ẑ ∩ Γ̂∗ ̸= ∅
}

is an open annulus which is F̂ -saturated, meaning that it is a union of leaves.
Similarly

B̃ = π−1(B̂) =
{
z̃ ∈ Σ̃

∣∣∣ ϕ̃z̃ ∩ γ̃∗ ̸= ∅
}

is an F̃ -saturated plane invariant by T . We will call such a set a T -strip (or a strip
if we do not want to specify the covering transformation). In other words a T -strip
is a F̃ -saturated plane invariant by T defined as the union of the leaves that meet a
transverse line invariant by T .

The frontier of B̃, denoted ∂B̃, is a union of leaves (possibly empty) and can be
written ∂B̃ = ∂B̃R ⊔ ∂B̃L, where

∂B̃R = ∂B̃ ∩R(γ̃∗) , ∂B̃L = ∂B̃ ∩ L(γ̃∗).
Let us state some facts that can be proven easily (see [Lel23, Lemme 2.1.7]). Note
first that:

• if there is a leaf ϕ̃ ⊂ ∂B̃ that is invariant by T , then the set ∂B̃R or ∂B̃L that
contains ϕ̃ is reduced to this leaf;

• if γ̃ : R → Σ̃ is transverse to F̃ , then the set of real numbers t such that
γ(t) ∈ B̃ is an open interval (possibly empty).

Suppose now that γ̃ : R → Σ̃ is transverse to F̃ and that{
t ∈ R | γ(t) ∈ B̃

}
= (a, b),

where −∞ ⩽ a < b ⩽ ∞. Say that
• γ̃ draws B̃ if there exist t < t′ in (a, b) such that ϕ̃γ̃(t′) = T ϕ̃γ̃(t)).

If, moreover, we suppose that −∞ < a < b < +∞, say that:
• γ̃ crosses B̃ from the right to the left if γ̃(a) ∈ ∂B̃R and γ̃(b) ∈ ∂B̃L;
• γ̃ crosses B̃ from the left to the right if γ̃(a) ∈ ∂B̃L and γ̃(b) ∈ ∂B̃R;
• γ̃ visits B̃ on the right if γ̃(a) ∈ ∂B̃R and γ̃(b) ∈ ∂B̃R;
• γ̃ visits B̃ on the left if γ̃(a) ∈ ∂B̃L and γ̃(b) ∈ ∂B̃L.

We will say that γ̃ crosses B̃ if it crosses it from the right to the left or from the
left to the right. Similarly, we will say that γ̃ visits B̃ if it visits it on the right or
on the left. Note that T (γ̃) satisfies the same properties as γ̃. Note also that if γ̃
visits B̃ on the right, then ∂B̃R is not reduced to a T -invariant leaf. Indeed, suppose
that ∂B̃R is reduced to a T -invariant leaf ϕ̃. With the notations above, we know
that γ̃|(a,b) is included in L(ϕ̃) because it is disjoint from ϕ̃ and γ(a) ∈ ϕ̃. Similarly,
γ̃|(a,b) is included in R(ϕ̃) because it is disjoint from ϕ̃ and γ(b) ∈ ϕ̃. We have found
a contradiction. An analogous property holds if γ̃ visits B̃ on the left. Let us state a
lemma whose proof is straightforward.

Lemma 3.1. — At least one of the following situations occurs (the two last
assertions are not incompatible):

• γ̃ crosses B̃;
• γ̃ visits B̃;

TOME 8 (2025)



344 P.-A. GUIHÉNEUF, P. LE CALVEZ & A. PASSEGGI

• γ̃ is equivalent to γ̃∗ at +∞ or at −∞;
• γ̃ accumulates on γ̃∗ positively or negatively.

Let us conclude this list of properties by the following ones (see [Lel23, Sec-
tion 2.1.2.c]):

Proposition 3.2. — We have the following results:
• If γ̃ visits and draws B̃, then γ̃ and T (γ̃) have an F̃ -transverse intersection

and so γ = π̃ ◦ γ̃ has an F -transverse self intersection.
• If γ̃1 crosses B̃ from the right to the left, if γ̃2 crosses B̃ from the left to the

right and at least one of the paths γ̃1 or γ̃2 draws B̃, then there exists k ∈ Z
such that γ̃1 and T k(γ̃2) have an F̃ -transverse intersection, and so γ1 = π̃ ◦ γ̃1
and γ2 = π̃ ◦ γ̃2 have an F -transverse intersection.

3.4. More about the accumulation property

In this final paragraph, we will suppose moreover than Σ is connected and that
Σ ̸= R2/Z2. The goal is to prove the following result that has its own interest and
will be used in the sequel to prove Theorem 1.1. This statement is stronger than
some results of [Lel23, Section 2.1.1]. It describes how a path γ1 can accumulate on
a path γ2, the conclusion is that the situation depicted in Figure 3.2 is more or less
the only one that can occur.

Proposition 3.3. — Suppose that γ1 : R → Σ is a positively recurrent transverse
path that accumulates positively on a transverse path γ2 : R → Σ. Then, there exists
a transverse simple loop Γ∗ ⊂ Σ with the following properties.

(1) The set B of leaves met by Γ∗ is an open annulus of Σ.
(2) The path γ1 stays in B and is equivalent to the natural lift of Γ∗.
(3) If γ̃1, γ̃2 are lifts of γ1, γ2 to the universal covering space Σ̃ such that γ̃1|[a1,+∞)

is equivalent to γ̃2|[a2,b2) and if B̃ is the lift of B that contains γ̃1, then one of
the inclusions ϕ̃γ̃2(b2) ⊂ ∂B̃R, ϕ̃γ̃2(b2) ⊂ ∂B̃L holds. In the first case, we have
B̃ ⊂ L(ϕ̃) for every ϕ̃ ⊂ ∂B̃R and in the second case, we have B̃ ⊂ R(ϕ̃) for
every ϕ̃ ⊂ ∂B̃L.

In Proposition 4.19 we will get additional properties when the paths are supposed
to be trajectories that are typical for some ergodic f -invariant measures. The proof
of the proposition above will be developed along the section by means of a collection
of lemmas.

Proof. — Note first that if Γ : T → Σ is a loop transverse to F and γ̃ : R → d̃om(I)
is a lift of Γ, there exists T ∈ G such that γ̃(t + 1) = T (γ̃(t)) for every t ∈ R. The
foliation F being non singular, there is no transverse loop. We deduce that T is not
the identity and that γ̃ is simple. The periodicity condition tells us that γ̃ is a line.
So it defines naturally a T -strip, the union of leaves meeting γ̃. We will say that T
and B̃ are associated to γ̃.

Let us start with a lemma.
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γ2

γ1

B

Figure 3.2. An example where Proposition 3.3 holds.

Lemma 3.4. — Let Γ : T → Σ be a transverse loop and γ̃ : R → d̃om(I) a lift of Γ.
Let T ∈ G be the deck transformation associated to γ̃ and B̃ the T -strip associated
to γ̃. Suppose that there exists a deck transformation T ′ ∈ G and a ∈ R such that
γ̃|[a,a+1] is equivalent to a subpath of T ′γ̃. Then γ̃|[a,a+1) ∩ T ′γ̃ ≠ ∅. Moreover, if Γ is
a simple loop, then T ′ ∈ ⟨T ⟩.

This lemma can be reduced easily to the following fact.

Sub-lemma 3.5. — Let Γ : T → Σ be a loop transverse to F . Then, there exists
z ∈ Γ and z′ ∈ Γ such that ϕ+

z does not meet Γ but at the end point and ϕ−
z′ does

not meet Γ but at the end point.

Proof of Lemma 3.4. — By Sublemma 3.5, there exist z, z′ in Γ (possibly equal)
such that ϕ+

z and ϕ−
z′ do not meet Γ but at their end point. Denote z̃ = γ̃(b),

z̃′ = γ̃(b′) the respective lifts of z, z′ that belong to γ̃|[a,a+1). There is no loss of
generality by supposing that b ⩽ b′. The union of ϕ̃+

z̃ , ϕ̃−
z̃′ and γ̃([b, b′]) defines a line

of Σ̃ that separates ϕ̃−
z̃ \ {z̃} and ϕ̃+

z̃′ \ {z̃′}. If T ′γ̃ does not meet γ̃([b, b′]), then, by
Sublemma 3.5, it does not meet this line. So (as by the hypothesis of the lemma
it intersects both ϕ̃z̃ and ϕ̃z̃′) T ′γ̃ must intersect ϕ̃−

z̃ \ {z̃} and ϕ̃+
z̃′ \ {z̃′}, which

contradicts the connectedness of T ′γ̃ and the fact that it is disjoint from the line.
We have got a contradiction. We conclude that T ′γ̃ ∩ γ̃|[a,a+1) ̸= ∅.

In the case where Γ is simple loop, we know that

T ′γ̃ ∩ γ̃ ̸= ∅ ⇐⇒ T ′γ̃ = γ̃ ⇐⇒ T ′ ∈ ⟨T ⟩. □

Proof of Sublemma 3.5. — Fix z ∈ Γ. The loop Γ being transverse to F , there
are finitely many parameters t ∈ T such that z = Γ(t). Consequently, there exists a
compact neighborhood Wz of z, a homeomorphism Φz : Wz → [−1, 1]2 and a finite
set Iz such that:

• Φz sends z onto (0, 0);
• Φz sends F|Wz onto the vertical foliation oriented upward;
• we have Φz(Γ ∩ Wz) = ⋃

i ∈ Iz
gr(ψi,z), where ψi,z : [−1, 1] → [−1, 1] is a

continuous function satisfying ψi,z(0) = 0.
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0

ψ−
z

ψ+
z

Ψz(Wz)
= [−1, 1]2

Ψz(X ∩ Wz)

Figure 3.3. Local configuration of the path Γ and the foliation F (in red) around
the point 0 = Ψz(z) in Sublemma 3.5.

Here the notation gr(ψ) denotes the graph of ψ : [−1, 1] → [−1, 1] oriented from the
right to the left. See Figure 3.3 for an example of such a configuration.

Consider the two continuous functions
ψ−

z = min
i ∈ Iz

ψi,z , ψ+
z = max

i ∈ Iz

ψi,z

and define
γ−

z = Φ−1
z (gr(ψ−

z )) , γ+
z = Φ−1

z (gr(ψ+
z )).

We will argue by contradiction by supposing that for any z ∈ Γ, the path ϕ+
z meets

Γ in a point that is not the end point. In that case, for every z ∈ Γ, there exists a
sub-path δz : [0, 1] → Σ of ϕ+

z such that
δz(0) = z, δz(1) ∈ Γ, δz((0, 1)) ∩ Γ = ∅.

In particular we can define a first return map θ : Γ → Γ by setting θ(z) = δz(1).
We will prove that X = ⋃

z ∈ Γ δz([0, 1]) is a compact sub-surface (possibly with
boundary).

Note that for every z ∈ Γ, the function θ induces a homeomorphism from a
neighborhood of z in γ+

z to a neighborhood of θ(z) in γ−
θ(z) and consequently that

every point δz(t), t ∈ (0, 1), belongs to the interior of X. Moreover, reducing the Wz if
necessary, one can suppose that θ is continuous on γ+

z and that Xz = ⋃
z′ ∈ γ+

z
δz′([0, 1])

is compact. The compact set

X ′
z = Φ−1

z

({
(x, y) ∈ [0, 1]2

∣∣∣ψ−1
z (x) ⩽ y ⩽ ψ+

z (x)
})

satisfies the equality
X ′

z \ {z} =
⋃

z′ ∈ (Wz ∩ Γ)\γ+
z

δz′([0, 1]),

which implies that ⋃
z′ ∈ Wz ∩ Γ

δz′([0, 1]) = Xz ∪X ′
z.
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The loop Γ can be covered by finitely many Wz, z ∈ Γ, and so X is compact. By
compactness of X, reducing the Wz if necessary, one can suppose that the following
alternative holds:

(1) either γ−
z is contained in the image of θ and Wz is included in X,

(2) or γ−
z is disjoint from the image of θ and we have

X ∩Wz = Φ−1
z

({
(x, y) ∈ [0, 1]2

∣∣∣ψ−1
z (x) ⩽ y ⩽ 1

})
.

The fact that every point δz(t), z ∈ Γ, t ∈ (0, 1), belongs to the interior of X implies
that every point z of the frontier of X belongs to Γ. Moreover Wz satisfies the second
property. We have proved that X is a compact sub-surface (possibly with boundary).
Note that for every z ∈ ∂X it holds that ϕ+

z \ {z} ⊂ int(X) (in other terms the
foliation is pointing inward on the boundary).

By hypothesis, Σ is connected and different from R2/Z2. So, it does not bear a
non-singular foliation. We deduce that X is a surface with boundary. More precisely
it is homeomorphic to the closed annulus because it bears a non singular foliation.
Let Ψ : X → S2 be a topological embedding compatible with the usual orientations.
The loop Ψ(Γ) is homologous to 0 in S2 and one can define a dual function η :
S2 \ Ψ(Γ) → Z. Such a function is defined by the following property: for every z,
z′ in S2 \ Ψ(Γ) and every path β joining z to z′, the algebraic intersection number
Ψ(Γ) ∧ β is equal to η(z′) − η(z). Let U be a connected component of S2 \ Ψ(Γ)
where η reaches its maximum. The set Ψ(Γ) being connected, the closure of U is a
topological disk. Moreover the fact that η reaches its maximum in U implies that
for every z ∈ ∂U it holds that ϕ+

z \ {z} ⊂ U . So U is not a connected component
of S2 \ Ψ(X) and it holds that U ⊂ ψ(X). Summarizing, we have found a closed
topological disk bearing a non-singular foliation pointing inward on the boundary.
We have got a contradiction. □

Let us explain how to construct the simple loop Γ∗, associated to γ1, that appears
in Proposition 3.3. As γ1 is positively recurrent, there exist two numbers c1 < c′

1,
with c1 > a1, such that ϕγ1(c1) = ϕγ1(c′

1) (see Figure 3.4 for these different points). It
implies that γ1|[c1,c′

1] is equivalent to a transverse path γ∗ : [c1, c
′
1] → Σ such that

γ∗(c1) = γ∗(c′
1). To get γ∗, one can modify γ1 on a left neighborhood of c′

1, the
modification taking place in a flow box containing the segment of leaf joining γ1(c1)
to γ1(c′

1). The set

X =
{
(t, t′) ∈ [c1, c

′
1]2
∣∣∣ t < t′ and γ∗(t) = γ∗(t′)

}
is non empty (because it contains (c1, c

′
1)) and compact. Indeed, it is closed in

{(t, t′) ∈ [c1, c
′
1]2 | t < t′}, an its closure in the compact set {(t, t′) ∈ [c1, c

′
1]2 | t ⩽ t′}

does not contain any couple (t, t). The function (t, t′) 7→ t′ − t being continuous
and positive on X, reaches its minimum at a couple (c′′

1, c
′′′
1 ). So, replacing (c1, c

′
1)

with (c′′
1, c

′′′
1 ) if necessary, one can always suppose that γ∗(t) ̸= γ∗(t′) if t < t′ and

(t, t′) ̸= (c1, c
′
1). One defines a continuous map Γ∗ : T → S by setting Γ∗(t + Z) =

γ∗((1 − t)c1 + tc′
1) if t ∈ [0, 1]. This map being injective, it is a simple loop transverse

to F . We denote B the union of leaves met by Γ∗.
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γ̃1(c1)
γ̃1(c′

1)

γ̃1(d1)

T
γ̃∗

γ̃1(a1) γ̃1

Uγ̃1
Rγ̃1(e′′

1)

Rγ̃1(e′
1)

B̃

Figure 3.4. The different objects appearing in the proof of Proposition 3.3,
Lemma 3.6 and Claim 3.7. The leaves are in orange.

By hypothesis there exist two lifts γ̃1 and γ̃2 of respectively γ1 and γ2 to Σ̃ such
that γ̃1|[a1,+∞) and γ̃2|[a2,b2) are equivalent. We denote γ̃∗ the lift of Γ∗ that contains
γ̃1(c1). Then we consider the deck transformation T and the T -strip B̃ associated to
γ̃∗. Note that T is primitive because Γ∗ is simple.

Lemma 3.6. — The path γ̃1|[c1,+∞) is included in B̃.

Proof. — We will argue by contradiction and suppose it is not. Then there exists
d1 > c′

1, uniquely defined, such that γ̃1(d1) /∈ B̃ and γ̃1|[c1,d1) ⊂ B̃ (see Figure 3.4).

Claim 3.7. — There exists a deck transformation R ∈ G and real numbers
e1 < e′

1, with e1 ⩾ a1, such that either Rγ̃1|[e1,e′
1] draws and crosses B̃, or it draws

and visits B̃.

Proof. — Note that to prove this claim one has to find R ∈ G and e1 < e′
1 such

that Rγ̃1|[e1,e′
1] draws B̃ and both Rγ̃1(e1) and Rγ̃1(e′

1) do not belong to B̃.
As γ1 is positively recurrent, there exist real numbers e′′

1 < e′
1, with e′′

1 > d1,
and a deck transformation R ∈ G such that Rγ̃1|[e′′

1 ,e′
1] is equivalent to γ̃1|[c1,d1]; in

particular:
• γ̃1|[c1,c′

1] is equivalent to a subpath of Rγ̃1|[e′′
1 ,e′

1];
• Rγ̃1([e′′

1, e
′
1)) ⊂ B̃ and Rγ̃1(e′

1) /∈ B̃.
To prove the claim, it is sufficient to show that Rγ̃1([a1, e

′
1)) ̸⊂ B̃, because in that

case there exists e1 ∈ [a1, e
′′
1] such that Rγ̃1((e1, e

′
1)) ⊂ B̃ and Rγ̃1(e1) /∈ B̃.

We argue by contradiction. Suppose that Rγ̃1([a1, e
′
1)) is contained in B̃. Then

γ̃1([a1, e
′
1)) is contained in R−1(B̃). Recall that there exists t such that γ̃∗|[t,t+1]

is equivalent to γ̃1|[c1,c′
1] which is a subpath of γ̃1|[a1,e′

1). It implies that γ̃∗|[t,t+1]

is equivalent to a subpath of R−1γ̃∗ because γ̃1([a1, e
′
1)) is contained in R−1(B̃).

Lemma 3.4 applies and ensures that R−1 ∈ ⟨T ⟩. As B̃ is invariant by T , the condition
Rγ̃1([a1, e

′
1)) ⊂ B̃ gives γ̃1([a1, e

′
1)) ⊂ B̃. This contradicts the condition γ̃1(d1) /∈ B̃,

because a1 < d1 < e′
1. □
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As γ1 is positively recurrent, there exist sequences (e1,n)n⩾ 0 and (e′
1,n)n⩾ 0 with

a1 < e1,n < e′
1,n < e1,n+1, and a sequence (Rn)n⩾ 0 of deck transformations, such that

Rnγ̃1|[e1,n,e′
1,n] is equivalent to Rγ̃1|[e1,e′

1]. As γ̃1 accumulates on γ̃2, a similar statement
holds for γ̃2: there exist sequences (e2,n)n⩾ 0 and (e′

2,n)n⩾ 0 with a2 < e2,n < e′
2,n <

e2,n+1 < b2 such that Rnγ̃2|[e2,n,e′
2,n], is equivalent to Rγ̃1|[e1,e′

1]. Note that the Rn are
all different because every leaf of F̃ intersects γ̃2([a2, b2]) at most once.

We have two possibilities given by Claim 3.7: either Rγ̃1|[e1,e′
1] draws and crosses

B̃, or it draws and visits B̃.
Suppose that Rγ̃1|[e1,e′

1] draws and crosses B̃. In this case, for any n ∈ N, the
path Rnγ̃2|[e2,n,e′

2,n] intersects γ̃∗. Replacing Rn with T kn ◦Rn for a certain kn ∈ Z if
necessary, one can suppose that Rnγ̃2|[e2,n,e′

2,n] intersects γ̃∗|[t,t+1] and so R−1
n (γ̃∗|[t,t+1])

intersects γ̃2([a2, b2]). It contradicts the fact that the action of G on compact subsets
is proper.

Suppose now that Rγ̃1|[e1,e′
1] draws and visits B̃. Then Rγ̃1|[e1,e′

1] and TRγ̃1|[e1,e′
1]

have an F̃ -transverse intersection. One deduces that for any n ∈ N, one has
Rnγ̃2|[e2,n,e′

2,n] and TRγ̃1|[e1,e′
1] have an F̃ -transverse intersection becauseRnγ̃2|[e2,n,e′

2,n]

and Rγ̃1|[e1,e′
1] are equivalent. Consequently, it holds that Rnγ̃2|[e2,n,e′

2,n] ∩TRγ̃1|[e1,e′
1]

≠ ∅ and so that Rnγ̃2|[a2,b2] ∩ TRγ̃1|[e1,e′
1] ̸= ∅. It contradicts once again the fact

that the action of G on compact subsets is proper. This finishes the proof of
Lemma 3.6. □

By Lemma 3.6, we know that γ̃1|[c1,+∞) stays in B̃. We first prove that γ̃1 cannot
accumulate in γ̃∗.

Indeed, otherwise, as γ1 is positively recurrent, there exist deck transformations
(Rn)n⩾ 0 ∈ G and parameters dn < d′

n both going to +∞ such that γ̃1|[dn,d′
n] is

equivalent to Rnγ̃1|[c1,c′
1], which is itself equivalent to Rnγ̃∗|[t,t+1]. The fact that γ̃1

accumulates in γ̃∗ implies that Rn /∈ ⟨T ⟩ eventually. Recall that for any n, the path
γ̃1|[dn,d′

n] is equivalent to a subpath of γ̃∗; this allows to apply Lemma 3.4 to the
simple path Γ∗, which implies that Rn ∈ ⟨T ⟩, a contradiction.

Hence, there exists t1 ∈ R such that γ̃1|[c1,+∞) is equivalent to γ̃∗|[t1,+∞). Moreover
it is equivalent to γ̃2|[c2,b2), where c2 ∈ [a2, b2]. It implies that ϕ̃γ̃2(b2) ⊂ ∂B̃. We do
not lose generality by supposing that ϕ̃γ̃2(b2) ⊂ ∂B̃L. We choose a′

2 ∈ [c2, b2) such
that γ̃2([a′

2, b2]) ∈ L(γ̃∗).

Lemma 3.8. — For every leaf ϕ̃ ⊂ ∂B̃L it holds that B̃ ⊂ R(ϕ̃).

Proof. — See Figure 3.5 for an example of configuration of the proof. Suppose
that there exists a leaf ϕ̃0 ⊂ ∂B̃L such that B̃ ⊂ L(ϕ̃). One can find a transverse
path γ̃3 : [a3, b3] → Σ̃ such that γ̃3(a3) ∈ ϕ̃0 and γ̃3((a3, b3]) ⊂ B̃. Such a path enters
in B̃ by the left. By taking a smaller b3 if necessary, we can suppose moreover that
γ̃3([a3, b3]) ⊂ L(γ̃∗). We will prove that it prevents γ̃1 accumulating positively in γ̃2.
If λ̃ is an oriented line of B̃, denote RB̃(λ̃) the connected component of B̃ \ λ̃ located
on the right of λ̃ and LB̃(λ̃) the connected component of B̃ \ λ̃ located on the left
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γ̃∗

λ̃2

λ̃3

γ̃2 γ̃3

γ̃3(a3)

ϕ̃0

γ̃2(b2)

z̃2
z̃3

ϕ̃+
γ̃3(b3)ϕ̃+

γ̃2(a′
2)

B̃

γ̃3(b3)
γ̃2(a′

2)

ϕ̃

Figure 3.5. The configuration of the proof of Lemma 3.8.

of λ̃. One defines two oriented lines λ̃2, λ̃3 of B̃ by setting

(3.1) λ̃2 =
(
γ̃2|[a′

2,b2)
)−1

ϕ̃+
γ̃2(a′

2), λ̃3 = γ̃3|(a3,b3] ϕ̃
+
γ̃3(b3).

The line γ̃∗ intersects ϕ̃γ̃2(a′
2) in a unique point z̃2 and we have z̃2 ∈ ϕ̃+

γ̃2(a′
2). Similarly,

γ̃∗ intersects ϕ̃γ̃3(b3) in a unique point z̃3 and we have z̃3 ∈ ϕ̃+
γ̃3(b3). Denote σ̃2 ⊂ ϕ̃γ̃2(a2)

the segment that joins γ̃2(a′
2) to z̃2 and σ̃3 ⊂ ϕ̃γ̃(b3) the segment that joins γ̃3(b3) to

z̃3. By compactness of all segments, if n is large enough, then we have
(3.2) T n

(
γ̃3([a3, b3]) ∪ σ̃3

)
∩
(
γ̃2([a′

2, b2]) ∪ σ̃2
)

= ∅.

Moreover, one can suppose that
T nϕ̃γ̃3(b3) ⊂ L

(
ϕ̃γ̃2(a′

2)
)
.

The fact that γ̃2([a′
2, b2]), σ̃2, γ̃3([a3, b3]) and σ̃3 are included in L(γ̃∗) while ϕ̃+

z̃2 and
ϕ̃+

z̃3 are included in R(γ̃∗) tells us that

(3.3) T nϕ̃+
z̃3 ∩ (γ̃2([a′

2, b2]) ∪ σ̃2) = T n (γ̃3([a3, b3]) ∪ σ̃3) ∩ ϕ̃+
z̃2 = ∅.

By combining (3.1), (3.2) and (3.3), we deduce that the lines λ̃2 and T nλ̃3 are
disjoint.

The sub-path of γ̃∗ that joins z̃2 to T nz̃3 is disjoint from λ̃2 and T nλ̃3 but at its
endpoints, entering in LB̃(λ̃2) at z̃2 and leaving RB̃(T nλ̃3) at T nz̃3. Consequently
the inclusion LB̃(T nλ̃3) ⊂ LB̃(λ̃2) holds. Every leaf ϕ̃ ⊂ LB̃(ϕ̃T nz̃3) is disjoint from
T nλ̃3. It is contained in L(T nλ̃3) because the sub-path of γ̃∗ that joins ϕ̃T n(z̃3) to ϕ̃ is
disjoint from T nλ̃3 but at T nz̃3 and enters in LB̃(T nλ̃3) at T nz̃3. The contradiction
comes from the fact that ϕ̃ must intersect γ̃2|[a′

2,b2) because ϕ̃ ⊂ LB̃(ϕ̃z̃2). □

Lemma 3.9. — The set B is an open annulus of Σ.
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Proof. — Suppose it is not. Then there exists a deck transformation T ′ /∈ ⟨T ⟩
of Σ̃ such that T ′B̃ ∩ B̃ ≠ ∅. As B̃ is the set of leaves met by γ̃∗, it implies the
existence of t ∈ R such that T ′γ̃∗(t) ∈ B̃. The line γ̃∗ lifts the simple loop Γ∗ and
so we have T ′γ̃∗ ∩ γ̃∗ = ∅. Moreover, there is at least one leaf of F̃ that is met
both by γ̃∗ and T ′γ̃∗. Consequently, one of the following inclusions L(T ′γ̃∗) ⊂ L(γ̃∗),
L(γ̃∗) ⊂ L(T ′γ̃∗) holds. Replacing T ′ by T ′−1 if necessary, one can suppose that the
first inclusion holds, which implies that T ′γ̃∗ ⊂ L(γ̃∗).

Note that T ′γ̃∗ cannot accumulate on γ̃∗ (neither positively nor negatively) because
the natural lift γ∗ of Γ∗ is recurrent and so, by Lemma 3.4, cannot accumulate on
itself. Moreover it cannot be equivalent to γ̃∗ neither at +∞ nor at −∞ (by using
Lemma 3.4). It cannot cross B̃ because T ′γ̃∗ ∩ γ̃∗ = ∅. It remains to prove that it
cannot visit B̃.

Using the fact that T ′γ̃∗ ⊂ L(γ̃∗), the line T ′γ̃∗ must visit B̃ by the left if it
visits B̃. This contradicts Lemma 3.8: no transverse trajectory enters in B̃ by the
left side. □

To prove Proposition 3.3, it remains to prove that γ1 is entirely contained in B
(which will imply that γ̃1 is entirely contained in B̃). But this is implied by the facts
that γ1|[a1,+∞) is contained in B and that γ1 is recurrent. This finishes the proof of
Proposition 3.3. □

The following results (and others related to the accumulation property) were
already stated by Lellouch in [Lel23, Section 2.1.1]. Using the precise description
given here, we get them as a trivial corollary.

Corollary 3.10. — Suppose that γ1 : R → Σ is a positively recurrent transverse
path that accumulates positively on a transverse path γ2 : R → Σ. Then there is
no positively or negatively recurrent transverse path γ0 : R → Σ that accumulates
positively or negatively on γ1. In particular a positively recurrent transverse path
does not accumulate on itself. Also, the accumulated leaf ϕγ2(b2) is not met by γ1.

Proof. — To prove the first point, it suffices to note that by Proposition 3.3, the
function t 7→ ϕγ1(t) is locally injective. The last point comes from the fact that γ1 is
contained in B while ϕγ2(b2) is contained in the frontier of B. □

4. Forcing theory

4.1. Maximal isotopies and transverse foliations

Let Σ be an oriented boundaryless surface, not necessarily closed, not necessarily
connected and f a homeomorphism isotopic to the identity. Recall that if I =
(ft)t ∈ [0,1] is an identity isotopy of f , the trajectory I(z) of a point z ∈ Σ is the path
t 7→ ft(z) defined on [0, 1]. We can define the whole trajectory of z as being the path

IZ(z) =
∏

k ∈Z
I
(
fk(z)

)
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constructed by concatenation. More precisely, on every interval [k, k + 1], k ∈ Z, it
is defined by the formula:

IZ(z) : t 7→ ft−k

(
fk(z)

)
.

We define the fixed point set and the domain of I as follows:
fix(I) =

⋂
t ∈ [0,1]

fix(ft) , dom(I) = Σ \ fix(I).

Denote I the set of identity isotopies of f . We have a preorder on I defined as
follows: say that I ⪯ I ′ if

• fix(I) ⊂ fix(I ′);
• I ′ is homotopic to I relative to fix(I).

Let us state two important results. The first one is due to Béguin–Crovisier–Le
Roux [BCLR20] (see also [Jau14] for a weaker version). The second can be found
in [Cal05].

Theorem 4.1. — For every I ∈ I, there exists I ′ ∈ I such that I ⪯ I ′ and such
that I ′ is maximal for the preorder.

Remark. — An isotopy I is maximal if and only if, for every z ∈ fix(f)\fix(I), the
loop I(z) is not contractible in dom(I). Equivalently, if we lift the isotopy I|dom(I) to
an identity isotopy Ĩ = (f̃t)t ∈ [0,1] on the universal covering space d̃om(I) of dom(I),
the maximality of I means that f̃1 is fixed point free. Note that every connected
component of d̃om(I) must be a topological plane.

Theorem 4.2. — If I ∈ I is maximal, then there exists a topological oriented
singular foliation F on M such that

• the singular set sing(F) coincides with fix(I);
• for every z ∈ dom(I), the trajectory I(z) is homotopic in dom(I), relative to

the ends, to a transverse path γ joining z to f(z).
We will say that F is transverse to I. It can be lifted to a non singular foliation F̃

on d̃om(I) which is transverse to Ĩ. This last property is equivalent to saying that
every leaf ϕ̃ of F̃ is a Brouwer line of the lift f̃ induced by I, as defined in Section 2.1.
The path γ is uniquely defined up to equivalence: if γ1 and γ2 are two such paths
and if z ∈ d̃om(I) lifts z ∈ dom(I), then the respective lifts γ̃1, γ̃2 of γ1, γ2 starting
at z̃ join this point to f̃(z̃) and consequently meet the same leaves of F̃ . We will
write γ = IF(z) and call this path the transverse trajectory of z. It is defined, up to
equivalence, on [0, 1]. For every n ⩾ 1, we will define by concatenation the path

In
F(z) = IF(z)IF(f(z)) · · · IF

(
fn−1(z)

)
.

We can also define the whole transverse trajectory of z as being the path
IZF(z) =

∏
k ∈Z

IF
(
fk(z)

)
coinciding on [k, k+ 1], k ∈ Z, with IF(fk(z)) after translation by −k. Similarly, we
define

Ĩ
n

F̃(z̃) = Ĩ F̃(z̃)Ĩ F̃

(
f̃(z̃)

)
· · · Ĩ F̃

(
f̃n−1(z̃)

)
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and
ĨZF̃(z̃) =

∏
k ∈Z

Ĩ F̃

(
f̃k(z̃)

)
.

Recall that a flow-box of F̃ is an open disk Ũ of d̃om(I) such that the foliation
F̃ |Ũ is homeomorphic to the foliation of R2 by verticals. The following results, easy
to prove (see [CT18, Lemma 17]), will be useful in the article.

Proposition 4.3. — For every z̃ ∈ d̃om(I) and every pair of integers k1 < k2
there exists a neighborhood Ũ of z̃ such that for every z̃′ ∈ Ũ , the path ĨZF̃(z̃)|[k1,k2]

is a subpath (up to equivalence) of ĨZF̃(z̃′)|[k1−1,k2+1].

Proposition 4.4. — For every z̃ ∈ d̃om(I) and every neighborhood Ṽ of z̃, there
exists a flow-box Ũ ⊂ Ṽ containing z̃, such that for every z̃′ ∈ Ũ , the path ĨZF̃(z̃′)
intersects every leaf that meets Ũ .

Remind that if f is a homeomorphism of Σ, a point z is positively recurrent if
z ∈ ω(z) and negatively recurrent if z ∈ α(z). In the case where z ∈ α(z) ∩ ω(z),
we say that z is recurrent. For instance, if µ is an invariant finite Borel measure
on S, then µ-almost every point is recurrent. The following result is an immediate
consequence of Proposition 4.3.

Proposition 4.5. — If z ∈ dom(I) is positively recurrent, then IZF(z) is posi-
tively recurrent. If z is negatively recurrent, then IZF(z) is negatively recurrent.

Let us state now the key lemma of [CT18, Proposition 20] that is the elementary
brick of the forcing theory and which will be used later.

Lemma 4.6. — Suppose that there exist z̃1, z̃2 in d̃om(I) and positive integers n1,
n2 such that Ĩn1

F̃ (z̃1) and Ĩn2
F̃ (z̃2) have an F̃ -transverse intersection at Ĩn1

F̃ (z̃1)(t1) =
Ĩn2

F̃ (z̃2)(t2). Then there exists z̃3 ∈ d̃om(I) such that Ĩn1+n2
F̃ (z̃3) is equivalent to

Ĩn1
F̃ (z̃1)|[0,t1]Ĩ

n2
F̃ (z̃2)|[t2,n2].

Let us give now the principal result of [CT22]. Here, G is the group of covering
automorphisms of d̃om(I) and [T ]FHL ∈ FHL(S) is the free homotopy class (in S)
of a loop Γ ⊂ dom(I) naturally defined by T (see Subsection 2.5).

Theorem 4.7. — Suppose that there exists z̃ ∈ d̃om(I), T ∈ G \ {Id} and
r ⩾ 1 such that Ĩr

F̃(z̃) and T Ĩ
r

F̃(z̃) have an F̃ -transverse intersection at Ĩr

F̃(z̃)(a) =
T (Ĩr

F̃(z̃))(a′) where a′ < a. Then f admits a rotational horseshoe of type ([T ]FHL, r).

Proof. — What is proved in [CT22] is the following, where d̂om(I) = d̃om(I)/T
and f̂ is the homeomorphism of d̂om(I) induced by f̃ .

There exists r ⩾ 1 and an f̂ r-invariant compact set Ŷ such that
• f̂ r is an extension of the Bernoulli shift σ : {1, 2}Z → {1, 2}Z;
• the preimage of every q-periodic sequence of {1, 2}Z by the factor map contains

at least one q-periodic point of f̂ r;
• for every p/q ∈ [0, 1] ∩ Q written in an irreducible way, there exists ẑp/q ∈ Ŷ

such that f̃ rq(z̃p/q) = T p(z̃p/q) for some z̃p/q ∈ d̃om(I) lifting ẑp/q.
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The image Y of Ŷ by the covering projection π̂ : d̂om(I) → dom(I) is invariant by f r.
It is a topological horseshoe because π̂|Ŷ is a semi-conjugacy from f̂ r|Ŷ to f r|Y and
because every z ∈ Y has finitely many lifts in Ŷ (with an uniform bound s) because
Ŷ is compact. The loop of S naturally defined by Irq(zp/q), where zp/q = π̃(z̃p/q),
belongs to [T ]pFHL. Moreover, the f̂ r-orbit of ẑp/q has q points because p and q are
relatively prime. It projects onto the f r-orbit of zp/q, which has at least ⌈q/s⌉ points.
So, the period of zp/q (for f) is at least ⌈q/s⌉. □

Remark. — In particular, the theorem asserts the existence of a topological horse-
shoe, and so the positiveness of the topological entropy, in the case where there
exists z ∈ dom(I) such that IZF(z) has an F -transverse self-intersection. It was
proved in [CT18] that such a situation occurs in the case where there exist two
positively (or negatively) recurrent points z1, z2 in dom(I) such that IZF(z1) and
IZF(z2) have an F -transverse intersection. For example this happens if f preserves a
Borel probability measure with total support and if there exist two points z1, z2 in
dom(I) such that IZF(z1) and IZF(z2) have an F -transverse intersection. Indeed, by
Proposition 4.3, it is also the case for IZF(z′

1) and IZF(z′
2) if z′

1, z′
2 are close to z1, z2

respectively. But if f preserves a Borel probability measure λ with total support,
then λ-almost every point is recurrent and so, the set of recurrent points is dense.

What follows, which is stronger than what is said in the previous remark, is crucial
in [Lel23] and will also be fundamental in our study.

Corollary 4.8. — Suppose that Σ is a closed surface and that ν1, ν2 are ergodic
invariant probability measures. If there exists z1 ∈ dom(I) ∩ supp(ν1) and z2 ∈
dom(I) ∩ supp(ν2) such that IZF(z1) and IZF(z2) intersect F -transversally, then for
every neighborhood U of rotf (ν1) in H1(S,R), there exists T ∈ G\{Id} and r ⩾ 1 such
that [T ]/r ∈ U and such that f admits a rotational horseshoe of type ([T ]FHL, r).

Note that this corollary can be applied in the case where ν1 = ν2 and some
z ∈ dom(I) ∩ supp(ν1) is such that IZF(z) has an F -transverse self-intersection.

Proof. — Let j ∈ {1, 2}. One knows that νj-almost every point z′
j satisfies the

following properties:
• z′

j is recurrent;
• its orbit is dense in supp(νj);
• if z̃′

j ∈ d̃om(I) is a lift of z′
j, then there exists a sequence (Tj,i)i⩾0 in G and a

sequence (nj,i)i⩾ 0 in N \ {0} such that

lim
i→+∞

nj,i = +∞ , lim
i→+∞

[Tj,i]
nj,i

= rotf (νj) , lim
i→+∞

T−1
j,i f

nj,i(z̃′
j) = z̃′

j.

By Proposition 4.3 and the hypothesis of the corollary we know that IZF(z′
1) and

IZF(z′
2) intersect F -transversally. So there exists r′ ∈ N \ {0}, s1, s2 ∈ Z and two lifts

z̃′
1 and z̃′

2 of z′
1 and z′

2 such that Ĩr′

F̃(f̃ s1(z̃′
1)) and Ĩr′

F̃(f̃ s2(z̃′
2)) intersect F -transversally.

Denote z̃′′
j = f̃ sj (z̃′

j). See Figure 4.1 for a description of the proof configuration.
By Proposition 4.3, if i is large enough then, up to equivalence, Ĩr′

F̃(z̃′′
j ) is a subpath

of T−1
j,i Ĩ

r′+2
F̃ (f̃nj,i−1(z̃′′

j )). So T−1
1,i Ĩ

r′+2
F̃ (f̃n1,i−1(z̃′′

1)) and Ĩ
r′

F̃(z̃′′
2) have an F̃ -transverse
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γ̃i,i′

ĨZF(z̃3)

T−1
1,i Ĩ

Z
F(z̃′′

1)

ĨZF(z̃′′
2)

T−1
1,i z̃

′′
1

z̃′′
2

T−1
1,i T

−1
2,i′ ĨZF(z̃3)

z̃3

Figure 4.1. The configuration of the proof of Corollary 4.8. The orange lines are
leaves.

intersection at T−1
1,i Ĩ

r′+2
F̃ (f̃n1,i−1(z̃′′

1))(a) = Ĩ
r′

F̃(z̃′′
2)(b), as well as T−1

2,i Ĩ
r′+2
F̃ (f̃n2,i−1(z̃′′

2))
and Ĩr′

F̃(z̃′′
1) have an F̃ -transverse intersection at T−1

2,i Ĩ
r′+2
F̃ (f̃n2,i−1(z̃′′

2))(c) = Ĩ
r′

F̃(z̃′′
1)(d)

(we omit here the dependencies on i, i′ for briefness of notations).
Lemma 4.6 then implies that for any i, i′, there exists z̃3 ∈ d̃om(I) such that

Ĩ
2r′+2+n1,i+n2,i′

F̃ (z̃3) is equivalent to the path

γ̃i,i′ = T−1
1,i Ĩ

r′+1+n1,i

F̃ (z̃′′
1)|[0,n1,i−1+a] · Ĩr′+1+n2,i′

F̃ (z̃′′
2)|[b,r′+1+n2,i′ ].

Consider the parameter e ∈ [0, 2r′ + 3 + n1,i + n2,i′ ] such that the leaf that contains
ĨZF̃(z̃3)(e) is the leaf that contains T−1

1,i Ĩ
Z
F̃(z̃′′

1)(n1,i − 1 + a) = Ĩ
Z
F̃(z̃′′

2)(b). One can
always modify ĨZF̃(z̃3) close to this leaf in such a way that

ĨZF̃(z̃3)(e) = T−1
1,i Ĩ

Z
F̃(z̃′′

1)(n1,i − 1 + a) = Ĩ
Z
F̃(z̃′′

2)(b).
Note that if i, i′ are large enough, then n1,i −1+a ⩾ d, and b ⩽ n2,i′ −1+c. It implies
that T1,iγ̃i,i′ has an F̃ -transverse intersection with T−1

2,i′ γ̃i,i′ at a point T1,iγ̃i,i′(e′) =
T−1

2,i′ γ̃i,i′(e′′), where e′ < e < e′′. So, γ̃i,i′ has an F̃ -transverse intersection with
T2,i′T1,iγ̃i,i′ at a point γ̃i,i′(e′′) = T2,i′T1,iγ̃i,i′(e′), where e′ < e′′. By Theorem 4.7, there
exists s ⩾ 1 such that f admits a rotational horseshoe of type ([T2,i′T1,i]FHL, 2r′ +
2+n1,i +n2,i′). If i is large enough (i′ being fixed but large enough to ensure that the
above properties hold), then we have [T2,i′T1,i]FHL/(2r′ + 2 + n1,i + n2,i′) ∈ U . □

Let us finish this quick introduction to some forcing theory tools by the following
theorem of Lellouch’s thesis [Lel23, Théorème C]:

Theorem 4.9. — Suppose that g ⩾ 2. If f ∈ Homeo∗(S) preserves two Borel
probability measures µ1 and µ2 such that rotf(µ1) ∧ rotf(µ2) ̸= 0, then f has a
topological horseshoe. In particular, f has infinitely many periodic points.
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Moreover, if µ1 is ergodic, then these periodic points can be supposed to have
rotation vectors arbitrarily close to rotf(µ1) and with arbitrarily large period: for
every neighbourhood U of rotf(µ1) in H1(S,R), there exists a rotational horseshoe
of type (κ, r) with [κ]/r ∈ U .

Here ∧ is the intersection form. It is the symplectic form on H1(S,R) defined by
the property that if Γ1 and Γ2 are two loops in S, then [Γ1] ∧ [Γ2] is the algebraic
intersection number between Γ1 and Γ2. Equivalently, up to a multiplicative constant,
it is the form induced via Poincaré duality by ∧ : H1(S,R) ×H1(S,R) → H2(S,R).
The proof of Theorem 4.9 strongly uses Corollary 4.8. Under the hypotheses of the
theorem, one can deduce by using the ergodic decompositions of µ1 and µ2 that there
exist two ergodic probability measures ν1 and ν2 such that rotf(ν1) ∧ rotf(ν2) ̸= 0.
One must prove that the hypotheses of Corollary 4.8 are satisfied under the previous
hypothesis. The fact that ν1-almost every point is recurrent implies that its complete
transverse trajectory is recurrent. In particular this trajectory draws transverse
loops Γ. The existence of F -transverse intersections is proved by studying how
complete transverse trajectories enter and leave the domain B defined as the union
of leaves that meet Γ. In the present article, we will use the same kinds of arguments
and will develop the ideas appearing in [Lel23]. In the next subsection we will
introduce the tools necessary to do so.

4.2. Forcing theory in the annular covering space

We suppose now that Σ is an oriented closed surface and denote it S. We keep
the other notations. We consider T ∈ G \ Id and a T -strip B̃ ⊂ d̃om(I) (we suppose
that T coincides with the identity on the connected components of dom(I) that do
not contain B̃). We fix a T -invariant line γ̃∗ ⊂ B̃. We define

• the surface d̂om(I) = d̃om(I)/T ;
• the projections π : d̃om(I) → d̂om(I) and π̂ : d̂om(I) → dom(I);
• the identity isotopy Î on d̂om(I) lifted by Ĩ;
• the lift f̂ of f |dom(I) to d̂om(I) lifted by f̃ ;
• the foliation F̂ on d̂om(I) lifted by F̃ ;
• the loop Γ̂∗ = π(γ̃∗).

The complement of Γ̂∗ in its connected component has two annular connected com-
ponents L(Γ̂∗) and R(Γ̂∗). We denote ∞̂L the common end of d̂om(I) and L(Γ̂∗) and
∞̂R the common end of d̂om(I) and R(Γ̂∗).

We consider
• the set W̃R→L of points z̃ ∈ d̃om(I) such that ĨZF̃(z̃) crosses B̃ from the right

to the left;
• the set W̃L→R of points z̃ ∈ d̃om(I) such that ĨZF̃(z̃) crosses B̃ from the left

to the right;
• the set W̃R→R of points z̃ ∈ d̃om(I) such that ĨZF̃(z̃) visits B̃ on the right;
• the set W̃L→L of points z̃ ∈ d̃om(I) such that ĨZF̃(z̃) visits B̃ on the left;
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• the set W̃D of points z̃ ∈ d̃om(I) such that ĨZF̃(z̃) draws B̃.
Note that all these sets are invariant by f̃ and by T . Note also that they are open,
as a consequence of Proposition 4.3.

We define the respective projections in d̂om(I)
ŴR→L , ŴL→R , ŴR→R, ŴL→L, ŴD,

that are open and invariant by f̂ and the respective projections in dom(I)
WR→L , WL→R , WR→R, WL→L, WD,

that are open and invariant by f .
Finally, we define

• the set ∞̂R → ∞̂L of points ẑ ∈ d̂om(I) such that
lim

k→−∞
f̂k(ẑ) = ∞̂R , lim

k→+∞
f̂k(ẑ) = ∞̂L;

• the set ∞̂L → ∞̂R of points ẑ ∈ d̂om(I) such that
lim

k→−∞
f̂k(ẑ) = ∞̂L , lim

k→+∞
f̂k(ẑ) = ∞̂R.

We will state some results that have been proven in [Lel23] and will add some
others that do not explicitly appear there. The following result has been proved
in [Lel23] (Proposition 2.2.12).

Lemma 4.10. — Suppose that ν ∈ M(f) is ergodic and that ν-almost every
point z has a lift z̃ ∈ d̃om(I) such that ĨZF̃(z̃) is equivalent in +∞ or −∞ to γ̃∗.
Then there exists a ⩾ 0(2) such that rot(ν) = a[T ].

The next one also has been proved in [Lel23] (Lemma 2.2.3 and Proposition 2.2.4).

Lemma 4.11. — Suppose that ν ∈ M(f) is ergodic. We have the following:
(1) if [T ] ∧ rotf (ν) > 0, then ν(π̂(∞̂R → ∞̂L)) = 1;
(2) if [T ] ∧ rotf (ν) < 0, then ν(π̂(∞̂L → ∞̂R)) = 1.

Let us prove now:

Lemma 4.12. — If there exists λ ∈ M(f) with total support such that [T ] ∧
rotf (λ) = 0, then every essential simple loop of d̂om(I) meets its image by f̂ .

Proof. — We will use the second interpretation of rotation vectors introduced
in the introduction. We furnish S with a Riemannian metric and for every points
z, z′ in S, we choose a path γz,z′ joining z to z′ in such a way that the lengths
of the paths γz,z′ are uniformly bounded. For every z ∈ S, we consider the loop
Γn(z) = In(z)γfn(z),z. We know that for µ-almost every point z ∈ S, the sequence
[Γn(z)]/n converges to rotf (z) ∈ H1(S,R) and that rotI(λ) =

∫
S rotf (z) dλ(z).

Suppose that there exists an essential simple loop Γ̂ such that f̂(Γ̂)∩ Γ̂ = ∅. Orient
Γ̂ in such a way that ∞̂L is the common end of d̂om(I) and L(Γ̂) and ∞̂R the common

(2)The proof given in [Lel23] states that a ⩾ 0 but we will slightly improve it in Lemma 4.17 to
obtain a > 0.
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end of d̂om(I) and R(Γ̂). There is no loss of generality by supposing that f̂(Γ̂) is
included in L(Γ̂). Consider the line γ̃ of S̃ that lifts Γ̂. We have f̃(L(γ̃)) ⊂ L(γ̃) and
more generally

(4.1) f̃
(
L(T ′(γ̃))

)
⊂ L(T ′(γ̃)) for every T ′ ∈ G

because f̃ commutes with T ′.
If γ̃′ is an oriented line of d̃om(I), recall that d̃om(I)γ̃′ is the connected component

of d̃om(I) that contains γ̃′. Denote ηγ̃′ the function defined on d̃om(I)γ̃′ that is
equal to 0 on R(γ̃′), to 1 on L(γ̃′) and to 1/2 on γ̃′. Noting that T ′′(γ̃) = T ′(γ̃)
if T ′′−1T ′ ∈ ⟨T ⟩, one deduces that the notation τ γ̃ has a sense for every left coset
τ ∈ G/⟨T ⟩. Now fix z ∈ S and a lift z̃ of z to S̃. For every n ⩾ 1, consider the lift of
γfn(z),z that starts from f̃n(z). It ends in a point Tnz̃. Observe now that

[T ] ∧ [Γn(z)] =
∑

τ ∈ G/⟨T ⟩

(
ητ γ̃(Tn(z̃)) − ητ γ̃(z̃)

)
,

the sum being finite. It implies that

[T ] ∧ rotf (z) = lim
n→+∞

1
n

∑
τ ∈ G/⟨T ⟩

(
ητ γ̃(Tn(z̃)) − ητ γ̃(z̃)

)
.

The paths γz,z′ having a length uniformly bounded, we deduce that the quantity∑
τ ∈ G/⟨T ⟩

(
ητ γ̃(Tn(z̃)) − ητ γ̃

(
f̃n(z̃)

) )
is uniformly bounded. It implies that

[T ] ∧ rotf (z) = lim
n→+∞

1
n

∑
τ ∈ G/⟨T ⟩

(
ητ γ̃

(
f̃n(z̃)

)
− ητ γ̃(z̃)

)
.

Each function ητ γ̃ ◦ f̃−ητ γ̃ is non negative on d̃om(I)γ̃ (because of (4.1)) and positive
in the strip between f̃−1(γ̃) and γ̃. So, the function z 7→ ∑

τ ∈ G/⟨T ⟩(ητ γ̃(f̃(z̃))−ητ γ̃(z̃))
is non negative on dom(I) and positive on a non empty open set (the sum does not
depend on the choice of the lift z̃). Using Birkhoff Ergodic Theorem, and because
supp(λ) = S, we deduce that

[T ] ∧ rotf (λ) =
∫

S
[T ] ∧ rotf (z) dλ(z)

=
∫

S

∑
τ ∈ G/⟨T ⟩

(
ητ γ̃(f̃(z̃)) − ητ γ̃(z̃)

)
dλ(z) > 0.

We have got a contradiction. □

Lemma 4.13. — Suppose that ν ∈ M(f) and ν ′ ∈ M(f) are ergodic and satisfy

ν
(
WR→L ∩WD

)
= 1 , [T ] ∧ rotf (ν ′) < 0.

Then one of the following assertions holds:
• for ν-almost every point z and ν ′-almost every point z′, the paths IZF(z) and
IZF(z′) have an F -transverse intersection;
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• for ν-almost every point z and ν ′-almost every point z′, the path IZF(z′)
accumulates on IZF(z).

Proof. — Define three f -invariant sets W1, W2, W3 as follows:
• z′ ∈ W1 if it has a lift z̃′ such that ĨZF̃(z̃′) is equivalent to γ̃∗ at +∞ or at

−∞;
• z′ ∈ W2 if it has a lift z̃′ such that ĨZF̃(z̃′) accumulates on γ̃∗ positively or

negatively;
• z′ ∈ W3 if it has a lift z̃′ such that ĨZF̃(z̃′) crosses B̃ from the left to the right.

By Lemma 4.11, we know that ν ′-almost every point z′ has a lift ẑ′ ∈ d̂om(I)
that belongs to ∞̂L → ∞̂R. Consequently, using Lemma 3.1, we get ν ′(W1 ∪ W2 ∪
W3) = 1, which implies by ergodicity of ν ′ that one of the sets W1, W2, W3 has ν ′-
measure 1. By Lemma 4.10, ν ′(W1) ̸= 1 because rotf (ν ′) /∈ R[T ] (by the hypothesis
[T ] ∧ rotf (ν ′) < 0). If ν ′(W2) = 1, then the second item of the lemma holds because
for every leaf ϕ̃ ⊂ B̃, ν-almost every point z belongs to WD and so has a lift
z̃ ∈ d̃om(I) such that ĨZF̃(z̃) meets ϕ̃. Indeed, the fact that z belongs to WD means
that there exist a lift z̃ of z and t ∈ R such that ĨZF̃(z̃) meets ϕ̃γ̃∗(t) and T ϕ̃γ̃∗(t),
which is nothing but ϕ̃γ̃∗(t+1). So ĨZF̃(z̃) meets every leaf ϕ̃γ̃∗(t′), where t ⩽ t′ ⩽ t+ 1.
One deduces that ĨZF̃(T kz̃) meets every leaf ϕ̃γ̃∗(t′), where t+ k ⩽ t′ ⩽ t+ k + 1. So
every leaf contained inside B̃ is met by at least one complete transverse trajectory
of a lift of z. By Proposition 3.2, if ν ′(W3) = 1, then the first item of the lemma
holds. □

Corollary 4.14. — Suppose that ν ∈ M(f) is ergodic and satisfies

ν
(
WR→L ∩WD

)
= 1 , [T ] ∧ rotf (ν) < 0.

Then, for ν-almost every point z, the path IZF(z) has an F -transverse self intersection.

Proof. — It suffices to apply Lemma 4.13 with ν ′ = ν and use the fact that a
recurrent transverse path does not accumulate on itself (Corollary 3.10). □

This result is still true if ν(WR→L ∩WD) = 1 and [T ] ∧rotf (ν) = 0. More precisely
we have (see [Lel23], Proposition 3.3.1).

Lemma 4.15. — Suppose that ν ∈ M(f) is ergodic and satisfies

ν
(
WR→L ∩WD

)
= 1 , [T ] ∧ rotf (ν) = 0.

Then ν(WL→R) = 1 and for ν-almost every point z, the path IZF(z) has an F -
transverse self intersection.

Remark. — The conclusion ν(WL→R) = 1 is not explicitly stated in [Lel23],
Proposition 3.3.1. But, as explained by the author at the beginning of the proof, it
is the key point that permits to get the second conclusion. The first condition says
that there are points “that go up”, which implies by the second condition, that there
are points “that go down”. We have a situation very similar to the one that occurs
under the hypothesis of Corollary 4.14, but more subtle arguments of ergodic theory
are needed.
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Lemma 4.16. — Suppose that there exists λ ∈ M(f) such that supp(λ) = S and
[T ] ∧ rotf (λ) = 0. If ν ∈ M(f) is ergodic and satisfies

ν
(
WR→L ∩WD

)
= 1 , [T ] ∧ rotf (ν) > 0,

then there exists ν ′ ∈ M(f) ergodic, such that one of the following assertions holds:
• for ν-almost every point z and ν ′-almost every point z′, the paths IZF(z) and
IZF(z′) have an F -transverse intersection;

• for ν-almost every point z and ν ′-almost every point z′, the path IZF(z′)
accumulates on IZF(z).

Proof. — By hypothesis WR→L ∩ WD is a non empty invariant open set and so
we have

λ
(
WR→L ∩WD

)
> 0.

Suppose first that [T ]∧ rotf (λW R → L ∩ W D) ⩽ 0. Using the ergodic decomposition of
λW R → L ∩ W D , we deduce that there exists ν ′ ∈ M(f) ergodic such that ν ′(WR → L ∩
WD) = 1 and [T ] ∧ rotf (ν ′) ⩽ 0. If [T ] ∧ rotf (ν ′) < 0, we can apply Lemma 4.13 and
so the conclusion of Lemma 4.16 holds. If [T ]∧rotf (ν ′) = 0 we know, by Lemma 4.15,
that ν ′(WL → R) = 1, and so the first item of the conclusion of Lemma 4.16 holds
thanks to Proposition 3.2.

Suppose now that [T ] ∧ rotf (λW R → L ∩ W D) > 0. From the equalities
[T ] ∧ rotf (λ) = 0

and
rotf (λfix(I)) = 0 if λ(fix(I)) ̸= 0,

we deduce that
λ
(
dom(I) \

(
WR → L ∩ WD

))
> 0

and
[T ] ∧ rotf

(
λdom(I)\(W R → L ∩ W D)

)
< 0.

Using the ergodic decomposition of λdom(I)\(W R → L ∩ W D), we deduce that there exists
ν ′ ∈ M(f) such that [T ]∧ rotf (ν ′) < 0. Here again we refer to Lemma 4.13 to ensure
that the conclusion of Lemma 4.16 holds. □

We conclude this section with a new result that improves the conclusion of Propo-
sition 3.3 under the hypothesis that the paths we consider are transverse trajectories
associated to typical orbits for some measures. Let us begin with a lemma.

Lemma 4.17. — Let ν be an f -invariant ergodic probability measure such that
ν(dom(I)) = 1 and Γ∗ be a simple loop transverse to F such that the union of leaves
met by Γ∗ is an annulus B. If ν-almost every point z ∈ dom(I) satisfies IZF(z) ⊂ B,
then there exists a > 0 such that rotf (ν) = a[Γ∗].

The proof of this lemma will also give us the following result, that we will need
thereafter.

Remark 4.18. — Let ν be an f -invariant ergodic probability measure such that
ν(dom(I)) = 1, U ⊂ Σ a disk and T a deck transformation. Let Ũ be a lift of
U ⊂ d̃om(I). Suppose that for ν-almost every point z ∈ dom(I) ∩ U , for any time
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n ⩾ 0 such that fn(z) ∈ U , denoting z̃ the lift of z belonging to Ũ , there exists
k ∈ N such that f̃k(z̃) ∈ T k(Ũ). Then there exists a > 0 such that rotf (ν) = a[Γ∗].

Proof. — Note first that ν-almost every point z is recurrent and meets every leaf
in B infinitely many often in the future and in the past. In other words, IZF(z) is
equivalent to the canonical lift of Γ∗. Fix a lift γ∗ of Γ∗ in d̃om(I) and consider the
deck transformation T and the T -strip B̃ associated to γ̃∗. By Lemma 4.10 there
exists a ⩾ 0 such that rotf(ν ′) = a[T ], because ν-almost every point z ∈ dom(I)
has a lift that is equivalent to γ̃∗. We need to prove that a ̸= 0. Let U ⊂ B be a
topological open disk such that ν(U) ̸= 0. We can suppose that U is a flow-box that
satisfies the conclusion of Proposition 4.4. Write φU : U → U for the first return
map of f and τU : U → N \ {0} for the time of first return map, which are defined
ν-almost everywhere on U . Note that ν|U is an ergodic invariant measure for φU .
Fix a lift Ũ ⊂ B̃ of U . Taking U sufficiently small, we can suppose that for every z̃,
z̃′ in Ũ , the leaf containing f̃(z̃) is on the left of the leaf containing z̃′. In particular,
no point f̃k(z̃), k ⩾ 1, belongs to Ũ . For every point z ∈ U such that τU(z) exists,
denote z̃ the lift of z that is in Ũ and δU(z) the integer such that f̃ τU (z)(z̃) ∈ T δU (z)Ũ .
One gets a map δU : U → Z defined ν-almost everywhere on U . Remind that a map
ρU : U → H1(S,Z) has been defined in the introduction and that ρU(z) = δU(z)[T ].
Note also that δU(z) > 0 because f̃k(Ũ) ∩ Ũ = ∅ if k ⩾ 1. The measure ν being
ergodic, by Kac’s theorem one knows that∫

U
τU dν = ν

 ⋃
k ⩾ 0

fk(U)
 = ν

 ⋃
k ∈Z

fk(U)
 = 1,

and consequently that τ ∗
U(z) = 1/ν(U) for ν-almost every point z ∈ U , where τ ∗

U

and ρ∗
U have been defined in (1.1) (page 332). Furthermore, for ν-almost every point

z ∈ U , it holds that

rotf (ν) = rotf (z) = ρU
∗(z)/τ ∗

U(z) = ν(U)ρ∗
U(z) =

(∫
U
δU(z) dν(z)

)
[T ].

Observe now that, by the above discussion,
∫

U δU(z) dν(z) > 0. This proves the
lemma. □

Proposition 4.19. — Suppose that ν ∈ M(f) and ν ′ ∈ M(f) are ergodic and
that for ν-almost every point z ∈ dom(I) and ν ′-almost every point z′ ∈ dom(I),
the path IZF(z′) accumulates on IZF(z). Then rotf (ν) ∧ rotf (ν ′) ̸= 0.

Proof. — One can suppose that z and z′ are recurrent. There is no loss of generality
by supposing that IZF(z′) accumulates positively on IZF(z). By Proposition 3.3, there
exists a transverse simple loop Γ∗ ⊂ Σ such that

• IZF(z′) is equivalent to the natural lift of Γ∗;
• The union B of leaves met by Γ∗ is an open annulus of S;
• If z̃ ∈ d̃om(I), z̃′ ∈ d̃om(I) are lifts of z, z′ such that ĨZF̃(z̃′) accumulates

on ĨZF̃(z̃), more precisely such that ĨZF̃(z̃′)|[a1,+∞) is equivalent to ĨZF̃(z̃)|[a2,b2),
and if B̃ is the lift of B that contains ĨZF̃(z̃′), then one of the inclusions
ĨZF̃(z̃)(b2) ∈ ∂B̃R, ĨZF̃(z̃)(b2) ∈ ∂B̃L holds. In the first case, we have B̃ ⊂ L(ϕ̃)
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for every ϕ̃ ⊂ ∂B̃R and in the second case, we have B̃ ⊂ R(ϕ̃) for every
ϕ̃ ⊂ ∂B̃L.

We will suppose that ĨZF̃(z̃)(b2) ∈ ∂B̃L, the other case being similar.

Lemma 4.20. — The point z̃ crosses B̃ from the right to the left.

Proof. — The point z being recurrent, every leaf of F met by IZF(z) is met infinitely
many often in the past and in the future. In particular, IZF(z) goes in and out of
B infinitely many times, but it never enters in B on the left because B̃ ⊂ R(ϕ̃) for
every ϕ̃ ⊂ ∂B̃L. We deduce that z̃ crosses B̃ from the right to the left. □

To get Proposition 4.19 we want to prove that rotf(ν ′) ∧ rotf(ν) > 0. One can
apply Lemma 4.17 to ν ′ and so, one must prove that [Γ∗] ∧ rotf (ν) > 0. Let U ⊂ B
be a topological open disk such that ν(U) ̸= 0 and that is a flow-box satisfying
the conclusion of Proposition 4.4. Perturbing Γ∗ and reducing U if necessary, one
can suppose that U ∩ Γ∗ = ∅. Write φU : U → U for the first return map of f
and τU : U → N \ {0} for the time of first return map, which are defined ν-almost
everywhere on U . We will define a function δU : U → Z (in a different way from
the previous definitions of similar quantities). For every point z ∈ U such that τU(z)
exists, set m = τU(z) and consider the set

Xz =
{
t ∈ [0,m]

∣∣∣ IZF(z)(t) ∈ B
}
,

which is an open set of [0,m].
Suppose first that Xz ̸= [0,m]. Then denote (Jξ)ξ ∈ Ξ the family of connected

components of Xz. The component Jξ− that contains 0 will be written Jξ− = [0, bξ−),
the component Jξ+ that contains m will be written Jξ− = (aξ+ ,m] and the remaining
components will be written Jξ = (aξ, bξ). Consider such a component Jξ. The path
Im

F (z) can be lifted to a path Ĩm
F̃ (z̃) (the lift depending on ξ) such that Ĩm

F̃ (z̃)|(aξ,bξ) ⊂
B̃. The set B being an annulus, its preimage by the universal covering projection
is a disjoint union of strips, each of them being the image of B̃ by a covering
automorphism. The points Ĩm

F̃ (z̃)(aξ) and Ĩm
F̃ (z̃)(bξ) do not belong to one of these

strips because they project onto points that are not in B. They belong to the closure
of B̃ because Ĩm

F̃ (z̃)|(aξ,bξ) ⊂ B̃. So they belong to the frontier of B̃ which is the
disjoint union of ∂B̃R and ∂B̃L. The path Ĩm

F̃ (z̃) being transverse to F , the path
Ĩm

F̃ (z̃)|(aξ,bξ) is on the left of the leaf that contains Ĩm
F̃ (z̃)(aξ). By assumptions, we

know that B̃ ⊂ R(ϕ̃) for every ϕ̃ ⊂ ∂B̃L and so we can deduce that Ĩm
F̃ (z̃)(aξ) ∈ ∂B̃R.

We have no such a constraint about Ĩm
F̃ (z̃)(bξ) and we set

δξ =

0 if Ĩm
F̃ (z̃)(bξ) ∈ ∂B̃R,

1 if Ĩm
F̃ (z̃)(bξ) ∈ ∂B̃L.

In the first situation Ĩm
F̃ (z̃)|[aξ,bξ] visits B̃ on the right, in the second one it crosses B̃

from the right to the left. In this last situation Ĩm
F̃ (z̃)|[aξ,bξ] meets γ̃∗ and so Im

F (z)|[aξ,bξ]
meets Γ∗. Note that there are finitely many ξ ∈ Ξ such that δξ = 1 because there
are finitely many ξ ∈ Ξ such that Im

F (z)|[aξ,bξ] ∩ Γ∗ ̸= ∅. Indeed, by compactness of
[0,m], there are finitely many ξ ∈ Ξ such that the diameter of Im

F (z)|[aξ,bξ] is not
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smaller than the distance between Γ∗ and S \B. The path Im
F (z) can be lifted to a

path Ĩm
F̃ (z̃) such that Ĩn

F̃(z̃)|[0,bξ− ) ⊂ B̃. Set

δξ− =

1/2 if Ĩm
F̃ (z̃)(bξ−) ∈ ∂BL,

−1/2 if Ĩn
F̃(z̃)(bξ−) ∈ ∂BR.

Finally, set δξ+ = 1/2. Observe now that we have
[Γ∗] ∧ ρU(z) = δU(z),

where ρU is defined page 332, and

δU(z) =


∑

ξ ∈ Ξ δi if Xz ̸= [0, τU(z)],
0 if Xz = [0, τU(z)].

The function δU is non negative but does not vanishes almost νU -everywhere because
IZZ(z) does not stay in B for ν-almost every point. So, we have

[Γ∗] ∧ rotf (ν) = ν(U)[Γ∗] ∧ ρ∗
U(z) =

∫
U
δU(z) dν(z) > 0. □

Remark. — Using Lellouch’s techniques [Lel23, Section 3.4], one can show more
generally that if z and z′ are recurrent points (not necessarily trajectories of typical
points for ergodic measures) and if IZF(z′) accumulates on IZF(z), then f has a
topological horseshoe(3) . However, we will not use this property in the sequel.

5. Proof of the main theorem

We suppose in this section that the hypotheses of Theorem 1.1 are satisfied. We
consider an oriented closed surface S of genus g ⩾ 2 and a homeomorphism f of
S isotopic to the identity that preserves a Borel probability measure λ with total
support such that rotf(λ) = sρ, with ρ ∈ H1(S,Z) \ {0} and s ∈ R. We keep the
notations of the article.

There is no loss of generality by supposing that f is not the identity map; in
this case one can consider a maximal isotopy I of f by Theorem 4.1 with non
empty domain. By Theorem 4.2, one can find a non singular foliation F on dom(I)
transverse to I. Remind that:

• d̃om(I) is the universal covering space of dom(I);
• d̃om(I)X is the connected component of d̃om(I) that contains a given con-

nected set X ⊂ d̃om(I);
• π̃ : d̃om(I) → dom(I) is the covering projection;
• G is the group of covering automorphism of π̃;
• [T ] ∈ H1(S,Z) is the homology class of a loop Γ ⊂ dom(I) associated to
T ∈ G;

• Ĩ is the lift of I|dom(I) to d̃om(I) that starts from the identity;

(3) Be careful, in this case it can occur that IZ
F (z′) and IZ

F (z) do not intersect F-transversally, see
Figure 3.2.
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• f̃ is the lift of f |dom(I) to d̃om(I) that is the end point of Ĩ;
• F̃ is the lift of F to d̃om(I);
• IZF(z) is the whole F -transverse trajectory of a point z ∈ dom(I);
• ĨZF̃(z̃) is the whole F̃ -transverse trajectory of a point z̃ ∈ d̃om(I).

We consider a Borel probability measure ν, invariant by f and ergodic. We consider
a neighborhood U of rotf(ν) in H1(S,R) and want to prove that there exists a
homotopical interval of rotation (κ, r) such that [κ]/r ∈ U .

Suppose first that rotf(ν) ∧ rotf(λ) ̸= 0. Using the ergodic decomposition of λ,
we deduce that there exists ν ′ ∈ M(f) ergodic such that rotf(ν) ∧ rotf(ν ′) ̸= 0.
By Theorem 4.9, we know that f |dom(I) has a rotational topological horseshoe of
type (κ, r) with [κ]/r ∈ U . If Γ ⊂ dom(I) is a loop associated to T , then for every
p/q ∈ [0, 1] written in an irreducible way, there exists a periodic point z ∈ dom(I) of
period rq such that Irq(z) is freely homotopic to [Γ]p in dom(I): it is freely homotopic
to [Γ]p in S. Hence, f has a homotopical interval of rotation of type (κ, r) such that
[κ]/r ∈ U , and the conclusion of Theorem 1.1 holds.

It remains to study the case where rotf (ν) ∧ rotf (λ) = 0.

Lemma 5.1. — Suppose that rotf(ν) ∧ rotf(λ) = 0. There exists T ∈ G \ {Id}
satisfying [T ]∧rotf (λ) = 0 and a T -strip B̃ such that ν-almost every point z ∈ dom(I)
has a lift z̃ such that ĨZF̃(z̃) draws B̃. Moreover if U is a neighborhood of rotf(ν),
one can suppose that there exists r ⩾ 1 such that [T ]/r ∈ U .

Proof. — Fix z0 ∈ supp(ν) ∩ dom(I) and a lift z̃0 ∈ d̃om(I) of z0. One can find a
topological open disk U ⊂ dom(I) containing z0 such that the connected component
Ũ of π̃−1(U) containing z̃0 is a flow-box that satisfies the conclusion of Proposition 4.4.
Write φU : U → U for the first return map of f and τU : U → N \ {0} for the time
of first return map, which are defined ν-almost everywhere on U . Note that ν|U is
an ergodic invariant measure of φU . Remind that a map ρU : U → H1(S,Z) has
been defined in the introduction. For every point z ∈ U such that τU(z) exists,
denote z̃ the preimage of z by π̃ that is in Ũ and δU(z) the automorphism such that
f̃ τU (z)(z̃) ∈ δU(z)(Ũ). One gets a map δU : U → G defined ν-almost everywhere on
U such that ρU(z) = [δU(z)]. The measure ν being ergodic, one knows that

∫
U
τU dν = ν

 ⋃
k ⩾ 0

fk(U)
 = ν

 ⋃
k ∈Z

fk(U)
 = 1,

and consequently that τU
∗(z) = 1/ν(U) for ν-almost every point z ∈ U , where τU

∗

and ρU
∗ have been defined in (1.1) (page 332). Furthermore, for ν-almost every point

z ∈ U , it holds that∫
U
ρU(z) dν(z) = ν(U)ρU

∗(z) = rotf (z) = rotf (ν),

which implies that∫
U
ρU(z) ∧ rotf (λ) dµ(z) = ν(U)ρU

∗(z) ∧ rotf (λ) = rotf (ν) ∧ rotf (λ) = 0.
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By Atkinson’s Theorem [Atk76], one knows that if ε > 0 is fixed, then for ν|U almost
every point z, there exists n ⩾ 1 such that∣∣∣∣∣

n−1∑
k=0

ρU

(
φk

U(z)
)

∧ rotf (λ)
∣∣∣∣∣ < ε.

As observed by Lellouch [Lel23, Lemme 3.2.2], we can slightly improve this result:
for ν|U almost every point z, it holds that

lim inf
n→+∞

∣∣∣∣∣
n−1∑
k=0

ρU

(
φU

k(z)
)

∧ rotf (λ)
∣∣∣∣∣ = 0.

So, if we fix a norm ∥ ∥ on H1(S,R) and η > 0, we can find z1 ∈ supp(µ) ∩ U and
n ⩾ 1 such that (recall that rotf (λ) = sρ, with ρ ∈ H1(S,Z) \ {0} and s ∈ R)∣∣∣∣∣

n−1∑
k=0

ρU

(
φU

k(z1)
)

∧ rotf (λ)
∣∣∣∣∣ < s,

and such that ∥∥∥∥∥ 1
n

n−1∑
k=0

ρU

(
φU

k(z1)
)

− rotf (ν)
∥∥∥∥∥ < η.

Every number ρU(φU
k(z1)) ∧ rotf (λ) belonging to sZ we deduce that

n−1∑
k=0

ρU

(
φU

k(z1)
)

∧ rotf (λ) = 0.

Set
r =

∑
0⩽ k < n

τU

(
φU

k(z1)
)

and denote z̃1 the lift of z1 that belongs to Ũ . The automorphism T such that
f̃ r(z̃1) ∈ T (Ũ) can be written

T = Tn−1 ◦ · · · ◦ T1,

where Tk is an automorphism conjugated to δU(φU
k(z1)), so we have

[T ] =
∑

0⩽ k < n

[
δU

(
φU

k(z1)
)]
.

Consequently, it holds that
[T ] ∧ rotf (λ) = 0 ,

∥∥∥[T ]/r − rotf (ν)
∥∥∥ < η.

Note that we have f̃ r(z̃1) ∈ T (Ũ) if z̃1 is the lift of z1 that belongs to Ũ . The
property of Ũ stated in Proposition 4.4 tells us that ĨZF̃(z̃1) intersects every leaf that
meets Ũ and every leaf that meets T (Ũ). So, there is subpath γ̃1 of ĨZF̃(z̃1) that
joins ϕz̃1 to T (ϕz̃1). Of course we have T ̸= Id. Moreover ĨZF̃(z̃1) draws the T -strip
B̃ defined by the line γ̃∗ obtained by concatenating(4) the paths T k(γ̃1), k ∈ Z.

(4) Strictly speaking one has to modify the path γ1 lifted by γ̃1 to be able to concatenate T k(γ̃1)
with T k+1(γ̃1): it is sufficient to move it along the leaves so that the last endpoint of γ̃1 with the
first endpoint of T (γ̃1) coincide.
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As explained before, Proposition 4.3 tells us that the set WD of points z ∈ U
that have a lift z̃ such that ĨZF̃(z̃) draws B̃ is open. It is T -invariant and contains
z1 ∈ supp(ν). The measure ν being ergodic, it holds that ν(WD) = 1. □

We consider T given by Lemma 5.1. We will write T = T ′m, m ⩾ 1, where T ′ ∈ G
is irreducible.

Proof of Theorem 1.1. — Let us summarize in which cases the results we have
already proved allow us to get Theorem 1.1. Recall that the sets WR→R, WD, etc. are
defined in Subsection 4.2. Recall also that by lemma 5.1, we have ν(WD) = 1 and
that by Lemma 3.1, if ν(WR→R ∪WR→L ∪WL→R ∪WL→L) = 0, then ν-almost every
point is either equivalent to γ or accumulates in γ.

• If ν(WR→R ∩ WD) = 1 or ν(WL→L ∩ WD) = 1, then by Proposition 3.2 for
ν-almost every point z, the path IZF(z) has an F -transverse self intersection;
this allows to apply Corollary 4.8 and to get a suitable rotational horseshoe.

• If ν(WR→L ∩WD) = 1, there are three cases:
– If [T ] ∧ rotf(ν) < 0, then one can apply Corollary 4.14 which shows

that for ν-almost every point z, the path IZF(z) has an F -transverse
self intersection; this allows to apply Corollary 4.8 and to get a suitable
rotational horseshoe.

– If [T ] ∧ rotf(ν) = 0, then one can apply Lemma 4.15 which shows that
for ν-almost every point z, the path IZF(z) has an F -transverse self
intersection; as before this allows to apply Corollary 4.8 and to get a
suitable rotational horseshoe.

– If [T ]∧rotf (ν) > 0, then one can apply Lemma 4.16. It tells us that there
exists an ergodic invariant probability measure ν ′ such that for ν-almost
every point z and ν ′-almost every point z′, either the paths IZF(z) and
IZF(z′) have an F -transverse intersection, or the path IZF(z′) accumulates
on IZF(z). In the first case one can apply Corollary 4.8 to get a suitable
rotational horseshoe. In the second case Proposition 4.19 tells us that
rotf(ν) ∧ rotf(ν ′) ̸= 0. Lellouch’s Theorem 4.9 then gives us a suitable
rotational horseshoe.

• The case ν(WL→R ∩WD) = 1 is identical to the case ν(WR→L ∩WD) = 1.
In all these cases the existence of a suitable homotopical interval of rotation is due

to the presence of a rotational topological horseshoe. To get Theorem 1.1 it remains
to study a last case where the existence of a suitable homotopical interval of rotation
will have another reason. The following proposition will permit us to finish the proof
of Theorem 1.1.

Proposition 5.2. — If the sets

WR→L ∩WD , WL→R ∩WD , WR→R ∩WD , WL→L ∩WD

are ν-null sets, then there exists a > 0 such that :
• one has rotf (ν) = a[T ′];
• for every p/q ∈ [0, a) ∩ Q, written in an irreducible way, there exists z̃ such

that f̃ q(z̃) = T ′p(z̃).
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End of proof of Theorem 1.1. Let U be a neighborhood of rotf(ν) in H1(S,R). By
Lemma 5.1, one can find p0/q0 ∈ (0, a) written in an irreducible way such that
p0[T ′]/q0 ∈ U . By Proposition 5.2, for every p/q ∈ [0, 1] written in an irreducible
way, there exists z̃p/q such that f̃ qq0(z̃) = T ′pp0(z̃). The image zp/q = π̃(z̃p/q) ∈ S is
fixed by f qq0 and the loop of S defined by Iqq0(zp/q) belongs to [T ′]FHL

pp0 . Denote
q′ = qq0/r the period of zp/q. There exists T1 ∈ G such that f̃ q′(z̃p/q) = T1(z̃p/q).
We deduce that T ′pp0(z̃p/q) = f̃ qq0(z̃p/q) = T r

1 (z̃p/q). It implies that T ′pp0 = T r
1 .

The group ⟨T ′, T1⟩ being a free group, it must be infinite cyclic. We deduce that
T1 is a power of T ′ because T ′ is irreducible and so r divides pp0. Recall that
rq′ = qq0 so r also divides qq0. The integers p0 and q0 being relatively prime, it
holds that r gcd(r, p0)−1 gcd(r, q0)−1 is an integer. Moreover it is relatively prime
with p0 and with q0. So it divides p and q. These integers being relatively prime, we
have r = gcd(r, p0) gcd(r, q0) ⩽ p0q0 and hence the period q′ = qq0/r of zp/q satisfies
q′ ⩾ q/p0. We deduce that ([T ′]FHL

p0 , q0) is a homotopical interval of rotation (for
s = p0). □

The remaining of the article is devoted to the proof of Proposition 5.2.

Proof of Proposition 5.2. — Recall that T = T ′m, where m ⩾ 1. Let us begin by
proving that B̃ is invariant by T ′. It is sufficient to prove that for every n > 0 we
have L(T ′nϕ̃) ⊂ L(ϕ̃). If L(ϕ̃) ⊂ L(T ′nϕ̃), then for every k ⩾ 1 we have L(T ′nkϕ̃) ⊂
L(T ′n(k+1)ϕ̃) and so we deduce that L(ϕ̃) ⊂ L(T ′nmϕ̃), which contradicts the inclusion
L(T ′nmϕ̃) ⊂ L(ϕ̃). If L(ϕ̃) ∩ L(T ′nϕ̃) = ∅, then L(ϕ̃) is disjoint from its image by
T ′n. The map T ′n being fixed point free, Brouwer Translation Theorem [Bro12] tells
us that L(ϕ̃) is disjoint from its image by T ′nm, which contradicts the inclusion
L(T ′nmϕ̃) ⊂ L(ϕ̃). Similarly, if R(ϕ̃) ∩ R(T ′nϕ̃) = ∅, then R(ϕ̃) is disjoint from
its image by T ′nm, which contradicts the inclusion R(ϕ̃) ⊂ R(T ′nmϕ̃). The only
remaining case is the case where L(T ′nϕ̃) ⊂ L(ϕ̃).

In the following, instead of seeing B̃ as a T̃ -strip, we will see it as a T ′-strip: one
can choose γ̃∗ to be invariant by T ′ and suppose that γ̃∗(t) = T ′γ∗(t) for every t ∈ R.

By construction of B̃ we know that ν(WD) = 1. So, ν-almost every point z ∈
dom(I) is recurrent and has a lift z̃ ∈ d̃om(I) such that ĨZF̃(z̃) meets a leaf ϕ̃ ⊂ B̃

and T ′ϕ̃. Moreover, by Lemma 3.1, the trajectory ĨZF̃(z̃) stays in B̃ in the future
or in the past. It implies that ĨZF̃(z̃) is equivalent to γ̃∗ at +∞ or −∞. Indeed if
ĨZF̃(z̃) accumulates on γ̃∗, it accumulates onto a leaf ϕ̃′ ⊂ B̃. One can find k ∈ Z
such that ϕ̃′ lies between T ′kϕ̃ and T ′k+1ϕ̃ and is met by ĨZF̃(T ′kz̃), which means that
ĨZF̃(z̃) accumulates on ĨZF̃(T ′kz̃). It is impossible because z is recurrent and so has no
self-accumulation by Corollary 3.10. Hence, ĨZF̃(z̃) does not accumulate on γ̃∗, and
by the hypothesis of the proposition it cannot go out of B̃ both before and after it
draws B̃. This implies that it has to be equivalent to γ̃∗ at +∞ or −∞.

In fact we can be more precise: if there are a < a′ and b ∈ R such that

(5.1) ĨZF̃(z̃)|[a,a′] is equivalent to γ̃∗|[b,b+1],
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then either ĨZF̃(z̃)|[a,+∞) is equivalent to a subpath of γ̃∗ (and equivalent to γ̃∗ at
+∞ but we will not use this property) or ĨZF̃(z̃)|(−∞,a′] is equivalent to a subpath of
γ̃∗. From this we will deduce the following lemma.

Lemma 5.3. — The transverse path ĨZF̃(z̃) is equivalent to γ̃∗. Moreover there is
a neighborhood Ũ of z̃ such that if the orbit of z̃ meets RŨ for some R ∈ G, then R
is a power of T ′.

Proof. — Let us treat the case where ĨZF̃(z̃)|[a,+∞) is equivalent to a subpath of γ̃∗,
the other case being identical.

Suppose that ĨZF̃(z̃) is not equivalent to γ̃∗. Then, as we have already seen that
it cannot accumulate in γ̃∗, this means that there exists t < a, t ∈ Z, such that
f̃ t(z̃) /∈ B̃. As (as already mentioned) the set of times s such that ĨZF̃(z̃)(s) ∈ B̃ is
an interval, we can suppose that t < a− 1.

By recurrence of the point z, there exists a sequence of integers nk → −∞, and
a sequence of deck transformations (Rk)k ∈N ∈ G such that Rkf̃

nk(z̃) tends to z; in
particular for any k large enough:

• γ̃∗|[b,b+1] is equivalent to a subpath of RkĨ
Z
F̃(z̃)|[nk+a−1,+∞) (and in particular

this path draws B̃);
• RkĨ

Z
F̃(z̃)(nk + t) /∈ B̃.

By the same reasoning as before the lemma, and (5.1), we deduce that either
the trajectory RkĨ

Z
F̃(z̃)|[nk+a+1,+∞) is equivalent to a subpath of γ̃∗, or the trajec-

tory RkĨ
Z
F̃(z̃)|(−∞,nk+a′−1] is equivalent to a subpath of γ̃∗. By the second point

above, and because t < a − 1 < a′ − 1, the second situation is impossible. Hence,
RkĨ

Z
F̃(z̃)|[nk+a+1,+∞) is equivalent to a subpath of γ̃∗.

In particular, this implies that Rkγ̃∗ is equivalent at +∞ to γ̃∗. By Lemma 3.4,
this implies that Rkγ̃∗ ∩ γ̃∗ ̸= ∅; more precisely it implies that for any n large enough,
Rkγ̃∗ ∩ γ̃∗|[b+n,b+n+1) ̸= ∅, hence that Rkγ̃∗ ∩ γ̃∗ has infinite diameter. This implies
that Rkγ̃∗ = γ̃∗, in other words Rk = T ′ik for some ik ∈ Z.

We deduce that T ′ik ĨZF̃(z̃)|[nk+a+1,+∞) is equivalent to a subpath of γ̃∗, equivalently
(as γ̃∗ is T ′-invariant), for any k ∈ N, the path ĨZF̃(z̃)|[nk+a+1,+∞) is equivalent to a
subpath of γ̃∗.

This proves that ĨZF̃(z̃) is equivalent to a subpath of γ̃∗. As it cannot accumulate
in γ̃∗, this proves that ĨZF̃(z̃) is equivalent to γ̃∗.

To get the second part of the lemma, consider a neighborhood Ũ of z̃ such that
for every z̃′ ∈ Ũ , the path ĨZF̃(z̃′) draws γ̃∗. If f̃k(z̃) ∈ RŨ , R ∈ G, then ĨZF̃(z̃) draws
R(γ̃∗). We deduce that ĨZF̃(z̃) is equivalent to Rγ̃∗, which means that γ̃∗ is equivalent
to Rγ̃∗. Applying again Lemma 3.4 as we did a few lines above, we deduce that
Rγ̃∗ ∩ γ̃∗|[k,k+1] ̸= ∅ for every k ∈ Z, which implies that R ∈ ⟨T ′⟩. □

Now, let us consider
• the connected component d̃om(I)γ̃∗ of d̃om(I) that contains γ̃∗,
• the quotient space d̂om(I) = d̃om(I)/T ,
• the foliation F̂ of d̂om(I) induced by F̃ ,

ANNALES HENRI LEBESGUE



Conservative surface homeomorphisms with rational rotation 369

• the covering projection π̂ : d̂om(I) → dom(I),
• the annulus d̂om(I)γ̃∗ = d̃om(I)γ̃∗/T

′,
• the universal covering projection π : d̃om(I)γ̃∗ → d̂om(I)γ̃∗ .

Lemma 5.4. — It holds that ν-almost every point z has a lift in d̂om(I)γ̃∗ that
is positively recurrent and has a rotation number a > 0 (in the annulus). Moreover
we have rotf (ν) = a[T ′].

Proof. — We know that ν-almost every point z is positively recurrent and has a
lift z̃ in d̃om(I)γ̃∗ that draws B̃. We have seen in Lemma 5.3 that ĨZF̃(z̃) is equivalent
to γ̃∗ and that there exists a neighborhood Ũ of z̃ such that if the orbit of z̃ meets
T0Ũ , for some T0 ∈ G, then T0 is a power of T ′. Using the fact that z is recurrent,
we deduce that ẑ = π(z̃) is positively recurrent. By Remark 4.18, we deduce that z
has rotation number a > 0. Moreover we have rotf (ν) = a[T ′]. □
End of proof of Proposition 5.2. Now there are two cases to consider. The first
case is the case where the stabilizer of d̃om(I)γ̃∗ is generated by T ′ and the second
case is when it is larger. In the first case, π̂ sends homeomorphically d̂om(I)γ̃∗

onto a connected component of dom(I). Moreover, the frontier of this annulus is
made of contractible fixed points of f . In the second case, π̂ sends d̂om(I)γ̃∗ onto
a hyperbolic surface whose universal covering space is d̃om(I)γ̃∗ and the group of
covering automorphisms is the stabilizer of d̃om(I)γ̃∗ in G. In both cases, there
exists an extension d̂om(I)γ̃∗ of d̂om(I)γ̃∗ obtained by blowing at least one end e

with a circle Γ̂e, and where f̂ extends to a homeomorphism f̂ of d̂om(I)γ̃∗ (see
Subsection 2.4). Furthermore, the rotation number(s) induced on the added circle(s)
by the lift of f̂ that extends f̃ are equal to 0.

By Lemma 5.4, there exist positively recurrent points with rotation number a > 0
where rotf (ν) = a[T ′]. Consequently, according to Theorem 2.1 that can be applied
thanks to Lemma 4.12, for every rational number p/q ∈ (0, a), written in an irre-
ducible way, there exists a point z̃ such that f̃ q(z̃) = T p(z̃). As f̃ also has a fixed
point by Lefschetz index theorem, this means that f has a homotopical interval of
rotation of type (κ, r) such that [κ]/r ∈ U . □
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