
Annales Henri Lebesgue
8 (2025) 555-568

SEBASTIAN BAADER
PETER FELLER

ASYMPTOTICS OF THE SMOOTH
An-REALIZATION PROBLEM
ASYMPTOTIQUES DU PROBLÈME DE
RÉALISATION LISSE DE An

Abstract. — We solve an asymptotic variant of a smooth version of the An-realization
problem for plane curves. As an application, we determine the cobordism distance between
torus links of type T (d, d) and T (2, N) up to an error of at most 3d. We also discuss the limits
of knot theoretic approaches aimed at solving the An-realization problem.

Résumé. — Nous résolvons une variante asymptotique d’une version lisse du problème de
réalisation de An pour les courbes planes. Comme application, nous déterminons la distance
de cobordisme entre les entrelacs toriques de type T (d, d) et T (2, N) avec une erreur d’au plus
3d. Nous discutons également les limites des approches basées sur la théorie des noeuds visant
à résoudre le problème de la réalisation de An.

1. Introduction

The algebraic An-realization problem asks for the minimal degree d(n) of a poly-
nomial f(x, y) ∈ C[x, y] that has an isolated singularity of type An at the ori-
gin [GLS98, GS20]. The minimal degree d(n) is known to satisfy

(1.1) 7
12 ⩽ lim inf

n→∞

n

d(n)2 ⩽ lim sup
n→∞

n

d(n)2 ⩽
3
4 .
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The lower bound is due to Orevkov by a concrete construction, while the upper
bound results from an analysis of the signature spectrum [Ore12].

Let f(x, y) ∈ C[x, y] be a square-free polynomial of degree d that has an isolated
singularity of type An at the origin. In knot theoretic terms, as e.g. described
in [Wal04, Chapter 5], this means that, for sufficiently small ε > 0, the intersection
of the algebraic curve f−1(0) ⊂ C2 with the sphere S3

ε ⊂ C2 of radius ε around
the origin is a torus link of type T (2, n + 1). Fixing a sufficiently small ε > 0 and
adding a generic polynomial of degree d with small coefficients to f(x, y), we obtain
a polynomial f̃(x, y) of degree d such that f̃−1(0) ⊂ C2 is smooth, f̃−1(0)∩S3

ε is still
a torus link of type T (2, n + 1), and in addition the link at infinity (f̃−1(0) ∩ ∂S3

R

for large R > 0) is a torus link of type T (d, d); see Remark 2.2. Taking into account
the classic genus-degree formula for smooth algebraic curves, one finds that the
curve f̃−1(0) provides a smooth connected cobordism of Euler characteristic around
n − d2 between the two links T (d, d) and T (2, n + 1); compare with Appendix A.
In particular, if the upper bound of 3

4 for the ratio n
d2 were achieved, we would obtain

a smooth cobordism of Euler characteristic around n − d2 = −1
4d2 between the links

T (d, d) and T (2, n). The purpose of this note is to prove that asymptotically such a
smooth cobordism actually exists.

Theorem 1.1. — The maximal Euler characteristic χ(d) among all smooth con-
nected cobordisms between the links T (d, d) and T (2, ⌊3

4d2⌋) satisfies

lim
d→∞

χ(d)
d2 = −1

4 .

Unlike the derivation of previous results on the cobordism distance between torus
links [Baa12, BCG17, BFLZ19, Fel16, FP21], the proof of Theorem 1.1 is not based
on combinatorial braid group considerations. Instead, a key input are examples of
algebraic curves with a large number of Am-singularities described by Hirano [Hir92];
see Section 2 for the an explicit family of these curves and how they are used to
establish Theorem 1.1. It is surprising to the authors that algebraic curves considered
over 30 years ago allow to build cobordisms that make the observations in this note
possible.

In Section 3, as an application of Theorem 1.1 and its proof, we find that the link
T (2, ⌊3

4d2⌋) is essentially the nearest link to T (d, d) among all torus links of type
T (2, N), in terms of the smooth cobordism distance; compare Section 3. Here is the
precise result.

Theorem 1.2. — For all non-zero integers d and all integers N , the maximal
Euler characteristic χ(d, N) among all smooth connected cobordisms between the
links T (d, d) and T (2, N) has value around −1

4d2 − |N − sign(d)3
4d2|. More precisely,

−d2

4 −
∣∣∣∣sign(d)3

4d2 − N

∣∣∣∣ − 4|d| ⩽ χ(d, N) ⩽ −d2

4 −
∣∣∣∣sign(d)3

4d2 − N

∣∣∣∣ + 2|d|.

For context, we note that, of course, many values of χ(d, N) are known exactly. For
example, in case d > 0 > N , the upper bound is an equality by the resolution of the
local Thom conjecture [KM93]; see the last paragraph of the proof of Theorem 1.2.
The point is that for many choices of d (in particular for d ⩾ 10 and N ⩾ 3d2

4 ),
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Asymptotics of the smooth An-realization problem 557

the exact value of χ(d, N) remains unknown and Theorem 1.2 constitutes the first
time χ(d, N) is determined up to an error that is linear in |d|. We also note that
Theorem 1.2 not only recovers Theorem 1.1 (by setting N = ⌊3d2

4 ⌋), but makes
precise the rate of convergence in Theorem 1.1; see also (2.2).

Next, we discuss the impact of Theorem 1.1 on knot theoretic strategies to approach
the An-realization problem.

In light of the upper bound in (1.1), an interesting next step in the algebraic
An-realization problem would be to find a constant c < 3/4 such that

(1.2) lim inf
n→∞

n

d(n)2 ⩽ c.

Theorem 1.1 has a consequence, which is arguably somewhat disappointing: an
approach from knot concordance theory towards finding such a c using a certain
type of concordance invariants is doomed to fail. This follows from the following
corollary of Theorem 1.1 as we explain in detail in Appendix B.

Corollary 1.3. — Every real-valued 1-Lipschitz concordance invariant I with
limm→∞

I(T (2,2m+1))
g4(T (2,2m+1)) = 1 satisfies

lim inf
d→∞

I(T (d, d + 1))
g4(T (d, d + 1)) ⩾

1
2 .

Examples of such invariants I include many classical and recent knot invariants
(when appropriately normalized), for example Trotter’s signature σ, Rasmussen’s s,
Ozsváth and Szabó’s τ , Ozsváth, Stipsicz, and Szabó’s Υ(t), and Hom and Wu’s ν+.
We discuss such invariants I and a proof of Corollary 1.3 in Section 4.

However, Theorem 1.1 does not destroy all hope of using smooth concordance as
an approach towards making progress on the An-realization problem. For context,
we explain this in Appendix A, where we also make explicit a smooth analogue of
the An-realization problem.

Acknowledgments

We thank the referee for their careful consideration and constructive suggestions.

2. Hirano’s curves and the proof of Theorem 1.1

We consider links L ⊂ S3 smooth non-empty 1-submanifolds and cobordisms
between them. For us, a cobordism between two links L0, L1 ⊂ S3 is a smooth
oriented neatly embedded surface F ⊂ S3 × [0, 1] such that ∂F = L0 ×{0}∪L1 ×{0},
where L1 denotes L1 with reversed orientation. While all our cobordisms are smooth,
we will add the adjective “smooth” in our statements, to avoid any confusion with
the topological category that behaves fundamentally differently.

We derive Theorem 1.1 (and Theorem 1.2) from the following family of examples.
Lemma 2.1. — For all integers m ⩾ 1, there exists a connected smooth cobordism

of Euler characteristic −m2 − 2m between the links T (2m, 2m) and T (2, 3m2).
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Lemma 2.1 follows from the existence of a particular family of projective algebraic
curves: for every integer m ⩾ 2, there exists an irreducible projective algebraic
curve in CP2 of degree 2m with exactly N := 3m singularities, all of which are of
type Am−1 [Hir92, Theorem 2]; see also [GS20, Theorem 3.2].

Proof of Lemma 2.1. — For m = 1, there even exists a smooth connected cobor-
dism from T (2, 2) to T (2, 3) with Euler characteristic −1. Hence we consider the
case of an integer m ⩾ 2. We consider the projective algebraic curve C ⊂ CP2 of
degree d := 2m given by the irreducible homogeneous polynomial

F = (xm + ym + zm)2 − 4(xmym + ymzm + zmxm) ∈ C[x, y, z],

which was used by Hirano to prove [Hir92, Theorem 2]. A calculation reveals that
C has N := 3m singularities, all of which are of type Am−1.

We obtain an affine algebraic curve in C2 with N -many Am−1 singularities by
removing a generic projective line from CP2. We explain this in more detail in the
rest of this paragraph. Pick a projective line L (a subvariety L ⊂ CP defined by
ax + by + cz = 0 for some [a : b : c] ∈ CP2) that intersects C transversally (i.e. if
p ∈ C ∩ L, then p is a non-singular point of C and the tangent spaces of C and L at
p span the entire tangent space of CP2 at p). Note that by Bézout’s theorem C ∩ L
consists of d points. We pick a linear transformation A ∈ Gl(3,C) that maps L to
the line at infinity, which is defined by z = 0 and denoted by CP1. Now consider
F̃ = F ◦ A−1, which is a homogeneous polynomial defining the curve C̃ obtained
from applying A to C, define f̃ := F̃ (x, y, 1), and take the desired affine algebraic
curve in C2 = CP2 \ CP1 to be f̃−1(0).

The fact that C̃ intersects CP1 transversally, implies that the link at infinity of
f̃−1(0) is the torus link T (d, d), i.e. S3

R ∩ f̃−1(0) has link type T (d, d) for R > 0
large enough. Here S3

R ⊂ C2 denotes the 3-sphere of radius R, i.e. the bound-
ary of the 4-ball B4

R of radius R with center the origin. In order to see this, con-
sider a closed regular neighborhood ν(CP1) of CP1 ⊂ CP2. To be concrete, take
ν(CP1) to be the complement of int(B4

R) ⊂ C2 ⊂ CP2 for some large R > 0. Such
a neighborhood is diffeomorphic (via some ϕ) to the total space E of the once-
twisted D2-bundle over S2 ∼= CP1 (the D2-bundle π : E → S2 with ∂E = S3).
Choosing ν(CP1) smaller if needed (that is increasing R), by transversality we can
arrange for the diffeomorphism ϕ : ν(CP1) → E to map ν(CP1) ∩ C̃ to d fibers
π−1(p1), π−1(p2), . . . , π−1(pd) for points p1, . . . , pd ∈ S2. Since π|∂E : ∂E → S2 is the
Hopf fibration (since, up to isomorphisms of bundles, there is only one S1-bundle
over S2 with total space S3), T := π|−1

∂E{p1, . . . , pd} ⊂ ∂E = S3 is a T (d, d) torus link.
Recalling ∂(ν(CP1)) = S3

R, we see that ϕ yields a diffeomorphism of pairs between
(S3

R, S3
R ∩ f̃−1(0)) = (S3

R, ϕ−1(T )) and (S3, T ). Hence, as desired, the link at infinity
is the torus link T (d, d).

We now use f̃−1(0) to find the desired cobordism. For this let s1, . . . , sN denote
the singular points of f̃−1(0) and choose ε > 0 small enough that S3

ε,sk
(the sphere

of radius ε around sk) intersects f̃−1(0) transversally in T (2, m). Let W := B4
R \

(⋃
1⩽k⩽N int(B4

ε,sk
)), where B4

R denotes the close ball with boundary S3
R and int(B4

ε,sk
)

denotes the open ball with boundary S3
ε,sk

. Towards finding our cobordism (a surface
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Asymptotics of the smooth An-realization problem 559

F in S3 × [0, 1]), we modify W to be diffeomorphic to S3 × [0, 1] by tubing the small
boundary spheres together and track what happens to f̃−1(0). For this, we pick
N − 1 pairwise disjoint embedded closed arcs ak ⊂ W ∩ f̃−1(0) that start and end
on ∂W \ S3

R = ⋃
1⩽k⩽N S3

ε,sk
such that (∂W \ S3

R) ∪ ⋃
1⩽k⩽N −1 ak is connected. We

take ν(ak) to be a small closed tubular neighborhood of ak such that its boundary
intersects f̃−1(0) transversally and the pair (ν(ak), f̃−1(0)∩ν(ak)) is diffeomorphic to
(B3 × [0, 1], ([−1, 1]×{0}×{0})× [0, 1]), where B3 denotes the closed unit ball in R3.
We set X to be the closure in C2 of W \ ⋃

1⩽k⩽N ν(ak). After smoothing corners, we
pick a diffeomorphism from X to S3 × [0, 1] and let F ⊂ S3 × [0, 1] denote the image
of X ∩ f̃−1(0) under said diffeomorphism.

Next, we determine the Euler characteristic of F and along the way observe that
it is connected. We discuss the case that m is odd. A similar calculation works when
m is even and yields the same result. We first note that C (as a topological surface)
is connected, as is the case for all irreducible projective curves in CP2, and has
genus (d − 1)(d − 2)/2 − N m−1

2 . The latter can for example be seen by noting that
a small generic deformation of C is a smooth algebraic curve of degree d, which has
genus (d − 1)(d − 2)/2, where each of the N -many Am−1-singularities contributes
m−1

2 to the genus. f̃−1(0) and f̃−1(0) ∩ W have the same genus as C (since they are
obtained by removing discs), and f̃−1(0) ∩ X ∼= F also has the same genus as C and
is also connected since it is obtained from f̃−1(0) ∩ W by removing neighborhoods
of embedded arcs that connect different boundary components. Thus, we find

χ(F ) = 2 − 2(d − 1)(d − 2) − N(m − 1)
2 − (d + 1) = −(d − 1)(d − 1) + N(m − 1),

because F is connected and has d + 1 boundary components.
By construction, F is a connected smooth cobordism between T (d, d) and a knot

K given as the connected sum of N -many T (2, m) torus links. Take F ′ to be a
cobordism given by N − 1 one-handles between K and T (2, Nm); in particular, F ′ is
connected and χ(F ′) = −N + 1.

Composing the two cobordisms F and F ′, we find a connected smooth cobordism
from T (d, d) to T (2, Nm) with Euler characteristic
−(d−1)(d−1)+N(m−1)−N +1 = −(d−1)(d−1)+(m−2)N +1 = −m2−2m. □

Proof of Theorem 1.1. — We fix an integer d ⩾ 2 and consider the largest integer m
such that d ⩾ D := 2m. In other words, D = d if d is even and D = d − 1 if d is odd.
We construct the desired cobordism as the composition of three cobordisms, F , G,
and F ′. The key contribution is H, which is given by Lemma 2.1, while F and F ′ are
of a more cosmetic nature that help adapt the interesting cobordism H (H stands
for Hirano) to start and end at the right links. We describe all three in detail.

Let F be a smooth cobordism from T (d, d) to T (D, D) with

χ(F ) = (D − 1)2 − (d − 1)2 =
0 if d is even

−4m + 1 if d is odd

as follows: F is the identity cobordism if d is even, i.e. F = T (d, d) × [0, 1], while,
for d odd, F is any connected cobordism. We expand on the existence of such
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an ´F for d odd in the rest of this paragraph. For example, F can be obtained by
a complex algebraic curve C ∈ C2 intersected with B4 \ int(B 1

2
), where C is chosen

to intersect S3 and S3
1
2

transversally in T (d, d) and T (D, D), respectively. (See for
example Remark 2.2 for how such a curve C can be produced.) The local Thom
conjecture implies that the Euler characteristic is as claimed. Here is a different,
explicit construction that builds a handle decomposition of a cobordism as desired.
Consider the following sequence of 4m = 2D = 2(d − 1) positive d-braids:

σ1σ2, . . . , σd−2σd−1(σ1σ2, . . . , σd−2)d−2, (σ1σ2, . . . , σd−2σd−1)2(σ1σ2, . . . , σd−2)d−3,

(σ1σ2, . . . , σd−2σd−1)3(σ1σ2, . . . , σd−2)d−4, . . . , (σ1σ2, . . . , σd−2σd−1)d−1,

(σ1σ2, . . . , σd−2σd−1)d−1σ1, (σ1σ2, . . . , σd−2σd−1)d−1σ1σ2, . . . ,

(σ1σ2, . . . , σd−2σd−1)d−1σ1σ2, . . . , σd−2,

(σ1σ2, . . . , σd−2σd−1)d−1σ1σ2, . . . , σd−1

= (σ1σ2, . . . , σd−2σd−1)d.

The first braid has as its braid closure T (D, D) and the last braid has T (d, d) as
its braid closure. Each differs from its predecessor by one more generator σi, hence
their closures are related by a cobordism consisting of one 1-handle (in particular
a cobordism of Euler characteristic −1). Composing these 4m − 1 cobordism yields
the desired cobordism F . To see that F is connected, note that the (d − 1)th braid
has closure T (d, d − 1) (hence is connected) and by construction (only 1-handles)
every point in F has at most as many connected component as this level set.

Let F ′ be a smooth cobordism from T (2, 3m2) to T (2, ⌊3
4d2⌋) with

χ(F ′) = −
⌊
3d2/4

⌋
+ 3m2 =

0 if d is even
−3m if d is odd

as follows: if d is even, F ′ is the identity cobordism, while if d is odd, F ′ is any
connected cobordism. Similar to F , if d is odd, such an F ′ can for example be given
by an algebraic curve or an explicit construction as follows. Consider the following
sequence of 3m + 1 = ⌊3d2/4⌋ − 3m2 positive 2-braids:

σ3m2

1 , σ3m2+1
1 , . . . , σ

⌊3d2/4⌋
1 ,

for which the closure of the first and last braid are T (2, 3m2) and T (2, ⌊3d2/4⌋),
respectively. The closure of any two consecutive braids are related by a cobordism
given by a one handle that is connected. Since one of the closures has two components
while the other has one, all these 3m cobordisms are diffeomorphic to a 3-holed
sphere; in particular they are connected and have Euler characteristic −1. Hence,
their composition yields a connected cobordism F ′ of Euler characteristic −3m as
desired.

Composing the following three cobordisms
• F from T (d, d) to T (D, D),
• a cobordism H from T (D, D) to T (2, 3m2) as guaranteed to exist by Lem-

ma 2.1,
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• and F ′ from T (2, 3m2) to T (2, ⌊3
4d2⌋),

we find a connected cobordism G between T (d, d) and T (2, ⌊3
4d2⌋) with

χ(G) = χ(F ) + χ(H) + χ(F ′)

=
0 − m2 − 2m + 0 = −m2 − 2m if d is even

−4m + 1 − m2 − 2m − 3m = −m2 − 9m + 1 if d is odd
Therefore, we have

χ(d) ⩾
−m2 − 2m = −d2

4 − d if d is even
−m2 − 9m + 1 = −d2

4 − 4d + 5 + 1
4 if d is odd

⩾ −d2

4 − 4d.

To find an upper bound on χ(d), we employ Murasugi’s signature obstruction on
the Euler characteristic of cobordism between links [Mur65]. Using

(2.1) σ(T (d, d)) = −
⌊

d2 − 1
2

⌋
and σ(T (2, k)) = −k + 1 [GLM81, Theorem 5.2],

for all positive integers d and k, we find

χ(d)
[Mur65]
⩽ σ

(
T

(
2,

⌊3
4d2

⌋))
− σ(T (d, d)) (2.1)=

⌊
d2 − 1

2

⌋
−

⌊3
4d2

⌋
+ 1 ⩽ −

⌊
d2

4

⌋
+ 1.

In conclusion, we have shown

(2.2) −d2

4 − 4d ⩽ χ(d) ⩽ −
⌊

d2

4

⌋
+ 1;

in particular, this establishes limd→∞
χ(d)
d2 = −1

4 . □

We end this section with a remark about rearranging curves in C2 such that their
link at infinity is T (d, d) without changing the singularity at the origin, which we
have used in the first paragraph of the introduction. The argument is very similar
to the one from the second paragraph of the proof of Lemma 2.1.

Remark 2.2. — Let C ⊂ C2 be a reduced(1) algebraic curve of degree d and fix
some p ∈ C. We claim by adding a small degree d polynomial to a defining square-
free polynomial f of C, we can change C to a reduced algebraic curve C̃ with the
same singularity at p such that the link at infinity of C̃ is T (d, d). This can be done
similarly as argued in the second paragraph of the proof of Lemma 2.1. Compare
also with [Fel16, Section 2].

Considering the closure in CP2 (by homogenizing to a 3-variable polynomial F
of degree d with F (x, y, 1) = f(x, y)), choosing a generic projective line, and then
composing the defining equation F with a linear transformation of CP2 that maps
this line to the line at infinity {[x : y : z] | z = 1} and fixes p, we find a new defining
equation F̃ such that setting f̃(x, y) = F̃ (x, y, 1) yields the defining equation of an
algebraic curve C̃ as desired. To guarantee that the coefficients between f and f̃ vary
little, choose the generic projective line to be given by an equation ax + by + cz = 0
with a and b close to 0 and c close to 1 and choose the linear transformation close
(1) Reduced simply amounts to the defining polynomial f being square-free.
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562 S. BAADER & P. FELLER

to the identity (say as an element in Gl3(C)). Finally, we note that a further small
change of the coefficients of f̃ (respectively F̃ ) does not change the fact that the link
at infinity is T (d, d) since the corresponding projective curve transversally intersects
the line at infinity.

In the second paragraph of the introduction, we further wanted a smooth algebraic
curve. For this we note that adding a generic constant arranges that f̃−1(0) is smooth.
Choosing the constant small (compared to an ε with S3

ε′ ⋔ f̃−1(0) being a torus link
of type T (2, n + 1) for all 0 < ε′ ⩽ ε) assures that f̃−1(0) ∩ S3

ε remains a torus link
of type T (2, n + 1). Also, as argued at the end of the last paragraph, the link at
infinity remains T (d, d) if the constant is chosen sufficiently small.

3. Cobordism distance between torus links of type T (d, d)
and T (2, N)

Theorem 1.1 and its proof combined with the link signature bound on the Euler
characteristic of cobordisms and the resolution of the local Thom conjecture allows
to determine the smooth cobordism distance between the link T (d, d) and all torus
links T (2, N) up to an error of at most 3d. This is the content of Theorem 1.2, which
we prove below, after a comment on the cobordism distance.

One may define the cobordism distance between two links L0 and L1 as minus
the maximal Euler characteristic of all smooth cobordisms F between L0 and L1
for which each component of F has boundary components in both S3 × {0} and
S3 × {1}. With this definition the cobordism distance is an integer valued metric
on the set of smooth concordance classes of links, justifying the name “distance”.
Alternatively, the first author considered a variation when investigating cobordism
distance between positive torus links using scissor equivalences; see [Baa12]. In case of
two non-isotopic non-trivial positive torus links, whatever variation of the definition
is chosen, the cobordism distance is realized by a connected smooth cobordism.
For clarity of presentation, we abstain from using the term cobordism distance in
our statements and instead consider connected smooth cobordisms, as done in the
statement of Theorem’s 1.1 and 1.2.

Proof of Theorem 1.2. — Without loss of generality, take d to be positive. In fact,
we consider the case when d ⩾ 2, since the case d = 1 is immediate from the local
Thom conjecture; compare (3.1) below.

We first discuss the case N ⩾ 0. Using a cobordism between T (d, d) and T (2, ⌊3
4d2⌋)

that realizes χ(d) and composing it with a connected cobordism between T (2, ⌊3
4d2⌋)

to T (2, N) of Euler characteristic −|⌊3
4d2⌋−N |, yields −|⌊3

4d2⌋−N |+χ(d) ⩽ χ(d, N).
Combined with

−
∣∣∣∣⌊3

4d2
⌋

− N
∣∣∣∣ − d2

4 − 4d
(2.2)
⩽ −

∣∣∣∣⌊3
4d2

⌋
− N

∣∣∣∣ + χ(d),

we find the desired lower bound

−d2

4 −
∣∣∣∣34d2 − N

∣∣∣∣ − 4d ⩽ χ(d, N).
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For the upper bound, in case N ⩾ 3
4d2, we recall the signature bound

χ(d, N)
[Mur65]
⩽ −σ(T (d, d)) + σ(T (2, N)) (2.1)=

⌊
d2 − 1

2

⌋
− N + 1⩽ −

∣∣∣∣∣−d2

2 + N

∣∣∣∣∣ + 1
2

and apply | − d2

2 + N | = |d2

4 + (−3
4d2 + N)| = d2

4 + | − 3
4d2 + N | to find

χ(d, N) ⩽ −d2

4 −
∣∣∣∣−3

4d2 + N
∣∣∣∣ + 1

2 ,

as desired. If instead, 0 ⩽ N < 3
4d2, we use the following triangle inequality for the

cobordism distance χ(d, N) ⩽ χ(d, 1) − χ(1, N) in combination with the following
consequence of the local Thom conjecture [KM93, Corollary 1.3]:

(3.1) χ(d, 1) = −(|d| − 1)2 and χ(1, N) = −||N | − 1|,

for all integers N and non-zero integers d. We find

χ(d, N) ⩽ −(d − 1)2 + (N − 1)
= −d2 + N + 2d − 2

= −d2

4 −
∣∣∣∣34d2 − N

∣∣∣∣ + 2d − 2,

where we combined the triangle inequality and (3.1) to see the inequality.
Finally, if N ⩽ −1, then

χ(d, N) = χ(d, 1) + χ(1, N) (3.1)= −(d − 1)2 + N + 1 = −d2

4 −
∣∣∣∣34d2 − N

∣∣∣∣ + 2d,

where the first equality is a consequence of the local Thom conjecture [KM93, Corol-
lary 1.3]. □

4. 1-Lipschitz concordance invariants

We call a real-valued knot invariant I : Knots → R a 1-Lipschitz concordance
invariant if |I(K) − I(J)| ⩽ g4(J# − K) for all K, J ∈ Knots, where Knots denotes
the set of isotopy classes of knots and −K denotes the reverse of the mirror of K.

Most classically, Trotter’s signature −σ/2 is an example [Mur65, Tro62], but also
Ozsváth and Szabó’s τ [OS03] and Rasmussen’s −s/2 [Ras10] (and more gener-
ally all slice-torus invariants as studied in [Lew14, Liv04]), and Ozsváth, Stipsicz,
and Szabó’s −Υ(t)/t [OSS17]. All of these are also additive under connected sum.
A none-additive example is Hom and Wu’s ν+ [HW16]. These examples of 1-Lipschitz
concordances invariants satisfy |I(T2,2m+1)| = m for m ∈ N. For such I, as a conse-
quence of Theorem 1.1, we find Corollary 1.3, which can be paraphrased to say that
|I(T (d, d + 1))| is at least half of the genus of T (d, d + 1) asymptotically for large d.
This might be of independent interest, but for us this is actually a negative result
since it shows that a certain approach towards making progress on the An-realization
problem can not work; see Appendix B, where we make this statement precise.
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Proof of Corollary 1.3. — Fix a positive integer d and write N := ⌊3
4d2⌋. By

composing a connected cobordism of Euler characteristic χ(d) between T (d, d) and
T (2, N) with a connected cobordism of Euler characteristic 1 − d between T (d, d + 1)
and T (d, d), we find a connected cobordism of Euler characteristic χ(d) − (d − 1)
between T (d, d + 1) and T (2, N). If N is odd, we take F to be this cobordism and
write K = T (2, N), if not we take F to be a connected cobordism between T (d, d+1)
and T (2, N + 1) of Euler characteristic χ(d) − d and write K = T (2, N + 1). In both
cases, F has genus ⌈−χ(d)+(d−1)

2 ⌉; hence, g4(T (d, d + 1)# − K ⩽ ⌈−χ(d)+(d−1)
2 ⌉. We

complete the proof by the following calculation, which uses Theorem 1.1 for the first
equality and the assumption limm→∞

I(T (2,2m+1))
g4(T (2,2m+1) = 1 for the last equality:

1
4 = lim

d→∞

−χ(d)
d2 = lim

d→∞

⌈
−χ(d)+(d−1)

2

⌉
d2/2 = lim

d→∞

⌈
−χ(d)+(d−1)

2

⌉
g4(T (d, d + 1))

= lim
d→∞

⌈
−χ(d)+(d−1)

2

⌉
g4(T (d, d + 1)) = lim inf

d→∞

⌈
−χ(d)+(d−1)

2

⌉
g4(T (d, d + 1))

⩾ lim inf
d→∞

I(K) − I(T (d, d + 1))
g4(T (d, d + 1))

⩾ lim inf
d→∞

I(K)
g4(T (d, d + 1)) − lim inf

d→∞

I(T (d, d + 1))
g4(T (d, d + 1))

= lim inf
d→∞

I(K)
d2/2 − lim inf

d→∞

I(T (d, d + 1))
g4(T (d, d + 1))

= 3
4 − lim inf

d→∞

I(T (d, d + 1))
g4(T (d, d + 1)) . □

Appendix A. Context: a smooth analogue of the
An-realization problem and limitations of

Theorem 1.1
Let us be exact in determining the Euler characteristic of the cobordism provided

by f̃ between T (d, d) and T (2, n + 1) from the second paragraph of the introduction,
which we earlier found to be around n − d2. Its Euler characteristic is n − (d − 1)2,
as we explain in the rest of this paragraph. Take C ⊂ CP2 to be the closure of
f̃−1(0), i.e. the projective algebraic curve given by the homogenization of f̃ . We
note that C is a smooth curve (this follows, since all points of C in C2 ⊆ CP2 are
non-singular by the choice of f̃ and from the fact that the link at infinity is T (d, d)
we find that C has d non-singular points on CP1 := CP2 \C2) of degree d; hence, it is
a closed genus (d − 1)(d − 2)/2 surface and thus f̃−1(0) is a d-times punctured genus
(d − 1)(d − 2)/2 surface. The link T (2, n + 1) separates f̃−1(0) into two pieces, one of
which (the bounded one) is diffeomorphic to the Milnor fiber F of the An-singularity,
i.e. a connected surface with first Betti number (aka its Milnor number) equal to n.
Hence, the Euler characteristic of the cobordism is

χ
(
f̃−1(0)

)
− χ(F ) = (−(d − 1)(d − 2) + 2 − d) − (−n + 1) = n − (d − 1)2.
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Motivated by the above calculation, we let dsm(n) denote the smallest integer
such that there exists a connected smooth cobordism of Euler characteristic n −
(dsm(n) − 1)2 between T (dsm(n), dsm(n)) and T (2, n + 1). Equivalently, invoking the
resolution of the local Thom conjecture, dsm(n) is the smallest integer among the
positive integers d such that there exists a χ-maximizing smooth connected cobordism
C ⊂ S3 × [−1, 1] between T (d, d) and the unknot U with S3 ×{0} ⋔ C = T (2, n+1).
In other words, dsm(n) is the smallest integer among the d with

dcob(T (d, d), U) = dcob(T (d, d), T (2, n + 1)) + dcob(T (2, n + 1), U),

where dcob denotes the cobordism distance between links; see also [Fel16, Observa-
tion 5].

The problem of determining dsm(n) can be understood as a smooth analogue of the
An-realization problem. Certainly, by the above calculation, one has dsm(n) ⩽ d(n),
but it is even conceivable that the following question has a positive answer: is
dsm(n) = d(n) for all n ∈ N? This question appears to be folklore among some knot
theorists, but no answer is in sight. In any case, since dsm(n) ⩽ d(n), every constant
c with

(A.1) lim inf
n→∞

n

dsm(n)2 ⩽ c,

also satisfies (1.2). Therefore, a positive answer to the following smooth concordance
question would constitute progress on the algebraic An-realization problem.

Question A.1. — Does there exists a constant c < 3
4 that satisfies

lim inf
n→∞

n

dsm(n)2 ⩽ c?

While we suspect that the answer is no, in fact, we suspect lim supn→∞
n

dsm(n)2 = 3
4 ,

we do not know. In particular, we note that Theorem 1.1 and its proof do not
directly provide insight into Question A.1 since the cobordisms between T (d, d) and
T (2, ⌊3d2

4 ⌋) we use have Euler characteristic strictly less than ⌊3d2

4 ⌋−(d−1)2. However,
Theorem 1.1 does show that certain asymptotic values of certain knot invariants
cannot be used to answer Question A.1. We explain the latter below in Appendix B

For context, we also note that the for dsm(n) in place of d(n) the upper bounds
from (1.1) also hold, while the lower bound is in fact better; see [Ore12, Theo-
rem 3.13]:

(A.2) 2
3 ⩽ lim inf

n→∞

n

dsm(n)2 ⩽ lim sup
n→∞

n

dsm(n)2 ⩽
3
4 .

Appendix B. How not to resolve the An-realization problem

One may wonder what kind of invariants could help to answer Question A.1.
The following observation provides upper bounds on the asymptotic value of n

dsm(n)2

(and hence n
d(n)2 ).
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Observation B.1. — Let I : Knots → R be a 1-Lipschitz concordance invariant
with limm→∞

I(T (2,2m+1))
g4(T (2,2m+1)) = 1. Setting

c′ := lim inf
d→∞

I(T (d, d + 1))
g4(T (d, d + 1)) and c′′ := lim sup

d→∞

I(T (d, d + 1))
g4(T (d, d + 1)) ,

we find
lim inf
n→∞

n

dsm(n)2 ⩽
1 + c′

2 and lim sup
n→∞

n

dsm(n)2 ⩽
1 + c′′

2 .

We note that in the assumption of Observation B.1 and similarly in Corollary 1.3,
the limit could be replaced with lim inf since I(K)

g4(K) ⩽ 1.
At first sight Observation B.1 looks like a promising approach towards answering

Question A.1. For example, the upper bound in (1.1) and (A.2) immediately follows
using I = −σ/2 since limd→∞

−σ(T (d,d+1))/2
g4(T (d,d+1)) = 1

2 . In fact, this upper bound via the
signature and Observation B.1 is essentially how the upper bound via the signature
spectrum (mentioned in the first paragraph of the introduction) works.

The bad news is that, by Corollary 1.3, for every 1-Lipschitz concordance invariant
I : Knots → R with limm→∞

I(T (2,2m+1))
g4(T (2,2m+1)) = 1, we have

lim inf
d→∞

I(Td,d+1)/g4(T (d, d + 1)) ⩾ 1
2 .

This means, there is no I that can be plugged into Observation B.1 to improve the
upper bound of 3

4 on any of the quantities

lim inf
n→∞

n

d(n)2 , lim inf
n→∞

n

dsm(n)2 , lim sup
n→∞

n

d(n)2 , and lim sup
n→∞

n

dsm(n)2 .

It remains to prove Observation B.1.
Proof of Observation B.1. — We discuss only the inequality involving lim inf, the

other follows by a similar argument. Fix integers n, d > 0, where we take n to be even.
Assume that there exists a connected cobordism of Euler characteristic n − (d − 1)2

between T (d, d) and T (2, n + 1). Then there exists a connected cobordism of Euler
characteristic n − (d − 1)d between T (d, d + 1) and T (2, n + 1). This cobordism has
genus (d−1)d−n

2 ; hence, (d−1)d
2 − n

2 ⩾ −I(T (d, d + 1)) + I(T (2, n + 1)), and we have

(B.1) 1 + I(T (d, d + 1))
g4(T (d, d + 1)) ⩾

n
2 + I(T (2, n + 1))

(d−1)d
2

= n + 2I(T (2, n + 1))
(d − 1)d .

Taking lim inf, we find

1 + c′ = 1 + lim inf
d→∞

I(T (d, d + 1))
g4(T (d, d + 1)) = 1 + lim inf

n→∞|nodd

I(T (dsm(n), dsm(n) + 1))
g4(T (dsm(n), dsm(n) + 1))

(B.1)
⩾ lim inf

n→∞|nodd

n + 2I(T (2, n + 1)
(dsm(n) − 1)dsm(n) = lim inf

n→∞

n + 2I(T (2, n + 1))
(dsm(n) − 1)dsm(n)

= lim inf
n→∞

n + 2I(T (2, n + 1))
dsm(n)2 = lim inf

n→∞

2n

dsm(n)2 ,

which completes the proof. We comment on why the equalities hold. The first one is
by definition of c′. For the second one, ⩽ is clear, but not needed. We argue for ⩾.
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By (A.2) we know that for every large d there exists an even n with |dsm(n)−d| ⩽ 2
√

d.
Picking d′ = dsm(n) for some such n, we have∣∣∣I(T (d, d + 1)) − I(T (d, d + 1))

∣∣∣, ∣∣∣g4(T (d, d + 1)) − g4(T (d, d + 1))
∣∣∣

⩽ O
(
(d − d′)2

)
⩽ O(d),

and, since g4(T (d, d + 1)) grows quadratically in d, ⩽ (in fact =) follows. The third
to last equality follows by a similar argument using that every dsm(n) for n odd is
linearly (in dsm(n)) close to dsm(n ± 1). The second to last equality is clear since the
two denominators are only dsm(n) apart but both grow quadratically. Finally, the
last equation follows from limm→∞

I(T (2,2m+1))
g4(T (2,2m+1)) = 1. □
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