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1. Introduction

To find the global minima of functions also admitting local minima is of great
importance, both from theoretical and practical points of view. Here the smooth
context of Morse functions on compact Riemannian manifolds is considered. We
introduce a time-homogeneous stochastic algorithm X called fraudulent because it
requires the knowledge of the minimal value. In some sense it serves as a tribute
to the folklore assertion that to know the minimal value of a function and to find
a corresponding global minimum are equivalent problems. Nevertheless we found
interesting to investigate this algorithm for four reasons:

• The process X is an approximation of the large-time limit behavior of the
time-inhomogeneous swarm mean-field algorithm introduced in [BMV24]. The
latter algorithm is non-fraudulent since it uses its current distribution to
estimate in real time the minimal value.

• The principle behind the convergence of X toward the global minima can be
used to devise other non-fraudulent stochastic algorithms based on particles
systems that learn adaptatively the minimal value.

• The stochastic algorithm X is useful to find other global minima, once one
is known, because as soon as the dimension is larger than or equal to 2, all
global minima attract X with a positive probability.

• The stochastic algorithm X is a toy model for the diffusion limit of mini-
batch stochastic gradient descent algorithms extensively used in the theory
of Machine Learning, see for instance Li, Tai and E [LTE19], Wu, Wang and
Su [WWS22], Mori, Ziyin, Liu and Ueda [MZLU22], Wojtowytsch [Woj24],
Mori, Ziyin, Liu and Ueda [MZLU22] and references therein.

More precisely, on a compact Riemannian manifold M , of dimension m ⩾ 1, let U
be a Morse function satisfying minM U = 0. Recall that a smooth mapping is a
Morse function if its Hessian is non-degenerate at each of its critical points (which
are the points where the gradient vanishes).

Consider a diffusion X := (X(t))t⩾ 0 associated to the generator
Lβ := U∆ · −β⟨∇U, ∇·⟩

where ∆, ⟨·, ·⟩ and ∇ stand for the Laplacian, scalar product and gradient coming
from the Riemannian structure, and where β is a real number. Since we want to find
the global minima of U , we are more interested in the case β > 0, where the drift has
an attractive (respectively repulsive) effect with respect to the local minima (resp.
maxima). But as we are to see, it is convenient to also consider non-positive values
of β, where the effects of the drift are reversed.

Due to the Morse assumption on U and the fact that minM U = 0, we have that
√

U
is a Lipschitz mapping on M (see Remark 2.1 below). As a consequence it is possible
to construct X, whatever the initial condition, as the unique strong solution to a
stochastic differential equation driven by a m-dimensional Brownian motion B :=
(B(t))t⩾ 0 (independent from X(0)), see for instance Ikeda and Watanabe [IW89].
Heuristically, this stochastic differential equation can be written under the Itô’s form

(1.1) dX(t) = −β∇U(X(t)) dt +
√

2U(X(t)) dB(t)
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or under Stratonovich’s form

dX(t) = −
(

β + 1
2
√

2

)
∇U(X(t)) dt +

√
2U(X(t)) ◦ dB(t)

where dB(t) has to be isometrically interpreted in the tangent space above X(t)
through stochastic parallel displacements. At least when M is a flat torus, the
writing (1.1) is perfectly rigorous.

Consider the set of global minima of U given by
U := {x ∈ M : U(x) = 0}.

Note that if X(0) ∈ U , then X does not move: for any t ⩾ 0, we have X(t) = X(0).
This observation can be strengthened into the attractiveness of U , which is the main
goal of this paper.

We need some additional notations. Under the Morse assumption, U consists of a
finite set of points, say y1, y2, . . . , yN , with N ∈ N. For each n ∈ [[N ]] := {1, 2, . . . , N},
denote λ1(n) ⩽ λ2(n) ⩽ · · · ⩽ λm(n) the positive eigenvalues of the Hessian of U
at yn. Introduce the condition

(1.2) β > max
n∈ [[N ]]

∑
i∈ [[m]] λi(n)
2λ1(n) − 1.

Theorem 1.1. — Whatever the initial condition X(0), under (1.2) the limit
X(∞) := limt→+∞ X(t) exists a.s. and belongs to U . Furthermore, when m ⩾ 2, if
X starts from a point x0 ̸∈ U , we have for any y ∈ U ,

Px0 [X(∞) = y] > 0.

When m = 1, denote y1 and y2 the boundary points of the connected component
of M \ U containing x0 (when U is a singleton, we get y1 = y2). Then we have

Px0 [X(∞) = y1] > 0, Px0 [X(∞) = y2] > 0,

∀ y ∈ U \ {y1, y2}, Px0 [X(∞) = y] = 0.

Thus under (1.2) X is a time-homogeneous stochastic algorithm minimizing global-
ly U and finding all the global minima as soon as m ⩾ 2. A.s. convergence was not
considered in the previously cited recent works in Machine Learning, which rather
concentrated on approximation properties (from discrete time stochastic gradient
descent algorithms), on convergence in law and in the behaviour of the associated
invariant measures.

It is natural to wonder about the optimality of (1.2). In this direction, we will
show:

Theorem 1.2. — Assume that

(1.3) β < min
n∈ [[N ]]

∑
i∈ [[m]] λi(n)
2λm(n) − 1.

Whatever the initial condition X(0) ̸∈ U , we have

P
[

lim
t→+∞

X(t) exists and belongs to U
]

= 0.
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As a consequence, the value m/2 − 1 is critical for β when at each global minimum
the Hessian is proportional to the identity:

Corollary 1.3. — Assume that for each n ∈ N we have λ1(n) = λm(n), then
we have

β >
m

2 − 1 =⇒ P
[

lim
t→+∞

X(t) exists and belongs to U
]

= 1

β <
m

2 − 1 =⇒ P
[

lim
t→+∞

X(t) exists and belongs to U
]

= 0.

In particular this result always applies in dimension 1 and we get −1/2 as the
critical value for β (justifying our consideration of negative β).

In practice we may not have access to the eigenvalues of the Hessian at the global
minima, so Condition (1.2) is difficult to check. An alternative to the appropriate
choice of the coefficient β is to let it depend on the current value of U . More precisely,
consider ζ : (0, +∞) → (0, +∞) a smooth function such that

lim
u→0+

ζ(u) = +∞(1.4)

lim
u→0+

√
uζ(u) = 0.(1.5)

We replace the generator Lβ by

(1.6) Lζ := U∆ · −ζ(U)⟨∇U, ∇·⟩

with ζ(U(x))∇U(x) = 0 for x ∈ U by continuity, due to (1.5) (this is in fact the only
justification for this assumption). Heuristically this generator corresponds to the Itô
stochastic differential equation

dX(t) = −ζ(U(X(t))∇U(X(t)) dt +
√

2U(X(t)) dB(t).

The coefficients of this equation are not globally Lipschitz, nevertheless, we will see
that whatever the initial distribution, there is a unique strong diffusion X associated
to (1.6) in the sense of martingale problem. For this process X, Theorem 1.1 still
holds, without Assumption (1.2). Of course in this situation we lose the critical
phenomenon described by Corollary 1.3. But the advantage is that the diffusion X
associated to (1.6) could be applied to deal with situations less regular than Morse
functions.

In the above results, no estimate on the speed of convergence were provided, but
it should be possible to remedy this by examining more quantitatively the following
arguments. We hope to go further in future investigations.

The plan of the paper is as follows. In the next section we prove Theorem 1.1 under
a stronger assumption than (1.2). Bessel processes with negative dimension play a
pivotal role. In Section 3 the arguments are improved to achieve the desired results.
An appendix succinctly recalls the swarm mean-field algorithm of [BMV24] to explain
how a fraudulent algorithm can appear from the investigation on non-fraudulent
ones. Another simpler and illustrative example is given, even if it is probably less
efficient than swarm algorithms.

ANNALES HENRI LEBESGUE



Fraudulent algorithms 573

Acknowledgments

I would particularly like to thank Marc Arnaudon, Jérôme Bolte and Stéphane
Villeneuve for the discussions we had about this paper, as well as referees for their
observations about an earlier version of this paper.

2. Proof of a weaker version of Theorem 1.1

Here we prove Theorem 1.1 under the stronger assumption

(2.1) β > 1 + sup
n∈ [[N ]]

∑
i∈ [[m]] λi(n)
2λ1(n) .

Its relaxation to (1.2) will be shown in the next section.
First let us give a sketch of the proof. For any given global minimum yn, with

n ∈ [[N ]], we can find a small radius rn > 0 such that inside the ball B(yn, rn), the
evolution of U(X(t)) is comparable to a time-changed Bessel process with negative
dimension. Since a Bessel process with negative dimension a.s. converges to zero
in finite time, X will stay in B(yn, rn) forever with positive probability and then
converge to yn, if it happens to belong to an even smaller neighborhood Vn of yn

at some time. Nevertheless, the convergence is not expected to occur in finite time
due to the time-change, see Example 2.4 below. It remains to remark that outside⋃

n∈ [[N ]] Vn, the diffusion X is elliptic, so it will end up entering ⋃
n∈ [[N ]] Vn. Since

each times this happens X has a positive chance to converge to a point of U , this
event will end up occurring with probability 1. The last assertions of Theorem 1.1
are consequences of the ellipticity of X outside U .

Let us now develop more precisely the above arguments.
We begin by recalling some general facts about the process X, for any fixed β ∈ R.

Its law on the set of continuous trajectories from R+ to M is uniquely determined by
the initial distribution of X(0) and by the fact for any smooth function f : M → R,
the process M f := (M f (t))t⩾ 0 defined by

∀ t ⩾ 0, M f (t) := f(X(t)) − f(X(0)) −
∫ t

0
Lβ[f ](X(s)) ds

is a continuous martingale (with respect to the filtration generated by X). Further-
more, its quadratic variation (the notation of which should not to be confused with
the Riemannian scalar product) is given by

(2.2) ∀ t ⩾ 0,
〈
M f

〉
t

= 2
∫ t

0
U(X(s))∥∇f(X(s))∥2 ds

where ∥·∥ stands for the Riemannian norm.
When M is a flat torus, these observations can be deduced from Itô’s formula,

asserting that:
df(X(t)) =

[
U(X(t))∆f(X(t)) − β⟨∇U(X(t)), ∇f(X(t))⟩

]
dt

+
√

2U(X(t)) ⟨∇f(X(t)), dB(t)⟩
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so that
∀ t ⩾ 0, M f (t) =

∫ t

0

√
2U(X(s)) ⟨∇f(X(s)), dB(s)⟩.

This formula can be generalized for general compact Riemannian manifolds, never-
theless the above martingale problem point of view is more synthetic and enables to
avoid delicate geometric constructions. For extensive developments of the martingale
problem approach, we refer to the books of Stroock and Varadhan [SV97] and Ethier
and Kurtz [EK86].

Introduce
σf := inf

{
t ⩾ 0 : U(X(t))∥∇f(X(t))∥2 = 0

}
with the convention that σf = +∞ when the r.h.s. is the empty set. Assume that
U(X(0))∥∇f(X(0))∥2 ̸= 0, so that σf > 0 a.s.

Since for any t ∈ [0, σf), we have U(X(t))∥∇f(X(t))∥2 > 0, we can consider the
time change (τ f

t )t ∈ [0,ς) uniquely defined through

∀ t ∈
[
0, ςf

)
, 2

∫ τf
t

0
U(X(s))∥∇f(X(s))∥2 ds = t

where
ςf := 2

∫ σf

0
U(X(s))∥∇f(X(s))∥2 ds.

Define the process Y f via(
Y f (t)

)
t ∈ [0,ςf) :=

(
f
(
X
(
τ f

t

)))
t ∈ [0,ςf).

Classical time-change theory, see for instance [RY99, Section 1, Chapter 5] of
Revuz and Yor, Levy’s characterization theorem and (2.2), enable us to construct
a Brownian motion (W (t))t⩾ 0 (up to a possible enlargement of the underlying
probability space), so that for any time t ∈ [0, ς),

dY f (t) = 1
2F f

(
Y f (t)

)
dt + dW (t)

where for any x ∈ M such that U(x)∥∇f(x)∥2 ̸= 0,

F f (x) := Lβ[f ](x)
U(x)∥∇f(x)∥2

= ∆f(x)
∥∇f(x)∥2 − β

⟨∇U(x), ∇f(x)⟩
U(x)∥∇f(x)∥2 .

Now let us apply these considerations to a particular function f . The first idea is
to take f = U (in next section we will see that this is not optimal). To simplify the
notations, all the superscripts f are removed in this case. Thus we have

σ = inf{t ⩾ 0 : X(t) ∈ C}

with C := {x ∈ M : ∇U(x) = 0} being the set of critical points of U . Furthermore
we consider the process Y given by

(Y (t))t ∈ [0,ς) := (U(X(τt)))t ∈ [0,ς)
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with
∀ t ∈ [0, ς), 2

∫ τt

0
U(X(s))∥∇U(X(s))∥2 ds = t

and
ς := 2

∫ σ

0
U(X(s))∥∇U(X(s))∥2 ds.

The evolution of Y is given by

(2.3) dY (t) = 1
2F (X(τt)) dt + dW (t)

where (W (t))t⩾ 0 is a Brownian motion and where for any x ∈ M \ C,

F (x) := ∆U(x)
∥∇U(x)∥2 − β

U(x) .

The process (U(X(t)))t⩾ 0 is not Markovian in general, nevertheless we will show
that it can be conveniently compared to a Bessel process while X(t) is close to an
element of U .

Indeed, fix a global minimum yn, with n ∈ [[N ]]. Consider an exponential system
of coordinates (x1, x2, . . . , xm) on a neighborhood Nn of yn with x1(yn) = x2(yn) =
· · · = xm(yn) = 0 and such that the vectors (∂xi

)i ∈ [[m]] forms an orthonormal basis of
the tangent space at yn consisting of eigenvectors of the Hessian of U respectively to
the eigenvalues (λi(n))i ∈ [[m]]. Let ϵ ∈ (0, 1), the value of which will be chosen more
precisely below. We can find a small enough radius rn > 0, such that the open ball
B(yn, rn) is included into Nn and such that for any x ∈ B(yn, rn), identified with its
coordinates (x1, x2, . . . , xm), we have

(1 − ϵ)
∑

i∈ [[m]]
λi(n) ⩽ ∆U(x) ⩽ (1 + ϵ)

∑
i∈ [[m]]

λi(n)(2.4)

(1 − ϵ)
∑

i∈ [[m]]
λ2

i (n)x2
i ⩽ ∥∇U∥2(x) ⩽ (1 + ϵ)

∑
i∈ [[m]]

λ2
i (n)x2

i(2.5)

1
2(1 − ϵ)

∑
i∈ [[m]]

λi(n)x2
i ⩽ U(x) ⩽ 1

2(1 + ϵ)
∑

i∈ [[m]]
λi(n)x2

i .(2.6)

Indeed, the first and second estimates are obtained through the expressions of the
Laplace–Beltrami and gradient operators in terms of the metric, taking into account
that the first order expansion of the metric in a exponential (or geodesic) chart is
constant, see for instance [CLN06, Section 10.1, p. 58] of Chow, Lu and Ni.

Remark 2.1. — For x ∈ M \ U , we have ∇
√

U = ∇U/(2
√

U) and the above
bounds enable to see the norm of this vector is bounded on B(yn, rn) \ {yn}, for all
n ∈ [[N ]]. Since ∥∇

√
U∥ is clearly bounded on M \⋃n∈ [[N ]] B(yn, rn), we deduce that√

U is Lipschitz, as announced in the introduction.

In particular, yn is the unique critical point of U in B(yn, rn). Assume that X(0) ∈
Vn with

(2.7) Vn := {x ∈ B(yn, rn) \ {yn} : U(x) < un/2}
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with
(2.8) un := min

z ∈∂B(yn,rn)
U(z)

where ∂B(yn, rn) is the boundary of B(yn, rn). Denote
(2.9) σn := inf{t ⩾ 0 : X(t) = yn or X(t) ̸∈ B(yn, rn)} ⩽ σ

(as usual, σn = +∞ when the r.h.s. is the empty set), and

ςn := 2
∫ σn

0
U(X(s))∥∇U(X(s))∥2 ds.

Replacing ς by ςn ⩽ ς in the above considerations enables to investigate the
process X while it stays in B(yn, rn/2) \{yn}. We are led to study (Y (t))t ∈ [0,ςn]. The
following result is important in this respect.

Lemma 2.2. — We have for any x ∈ B(yn, rn) \ {yn},(
(1 − ϵ)2∑

i∈ [[m]] λi(n)
2(1 + ϵ)λm(n) − β

)
1

U(x) ⩽ F (x) ⩽

(
(1 + ϵ)2∑

i∈ [[m]] λi(n)
2(1 − ϵ)λ1(n) − β

)
1

U(x) .

Proof. — For any x ∈ B(yn, rn) \ {yn}, we have
(1 − ϵ)∑i∈ [[m]] λi(n)x2

i

(1 + ϵ)∑i∈ [[m]] λ2
i (n)x2

i

⩽
2U(x)

∥∇U(x)∥2 ⩽
(1 + ϵ)∑i∈ [[m]] λi(n)x2

i

(1 − ϵ)∑i∈ [[m]] λ2
i (n)x2

i

implying
(1 − ϵ)

(1 + ϵ)λm(n) ⩽
2U(x)

∥∇U(x)∥2 ⩽
(1 + ϵ)

(1 − ϵ)λ1(n)
since for any real numbers xi, for i ∈ [[m]], not all of them vanishing, we have

1
λm(n) ⩽

∑
i∈ [[m]] λi(n)x2

i∑
i∈ [[m]] λ2

i (n)x2
i

⩽
1

λ1(n) .

The announced estimate follows, by writing

∀ x ∈ B(yn, rn) \ {yn}, F (x) =
(

∆U(x) U(x)
∥∇U(x)∥2 − β

)
1

U(x) . □

Recall that β has been chosen so that

β > 1 + sup
n∈ [[N ]]

∑
i∈ [[m]] λi(n)
2λ1(n)

so we can choose ϵ > 0 so that

δ :=
(1 + ϵ)2∑

i∈ [[m]] λi(n)
2(1 − ϵ)λ1(n) + 1 − β

is negative.
We deduce from (2.3) that

(2.10) ∀ t ∈ [0, ςn), dY (t) ⩽ dW (t) + δ − 1
2Y (t) dt.
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This inequality leads us to consider Ỹ := (Ỹ (t))t⩾ 0 solution of the stochastic
differential equation

(2.11) ∀ t ⩾ 0, dỸ (t) = dW (t) + δ − 1
2Ỹ (t)

dt

starting with Ỹ (0) = un/2 (defined in (2.8)).
The process Ỹ is a Bessel process with negative dimension δ < 0, for a recent

account, see e.g. Le Gall [LG15]. It hits 0 in (a.s.) finite time and stays at 0 afterward,
the strength of the drift not allowing it to escape from 0.

Define
θ := inf

{
t ⩾ 0 : Ỹ (t) = 0

}
θ̃ := inf

{
t ⩾ 0 : Ỹ (t) = un

}
pn := P[θ < θ̃].

(2.12)

Since Ỹ is a Markov process and that limt→+∞ Ỹ (t) = 0 a.s., we have pn > 0.
By comparison, we get
Lemma 2.3. — Assume that X(0) ∈ Vn defined in (2.7). Then we have

P
[
∀ t ⩾ 0, X(t) ∈ B(yn, rn) and lim

t→+∞
X(t) = yn

]
⩾ pn.

Proof. — For ϵ ∈ (0, Y (0)), define
θϵ := inf{t ⩾ 0 : Ỹ (t) = ϵ}.

Applying [RY99, Theorem 3.7] of Revuz and Yor, we get that
∀ t ∈ [0, θϵ ∧ θ̃), Y (t) ⩽ Ỹ (t).

Indeed, this a consequence of Y (0) ⩽ un/2 = Ỹ (0) as well as of the comparison
between (2.10) and (2.11). Note that in the proof of [RY99, Theorem (3.7)] of Revuz
and Yor, we need Ỹ to be Markovian and that its drift is Lipschitz, which is true as
long as it belongs to the segment [ϵ, un]. But Y is not required to be Markovian, it
is sufficient that its drift is adapted.

Letting ϵ go to zero, we deduce
∀ t ∈ [0, θ ∧ θ̃), Y (t) ⩽ Ỹ (t)

(one would have remarked that Y (t) remains strictly below un and thus X(τt) remains
in B(yn, rn) as long as t < θ̃).

It follows that on the event {θ < θ̃}, we have that Y hits 0 in finite time. Equiva-
lently, X(τt) has to hit yn in finite time, since X(τt) has also to remain in B(yn, rn)
on {θ < θ̃} and yn is the unique point of this ball where U vanishes. Recall that if
X hits yn, then it has to stay there forever. Thus on the event {θ < θ̃}, X(t) always
stays in B(yn, rn) and limt→+∞ X(t) = yn. It leads to the announced result. □

Due to the time change, we cannot deduce the convergence of X to yn in finite time
from the corresponding convergence of (Xτt)t⩾ 0 (when it occurs). On the contrary,
we believe that X never converges in finite time, as suggested by the following
caricatural example.
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Example 2.4. — Let us momentarily leave the compact setting and consider the
function U : R ∋ x 7→ x2/2. The corresponding diffusion X on R given by (1.1)
solves the stochastic differential equation

∀ t ⩾ 0, dX(t) = −βX(t)dt + |X(t)|dB(t).

Assume that X(0) > 0 and consider

σ := inf{t ⩾ 0 : X(t) = 0}.

While t ∈ [0, σ), we have X(t) > 0, so that

∀ t ∈ [0, σ), dX(t) = −βX(t)dt + X(t)dB(t).

It leads us to introduce (X̃(t))t⩾ 0 := (eβtX(t))t⩾ 0, satisfying

∀ t ∈ [0, σ), dX̃(t) = X̃(t)dB(t)

whose solution is well-known to be the exponential martingale

∀ t ∈ [0, σ), X̃(t) = X̃(0) exp(B(t) − t/2).

It follows that

∀ t ∈ [0, σ), X(t) = X(0) exp(B(t) − (1 + 2β)t/2).

By consequence we have σ = +∞ and the process X does not hit the global
minima of U in finite time. Note also that limt→+∞ X(t) = 0 as soon as β > −1/2
in accordance with the observation following Corollary 1.3.

This example can be transferred to the compact space R/(2πZ) in the following way:
consider on R/(2πZ) a Morse function Ũ coinciding with the above U on [−π/2, π/2]
and such that 0 is a global minimum of Ũ . Let X̃ be the diffusion evolving as (1.1),
but with U replaced by Ũ . Assume that X̃(0) = π/4 and by contradiction that
the corresponding hitting time σ̃ of 0 is finite with positive probability. Taking
into account the Markov property, the process X̃ then stays inside (−π/2, π/2) and
converges to 0 in finite time with a positive probability p > 0 (since if starting from
π/4, X̃ always hits π/2 before 0, it cannot converge to 0). It follows that if X also
starts from π/4 and uses the same driving Brownian motion, then it coincides with
X̃ for all times with probability p. This implies that X converges to zero in finite
time with positive probability, a contradiction.

The fact that the diffusion given by (1.1) does not hit U in finite time with positive
probability is probably true under the Morse assumption of this paper.

The end of the proof of Theorem 1.1 follows the pattern sketched at the beginning
of this section. More precisely, define

Ã := M \
⋃

n∈ [[N ]]
B(yn, rn)

Â :=
⋃

n∈ [[N ]]
Vn

p := min{pn : n ∈ [[N ]]} > 0.
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Whatever the initial distribution of X(0), consider the sequences of stopping times
(θ̃k)k ⩾ 0 and (θ̂k)k ⩾ 0 defined iteratively from θ̃0 = 0 via

(2.13)

 θ̂k := inf
{
t ⩾ θ̃k : X(t) ∈ Â

}
θ̃k+1 := inf

{
t ⩾ θ̂k : X(t) ∈ Ã

}
(with the usual convention that the infimum of the empty set is +∞).

By the strong ellipticity of X on the compact set M \ Â, for any k ∈ N such that
θ̃k < +∞, we have a.s. θ̂k < +∞. On the contrary, we deduce from Lemma 2.3 and
from the strong Markov property that for any k ∈ N such that θ̂k < +∞, we end up
with θ̃k+1 = +∞ with probability p at least. It follows that for any k ∈ Z+,

P
[
θ̃k+1 < +∞

∣∣∣ θ̃k < +∞
]
⩽ (1 − p)

so by iteration we get
∀ k ∈ Z+, P

[
θ̃k < +∞

]
⩽ (1 − p)k

and finally
P
[
∀ k ∈ Z+, θ̃k < +∞

]
= 0.

The fact that a.s. there exists a random k ∈ Z+ such that θ̃k = +∞ ends the proof
of the first statement of Theorem 1.1.

Concerning its second statement, note that when X(0) ∈ Vn, for some n ∈ [[N ]],
there is a positive probability that X exits B(yn, rn) \ {yn} via the boundary
∂B(yn, rn).

When m ⩾ 2, assume that the rn > 0, for n ∈ [[N ]], have been furthermore chosen
so small so that M \ ⊔n∈ [[N ]] Vn is connected and contains ⊔n∈ [[N ]] ∂B(yn, rn) (the ⊔
meaning that it is a union of disjoint sets). It follows that if X(0) ∈ ⊔

n∈ [[N ]] ∂B(yn, rn),
then by ellipticity of Lβ on the connected set M \ ⊔n∈ [[N ]] Vn, for any n ∈ [[N ]], we
have P[X(θ̂1) ∈ B(yn, rn)] > 0 for any given n ∈ [[N ]]. Taking into account that
P[θ̃2 = +∞|X(θ̂1) ∈ B(yn, rn)] > 0, we deduce that P[X(∞) = yn] > 0.

When m = 1, a similar reasoning leads to the desired result, ending the proof of
Theorem 1.1 under (2.1).

3. Extensions

After ending the proof of Theorem 1.1, we show Theorem 1.2 and next we present
the extension to generators of the form (1.6) and discuss the Morse assumption.

3.1. Under Assumption (1.2)

We end the proof of Theorem 1.1. The overall approach is the same but instead
of considering f = U , we take f = Ua, with a ∈ (0, 1). This exponent being fixed,
we remove all the superscripts f from the notations, as in the previous section when
f was equal to U . An immediate drawback with respect to the latter case is that a
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priori Ua is not smooth. But it is not difficult to go around this problem, since Ua

is smooth on M \ U and we are only considering our process up to the time it may
reach U .

More precisely, we proceed as in the previous section, assuming that X(0) ∈
Vn \ {yn} for some n ∈ [[N ]]. Instead of considering σn given in (2.9), we introduce
for any ϵ ∈ (0, U(X(0))) the stopping time

σn,ϵ := inf{t ⩾ 0 : X(t) ̸∈ An,ϵ}
with

An,ϵ := {x ∈ B(yn, rn) : U(x) ⩾ ϵ}.

Remark that
lim

ϵ→0+
σn,ϵ = σn.

The advantage of An,ϵ is that there exist smooth functions f on M coinciding with
Ua on An,ϵ. The considerations at the beginning of Section 2 can be applied to such
a function f , up to the time σn,ϵ. By letting ϵ go to 0+, we get the following result,
analogous to (2.3).

Consider the process Y given by
(Y (t))t ∈ [0,ςn) := (U(X(τt)))t ∈ [0,ςn)

with
∀ t ∈ [0, ςn), 2

∫ τt

0
U(X(s))∥∇Ua(X(s))∥2 ds = t

and
ςn := 2

∫ σn

0
U(X(s))∥∇Ua(X(s))∥2 ds.

The evolution of Y is given by

dY (t) = 1
2F (X(τt)) dt + dW (t)

where (W (t))t⩾ 0 is a Brownian motion and for any x ∈ M \ C,

F (x) := ∆Ua(x)
∥∇Ua(x)∥2 − β

⟨∇U(x), ∇Ua(x)⟩
U(x)∥∇Ua(x)∥2

= ∆Ua(x)
a2U2a−2(x)∥∇U∥2 − β

aUa(x) .

We compute that outside C,
∆Ua = aUa−1∆U + a(a − 1)Ua−2∥∇U∥2

so that outside C,

F = 1
a

(
U∆U

∥∇U∥2 + a − 1 − β

)
1

Ua
.

From Lemma 2.2, we get that a comparison is possible with a Bessel process of
asymptotic dimension (i.e. when we let ϵ go to zero in Lemma 2.2)

δa = 2 + 1
a

(∑
i∈ [[m]] λi(n)
2λ1(n) − 1 − β

)
.
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Thus under (1.2), by choosing a > 0 sufficiently small, we can get δa < 0, ending
the proof of Theorem 1.1.

Remark 3.1. — Without resorting to Ua, Condition (1.2) can also be obtained
through the following observation. Coming back to the argument of the previous
section, what is important for our purpose is that the Bessel process (2.11) can hit 0
in finite time, since this implies the same behavior for the process Y . Indeed, once X
has hit yn, it cannot escape from it, so it closes our time-horizon (this is even more
true when X does not hit yn in finite time as suggested by Remark 2.4). It remains
to recall that a Bessel process of dimension δ hits 0 in finite time if and only if δ < 2.
This leads to Condition (1.2). But this argument conceals there is a negative (even
as negative as we want) dimension Bessel process behind the scene.

3.2. Proof of Theorem 1.2

Up to now we have not taken into account the lower bound in Lemma 2.2. It
can be used to prove there is no convergence toward U . More precisely, assume
that (1.3) holds and let us show we cannot have limt→+∞ X(t) ∈ U (except on a
P-negligible set).

Indeed, the lower bound in Lemma 2.2 enables to make a reverse comparison
between Y and the Bessel process Ỹ of (asymptotic) dimension

δ := min
n∈ [[N ]]

∑
i∈ [[m]] λi(n)
2λm(n) + 1 − β

which is (strictly) larger than 2 under (1.3). Such a Bessel process diverges to +∞
in large time without hitting 0 (starting from a positive value). It implies that the
time σn always satisfies that X(σn) belongs to the boundary of the ball B(yn, rn).
If we come back to (2.13), we get that for any k ∈ Z+, θ̃k < +∞. In particular the
set M \ ⋃n∈ [[N ]] B(yn, rn) is visited again after any given time: the convergence to U
is thus forbidden.

Corollary 1.3 is an immediate consequence of Theorems 1.1 and 1.2.
Remark 3.2. — In (1.3), β > 0 is only possible for m ⩾ 3. This is because

(3.1) min
n∈ [[N ]]

∑
i∈ [[m]] λi(n)
2λm(n) > 1.

Since for any n ∈ [[N ]] we have∑
i∈ [[m]] λi(n)
2λm(n) ⩽

mλm(n)
2λm(n) = m

2
condition (3.1) requires m ⩾ 3.

A little more generally, denote for any β ∈ R,

N−(β) :=
{

n ∈ [[N ]] :
∑

i∈ [[m]] λi(n)
2λm(n) − 1 > β

}

N+(β) :=
{

n ∈ [[N ]] :
∑

i∈ [[m]] λi(n)
2λ1(n) − 1 < β

}
.
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From the above considerations, we see that X cannot converge to yn with n ∈
N−(β), while there is a positive probability that X converges to yn for n ∈ N+(β).
But this criterion does not strongly discriminate the elements of U , in the sense we
cannot find β ∈ R with N−(β) ̸= ∅ and N+(β) ̸= ∅, due to the inequalities

∀ n, n′ ∈ [[N ]],
∑

i∈ [[m]] λi(n)
2λm(n) ⩽

m

2 ⩽

∑
i∈ [[m]] λi(n′)
2λ1(n′) .

We do not know if it is possible, in dimension m ⩾ 2, to find a Morse function U ,
β ∈ R and n ̸= n′ ∈ [[N ]] such that

P[X(∞) = yn] > 0 and P[X(∞) = yn′ ] = 0.

3.3. Further extensions

Let us first consider the case of the generator Lζ defined in (1.6) under Assump-
tions (1.4) and (1.5). Its coefficients are not globally Lipschitz but they are Lipschitz
on any open subset Uϵ := {x ∈ M : U(x) > ϵ}, with ϵ ∈ (0, maxM U). This observa-
tion enables to construct by localization X until the first time it hits U . Furthermore
the law of the process obtained in this way is uniquely determined until it leaves Uϵ,
for any ϵ ∈ (0, maxM U), due to the uniqueness of the solution of the corresponding
martingale problem. The uniqueness of the law of X until its hitting time of U
follows. Taking into account that starting from U , the process X cannot move (e.g.
by using that LζU = 0 = LζU2), we get the announced uniqueness of X in the sense
of martingale problems.

By localization also, we can construct small neighborhoods of the elements of U ,
where the evolution of U(X(t)) can be compared with that of a Bessel process of
negative dimension (as large as we wish, due to (1.4)), up to a time change. The
arguments of Section 2 then show that Theorem 1.1 holds for this new diffusion X,
without Assumption (1.2).

The Morse assumption on U was considered for simplicity, but it can be relaxed.
For instance in the cases where U consists of finite number of connected and disjoint
submanifolds, say U1, U2,. . . , UN , with non-degenerate Hessians of U in the orthog-
onal directions. Assume furthermore that for any n ∈ [[N ]], we can find orthogonal
vector fields on Un which are eigenvectors of the orthogonal Hessians. Then approxi-
mations such as (2.4), (2.5) and (2.6) are still valid in the corresponding exponential
systems of coordinates, where m has to be replaced by the co-dimension m′ of Un.
More precisely, we can extend them into

(1 − ϵ)
∑

i∈ [[m′]]
λi(y) ⩽ ∆U(x) ⩽ (1 + ϵ)

∑
i∈ [[m′]]

λi(y)

(1 − ϵ)
∑

i∈ [[m′]]
λ2

i (y)z2
i ⩽ ∥∇U∥2(x) ⩽ (1 + ϵ)

∑
i∈ [[m′]]

λ2
i (y)z2

i

1
2(1 − ϵ)

∑
i∈ [[m′]]

λi(y)z2
i ⩽ U(x) ⩽ 1

2(1 + ϵ)
∑

i∈ [[m′]]
λi(y)z2

i

in a sufficiently small tubular neighborhood of Un, with x charted by (y, z), y standing
for the Riemannian projection on Un and z := (zi)i ∈ [[m′]] for the coordinates in the
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exponential systems deduced from the eigenvectors (note that the gradient and the
Laplacian of U in the directions of y are negligible).

More generally, when the eigenvectors cannot be defined globally on Un, one has
to work in a finite number of charts, which increases the technicality of the proofs
without changing the convergence result, when β is large enough in terms of the
orthogonal eigenvalues of the Hessian (or when a generator of the form (1.6) is
considered).

Appendix A. Non-fraudulent algorithms

Two examples are given below showing how fraudulent algorithms can be related
to the investigation of non-fraudulent algorithms.

We start with the time-inhomogeneous swarm mean-field algorithm introduced
in [BMV24], which was the initial motivation for this work. On a compact Riemannian
manifold, consider the non-linear evolution equation

(A.1) d

dt
ρt = div(ρt[γt∇U + ∇φ′(ρt)])

where
• ρt is the density with respect to the Riemannian probability ℓ of another

probability on M ,
• (γt)t⩾ 0 is an inverse temperature scheme, assumed to be smooth and to

increase to +∞ in large times,
• φ : R+ → R+ is a strictly convex function satisfying φ(1) = 0 and φ′(0) =

−∞ and is C2 on (0, +∞).
A non-linear diffusion Y := (Y (t))t⩾ 0 is associated to this equation, whose evolu-

tion can be heuristically described as in (1.1) via

dY (t) = −γt∇U(Y (t)) +
√

2α(ρt(Y (t))) dB(t)
where

• ρt is the density with respect to the Riemannian probability ℓ of the law of
Y (t),

• the function α : (0, +∞) → R+ is given by

∀ r > 0, α(r) := 1
r

∫ r

0
sφ′′(s) ds.

• (B(t))t⩾ 0 is a m-dimensional Brownian motion.
In [BMV24] we considered the convex function defined, for given m ∈ (0, 1/2), by

∀ r ⩾ 0, φ :=

φm(r) if r ∈ (0, 1]

φ2(r) if r ∈ (1, +∞)
with for any m ∈ (0, +∞) \ {1},

∀ r ⩾ 0, φm(r) := rm − 1 − m(r − 1)
m(m − 1) .
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It was shown through new functional inequalities that at least in dimension 1, we
can find power schemes (γt)t⩾ 0, such that for any neighborhood N of U , we have

lim
t→+∞

ρt(N ) = 1

namely that the above evolutions provide a theoretical global optimization procedure
for U . In practice, the evolution (ρt)t⩾ 0 should be seen as a mean-field limit and
approximated by swarm particle systems (each particle “counting” the number of
particles around it to get an estimate of the local density and boosting the intensity
of its own Brownian motion accordingly if they are too few or too many).

In the final discussion section of [BMV24], a heuristic comparison was made with
usual simulated annealing and it appeared that in large times and up to a time
change, Y behaves like the diffusion X described by (1.1) with β = m/(1 − m).

Condition (1.2) may explain the restriction to dimension 1 considered in [BMV24]
and suggests the means to go beyond it, but the relation between the swarm and
fraudulent algorithms should be first investigated more closely.

Another illustrative example consists of the following simpler algorithm, which
is probably less efficient than the swarm particle algorithm due to the lack of in-
teractions between the approximating particles, called Z1, Z2, . . . , Zq below. The
underlying idea is to estimate the quantity U(x) − minM U (needed in a fraudulent
setting) through

(A.2) ∀ x ∈ M, U(x) − min
M

U = − lim
γ →+∞

1
γ

ln(µγ(x))

where µγ is the density of the Gibbs measure associated to the potential U and to
the inverse temperature γ ⩾ 0:

∀ x ∈ M, µγ(x) := exp(−γU(x))∫
M exp(−γU(y)) ℓ(dy)

where we recall that ℓ is the Riemannian probability.
Other ways of approximating the l.h.s. of (A.2) can be devised, thus in [BMV24]

the main role is played by the stationary measure of (A.1) for a fixed parameter γt,
which is next sent to infinity. The convergence (A.2) is more classical and leads to
the following natural procedure. Nevertheless other alternative approaches would
deserve to be investigated.

The Gibbs measure µγ dℓ is the invariant (and even reversible) probability measure
associated to the Markov generator ∆ · −γ⟨∇U, ∇·⟩, namely to the diffusion Y :=
(Y (t))t⩾ 0 heuristically described as in (1.1) through

∀ t ⩾ 0, dY (t) = −γ∇U(Y (t)) dt +
√

2 dW (t)
where W := (W (t))t⩾ 0 is a m-dimensional Brownian motion.

It is well-known that the law of Y (t) converges to µγ as t goes to infinity. To get
γ going to infinity, we consider a time-inhomogeneous version Z := (Z(t))t⩾ 0 of Y
associated to a scheme γ : R+ ∋ t 7→ γt via

∀ t ⩾ 0, dZ(t) = −γt∇U(Z(t)) dt +
√

2 dW (t).
From the theory of simulated annealing, see Holley, Kusuoka and Stroock [HKS89],

it is known that for large times t ⩾ 0, the law L(Z(t)) of Z(t) becomes closer and
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closer to µγtdℓ if the inverse temperature scheme γ has a sufficiently slow logarithmic
growth. More precisely, for a scheme of the form

(A.3) ∀ t ⩾ 0, γt = k−1 ln(1 + t)

the relative entropy of L(Z(t)) with respect to µγt goes to zero for large time t ⩾ 0
when k > c, where c ⩾ 0 the largest height of a well not containing a given element
of U (the constant c does not depend on this fixed element).

To get an approximation of the density µγt(x), we first consider a finite sequence
Z1, . . . , ZQ, Q ∈ N of independent copies of Z, namely satisfying

∀ q ∈ [[Q]], ∀ t ⩾ 0, dZq(t) = −γt∇U(Zq(t)) dt +
√

2 dWq(t)

where Wq := (Wq(t))t⩾ 0 are independent m-dimensional Brownian motions for
q ∈ [[Q]]. For Q large enough, by the law of the large numbers, we can expect that
for fixed t ⩾ 0, the empirical measure of the Zq(t), q ∈ [[Q]] is an approximation of
the law of Z(t) and thus is close to µγt if the time t has been chosen large enough
and the inverse temperature schedule according to (A.3) with k > c.

Next let be given a kernel approximation of the Dirac masses: it is a family
(Kh(·, ·))h > 0 of smooth mappings on M2 such that for any x ∈ M , Kh(x, y)ℓ(dy) is
a probability measure weakly converging toward δx as h goes to 0+ (a geometrical
example is the heat kernel on M at small times).

Through classical density approximation, see e.g. the book of Silverman [Sil86],
we hope that for t ⩾ 0 and Q large enough and h > 0 small enough,

1
Q

∑
q ∈ [[Q]]

Kh(Zq(t), x)

is a good approximation of µγt(x) for any x ∈ M . In view of (A.2), we are led to
consider a process X := (X(t))t⩾ 0 defined by

dX(t) = −β∇U(X(t)) dt +
√

2V
(
γt, X(t), Z[[Qt]](t)

)
dB(t)

where β satisfies (1.2) and the Brownian motion B is independent of the Brownian
motions Wq, for q ∈ N, where

V
(
γt, X(t), Z[[Qt]](t)

)
:=

∣∣∣ln(∑q ∈ [[Qt]] Kht(Zq(t), X(t))/Q
)∣∣∣

γt

and where Q : R+ ∋ t 7→ Qt ∈ N and h : R+ ∋ t 7→ ht are respectively non-
decreasing and increasing evolutions, such that

lim
t→+∞

Qt = +∞ and lim
t→+∞

ht = 0

We can assume that the potential upward jumps Qt − Qt− are either 0 or of size 1
and that furthermore when a jump of Q does occur at time t ⩾ 0, then a particle
is chosen among the current Qt− ones and gives rise to a new particle at the same
place. Afterward the two particles at this same place evolve independently.

More precisely, in addition to (A.3) with k > c, we are looking for appropriate
schedules Q and h such that X turns out to be a global minimizer of U , in the

TOME 8 (2025)



586 L. MICLO

sense that X(t) converges a.s. for large times t ⩾ 0 toward an element of U , which
is expected to be random if U is not a singleton, according to Theorem 1.1.
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