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Abstract. — For every integer g ⩾ 2 we show the existence of a compact Riemann surface
Σ of genus g such that the rank two trivial holomorphic vector bundle O⊕2

Σ admits holomorphic
connections with SL(2,R) monodromy and maximal Euler class. Such a monodromy represen-
tation is known to coincide with the Fuchsian uniformizing representation for some Riemann
surface of genus g. This also answers a question of Calsamiglia, Deroin, Heu and Loray. The
construction carries over to all very stable and compatible real holomorphic structures over the
topologically trivial rank two bundle on Σ, and gives the existence of holomorphic connections
with Fuchsian monodromy in these cases as well.

Résumé. — Pour tout entier g ⩾ 2 nous prouvons l’existence d’une surface de Riemann
compacte Σ de genre g telle que le fibré vectoriel holomorphe trivial de rang deux O⊕2

Σ admet
des connexions holomorphes avec monodromie dans SL(2,R) et classe d’Euler maximale. La
représentation de monodromie associée est alors Fuchsienne; elle coincide avec la monodro-
mie d’une métrique hyperbolique sur la surface de genre g. Ceci répond à une question de
Calsamiglia, Deroin, Heu et Loray.

Introduction

For a compact Riemann surface Σ the holomorphic Riemann–Hilbert correspon-
dence associates to every pair (V,∇), consisting of a (flat) holomorphic connection ∇
on a holomorphic vector bundle V over Σ, its monodromy homomorphism. This is
an equivalence of categories (see for instance [Del70] or [Kat76, p. 544]). For surfaces
with nonabelian fundamental group, finding holomorphic connections on it with a
prescribed monodromy behavior is notoriously difficult and an obstacle to a deeper
understanding of various mathematical problems ranging from algebraic geometry
and number theory, over geometric structures on manifolds [AL18, DM93, Thu97],
to constructions in quantum field theories and mirror symmetry [AGM11, FGT16,
GMN13, Wit10] and to the theory of harmonic maps and minimal surfaces [HHS18,
Hit90, Tra20, Wol89].

In this paper we restrict to the case of SL(2,C)-connections over compact Riemann
surfaces of genus g ⩾ 2. This case is of particular interest as it is deeply linked to the
geometry of the underlying surface. Starting from the XIXth century, mathematicians
have investigated the fundamental group representations appearing as monodromy of
solutions to algebraic differential equations on a complex domain. The relationship
to geometry stems from the fact that the inverse of solutions to certain linear
differential equations parametrize a Riemann surface. As discovered by Poincaré and
Klein (see [SG16] for a historical survey of the subject), every compact Riemann
surface of genus at least two can be realized as a quotient of the hyperbolic plane H2

by a Fuchsian group (a torsion-free, discrete, and cocompact subgroup of PSL(2,R))
identifying the space of Fuchsian representations with the Teichmüller space. By
lifting Fuchsian representations from PSL(2,R) to SL(2,R), they can be considered as
monodromy representations of holomorphic SL(2,C)-connections on a fixed Riemann
surface Σ via Riemann–Hilbert correspondence. The holomorphic structure on the
rank two vector bundle given by the uniformization of Σ is the unique nontrivial
extension of L−1 by L, where L is a theta characteristic on Σ [Gun67]. This rank
two holomorphic vector bundle will be referred to as the uniformization bundle.
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Holomorphic sl(2,C)-systems 591

Note that Fuchsian representations are SL(2,R)-representations with maximal Euler
class g − 1. This gives 22g connected components with maximal Euler class in the
space of SL(2,R)-representations corresponding to the different choices of the theta
characteristic [Gol88, Hit87, Mil58].

In this context it is natural to ask which holomorphic rank two bundles over a
given Riemann surface Σ admit holomorphic connections with Fuchsian monodromy
representations. Indeed, this question was first raised by Katz in [Kat76, p. 555-556]
(where the question is attributed to Bers) in 1978 and is still unsolved. Motivated by
problems in algebraic geometry and number theory, e.g., Weil conjecture, a related
question of realizing Fuchsian representations as the monodromy homomorphism of
regular singular SL(2,C)-connections on the uniformization bundle over (marked)
Riemann surfaces was addressed by Faltings [Fal83]. Remarkably, even when restrict-
ing to the trivial rank two holomorphic bundle, it was previously unknown whether
a holomorphic connection ∇ with Fuchsian monodromy representation exists. This
is the main question to be addressed in the present article. We prove:

Theorem 0.1 (Main Theorem). — For every integer g ⩾ 2, there exists a (hyper-
elliptic) Riemann surface Σ of genus g, such that the rank two trivial holomorphic
vector bundle over Σ admits infinitely many holomorphic connections with Fuchsian
monodromy representation.

Our Main Theorem 0.1 is in fact a consequence of an additional real symmetry
of the considered Riemann surface Σ. Therefore, the proof carries over verbatim
to all very stable holomorphic structures (i.e., their (non-zero) Higgs fields are
not nilpotent) on the topologically trivial rank two bundle compatible with the
construction and with the holomorphic and real symmetries of the Riemann surface
(as specified in Lemma 4.5). The space of these real holomorphic structures can be
identified with a circle, of which a single point is removed, in a complex projective
line. An immediate corollary is:

Corollary 0.2. — For every integer g ⩾ 2, there exists a (hyperelliptic) Rie-
mann surface Σ of genus g, such that all very stable and compatible real holomorphic
structures over the rank two topologically trivial vector bundle on Σ admit infinitely
many holomorphic connections with Fuchsian monodromy representation.

In a similar vein, Ghys raised the question about whether there is a pair (Σ,∇)
consisting of a compact Riemann surface of genus g ⩾ 2 and an irreducible holo-
morphic connection ∇ on the rank two trivial holomorphic vector bundle over Σ,
such that the image of the monodromy homomorphism of ∇ lies in a cocompact
lattice of SL(2,C). Such a pair would give rise to a nontrivial holomorphic map
from the Riemann surface Σ to the compact quotient of SL(2,C) by that cocompact
lattice. Constructing such holomorphic maps is also known as the Margulis prob-
lem (see [CDHL19] for the discussion about Ghys question and Margulis problem).
In [CDHL19, p. 161] Calsamiglia, Deroin, Heu and Loray derived from the above
question of Ghys the following two questions:

(1) Are there a compact Riemann surface Σ and an irreducible holomorphic
connection ∇ on the rank two trivial holomorphic vector bundle over Σ,
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such that the image of the monodromy homomorphism of ∇ is conjugated to
a subgroup of SL(2,R)?

(2) Are there a compact Riemann surface Σ and an irreducible holomorphic
connection ∇ on the rank two trivial holomorphic vector bundle over Σ, such
that the image of the monodromy homomorphism of ∇ is a discrete subgroup
of SL(2,C)?

Examples of pairs (Σ,∇) satisfying the first question in [CDHL19, p. 161] were
constructed in [BDH21]. Note that Theorem 0.1 produces examples that give positive
answer to both questions raised in [CDHL19, p. 161].

Motivated by the above question of Ghys, the authors of [CDHL19] initiated a
study of the Riemann–Hilbert correspondence for genus two surfaces and SL(2,C)-
connections. Their main result asserts that the Riemann–Hilbert monodromy map-
ping, which associates to an irreducible holomorphic differential system its mon-
odromy representation, is a local biholomorphism. Then Theorem 0.1 and the result
of [CDHL19] gives the following:

Corollary 0.3. — There exists a nonempty open subset U of the Teichmüller
space of compact curves of genus g = 2 such that every Σ ∈ U possesses a holomorphic
connection ∇(Σ) on the rank two trivial holomorphic vector bundle over Σ, such
that the monodromy homomorphism of ∇(Σ) is quasi-Fuchsian(1) .

Every curve Σ ∈ U therefore admits a nontrivial holomorphic map into the quotient
of SL(2,C) by the quasi-Fuchsian subgroup which is the image of the monodromy
homomorphism of ∇(Σ). These holomorphic maps do not factor through genus 1
curves.

It should be mentioned that the analogue of the above question of Bers for the
compact group SU(2) is fully understood. The celebrated Narasimhan–Seshadri The-
orem shows that every stable holomorphic structure admits a unique compatible flat
connection with irreducible unitary monodromy and vice versa. However, a major
difference between the SU(2) monodromies and the SL(2,R) monodromies is that the
uniqueness fails. Indeed, our Main Theorem shows the existence of infinitely many
holomorphic connections with Fuchsian monodromy on the trivial holomorphic bun-
dle. Likewise, for the holomorphic structure given by the uniformization bundle, the
infinitely many holomorphic connections with Fuchsian monodromy correspond to
integral graftings; see [Mas69, Hej75, ST83, Fal83, Gol87]. Although other holomor-
phic bundles with holomorphic connections with Fuchsian monodromy do exist, no
explicit example other than the uniformization bundle itself was found.

In an attempt to give a negative answer to the above question of Ghys, a topologi-
cal obstruction was exhibited in [CDF14]. More precisely, it was observed in [CDF14,
Section 1.1] that the existence of a pair (Σ,∇), as in Ghys question over a compact
Riemann surface of genus g ⩾ 2, implies the existence of a rational curve defin-
ing a nontrivial element in the second homotopy group of the topological space
M2g−2, consisting of branched projective structures on the given surface, with total

(1)A homomorphism of a surface group into SL(2,C) is called quasi-Fuchsian, if it is faithful and
has discrete image in SL(2,C) admitting a Jordan curve as limit set for its action on CP 1. The
image of a quasi-Fuchsian homomorphism is called a quasi-Fuchsian group.
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branching order 2g − 2 and prescribed quasi-Fuchsian monodromy homomorphism
(by [CDF14, Proposition 11.1] the topology of M2g−2 does not depend on the chosen
quasi-Fuchsian monodromy homomorphism, but only on the genus g and the total
branching order 2g − 2). Therefore Theorem 0.1 implies that the second homotopy
group of the topological space M2g−2 is nontrivial, for all g ⩾ 2. In particular, the
spaces M2g−2 are not K(π, 1). This answers a question asked in [CDF14, Section 1.1].

Theorem 0.1 and Corollary 0.3 are geometrization results through holomorphic
SL(2,C)-connections on the trivial bundle instead of the usual hyperbolic or Bers
simultaneous uniformization for quasi-Fuchsian representations. It should be men-
tioned that, in higher Teichmüller spaces, geometrization results for representations
of fundamental group of surfaces into Lie groups is currently a very lively and
dynamic field of research (see for instance [BIW10, GW12, Lab06] and references
therein).

Acknowledgments

We would like to thank Andrew Neitzke, Sebastian Schulz and Carlos Simpson for
very helpful comments on WKB analysis.

Strategy

We show the existence of holomorphic connections with Fuchsian monodromy
homomorphism for particular hyperelliptic surfaces Σk of genus (k − 1) given by a
totally branched k-fold covering fk of S4 – the complex projective line with four
marked points ±1,±

√
−1. On Σk there are two connections of particular interest;

the trivial de Rham differential d and the uniformizing connection ∇U of Σk. Both
connections can be realized, modulo singular gauge transformations, as the pull-back
of the logarithmic connections D (Proposition 3.1) and ∇̃ (Proposition 3.4) by fk.
Our aim is to deform D by a parabolic Higgs field such that the new connection has
real monodromy, lies in the connected component of ∇̃ and pulls back to Σk as a
holomorphic connection (without singularities).

The moduli space of logarithmic connections on S4 has a natural set of coordinates
given by the abelianization procedure [HH16]. These coordinates determine logarith-
mic connections on S4 as a twisted push forward of flat line bundle connections on
the torus Σ2 obtained by the branched double cover f2 of S4. The twist is given
by some meromorphic off-diagonal 1-forms determined by the flat line bundle and
the eigenvalues of the residues. We restrict to the most symmetric case, where the
behavior of the logarithmic connection at every marked point of Σ2 is the same.
More precisely, we consider connections on the torus Σ2 with four marked points
that descend to connections on the torus T 2 with only one marked point by taking
the quotient with respect to its half-lattice. In this way Theorem 4.9 identifies the
moduli space of logarithmic connections on the one-punctured torus T 2 with the
moduli space of logarithmic connections on S4. Moreover, D is identified with a
connection D̃ on the torus T 2 with one marked point in Lemma 4.11.
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The crucial idea is to consider the asymptotic behavior of the family of connections

D̃ + tΦ̃,

where t ∈ R and Φ̃ is a specific strongly parabolic Higgs field of D̃ (see Section 1
for the definition of a strongly parabolic Higgs field). By Theorem 4.9, this family
corresponds to ∇t = D + tΦ on S4, where Φ is the corresponding strongly parabolic
Higgs field of D. By construction all connections f ∗

k ∇t have the same underlying
holomorphic structure, namely the trivial one induced by the de Rham differential d.
For t large we then use WKB analysis and an additional real involution of the torus
(Lemma 4.6) to ensure the existence of a sequence (tn)n ∈N ⊂ R such that ∇tn has
real monodromy (Corollary 4.8). The necessary WKB analysis result is proved by
Takuro Mochizuki in the Appendix A.

Since the pull-back under fk preserves the connected components of real represen-
tations, it remains to show that ∇tn lies in the same connected component as ∇̃
on S4. To do so, we compute that ∇̃ is also induced by a singular connection ∇F on
the one-punctured torus in Lemma 4.12. The claim then follows from the fact that
the four components of logarithmic connections with SL(2,R)-monodromy on the
one-punctured torus are mapped into the same real component of the moduli space
on S4 via Theorem 4.9. Therefore, the pull-back f ∗

k ∇tn to Σk is Fuchsian and has
trivial holomorphic structure.

In fact, it is necessary to consider singular connections on the one-punctured
torus, since there exists 3 other components of irreducible SL(2,R)-representations
on the four-punctured sphere, whose boundary contain reducible connections and
do not lift to the Fuchsian component on Σk. As mentioned before, examples of
irreducible holomorphic SL(2,C)-connections with real monodromy on the rank two
trivial holomorphic vector bundle were constructed in [BDH21]. However, these
connections are never of maximal Euler class.

1. Preliminaries: Logarithmic connections and parabolic
bundles

Let Σ be a compact connected Riemann surface; its holomorphic cotangent bundle
is denoted by KΣ. An SL(2,C)-bundle on Σ is a rank two holomorphic vector
bundle V over Σ with trivial determinant, i.e., the line bundle detV = ∧2 V is
holomorphically trivial.

Let D = p1+. . .+pn be a divisor on Σ with pairwise distinct points pi ∈ Σ. Consider
a holomorphic SL(2,C)-bundle V on Σ together with its sheaf V of holomorphic
sections and its Dolbeault operator ∂. A logarithmic SL(2,C)-connection ∇ = ∂+∂∇

on V with polar part contained in D is given by a holomorphic differential operator

∂∇ : V −→ V ⊗KΣ ⊗ OΣ(D)

satisfying the Leibniz rule

∂∇(fs) = f∂∇(s) + s⊗ df
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for all locally defined holomorphic sections s of V and locally defined holomorphic
functions f on Σ, such that the induced differential operator on detV coincides with
the de Rham differential d on OΣ.

Since Σ is of complex dimension one, all logarithmic connections over Σ are flat.
Moreover, at every singular point pj, 1 ⩽ j ⩽ n, of a logarithmic SL(2,C)-connection
∇ on V the residue

Respj
(∇) ∈ End(Vpj

)
is tracefree.

If the two eigenvalues λj,1, λj,2 of the residue Respj
(∇) do not differ by an integer

(this is known as the non-resonance condition), then the local monodromy of ∇
around pj is conjugate to the diagonal matrix with entries exp(−2π

√
−1λj,1) and

exp(−2π
√

−1λj,2) (see [Del70, p. 53, Théorème 1.17]). If 1
nj

is an eigenvalue of the
residue, with nj ⩾ 2 an integer, the local monodromy of ∇ at pj is a rational rotation
on the eigenlines.

Let V be a holomorphic SL(2,C)-bundle on Σ. A parabolic structure P on V with
parabolic divisor D = p1 + . . .+ pn consists of quasiparabolic lines Lj ⊂ Vpj

together
with weights ρj ∈ ]0, 1

2 [, for every 1 ⩽ j ⩽ n. For a holomorphic line subbundle
W ⊂ V the parabolic degree is given by

par-deg(W ) := degree(W ) +
n∑

j =1
ρW

j ,

where ρW
j = ρj if Wpj

= Lj and ρW
j = −ρj if Wpj

≠ Lj; see [MS80, MY92]. The
following definition is adapted to the special case of SL(2,C)-bundles.

Definition 1.1. — A parabolic bundle (V,P) is called stable (respectively,
semistable) if par-deg(W ) < 0 (respectively, par-deg(W ) ⩽ 0) for every holomor-
phic line subbundle W ⊂ V . A parabolic bundle will be called unstable if it is not
semistable.

Take a non-resonant logarithmic SL(2,C)-connection ∇ such that the eigenvalues
of the residues lie in ]−1

2 ,
1
2 [. It induces a parabolic structure on the underlying

holomorphic vector bundle V . The parabolic divisor is D = p1 + . . .+ pn, where pj

are the singular points of the connection. The parabolic weight ρj at pj is the positive
eigenvalue of Respj

(∇), and the quasiparabolic line at pj is the eigenline of Respj
(∇)

for the eigenvalue ρj.
Two non-resonant SL(2,C)-connection on V with same weights ρj ∈ ]0, 1

2 [ induce
the same parabolic structure P if and only if they differ by a strongly parabolic Higgs
field on (V,P). Recall that a strongly parabolic Higgs field on (V,P) is a trace free
holomorphic section

Θ ∈ H0
(
Σ, End(V ) ⊗KΣ ⊗ OΣ(D)

)
such that

Θ(pj)(Vpj
) ⊂ Lj ⊗ (KΣ ⊗ OΣ(D))pj

for all 1 ⩽ j ⩽ n. These conditions imply that Θ(pj) is nilpotent and the quasi-
parabolic line Lj lies in the kernel of Θ(pj), for all 1 ⩽ j ⩽ n.
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2. Logarithmic connections on S4

Consider the Riemann sphere CP 1 with three ordered marked points {0, 1,∞}

S3 =
(
CP 1, {0, 1,∞}

)
and let

S3 := CP 1 \ {0, 1,∞}
be the three-punctured sphere. Fix a base point p ∈ S3 and elements

γ0, γ1 ∈ π1(S3, p)
such that γ0 (respectively, γ1) is the free homotopy class of the oriented loop around
the puncture 0 (respectively, 1). Then

γ∞ := (γ1γ0)−1

is the free homotopy class of the oriented loop around the puncture ∞.

2.1. Hyperbolic triangle and uniformization of the orbifold sphere

Consider S3 equipped with an orbifold structure, i.e., we assign to each marked
point an angle αi = 2π

ki
, i ∈ {0, 1,∞}, where ki > 1 are integers. Assume that

1
k0

+ 1
k1

+ 1
k∞

< 1. A hyperbolic uniformization of S3 equipped with the above
orbifold structure is given by the following construction which goes back to the work
of Schwarz, Klein and Poincaré (see [SG16, Chapter VI]).

The group PSL(2,R) ⊂ PSL(2,C) acts by Möbius transformations on the upper
half plane H2 := {z ∈ C | Im z > 0}. By viewing the upper half plane as the
hyperbolic plane, PSL(2,R) is the group of orientation preserving isometries of H2.
Up to orientation preserving isometries, there exists a unique hyperbolic triangle
T in H2 with prescribed angles ( π

k0
, π

k1
, π

k∞
) [SG16, Proposition IX.2.6]. Denote by

p0, p1, p∞ ∈ H2 the corresponding (ordered) vertices of T .
Denote by σ0, σ1, σ∞ the hyperbolic reflections across the geodesic arcs (p1, p∞),

(p0, p∞) and (p0, p1) respectively. They generate a discrete subgroup of isometries of
H2. Consider its index two subgroup Γ generated by m0 = σ∞ ◦σ1, m1 = σ0 ◦σ∞ and
m∞ = σ1 ◦ σ0. Geometrically, Γ is generated by an even number of reflections across
every geodesic edge of a hyperbolic geodesic triangle T ; it is called a hyperbolic
triangle group. It is classical that such Γ ⊂ PSL(2,R) is a Fuchsian subgroup with
a fundamental quadrilateral in H2 given by P = T ∪ σ1(T ). The vertices of P
are the points p0, p1, p∞, p2 with p2 := σ1(p1) (see [SG16, Theorem VI.1.10 and
Section VI.2.1]).

The oriented geodesic edges of P satisfy the condition
m0 · (p0, p1) = (p0, p2) and m∞ · (p∞, p2) = (p∞, p1).

The maps m0, m1 and m∞ are of order k0, k1 and k∞, respectively, and m∞◦m1◦m0 =
Id by construction. Therefore, for the hyperbolic triangle group Γ generated by m0,
m1 and m∞ we have

m∞ ◦m1 ◦m0 = Id and mk0
0 = mk1

1 = mk∞
∞ = Id .
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The quotient of H2 by the above Fuchsian hyperbolic triangle group Γ endows S3,
equipped with the orbifold structure (2π

k0
, 2π

k1
, 2π

k∞
) at the points {0, 1,∞} respectively,

with a compatible hyperbolic structure [SG16, Chapter VI and Section VI.2.1]. In
particular, the monodromy around the punctures p0, p1, p∞ of this uniformizing hy-
perbolic structure coincides with the rotations by the angles 2π

k0
, 2π

k1
, 2π

k∞
, respectively.

2.2. Logarithmic connection on trivial bundle with Fuchsian monodromy

For ρ̃ ∈ ]0, 1
2 [ fixed, consider the logarithmic connection on the rank two trivial

holomorphic vector bundle O⊕2
CP 1

(2.1) ∇ = d+
(

1
8 0
0 −1

8

)
dz

z
+
(

−4ρ̃2 1
ρ̃2 − 16ρ̃4 4ρ̃2

)
dz

z − 1 .

Since the singular locus of ∇ is {0, 1,∞}, we consider ∇ as a logarithmic connection
on S3. Throughout the paper we will use the convention that the marked points of
a Riemann surface are the singular points of a logarithmic connection and branch
points of coverings. Further, let

Mρ̃ : π1(S3, p) −→ SL(2,C)
be the monodromy representation of the flat connection ∇ in (2.1).

Lemma 2.1. — With the above notation the monodromy representation Mρ̃ of ∇
in (2.1) is conjugate to an irreducible SU(2) representation for ρ̃ < 1

4 , and to an
irreducible SL(2,R) representation for 1

4 < ρ̃ < 1
2 .

If ρ̃ = k−1
2k

∈ (1
4 ,

1
2), with k ∈ N>2, the monodromy representation Mρ̃ is conjugated

to the monodromy of a hyperbolic structure uniformizing S3 equipped with the
orbifold structure (π

2 ,
2π
k
, π

2 ) at points {0, 1,∞} respectively. In particular, the image
of the monodromy representation is the Fuchsian group generated by an even number
of reflections across the geodesic edges of the hyperbolic geodesic triangle with angles
(π

4 ,
π
k
, π

4 ).

Proof. — Let X0, X1 and X∞ denote the elements Mρ̃(γ0),Mρ̃(γ1) and Mρ̃(γ∞) of
SL(2,C) respectively. Moreover, let R0, R1, R∞ denote the respective residues of ∇
at 0, 1,∞. Note that for ρ̃ ∈ ]0, 1

2 [ none of the eigenvalues of R0, R1, R∞ lies in 1
2Z;

in other words, ∇ is non-resonant. Consequently, the conjugacy class of Xi is given
by

(2.2) exp
(
−2π

√
−1Ri

)
for i = 0, 1,∞ (see [Del70, p. 53, Théorème 1.17]). For ∇ in (2.1) we therefore
compute
(2.3) tr(X0) =

√
2 = tr(X∞), tr(X1) = 2 cos(2πρ̃).

This gives that the representation Mρ̃ is irreducible for

0 < ρ̃ <
1
4 and 1

4 < ρ̃ <
1
2 ,
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see [Gol88, p. 574, Proposition 4.1(iii)]. It also follows that the three equations in (2.3)
determineMρ̃ uniquely up to the conjugation by an element of SL(2,C) [Gol88, p. 574,
Proposition 4.1(iv & v)].

Consider the matrices

X̃0 =
( 1√

2 − 1√
2

1√
2

1√
2

)

X̃1 = cos 2πρ̃−
√

(−1 + cos 2πρ̃) cos 2πρ̃ 1 − cos 2πρ̃+
√

(−1 + cos 2πρ̃) cos 2πρ̃
−1 + cos 2πρ̃+

√
(−1 + cos 2πρ̃) cos 2πρ̃ cos 2πρ̃+

√
(−1 + cos 2πρ̃) cos 2πρ̃



X̃∞ =

 1√
2

−1+2 cos 2πρ̃−2
√

(−1+cos 2πρ̃) cos 2πρ̃√
2

1−2 cos 2πρ̃−2
√

(−1+cos 2πρ̃) cos 2πρ̃√
2

1√
2

.
These determine a monodromy homomorphism

M ′ : π1(S3, p) −→ SL(2,C)

that takes γ0, γ1 and γ∞ to X̃0, X̃1 and X̃∞ respectively. Since the three equations
in (2.3) determine Mρ̃ uniquely up to conjugation by some element of SL(2,C), we
conclude that Mρ̃ and M ′ are conjugate to each other. Evidently, the image of M ′

lies in SU(2) if 0 < ρ̃ < 1
4 , and it lies in SL(2,R) if 1

4 < ρ̃ < 1
2 , proving the first part

of the lemma.
To prove the second part, fix k ∈ N⩾ 3 and consider the special case of ρ̃ = k−1

2k
∈

(1
4 ,

1
2). In this case the corresponding SL(2,R) matrices generating the monodromy

group Λ for ∇ specialize to

X̃0 =
( 1√

2 − 1√
2

1√
2

1√
2

)

X̃1 =

 − cos π
k

−
√

(1 + cos π
k
) cos π

k
1 + cos π

k
+
√(

1 + cos π
k

)
cos π

k

−1 − cos π
k

+
√(

1 + cos π
k

)
cos π

k
− cos π

k
+
√(

1 + cos π
k

)
cos π

k



X̃∞ =


1√
2

−1−2 cos π
k

−2
√

(1+cos π
k ) cos π

k√
2

1+2 cos π
k

−2
√

(1+cos π
k ) cos π

k√
2

1√
2

.
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Let m(X̃0), m(X̃1) and m(X̃∞) be the automorphisms of the upper half plane H2

given by X̃0, X̃1 and X̃∞ respectively. The points of H2

p0 =
√

−1

p1 =
1 + cos π

k
+
√

cos π
k

(
1 + cos π

k

)
√

cos π
k

(
1 + cos π

k

)
−

√
−1 sin π

k

p∞ =
√

−1
(

1 + 2 cos π
k

+ 2
√

cos π
k

(
1 + cos π

k

))

are fixed by m(X̃0), m(X̃1) and m(X̃∞) respectively. Recall that an element of
PSL(2,R) is completely determined by a fixed point in H2 together with the differ-
ential at the fixed point. The differentials of m(X̃0), m(X̃1) and m(X̃∞) at p0, p1
and p∞, respectively, are rotations and a short computation shows that these are
given by

Dp0m(X̃0) = −
√

−1

Dp1m(X̃1) = e− 2π
√

−1
k

Dp∞m(X̃∞) = −
√

−1.

(2.4)

Therefore Λ is conjugated in PSL(2,R) to the Fuchsian hyperbolic triangle group
associated to the hyperbolic triangle (p0, p1, p∞). The transformations m(X̃0),m(X̃1)
and m(X̃∞) coincide with m0, m1 and m∞ defined in Section 2.1,respectively (see
also [SG16, Chapter VI]).

From (2.4), the internal angles of the hyperbolic triangle are

α0 = π

4 α1 = π

k
and α∞ = π

4 .

Also, the uniqueness of representation with given local traces (in the hypergeometric
case) implies that the monodromy homomorphism of ∇ is conjugated in PSL(2,R)
to the monodromy homomorphism of the uniformizing hyperbolic structure of the
orbifold S3 with angles (π

2 ,
2π
k
, π

2 ) at the points {0, 1,∞} respectively. □

Let S4 denote the Riemann sphere CP 1 with ordered four marked points{
1,

√
−1,−1,−

√
−1
}

and let
(2.5) S4 := CP 1 \

{
1,

√
−1,−1,−

√
−1
}

be the four-punctured sphere. Similarly, denote by S6 the Riemann sphere CP 1 with
six ordered marked points {0, 1,

√
−1,−1,−

√
−1,∞}, and define S6 := S4 \ {0,∞}.

Consider the map
f : S6 −→ S3; z 7−→ z4.

For the logarithmic connection ∇ in (2.1), let
(2.6) ∇1 := f ∗∇
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be the logarithmic connection on the trivial holomorphic bundle O⊕2
S6 whose singular

points coincide with the marked points. We will construct a logarithmic connection
on O⊕2

S4 using ∇1.
Let X denote CP 1 with the ten ordered marked point a1, · · · , a10 such that

a2
i ∈

{
0, 1,

√
−1,−1,−

√
−1,∞

}
.

Let
(2.7) ϖ : X −→ S6, w 7−→ w2

be the ramified covering map. We have the logarithmic connection ϖ∗∇1 on ϖ∗O⊕2
S6 =

O⊕2
X , where ∇1 is defined in (2.6). The Galois group of the ramified covering map

Gal(ϖ) = Z/2Z in (2.7) acts on the vector bundle O⊕2
X ; this action of Z/2Z on O⊕2

X

evidently preserves the logarithmic connection ϖ∗∇1.
Let z denote the standard holomorphic coordinate on S6 ⊂ CP 1 \ {0,∞}, so√
z := z ◦ ϖ is a nowhere vanishing holomorphic function on ϖ−1(S6) ⊂ X. For

notational convenience, we denote the subset ϖ−1(S6) ⊂ X by X ′. Consider the
holomorphic automorphism (= gauge transformation)

G :=
( 1√

z
4

−1+16ρ̃2

√
z

0
√
z

)
1√

ρ̃(1−16ρ̃2)
0

0
√
ρ̃(1 − 16ρ̃2)


of O⊕2

X′ and let
(2.8) ∇2 := ((ϖ∗∇1)|X′).G = ((ϖ∗f ∗∇)|X′).G
be the holomorphic connection on O⊕2

X′ given by the action of the automorphism G
on the connection ϖ∗∇1|X′ (the connection ∇1 is defined in (2.6)).

Although the above mentioned action Gal(ϖ) = Z/2Z on ϖ∗O⊕2
S6 = O⊕2

X′ does not
preserve G, it is straightforward to check that the action of Z/2Z on O⊕2

X′ actually
preserves the connection ∇2 defined in (2.8). Indeed, the action of the nontrivial
element of Z/2Z takes G to −G. On the other hand, the action of −I ∈ SL(2,C)
fixes every connection on the trivial bundle O⊕2

X′ . These imply that the action of
Z/2Z preserves the connection ∇2. Hence there is a unique holomorphic connection
on O⊕2

S6 whose pullback, by ϖ, is the connection ∇2 on O⊕2
X′ = ϖ∗O⊕2

S6 . Let ∇̃ be the
unique holomorphic connection on O⊕2

S6 such that

ϖ∗∇̃ = ∇2 = ((ϖ∗f ∗∇)|X′).G.
A computation shows that

(2.9) ∇̃ = d+
(

0 4ρ̃
4ρ̃z2 0

)
dz

z4 − 1

on O⊕2
S6 = O⊕2

CP 1 . In particular, ∇̃ is a logarithmic connection on O⊕2
S4 , because 0,∞

are regular points of ∇̃.

Lemma 2.2. — The monodromy representation of the flat connection ∇̃ on O⊕2
S4

in (2.9) is conjugate to a SU(2) representation if 0 < ρ̃ < 1
4 , and it is conjugate to a

SL(2,R) representation if 1
4 < ρ̃ < 1

2 .
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Moreover, if ρ̃ = k−1
2k

with k ∈ N> 2, then the monodromy representation for ∇̃ is
conjugated to the monodromy of a hyperbolic structure uniformizing S4 equipped
with the orbifold structure (2π

k
, 2π

k
, 2π

k
, 2π

k
) at the four marked points. In particular,

the image of the monodromy representation is an index 4 subgroup in the Fuchsian
group generated by an even number of reflections across the geodesic edges of the
hyperbolic geodesic triangle with angles (π

4 ,
π
k
, π

4 ).
Proof. — The monodromy representation of a pulled-back flat connection is the

pull-back of the monodromy representation. Further, a gauge transformation of a flat
connection does not change the conjugacy class of the monodromy representation. Let
I ⊂ SL(2,C) be the image of the monodromy homomorphism for the connection ∇1

in (2.6) (the conjugacy class of this subgroup is unique). Let
Ĩ ⊂ SL(2,C)

be the subgroup generated by I and −I. Since the action of the nontrivial element of
the structure group Z/2Z of the principal bundle in (2.7) takes G to −G, the image
of the monodromy homomorphism of ∇̃ is contained in Ĩ by construction. Then the
first assertion of the lemma follows from Lemma 2.1.

For the second statement, let ρ̃ = k−1
2k

∈ (1
4 ,

1
2), with k ∈ N> 2. It was shown in

Lemma 2.1 that the monodromy homomorphism for ∇ is conjugated to the mon-
odromy homomorphism of the uniformizing hyperbolic structure of the orbifold S3,
with angles (π

2 ,
2π
k
, π

2 ) at points {0, 1,∞} respectively.
The monodromy homomorphism for ∇̃ is the pull-back of the monodromy ho-

momorphism for ∇ through a 4-fold covering totally branched over the marked
points 0,∞ ∈ S3. Therefore, the monodromy homomorphism for ∇̃ is conjugated
to the monodromy homomorphism of the uniformizing hyperbolic structure of the
orbifold S4 with angles (2π

k
, 2π

k
, 2π

k
, 2π

k
) (i.e., the orbifold structures at the four preim-

ages of 1 are same). The image of the monodromy homomorphism of ∇̃ is an index 4
subgroup in the Fuchsian triangle group Λ defined in the proof of Lemma 2.1. □

3. Pullback to hyperelliptic Riemann surfaces
Let Σk be the compact Riemann surface of genus k − 1 defined by the algebraic

equation

(3.1) Y k = Z2 − 1
Z2 + 1 .

It has the projection of degree k
(3.2) fk : Σk −→ CP 1, (Y, Z) 7−→ Z.

The hyperelliptic involution is given by (Y, Z) 7→ (Y,−Z). Note that for k = 2, the
elliptic curve Σ2 is of square conformal type and we identify Σ2 = C/(2Z+ 2

√
−1Z).

See Figure 3.1 for the relationship between the various surfaces.
For k ∈ N⩾ 3 let ρ̃ = k−1

2k
∈ (1

4 ,
1
2) and consider the logarithmic connection

(3.3) D = d+
(
ρ̃ 0
0 −ρ̃

)(
dz

z − 1 − dz

z +
√

−1
+ dz

z + 1 − dz

z −
√

−1

)
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on O⊕2
S4 over S4. Then D can be pulled back to the logarithmic connection

(3.4)
(
f ∗

k O⊕2
S4 , f

∗
kD

)
=
(
O⊕2

Σk
, f ∗

kD
)

by the map fk in (3.2). The singular points of f ∗
kD are

(3.5) p1 = (0, 1), p2 =
(
∞,

√
−1
)
, p3 = (0,−1), p4 =

(
∞,−

√
−1
)

in terms of the above pair of coordinate functions (Y, Z) on Σk. Let

(3.6) Σ′
k := Σk \ {p1, p2, p3, p4}

be the complement of the points in (3.5). Then the following proposition holds.

Figure 3.1. The surfaces Σk are totally branched over CP 1 with 4 singular points.
For k = 2 we obtain an elliptic curve Σ2 with 4 marked points which covers the
square torus with one marked point by modding out the group Z2 ×Z2 generated
by half lattice translations.

Proposition 3.1. — Let k ∈ N⩾ 3 and ρ̃ = k−1
2k

∈ (1
4 ,

1
2).

(1) If k is odd, then there is a meromorphic automorphism G of O⊕2
Σk

such that
• G is nonsingular on Σ′

k,
• G gauges the holomorphic connection (f ∗

kD)|Σ′
k

to the trivial holomorphic
connection on O⊕2

Σ′
k
. In particular, f ∗

kD has trivial monodromy.
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(2) If k is even, then there is a holomorphic line bundle L over Σk with a loga-
rithmic connection ∇L with polar part contained in D = p1 + p2 + p3 + p4
such that

• the image of the monodromy homomorphism of ∇L is {±1} ⊂ C∗,
• there is a meromorphic isomorphism

G : O⊕2
Σk

−→ O⊕2
Σk

⊗ L = L⊕2,

singular at D, which gauges the holomorphic connection (f ∗
kD) ⊗ ∇L on

L⊕2|Σ′
k

to the trivial holomorphic connection on O⊕2
Σ′

k
. In particular, the

monodromy of (f ∗
kD) ⊗ ∇L is trivial.

Remark 3.2. — Throughout the paper we use the convention that the tensor
product of two connections ∇1 on V 1 and ∇2 on V 2 is the connection on V 1 ⊗ V 2

given by the operator
∇1 ⊗ ∇2 := ∇1 ⊗ Id + Id ⊗∇2.

Proof. — Equation (3.1) gives that

d log Y = 1
k
d log Z

2 − 1
Z2 + 1 .

Thus, for k odd,

(3.7) Ψ =
(
Y − k−1

2 0
0 Y

k−1
2

)

is a well-defined global meromorphic frame of O⊕2
Σk

that satisfies the following:
(1) the restriction Ψ|Σ′

k
is a holomorphic frame of O⊕2

Σ′
k
,

(2) Ψ|Σ′
k

is a parallel frame for the holomorphic connection (f ∗
kD)|Σ′

k
.

To show that Ψ|Σ′
k

is indeed parallel note that 4zdz
z4−1 = dz

z−1 − dz
z+

√
−1 + dz

z+1 − dz
z−

√
−1 .

Let G be the automorphism of O⊕2
Σ′

k
that takes the standard frame to the frame Ψ|Σ′

k
.

Then G gauges (f ∗
kD)|Σ′

k
to the trivial connection on O⊕2

Σ′
k
, because Ψ|Σ′

k
is a parallel

frame for (f ∗
kD)|Σ′

k
. This proves the proposition for odd k.

If k is even, Ψ in (3.7) is no longer single valued. Nevertheless, we can still recover
the trivial connection on O⊕2

Σ′
k

by twisting the pull-back of D to Σk by an appropriate
line bundle connection. The construction goes as follows. The values of Y k−1

2 produce
a nontrivial double covering

δ : Σ̃ −→ Σk

branched over the subset {p1, p2, p3, p4} in (3.5). Let

Σ̃′ := δ−1(Σ′
k) ⊂ Σ̃.

So δ|Σ̃′ : Σ̃′ → Σ′
k is an unramified double covering. Now Ψ produces a meromorphic

frame Ψ̃ of δ∗O⊕2
Σk

= O⊕2
Σ̃

such that the restriction of Ψ̃ to Σ̃′ is a holomorphic frame
of O⊕2

Σ̃′ . This frame Ψ̃|Σ̃′ is parallel for the flat connection (δ∗f ∗
kD)|Σ̃′ on O⊕2

Σ̃′ .
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The Galois group Gal(δ) = Z/2Z for δ has a natural action on δ∗O⊕2
Σk

= O⊕2
Σ̃

. The
action of the nontrivial element of Gal(δ) = Z/2Z evidently takes the frame Ψ̃ to −Ψ̃.
Therefore, the holomorphic frame Ψ̃ of O⊕2

Σ̃′ does not descend to a holomorphic
frame of O⊕2

Σ′
k
. Note that the action of Gal(δ) on O⊕2

Σ̃
preserves the logarithmic

connection δ∗f ∗
kD. We will now construct a suitable twist of Ψ̃ that descends.

Consider the holomorphic line bundle
L̃ := OΣ̃

equipped with the following action of Gal(δ): the nontrivial element α ∈ Gal(δ)
acts as multiplication by −1 over the involution α, meaning f 7→ −f ◦ α, for any
locally defined holomorphic function f on Σ̃ (the notation L̃ is used for emphasizing
the nontrivial action of Gal(δ)). The line bundle L̃ has a holomorphic connection
defined by the de Rham differential; this connection, which will be denoted by ∇L̃,
is preserved by the action of Gal(δ) on L̃.

Now consider the holomorphic vector bundle
(3.8) F :=

(
δ∗O⊕2

Σk

)
⊗ L̃ = O⊕2

Σ̃
⊗ L̃

on Σ̃. It has the meromorphic frame Ψ̃ ⊗ 1, where 1 denotes the constant function 1.
This frame Ψ̃ ⊗ 1 is holomorphic over Σ̃′ and it is preserved by the action of Gal(δ)
on F (recall that α ∈ Gal(δ) acts as multiplication by −1 on both Ψ̃ and 1). With
respect to the product connection

(3.9) ∇F := (δ∗f ∗
kD) ⊗ ∇L̃

on F , the holomorphic frame (Ψ̃ ⊗ 1)|Σ̃′ is in fact parallel on F|Σ̃′ . The actions of
Gal(δ) on L̃ and δ∗O⊕2

Σk
together produce an action of Gal(δ) on the vector bundle F

in (3.8). The logarithmic connection ∇F in (3.9) is evidently invariant under this
action of Gal(δ) on F .

Define the invariant direct image
L := (δ∗L̃)Gal(δ) ⊂ δ∗L̃

for the action of Gal(δ) on δ∗L̃. It is a holomorphic line bundle on Σk such that
δ∗L = OΣ̃(−q1 − q2 − q3 − q4), where qi ∈ Σ̃ satisfies the condition δ(qi) = pi. The
connection ∇L̃ on L̃, being preserved by the action of Gal(δ) on L̃, produces a
logarithmic connection ∇L on L; its residue is 1

2 at each marked point pi. Since the
logarithmic connection ∇L̃ has trivial monodromy representation, and the residues
of ∇L are 1

2 , it follows that the image of the monodromy homomorphism for the
above logarithmic connection ∇L on L is exactly {±1} ⊂ C∗.

The above construction of L from L̃ shows that the pull-back bundle δ∗(O⊕2
Σk

⊗L) =
δ∗L⊕2 is holomorphically isomorphic to F ⊗ OΣ̃(−q1 − q2 − q3 − q4) (see (3.8)) by a
Gal(δ)-equivariant holomorphic isomorphism.

The logarithmic connection ∇F in (3.9) descends to a logarithmic connection
on O⊕2

Σk
⊗ L, because ∇F is preserved by the action Gal(δ) on F . This descended

logarithmic connection on O⊕2
Σk

⊗ L clearly coincides with f ∗
kD ⊗ ∇L.
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The meromorphic frame Ψ̃⊗1 of F descends to a holomorphic frame of (O⊕2
Σk

⊗L)|Σ′
k

because Ψ̃ ⊗ 1 is preserved by the action of Gal(δ). It was observed above that
the holomorphic frame (Ψ̃ ⊗ 1)|Σ̃′ of (O⊕2

Σk
⊗ L)|Σ′

k
is parallel with respect to the

holomorphic connection ∇F |Σ̃′ in (3.9). Consequently, the holomorphic frame of
(O⊕2

Σk
⊗ L)|Σ′

k
given by Ψ̃ ⊗ 1 is parallel with respect to the holomorphic connection

f ∗
kD ⊗ ∇L on (O⊕2

Σk
⊗ L)|Σ′

k
. Let G be the meromorphic isomorphism sending the

standard frame of O⊕2
Σ′

k
to the holomorphic frame of (O⊕2

Σk
⊗ L)|Σ′

k
defined by Ψ̃ ⊗ 1;

this completes the proof for even k. □
The parabolic structure on O⊕2

S4 induced by the logarithmic connection D in (3.3)
admits the strongly parabolic Higgs field

(3.10) Φ =
(

0 dz
z−1 − dz

z+1
dz

z−
√

−1 − dz
z+

√
−1 0

)
.

The following lemma states that the singularities of Φ have the same behavior under
pull-back and gauge transformation as the connection D itself.

Lemma 3.3. — Let Φ be the strongly parabolic Higgs field defined in (3.10), fk the
projection from Σk to S4 in (3.2) and G the gauge transformation in Proposition 3.1.
Then

G−1 ◦ f ∗
k Φ ◦G

extends to a holomorphic Higgs field on the trivial holomorphic bundle O⊕2
Σk

over Σk.
Proof. — As before we have to distinguish between even k and odd k. For odd k

it is evident that G−1 ◦ f ∗
k Φ ◦G is a holomorphic Higgs field on Σ′

k with respect to
the trivial holomorphic structure induced by d = (f ∗

kD).G. We have to show that
G−1 ◦f ∗

k Φ◦G is holomorphic at the branch points of fk. Consider p1 = f−1
k (1). Then

the pull-back of Φ, considered as an endomorphism-valued 1-form, is meromorphic
and of the form

f ∗
k Φ =

(
0 b
c 0

)
.

The diagonal entries of the pull-back vanish identically, while the lower left entry c
has a zero of order k − 1 at p1 as fk is totally branched. The upper right entry b
has a pole of order 1 at p1. Since the meromorphic function Y (of degree 2) on Σk

(see (3.1)) has a zero of order 1 at p1, and k > 1,

G−1 ◦ f ∗
k Φ ◦G =

(
0 bY k−1

cY −k+1 0

)
is holomorphic at p1. The same argument works for the other branch points p2, p3, p4
of fk showing thatG−1◦f ∗

k Φ◦G is a holomorphic Higgs field on the trivial holomorphic
bundle.

When k is even, we consider
f ∗

k Φ ∼= f ∗
k Φ ⊗ 1

as an endomorphism-valued 1-form on the vector bundle O⊕2
Σk

⊗ L over Σ′
k. It is

holomorphic with respect to the holomorphic structure induced by the connec-
tion (f ∗

kD) ⊗ ∇L. The same arguments as for k odd then show that G−1 ◦ f ∗
k Φ ◦G
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extends to a holomorphic endomorphism-valued 1-form on the trivial bundle O⊕2
Σk

over Σk. □

The following proposition and its proof are inspired by some results about sym-
metric minimal surfaces in the 3-sphere [HHS18, Section 3.3].

Proposition 3.4. — Let k ∈ N> 2 and ρ̃ = k−1
2k
. Consider the logarithmic con-

nection ∇̃ on O⊕2
S4 given in (2.9) and its pull-back f ∗

k ∇̃ on O⊕2
Σk

with polar part in
D = p1 + p2 + p3 + p4. Then the parabolic structure associated to ∇̃ is unstable.
Furthermore,

(1) if k is odd:
• there exists a flat C∞ connection on O⊕2

Σk
→ Σk which is C∞ gauge equiv-

alent to (f ∗
k ∇̃)|Σ′

k
over Σ′

k. In particular, f ∗
k ∇̃ has trivial local monodromy

around the singular points {p1, p2, p3, p4};
• the monodromy homomorphism of f ∗

k ∇̃ is the one of the uniformizing
hyperbolic structure of Σk, in particular it is Fuchsian.

(2) If k is even, then there is a holomorphic line bundle L over Σk with a loga-
rithmic connection ∇L with polar part in D = p1 + p2 + p3 + p4 such that:

• the image of the monodromy homomorphism for ∇L is {±1} ⊂ C∗;
• there exists a C∞ vector bundle isomorphism

G : O⊕2
Σ′

k
−→ O⊕2

Σ′
k

⊗ L = L⊕2

over Σ′
k ⊂ Σk which gauges ((f ∗

k ∇̃) ⊗ ∇L)|Σ′
k

to a C∞ flat connection ∇̂
with Fuchsian monodromy on the trivial bundle over Σk;

• f ∗
k ∇̃ ⊗ ∇L on L⊕2 has trivial local monodromy around the singular

points {p1, p2, p3, p4}, and its monodromy representation coincides with
the monodromy homomorphism of the uniformizing hyperbolic structure
of Σk.

Remark 3.5. — The holomorphic line bundle L and the logarithmic connection
∇L in the statement of Proposition 3.4(2) are the same as in the statement of
Proposition 3.1(2).

Proof of Proposition 3.4. — The logarithmic connection ∇̃ on S4 in (2.9) is

(3.11) ∇̃ = d+
(

0 ρ̃z−1

ρ̃z 0

)(
dz

z − 1 − dz

z +
√

−1
+ dz

z + 1 − dz

z −
√

−1

)
.

At each point of the singular locus {1,−1,
√

−1,−
√

−1} the eigenvalues of the
residue of ∇̃ are ρ̃ and −ρ̃. Using (3.11) we compute the eigenlines for the positive
eigenvalue ρ̃ of the residues of ∇̃ at x ∈ {1,−1,

√
−1,−

√
−1} to be:

lx = C · (x, 1) ⊂ C2.

Recall from Section 1 that the quasiparabolic structures at {1,−1,
√

−1,−
√

−1} are
given by the eigenlines for the eigenvalue ρ̃. Let

(3.12) O⊕2
CP 1 ⊃ L −→ CP 1
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be the tautological subbundle whose fiber over any z ∈ C is C·(z, 1) and the fiber over
∞ is C · (1, 0). Therefore, at each point x of the singular locus {1,−1,

√
−1,−

√
−1}

the subspace Lx ⊂ (O⊕2
CP 1)x = C2 coincides with the eigenline of Resx(∇̃) with

respect to the eigenvalue ρ̃. Consequently, the parabolic degree of the line subbundle
L ⊂ O⊕2

CP 1 in (3.12), with respect to the parabolic structure induced by ∇̃ is

(3.13) par-deg(L) = degree(L) + 4ρ̃ = 4ρ̃− 1 > 0 = par-deg
(
O⊕2

CP 1

)
.

Therefore, O⊕2
CP 1 equipped with the parabolic structure given by ∇̃ is unstable.

Consider the standard inner product on C2. It produces a constant Hermitian
structure on O⊕2

CP 1 which is flat with respect to the trivial holomorphic connection
on O⊕2

CP 1 . Let L⊥ denote the orthogonal complement of the line subbundle L in (3.12),
so we have the C∞ decomposition
(3.14) O⊕2

CP 1 = L ⊕ L⊥.

Note that L⊥ is identified with O⊕2
CP 1/L = L∗ , because ∧2 O⊕2

CP 1 = OCP 1 . With
respect to the decomposition in (3.14), the (trivial) holomorphic structure of O⊕2

CP 1 ,
which is the same as the (0, 1)-part of the flat connection for ∇̃, is

∂
∇̃ =

∂L ψ

0 ∂
L∗


for some non-trivial C∞ section ψ of KCP 1 ⊗ L⊗2 over CP 1, where ∂L and ∂

L∗

are
the Dolbeault operators for L and L∗ respectively. The (1, 0)-part ∂∇̃ of ∇̃ is

(3.15) ∂∇̃ =
(
∂L α

φ ∂L
∗

)
,

where ∂L is a C∞ (1, 0)–connection on the holomorphic line bundle L over S4 (defined
in (2.5)), and ∂L

∗
is the dual (1, 0)–connection on L∗|S4 . Furthermore, in (3.15) α is a

C∞ section of KCP 1 ⊗L⊗2 over S4, and φ is a holomorphic section of KCP 1 ⊗ (L∗)⊗2.
In fact φ is the second fundamental form of the holomorphic subbundle L ⊂ O⊕2

CP 1

for the logarithmic connection ∇̃. We note that φ is holomorphic over the entire CP 1

because at every singular point ql of ∇̃, the fiber Lql
⊂ (O⊕2

CP 1)ql
is an eigenline of

the residue of ∇̃.
If φ = 0, then the line subbundle L is preserved by ∇̃ which gives a contradiction

since the parabolic degree L with respect to the induced parabolic structure is
nonzero (see (3.13) and [Oht82]). Hence we conclude that φ ̸= 0 and, by choosing
a suitable holomorphic isomorphism between KCP 1 and L⊗2, we can normalize φ to
be the constant function 1.

Consider the pulled back logarithmic connection f ∗
k ∇̃ on the trivial holomorphic

vector bundle O⊕2
Σk

over Σk, where fk is the map in (3.2). It is singular over the four
branched points p1, · · · , p4 in (3.5).

Case (1): k is odd. — We desingularize f ∗
k ∇̃ at pl, 1 ⩽ l ⩽ 4, as follows. Take a

holomorphic coordinate function z defined on an open neighborhood of fk(pl) ∈ CP 1

with z(fk(pl)) = 0. Let y be a holomorphic coordinate function defined on an open
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subset Ul ⊂ Σk containing pl such that yk = z ◦ fk. Consider the meromorphic
endomorphism

(3.16) hl =
(
y− k−1

2 0
0 y

k−1
2

)

of O⊕2
Ul

= O⊕2
Σk

|Ul
. It is a holomorphic automorphism over U ′

l := Ul \ {pl}. Let
(f ∗

k ∇̃)|U ′
l
.(hl|U ′

l
) be the holomorphic connection on O⊕2

U ′
l

produced by the action of
the gauge transformation hl|U ′

l
on the connection (f ∗

k ∇̃)|U ′
l
.

We claim that (f ∗
k ∇̃)|U ′

l
.(hl|U ′

l
) extends to a C∞ connection on O⊕2

Ul
. To prove the

above claim, first note that the upper right entry of the connection (f ∗
k ∇̃)|U ′

l
.(hl|U ′

l
)

(with respect to the splitting L ⊕ L⊥) is multiplied with the function yk−1 and is
therefore smooth at pl (it vanishes at pl with some higher order). Moreover, the
pull-back f ∗φ of the non-vanishing 1-form φ with values in OCP 1(2) has vanishing
order k−1 at pl. Hence, the lower left entry of (f ∗

k ∇̃)|U ′
l
.(hl|U ′

l
) with respect to (3.14),

which becomes
y1−kf ∗

kφ,

extends smoothly and non-vanishingly to pl. This proves the claim.
Since (f ∗

k ∇̃)|U ′
l
.(hl|U ′

l
) extends to a C∞ connection on O⊕2

Ul
, the local monodromy

of f ∗
k ∇̃ at each pl is trivial.

Now fix a global C∞ automorphism

(3.17) h ∈ C∞
(
Σ′

k,Aut
(
O⊕2

Σ′
k

))
such that deth = 1 and, for each 1 ⩽ l ⩽ 4, it coincides with hl (see (3.16)) on a
neighborhood of pl; such a global gauge h does exist. From the above observation
that (f ∗

k ∇̃)|U ′
l
.(hl|U ′

l
) extends to a C∞ connection on O⊕2

Ul
it follows immediately that

(f ∗
k ∇̃).h is a C∞ flat connection on the trivial C∞ vector bundle

Σk × C2 =: E0.

The holomorphic structure on E0 given by the flat connection (f ∗
k ∇̃).h is not the

trivial holomorphic structure on O⊕2
Σk

, as h in (3.17) is not holomorphic. In fact, we
claim that it is a uniformization bundle on Σk.

Let E0 denote the holomorphic vector bundle over Σk given by the holomorphic
structure defined by the (0, 1)-part of the connection (f ∗

k ∇̃).h. Since deth = 1, it
follows that E0 is a holomorphic SL(2,C)-bundle with (f ∗

k ∇̃).h being a holomorphic
SL(2,C)-connection on it.

Consider the pulled back line bundle
f ∗

kL ⊂ f ∗
k O⊕2

CP 1 = O⊕2
Σk
,

where L is the tautological bundle constructed in (3.12). Note that h(f ∗
kL) ⊂ E0|Σ′

k

is a holomorphic line subbundle (recall that h in (3.17) is defined only on Σ′
k).

Since h is meromorphic near each pl (as hl in (3.16) is meromorphic around pl and h
coincides with hl around pl), we conclude that h(f ∗

kL) =: L̃ extends to a holomorphic
subbundle of E0 over the entire Σk.
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For 1 ⩽ l ⩽ 4 fixed, let s be a non-vanishing holomorphic section of L defined on
an open subset Ũl ⊂ CP 1 around fk(pl). Then the holomorphic section

f ∗
k

(
s|

Ũl\{fk(pl)}

)
of L̃|

f−1
k (Ũl\{fk(pl)})

extends to a holomorphic section of L̃|
f−1

k
(Ũl)

vanishing at pl with order (k − 1)/2.
Indeed, this follows immediately from the expression of hl in (3.16). From this we
conclude that

degree(L̃) = degree(fk) · degree(L) + 4k − 1
2

= −k + 2k − 2 = k − 2 = genus(Σk) − 1.
(3.18)

Lemma 2.2 then shows that the monodromy representation of (f ∗
k ∇̃)·h is conjugate

to SL(2,R) and its Euler class is maximal by (3.18). More precisely, since the
map fk in (3.2) is a k-fold covering of S4 totally branched over the 4 marked points,
Lemma 2.2 gives that the monodromy representation for (f ∗

k ∇̃) · h coincides with
the monodromy of the uniformizing hyperbolic structure for Σk. Therefore, the
monodromy homomorphism of the connection (f ∗

k ∇̃) ·h coincides with the one given
by the hyperbolic uniformization of Σk.

Case (2): k is even. — Following the same desingularization procedure as in the
previous case, consider the local gauge transformation

(3.19) hl =
(
y− k−1

2 0
0 y

k−1
2

)
with respect to the pull-back by fk of the C∞ decomposition of the rank 2 bundle
in (3.14). As in the proof of point (2) of Proposition 3.1, the values of y k−1

2 produce
a ramified double covering of Σk

δ : Σ̃ −→ Σk

which is ramified exactly over the subset {p1, p2, p3, p4} in (3.5). As before let

Σ̃′ := δ−1(Σ′
k) ⊂ Σ̃

be the largest open subset such that δ|Σ̃′ : Σ̃′ → Σ′
k is an unramified double covering.

Let ql ∈ Σ̃, 1 ⩽ l ⩽ 4, be the points such that δ(ql) = pl. As in the proof of part (1),
fix a C∞ automorphism

h : O⊕2
Σ̃′ −→ O⊕2

Σ̃′

such that
• deth = 1,
• the action of Gal(δ) = Z/2Z on δ∗O⊕2

Σ′
k

= O⊕2
Σ̃′ takes h to −h, and

• the restriction of h near each marked point ql coincides with

hl =
(
ỹ1−k 0

0 ỹk−1

)
,

where ỹ2k = z ◦ fk ◦ δ with z being a holomorphic coordinate function around
fk(pl) ∈ CP 1 with z(fk(pl)) = 0.
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The C∞ connection ((δ∗f ∗
k ∇̃)|Σ̃′).h on O⊕2

Σ̃′ (considered as the trivial C∞ vector
bundle) extends to a flat connection on δ∗O⊕2

Σk
= O⊕2

Σ̃
preserved by the action of

Gal(δ) on δ∗O⊕2
Σk

. Hence it induces a C∞ flat connection on the trivial bundle O⊕2
Σk

;
this flat connection is ∇̂ in the statement of the proposition. As before we emphasize
that the holomorphic structure given by ∇̂ does not coincide with the natural (trivial)
holomorphic structure of O⊕2

Σk
, and in fact it gives a uniformization bundle.

In order to see how exactly ∇̂ and f ∗
k ∇̃ correspond to each other on Σk, we consider

the holomorphic line bundle L → Σk equipped with the logarithmic connection ∇L

as in the proof of point (2) in Proposition 3.1. It is straightforward to check that ∇̂
and (L,∇L) satisfy all the properties stated in the proposition. The homomorphism
ψ in the proposition is given by h⊗ 1. □

Remark 3.6. — The reason why we have to use a 2-valued gauge transformation
for even k (and hence the flat line bundle (L,∇L)) is that a hyperbolic isometric
rotation by an angle 2π

k̃
for k̃ ∈ 2Z cannot be represented by an SL(2,R)-matrix of

order k̃ but only by a SL(2,R)-matrix of order 2k̃. See also [BHS21, Section 4] for
the related case of symmetric minimal surfaces in S3.

Proposition 3.7. — Let k ∈ N⩾ 3 and ρ̃ = k−1
2k
. Fix base points p0 ∈ S4 and

p ∈ f−1
k (p0) ⊂ Σk \ {p1, p2, p3, p4}. Consider two logarithmic connections D1 and D2

on O⊕2
S4 such that the two monodromy homomorphisms lie in the same connected

component of Hom(π1(S4, p0), SL(2,R)), with the same prescribed local conjugacy
classes determined by the parabolic weight ρ̃. Then the following hold:

(1) If k is odd, the pull-back through fk in (3.2) of the monodromy representations
ofD1 andD2 lie in the same connected component of Hom(π1(Σk, p), SL(2,R)).

(2) If k is even, then the monodromy representations of (f ∗
kDj) ⊗ ∇L, j = 1, 2,

lie in the same connected component of Hom(π1(Σk, p), SL(2,R)), where ∇L

is the logarithmic connection defined in Proposition 3.4.

Proof. — We prove the statement only for odd k; the even case works analogously.
The (unbranched) covering fk : Σ′

k → S4 induces a covering-monodromy
π1(S4, p0) −→ S(k)

into the symmetric group S(k) ∼= S(f−1
k (p0)). Therefore, its first fundamental group

π1(Σk \ {p1, · · · , p4}, p) can be identified with the subgroup of π1(S4, p0) which is
given by the kernel of the covering-monodromy. Moreover, the inclusion map

Σk \ {p1, p2, p3, p4} ↪−→ Σk

induces a surjective homomorphism of fundamental groups
π1(Σk \ {p1, p2, p3, p4}, p) −→ π1(Σk, p).

The monodromy morphism commutes with the pull-back by fk. Moreover, since
D1 and D2 have real monodromy representation and parabolic weights k−1

2k
, the

monodromy representation of the flat connection f ∗
kDj on Σk \ {p1, p2, p3, p4} factors

through a representation of π1(Σk, p), for j = 1, 2 (as the local monodromy at the
marked points is trivial for both the connections). By hypothesis, the monodromy
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homomorphisms for D1 and D2 are in the same connected component of SL(2,R)-
representations, and hence their monodromy representations can be joined by a con-
tinuous path inside the space of SL(2,R)-representations of π1(S4, p0) with fixed local
monodromies. The pull-back of this path to the subspace of SL(2,R)-representations
of π1(Σk \ {p1, · · · , p4}, p), lying in the kernel of the covering-monodromy, is contin-
uous as well. Moreover, by the same arguments as above, all these representations
(determined by the path) factor through representations of π1(Σk, p). Recall that
π1(Σk \ {p1, p2, p3, p4}, p) → π1(Σk, p) is surjective. Therefore, f ∗

kD1 and f ∗
kD2 are in

the same connected component of SL(2,R)-representations. □

4. Logarithmic connections on the square torus with one
marked point

We consider the square torus

(4.1) T 2 := C/Γ

with lattice
Γ = Z +

√
−1Z ⊂ C

and one marked point o = [0] ∈ T 2. The point 1+
√

−1
4 ∈ T 2 will be denoted by p0.

Recall that the fundamental group π1(T 2 \ {o}, p0) of the one-punctured torus
T 2 \ {o} is a free group of two generators; it is generated by γx, γy ∈ π1(T 2 \ {o}),
where

(4.2) γx : [0, 1] −→ T 2 \ {o}; s 7−→ s+ 1 +
√

−1
4

and

γy : [0, 1] −→ T 2 \ {o}; s 7−→
√

−1s+ 1 +
√

−1
4 .

The commutator γ−1
y γ−1

x γyγx ∈ π1(T 2 \ {o}) corresponds to a simple loop going
around the marked point o.

4.1. The character variety of the one-punctured torus

For ρ ∈ ]0, 1
2 [, let Mρ

1,1 be the moduli space of flat SL(2,C)-connections on the
one-punctured torus T 2 \ {o} (defined in (4.1)) with local monodromy around the
puncture o lying in the conjugacy class of the element

(4.3)
(
e−2π

√
−1ρ 0

0 e2π
√

−1ρ

)
∈ SL(2,C).

The above de Rham moduli space Mρ
1,1 depends only on the topology of T 2 \ {o}; in

particular, it does not depend on the complex structure of T 2. The conjugacy class
of the element in (4.3) is determined by its trace, which is 2 cos(2πρ); see [Gol03].
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For a flat SL(2,C)-connection ∇ on T 2 \ {o}, let X, Y denote its monodromies
along γx, γy ∈ π1(T 2 \ {o}, p0) (defined in (4.2)) respectively. Let
(4.4) x = tr(X), y = tr(Y ), z = tr(Y X).
The moduli space Mρ

1,1 is diffeomorphic (via the monodromy mapping) to the
character variety of the one-punctured torus for which the conjugacy class of the
local monodromy at the puncture is the one in (4.3); this character variety is given
by the equation
(4.5) x2 + y2 + z2 − xyz − 2 − 2 cos(2πρ) = 0,
where x, y, z ∈ C. Equivalently, for a fixed ρ ∈ ]0, 1

2 [, any triple (x, y, z) ∈ C3

satisfying (4.5) determines, up to conjugacy, a unique representation of π1(T 2\{o}, p0)
into SL(2,C) such that the local monodromy around the puncture is conjugate
to (4.3), and x, y, z are as in (4.4); see [Gol03]. Note that the character variety is
smooth for ρ ∈ ]0, 1

2 [. The next lemma gives a characterization of the real points in
this character variety.

Lemma 4.1. — Take Θ ∈ Hom(π1(T 2 \{o}, p0), SL(2,C)), and denote X = Θ(γx),
Y = Θ(γy). Assume that x = tr(X), z1 = tr(Y X) and z2 = tr(Y −1X) are real. Then
either y = tr(Y ) ∈ R or x = 0.

Proof. — A short computation (see also [Gol03]) shows that up to conjugation we
can choose

(4.6) X =
(
x 1

−1 0

)
, Y =

(
0 −ζ
ζ−1 y

)
with

z1 = ζ−1 + ζ.

For given x, y the traces z1 and z2 are solutions of the quadratic equation in (4.5).
Using (4.6) we compute that

z2 = xy − z1.

If x, z1, z2 ∈ R, then either y ∈ R or x = 0. □

The following theorem proved in [Gol03, Section 2.6 & Section 3.3] describes the
connected components of the real points in the character variety.

Theorem 4.2 (Goldman [Gol03]). — For ρ ∈ ]0, 1
2 [, the set of real points of

the character variety defined by (4.5) has 5 connected components. There is one
compact component which is characterized by x, y, z ∈ [−2, 2], and there are 4
non-compact components which are all diffeomorphic to each other. The compact
component consists of SU(2)-representations and the non-compact components con-
sist of SL(2,R)-representations.

Remark 4.3. — The four non-compact components of the character variety are
interchanged by the group of sign-change automorphisms [Gol03, Section 2.2.1 & Sec-
tion 2.6]. This means, that the coordinates (x, y, z) are mapped to ((−1)ϵ1x, (−1)ϵ2y,
(−1)ϵ3z) where ϵl ∈ {0, 1} for l = 1, 2, 3, such that ϵ1 + ϵ2 + ϵ3 ∈ {0, 2}. In terms
of the Hitchin–Kobayashi correspondence, these four components correspond to the
four distinct spin structures on a torus.
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4.2. The de Rham moduli space of the one-punctured torus

Let w be the global coordinate on the universal covering C of T 2 in (4.1). Since
T 2 is a square torus, there exists an anti-holomorphic involution

(4.7) η : T 2 −→ T 2, [w] 7−→
[
−

√
−1w

]
on T 2 corresponding to the reflection along a diagonal of the square. Note that the
marked point o ∈ T 2 is fixed by the map η. The induced real involution of the de
Rham moduli space

Mρ
1,1 −→ Mρ

1,1, [∇] 7−→ [η∗∇]
is well-defined as ρ is real.

For notational convenience we denote by L the trivial C∞ bundle T 2 ×C → T 2. Let
a, χ ∈ C be coordinates of Mρ

1,1 obtained from abelianization (see [BDH21, (2.3)],
or [HH16]). For this purpose recall from [BDH21, (2.3)] that any element in Mρ

1,1
(with ρ ∈ ]0, 1

2 [) is represented by a logarithmic flat connection on L ⊕ L∗ with a
unique pole at o

(4.8) ∇ = ∇a,χ,ρ =
(

∇L γ−
χ

γ+
χ ∇L∗

)
,

where ∇L is the flat connection on L defined by

(4.9) ∇L = d+ adw + χdw;

w being the above global holomorphic coordinate of T 2 and a, χ ∈ C. Moreover
∇L∗ is its dual connection on L∗, while γ+

χ and γ−
χ are meromorphic sections with

respect to the holomorphic structure given by the Dolbeault operators ∂0 −2χdw and
∂

0 + 2χdw respectively, with simple poles at o ∈ T 2 and residues determined by ρ.
Here ∂0 = d′′ is the (0, 1)-part of the de Rham differential operator d; in particular,
there is a holomorphic structure induced by ∇ in (4.8) on L, the one given by the
Dolbeault operator ∂0 + χdw. Note that (4.8) is only valid for χ /∈ πZ +

√
−1πZ,

since there are no holomorphic 1-forms γ± with one simple pole and non-trivial
residue.

Remark 4.4. — Note that the parabolic weight at o of the logarithmic connection
∇a,χ,ρ is ρ. The parabolic line is determined, up to a holomorphic automorphism of
L⊕ L∗, by the condition that it is neither the line Lo, nor the line L∗

o.

Lemma 4.5. — Let Γ∗ := πZ +
√

−1πZ. The gauge class of the connection
∇ = ∇a,χ,ρ as in (4.8) on the one-punctured torus is fixed by the involution η defined
in (4.7) if

χ ∈
(
1 −

√
−1
)
R \ 1

2Γ∗ and a ∈
(
1 +

√
−1
)
R,

or

χ ∈
(
1 +

√
−1
)
R \ 1

2Γ∗ and a ∈
(
1 −

√
−1
)
R.
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Proof. — We have
η∗dw = −

√
−1dw and η∗dw =

√
−1dw.

Hence, for χ ∈ (1 −
√

−1)R and a ∈ (1 +
√

−1)R,
η∗∇L = ∇L

with ∇L given by (4.9). By [BDH21, Proposition 2.5] the meromorphic sections γ±
χ

in (4.8), described above, are unique, up to scaling, under the given condition that
the quadratic residue at o ∈ T 2 of the meromorphic quadratic differential

γ+
χ γ

−
χ (dw)2

is ρ2. Thus, we obtain constants c+, c− ∈ C∗, with c+c− = 1, such that
η∗γ±

χ dw = c±γ±
χ dw.

In particular, ∇ and η∗∇ are gauge equivalent. If χ ∈ −(1 −
√

−1)R \ 1
2Γ∗ and

a ∈ −(1 +
√

−1)R then η∗∇L = (∇L)∗, and the proof works analogously. □

Lemma 4.6. — Let ∇ = ∇a,χ,ρ be a connection on T 2 \ {o} as in (4.8) with
[η∗∇] = [∇]. Then

z1 = tr(Y X) ∈ R and z2 = tr(Y −1X) ∈ R.
Proof. — Consider the p0-based loops γz1 and γz2 on T 2 \ {o} which are the

concatenations of the loops γx and γy (defined in (4.2)) and of the loops γx and γy
−1

respectively. Their corresponding elements in π1(T 2 \ {o}, p0) (for which we use the
same notation) satisfy the conditions γz1 = γyγx and γz2 = γy

−1γx. By definition z1
and z2 are the traces of the monodromy of ∇ along the loops γz1 and γz2 respectively.

Note that the real involution η in (4.7) maps the closed curve γz2 to a curve η(γz2)
which is free homotopic (i.e., without fixed base point) to γz2 ; see Figure 4.1. Since
by hypothesis η∗∇ ∼= ∇, we thus obtain that z2 = z2. Similarly, the closed curve γz1

is mapped by η to a curve η(γz1) which is free homotopic to (γz1)−1; see Figure 4.1.
As tr(M) = tr(M−1) for every M ∈ SL(2,C), we obtain that z1 = z1. □

Remark 4.7. — Note that the same arguments also show that x = y, where
x = tr(X) and y = tr(Y ) (under the same hypothesis as in Lemma 4.6).

Figure 4.1. The curves γz2 and γz1 : their monodromy traces are z2 and z1.
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4.3. A consequence of WKB analysis

Fix ρ ∈ ]0, 1
2 [ and

(4.10) χ0 = π

4
(
1 −

√
−1
)
, a0 = π

4
(
1 +

√
−1
)
.

Consider the family of flat connections, parametrized by t ∈ R on T 2 \ {o} (defined
in (4.1)) given by

∇t := ∇(1−t)a0,χ0,ρ = ∇a0,χ0,ρ + t
π

4
(
1 +

√
−1
)(−dw 0

0 dw

)
.

In this section we study the behavior of
x(t) := tr(X(t)),

where X(t) is the monodromy of ∇t along γx ∈ π1(T 2 \ {o}, p0). By Lemma 4.5,
the connection ∇t is compatible with the involution η (see (4.7)), in the sense that
[∇t] = η∗[∇t] for all t ∈ R. In particular, the traces z1(t), z2(t) defined in Lemma 4.6
are real for all ∇t, with t ∈ R.

From the definition of γx in (4.2) we have
γ′

x(s) = 1 ∀ s ∈ [0, 1].
For the vector v = 1 ∈ C we have

Re
(

−π

4
(
1 +

√
−1
)
dw(v)

)
= −1 > 0.

Hence, the curve γx is a WKB curve (see Section A.1) for the 1-form

−π

4
(
1 +

√
−1
)
dw.

From Corollary A.4 of the Appendix (compare also with [GMN13, Appendix 4]) we
get a non-zero constant C ∈ C∗ such that

(4.11) lim
t∈R>0,t→∞

x(t) exp
(

−tπ1 +
√

−1
4

)
= C.

From this the following corollary is obtained.

Corollary 4.8. — There exist a sequence (tn)n ∈N ⊂ R such that x(tn) is real
and non-zero for every n ∈ N, and limn→∞ tn = ∞. In particular, the monodromy
representation of ∇tn is conjugate to a SL(2,R)-representation for all n.

Proof. — Equation (4.11) with C ̸= 0 yields a sequence (tn)n ∈N ⊂ R such that
x(tn) ∈ R \ [−2, 2]

for all n ∈ N. From Lemma 4.6 we know that z1 = z1(tn) and z2 = z2(tn) are both
real. Recall that

z2 = xy − z1

and x(tn) ̸= 0. Therefore, Lemma 4.1 shows that y(tn) ∈ R for all n, and hence the
representation is given by a real point in the character variety. Since x(tn) ∈ R\[−2, 2],
Goldman’s result (Theorem 4.2) implies that the monodromy representation of ∇tn

is conjugated to an SL(2,R) representation for all n ∈ N. □
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Corollary 4.8 shows the existence of logarithmic connections ∇tn on the one-
punctured torus T 2 with real monodromy. Recall that the Dolbeault operator ∂0 +
χdw is gauge equivalent with ∂

0 (and hence defines the trivial holomorphic line
bundle structure on L) if and only if 2χ ∈ Γ∗, with Γ∗ defined in Lemma 4.5.
Hence, it follows that the holomorphic structure on L induced by ∇tn (for which
χ0 = π

4 (1 −
√

−1)) is that of a holomorphic line bundle of order 4 on T 2. In order to
lift ∇tn , for an appropriate ρ, to the Riemann surface Σk, we first need to relate the
moduli space Mρ

1,1 in Section 4.1 with the moduli space of flat connections Mρ̃
0,4

on S4.

4.4. Abelianization and connection

In [HH16], logarithmic sl(2,C)-connections d + ξ on the rank two trivial holo-
morphic bundle on CP 1 with four marked points {±1,±

√
−1) are studied by an

abelianization procedure. We need to recall (and adapt to our situation) some of the
results of [HH16]. We restrict hereby to logarithmic connection on O⊕2

S4 such that all
residues have the same eigenvalues

(4.12) ±ρ̃ for some ρ̃ ∈
]

1
4 ,

1
2

[
.

4.4.1. The character variety of a four-punctured sphere

As before S4 denotes the complex projective line CP 1 with punctures at the points
(4.13) xl := e(l−1)

√
−1 π

2

for l = 1, . . . , 4 and p0 ∈ S4 a base point. For any l = 1, . . . , 4, consider a simple
oriented p0-based loop γxl

going around the puncture xl. The fundamental group
π1(S4, p0) is generated by γxl

, with l = 1, . . . , 4; the generators satisfy the rela-
tion γx4γx3γx2γx1 = Id . The following is a well-known result dating back to Fricke;
see [Gol88].

Any SL(2,C)-representation of π1(S4, p0) is determined by the images Ml ∈
SL(2,C) of the generators γxl

∈ π1(S4, p0), for l = 1, . . . , 4. We have
M4M3M2M1 = Id .

Let
µ = 2 cos(2πρ̃).

We restrict to the case
tr(Ml) = µ ∀ l = 1, . . . , 4.

If the representation is irreducible or totally reducible, the traces
x̃ = tr(M2M1), ỹ = tr(M3M2), z̃ = tr(M3M1)

determine the representation uniquely up to conjugation. Moreover, these affine
coordinates (x̃, ỹ, z̃) satisfy the equation
(4.14) x̃2 + ỹ2 + z̃2 + x̃ỹz̃ − 2µ2(x̃+ ỹ + z̃) + 4(µ2 − 1) + µ4 = 0.
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Furthermore, a totally reducible representation is conjugate to a SU(2)-representation
if and only if x̃, ỹ, z̃ ∈ [−2, 2], while it is conjugate to an SL(2,R)-representation if
x̃, ỹ, z̃ ∈ R but not

x̃ ∈ [−2, 2] and ỹ ∈ [−2, 2] and z̃ ∈ [−2, 2].

4.4.2. Abelianization

We consider logarithmic connections d + ξ on the rank two trivial holomorphic
bundle over S4 which are symmetric, in the sense that all four residues have eigen-
values ±ρ̃. As explained in Section 1, a logarithmic connection induces a parabolic
bundle E. The parabolic weights are hereby ρ̃ at each of the four singular points.
The generic underlying holomorphic vector bundle for parabolic bundles is trivial. So
once the parabolic weight is fixed, the parabolic structure E is essentially determined
by the lines defining the quasiparabolic structures, or in other words, the cross-ratio
of the 4 quasiparabolic lines in the trivial vector space C2; see [HH16] or [LS15].

It can be shown (see [HH16, Proposition 2.1]) that for a generic parabolic struc-
ture E, i.e., for a generic cross-ratio of the 4 parabolic lines, the space of strongly
parabolic Higgs fields is complex 1-dimensional. Moreover, for a generic parabolic
structure E, the determinant of a non-zero strongly parabolic Higgs field θ is a
non-zero constant multiple of

(4.15) (dz)2

z4 − 1 .

Take a strongly parabolic Higgs bundle (E, θ) such that det θ is non-zero constant
multiple of (4.15). Let

f : Σ2 −→ CP 1

be the spectral curve and L → Σ2 the holomorphic line bundle corresponding to
(E, θ); see also [Hit87] for the smooth case. We recall that Σ2 is contained in the total
space of KCP 1 ⊗ OCP 1(x1 +x2 +x3 +x4), where the xl’s are the fourth roots of unity
as in (4.13), and f = f2 (as in (3.2) for k = 2) is the ramified double cover of CP 1

branched over the singular points x1, x2, x3, x4; the holomorphic line bundle L is the
subbundle of f ∗E = O⊕2

Σ2 given by the eigenline bundle of θ. We have genus(Σ2) = 1
and degree(L) = −2. As before, denote the point f−1(xl) by pl. Let σ : Σ2 → Σ2 be
the nontrivial element of the Galois group Gal(f). Then

L ⊗ σ∗L = OΣ2(−p1 − p2 − p3 − p4);
see [HH16, Section 3]. When p1 is chosen as the identity element of the addition law,
p2, p3, p4 become the nontrivial order two points of the elliptic curve. So

−3p1 + p2 + p3 + p4

is a principal divisor (associated to the derivative ℘′ of the Weierstrass ℘-function),
and therefore

(OΣ2(−2p1))⊗2 = L ⊗ σ∗L.
Thus, there is L0 ∈ Jac(Σ2) with
(4.16) OΣ2(−2p1) ⊗ L0 = L and OΣ2(−2p1) ⊗ L∗

0 = σ∗L.
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Consider the logarithmic connection on OΣ2(−p1−p2−p3−p4) given by the de Rham
differential. It produces a logarithmic connection on OΣ2(−4p1) once an isomorphism
of OΣ2(−p1 − p2 − p3 − p4) with OΣ2(−4p1) is chosen (for instance, the isomorphism
defined by the multiplication with ℘′); this connection on OΣ2(−4p1) does not depend
on the choice of the isomorphism. A connection on OΣ2(−4p1) produces a connection
on OΣ2(−2p1). Let
(4.17) Ds

be the logarithmic connection on OΣ2(−2p1) obtained this way. It satisfies the
equation

(4.18) Dss−2p1 = −d℘′

2℘′ ⊗ s−2p1 ,

where s−2p1 is the meromorphic section with double pole at p1.
In particular, Ds is singular at p1, . . . , p4, all residues being equal to 1

2 (and hence
the monodromy around the singular points being −1); for more details see (the
proof of) [HHS18, Theorem 3.2]. Denote by (Ds)∗ the dual connection of Ds on
OΣ2(2p1).

The holomorphic bundle underlying the pull-back f ∗E of the parabolic bundle E
is the rank two trivial holomorphic bundle over Σ2. Recall that both L and σ∗L are
holomorphic subbundles of the rank two trivial holomorphic bundle over Σ2. This
inclusion map defines a holomorphic vector bundle map

L ⊕ σ∗L −→ OΣ2 ⊕ OΣ2

which is an isomorphism away from the divisor p1 + p2 + p3 + p4. Consider now the
holomorphic isomorphism

L0 ⊕ L∗
0 −→ (L ⊕ σ∗L) ⊗ OΣ2(2p1).

It is shown in [HH16, Section 3] that the induced logarithmic connection (f ∗
2 (d +

ξ)) ⊗ (Ds)∗ on
L0 ⊕ L∗

0

is given by

d+
(

∇L0 β−

β+ (∇L0)∗

)
.

Here, ∇L0 and (∇L0)∗ are dual holomorphic line bundle connections on L0 respec-
tively L∗

0. Moreover, the second fundamental forms β+ and β− are meromorphic
sections of

KΣ2 ⊗ L−2
0 and KΣ2 ⊗ L2

0

respectively; they can be explicitly determined in terms of ϑ-functions [HH16, Propo-
sition 3.2]. Moreover, the eigenvalues of the residues of (f ∗

2 (d+ ξ)) ⊗ (Ds)∗ are

±
(

2ρ̃− 1
2

)
which implies that the quadratic residue of the meromorphic quadratic differential
β+β− is (2ρ̃− 1

2)2.
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The relationship between the abelianization of symmetric logarithmic connections
on S4 and flat connections on the one-punctured torus is given as follows. Consider
the 4-fold covering induced by the identity map on C

π4 : Σ2 = C/
(
2Z + 2

√
−1Z

)
−→ T 2 = C/

(
Z +

√
−1Z

)
.

The pull-back of topologically trivial holomorphic line bundles defines a 4-fold cov-
ering

Jac(T 2) −→ Jac(Σ2).
Spin bundles on T2 are mapped to the trivial holomorphic line bundle on Σ2. Further,
holomorphic line bundles of order 4 on T 2 are mapped to nontrivial spin bundles
on Σ2.

As shown in [HHS18, Section 3.1] (see also [HH16, Remark 3.3] and [Hel14, Sec-
tion 4]), for a symmetric logarithmic connection d + ξ with local weights ρ̃ on S4
with underlying parabolic bundle admitting a strongly parabolic Higgs field of non-
vanishing determinant, there exists a, χ ∈ C, χ /∈ 1

2Γ∗, such that f ∗
2 (d+ ξ) ⊗ (Ds)∗

and π∗
4∇a,χ,ρ are gauge equivalent (with the connection ∇a,χ,ρ as in (4.8)) and

π∗
4γ

± = β±.

The above abelianization-procedure leads to the following theorem.

Theorem 4.9. — Let ρ ∈ ]0, 1
2 [ and ρ̃ = 2ρ+1

4 . There is a degree 4 rational map

Mρ
1,1 −→ Mρ̃

0,4

compatible with the underlying parabolic structures. On the character variety this
map is given by

(x, y, z) 7−→ (x̃, ỹ, z̃) = (2 − x2, 2 − y2, 2 − z2).

Remark 4.10. — In our symmetric case, where the parabolic weight ρ̃ ∈ ]1
4 ,

1
2 [

is the same at every marked point of S4, there are only two polystable parabolic
structures which admit a compatible logarithmic connection (as defined in Section 1),
but no strongly parabolic Higgs field with non-zero determinant. The first of the two
exceptions is induced by ∇̃ constructed in (2.9), and the second is a stable parabolic
structure defined on OS4(1) ⊕ OS4(−1).

There are exactly three totally reducible connections having semistable parabolic
structure on S4, (see [HH16]); one of them being D as defined in (3.3). The semistable
parabolic structures of these three totally reducible connections admit strongly par-
abolic Higgs fields with non-zero determinant. In particular, the parabolic bundle
induced by D has the strongly parabolic Higgs field defined in (3.10). The corre-
sponding line bundles L0 in (4.16) of these semistable parabolic structures are exactly
the non-trivial spin bundles of Σ2. They correspond to holomorphic line bundles of
order 4 on T 2.

Proof of Theorem 4.9. — The birational map Mρ
1,1 → Mρ̃

0,4 is given via abelia-
nization. Note that for a nontrivial Zariski open set in M ρ̃

0,4, the parabolic bundle
induced via the Riemann–Hilbert correspondence is defined on the rank two trivial
holomorphic bundle over S4 and admits a parabolic Higgs field of non-vanishing
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determinant, see for example [LS15]. As explained above, there exists a, χ ∈ C,
χ /∈ 1

2Γ∗, such that f ∗
2 (d+ ξ) ⊗ (Ds)∗ and π∗

4∇a,χ,ρ are gauge equivalent by [HH16].
The connection ∇a,χ,ρ is a preimage of d+ ξ through our birational map.

There are four preimages, because the pull-backs of two connections π∗
4∇a1,χ1,ρ and

π∗
4∇a2,χ2,ρ from the one-punctured to the four-punctured torus are gauge equivalent

if and only if they differ by a spin-connection, i.e.,

(a2 − a1, χ2 − χ1) = (−ν, ν), ν ∈ 1
2Γ∗.

Recall also that the elements in Mρ
1,1 admitting a representative of the form ∇a,χ,ρ,

with a, χ ∈ C, χ /∈ 1
2Γ∗, form a nontrivial Zariski open set (see [HH16, Theorem 1]

or [BDH21, Section 2.3]).
It remains to determine the relationship between the character varieties. First

observe that Equation (4.14) for (x̃, ỹ, z̃) = (2 − x2, 2 − y2, 2 − z2) factors as(
x2 + y2 + z2 − xyz − 4 + µ2

)(
x2 + y2 + z2 + xyz − 4 + µ2

)
= 0

with µ = 2 cos(2πρ̃). Replacing
2 − µ2 = κ := 2 cos(2πρ)

then gives(
x2 + y2 + z2 − xyz − 2 + κ

)(
x2 + y2 + z2 + xyz − 2 + κ

)
= 0.

The first factor coincides with Equation (4.5) for the one-punctured torus with
parabolic weight ρ. Hence, the map between the character varieties is well-defined.

We need to show that the above map
(x, y, z) 7−→ (x̃, ỹ, z̃) =

(
2 − x2, 2 − y2, 2 − z2

)
is compatible with the birational map between the moduli space. Consider an element
[∇] ∈ Mρ

1,1 determined by the monodromy representation Θ. Let X, Y ∈ SL(2,C)
be the monodromies along the loops γx and γy on the one-punctured torus.

Recall that the monodromy of the connection Ds on OΣ2(−2p1) is given by −1
around the singularities pl. The generators 2, 2

√
−1 ∈ 2Z + 2

√
−1Z of the lattice

defining the torus Σ2 define two generators of the fundamental group of Σ2. The
monodromy of Ds along these two generators of 2Z + 2

√
−1Z is also −1.

Let Θ′ be the monodromy representation corresponding to the image in M ρ̃
0,4 of

[∇] ∈ Mρ
1,1 through the birational map in the statement of the theorem. Denote by

Ml = Θ′(γl), l = 1, . . . , 4 the (local) monodromies of Θ′ along the simple oriented
loops γl on S4 going around the 4 punctures xl := e(l−1)

√
−1 π

2 ∈ CP 1.
Consider the loops γ2γ1, γ3γ2 and γ3γ1 on S4. Their images through the monodromy

homomorphism Θ′ are M2M1, M3M2 and M3M1. Lifting these curves to the four-
punctured torus Σ2 together with the above properties of the monodromy of Ds

shows that
M2M1 ≡ −X2

M3M2 ≡ −Y 2

M3M1 ≡ −(Y X)2,

(4.19)
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where ≡ is the equivalence relation of lying in the same conjugacy class. Taking
traces yields the claimed map between the character varieties. Moreover, the local
monodromies around the 4 singular points pl in Σ2 are given by

M2
l ≡ −Y −1X−1Y X

Taking the trace gives 2−(2 cos(2πρ̃))2 = 2 cos(2πρ) corresponding to ρ = 2ρ̃− 1
2 . □

Lemma 4.11. — Let D and ρ̃ be as in Proposition 3.1. Then,
f ∗

2D ⊗ (Ds)∗

is given by π∗
4∇a0,χ0,ρ with χ0 = π 1−

√
−1

4 , a0 = π 1+
√

−1
4 and ρ = 2ρ̃− 1

2 .

Proof. — This assertion follows from the proof of [HHS18, Theorem 3.2]. In the
geometric context of [HHS18] the connection ∇a0,χ0,ρ with χ0 = π 1−

√
−1

4 and a0 =
π 1+

√
−1

4 solves the extrinsic closing condition of a compact CMC surface in the 3-
sphere S3. Particular instances of minimal surfaces are given by the famous Lawson
surfaces [Law70]. □

Lemma 4.12. — There exists a flat SL(2,R)-connection ∇F in Mρ
1,1 such that

π∗
4∇F and f ∗

2 ∇̃ ⊗ (Ds)∗ are gauge equivalent on the four-punctured torus Σ2. The
connections ∇̃ and Ds are defined in (2.9) and (4.17) respectively.

Proof. — Let k ∈ N⩾ 3, ρ̃ = k−1
2k

, and consider the associated connection ∇̃ in
Lemma 2.2. Using Lemma 2.1, the monodromy representation for ∇̃ is determined
by the following characters

x̃ = −2 − 4 cos π
k

ỹ = −2 − 4 cos π
k

z̃ = −2
(

2 + 4 cos π
k

+ cos 2π
k

)(4.20)

with µ = 2 cos π k−1
k
.

Consider the flat connection ∇F on the one-punctured torus determined by the
following element of the character variety of the one-punctured torus

x = 2
√

1 + cos π
k

y = 2
√

1 + cos π
k

z = 4
(

cos π

2k

)2

κ = 2 cos 2πk − 2
2k = −2 cos 2π

2k .

(4.21)

Here ρ = 2ρ̃− 1
2 = k−2

2k
and ∇F ∈ Mρ

1,1. The proof of Theorem 4.9 shows that π∗
4∇F

and f ∗
2 ∇̃ ⊗ (Ds)∗ define the same element in the character variety of the four-

punctured torus Σ2. This implies that π∗
4∇F and f ∗

2 ∇̃ ⊗ (Ds)∗ are gauge equivalent
on the four-punctured torus Σ2. □
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Remark 4.13. — The connection ∇̃ in (2.9) does not admit a strongly parabolic
Higgs field with non-zero determinant, and the abelianization-procedure does not ap-
ply directly. But Lemma 4.12 shows that it is possible to determine a connection ∇F

on T 2 such that π∗
4∇F and f ∗

2 ∇̃ ⊗ (Ds)∗ are gauge equivalent on the four-punctured
torus Σ2. In [HH16, Theorem 3.5], the connection π∗

4∇F is written as a limit of
connections of the form in (4.8). It can be shown that the underlying holomorphic
bundle of ∇F is a non-trivial extension of the spin bundle by itself.

5. Proofs
Proof of Theorem 0.1

Proof. — Let k ∈ N⩾ 3, ρ̃ = k−1
2k

and ρ = 2ρ̃ − 1
2 = k−2

2k
. Consider a sequence of

distinct connections ∇tn with real monodromy, as constructed in Corollary 4.8. By
Theorem 4.9, the connection ∇tn induces a logarithmic connection on S4 with real
monodromy. This connection is given by

Dτn := D + τnΦ,
where Φ is the strongly parabolic Higgs field for D given in (3.10), and τn ∈ C \ {0}
is determined by tn. To be more explicit, the holomorphic quadratic differential
det(Φ) = 4

√
−1(dz2)
z4−1 pulls back to c2(dw)2 on Σ2 for some c ∈ R> 0. Also note that

D + hΨ is gauge equivalent to D − hΨ for every h ∈ C. Thus, we have

τn = π
1 +

√
−1

4c tn.

By Proposition 3.1, the pull-back of D to Σk, through the map fk in (3.2), is gauge
equivalent to the de Rham differential. The same gauge transformation sends Φ
to a holomorphic Higgs field with respect to the trivial holomorphic structure by
Lemma 3.3. Since ∇tn and ∇F (constructed in Lemma 4.12) are both SL(2,R)-
connections on the one-punctured torus T 2 \ {o}, the map given in Theorem 4.9
sends them into the same real component of connections on S4 (that of ∇̃ in (2.9));
see Remark 4.3. By Proposition 3.4 and Proposition 3.7 we obtain that the pull
back of D + τnΦ to Σk is in the connected component with maximal Euler class
g − 1 = k − 2. □

Example 5.1 (The case of a genus 2 surface). — For k = 3 the Riemann surface
is given by

(5.1) Σ : Y 3 = Z2 − 1
Z2 + 1 .

The connection D on S4 is

D = d+
(

1
3 0
0 −1

3

)(
dz

z − 1 − dz

z −
√

−1
+ dz

z + 1 − dz

z +
√

−1

)
and the parabolic Higgs field is

Φ =
(

0 1
0 0

)(
dz

z − 1 − dz

z + 1

)
+
(

0 0
1 0

)(
dz

z −
√

−1
− dz

z +
√

−1

)
.
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Since k = 3 is odd, we are in case (1) of Proposition 3.1. We pull back D and Φ via
f3 : Σ −→ CP 1, (Y, Z) 7−→ Z

and apply the gauge transformation

Ψ =
(
Y −1 0

0 Y

)
to obtain

f ∗
3D · Ψ

= d+ Ψ−1
(

1
3 0
0 −1

3

)(
dZ

Z − 1 − dZ

Z −
√

−1
+ dZ

Z + 1 − dZ

Z +
√

−1

)
Ψ + Ψ−1dΨ

= d

by (5.1), and

Ψ−1f ∗
3 ΦΨ =

(
0 Y 2

0 0

)(
dZ

Z − 1 − dZ

Z + 1

)

+
(

0 0
Y −2 0

)(
dZ

Z −
√

−1
− dZ

Z +
√

−1

)

=
(

0 ω1
ω2 0

)(5.2)

where
ω1 = Y 2dZ

Z2 − 1 , ω2 = dZ

Y 2(Z2 + 1)
is a (suitable normalized) basis of H0(Σ, K) with

(ω1) = p2 + p4 and (ω1) = p1 + p3

and pk are as in (3.5) the preimages of 1,
√

−1,−1,−
√

−1 under f3. Theorem 0.1
then shows that there exist infinitely many tn ∈ R such that the flat holomorphic
connection

d+ tn

(
0 ω1
ω2 0

)
has Fuchsian monodromy representation.

Proof of Corollary 0.2

Proof. — Consider for ρ = k−2
2k

= 2ρ̃− 1
2 the connections

∇t
χ = ∇(1−t)a,χ,ρ

with
χ ∈

(
1 ∓

√
−1
)
R \ 1

2Γ∗ and a ∈
(
1 ±

√
−1
)
R

such that ∇t is equivariant under the real involution η; see Lemma 4.5. Recall that
the moduli space of S-equivalence classes of rank two stable bundles with trivial

TOME 8 (2025)



624 I. BISWAS, S. DUMITRESCU, L. HELLER & S. HELLER

determinant over Σk is a projective variety. The subspace of (semistable) equivariant
holomorphic bundles over Σk identifies with the moduli space of corresponding par-
abolic structures on S4 by pull-back and desingularization. As such it is a projective
line as explained in Section 4.4.2, see also [LS15]. The two lines χ ∈ (1∓

√
−1)R\ 1

2Γ∗

in the Jacobian are mapped onto two semicircles constituting a circle in the afore-
mentioned projective line. The trivial holomorphic structure corresponding to χ0 is
the only point contained in the intersection of the semicircles (as the holomorphic
line bundles determined by χ0 and χ0 only differ by a spin bundle on T 2). We refer
to these as the compatible real holomorphic structures on Σk. The only missing point
in the circle is given by a wobbly bundle, where our method does not apply. The
proof of Corollary 0.2 works verbatim using ∇t

χ instead of ∇t. □

Proof of Corollary 0.3

Proof. — By Theorem 0.1 there exists a compact curve Σ3 of genus g = 2 and a
holomorphic connection ∇(Σ3) on the rank two trivial holomorphic bundle over Σ3
such that the monodromy homomorphism of ∇(Σ3) is Fuchsian.

Consider an open neighborhood V of the monodromy of ∇(Σ3) in the space of
conjugacy classes of group homomorphisms π1(Σ3) → SL(2,C) formed by quasi-
Fuchsian representations. Recall that quasi-Fuchsian representations are faithful
and their image in SL(2,C) is a discrete group whose canonical action on CP 1

has a Jordan curve as limit set and preserves each component of the domain of
discontinuity. By Bers’ simultaneous uniformization each conjugacy class of a quasi-
Fuchsian representation is determined by the pair of elements in the Teichmüller
space given by the quotient of the two connected components of the discontinuity
domain by the image of the representation.

The main result in [CDHL19] gives an open neighborhood W of (Σ3,∇(Σ3)) in the
space of irreducible holomorphic differential systems (i.e., pairs of the form (Σ,∇)
where Σ is an element in the Teichmüller space of compact curves of genus g = 2
and ∇ is an irreducible holomorphic SL(2,C)-connections on O⊕2

Σ ) such that the
restriction of the Hilbert–Riemann monodromy mapping to W is a biholomorphism
between W and V . This proves the first statement in the Corollary 0.3.

Consider now the open set U in the Teichmüller space of compact curves of genus
g = 2 which is the image of W through the natural forgetful projection. Take Σ ∈ U
and ∇(Σ) a holomorphic connection on rank two holomorphic trivial bundle O⊕2

Σ
with quasi-Fuchsian monodromy representation. Denote by Γ ⊂ SL(2,C) the image
of the monodromy homomorphism for ∇(Σ).

Let Σ̃ → Σ be a universal cover of Σ, and let ∇̃(Σ̃) be the pull-back of ∇(Σ) to
the rank two trivial holomorphic bundle O⊕2

Σ̃
over Σ̃ through the covering map.

Since ∇̃(Σ̃) is flat and Σ̃ is simply connected, there exists a global ∇̃(Σ̃)-parallel
frame of the rank two trivial bundle over Σ̃. Such a parallel frame on the holo-
morphically trivial bundle O⊕2

Σ̃
is determined by a holomorphic map Σ̃ → SL(2,C)

which is equivariant with respect to two actions of the fundamental group of Σ,
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namely by deck transformations on Σ̃ and through the monodromy morphism of
∇(Σ) on SL(2,C). This provides a holomorphic map b : Σ → SL(2,C)/Γ, with Γ
being the image of the monodromy homomorphism for ∇(Σ). Here, we make use
of the holomorphic trivialization of O⊕2

Σ̃
which is the pull-back of the holomorphic

trivialization of O⊕2
Σ .

Since ∇(Σ) is irreducible (and therefore nontrivial), the map b is non-constant.
Moreover, up to choosing U smaller, b cannot factor through a genus 1 curve. This
follows from the proof of Lemma 3.3, as the determinant of the differential db at
Σ = Σ3 has only simple zeros and can therefore not be branched. This property
is open in U . Notice that, up to a finite index subgroup (and an associated finite
cover of the target), we can assume that Γ is torsion free and hence SL(2,C)/Γ is a
complex threefold (without orbifold points).

Moreover, such quotients of SL(2,C) are diffeomorphic to the orthonormal frame
bundle of the associated quasi-Fuchsian hyperbolic 3-manifold (which is known
to be isometric to the quotient of a convex set in the hyperbolic 3-space by the
quasi-Fuchsian group of hyperbolic isometries). Note that the boundary of the quasi-
Fuchsian manifold has two connected components that are conformally equivalent
to the pair of points in the Teichmüller space given by Bers’ simultaneous uni-
formization; the complex structure on the oriented orthonormal frame bundle of the
quasi-Fuchsian manifold comes from the identification of the orientation preserv-
ing isometry group PSL(2,C) with the oriented orthonormal frame bundle of the
hyperbolic 3-space [Ghy95]. □

We would like to formulate a general problem similar to that of Ghys and to the
questions asked in [CDHL19, Kat76]. Consider a compact orientable surface Sg of
genus g ⩾ 2. Characterize the conjugacy classes of SL(2,C)-representations of the
fundamental group of Sg such that the associated rank two flat vector bundle over
Sg is holomorphically trivial with respect to some point in the Teichmüller space
of Sg.

The analogous question for the uniformization bundle has been answered com-
pletely in [GKM00]. Note that a holomorphic SL(2,C)-connection on the uniformiza-
tion bundle gives rise to a complex projective structure on the Riemann surface and
vice versa after the choice of a theta characteristic. For the case of the trivial rank
one bundle this question was answered in [Hau20] (see also [Kat76] where this result
was rediscovered).

Appendix A. A result on WKB approximation

By Takuro Mochizuki

A.1. Limiting behavior of a family of flat connections

Let X be a Riemann surface, which is not necessarily compact. Let V be a vector
bundle on X equipped with a flat SL2(C)-connection ∇. Let ∂V denote the induced
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holomorphic structure on V . Let Φ be a Higgs field of the holomorphic vector bundle
(V, ∂V ) such that tr Φ = 0. We obtain the family of flat connections ∇t = ∇ + tΦ on
V (t ⩾ 0).

Assumption A.1. — We assume that there exist a holomorphic one form ω and
a decomposition V = V+ ⊕ V− such that Φ = ω(πV+ − πV−), where πV± denote the
projections of V onto V± with respect to the decomposition.

Note that there exists a unique decomposition ∇ = ∇◦ + f , where ∇◦ is the direct
sum of connections ∇V± of V±, and f is a holomorphic section of (Hom(V1, V2) ⊕
Hom(V2, V1)) ⊗ Ω1.

We set [0, 1] := {0 ⩽ u ⩽ 1}. Let γ : [0, 1] → X be a C∞-path which is a
WKB-curve with respect to ω, i.e.,

Re
(
γ∗(ω)(∂u)

)
< 0

at any point of [0, 1]. Let P t
γ : V|γ(0) ≃ V|γ(1) denote the isomorphism obtained as the

parallel transport of ∇ + tΦ along γ. Similarly, let P±,γ denote the isomorphisms
V±|γ(0) ≃ V±|γ(1) obtained as the parallel transport of ∇V± along γ.

We shall explain a proof of the following proposition in Section A.4 after prelimi-
naries in Section A.2 and Section A.3.

Proposition A.2. — For (w+, w−) ∈ V|γ(0) = V+|γ(0) ⊕ V−|γ(0), the following
holds

lim
t→∞

e
t
∫

γ
ω · P t

γ(w+, w−) =
(
P+,γ(w+), 0

)
∈ V+|γ(1) ⊕ V−|γ(1).

Remark A.3. — Proposition A.2 and its proof are essentially explained in [GMN13,
Appendix C]. Hopefully, a more detailed explanation in this appendix would be useful.
It is also closely related to the Riemann–Hilbert WKB problem studied in [KNPS15].

We obtain the following corollary as an immediate consequence of Proposition A.2.

Corollary A.4. — If γ is closed, i.e., γ(0) = γ(1), then

lim
t→∞

tr(P t
γ)et

∫
γ

ω = tr(P+,γ) ̸= 0.

A.2. An elementary lemma

For any s1 < s2, we set [s1, s2] := {s1 ⩽ s ⩽ s2}. For any non-negative integer ℓ,
let Cℓ([s1, s2]) denote the space of C-valued Cℓ-functions on [s1, s2]. For any f ∈
C0([s1, s2]), we set ∥f∥C0([s1,s2]) := maxs∈ [s1,s2] |f(s)|.

Fix ρ > 0, ϵ > 0 and C0 > 0. Suppose that α ∈ C0([0, 1]) satisfies the inequality
Re(α(s)) > ρ for any s ∈ [0, 1]. Let β ∈ C0([0, 1]) such that ∥β∥C0([0,1]) ⩽ C0.
Suppose that f t ∈ C1([0, 1]) (t ⩾ 0) satisfies the inequality∥∥∥f t

∥∥∥
C0([0,1])

+
∥∥∥∂s f

t + (tα + β)f t
∥∥∥

C0([0,1])
⩽ ϵ.

Take 0 < δ < 1. We recall the following standard and elementary lemma, which we
prove just for the convenience of the reader.
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Lemma A.5. — There exist C1 > 0 and t1 > 0, depending only on C0, ρ and δ
such that the following holds for any t ⩾ t1:∥∥∥f t

∥∥∥
C0([δ,1])

⩽ C1ϵ(1 + t)−1

Proof. — We set α̃(s) :=
∫ s

0 α(u)du and β̃(s) :=
∫ s

0 β(u)du. We have ∥β̃∥C0([0,1]) ⩽
C0. For any 0 ⩽ s1 ⩽ s2, we have

Re α̃(s2) − Re α̃(s1) =
∫ s2

s1
Reα(u)du > ρ(s2 − s1).

We set gt := ∂s f
t + (tα + β)f t. Because ∂s

(
etα̃+β̃f t

)
= etα̃+β̃gt, we obtain

f t = e−tα̃(s)−β̃(s)
∫ s

0
etα̃(u)+β̃(u)gt(u)du+ e−tα̃(s)−β̃(s)f t(0).

We have ∥e−tα̃(s)−β̃(s)f t(0)∥C0([δ,1]) ⩽ ϵe−tρδ+C0 . We also have the following inequalities
for s ∈ [0, 1]:∣∣∣∣e−tα̃(s)−β̃(s)

∫ s

0
etα̃(u)+β̃(u)gt(u)du

∣∣∣∣ ⩽ ∫ s

0
e−tρ(s−u)+2C0ϵdu ⩽

ϵe2C0

ρt
.

Then, we obtain the claim of the lemma. □

Let us state a variant. Suppose that α1 ∈ C0([0, 1]) satisfies the inequality
Re(α1(s)) < −ρ for any s ∈ [0, 1]. Let β1 ∈ C0([0, 1]) such that ∥β1∥C0([0,1]) ⩽ C0.
Suppose that f t

1 ∈ C1([0, 1]) (t ⩾ 0) satisfies the inequality∥∥∥f t
1

∥∥∥
C0([0,1])

+
∥∥∥∂s f

t
1 + (tα1 + β1)f t

1

∥∥∥
C0([0,1])

⩽ ϵ.

Lemma A.6. — The following inequality holds for any t ⩾ t1:∥∥∥f t
1

∥∥∥
C0([0,1−δ])

⩽ C1ϵ(1 + t)−1.

Here, C1 and t1 are positive constants in Lemma A.5.

Proof. — It is enough to apply Lemma A.5 to the function f t
1(1 − s). □

A.3. A singular perturbation theory

We recall some results from [Moc16, Section 2.4] with a complementary estimate
for the convenience of the reader.

A.3.1. Notation

Let r be a positive integer. Let Mr(C) denote the space of r× r complex matrices.
Let Mr(C)0 ⊂ Mr(C) denote the subspace of diagonal matrices, and let Mr(C)1 ⊂
Mr(C) denote the subspace of off-diagonal matrices, i.e.,

Mr(C)0 = {(ai,j) ∈ Mr(C) | ai,j = 0(i ̸= j)},
Mr(C)1 = {(ai,j) ∈ Mr(C) | ai,j = 0(i = j)}.
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For any non-negative integer ℓ, let Cℓ([s1, s2],Mr(C)) denote the space of Mr(C)-
valued Cℓ-functions on [s1, s2]. Similarly, let Cℓ([s1, s2],Mr(C)κ) (κ = 0, 1) de-
note the spaces of Mr(C)κ-valued Cℓ-functions on [s1, s2]. We set ∥Y ∥C0([s1,s2]) :=
maxi,j ∥Yi,j∥C0([s1,s2]) for any Y ∈ C0([s1, s2],Mr(C)).

A.3.2. Gauge transformations

Fix C0 > 0. Suppose that aj, bj ∈ C0([0, 1]) (j = 1, . . . , r) satisfy the following
conditions:

• Re a1(s) < Re a2(s) < · · · < Re ar(s) for any s ∈ [0, 1].
• ∥bj∥C0([0,1]) ⩽ C0.

For t ⩾ 0, let At(s) denote the Mr(C)0-valued function whose (i, i)-entries are
tai(s) + bi(s). The following proposition is proved in [Moc16, Proposition 2.18].

Proposition A.7. — There exist C1 > 0 and ϵ1 > 0, depending only on C0,
such that the following holds: for any t ⩾ 0 and any B ∈ C0([0, 1],Mr(C)1) sat-
isfying the inequality ∥B∥C0([0,1]) ⩽ ϵ1, there exist Gt ∈ C1([0, 1],Mr(C)1) and
H t ∈ C0([0, 1],Mr(C)0) satisfying the inequality

(A.1)
∥∥∥Gt

∥∥∥
C0([0,1])

+
∥∥∥∂s G

t +
[
At, Gt

]∥∥∥
C0([0,1])

+
∥∥∥H t

∥∥∥
C0([0,1])

⩽ C1∥B∥C0([0,1]),

(A.2) At +B =
(
I +Gt

)−1(
At +H t

)
(I +Gt) +

(
I +Gt

)−1
∂s G

t.

Here, I ∈ Mr(C) denote the identity matrix.

Remark A.8. — In Proposition A.7, we assume that C1ϵ1 is sufficiently small so
that I +Gt is invertible.

Let us add a complementary estimate to Proposition A.7. There exist C2 > 0 and
C3 > 0 such that (i) Re(ai+1(s) − ai(s)) > C2 for any s ∈ [0, 1] and i = 1, . . . , r − 1,
(ii) ∥ai∥C0([0,1]) ⩽ C3 for any i. Take 0 < δ < 1

2 .

Lemma A.9. — There exist C4 > 0 and t4 > 0, depending only on C0, C2, C3
and δ, such that the following holds on [δ, 1 − δ] for t ⩾ t4:

• Let Gt and H t be as in Proposition A.7. Then, we have∥∥∥Gt
∥∥∥

C0([δ,1−δ])
+
∥∥∥H t

∥∥∥
C0([δ,1−δ])

⩽ C4(1 + t)−1∥B∥C0([0,1]).

Proof. — Note that Gt
i,i = 0 for any i. For i ̸= j, we have

(A.3)
∥∥∥Gt

i,j

∥∥∥
C0([0,1])

+
∥∥∥∂s G

t
i,j + (t(ai − aj) + bi − bj)Gt

i,j

∥∥∥
C0([0,1])

⩽ C1∥B∥C0([0,1]).

By Lemma A.5 and Lemma A.6, there exist C10 > 0 and t10 > 0, depending only on
C0, C2 and δ such that the following holds for any t ⩾ t10:

(A.4)
∥∥∥Gt

∥∥∥
C0([δ,1−δ])

⩽
C10

1 + t
∥B∥C0([0,1]).

ANNALES HENRI LEBESGUE



Holomorphic sl(2,C)-systems 629

By (A.3) and (A.4), there exist C11 > 0, depending only on C0, C2, C3 and δ such
that the following holds for any t ⩾ t10:

(A.5)
∥∥∥∂s G

t
∥∥∥

C0([δ,1−δ])
⩽ C11∥B∥C0([0,1]).

By (A.2), we have

(A.6)
(
I +Gt

)(
At +B

)(
I +Gt

)−1
= At +H t + ∂s

(
Gt
)

· (I +Gt)−1.

Note that the diagonal entries of B, G and ∂s G
t are 0. By (A.4), (A.5) and (A.6),

there exist C12 > 0, depending only on C0, C2, C3 and δ such that the following
holds for any t ⩾ t10: ∥∥∥H t

∥∥∥
C0([δ,1−δ])

⩽ C12(1 + t)−1∥B∥C0([0,1]).

Thus, we obtain the claim of the lemma. □

A.3.3. Reformulation

Let us recall the reformulation of Proposition A.7 with a complementary estimate,
as in [Moc16, Corollary 2.19]. Let At, Ci (i = 0, 1, 2, 3) and ϵ1 be as in Section A.3.2.
Let E be a C1-vector bundle on [0, 1] with a frame v = (v1, . . . , vr). Take B ∈
C0([0, 1],Mr(C)1) satisfying the inequality ∥B∥C0([0,1]) ⩽ ϵ1. For t ⩾ 0, let ∇t denote
the connection of E determined by ∇tv = v · (At + B)ds. We obtain the following
corollary from Proposition A.7 and Lemma A.9.

Corollary A.10. — There exist matrix valued functions Gt ∈ C1([0, 1],Mr(C)1)
and H t ∈ C0([0, 1],Mr(C)0) such that the following holds.

• ∥Gt∥C0([0,1]) + ∥ ∂s G
t + [At, Gt]∥C0([0,1]) + ∥H t∥C0([0,1]) ⩽ C1∥B∥C0([0,1]).

• For the frame ut = v · (I +Gt)−1, we have ∇tut = ut · (At +H t)ds.
Moreover, there exist C20 > 0 and t20 > 0 depending only on Ci (i = 0, 2, 3) such
that the following holds for any t ⩾ t20 the inequality∥∥∥Gt

∥∥∥
C0([1/4,3/4])

+
∥∥∥H t

∥∥∥
C0([1/4,3/4])

⩽
C20

1 + t
∥B∥C0([0,1])

holds.

For each t, the connection ∇t induces an isomorphism Ψt : E|s=1/4 ≃ E|s=3/4. It
is represented by the diagonal matrix with respect to the bases ut

|s=1/4 and ut
|s=3/4,

whose (j, j)-entries are

exp
(

−
∫ 3/4

1/4

(
taj(s) + bj(s) +H t

jj(s)
)
ds
)
.

A.4. Proof of Proposition A.2

Proof. — Let us return to the setting in Section A.1. We extend γ to a C∞-map
γ̃ : [−1, 2] → X such that Re γ̃∗ω(∂u) < 0 at any point of [−1, 2]. There exists
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a C∞-frame v± of γ̃∗V±. We have γ̃∗(Φ)(v±) = ±γ̃∗(ω)v±. We obtain a C∞-map
B : [−1, 2] → M2(C) determined by

γ̃∗(∇)(v+, v−) = (v+, v−) · Bdu.

We have γ̃∗(∇V+)v+ = B11v+du and γ̃∗(∇V−)v− = B22v−du.
We obtain α ∈ C∞([−1, 2]) by γ̃∗ω = αdu. We have Re(α) < 0 at any point of

[−1, 2]. Let A : [−1, 2] → M2(C)0 be the C∞-map determined by A11 = α and
A22 = −α. We have

γ̃∗(∇t)(v+, v−) = (v+, v−) ·
(
tA + B

)
du.

There exists C0 > 0 such that ∥Bj,j∥C0([−1,2]) ⩽ C0 for j = 1, 2. Let C1 and ϵ1 be
positive constants as in Proposition A.7, depending on C0. There exists a positive
integer N > 10 such that

∥B1,2∥C0([−1,2]) + ∥B2,1∥C0([−1,2]) ⩽
N

10ϵ1.

We set u(i) := i
N

for i = −N, . . . , 2N . We obtain the decomposition

[−1, 2] =
2N −1⋃
i=−N

[u(i), u(i+ 1)]

Let

(A.7) Πt
i : γ̃∗(V )|u(i) ≃ γ̃∗(V )|u(i+1)

denote the isomorphisms obtained as the parallel transport of γ̃∗∇t.

Lemma A.11. — There exist constants C30 > 0 and t30 > 0, a family of 2 × 2-
matrices Gt

i,0, G
t
i,1 ∈ M2(C)1 for t ⩾ 0 and −N ⩽ i ⩽ 2N − 1, and families of

continuous functions H t
i,+, H

t
i,− ∈ C0([u(i), u(i + 1)]) for −N ⩽ i ⩽ 2N − 1, such

that the following holds:
• C30(1 + t30)−1 ⩽ 1/10.
• |Gt

i,0| + |Gt
i,1| ⩽ C30(1 + t)−1 for any t ⩾ t30. Note that we obtain the bases

(v+, v−)|u(i)
(
I +Gt

i,0

)−1
and (v+, v−)|u(i+1)

(
I +Gt

i,1

)−1

of γ̃∗(V )|u(i) and γ̃∗(V )|u(i+1), respectively.
• ∥H t

i,±∥C0([u(i),u(i+1)]) ⩽ C30(1 + t)−1 for any t ⩾ t30.
• For each (i, t), the isomorphism ∏t

i in (A.7) is represented by a diagonal
matrix Ct

i with respect to the bases (v+, v−)|u(i)(I +Gt
i,0)−1 and (v+, v−)|u(i+1)

(I +Gt
i,1)−1. Moreover, we obtain

(Ct
i )1,1 = exp

(
−
∫ u(i+1)

u(i)

(
tα + B1,1 +H t

i,+

)
du

)
,

(Ct
i )2,2 = exp

(
−
∫ u(i+1)

u(i)

(
−tα + B2,2 +H t

i,−

)
du

)
.
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Proof. — Let Fi : [0, 1] ≃ [2i−1
2N

, 2i+3
2N

] be the affine isomorphism given by Fi(s) =
1

2N
(2i − 1 + 4s). Note that Fi induces [1

4 ,
3
4 ] ≃ [u(i), u(i + 1)]. We obtain the

bundle F ∗
i (γ̃∗V ), equipped with the frame F ∗

i (v+, v−) and the family of connec-
tions F ∗

i (γ̃∗(∇t)). Because F ∗
i (du) = 2

N
ds, we obtain that ∥F ∗

i Bj,j ·∂s F
∗
i (u)∥C0([0,1]) ⩽

C0 and ∥∥∥F ∗
i B1,2 · ∂s F

∗
i (u)

∥∥∥
C0([0,1])

+
∥∥∥F ∗

i B2,1 · ∂s F
∗
i (u)

∥∥∥
C0([0,1])

⩽ ϵ1.

By applying Corollary A.10 to F ∗
i (γ̃∗V ) with F ∗

i (v+, v−) and F ∗
i (γ̃∗(∇t)), we obtain

Lemma A.11. □
We set C̃t

i := (I + Gt
i,1)−1Ct

i · (I + Gt
i,0). Note that Πt

i is represented by C̃t
i with

respect to the bases (v+, v−)|u(i) and (v+, v−)|u(i+1). We set
Dt := C̃t

N−1 · C̃t
N−2 · · · · · C̃t

1 · C̃t
0.

Let ∏t be the isomorphism γ̃∗(V )|0 ≃ γ̃∗(V )|1 obtained as the parallel transport
of γ̃∗∇t. Because ∏t = ∏t

N −1 ◦∏t
N −2 ◦ · · · ◦ ∏t

1 ◦∏t
0, the isomorphism ∏t is repre-

sented by Dt with respect to the bases (v+, v−)|0 and (v+, v−)|1. For any 1 ⩽ k, ℓ ⩽ 2,
we have

lim
t→∞

e
t
∫ u(i+1)

u(i) γ̃∗ω · C̃t
k,ℓ =

exp
(
−
∫ u(i+1)

u(i) B1,1du
)

((k, ℓ) = (1, 1))
0 (otherwise).

We obtain

lim
t→∞

et
∫ 1

0 γ̃∗ωDt
k,ℓ =

exp
(
−
∫ 1

0 B1,1du
)

((k, ℓ) = (1, 1))
0 (otherwise).

Thus, we obtain the claim of Proposition A.2. □
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