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Résumé. — Nous étudions la limite quasi-classique de modèles de type Nelson régularisés
pour des polarons : une particle interagissant avec un champs bosonique quantifié. Nous brisons
l’invariance par translation en ajoutant un potentiel extérieur décroissant à l’infini, agissant sur
la particle. Dans la limite de couplage fort où le champs se comporte classiquement nous prou-
vons que les quasi-minimiseurs de l’énergie convergent fortement vers des états fondamentaux
de la fonctionnelle non-linéaire limite, de type Pekar. Ceci a lieu pour des potentiels extérieurs
arbitrairement petits et donc cette liaison est entièrement due à l’interaction avec le champs
bosonique. Nous revisitons la convergence de l’énergie en suivant une nouvelle approche pour
la construction de mesures quasi-classiques. En combinant avec une méthode de localisation
et un argument de concentration-compacité, nous obtenons la convergence des états.

1. Introduction

A quantum particle interacting with a quantized bosonic field (e.g. an electron
interacting with the phonons of a crystal) may exhibit self-trapping: the particle is
confined in a “hole” of its own making in the field. Usual linear models (Fröhlich’s
polaron, Nelson model) are translation invariant and this phenomenon thus may not
take the form of existence of actual bound states. One of the strongest mathematical
evidence for the phenomenon is the existence of energy minimizers for the non-
linear quasi-classical approximations of the models. In the case of the Fröhlich
polaron [Møl06, Sei21], the limiting model is Pekar’s, for which the existence and
uniqueness (up to translations) of ground states was proven in [Lie77, Lio80]. Other
related models also exhibit this phenomenon, some being studied e.g. in [BFP23,
BFP25, FJL07a, FJL07b, LR13a, LR13b, Ric16].

The validity of the quasi-classical approximation has been established in [DV83,
LT97, MS07] in the strong-coupling limit at the level of the ground state energy.
Quantum corrections are investigated in [BS23, FS21b, FS21a]. The corresponding
dynamical problem is considered e.g. in [CFO23b, FLMP23, FZ17, GSS17, Gri17,
LMS21, LRSS21]. If a trapping external potential (increasing to infinity at spatial
infinity) is further added to the model, the convergence of ground energy states to
quasi-classical minimizers is proved in [CFO23a].

Here we shall break the translation invariance by an arbitrarily small, decaying,
external attractive potential, and prove that this is sufficient for self-trapping in
the quasi-classical limit. For simplicity we consider Nelson-type models with regular
particle-field interactions, where the definition of the Hamiltonian

(1.1) H(V )
α := (−∆ + V ) ⊗ 1

+ α−2
(
1 ⊗

∫
Rd
T (k)ĉ†(k)ĉ(k) dk + α

∫
Rd

(
eik·xv̂(k)ĉ†(k) + h.c.

)
dk
)

as a self-adjoint operator is straightforward (the Lieb–Yamakazi method [LY58] or
Gross transformation [Sei21] are not needed). The above acts on

(1.2) H := L2(Rd) ⊗ F
(
L2(Rd)

)
,
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the tensor product of the particle and field Hilbert spaces, the latter being the
bosonic Fock space constructed from the one-particle space L2(Rd),

F
(
L2(Rd)

)
=
⊕
n⩾0

(
L2(Rd)

)⊗symn
.

The particle’s coordinate is labeled by x, i.e. eik·x acts as multiplication on the
particle’s side. The standard bosonic operators ĉ†(k), ĉ(k) create/annihiliate a field
excitation in the Fourier mode k ∈ Rd, and satisfy usual canonical commutation
relations (CCR).

The limit α → ∞ is a strong coupling one. A heuristic square completion in the
second term of (1.1) indicates that the number of field excitations is of order α2 in
this limit. To obtain a well-defined limit we therefore multiply all terms involving
the field degrees of freedom in (1.1) by α−2. For the true Fröhlich polaron model,
this is equivalent to a change of length/energy units [Sei21].

One can see the strong coupling regime as a quasi-classical limit (i.e. a semi-classical
limit for the field degrees of freedom only) by redefining creators/annihilators in the
manner

(1.3) â†(k) := α−1ĉ†(k), â(k) := α−1ĉ(k)

so that

(1.4) H(V )
α := (−∆ + V ) ⊗ 1 + 1 ⊗

∫
Rd
T (k)â†(k)â(k) +

∫
Rd

(
eik·xv̂(k)â†(k) + h.c.

)
and

(1.5)
[
â(k), â†(k′)

]
= α−2δk=k′ , [â(k), â(k′)] = 0,

[
â†(k), â†(k′)

]
= 0

for all k, k′ ∈ Rd. The data of the problem are
• The field’s dispersion relation T : Rd 7→ R+ for which we assume a gap at 0

(i.e. T (k) ⩾ c > 0 for all k), to avoid infrared problems. In polaron models
one typically takes T ≡ 1.

• The field-particle interaction potential v ∈ L2(Rd). For the Fröhlich polaron
one should consider a singular dipole-charge interaction, something we could
include with extra effort.

• The external potential V : Rd 7→ R−. Our point is that it can be arbitrarily
small (but negative), so that we impose V (x) → 0 as |x| → ∞.

We give more precise definitions and assumptions below. Our main goal is to show
that binding holds in the α → ∞ limit for arbitrary V decaying at infinity, thus
generalizing results of [CFO23a] applying to trapping potentials. We opt to consider
only the case v ∈ L2(Rd) because the difficulties linked to singular v on the one
hand, and to lack of trapping on the other hand are rather orthogonal.

Our analysis bears on sequences of approximate ground states for H(V )
α , whose

energy reproduce the infimum of the spectrum up to small corrections in the limit
α → ∞. Let a sequence (Ψα)α ∈ H be such that

(1.6)
〈
Ψα

∣∣∣H(V )
α Ψα

〉
H
⩽ inf σ

(
H(V )
α

)
+ oα(1), ∥Ψα∥H = 1.
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In particular we can take for each α a sequence (Ψn,α)n such that〈
Ψn,α

∣∣∣H(V )
α Ψn,α

〉
H

−→
n→ ∞

inf σ
(
H(V )
α

)
and diagonally extract a subsequence (Ψn,α(n))n. A consequence of our main results
below is that if
(1.7) γα := TrF(L2(Rd))(|Ψα⟩⟨Ψα|)
is the particle’s (reduced) density matrix then

(1.8) γα −→
α→ ∞

∫
|u⟩⟨u|dP (u) strongly in trace-class norm

where P is a Borel probability measure on the set of minimizers of the quasi-classical
Pekar functional obtained as

E (V )
Pek [u] := min

φ∈L2(Rd)

〈
u⊗ ξ(φ)

∣∣∣H(V )
α u⊗ ξ(φ)

〉
H
.

Here
ξ(φ) = ea

†(φ)−a(φ)1 ⊕ 0 ⊕ 0 ⊕ . . . ∈ F
(
L2(Rd)

)
is a coherent state of the field (the definition of a(φ), a†(φ) is recalled in (2.3) below).
The above means that an arbitrarily small potential well is sufficient to trap/bind
the particle in the quasi-classical limit.

2. Main results

2.1. Model

The natural Hilbert space for a system composed by one particle in Rd and a
quantum bosonic field is
(2.1) H = L2

part(Rd) ⊗ F,

with the bosonic Fock space

(2.2) F := F
(
L2

field(Rd)
)

=
∞⊕
n=0

(
L2

field(Rd)
)⊗symn

.

In most of the sequel, the α dependence of the model will be encoded into the fact
that the annihilation operator a(f) acting on F as

(2.3) (a(f)Ψn)(x1, . . . , xn−1)

= α−1√n
∫
Rd
f(x)Ψn(x, x1, . . . , xn−1)dx, ∀ Ψn ∈ L2

sym(Rdn)

and its adjoint a†(f) satisfy the rescaled Canonical Commutation Relations (CCR)

[a(f), a(g)] =
[
a†(f), a†(g)

]
= 0,[

a(f), a†(g)
]

= ⟨f, g⟩
α2 , ∀ f, g ∈ L2

field(Rd).
(2.4)
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We still denote by a(f), a†(g) the operators on H which act as (2.4) on the factor F
and as the identity on the factor L2

part(Rd). We associate to these operators the
operator-valued distributions ax, a†

x defined by

(2.5) a(f) =
∫
Rd
f(x)ax dx, a†(f) =

∫
Rd
f(x)a†

x dx,

together with their Fourier transforms

(2.6) âk = 1
(2π)d/2

∫
Rd
eik·xax dx, â†

k = 1
(2π)d/2

∫
Rd
e−ik·xa†

x dx

and the number operator

(2.7) Nα :=
∫
Rd
a†
xaxdx =

∫
Rd
â†
kâkdk.

Our Hamiltonian acts on H as

H(V )
α = (−∆x + V (x)) ⊗ 1 + 1 ⊗ Nα +

∫
Rd

(
eik·xv̂(k)â†

k + e−ik·xv̂(k)âk
)
dk

= (−∆x + V (x)) ⊗ 1 + 1 ⊗ Nα +
∫
Rd

(
v(x− y)a†

y + v(x− y)ay
)
dy

(2.8)

We made the simplifying choice T ≡ 1 in (1.1), corresponding to the Fröhlich polaron.
We can easily accommodate functions such as

T (k) =
(
|k|2 + 1

)s
, 0 ⩽ s ⩽ 1

i.e. a kinetic energy operator for the field such as (1 − ∆)s. This requires only an
extra use of an IMS-like localization formula (from [LL11, Appendix B] for s ̸= 0, 1)
in Lemma 3.6 below.

Here V is an external potential, v is a function which couples the field and particle
modes, and v̂ is its Fourier transform.

Assumption 2.1 (The external potential). — We assume that V ∈ L∞
part(Rd) is

a strictly negative function such that
(2.9) lim

|x|→∞
V (x) = 0.

Assumption 2.2 (The interaction). — We assume that v ∈ L2(Rd) is real-valued.

We define the ground state energy
(2.10) E(V )

α = inf σ
(
H(V )
α

)
.

It is known [DV83, LT97, MS07] that, to leading order as α → ∞, E(V )
α is close to

the minimal energy obtained through product trial states of the form
Ψ = ψ ⊗ ξ(u),

where ψ ∈ L2
part(Rd) is a particle wave-function and ξ(u) ∈ F is the field coherent

state defined by
(2.11) ξ(u) = ea

†(u)−a(u)Ω ∈ F

for u ∈ L2
field(Rd). Here

Ω = 1 ⊕ 0 ⊕ 0 ⊕ . . . ∈ F
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is the vacuum vector.
The expectation of H(V )

α in Ψ = ψ ⊗ ξ(u) reads

(2.12)
〈
ψ ⊗ ξ(u), H(V )

α ψ ⊗ ξ(u)
〉

=
∫
Rd

|∇ψ(x)|2dx+
∫
Rd
V (x)|ψ(x)|2dx

+ ∥u∥2
2 +

∫
Rd×Rd

(
u(y) + u(y)

)
v(x− y)|ψ(x)|2dxdy

Minimizing the above expression with respect to u (which is tantamount to a square
completion) yields(1)

(2.13) u = uψ := −|ψ|2 ∗ v

and thus the Pekar functional is

(2.14) E (V )
Pek(ψ) =

∫
Rd

|∇ψ(x)|2dx+
∫
Rd
V (x)|ψ(x)|2dx

−
∫∫∫

Rd×Rd×Rd
v(x− y)v(x− z)|ψ(y)|2|ψ(z)|2dxdydz.

Observe that∫∫∫
Rd×Rd×Rd

v(x− y)v(x− z)|ψ(y)|2|ψ(z)|2dxdydz

=
∫∫

Rd×Rd
W (x− y)|ψ(x)|2|ψ(y)|2dxdy

with

W (x− y) =
∫∫

Rd×Rd
v(z − x)v(z − y)dz

=
∫∫

Rd×Rd
v(z)v(z + x− y)dz = (v ∗ v)(y − x)

(2.15)

so that the effective interaction term in (2.14) is always a non-positive/attractive
pair interaction, in the sense that

Ŵ (k) = |v̂(k)|2 ⩾ 0.
Also note that, since we assume v ∈ L2 we have that W ∈ L∞ by Young’s inequality.

2.2. Statements

We define the minimal Pekar energy at mass m > 0 in the manner

(2.16) E
(V )
Pek(m) = inf

{
E (V )

Pek(ψ)
∣∣∣ ∥ψ∥2

2 = m
}

= E (V )
Pek(ψV,m),

with the convention that E(0)
Pek(m) is the minimal translation-invariant Pekar energy

corresponding to the choice V = 0. We denote

(2.17) M(V )
Pek(m) =

{
ψ ∈ L2(Rd)

∣∣∣ ∥ψ∥2
2 = m, E (V )

Pek(ψ) = E
(V )
Pek(m)

}
.

(1) For T =
(
|k|2 + 1

)s this is replaced by uψ = −(1 − ∆)−s(|ψ|2 ∗ v
)
.
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That the above is not empty (i.e. that Pekar minimizers always exist) follows from the
usual concentration-compactness method as in [FJL07a, LR13b, Ric16] for example,
or by using rearrangement inequalities as in [Lie77] if W is assumed radial.

It follows from the results/methods of [CFO23a, DV83, LT97] that

(2.18) lim
α→∞

E(V )
α = E

(V )
Pek(1).

We shall revisit a proof of (2.18) along the lines of [CFO23a] for completeness,
providing in particular an alternative construction of the quasi-classical measures
used as main tools.

In this paper we are particularly interested in the associated convergence of states,
which is our main result:

Theorem 2.3 (Convergence of states in the quasi-classical limit). — Let Ψα ∈ H
be a (family of) normalized vector(s) such that

(2.19)
〈
Ψα, H

(V )
α Ψα

〉
⩽ E(V )

α + oα(1).

Let k, ℓ be non-negative integers with k+ ℓ ⩽ 2. Modulo extraction of a subsequence
in α, for every bounded A ∈ B

(
L2

part(Rd)
)

and for every f1, . . . , fk, g1, . . . , gℓ ∈
L2

field(Rd),

(2.20)
√
k!ℓ!

〈
Ψα, A⊗ a†(g1) . . . a†(gℓ)a(f1) . . . a(fk)Ψα

〉

−→
α→ ∞

∫
ψ∈M(V )

Pek(1)
⟨ψ,Aψ⟩L2

k∏
j=1

⟨fj, uψ⟩
ℓ∏

j=1
⟨uψ, gj⟩ dP (ψ),

where P is a probability measure over the set of Pekar minimizers M(V )
Pek(1) at mass 1

and uψ is defined as in (2.13).

A few comments:
(1) Picking k = ℓ = 0 in (2.20) gives

Tr[γαA] −→
α→ ∞

∫
ψ∈M(V )

Pek(1)
⟨ψ,Aψ⟩L2dP (ψ)

for any bounded operator A, where the particle reduced density matrix is
defined as in (1.7). Hence

γα
∗
⇀
∫
ψ∈M(V )

Pek(1)
|ψ⟩⟨ψ|dP (ψ)

weakly-star in the trace-class. Since P is a probability, the right-hand side
has trace 1. Hence the trace of γα converges. The latter equals the trace-
class norm because γα ⩾ 0. The convergence is thus strong in the trace-class
(see [Del67] or [Sim79, Addendum H]), as claimed in (1.8).

(2) Taking A = 1, k = ℓ = 1 in (2.20) and varying f1, g1 ∈ L2(Rd) yields that
the field reduced density matrix described by the integral kernel

TrL2
part(Rd)

[
|Ψα⟩⟨Ψα|a†

xay
]
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converges weakly-∗ in the trace-class to the operator with kernel∫
ψ∈M(V )

Pek(1)
uψ(x)uψ(y)dP (ψ).

Taking k = 1 or ℓ = 1, varying A, f1, g1, gives a similar convergence for what
we shall call the field-particle density matrix in Section 3.

(3) The limitation k+ℓ ⩽ 2 comes from the fact that, for general quasi-minimizing
sequences, we only have a control via the energy on the expectation of the
field excitation number

N =
∑
j⩾1

1L2(Rd) ⊗ a†(fj)a(fj),

with (fj)j a orthonormal basis of L2
field(Rd). Under the stronger assumption

that
⟨Ψα | N κΨα⟩ ⩽ Cκ

independently of α, we can allow for k + ℓ ⩽ 2κ in the main result. If Ψα

is a true eigenstate of the Hamiltonian (assuming such exist), estimates of
this form follow from the variational equation and so-called pull-through
formulae [Amm00, Ros71].

(4) Again, since the external potential can be arbitrarily small, its only function
is to break translation invariance. The binding/self-trapping only comes from
the particle-field interaction. In particular, in space dimensions d ⩾ 3, the
Cwikel–Lieb–Rosenblum inequality [LS10, Chapter 4 and references therein]
ensures that if ∥V ∥Ld/2(Rd) is small enough, the Schrödinger operator −∆ +V
acting on the particle has no bound states.

(5) Our proof does not require a purely negative external potential V , but only
that

E
(V )
Pek(1) < E

(0)
Pek(1)

which is certainly the case for V < 0 by using a translation-invariant ground
state as trial state for the functional with trapping potential.

2.3. Organization of the paper

In essence we combine the philosophies of [CFO23a] and [LNR14, LNR15a]: quasi-
classical measures, and systematic combination thereof with localization methods.
This allows a concentration-compactness-type analysis of the many-body problem in
the quasi-classical limit reminiscent of what was performed in [LNR14] for the Bose
gas in the mean-field limit (see [Rou16, Rou20] for review).

We will start by defining reduced particle/field/field-particle density matrices in
Section 3. An important tool is then to define states localized in a given region of
space, such that “the reduced densities of the localized state are the localizations of
the densities of the initial state” in the spirit of [Lew11] and references therein.

With this we may split the energy into the contribution of the region localized
close to the potential well, and the contribution of the complement. Using (2.18) for
both terms separately and simple binding properties of the classical Pekar energies
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(essentially that the classical energy in the potential well is smaller), we conclude that
it is energetically favorable to have all the mass concentrated close to the potential
well, which leads to binding/strong convergence.

We find it useful to revisit the construction of quasi-classical measures in Section 4.
This was performed in [CF18, CFO19, CFO23a, CFO23b] based on a Weyl quanti-
zation approach building on [AN08, AN09]. We provide an alternative construction
yielding slightly stronger results by using anti-Wick quantization as in [LNR14,
LNR15a], combining with ideas from [FLV88].

Using the simplified construction of the measures, we give a self-contained proof
of (2.18) in Section 5 for completeness, and because some of the steps are re-used
when finally completing the proof of Theorem 2.3 in Section 6.

3. Reduced densities, localization of states and localization
of energies

3.1. Reduced densities

Identifying states on H = L2
part(Rd) ⊗ F with F-valued functions. We recall

that, by the Schmidt decomposition, any Ψ ∈ H can be written as

(3.1) Ψ =
∞∑
j=1

cjuj ⊗ vj,

where {uj}j ∈N is a suitable orthonormal set in L2
part(Rd), {vj}j ∈N is a suitable

orthonormal set in F, and cj ⩾ 0 for all j. By construction then ∥Ψ∥2 = ∑∞
j=1 c

2
j .

We also recall that Ψ ∈ H can be written canonically as an element of the space
L2(Rd,F). If Ψ = u ⊗ v, where u ∈ L2

part(Rd) and v ∈ F, is a factorized state, then
Ψ is identified with the function Ψ(·) : Rd → F whose action is
(3.2) Ψ(x) = u(x)v.
This definition is then extended by linearity to the whole H.

The identification (3.2) between vectors induces a similar one for states on H. A
pure (normal) state on H is a rank-one projection Γ = |Ψ⟩⟨Ψ|, where Ψ ∈ H has unit
norm. By (3.1) there exists an orthonormal set {uj}j ∈N of elements of L2

part(Rd), an
orthonormal set {vj}j ∈N of elements of L2

field(Rd), and coefficients {cj}j ∈N such that

(3.3) Γ =
∞∑

j,k=1
cjck|uj⟩⟨uk| ⊗ |vj⟩⟨vk|.

We naturally identify Γ with the rank-one projection on L2(Rd,F) whose integral
kernel is

(3.4) Γ(x, y) =
∞∑

j,k=1
cjckuj(x)uk(y)|vj⟩⟨vk|.

The identification is then extended by linearity to mixed states. Since Γ(x, y) is of the
form |V (y)⟩⟨U(x)|, it is a trace-class operator on F for almost every (x, y) ∈ Rd×Rd.
We also note that Γ(x, x) ⩾ 0 for almost every x ∈ Rd.
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Reduced density matrices. For generic states Γ on H we will define objects
that monitor the state of the two subsystems (i.e., the particle and the bosonic field).
Let us first recall the standard definitions of reduced density matrices in Fock space.
Let ΓF be a state on F satisfying

TrF
[
N kΓF

]
< +∞.

for some k ∈ N. For p, q ∈ N ∪ {0}, the (p, q)-reduced density matrix associated to
ΓF is the operator

Γ(p,q)
F :

(
L2

field(Rd)
)⊗symq −→

(
L2

field(Rd)
)⊗symp

defined by the relation

(3.5)
〈
g1 ⊗sym · · · ⊗sym gp,Γ(p,q)

F f1 ⊗sym · · · ⊗sym fq
〉

= TrF
(
ΓF a

†(f1) . . . a†(fp)a(g1) . . . a(gq)
)

for g1, . . . , gp, f1, . . . , fq ∈ L2
field(Rd). We will mostly use Γ(1,1)

F , Γ(1,0)
F , and Γ(0,1)

F . For
the latter two the above definition reduces to〈

g,Γ(1,0)
F

〉
= TrF

[
ΓF a(g)

]
〈(

Γ(0,1)
F

)∗
, f
〉

= TrF
[
ΓF a

†(f)
]

= ⟨f, [γ](1,0)⟩.
(3.6)

or, in terms of operator-valued distributions,

(3.7) Γ(1,0)
F (x) = TrF[γax] = [γ](0,1)(x).

Moreover, for Γ(1,1)
F we have the relation

TrL2
field(Rd)

(
Γ(1,1)
F

)
= TrF

(
N ΓF

)
.(3.8)

We next define reduced density matrices for states on the full Hilbert space H.

Definition 3.1 (Reduced density matrices for particle and field). — Let Γ be a
positive trace-class operator with unit trace on H, with the further property

TrH
[
1 ⊗ N Γ

]
< +∞.

We define the associated:
• particle reduced density matrix as the unit-trace, positive, trace-class operator
γ on L2

part(Rd) defined through the partial trace

(3.9) γ = TrF
(
Γ
)
,

or, equivalently, as the operator with integral kernel

(3.10) γ(x, y) = TrF
(
Γ(x, y)

)
.

Notice that, as a consequence of (3.4) and its extension to mixed states,
Γ(x, y) is indeed trace-class for almost every x, y ∈ Rd.
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• Field one-body reduced density matrix as the unit-trace, positive, trace-class
operator Γ(1,1) on L2

field(Rd) defined by

(3.11) Γ(1,1) =
[
TrL2

part(Rd)

(
Γ
)](1,1)

=
[∫

Rd
Γ(x, x)dx

](1,1)
.

• Field-particle reduced density matrix as the operator-valued linear map

σ : L2
field(Rd) −→ B

(
L2

part(Rd)
)

whose action on a generic f ∈ L2
field(Rd) is defined by

(3.12) ⟨u, σ(f)v⟩ = Tr
(
|v⟩⟨u| ⊗

(
a†(f) + a(f)

)
Γ
)
, ∀ u, v ∈ L2

part(Rd).

We have the following properties of the field-particle reduced density matrix:

Lemma 3.2 (Field-particle reduced density matrix). — The field-particle reduced
density matrix defined above takes values in the trace-class:

σ : L2
field(Rd) −→ L1

(
L2

part(Rd)
)
.

Denote (σ(f))(x, y) the integral kernel of σ(f) and

σ(x, x; z) = TrF
[
Γ(x, x)

(
a†
z + az

)]
as an operator-valued distribution satisfying

(σ(f))(x, x) =
∫
Rd
f(z)σ(x, x; z) dz.

The distribution σ(x, x; z) is in fact a function in L1
x(L2

z(Rd)).

Proof. — To see that σ(f) is indeed trace-class we may define it as an operator
via the requirement

⟨u, σ(f)v⟩ = ⟨u, σ+(f)v⟩ − ⟨u, σ−(f)v⟩

:= Tr
(

|v⟩⟨u| ⊗
(
a†(f) + a(f)

)
+

Γ
)

− Tr
(

|v⟩⟨u| ⊗
(
a†(f) + a(f)

)
−

Γ
)

with A± the positive and negative parts of a self-adjoint operator. This way, if

Tr
(
1 ⊗

√
N Γ

)
< ∞

then σ(f) is the difference of two positive trace-class operators.
Thus for every f ∈ L2

field(Rd), the integral kernel (σ(f))(x, y) of σ(f) is the function

(σ(f))(x, y) = TrF
[
Γ(x, y)

(
a†(f) + a(f)

)]
.

Notice in particular that ∫
Rd

|(σ(f))(x, x)| dx < +∞
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as is the case for the kernel of a trace-class operator. That σ(x, x; z) is in L1
x

(
L2
z(Rd)

)
follows from

(3.13)
∫
Rd

(∫
Rd

|σ(x, x; z)|2dz
)1/2

dx

⩽ C
∫
Rd

(∫
Rd

TrF
(
Γ(x, x)

)
TrF

(
a†
zazΓ(x, x)

)
dz
)1/2

dx

⩽ C TrF
(
1 ⊗ (N + 1)Γ

)
.

Here we used first the Cauchy–Schwarz inequality in the form

TrF
[
Γ(x, x)

(
a†
z + az

)]
= TrF

[
Γ(x, x)1/2Γ(x, x)1/2

(
a†
z + az

)]
⩽ TrF

[
Γ(x, x)

]1/2
TrF

[
Γ(x, x)1/2

(
a†
z + az

)2
Γ(x, x)1/2

]1/2

recalling that
(
a†
z + az

)2
⩽ Ca†

zaz. Next we used Cauchy–Schwarz for functions of
x, together with the facts that∫

Rd
TrF

[
Γ(x, x)

]
dx = TrF

[
Γ
]

∫
Rd

TrF
[
a†
zazΓ(x, x)

]
dzdx = TrF

[
N Γ

]
□

3.2. Localization of states

An important ingredient in the proof of our main result is the possibility to
localize a generic state Γ on H to a certain region of Rd both for the particle’s
and for the quantized field’s degrees of freedom. We here adapt to our coupled
system the known construction for a single bosonic (or fermionic, for that matter)
field [Amm04, DG99, HLS09a, HLS09b, Lew11].

Proposition 3.3 (Construction of localized states). — Let 0 ⩽ q ⩽ 1 be a linear
operator on L2(Rd), and Γ be a positive trace-class operator on H. Let γ,Γ(1,1), σ be
the reduced density matrices associated to Γ according to Definition 3.1.

There exists a positive trace-class operator Γq on H whose reduced density matrices
are

γq = q γ q(3.14)

Γ(1,1)
q = q

[
TrL2

part(Rd)(q Γ q)
](1,1)

q(3.15)

and, for f ∈ L2
field(Rd),

σq(f) = q σ(qf) q.(3.16)

Moreover,

(3.17) TrH Γ = TrH Γq + TrH Γ(1−q2)1/2 .
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Proof. — We follow and adapt the proof of [HLS09b, Section A.1.2]. Define the
partial isometry
(3.18) Q : L2

field(Rd) ∈ f 7−→ qf ⊕ (1 − q2)1/2f ∈ L2
field(Rd) ⊕ L2

field(Rd).
and its lifting to Fock space(2)

(3.19)
G(Q) : F(L2

field(Rd)) −→ F
(
L2

field(Rd) ⊕ L2
field(Rd)

)
(G(Q)Ψ)(n) = Q⊗n Ψ(n).

The latter operator satisfies
(3.20) G(Q) a†(f) = a†

(
qf ⊕ (1 − q2)1/2f

)
G(Q).

Recall now that there exists a canonical isomorphism
(3.21) U : F

(
L2

field(Rd) ⊕ L2
field(Rd)

)
−→ F

(
L2

field(Rd)
)

⊗ F
(
L2

field(Rd)
)
,

and define the creation and annihilator operators on F
(
L2

field(Rd)
)

⊗F
(
L2

field(Rd)
)

as

(3.22)
c†(f) = a†(f) ⊗ 1F c(f) = a(f) ⊗ 1F

d†(f) = 1F ⊗ a†(f) d(f) = 1F ⊗ a(f).

We denote with the same symbols the extensions of these operators to H = L2
part(Rd)⊗

F which act as the identity on L2
part(Rd). The relation between U , the latter creation

and annihilation operators, and those on F
(
L2

field(Rd)⊕L2
field(Rd)

)
is

Ua†(f ⊕ g) =
(
c†(f) + d†(g)

)
U

Ua(f ⊕ g) =
(
c(f) + d(g)

)
U.

(3.23)

Finally, define the operator

(3.24) Y(Q) = 1L2
part(Rd) ⊗

(
UG(Q)

)
: H

−→ L2
part(Rd) ⊗ F

(
L2

field(Rd)
)

⊗ F
(
L2

field(Rd)
)
.

By the relations above, Y(Q) satisfies the intertwining properties (see [DG99, Lem-
mas 2.14 and 2.15])

(3.25)

Y(Q) a†(f) =
(
c†(qf) + d†

(
(1 − q2)1/2f

))
Y(Q)

Y(Q) a(f) =
(
c(qf) + d

(
(1 − q2)1/2f

))
Y(Q)

Y(Q)a(qf) = c(f)Y(Q) Y(Q)a
(
(1 − q2)1/2f

)
= d(f)Y(Q)

a†(qf)Y(Q)∗ = Y(Q)∗c†(f) a†
(
(1 − q2)1/2f

)
Y(Q)∗ = Y(Q)∗d†(f)

Moreover, since Q∗Q = 1L2
field(Rd), it follows that Y(Q)∗Y(Q) = 1H.

(2)The reader should think of the more familiar notation Γ(Q) whose differential dΓ(Q) is the
second quantization of Q. In our setting such a notation would clash with the way we are denoting
states Γ on H.
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Let now Γ be a positive trace class operator on H. We define the q-localization of Γ
as the trace-class operator Γq on H whose action on a factorized bounded operator
A⊗B ∈ B(L2

part(Rd)) ⊗ B(F) is

(3.26) TrH[(A⊗B)Γq] = TrH
[
Y(Q)∗(qAq ⊗B ⊗ 1F)Y(Q)Γ

]
,

and the extension to non-factorized operators follows by linearity. The fact that Γq
is positive follows from the positivity of Γ. Moreover, the identity Y(Q)∗Y(Q) = 1H

implies that

(3.27) TrH Γq = TrH
[(
q2 ⊗ 1F

)
Γ
]
.

Repeating the construction by switching the roles of q and (1 − q2)1/2 we similarly
find

(3.28) TrH Γ(1−q2)1/2 = TrH
[(

(1 − q2) ⊗ 1F

)
Γ
]
.

The last two identities prove (3.17).
In order to show (3.14) we compute

(3.29)
〈
g, γqf

〉
= TrH

(
|f⟩⟨g| ⊗ 1FΓq

)
= TrH

(
|qf⟩⟨qg| ⊗ 1FΓ

)
=
〈
f, q γ q g

〉
.

This is precisely (3.14). In order to show (3.15), in turn, we recall (3.11) and (3.5)
to write 〈

g,Γ(1,1)
q f

〉
=
〈
g,
[
TrL2

part(Rd)(Γq)
](1,1)

f
〉

= TrH
[(
1L2

part(Rd) ⊗ a†(f)a(g)
)
Γq
]
.

(3.30)

Eq. (3.15) is then deduced using the definition of Γq and the intertwining proper-
ties (3.25). Finally, in order to show (3.16) we write, for a generic O ∈ B(L2

part(Rd)),

TrL2
part(Rd)

[
Oσq(f)

]
= TrH

[(
O ⊗ a(f)

)
Γq
]

Again, the definition of Γq and the intertwining properties allow to conclude. □

3.3. Energy localization

We fix a smooth partition of unity χ2 + η2 = 1 with χ(x) = 1 if |x| ⩽ 1 and
χ(x) = 0 if |x| ⩾ 2, and define χR(x) = χ(x/R) and ηR(x) = η(x/R). We further
assume that χ, and thus η, are monotone functions. We then have

Proposition 3.4 (Energy localization). — Let V, v be as in Assumptions 2.1
and 2.2, and let H(V )

α be defined in (2.8). Consider a family (Ψα)α of normalized
vectors Ψα ∈ Hα and the associated states Γα = |Ψα⟩⟨Ψα|. Assume that

Tr
[
H(V )
α Γα

]
⩽ C
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uniformly as α → ∞. Let γα,Γ(1,1)
α , σα be the reduced density matrices associated to

Γα according to Definition 3.1. Let Γα,χR ,Γα,ηR be the localized states corresponding
to the choices Γ = Γα and q = χR, ηR in Proposition 3.3. Then

(3.31) lim inf
α→∞

TrH
(
H(V )
α Γα

)
⩾ lim inf

R→∞
lim inf
α→∞

[
TrH

(
H(V )
α Γα,χR

)
+ TrH

(
H(0)
α Γα,ηR

)]
.

We split the proof into three lemmas, corresponding to the three terms in the
energy.

Lemma 3.5 (Particle energy localization). — In the same assumptions of Propo-
sition 3.4 we have

(3.32) lim inf
α→∞

TrH
(

(−∆ + V ) ⊗ 1Γα
)
⩾ lim inf

R→∞
lim inf
α→∞[

TrL2
part(Rd)

(
χR(−∆ + V )χR γα

)
+ TrL2

part(Rd)

(
− ηR∆ηRγα

)]
.

Proof. — Let us first focus on proving a lower bound on the term involving −∆.
Using the IMS formula

−∆ = −χR∆χR − ηR∆ηR − |∇χR|2 − |∇ηR|2.

The two gradient terms are bounded functions which, by the definition of χR and
ηR, satisfy

|∇χR|2 + |∇ηR|2 ⩽
C

R2 .

This immediately implies, using also the definition of γα,

TrH
(

− ∆ ⊗ 1Γα
)

= TrL2
part(Rd)

(
− ∆ γα

)
⩾ TrL2

part(Rd)

(
− χR∆χR γα

)
+ TrL2

part(Rd)

(
− ηR∆ηR γα

)
− C

R2 .

Passing to the lim inf for α → ∞ followed by R → ∞, we conclude

lim inf
α→∞

TrH
(

− ∆ ⊗ 1Γα
)

⩾ lim inf
R→∞

lim inf
α→∞

[
TrL2

part(Rd)

(
− χR∆χR γα

)
+ TrL2

part(Rd)

(
− ηR∆ηRγα

)]
.

For the V -term in (3.32) we proceed in a similar way, by writing

V = χ2
RV + η2

RV.

Since V is a bounded function that decays at infinity, we have, as R → ∞,
V η2

R ⩾ − oR(1). Passing to the two lim inf’s concludes the proof. □

We next localize the field energy. We could generalize this to more general field
dispersion relations using appropriate IMS formulas, cf the discussion following (2.8).

TOME 8 (2025)



676 M. FALCONI, A. OLGIATI & N. ROUGERIE

Lemma 3.6 (Field energy localization). — In the same assumptions of Proposi-
tion 3.4 we have

(3.33) lim inf
α→∞

TrH
(
1 ⊗ N Γα

)
⩾ lim inf

R→∞
lim inf
α→∞

{
TrL2

field(Rd)

[
χR

(∫
Rd
χ2
R(x)Γα(x, x)dx

)(1,1)
χR

]

+ TrL2
field(Rd)

[
ηR

(∫
Rd
η2
R(x)Γα(x, x)dx

)(1,1)
ηR

]}
.

Proof. — Recalling the identification (3.4) together with (3.11) we have

TrH
(
1 ⊗ N Γα

)
=
∫

TrF(N Γα(x, x))dx

= TrL2
field(Rd)

([∫
Rd

Γα(x, x)dx
](1,1)

)

by definition of the first reduced density matrix of a state on Fock space. Using the
fact that

χ2
R + η2

R = 1

twice and discarding the two mixed terms for a lower bound (recall that Γ(x, x) ⩾ 0)
leads to

TrH
(
1 ⊗ N Γα

)
⩾ TrL2

field(Rd)

(
χR

[∫
Rd
χ2
R(x)Γα(x, x)dx

](1,1)
χR

)

+ TrL2
field(Rd)

(
ηR

[∫
Rd
η2
R(x)Γα(x, x)dx

](1,1)
ηR

)
. □

Finally we deal with the particle-field interaction:

Lemma 3.7 (Interaction energy localization). — Under the same assumptions as
in Proposition 3.4 we have

(3.34) lim inf
α→∞

TrH
(∫

Rd
v(· − z)

(
a†
z + az

)
Γα
)

⩾ lim inf
R→∞

lim inf
α→∞

[∫∫
R2d

χ2
R(x)χR(z)v(x− z)σα(x, x; z) dxdz

+
∫∫

R2d
η2
R(x)ηR(z)v(x− z)σα(x, x; z) dxdz

]
Proof. — First, by definition of σα

TrH
(∫

Rd
v(· − z)

(
a†
z + az

)
Γα
)

=
∫∫

R2d
v(x− z)σα(x, x; z) dxdz.
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Using χ2
R + η2

R = 1 we have

(3.35)
∫∫

R2d
v(x− z)σα(x, x; z)dxdz

=
∫∫

R2d
χ2
R(x)χR(z)v(x− z)σα(x, x; z) dxdz

+
∫∫

R2d
η2
R(x)ηR(z)v(x− z)σα(x, x; z) dxdz

+ E (1)
Int + E (2)

Int ,

with
E (1)

Int =
∫∫

R2d
χ2
R(x)(1 − χR(z))v(x− z)σα(x, x; z) dxdz

E (2)
Int =

∫∫
R2d

η2
R(x)(1 − ηR(z))v(x− z)σα(x, x; z) dxdz.

(3.36)

Let us show that these are negligible in the limit α → ∞ followed by R → ∞. The
two terms are treated similarly, starting with E (1)

Int . First, we have

1 − χR = η2
R

1 + χR
⩽ η2

R.

In addition, since
η2
R = η2

4R + η2
R − η2

4R,

we have the bound

(3.37)
∣∣∣E (1)

Int

∣∣∣ ⩽ ∫∫
R2d

χ2
R(x)η2

4R(z)|v(x− z)| |σα(x, x; z)|dxdz

+
∫∫

R2d
χ2
R(x)

(
η2
R(z) − η2

4R(z)
)
|v(x− z)| |σα(x, x; z)|dxdz.

To control the first term in the right hand side we notice that χ2
R(x)η2

4R(z) ⩽
1{|x−z|⩾R}, and therefore, by Cauchy–Schwarz,∫∫

R2d
χ2
R(x)η2

4R(z)|v(x− z)| |σα(x, x; z)|dxdz

⩽
∫
Rd

(∫
{|z−x|⩾R}

|v(x− z)|2dz
)1/2(∫

Rd
|σα(x, x; z)|2dz

)1/2

dx

⩽ oR(1)

uniformly in α. Here we have used the fact that v ∈ L2(Rd), as well as (3.13) and
the fact that the energy of Γα is uniformly bounded by assumption.

For the second term in the decomposition (3.37) of E (1)
Int we argue using an adapta-

tion of Lions’ concentration-compactness argument, already used in [LNR14, Lemma
4.8]. Let us define the function

Qα(R) =
∫∫

R2d
|v(x− z)|1|z|⩾R |σα(x, x; z)|dxdz.

Then (recall that η2
R ⩾ η2

4R since η is monotone)∫∫
Rd
χ2
R(x)

(
η2
R(z) − η2

4R(z)
)
|v(x− z)| |σα(x, x; z)|dxdz ⩽ Qα(R) −Qα(8R).
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Now, for fixed α, the function R 7→ Qα(R) is non-increasing on [0,∞), and

0 ⩽ Qα(R) ⩽ ∥v∥L2

∫
Rd

(∫
Rd

|σα(x, x; z)|2dz
)1/2

dx ⩽ C1

uniformly in α and R thanks to (3.13) and the fact that the energy of Γα is uni-
formly bounded. We apply the above along a sequence in α attaining the limsup of
Qα(R) −Qα(8R). Then, by Helly’s selection principle, there exists a subsequence αk
and a decreasing function Q : [0,∞) → [0, C1] such that

lim
k→∞

Qαk(R) = Q(R), ∀ R ∈ [0,∞).

Since limR→∞ Q(R) exists by monotonicity and is finite, we conclude
lim
R→∞

lim sup
α→∞

(Qα(R) −Qα(8R)) = lim
R→∞

lim
k→∞

(Qαk(R) −Qαk(8R))

= lim
R→∞

(Q(R) −Q(8R)) = 0.

This implies that
lim
R→∞

lim
α→∞

(Qα(R) −Qα(8R)) = 0
because the left-hand side is always non-negative, and we conclude that

lim
R→∞

lim
α→∞

E (1)
Int = 0

We argue similarly to obtain E (2)
Int → 0. □

We now conclude the:
Proof of Proposition 3.4. — The result follows immediately from Lemma 3.5, 3.6,

and 3.7 after recalling the expressions of the reduced density matrices of the localized
states Γα,χR and Γα,ηR from Proposition 3.3. □

4. Quasi-classical measures

We revisit the construction of quasi-classical measures from [CFO23a, CFO23b,
Fal18a, Fal18b], linking them with the approach of [LNR15a]. Slightly improved
statements are obtained by using anti-Wick rather than Weyl quantization in the
basic definition of the measures, but otherwise the spirit is extremely similar. Related
statements and ideas may be found in [FLV88].

4.1. Notation

For a complex separable Hilbert space H we denote B(H) the set of bounded
operators acting thereon, B(H)∗ its dual and S(H) the state-space, i.e.

(4.1) S(H) :=
{
ω ∈ B(H)∗, ω(B) ⩾ 0 for all 0 ⩽ B ∈ B(H), ω(1) = 1

}
.

These are “abstract states” by opposition to trace-class operators, i.e. normal states.
One advantage in considering them is that a sequence of abstract states always
has a weak-⋆ cluster point which is a state. A bit of care is needed in using the
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weak-⋆ topology on B(H)∗ because the pre-dual B(H), is not, in infinite dimension,
separable. The compactness of sequences of states thus takes the form that (by the
Banach–Alaoglu Theorem) given a sequence (ωn)n ∈ S(H)N there is a ω ∈ S(H) such
that ωn converges to ω along a subnet. This means that for any B ∈ B(H)
(4.2) ωh(α)(B) −→ ω(B)
where h : A 7→ N is a monotone cofinal function from some directed set A to
the integers. It is important to be able to test against the identity operator in (4.2),
to ensure that ω is a state. With an abuse of notation we denote this convergence by

(4.3) ωn
⋆
⇀
net
ω

where an extraction is implied.

4.2. The theorem

Let h,H be two separable complex Hilbert spaces. We are interested in states of
the composite system with Hilbert space

Htot := h ⊗ F(H)
where F(H) is the bosonic Fock space constructed from H. We denote by N the
number operator on F(H) and

Hn := H⊗sn

the n-particles sector. For a state Γ on Htot, ⟨O ⟩Γ denotes the expectation value
of O in Γ.

For facilitated comparison with [LNR15a] we here follow the convention that anni-
hilation and creation operators are unscaled (contrarily to the convention in (1.3)),
so that the CCR takes the form (2.4)

[c(f), c(g)] =
[
c†(f), c†(g)

]
= 0,[

c(f), c†(g)
]

= ⟨f, g⟩, ∀ f, g ∈ L2
field(Rd)

(4.4)

for the creation and annihilation operators (cf (2.3))

c†(f) = αa†(f), c(f) = αa(f).

Definition 4.1 (Reduced density matrices). — Let Γ ∈ S(Htot) be a state over
Htot. We define reduced densities Γ(k,ℓ) as maps from B(h) to B(Hℓ,Hk) (the bounded
operators from Hℓ to Hk) by the formula

(4.5)
〈
f1 ⊗s . . .⊗s fk

∣∣∣Γ(k,ℓ)(A)g1 ⊗s . . .⊗s gℓ
〉

:=
〈
A⊗ c†(g1) . . . c†(gℓ)c(f1) . . . c(fk)

〉
Γ

where A ∈ B(h) and f1, . . . , fk, g1, . . . , gℓ ∈ H. The definition makes sense as soon as〈
1 ⊗ N

k+ℓ
2
〉

Γ
< ∞
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where
N =

∑
j⩾1

c†(fj)c(fj)

for any orthonormal basis (fj)j of H.

Definition 4.2 (Anti-Wick observables). — To any u ∈ H we associate a coher-
ent state on F(H)

(4.6) ξ(u) := e− |u|2
2
⊕
j⩾0

1√
j!
u⊗j ∈ F(H).

For any sequence ε → 0 and any finite-dimensional subspace V of H we define the
anti-Wick quantization of a continuous function with compact support b ∈ C0

c (V )
at scale ε, by

(4.7) baW
ε := (επ)− dim(V )

∫
V
b(u)

∣∣∣ξ(u/√ε)〉〈ξ(u/√ε)∣∣∣ du.
We aim at proving the

Theorem 4.3 (Quantum de Finetti for composite systems). — Consider a se-
quence ε → 0 of positive parameters, and associated sequence Γε of states over Htot
satisfying

(4.8) ⟨(εN )κ⟩Γε < +∞

uniformly in ε, for some 1 ⩽ κ.
There exists a probability measure µ ∈ P(H) and a µ-measurable map

ω :

H → S(h)
u 7→ ωu

with values in the state-space of h such that,
(1) Expectations of anti-Wick observables converge and define the measure: along

a subnet, for all A ∈ B(h), V ⊂ H a finite-dimensional subspace and all
b ∈ C0

c (V ) (continuous functions with compact support in V ) we have

(4.9)
〈
A⊗ baW

ε

〉
Γε

−→
∫
H
ωu(A)b(u)dµ(u)

(2) Reduced density matrices converge: along a subsequence, for A a compact
operator or the identity(3)

(4.10)
√
k!ℓ!εkεℓΓ(k,ℓ)

ε (A) ⇀
ε→ 0

∫
H
ωu(A)

∣∣∣u⊗k
〉〈
u⊗ℓ

∣∣∣dµ(u)

weakly-⋆ in the trace-class for all k, ℓ satisfying k+ℓ
2 ⩽ κ. More precisely

(3) In fact, modulo a subsequence, we can test with A in any separable subspace of the bounded
operators.
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√
k!ℓ!εkεℓ

〈
A⊗ c†(g1) . . . c†(gℓ)c(f1) . . . c(fk)

〉
Γε

−→
ε→ 0

∫
H
ωu(A)

k∏
j=1

⟨fj|u⟩
ℓ∏

j=1
⟨u|gj⟩dµ(u)

for all f1, . . . , fk, g1, . . . , gℓ ∈ H.

We shall rely on a version of the above in the non-composite case (where h⊗F(H) is
replaced by F(H)) from [LNR15a, Sections 4 and 6]. This is also contained in [AN08,
AN09] where the construction is rather based on Weyl observables/quantizations
rather than anti-Wick as we use here.

Before proceeding to the proof, we state as corollary the convergence of observables
akin to the interaction energy of our main model.

Corollary 4.4 (Quantum de Finetti and the particle-field density matrix). —
Let h = L2(Rd), v ∈ L2(Rd,R). Under the assumptions above (for κ = 1), after
extracting a subsequence

(4.11)
√
ε
〈∫

Rd
v(· − y)

(
c†
y + cy

)
dy
〉

Γε

−→
ε→ 0

∫
H

∫
Rd
ωu(v(· − y))

(
u(y) + u(y)

)
dy dµ(u)

where v(· − y) is understood as a multiplication operator on h. In other words

(4.12)
∫∫

R2×R2

√
εσε(x, x; z)v(x− z)dxdz

−→
ε→ 0

∫
H

∫
Rd
ωu(v(· − z))

(
u(z) + u(z)

)
dz dµ(u)

where σε(x, y; z) is the integral kernel of the field-particle density matrix of Γε, as
defined in Section 3.1.

Proof. — By arguments mimicking (3.13) we find that
∫
Rd

(∫
Rd

∣∣∣√εσε(x, x; z)
∣∣∣2dz)1/2

dx

⩽ C
∫
Rd

TrF[Γε(x, x)]1/2
(∫

Rd
TrF[Γε(x, x)εa†

zaz]dz
)1/2

dx

⩽ C⟨1 ⊗ (εN + 1)⟩Γε .

Hence (x, z) 7→
√
εσε(x, x; z) is uniformly bounded as a sequence in L1

x(L2
z(Rd)),

which is a subset of the dual of the Banach space C0,b
x (L2(Rd)) of bounded continuous

functions with values in L2(Rd) (see e.g. [HvNVW16]). Hence, modulo extraction of
a subsequence

√
ε
∫∫

R2×R2
σε(x, x; z)ϕ(x, z)dxdz −→

ε→ 0

∫∫
R2×R2

σ0(x, x; z)ϕ(x, z)dxdz
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for any ϕ ∈ C0
x(L2(Rd)), with σ0 a Radon measure over L2(Rd) (with a slight

abuse of notation in the right-hand side of the above). For v ∈ L2(Rd), the map
(x, z) 7→ v(x− z) is in C0,b

x (L2
z(Rd)) since the statement

lim
x→x0

∫
Rd

∣∣∣v(x− y) − v(x0 − y)
∣∣∣2dy = 0

is equivalent to v ∗ v being continuous at x0, which is true for v ∈ L2(Rd) by [Fol99,
Proposition 8.8].

Thus we may assume that the left-hand sides of (4.11)-(4.12) converge for any
v ∈ L2(Rd). We now identify the limit σ0 with the help of Theorem 4.3. By density
we may restrict to testing with a smooth compactly supported v if needed, so that
the multiplication operator v(·−y) is bounded on h. Theorem 4.3 implies that, along
a subsequence, for any such v, x0 ∈ Rd and f ∈ L2(Rd),

(4.13)
√
ε
〈
v(· − x0) ⊗

(
c†(f) + c(f)

)〉
Γε

−→
∫
H
ωu(v(· − x0))(⟨f |u⟩ + ⟨u|f⟩)dµ(u).

Introduce now a tiling (Qε
n)0⩽n⩽N of [0, Rε]d, say with squares of centers xn and

vanishing side-length when ε → 0, where Rε → ∞. We claim that, as operators,

(4.14)
√
ε

∣∣∣∣∣
∫
Rd
v(· − y)

(
c†
y + cy

)
dy −

∑
n

(
c†
(
1Qεn

)
+ c

(
1Qεn

))
v(· − xn)

∣∣∣∣∣
⩽ oε(1)(εN + 1).

Indeed a Cauchy–Schwarz inequality gives

√
ε

∣∣∣∣∣
∫
Rd
v(· − y)

(
c†
y + cy

)
dy −

∑
n

(
c†
(
1Qεn

)
+ c

(
1Qεn

))
v(· − xn)

∣∣∣∣∣
=
∣∣∣∣∣∑
n

∫
Rd

(v(· − y) − v(· − xn))
(√

εc†
y +

√
εcy
)
1Qεn(y)dy

∣∣∣∣∣
⩽ Cδε

∑
n

∫
Rd
c†
ycy1Qεn(y)dy + Cδ−1∑

n

∫
Rd

(v(· − y) − v(· − xn))2
1Qεn(y) dy

⩽ CδεN + C

δ
oε(1)

using that ∑
n

1Qεn ≡ 1,

recognizing a Riemann sum and using that v ∈ L2(Rd). Choosing δ = δε → 0 suitably
slowly vindicates (4.14).

Next we obtain, after possibly a further extraction of subsequence

(4.15)
√
ε
〈∫

Rd
v(· − y)

(
c†
y + cy

)
dy
〉

Γε

−
∑
n

∫
H

∫
Rd
ωu(v(· − xn))

(
u(y) + u(y)

)
1Qεn(y) dydµ(u) −→

ε→ 0
0.
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This follows from (4.14), for each term(
c†
(
1Qεn

)
+ c

(
1Qεn

))
v(· − xn)

is amenable to the use of (4.13). With a suitable truncation of the sum in and
a diagonal extraction we obtain convergence for each term and the sum along a
common subsequence. Finally, the second term in the left-hand side of (4.15) equals
the right-hand side of (4.11) by another Riemann sum argument, recalling that we
may work with a smooth compactly supported v. □

4.3. Proof of Theorem 4.3

We recall the statement of [LNR15a, Theorem 4.2]:

Theorem 4.5 (Grand-canonical quantum de Finetti theorem). — Consider a
sequence ε → 0 of positive parameters, and associated sequence Γε of states over
F(H) satisfying

⟨(εN )κ⟩Γε < +∞
uniformly in ε, for some 1 ⩽ κ.

There exists a unique probability measure µ ∈ P(H) such that, modulo the extrac-
tion of a subsequence,

(1) Expectations of anti-Wick observables converge and define the measure: for
all V ⊂ H a finite-dimensional subspace and b ∈ C0

c (V ) we have

(4.16)
〈
baW
ε

〉
Γε

−→
∫
H
b(u)dµ(u)

(2) Reduced density matrices converge

(4.17)
√
k!ℓ!εkεℓΓ(k,ℓ)

ε ⇀
ε→ 0

∫
H

∣∣∣u⊗k
〉〈
u⊗ℓ

∣∣∣dµ(u)

weakly-⋆ in the trace-class for all k, ℓ satisfying k+ℓ
2 ⩽ κ. In particular

√
k!ℓ!εkεℓ

〈
c†(g1) . . . c†(gℓ)c(f1) . . . c(fk)

〉
Γε

−→
ε→ 0

∫
H

k∏
j=1

⟨fj|u⟩
ℓ∏

j=1
⟨u|gj⟩dµ(u)

for all f1, . . . , fk, g1, . . . , gℓ ∈ H.

Only the case k = ℓ of (4.17) is worked out explicitly in [LNR15a]. The adaptation
to k ̸= ℓ is however straightforward, only the core calculations from e.g. [LNR15b,
Lemma 4.2] have to be adapted mutatis mutandis.

Proof of Theorem 4.3.
Step 1. — Let C0

c (H) denote continuous functions with compact support over H
and consider the algebra of observables

A := B(h) ⊗ C0
c (H).
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Starting from Γε ∈ S(h ⊗ F(H)) as in the theorem’s statement we define a state
Γ̃ε ∈ (B(h) ⊗ C0

c (H))∗ over A by testing it against a dense subset of elements of A.
Namely, for any A ∈ B(H), any finite-dimensional V ⊂ H and b ∈ C0

c (V ), we set

Γ̃ε(A⊗ b) :=
〈
A⊗ baW

ε

〉
Γε
.

That way (Γ̃ε)ε is a bounded sequence of positive linear forms over A (seen as a
Banach space) and therefore it has a weak cluster point Γ̃0 ∈ A∗. Namely, along a
subnet
(4.18) Γ̃ε(C) ⋆

⇀
net

Γ̃0(C) for all C ∈ A.

We now identify the cluster point, working along the just identified convergent subnet
for the rest of the proof.

For any positive operator A ∈ B(H), we can define a (non-normalized) state ΓAε
over F(H) by setting

⟨B⟩ΓAε = ⟨A⊗B⟩Γε .

Applying(4) Theorem 4.5 to ΓAε we find that there must exist a positive Borel measure
µA on H such that, along a further subnet,

(4.19)
〈
A⊗ baWε

〉
Γε

−→
∫
H
b(u)dµA(u).

As per (4.18), Γ̃0 is uniquely identified by∫
H
b(u)dµA(u) = Γ̃0(A⊗ b)

and there remains to further simplify the left-hand side.
Since (the operator norm is used below)〈

A⊗ baWε
〉

Γε
⩽ ∥A∥

〈
1 ⊗ baWε

〉
Γε

for any positive function b from a finite-dimensional subspace of H, we find that∫
H
b(u)dµA(u) ⩽ ∥A∥

∫
H
b(u)dµ1(u).

Picking any V ⊂ H this implies that (approximating the characteristic function of V
by a sequence of continuous functions)

µ1(V ) = 0 ⇒ µA(V ) = 0
for any positive bounded operator A ∈ B(h). By Radon–Nikodym’s theorem, we
deduce that for any positive bounded A, there exists a map u 7→ ωu(A) ∈ L1(H, dµ1)
such that ∫

H
b(u)dµA(u) =

∫
H
b(u)ωu(A)dµ1(u).

Upon redefining ωu(A) if necessary we can assume µ1 is a probability. From the
definition it also follows that ωu(A) is µ1 almost-surely a bounded linear function
of A.
(4) Strictly speaking, we go back to the proof of [LNR15a, Item (i)] to identify any cluster point,
not only sequential limits. This is done mutatis mutandis using Skorokhod’s lemma [Sko74].
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Next we can split a general bounded operator in the form
(4.20) A = Ar+ − Ar− + iAi+ − iAi−
with four positive operators Ar+, Ar−, Ai+, Ai−. Applying the above to each term
separately we find a µ := µ1 ∈ P(H) and u 7→ ωu(.) a L1(H, dµ) map from H to the
state-space of h such that〈

A⊗ baWε
〉

Γε
−→

∫
H
ωu(A)dµ(u)

for any A ∈ B(H) and any b ∈ C0
c (V ) with V a finite-dimensional subspace of H.

This is the first statement of the theorem.
Step 2. — Under our assumptions,

√
k!ℓ!εkεℓΓ(k,ℓ)

ε (A) is a bounded sequence of
trace-class operators for any positive bounded A and k+ℓ

2 ⩽ κ. Hence we may extract
a weak-⋆ convergent subsequence. If A varies in a separable subspace of the bounded
operators (e.g. the span of compact operators and the identity, as in the theorem’s
statement), we can use a dense countable subset thereof to obtain convergence along
a common subsequence for all A, modulo a diagonal extraction argument.

To obtain the second statement of the theorem we further extract a subnet along
which Theorem 4.3(1) holds. There remains to apply (4.17) to each (non-normalized)
state ΓAε defined above, with A a positive operator, and use the splitting (4.20) to
generalize to all operators in the statement. The measure in (4.17) being the same
as that in (4.16), we identify the limit in (4.10) by using (4.9). □

Under more restrictive assumptions we may ensure that ωu( . ) is almost surely a
normal state, i.e. can be represented by a density matrix:

Corollary 4.6 (Quantum de Finetti for composite localized states). — Suppose
that, in addition to the assumptions of Theorem 4.3, the sequence Γε satisfies the
bound
(4.21) ⟨L⊗ 1⟩Γε < +∞ ,

uniformly in ε, for some positive operator L on h with compact resolvent. Then the
µ-measurable map ω of Theorem 4.3 takes values in the set of normal states on h,
i.e. in the set of positive, normalized, trace-class operators.

This result will not be used in our proof of Theorem 2.3. The a priori absence
of a suitable operator L ensuring the validity of (4.21) precisely reflects the lack of
trapping of the operator acting on the particle.

Proof. — On the one hand, we know that by Theorem 4.3, there exists a measure
µ and a state-valued map ω such that the expectation of anti-Wick observables
converges. In addition, as illustrated in the proof of the theorem, such convergence
identifies the couple (µ, ω).

Now, let us define the family of states
Γ(L)
ε := (L+ 1)1/2Γε(L+ 1)1/2.

For Γ(L)
ε we proceed as in the proof of Theorem 4.3, substituting the algebra of

observables A with
K := L∞(h) ⊗ C0

c (H) ,
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where L∞(h) is the space of compact operators. Thanks to this modification, we can
identify a limit measure µ(L), and a µ(L)-measurable map

ω(L) :

H → L1
+,1(h)

u 7→ ω(L)
u

where L1
+,1(h) is the set of normal states on h, dual to the set of compact operators.

The drawback is that in this case µ(L) could fail to be a probability measure. Let us
remark that one could identify different limit measures along different subsubnets
of the one used to obtain (µ, ω) from Γε.

Now, let us fix A ∈ B(h), V ⊂ H finite dimensional, and b ∈ C0
c (V ). On the one

hand, by Theorem 4.3, along the subsubnet〈
A⊗ baW

ε

〉
Γε

−→
∫
H
ωu(A)b(u)dµ(u) ,

and on the other hand,〈
(L+ 1)−1/2A(L+ 1)−1/2 ⊗ baW

ε

〉
Γ(L)
ε

−→
∫
H
ω(L)
u

(
(L+ 1)−1/2A(L+ 1)−1/2

)
b(u)dµ(L)(u) ,

since (L+ 1)−1/2A(L+ 1)−1/2 ∈ L∞(h) for any A ∈ B(h). However,〈
A⊗ baW

ε

〉
Γε

=
〈
(L+ 1)−1/2A(L+ 1)−1/2 ⊗ baW

ε

〉
Γ(L)
ε

by definition of Γ(L)
ε , and thus∫

H
ωu(A)b(u)dµ(u) =

∫
H
ω(L)
u

(
(L+ 1)−1/2A(L+ 1)−1/2

)
b(u)dµ(L)(u).

Fixing a bounded A and varying b implies that

ωu(A)dµ(u) = ω(L)
u

(
(L+ 1)−1/2A(L+ 1)−1/2

)
dµ(L)(u).

Hence in particular with A = 1 we find µ = µL. Also, µ-almost surely,

ωu( · ) = ω(L)
u

(
(L+ 1)−1/2 · (L+ 1)−1/2

)
.

The limit is the same along any subsubnet, and thus it holds on the original subnet
as well. Therefore, it follows that ωu ∈ L1

+,1(h). □

5. Convergence of the energy

For completeness we now revisit the proof of

Theorem 5.1 (Energy convergence). — With the assumptions and notation of
Section 2, we have that

E
(V )
(α) −→

α→∞
E

(V )
Pek(1).

In particular this holds true with the external potential V ≡ 0.
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Our proof is in the spirit of [CFO23a], but we use quasi-classical measures as
constructed in the previous section, leading to mild simplifications. In view of The-
orem 4.3, the natural limit energy takes general abstract states as arguments. We
discuss this first in a subsection, and prove that this does not lower the energy as com-
pared to what was defined in Section 2. We will complete the proof of Theorem 5.1
in a second subsection.

5.1. Generalized Pekar energies

Let
h := −∆ + V

and W be as in (2.15), and identified with the multiplication operator by W (x− y)
on the two-particle space L2

part ⊗ L2
part.

We start this discussion by generalizing Pekar’s energy functional to take mixed
states as arguments:

Lemma 5.2 (Mixed Pekar functional). — Any minimizer of
γ 7−→ Tr[hγ] + Tr[W (x− y)γ ⊗ γ]

amongst positive trace-class operators of trace 1 must be rank one. Hence any
minimizer is of the form γ = |ψ⟩⟨ψ| with ψ a minimizer for (2.16) with m = 1.

Similar arguments may be found e.g. in [Sei02, Section 5] or [BS01, Section 2].
Proof. — The existence of minimizers follows by a concentration-compactness

argument similar to that leading to the existence for (2.16). We skip details and
denote γ0 a minimizer.

Consider a variation
γ = (1 − ε)γ0 + εσ

with 0 < ε < 1 and σ a positive trace-class operator of trace 1. We must have
Tr[hγ0] + Tr[W (x− y)γ0 ⊗ γ0] ⩽ Tr[hσ] + Tr[W (x− y)σ ⊗ σ].

Note that
Tr[W (x− y)σ ⊗ σ] =

∫∫
Rd×Rd

W (x− y)σ(x, x)σ(y, y)dxdy.

Expanding and taking ε small enough we find that necessarily (keeping only the O(ε)
term in the expansion)

Tr[γ0(h+W ∗ ργ0)] ⩽ Tr[σ(h+W ∗ ργ0)]
where ργ0(x) = γ0(x, x) is the density of γ0.

Hence γ0 must also minimize the linearized
γ 7−→ Tr[γ(h+W ∗ ργ0)],

which in particular shows that the Schrödinger operator h + W ∗ ργ0 has at least
a ground energy state. Then, γ must have its image in the ground energy space
of h + W ∗ ργ0 , but the latter has dimension one by well-known arguments (see
e.g. [Rou20, Theorem 2.3] or [RS78, Section XIII.12]). □
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We now turn to a functional taking generalized states as arguments. For an abstract
state ω on L2

part(Rd) (a positive linear functional over bounded operators acting on
L2

part(Rd)) let, in analogy with (2.14),

E (V )
Pek(ω) := ω(h) + ω ⊗ ω(W (x− y)) = ω ⊗ ω

(
hx + hy

2 +W (x− y)
)

and (Gen for generalized)

(5.1) E
(V )
Gen := inf

{
E (V )

Pek(ω), ω ∈ S
(
L2(Rd)

)
as defined in (4.1)

}
.

Implicit in the above is the fact that the minimization is performed under the
constraint that

A 7−→ ω
(
h1/2Ah1/2

)
is a bounded linear map over bounded operators A acting on L2

part(Rd), so that ω(h)
makes sense (we use that h is a non-negative operator here). Under our assumptions
one easily proves that

(5.2) H2 := hx + hy
2 +W (x− y) ⩾ −C

for some constant C, and hence the infimum above is well-defined. We have the

Lemma 5.3 (Generalized energy = Pekar energy). — With the previous defini-
tions

E
(V )
Gen = E

(V )
Pek(1).

Proof. — In view of Assumption 2.1, we may for this proof assume without loss
that h ⩾ 0 as an operator.

Denote h = L2(Rd) for brevity. We have [Sch60, Chapter 4] that the dual of
bounded operators (B(h))∗ is the bidual of the trace-class L1(h). Hence, by Golds-
tine’s theorem(5) , for any abstract state ω there exists a net of positive trace-class
operators γn such that

(5.3) Tr[γnB] ⋆
⇀
net
ω(B)

for any bounded operator B. The rest of the proof is then akin to that of [CFO23a,
Proposition 2.8].

For a state ω with E (V )
Gen(ω) < ∞ it follows from (5.2) that ω(h) < ∞ and ω ⊗

ω(H2) < ∞. Hence
ωh(B) := ω

(
h1/2Bh1/2

)
defines a positive linear functional on B(h) as well, to which we may apply the above,
obtaining a net of trace-class operators γhn such that

(5.4) Tr
[
γhnB

]
⋆
⇀
net
ωh(B).

(5) If X is a Banach space, its unit ball is dense in that of the bidual X∗∗ for the weak-⋆ topology,
see e.g. [Rud91, Exercise 1 p. 128].
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Applying (5.3) directly to ω yields another net γn, but testing (5.4) with B of the
form h−1/2B̃h−1/2 for a bounded B̃ shows that one can take

γn = h−1/2γhnh
−1/2.

Similarly
ω2(B2) := ω ⊗ ω

(√
H2 + CB2

√
H2 + C

)
defines a positive linear functional on bounded operators B2 on h⊗2, where C is a
constant such that H2 +C ⩾ 0. We deduce that ω2 is the limit of a net of trace-class
operators that we may identify to(

h−1/2γhnh
−1/2

)
⊗
(
h−1/2γhnh

−1/2
)

as above. Using (5.4) and the fact that W is a bounded multiplication operator, we
conclude that for any state ω with E (V )

Gen(ω) < ∞, there exists a net (γn) of trace-class
operators such that

E (V )
Pek(γn) ⋆

⇀
net

E (V )
Pek(ω).

This leads to
(5.5) E

(V )
Gen ⩾ inf

{
E (V )

Pek(γ), γ ∈ L1(h), γ ⩾ 0,Tr γ = 1
}
.

The opposite inequality follows from the variational principle. The right-hand side
of the above is the Pekar energy (2.14) generalized to a mixed state

γ =
∑
j⩾1

λj|uj⟩⟨uj|

with λj ⩾ 0,∑j λj = 1 and an orthonormal basis (uj)j of h. We hence conclude from
Lemma 5.2 that

E
(V )
Gen = E

(V )
Pek(1)

as desired. □

5.2. Proof of Theorem 5.1

Again, without loss of generality (i.e. adding a constant if needed), we assume that
h ⩾ 0. We consider a sequence of quasi-minimizers as in (2.19). Under our assump-
tions, applying the Cauchy–Schwarz inequality to the interaction term immediately
leads to the a priori bound
(5.6) ⟨Ψα|(−∆ + V ) ⊗ 1 + 1 ⊗ Nα|Ψα⟩ ⩽ C

independently of α. Here Nα is the scaled particle number (2.7). We apply Theo-
rem 4.3 with κ = 1, ε = α−2, obtaining a probability measure µ over L2(Rd) and
a µ-measurable map ωu from L2(Rd) to the state-space of L2(Rd). Combining with
Corollary 4.4 we may pass to the limit in the interaction term. For the field energy,
we pass to the liminf using (4.10) with A = 1, k = ℓ = 0 and the fact that the
trace-norm is lower semi-continuous under weak-⋆ convergence in the trace-class.
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As regards the particle energy we denote γα the particle reduced density matrix
of |Ψα⟩⟨Ψα|. Since Tr(γαh) < ∞, we have that

γhα(B) := Tr
(
h1/2γαh

1/2B
)

defines a bounded sequence of positive linear forms over bounded operators. Extract-
ing a further weakly-⋆ convergent subnet and identifying the limit by testing with
B of the form h−1/2B̃h−1/2 we deduce that

Tr(hγα) ⋆
⇀
net

∫
ωu(h)dµ(u).

All in all
lim inf
α→∞

E
(V )
(α)

⩾
∫
L2(Rd)

(
(ωu(h) + ∥u∥2

L2 +
∫
Rd
ωu(v(· − z))

(
u(z) + u(z)

)
dz
)
dµ(u)

⩾ inf
{
ω(h) + ∥u∥2

L2 +
∫
Rd
ω(v(· − z))

(
u(z) + u(z)

)
dz, u ∈ L2(Rd), ω ∈ S

(
L2(Rd)

)}
since µ is a probability measure. Minimizing with respect to u at fixed ω in a similar
manner as in (2.14) leads to a real-valued u such that

u(z) = −ω(v(.− z))
and an energy

ω(h) − ∥u∥2
L2 = ω(h) −

∫∫
ω(v(· − y))ω(v(· − z))dydz

= ω(h) −
∫∫

ωx1 ⊗ ωx2(v(x1 − y)v(x2 − z))dydz

= E (V )
Pek(ω)

where we inverted the integral over y, z and the expectation in ω⊗ω in the last step,
recalling (2.15). We conclude that

lim inf
α→∞

E
(V )
(α) ⩾ E

(V )
Gen.

There remains to use Lemma 5.3 and recall that the upper bound

E
(V )
Pek(1) ⩾ E

(V )
(α)

follows from the trial state argument sketched in Section 2.

6. Convergence of states, proof of Theorem 2.3

Since our main result Theorem 2.3 is stated modulo subsequence, we take the
liberty of not indicating all extractions of subsequences/subnets in the arguments of
this section.

We start from a sequence of states
Γα = |Ψα⟩⟨Ψα|
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as in the statement of the theorem. As in the previous section we have that
(6.1) ⟨Ψα|(−∆ + V ) ⊗ 1 + 1 ⊗ Nα|Ψα⟩ ⩽ C

and we may apply Theorem 4.3 with κ = 1, obtaining a probability measure µ over
L2(Rd) and a state-valued map ωu. Let γα be the particle density matrix of Γα, as
in Section 3.1. We may extract a weak-⋆ convergent subsequence in the trace-class:
(6.2) Tr[γαK] −→

α→ ∞
Tr[γ∞K]

for any compact operator K over L2(Rd). Identifying the limit using Theorem 4.3,
it must be that

(6.3) γ∞ =
∫
ωnor
u dµ(u)

with ωnor
u the normal part of ωu, i.e. the unique trace-class operator satisfying

(6.4) ωu(K) = Tr[ωnor
u K] for any compact operator K.

Arguing in a similar manner for the field density matrix

γf := Γ(1,1)
α

we find
γf

⋆
⇀
α→∞

∫
|u⟩⟨u|dµ(u)

along a subsequence, instead of just a subnet as in Theorem 4.3. As regards the
particle-field density matrix σα, we consider σα(x, x; z) as a L1

xL
2
z function as in the

proof of Corollary 4.4 and deduce∫∫
R2×R2

σα(x, x; z)v(x− z)dxdz −→
α→ ∞

∫
H

∫
Rd
ωu(v(· − z))

(
u(z) + u(z)

)
dzdµ(u).

Now, we aim at turning the weak convergences from (6.2) and Theorem 4.3 into
strong ones. For that we prove that no mass is lost in the limit:

Lemma 6.1 (No loss of mass). — Let γ∞ be the weak-⋆ limit of the particle
density matrix, introduced above. We have that

Tr[γ∞] = 1
and hence

γα −→
α→ ∞

γ∞

along a subsequence, strongly in trace-class norm.

Proof. — That the first statement implies the second is classical [Del67, Sim79].
We thus focus on the mass of the limit density matrix.

Step 1. — Let χR be a localization function as in Section 3.3. We claim that
(6.5) Tr[χRγαχR] −→

α→ ∞
Tr[χRγ∞χR].

Indeed, let γkα be the positive operator

γkα = (1 − ∆)1/2γα(1 − ∆)1/2.
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It follows from (6.1) that γkα is uniformly bounded in trace-class norm. Thus, modulo
a possible further extraction

γkα
⋆
⇀

α→ ∞
γk∞ = (1 − ∆)1/2γ∞(1 − ∆)1/2

weakly-star in the trace-class, where we identified the limit by testing against (1 −
∆)−1/2K(1 − ∆)−1/2 for a compact operator K. Then

Tr[χRγαχR] = Tr
[
χR(1 − ∆)−1/2γkα(1 − ∆)−1/2χR

]
−→
α→∞

Tr
[
χR(1 − ∆)−1/2γk∞(1 − ∆)−1/2χR

]
= Tr[χRγ∞χR]

because χR(1−∆)−1/2 is compact. Indeed, since χR is smooth with compact support
it is in any Lp space, while (1 − ∆)−1/2 acts in Fourier variables as the multiplier
by (1 + |k|2)−1/2, which belongs to Lq for q > d. Hence, the Kato–Seiler–Simon
inequality [Sim79, Chapter 4] implies that χR(1 − ∆)−1/2 is in the Schatten space
Lq for any q > d.

Step 2. — We now prove that

(6.6) lim
R→∞

lim
α→∞

Tr[χRγαχR] = 1.

Let χR be as above and
ηR =

√
1 − χ2

R.

Then (3.31) implies (bounding H(0)
α from below by its’ lowest eigenvalue)

lim inf
α→∞

TrH
(
H(V )
α Γα

)
⩾ lim inf

R→∞
lim inf
α→∞

(
TrH

(
H(V )
α Γα,χR

)
+ TrH(Γα,ηR)E(0)

α

)
.

with Γα,χR and Γα,ηR the χR− and ηR−localized states constructed from Γα.
Next, combining with the energy upper bound obtained as sketched in Section 2,

E
(V )
Pek(1) ⩾ lim inf

R→∞
lim inf
α→∞

(
TrH

(
Γα,χR

)
E(V )
α + TrH

(
Γα,ηR

)
E(0)
α

)
.

Inserting the energy convergence from Theorem 5.1 and using (3.17) leads to

E
(V )
Pek(1) ⩾ lim inf

R→∞
lim inf
α→∞

(
E

(V )
Pek(1) TrH(Γα,χR) + E

(0)
Pek(1)

(
1 − TrH(Γα,χR)

))
so that

0 ⩾ lim inf
R→∞

lim inf
α→∞

(
E

(0)
Pek(1) − E

(V )
Pek(1)

)(
1 − TrH(Γα,χR)

)
.

But
E

(V )
Pek(1) < E

(0)
Pek(1)

since V < 0, as follows by using a translation-invariant ground state as trial state
for the functional with trapping potential. It must thus be that

lim inf
R→∞

lim inf
α→∞

TrH
(
Γα,χR

)
= 1,

which implies (6.6), using (3.14).
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Conclusion. — Combining (6.5) with (6.6) leads to
lim
R→∞

Tr[χRγ∞χR] = 1

and the result follows. □

Combining the lemma with (6.3) implies that
Tr[ωnor

u ] = 1
for µ-almost every u, where the normal part is defined as in (6.4). Hence ωu coincides
µ-almost surely with its normal part, a positive trace-class operator. We denote the
latter γu, which has trace 1.

We may now return to Theorem 4.3 and pass to the limit in the energy as in
Section 5 to obtain
E

(V )
Pek(1) ⩾ lim inf

α→∞
E

(V )
(α)

⩾
∫
L2(Rd)

(
Tr[hγu] + ∥u∥2

L2 +
∫
Rd

Tr[γu(v(· − z))]
(
u(z) + u(z)

)
dz
)
dµ(u)

⩾
∫
L2(Rd)

(Tr[(h+W ∗ ργu)γu])dµ(u)

⩾ E
(V )
Pek(1).

To go to the second line we have minimized with respect to u, obtaining

(6.7) u(z) = − Tr[γuv(.− z)] = −
∫
Rd
ργu(x)v(x− z)dx

with ργu(x) = γu(x, x) the density of γu. To go to the third line we used Lemma 5.2,
i.e. that the Pekar functional for mixed states leads to the same minimization problem
as the usual one. This fact and the previous chain of inequalities (there must be
equality throughout) also imply that for µ-almost every u,

γu = |ψ⟩⟨ψ|
with ψ a minimizer of the Pekar energy functional (2.14) at mass 1. We also must
have (6.7) and hence

u = uψ = −v ∗ |ψ|2

as in (2.13) for µ-almost every u. Theorem 2.3 follows upon defining

dP (ψ) :=
∫
1u=uψdµ(u).
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