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E2-FORMALITY VIA
OBSTRUCTION THEORY
FORMALITÉ E2 VIA LA THÉORIE DE
L’OBSTRUCTION

Abstract. — We attack the question of E2-formality of differential graded algebras over
Fp via obstruction theory. We are able to prove that E2-algebras whose cohomology ring is a
polynomial algebra on even degree classes are formal. As a consequence we prove E2-formality
of the classifying space of some compact Lie groups or of Davis–Januszkiewicz spaces.

Résumé. — Nous nous attaquons à la formalité E2 des algèbres différentielles graduées
sur Fp par la théorie de l’obstruction. Nous prouvons que les E2-algèbres dont les anneaux de
cohomologie sont polynomiaux sur des classes de degrés pairs sont formelles. En conséquence
nous prouvons la formalité E2 des espaces classifiants de certains groupes de Lie compacts ou
des espaces de Davis–Januszkiewicz.

1. Introduction

Formality of spaces is an old idea originating in the field of rational homotopy
theory. In that context, a space is said to be formal if its rational cohomology is
quasi-isomorphic to its cochains as a commutative or E∞-algebra. When this is the
case, the whole rational homotopy type is controlled by a very manageable algebraic
gadget.
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With integral or torsion coefficients, the question of formality admits several ver-
sions. The most naive generalization (i.e. asking for cochains to be quasi-isomorphic
to cohomology as E∞-algebras) does not have interesting examples. Indeed, it is an
observation of Mandell that cochains on a space can never be quasi-isomorphic to a
strictly commutative algebra unless the space is homotopically discrete (see [FC24,
Proposition 5.1] for a formal proof of this observation). Therefore, one is led to study
weaker forms of formality. There is some literature devoted to proving E1-formality
of certain spaces, i.e. proving that C∗(X, k) is quasi-isomorphic to H∗(X, k) as dif-
ferential graded algebras (see for example [BB20, CH22, DCH21, Hao92, Sal20]).
When this is the case, some invariants of X can be computed from the cohomology
ring of X. For example, the bar construction spectral sequence

TorH∗(X;Fp)(Fp,Fp) =⇒ H∗(ΩX,Fp)

collapses at the E2-page. However, this collapse result is additive and there are
usually some multiplicative extension, that cannot be resolved by E1-formality.

There is in fact a countable family of formality properties interpolating between E1-
formality and E∞-formality. Namely, one can study En-formality for any 1 ⩽ n ⩽∞.
We say that a space X is En-formal if its cohomology ring viewed as an En-algebra
using the map of operads En → Com is quasi-isomorphic to its singular cochains
with its underlying En-algebra structure. This notion was introduced by Mandell
in [Man09]. He made several conjectures about it. In particular, he conjectured that
n-fold suspensions are En-formal. This conjecture was proved very recently in [HL24].

In the present paper, we study E2-formality. Our approach is obstruction theoretic.
Obstruction theory has been classically used to prove or study formality (see for
example [BB20, Emp24, HS79, Sal17]). Typically, there is a sequence of obstruction
classes in Hochschild or André–Quillen cohomology groups that have to vanish for
the algebra to be formal. In general, computing the actual obstructions can be very
difficult unless the group in which they live is zero (see [Sal20, Proposition 6.9] for
an example of a non-trivial obstruction class actually being computed).

In our case, we exploit the fact that the operations on the homology of an E2-
algebras are very explicit, thanks to the work of Cohen (see [CLM76]), and quite
manageable. The obstruction group is a Quillen cohomology group in the cate-
gory of W1-algebras, where the monad W1 is the monad of homology operations
on E2-algebras. This makes the obstruction groups computable in certain easy situ-
ations. Our main result is Theorem 4.5 which states that E2-algebras whose coho-
mology ring is polynomial on even degree variables are E2 formal.

We are in fact able to push this result a bit further to prove formality of certain di-
agrams of E2-algebras. As a corollary, we prove E2-formality of the classifying space
of compact Lie groups at primes that do not divide the order of the Weyl group (The-
orem 6.1) generalizing a recent result of Benson and Greenlees proving E1-formality
of such spaces (see [BG23]). We recover E2-formality of Davis–Januszkiewicz spaces
(originally proven by Franz in [Fra21b]) and we prove a multiplicative collapse result
for certain Eilenberg–Moore spectral sequences (Theorem 6.7).
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Conventions

We denote by grVectk the category of graded vector spaces over a field k. This
category has a symmetric monoidal structure whose symmetry isomorphism involves
the usual sign. Our graded vector spaces are cohomologically graded. We write
V 7→ sV for the shift in this category given by (sV )i = V i−1.

Given a graded vector space V , we denote by Sym(V ) the symmetric algebra
on V , i.e. the free graded commutative algebra on V . If V is concentrated in odd
degrees, we write Λ(V ) for the exterior algebra on V which is, by definition, the
free strictly commutative algebra on V (strictly commutative means that elements
of odd degrees square to zero). Of course, by the sign rules, there is an isomorphism
Λ(V ) ∼= Sym(V ) if the characteristic of the field is different from 2.

2. Quillen cohomology

2.1. Non-abelian derived functor

We follow the treatment of [Fra15]. Let C be a complete and cocomplete category
with a set of projective compact generators. Following Frankland, such a category
shall be called quasi-algebraic. Thanks to a theorem of Quillen (see [Qui67, Theo-
rem 2.4]), if C is a quasi-algebraic category, its category of simplicial objects, denoted
sC has a model structure transferred along the right adjoint functor

sC −→ sSetG

X• 7−→ {HomC(G, X•)}G ∈ G

where G is a set of compact projective generators of C.
Given a left adjoint functor between two quasi-algebraic categories, we define its

left derived functor
LF : sC −→ sD

to be the left derived functor in the sense of model categories of the functor F:sC→
sD given by degreewise application of the functor F .

Remark 2.1. — There is a conceptual description of the ∞-category underlying
the model category sC as the non-abelian derived category of C. Explicitly, this is
completion of the category Ccp of compact projective objects of C under ∞-sifted
colimits. Using this terminology, the functor LF is the unique extension of F|Ccp into
a functor that preserves sifted colimits. This is originally due to Lurie (see [Lur09,
Section 5.5.8] or [ČS24, Section 5.1.1] for a concise version of Lurie’s work).
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2.2. Quillen cohomology

Let C be a quasi-algebraic category. For c an object of C, we may consider the
category Ab(C/c) of abelian group objects over c. By the adjoint functor theorem,
there is an abelianization functor

Ab : C/c −→ Ab(C/c)
which is left adjoint to the forgetful functor. We define the cotangent complex of c
to be the left derived functor of the abelianization functor. We denote this object by
LC

c or simply Lc if there is no ambiguity. It follows from [Fra15, Propositions 3.33
and 3.34] that the categories C/c and Ab(C/c) are quasi-algebraic and hence that
the relevant model structures exist.

Given an object m ∈ Ab(C/c), we define the Quillen cohomology of c with
coefficients in m as :

AQs
C(c, m) := πs HomAb(C/c)(Lc, m).

(Observe that HomAb(C/c)(Lc, m) is a cosimplicial abelian group, and we denote by
πs the sth cohomology group of its associated cochain complex.)

Remark 2.2. — In all the cases of interest to us, the category C will come with
a forgetful functor to the category of graded vector spaces over k. Moreover, it will
be the case that the shift functor on the category of graded vector space will pass
to the category of abelian group objects in C/c. In this case, the André–Quillen
cohomology groups are bigraded

AQs,t
C (c, m) = AQs

C(c, stm).

Proposition 2.3. — Let F : C ⇆ D : U be an adjunction between quasi-algeb-
raic categories. Let c be an object of C. Assume that LF (c) → F (c) is a weak
equivalence. Let m ∈ Ab(D/F (c)). Then there is an isomorphism

AQ∗
D(Fc, m) ∼= AQ∗

C(c, Um).

Proof. — This is almost [Fra15, Proposition 4.10(4)] except that we do not ask
that F preserves all weak equivalences contrary to Frankland. However, it is straight-
forward to check that all that is needed in the proof is that LF (c)→ F (c) is a weak
equivalence. □

3. Cohomology of E2-algebras

In this section, we restrict to working over a prime field Fp with p a prime number.
We recall the work of Cohen (this was originally published in [CLM76, Chapter III]
but some signs were fixed in [GKRW18, Section 16]) describing the cohomology
operations on E2-algebras.

Definition 3.1. — A shifted restricted Lie algebra is a graded vector space V ∗

with a Lie bracket
[−,−] : V i ⊗ V j −→ V i+j−1
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and a restriction
ξ : V i −→ V pi−p+1

satisfying the following relations
(1) The Lie bracket is bilinear.
(2) The Lie bracket is antisymmetric

[x, y] = −(−1)(|x|−1)(|y|−1)[y, x].
(3) The Lie bracket satisfies the graded Jacobi relation.

(−1)(|x|−1)(|z|−1)[x, [y, z]] + (−1)(|x|−1)(|y|−1)[y, [z, x]] + (−1)(|y|−1)(|z|−1)[z, [x, y]] = 0
(4) The Lie bracket satisfies the relation [x, [x, x]] = 0. (This relation follows from

the Jacobi relation if p ̸= 3.)
(5) If p is odd, the operation ξ is zero on even degree elements.
(6) We have

ξ(x + y) = ξ(x) + ξ(y) +
p−1∑
i=1

di
2(x)(y)

where the operations di
2 are described in [CLM76, p. 218].

(7) We have
ξ(λx) = λξ(x)

for all λ ∈ Fp.
(8) We have

[x, ξ(y)] = adp(y)(x)

Remark 3.2. — Over F2, relation (6) becomes
ξ(x + y) = ξ(x) + ξ(y) + [x, y].

One consequence of this is that [x, x] = 0 whatever the degree of x is. In other
characteristics this only holds for elements of odd degree.

We denote by rLie1 Alg the category of shifted restricted Lie algebras.

Definition 3.3. — A W1-algebra is a graded vector space over Fp equipped with
• A degree −1 Lie bracket

[−,−] : V i ⊗ V j −→ V i+j−1

• A restriction
ξ : V i −→ V pi−p+1

• An additional linear map
ζ : V i −→ V pi−p+2

(if p = 2, this map does not exist)
• A product

V i ⊗ V j −→ V i+j

such that the following axioms are satisfied.
(1) The Lie bracket and ξ make V into a shifted restricted Lie algebra.
(2) The product is bilinear and graded commutative.
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(3) The operation ζ vanishes on even degree elements.
(4) We have the formula

[x, ζy] = 0
(5) The bracket is a derivation with respect to the product in each variable.

[x, yz] = [x, y]z + (−1)|y|(|x|+1)[x, z]y

(6) The operations ξ and ζ each satisfy a Cartan formula

ξ(xy) = xpξ(y) + ξ(x)yp +
∑

Γi,jx
iyj,

ζ(xy) = ζ(x)yp − xpζ(y)
where the term Γi,j are described on [CLM76, p. 335]. (If p = 2 the Cartan
formula is

ξ(xy) = x2ξ(y) + ξ(x)y2 + x[x, y]y.)

Let us denote by W1Alg the category of W1-algebras and by

F W1 : grVectFp
−→W1Alg

the free W1-algebra monad.

Theorem 3.4 (Cohen). — Let C be a cochain complex of Fp-vector spaces. Let
E2 denote the free C∗(E2,Fp)-algebra monad. There is a natural isomorphism

H∗(E2(C)) ∼= F W1(H∗(C))

In particular, the cohomology of a dg-E2-algebra is naturally a W1-algebra.

Proof. — This is done in [CLM76, Theorem III.3.1] for E2-algebras coming from
E2-spaces and extended to any E2-algebra in [GKRW18, Theorem 16.4]. □

By standard abstract nonsense, the restriction functor

W1 Alg −→ rLie1 Alg

has a left adjoint that we shall denote by F W1
rLie1 .

We shall need an explicit description of this left adjoint. Let p be an odd prime,
given a graded vector space, V over Fp, we denote by ζV the graded vector space

ζV =
⊕

i odd
si−pi+p−2V i.

There is an operation
ζ : V −→ ζV

taking v ∈ V i with i odd to the element v in the summand si−pi+p−2V i of ζV . This
operation is not a map of graded vector spaces, instead it behaves with respect to
the degree as the operation ζ in a W1-algebra. We define Symζ to be the following
functor from the category of graded vector spaces to itself

V 7−→ Sym(V ⊕ ζV ).
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Proposition 3.5. — Let p be an odd prime. The composed functor

rLie1 Alg
F

W1
rLie1−−−→W1Alg forget−−−→ grVectFp

is isomorphic to g 7→ Symζ(g). A similar proposition holds over F2 if we replace
Symζ by Sym.

Proof. — Both functors of g preserve ordinary sifted colimits. Moreover, rLie1 Alg
is an algebraic category, i.e., it is the completion of its subcategory of free algebras
on a finite dimensional vector space under ordinary sifted colimits. Therefore, it
suffices to prove that both functors coincide on the category of free shifted restricted
Lie algebras on a finite dimensional graded vector space.

If g is the free restricted Lie algebra on V , then a basis of g is given by symbols
ξilα where the symbols lα form an arbitrary basis of the free Lie algebra on V and
the exponent i is arbitrary if lα is of even degree and is zero otherwise. On the other
hand, F W1

rLie1(g) ∼= F W1(V ) is explicitly described in [CLM76, p. 227]. It is the free
commutative algebra on elements of the form ζϵξilα where lα and ξi are as before
and ϵ ∈ {0, 1} and is required to be 0 if ξilα is of even degree. The result follows
from this explicit description.

The case p = 2 is similar. □

Remark 3.6. — Observe that if g is concentrated in even degrees (in which case
the Lie bracket and ξ must be zero for degree reasons), then F W1

rLie1(g) is simply
Sym(g) with trivial operations [−,−], ξ and ζ.

Proposition 3.7. — Let V be a graded vector space, then
L Symζ(V ) ≃ Symζ(V )

and
L Sym(V ) ≃ Sym(V )

Proof. — This proposition holds for any functor F : grVectk → grVectk that
preserves filtered colimits. Indeed, LF coincides with F on finite dimensional vector
spaces by construction, moreover, both LF and F preserve filtered colimits, it follows
that they must coincide on any graded vector space. □

4. Computation of the obstruction group

Definition 4.1. — We call a bigraded abelian group even (resp. odd) if it is
concentrated in bidegrees (s, t) such that s + t is even (resp. odd).

Lemma 4.2. — Let A = Λ(V ) be the exterior algebra on a graded vector space V
concentrated in odd degrees and of finite total dimension. Let M be an A-module
concentrated in odd degrees and finite-dimensional in each degree. Since A is com-
mutative, we may view M as an A-bimodule. Then

AQ∗,∗
Ass Alg(A, M)

is even.
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Proof. — There is an isomorphism
AQs,∗(A, M) ∼= Der(A, M) if s = 0

∼= HHs+1(A, M) if s > 0
Since Der(A, M) ⊂ Homk(A, M) is concentrated in even degrees, it suffices to prove
that HH∗,∗(A, M) is odd.

There exists a unique map of commutative algebras
A −→ A⊗ A

sending v ∈ V to v⊗ 1− 1⊗ v. Indeed, if k is of characteristic different from 2, then
Λ(V ) ∼= Sym(V ) is free and if k is of characteristic 2, then we do indeed have

(v ⊗ 1− 1⊗ v)2 = 0
By [CE56, Theorem X.6.1], we have an isomorphism

HH∗(A, M) ∼= Ext∗
A(k, M̃)

where M̃ is M equipped with the A-module structure induced by restriction of
scalars along the map A→ A⊗A described above. By definition of the A-bimodule
structure on M , the A-module M̃ is then simply the k-vector space M with the
trivial A-module structure. So, using the finite dimensionality of M , we have

Ext∗
A(k, M̃) ∼= Ext∗

A(k, k)⊗k M

Since M is odd, it suffices to prove that Ext∗
A(k, k) is even. If V is one-dimensional

so that A = k[x]/x2. Then a free resolution of k as an A-module is given by

k ← A
×x←− s|x|A

×x←− s2|x|A
×x←− . . .

It follows that the bigraded abelian group Ext∗,∗
A (k, k) is even. For a general V ,

ExtA(k, k) is a tensor product of finitely many bigraded abelian groups of this form,
therefore the answer is still even. □

Lemma 4.3. — Let V be a graded vector space concentrated in even degrees
viewed as a shifted restricted Lie algebra with trivial bracket and restriction. Let M
be an abelian group object in the slice category W1 Alg /F W1

rLie1(V ) whose underlying
graded vector space is even. Then AQ∗,∗

W1(F W1
rLie1(V ), M) is even.

Proof. — By Proposition 2.3, we have an isomorphism

AQ∗
W1

(
F W1

rLie1(V ), M
) ∼= AQ∗

rLie1(V, M)

There is an adjunction
U : rLie1 Alg ⇆ Ass Alg : forget

between shifted restricted Lie algebras and associative algebras. The right adjoint
takes an associative algebra A, and sends it to sA with Lie bracket given by

[sx, sy] = s
(
xy − (−1)|x| |y|yx

)
and restriction given by

ξ(sx) = s(xp)
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(the notation sx represents the element x ∈ A viewed as an element of sA). The
left adjoint U sends g to its universal enveloping algebra defined as the quotient
T (s−1g)/I where I is the two-sided ideal generated by elements of the form s−1[g, h]−
(s−1g)(s−1h)+(−1)(|g|+1)(|h|+1)(s−1h)(s−1g) and (s−1g)p−s−1ξ(g)) for any g and h ho-
mogeneous elements of g. This adjunction appears in [Jac62, Chapter V, Theorem 12]
for restricted Lie algebra with bracket of degree zero.

In particular, one easily checks from the above formula that the universal enveloping
algebra of the shifted restricted Lie algebra V is simply the exterior algebra Λ(s−1V )
regardless of the characteristic of the field. Then we can use again Proposition 2.3,
and find an isomorphism

AQ∗
rLie1(V, M) ≃ AQ∗

Ass

(
Λ(s−1V ), s−1M

)
which is even by the previous lemma. □

Remark 4.4. — The isomorphism between restricted Lie cohomology and asso-
ciative cohomology of the universal enveloping algebra appears as [DFI24, Theo-
rem 14.2], although in their case, the restricted algebra structure is not shifted. The
idea of reducing André–Quillen cohomology of W1-algebras to André–Quillen coho-
mology of restricted Lie algebras was also explored in [RZ14] at the prime 2. See for
example [RZ14, Proposition 7.4].

Theorem 4.5. — Let A be a dg-E2-algebra over Fp such that H∗(A) = Sym(V )
with V a finite dimensional graded vector space concentrated in even degrees. Let
B be a dg-E2-algebra also concentrated in even degrees and degreewise finite dimen-
sional. Then

(1) for any map of Fp-algebras
f : H∗(A) −→ H∗(B)

there is a map in the homotopy category of E2-algebras
f̃ : A −→ B

such that H∗(f̃) = f .
(2) Any E2-algebra whose cohomology ring is isomorphic to the cohomology ring

of A must be quasi-isomorphic to A.

Proof. — First observe that (2) follows easily from (1). Thanks to Remark 3.6, a
map of Fp-algebras

f : H∗(A) −→ H∗(B)
is automatically a map of W1-algebras. We may thus use the spectral sequence
of [JN14, Theorem 4.5] computing the mapping space mapE2−Alg(A, B). The relevant
obstructions to lifting f live in Et,t−1

2 . Thanks to [JN14, Theorem B], this group can
be identified with AQt

W1(A, st−1H∗(B)). The result then follows from the previous
lemma. □

Remark 4.6. — A statement of this form is usually called intrinsic formality. We
are claiming that, up to quasi-isomorphisms, there is a unique E2-algebra whose
cohomology ring is a given polynomial algebra on even degree classes.
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Remark 4.7. — A similar theorem was obtained by Devalpurkar (see [Dev24,
Lemma 2.1.10]) under the slightly stronger hypothesis that the E2-structure can be
promoted to an E3-structure.

In the next section, we will push this result to certain diagrams of E2-algebras
but we can already give one application originally due to Bayındır and Moulinos
(see [BM22, Theorem 1.3]).

Theorem 4.8 (Bayındır, Moulinos). — Let HFp denote the Eilenberg–MacLane
spectrum of Fp. There is a weak equivalence of E2-algebras over HFp :

THH(HFp) ≃ HFp ⊗ Σ∞
+ ΩS3.

Proof. — Since S3 ∼= SU(2) is a Lie group, the space ΩS3 is a 2-fold loop space.
Therefore, both sides of this equation are E2-algebras in HFp-modules so they can
be viewed as dg-E2-algebras. They also have isomorphic homotopy rings given by a
polynomial ring on one generator of (homological) degree 2. □

Remark 4.9. — In fact Bayındır and Moulinos prove that for any polynomial
ring R over Fp on one even degree class, there is a unique E2-algebra with R as its
homotopy ring (see [BM22, Theorem 2.1]). This result also follows from Theorem 4.5.
The proof given in [BM22] is also obstruction theoretic and is based on the Postnikov
tower of E2-ring spectra. Their obstruction groups are André–Quillen cohomology
groups over E2 (instead of over W1 for us) and we believe that they are in general
more difficult to compute.

Remark 4.10. — There is a long literature devoted to the ring spectrum THH(HFp).
Bökstedt’s calculation shows that the two ring spectra of Theorem 4.8 have isomor-
phic homotopy rings (see [Bök85]). This implies that the underlying HFp-modules
are weakly equivalent. A different approach to this result using a description of HFp

as a Thom spectrum is given in [BCS10]. It was observed in [KN22, Theorem 1.1]
that Bökstedt’s calculation can be refined to prove an equivalence of E1-algebras
over HFp:

THH(HFp) ≃ HFp ⊗ Σ∞
+ ΩS3.

For the sake of completeness, we state and sketch the proof of the characteristic
zero analogue of the above theorem.

Theorem 4.11. — Let A be a dg-E2-algebra over Q such that H∗(A) = Sym(V )
with V a finite dimensional graded vector space concentrated in even degrees. Let
B be a dg-E2-algebra also concentrated in even degrees and degreewise finite dimen-
sional. Then

(1) for any map of Q-algebras
f : H∗(A) −→ H∗(B)

there is a map in the homotopy category of E2-algebras

f̃ : A −→ B

such that H∗(f̃) = f .
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(2) Any E2-algebra whose cohomology ring is isomorphic to the cohomology ring
of A must be quasi-isomorphic to A.

Proof. — This is completely analogous to the proof of Theorem 4.5 except that
the monad W1 has to be replaced by the Gerstenhaber monad. We obtain exactly
as above an isomorphism

AQGer(H∗(A), H∗(B)) ∼= AQAss

(
Λ(s−1V ), s−1H∗(B)

)
.

Moreover, the right hand side is even thanks to Lemma 4.2 (which does not depend
on the characteristic of the field). □

Remark 4.12. — The analogous theorem with E2 replaced by E∞ is also true
and well-known. Indeed, in that case, A can be strictified to a commutative algebra.
Then we can produce a quasi-isomorphism

H∗(A) −→ A

by sending each generator to a choice of cocycle representing it.

5. Diagrams of E2-algebras

5.1. Main theorem

Let C be a quasi-algebraic category and let I be a small category. In this situation
CI is also a quasi-algebraic category. Given c : I → C and m ∈ Ab(CI/c), we
denote by AQC,I(c, m) the corresponding Quillen cohomology.

We start with the following proposition for which we could not find a reference.

Proposition 5.1. — Let I be a small category, let A be an associative algebra
in grVectI and let M be an A-A-bimodule in grVectI . Then

AQ∗
Ass,I(A, M) ∼= Ext∗

A⊗Aop(ΩA, M)

where ΩA is the bimodule of associative differentials defined by the following exact
sequence

0 −→ ΩA −→ A⊗ A
m−→ A

where m denotes the multiplication map.

Proof. — This proposition is very classical if I = [0]. The object ΩA is the result
of applying the abelianization functor to idA : A → A viewed as an object of
AssAlgI/A. By definition of Quillen cohomology, this proposition boils down to
proving an equivalence

LAb(idA) ≃−→ ΩA = Ab(idA)
where Ab : sAssAlg/A→ sModA⊗Aop is the abelianization functor. Moreover, it is
enough to prove this equivalence pointwise.
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For any i in I and any category C, let us denote by evi the evaluation functor
CI → C. According to [Fra15, Theorem 4.7], there is a commutative diagram of
Quillen left adjoints (the theorem applies since evi preserves projective objects):

s
(
AssAlgI/A

)
evi

��

Ab // sModA⊗Aop

evi

��

s(AssAlg/A(i))
Ab
// sModA(i)⊗A(i)op

Applying this to idA and deriving the functors, we obtain a weak equivalence
(LΩA)(i) ≃ LΩA(i)

Now, using the case I = [0] of the proposition, we find
(LΩA)(i) ≃ ΩA(i) = ΩA(i)

as desired. □

Proposition 5.2. — Let V : I → grVect be a diagram taking values in finite
dimensional graded vector spaces concentrated in odd degrees. Let M : I → grVect
be a Λ(V )-module satisfying pointwise the conditions of Lemma 4.2. We more-
over assume that M viewed as a diagram of k-vector spaces is injective. Then
AQAss,I(Λ(V ), M) is even.

Proof. — In order to prove this proposition, we shall first construct a spectral
sequence computing the groups AQAss,I(Λ(V ), M).

For A an associative algebra in grVectI and M an A-bimodule, using the previous
proposition, we have an isomorphism

AQ∗
Ass,I(A, M) = π−∗RHomA⊗Aop(ΩA, M).

In order to compute this derived Hom, we can use first the bar resolution in the
category of bimodules and obtain

RHomA⊗Aop(ΩA, M) = holim[n] ∈ ∆ RHomgrVectI

(
(A⊗ Aop)⊗n ⊗ ΩA, M

)
Now, in general, if C is an ∞-category and I a small category, we have

mapCI (F, G) ≃ holim∆

[s] 7−→
∏

i0 → i1 → ...→ is

map(F (i0), G(is))
.

So we can write the derived Hom as the limit of the following double cosimplicial
diagram

([s], [n]) 7−→
 ∏

i0 → i1 → ...→ is

RHomgrVect
(
(A⊗ Aop)⊗n ⊗ ΩA(i0), M(is)

)
Taking the limit in the [n] direction, we get

RHom(Ω1
A, M) = holim[s] ∈ ∆

 ∏
i0 → i1 → ...→ is

RHomA(i0)⊗A(i0)op

(
ΩA(i0), M(is)

)
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As for any cosimplicial object, we obtain an associated Bousfield–Kan spectral
sequence whose E1 page is given by

Es,t
1 =

∏
i0 → i1 → ...→ is

AQt
Ass(A(i0), M(is)).

This spectral sequence converges as it can also be viewed as the spectral sequence
of a third quadrant double complex (coming from the above bicosimplicial abelian
group after taking the associated complex in both cosimplicial direction). From the
comparison between Quillen cohomology and Hochschild cohomology, we see that
the row t = 0 is given by the cosimplicial abelian group

[s] 7−→
∏

i0 → i1 → ...→ is

Der(A(i0), M(is)),

while for t > 0, we get
[s] 7−→

∏
i0 → i1 → ...→ is

HHt+1(A(i0), M(is)).

So far we did not use anything about the specific situation and the above discussion
would apply to any pair (A, M). Using the computation of Lemma 4.2, we see that
the row t > 0 of the E1-page is of the form

[s] 7−→
∏

i0 → i1 → ...→ is

Homk(F (i0), M(is)),

where F : I → grVectk is the degreewise dual of the functor
i 7−→ ExtA(i)(k, k).

Likewise the 0th row is simply given by the cosimplicial abelian group
[s] 7−→

∏
i0 → i1 → ...→ is

Homk(V (i0), M(is)).

(indeed there is an isomorphism Der(Λ(V ), M) ∼= Homk(V, M)). From this observa-
tion, using injectivity of M , we deduce that the E2-page of the spectral sequence is
concentrated on the column s = 0 and

E0,−t
2 = ker

d1 :
∏
i∈I

AQt(A(i), M(i)) −→
∏

f : i→j

AQt(A(i), M(j))
.

In particular, we see that
AQ∗,∗

I (A, M) ⊂
∏
i∈I

AQ∗,∗(A(i), M(i))

and is therefore even by Lemma 4.2. □

Corollary 5.3. — Let V : I → grVectFp
be a diagram of finite dimensional

graded vector space concentrated in even degrees. Let M : I → grVectFp
be an

injective diagram concentrated in even degrees and equipped with the structure of a
module over F W1

rLie1(V ). Then AQ∗,∗
W1,I(F W1

rLie1(V ), M) is even.

Proof. — As in Lemma 4.3, we can reduce to showing that AQAss,I(Λ(s−1V ), s−1M)
is even which is the content of the previous proposition. □
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Theorem 5.4. — Assume that i 7→ A(i) is a diagram of differential graded
E2-algebras over Fp such that

(1) There is a diagram V : I → grVectFp
which is objectwise finite dimensional

and concentrated in even degrees, and a natural isomorphism
H∗(A(i)) ∼= F W1

rLie1(V (i)).
(2) The diagram

i 7−→ H∗(A(i))
is injective as an I-diagram in Fp-vector spaces.

Then the diagram A is formal as a diagram of E2-algebras.

Proof. — As in Theorem 4.5, we use obstruction theory. We check that the hy-
potheses of [JN14, Theorem B] hold. The category denoted D in [JN14, Theorem B]
is simply the category of I-diagrams of graded vector spaces. Then condition (a)
of [JN14, Theorem B] holds thanks to our injectivity assumption. The monad Talg
in [JN14, Theorem B] is simply F W1 applied objectwise. It follows that the relevant
obstruction group is AQt,t−1

W1,I(F W1
rLie1(V ), H∗(A)) which is zero thanks to the previous

corollary. □

5.2. Criterion for injectivity

We borrow the following definition from Hovey (see [Hov99, Definition 5.1.1])

Definition 5.5. — A direct category is a category I with a functor λ : I → (N,⩽)
such that λ(f) = id if and only if f = id.

Proposition 5.6. — Let I be a direct category. Consider a diagram F : Iop →
grVect. Then F is injective if for all i ∈ I the canonical map

F (i) −→ lim
j ∈I,λ(j)<λ(i)

F (j)

is surjective.

Proof. — This is very similar to [Hov99, Proposition 5.1.4]. Let us call the number
λ(i) the “degree” of the object i. Given an objectwise injective map f : M → N in
grVectIop , we can lift a map g : M → F to a map g̃ : N → F inductively on degree.
Assuming the lift has been produced up to degree n, the next step is to find a lift on
an object i of degree n + 1. This amounts to finding a diagonal filler in the following
diagram

M(i)

f(i)
��

g(i)
// F (i)

��

N(i) // limλ(k)<λ(i) F (k)
in which the bottom horizontal map is the composite

N(i) −→ lim
λ(k)<λ(i)

N(k) g̃−→ lim
λ(k)<λ(i)

F (k)
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This lifting problem has a solution since the left vertical map is injective while the
right vertical map is surjective. Once these liftings have been chosen for each i of
degree n+1, they are automatically compatible since there are no non-identity maps
between objects of the same degree. This completes the induction step. □

Example 5.7. — Let I be the category with two objects 0 and 1 and a single non-
identity map 0→ 1. We can consider I as a direct category with λ(0) = 0, λ(1) = 1.
The proposition says that an arrow f : M1 → M0 viewed as an Iop-diagram in
grVect is injective if f is surjective. Similarly, a span diagram

M −→ N ← P

is injective if each of the maps is surjective.

Example 5.8. — Let I be the poset of faces of a simplicial complex. Then F : Iop

→ grVect is injective if it is fat, in the sense of [NR05, Definition 3.6]. Indeed, we
can view I as a direct category with λ : I → the dimension function.

6. Applications

6.1. Formality of BG for some compact Lie groups

Theorem 6.1. — Let G be a compact Lie group with maximal torus T and
assume that p does not divide the order of NG(T )/T . Then C∗(BG,Fp) is E2-formal.

Proof. — Let us write W = NG(T )/T . In this situation, by [Fes81, Theorem 1.5]
there is a quasi-isomorphism of E2-algebra

C∗(BG;Fp) −→ C∗(BT,Fp)W ≃ C∗(BT,Fp)hW .

Similarly, there is an isomorphism of commutative algebras
H∗(BG;Fp) −→ H∗(BT,Fp)W .

Since H∗(BT ;Fp) is polynomial on even degree generators, then the result will hold
if the formality quasi-isomorphism

C∗(BT ;Fp) ≃ H∗(BT ;Fp)
given by Theorem 4.5 can be made W -equivariant. Since, by assumption, p does
not divide the order of W , it follows that any Fp[W ]-vector space is injective as a
W -diagram and thus the result follows from Theorem 5.4. □

Remark 6.2. — The fact that, under these assumptions C∗(BG,Fp) is formal as
an E1-algebra is a theorem of Benson and Greenlees (see [BG23]).

Remark 6.3. — It was observed by Benson and Greenlees in [BG23] that a compact
Lie group satisfying the assumptions of the above theorem does not necessarily have
polynomial cohomology. They give the example of the non-connected group G =
Z/2 ⋉ T 2 with Z/2 acting on the torus by inversion. In that case H∗(BG,F3) is not
a polynomial algebra. It is given by the subalgebra F3[x2, xy, y2] of H∗(BT 2,F3) ∼=
F3[x, y]. Nevertheless BG is E2-formal over F3 thanks to our theorem.

TOME 8 (2025)



714 G. HOREL

6.2. Formality of Davis–Januszkiewicz spaces

For our next application, recall that, given a relative CW-complex A ⊂ X and a
simplicial complex K with set of vertices V , we may form the polyhedral product
Z(K; (A, X)) ⊂ XV given as

Z(K; (A, X)) =
⋃

σ ∈K

Xσ × AV −σ.

A case of particular interest is the case A = pt and X = BS1. The resulting space
is then called a Davis–Januszkiewicz space (this was originally introduced in [DJ91],
see also [BP15, Chapter 4]).

Theorem 6.4. — Let G be a compact Lie group such that the Fp-cohomology
of BG is polynomial on even degree generators. Then C∗(Z(K; (pt, BG)),Fp) is E2-
formal for any simplicial complex K. Moreover we have an isomorphism of algebras

H∗(Z(K; (pt, BG)),Fp) ∼= lim(σ 7−→ H∗(BGσ,Fp)).
Proof. — This is an application of Theorem 5.4. In this case the diagram

σ 7−→ H∗(BGσ,Fp)
is injective by [NR05, Lemma 3.8] and Example 5.8. It follows that the diagram
Kop → AlgE2

σ 7−→ C∗(BGσ,Fp)
is formal, therefore, we have a quasi-isomorphism of E2-algebras

holim(σ 7−→ H∗(BGσ,Fp)) ≃ holim(σ 7−→ C∗(BGσ,Fp))
≃ C∗(Z(K; (pt, BG));Fp). □

Remark 6.5. — The case G = S1 is a theorem of Matthias Franz (see [Fra21b]).
Franz phrases his result using the notion of “homotopy Gerstenhaber algebras”
instead of E2-algebras. The operad governing homotopy Gerstenhaber algebras is the
complexity 2 suboperad of the surjection operad (see [Fra20, Subsection 3.1]) which
is known to be a model for E2 (see [MS02, Section 4] or [BF04, Subsection 1.6])
so the two results should be equivalent. Let us also mention that in that case,
the cohomology of Z(K; (pt, BS1)) can be computed and is given by the Stanley–
Reisner algebra associated to the simplicial complex K. Another related result is
the main theorem of [NR10] that proves that the homotopy type of the Davis–
Januszkiewicz space is determined by the integral cohomology ring if this ring is a
complete intersection after extending the scalars to Q.

Remark 6.6. — The polyhedral product construction can be extended to any map
A→ X (not just relative CW-complexes) by replacing the definition above by the
homotopy colimit of the diagram

σ 7−→ Xσ × AV −σ.

In particular, if G is a compact Lie group, we may form Z(K; (G, pt)). This spaces
inherits a GV -action and we have

Z(K; (G, pt))hGV ≃ (Z(K; (pt, BG)))
by [DS07, Lemma 2.3.2].
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6.3. Multiplicative collapse of some Eilenberg–Moore spectral sequences

Let X → B ← Y be a diagram of spaces. For each b ∈ B, we write Xb := {b}×h
B X,

the homotopy fiber of X → B over b. Recall that the cohomological Eilenberg–Moore
spectral has as its E2-page the group TorH∗(B,Fp)(H∗(X,Fp), H∗(Y,Fp)). It is known
to converge to H∗(X ×h

B Y,Fp) under the following two assumptions.
(1) For each b ∈ B and each integer j, the vector space Hj(Xb,Fp) is finite

dimensional.
(2) For each b ∈ B and each integer j, the action of π1(B, b) on Hj(Xb) is

nilpotent (that is there is a finite filtration of Hj(Xb) that is compatible with
the action and such that the induced action on the associated graded pieces
is trivial).

Theorem 6.7. — Let X → B ← Y be a diagram of spaces. Assume that
(1) The cohomology of all three spaces with Fp coefficients is a polynomial algebra

on finitely many even degree generators.
(2) The maps H∗(B,Fp)→ H∗(X,Fp) and H∗(B,Fp)→ H∗(Y,Fp) are surjective

and send generators to linear combinations of generators.
Then, the Eilenberg–Moore spectral sequence collapses multiplicatively. In particular,
if the spectral sequence converges (for example if the conditions recalled above are
satisfied) there is an isomorphism of Fp-algebras

TorH∗(B,Fp)(H∗(X,Fp), H∗(Y,Fp)) ∼= H∗
(
X ×h

B Y,Fp

)
.

Proof. — The surjectivity assumption ensures that the diagram
H∗(X,Fp)← H∗(B,Fp) −→ H∗(Y,Fp)

is injective by Example 5.7. From Theorem 5.4, we obtain that the diagram of
E2-algebras

C∗(X,Fp)← C∗(B,Fp) −→ C∗(Y,Fp)
is formal. It follows that there is a quasi-isomorphism of E1-algebras

H∗(X,Fp)⊗L
H∗(B,Fp) H∗(Y,Fp) ≃ C∗(X,Fp)⊗L

C∗(B,Fp) C∗(Y,Fp).
Under the Eilenberg–Moore convergence assumption, the right-hand side is quasi-
isomorphic to C∗(X ×h

B Y,Fp). □

Remark 6.8. — Arguably the most interesting case of application of the previous
theorem is when X, B and Y are classifying space of compact Lie groups. In that
case this Theorem is a weaker version of the main results of [Fra21a, Car21]. Indeed
the main theorem in those papers does not have our second assumption, also these
papers allow for the coefficient ring to be a PID instead of a field. On the other hand,
those papers assume that 2 is invertible in their coefficients ring and we are able to
say something also in the case p = 2.

Remark 6.9. — There is a long tradition of collapse results for the Eilenberg–
Moore spectral sequence especially the one computing the cohomology of a homoge-
neous space G/H with G and H Lie groups. Previously to the work of Franz and Carl-
son mentioned in the previous remark, we refer the reader to [Bau68, GM74, Wol77]
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for additive collapse results. Multiplicative collapse was proven over the reals by
Cartan and over any field but under quite strong assumptions by Borel (see [Car50,
Théorème 6] and [Bor53, Proposition 30.2]).

Example 6.10. — Consider the complex Stiefel manifolds Vn,k = U(n)/U(n− k).
This may be viewed as the homotopy fiber of the map

BU(n− k) −→ BU(n)

induced by the standard inclusion. For any prime, the resulting Eilenberg–Moore
spectral sequence

TorH∗(BU(n),Fp)
(
H∗(BU(n− k),Fp),Fp

)
=⇒ H∗(Vn,k,Fp)

satisfies the assumption of Theorem 6.7 above and thus, we get a multiplicative
computation of H∗(Vn,k,Fp) for any value of p. This result is classical and originally
due to Borel (see [Bor53, Section 9]).

Remark 6.11. — In contrast with the previous example, consider the diagonal
inclusion U(1)→ U(n). The quotient is PU(n). By [Bau68, Section 8, Example 4],
the induced map in cohomology

H∗(BU(n),F2) −→ H∗(BU(1),F2)

is surjective if and only if n is odd. Unfortunately, our theorem does not imply
collapse of the Eilenberg–Moore spectral sequence in those cases since the map
does not send the generators to linear combination of generators. In any case, if
n ≡ 2 mod 4 this spectral sequence is known to have multiplicative extensions. In
particular, if n = 2, there is a homeomorphism PU(2) ∼= RP3 and it is observed
in [Fra21a, Remark 12.9] that the algebra TorH∗(BU(2),F2)(H∗(BU(1),F2),F2) contains
a non-zero element in degree 1 that squares to zero.

Corollary 6.12. — Let (X, x) be a based space with H∗(X,Fp) ∼= Sym(V )
with V finite dimensional an concentrated in even positive degrees. Then there is an
isomorphism of Hopf algebras

H∗(ΩX,Fp) ∼= Λ
(
s−1V

)
Proof. — The previous theorem gives us an isomorphism of algebras

H∗(ΩX,Fp) ∼= TorSym(V )(Fp,Fp) = Λ(s−1V )

On the other hand, by Theorem 5.4, the diagram

C∗(pt,Fp)← C∗(X,Fp) −→ C∗(pt,Fp)

is E2 (and hence E1) formal. Equivalently, the augmented algebra C∗(X,Fp) is
E1-formal. This implies that there is an isomorphism of coalgebras

H∗(ΩX,Fp) ∼= H∗(Bar(H∗(X,Fp))

where Bar denotes the bar construction of an augmented algebra:

Bar(A) := Fp ⊗L
A Fp. □
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Remark 6.13. — As we mentioned in the proof of the corollary, the statement
about the coalgebra structure only requires E1-formality. This holds if the cohomol-
ogy is polynomial without the evenness assumption (see [SH70]). On the other hand,
the statement about the algebra structure is not true if we only assume E1-formality.
As an example of this phenomenon consider X = K(Z/2, 2). Then we have

H∗(X,F2) = F2[x2n+1, n ⩾ 0]
with x2 denoting the fundamental class and

x2n+1 = Sq2n−1
. . . Sq1 x2.

Then C∗(X,F2) is E1-formal since its cohomology is polynomial.
On the other hand, H∗(ΩX,F2) = H∗(RP∞,F2) = F2[y] with |y| = 1 and with the

Hopf algebra structure given by
∆(y) = y ⊗ 1 + 1⊗ y.

We observe that, as a coalgebras, there is indeed an isomorphism
H∗(ΩX,F2) ∼=

⊗
n⩾0

Λ[y2n ] = H∗(Bar(H∗(X,F2)))

but this isomorphism is not compatible with the algebra structure.
In fact, it can be shown that C∗(X,F2) is not E2-formal. Indeed, for any space Y ,

the operation ξ of the W1-structure on H∗(Y,F2) is simply given by x 7→ Sq1(x) =
Sq|x|−1(x). It follows that an E2-formal space must have a trivial operation Sq1. This
is not the case for X.
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