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1. Introduction

A theorem is missing in algebraic geometry. Namely, we are missing a projective
analog of Kunz’s theorem characterizing regularity [Kun69] and at the same time
a Frobenius-theoretic analog of Mori–Hartshorne’s characterization of projective
space [Har70, Mor79] (originally known as Hartshorne’s conjecture). We will elabo-
rate on this next, for which we fix an algebraically closed field k of characteristic
p ⩾ 0.

Let us consider two important dichotomies in algebraic geometry: local vs. global
and characteristic zero vs. positive characteristic. For instance, the local study of
coherent sheaves surrounds the notion of freeness/flatness, whereas globally it focuses
on positivity (e.g. ampleness). Likewise, characteristic zero geometry is governed by
differentials Ω1, whereas on positive characteristic geometry the Frobenius endomor-
phisms must be taken into account. Thus, with respect to the above two dichotomies,
there are four scenarios in which one may do algebraic geometry. We claim that
there is a theorem on three of these scenarios and an analogy between them, but the
analogous theorem is missing in the fourth scenario. The situation is summarized as
follows:

Local (singularities) Global (projective geometry)
Differentials Jacobian criterion Mori–Hartshorne’s theorem

Frobenius (p > 0) Kunz’s theorem ?

For the reader’s convenience, we briefly recall these three prominent theorems.
Let us start with Kunz’s theorem [Kun69] and assume that p > 0. Kunz’s theorem
establishes that a variety X/k is smooth if and only if F∗OX is locally free of
rank (necessarily) pdim X , where F = FX : X → X denotes the (absolute) Frobenius
endomorphism of X. Equivalently, let us consider the exact sequence

0 −→ OX
F #
−−→ F∗OX −→B1

X −→ 0

defining B1
X as the cokernel of Frobenius. Then, Kunz’s theorem can be rephrased

by saying that X/k is smooth if and only if B1
X is locally free of rank (necessarily)

pdim X − 1.(1)

Compare this to the jacobian criterion: a variety X/k is smooth if and only if
Ω1

X/k is locally free of rank dim X. Thus, the smoothness of a variety X/k can be
determined using either Ω1

X/k or B1
X .

There is a purely local way to look at Kunz’s theorem. Set Âd
k := Speck[[x1, . . . , xd]].

By the Cohen structure theorem, the spectra of noetherian complete local k-algebras
(A,m,k) are, up to isomorphism, the closed subschemes of Ân

k for some n, and Âd
k is

(up to isomorphism) the only regular one of dimension d. We refer to these spectra
simply as k-singularities. Thus, Kunz’s theorem establishes that Âd

k is characterized

(1)Technically speaking, Kunz’s theorem characterizes the regularity of X rather than the smooth-
ness of X/k.
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Varieties with ample Frobenius-trace kernel 723

among d-dimensional k-singularities as the one and only one whose Frobenius has
a free cokernel. Of course, an analogous characterization can be obtained using
differentials by the jacobian criterion.

On the other hand, we may consider Mori’s theorem (originally called Hartshorne’s
conjecture) characterizing the projective spaces among smooth projective varieties by
the ampleness of the tangent sheaf [Mor79], cf. [Har70, Mab78, MS78]. Concretely,
a d-dimensional smooth projective variety X/k has an ample tangent sheaf TX/k :=
Ω1,∨

X/k if and only if X ∼= Pd
k := Projk[x0, . . . , xd]. We refer to this as the Mori–

Hartshorne theorem. See [Kol96, Section V, Corollary 3.3] for a treatment in an
arbitrary (equal) characteristic.

Further, a direct graded-algebra computation shows that
(1.1) F∗OPd

k

∼= OPd
k
⊕OPd

k
(−1)⊕a1 ⊕ · · · ⊕OPd

k
(−d)⊕ad ,

where the integers a1, . . . , ad are uniquely determined by such isomorphism. More-
over,

B1,∨
Pd
k

∼= OPd
k
(1)⊕a1 ⊕ · · · ⊕OPd

k
(d)⊕ad

is ample.
In view of all the above, it is inevitable to wonder:

Question 1.1. — Let X/k be a d-dimensional smooth projective variety such
that the locally free sheafEX := B1,∨

X is ample, which experts will quickly recognize as
the kernel of the Frobenius trace τX : F∗ω

1−p
X → OX (see Section 2). Is X isomorphic

to Pd
k?

If Question 1.1 were to have an affirmative answer, we may think of it as both a
projective Kunz’s theorem and a Frobenius-theoretic Mori–Hartshorne’s criterion.
That is, we could tell the projective spaces apart among smooth projective varieties by
the ampleness of a locally free sheaf naturally defined via its Frobenius. Unfortunately,
Question 1.1 has a negative answer for all d ⩾ 3. Indeed, using the description
in [Ach12, Lan08], EX can be seen to be ample already for quadrics of dimension
d ⩾ 3 and p ⩾ 3; see Example 4.5.

On the positive side, we show that if EX is ample then X is a Fano variety. In
general, if EX has a certain positivity property, then the same property holds for ω−1

X ;
see Theorem 5.9. In particular, Question 1.1 has an affirmative answer for d = 1. We
are able to verify this for surfaces as well. For threefolds, we managed to reduce the
class of Fano threefolds for which EX is ample via an extremal contraction analysis.
We obtain the following result.

Main Theorem (Theorem 5.19, Corollaries 5.15 and 5.11). — Let X/k be a
d-dimensional smooth projective variety such that EX = ker(τX : F∗ω

1−p
X → OX) is

ample and d ⩽ 3. Then X is a Fano variety of Picard rank 1.

However, its converse seems rather tricky. Except for the projective space and the
quadric, we do not know whether EX is ample for Fano threefolds of Picard rank 1
(i.e. for those of index 1 or 2). However, if X is the quadric, EX is ample if and only
if p ̸= 2 (see Corollary 4.8), which we find rather baffling. We leave this converse
problem open:
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724 J. CARVAJAL-ROJAS & Zs. PATAKFALVI

Question 1.2. — For which Fano threefolds of Picard rank 1 is EX ample? Does
this depend on the characteristic as it does for quadrics?

We may still wonder whether there is a locally free sheaf naturally defined via
Frobenius that can be used to tell the projective space apart among Fano varieties
of Picard rank 1. Our failed, first attempt was to use the dual of the cokernel of
Frobenius B1

X , which is none other than the kernel of the first Cartier operator on X;
see Remark 2.2. Nonetheless, there are d+1 Cartier operators {κi : F∗Z

i → Ωi
X/k}d

i=0
attached to a d-dimensional smooth projective variety X/k, where Zi ⊂ Ωi

X/k is
the subsheaf of exact forms. For instance, the d th Cartier operator is the usual
F∗ωX → ωX giving ωX its natural Cartier module structure. Letting Bi

X be the
kernel of the ith Cartier operator, we may wonder whether the ampleness of B•,∨

X :=⊕d
i=0 B

i,∨
X may be used to characterize the projective space among smooth projective

varieties.(2) On the other hand, the following relation is well-known:

Bd,∨
X
∼= B1

X ⊗ ω−1
X
∼= (EX ⊗ ωX)∨;

see Remark 2.2. From this, we see that Bd,∨
X is ample for all projective spaces and

all quadrics of dimension ⩾ 3. However,

Question 1.3. — Can we use the ampleness of B2,∨ to distinguish between P3
k

and the threefold quadric Q3/k?

Unfortunately, we do not know whether B2,∨
P3 is ample, and also whether B2,∨

Q3 is
not ample.

Roughly speaking, the study of projective varieties can be reduced to the study
of graded commutative algebra. Thus, one may expect that one could obtain a
reasonable projective Kunz theorem by translating the corresponding graded Kunz’s
theorem. For the reader’s convenience, we have worked out this easy translation
in Section 3.1. See Corollary 3.9 for the statement, which we find rather unsatisfactory
as it does not resemble Mori–Hartshorne’s theorem. Nevertheless, it at least indicates
that the structure of Frobenius pushforwards can be used to characterize projective
spaces among smooth projective varieties.

Last but not least, let us highlight an interesting side application of our methods.
Let (V,A) be a polarized projective normal variety (i.e. A is an ample invertible sheaf
in V ) with a corresponding affine cone X and a vertex point 0 ∈ X. In Section 4.4,
we outline a geometric method for describing explicitly F∗OX,0 as an OX,0-module.
The only input needed is an explicit description of F∗A

i for i = 0, . . . , p − 1. We
illustrate this method by carrying out the computations for both Veronese and
Segre embeddings. In principle, one can do this for quadric cone singularities as
well by using [Ach12, Lan08] as input. However, we will attempt this rather lengthy
calculation elsewhere. The authors are unaware of any such explicit descriptions in
the literature and believe that this could be of interest to commutative algebraists.
See Remarks 4.1, 4.5 and 4.6.

(2) It turns out that B0,∨
X = 0 and so we may ignore the 0th direct summand.
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Outline

This paper is organized as follows. Section 2 briefly surveys the basics on Cartier
operators (i.e. κX : F∗ωX → ωX) and Frobenius traces (i.e. τX = κX ⊗ ω−1

X :
F∗ω

1−p
X → OX) and so it may be skipped by experts. In Section 3, we compute

directly the Frobenius pushforwards of invertible sheaves on projective bundles of
the form P(L0⊕· · ·⊕Ld)→ X; see Proposition 3.2, which we later use in Section 4
to calculate several examples of interest (e.g. blowups along linear subspaces of
projective spaces). Most importantly, this is used to prove that EX is never ample
if X is a blowup of a smooth variety along a smooth subvariety; see Lemma 4.2.
Finally, in Section 5, we study the repercussions the ampleness of EX (as well as
other positivity conditions) has on X. Our first basic observation is that there is a
surjective morphism F ∗EX → ω1−p

X , which allows us to conclude that ω−1
X is ample

if so is EX ; see Theorem 5.9. We further narrow this down to Section 5.3, where we
investigate the interplay between the ampleness of EX and extremal contractions of
smooth threefolds. In a nutshell, if X is a Fano variety of dimension ⩽ 3 and EX is
ample, then it admits no extremal contraction except for X → Speck (where the
whole space is contracted to a point) and so X is a Fano variety of Picard rank 1.

Notation 1.4. — The following conventions are used throughout this paper. We
fix an algebraically closed field k of characteristic p > 0. All relative objects (such
as varieties) and properties (such as smoothness and projectivity) are defined over k
unless otherwise explicitly stated. For instance, we write Pd = Pd

k, Ad = Ad
k, and

so on. We let F e = F e
X : X → X denote the eth iterate of the absolute Frobenius

morphism on a variety X. We use the shorthand notation q := pe. Given n ∈ Z, we
use the euclidean algorithm to define

n =: ⌊n/q⌋q + [n]q, 0 ⩽ [n]q ⩽ q − 1.

We may drop the subscript from [n]q if no confusion is likely to occur. If A is a finite
set, we denote its cardinality by |A|. When no confusion is likely to occur, we may
drop subscripts in writing, e.g., O = OX , ω = ωX = ωX/k, Ωi = Ωi

X/k, etc. Finally,
0 ∈ N.
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2. Generalities on Cartier Operators and Frobenius Traces

Throughout this section, we let X be a smooth variety of dimension d and 0 ̸=
e ∈ N be a positive integer. Kunz’s theorem establishes that F e

∗L is a locally
free sheaf of rank qd for all invertible sheaves L on X. Since F e : X → X is finite,
Grothendieck duality establishes a canonical isomorphism of F e

∗OX-modules F e
∗OX →

Hom X(F e
∗ ωX , ωX), whose corresponding global section κe = κe

X : F e
∗ ωX → ωX is

the so-called Cartier operator on X; see Remark 2.2 below. Twisting κe by ω−1
X and

using the projection formula, we obtain a map τ e = τ e
X : F e

∗ ω1−q
X → OX , which we

refer to as the Frobenius trace on X.(3) Notice that τ e is surjective. Indeed, this can
be checked locally at stalks where it is clear as X is regular (and so F -injective).
Thus, there is an exact sequence

(2.1) 0 −→Ee,X −→ F e
∗ ω1−q

X
τe

−→ OX −→ 0

defining Ee,X as the kernel of the Frobenius trace τ e
X . Equivalently,

(2.2) 0 −→Ee,X ⊗ ωX −→ F e
∗ ωX

κe

−→ ωX −→ 0.

We may also write Ee,X = Ee if no confusion is likely to occur. Observe that Ee is a
locally free sheaf of rank qd − 1 as these short exact sequences are both locally split.
From (2.2), it follows that χ(X,Ee ⊗ ωX) = 0. By taking duals, we obtain a short
exact sequence

(2.3) 0 −→ OX
(τe)∨ = F e,#

−−−−−−−→ F e
∗OX −→E∨

e,X −→ 0.

In particular, χ(X,E∨
e,X) = 0. Additionally, (2.1) splits if and only if so does F e,# :

OX → F e
∗OX , i.e., X is F -split. In that case, H i(X,Ee ⊗ ωX) = 0 for all i and so

H i(X,E∨
e ) = 0 for all i by Serre duality. Those vanishings are equivalent to Frobenius

acting injectively (i.e. semi-simply) on the cohomology groups H i(X,OX). We shall
recall in Remark 2.3 below that this is the case when X is ordinary.

Remark 2.1 (Local description of κe : F e
∗ ωX → ωX). — Let x ∈ X be a closed

point. Then, the stalk of κe : F e
∗ ωX → ωX at the point x ∈ X is a Frobenius trace

κe
x : F e

∗Ox,X → Ox,X associated to the regular (and so Gorenstein) local ring OX,x.
To be precise, let mx = (t1, . . . , td) be a regular system of parameters so that

ÔX,x ⊗OX,x
F e

∗OX,x = F e
∗ ÔX,x =

⊕
0⩽ i1,...,id ⩽q−1

ÔX,xF e
∗ ti1

1 · · · t
id
d

Moreover, ÔX,x ⊗ Ω1
X = ⊕d

i=1 ÔX,xdti and ÔX,x ⊗ ωX = ÔX,xdt1 ∧ · · · ∧ dtd; see
[Tyc88]. Let Φe : F e

∗OX,x → OX,x be the projection onto the summand generated by
F e

∗ tq−1
1 · · · tq−1

d in the above direct sum decomposition, then

ÔX,x ⊗ κe : F e
∗ adt1 ∧ · · · ∧ dtd 7−→ Φe(F e

∗ a)dt1 ∧ · · · ∧ dtd;

see [BK05, Lemma 1.3.6]. In particular, κe
x(F e

∗ 1) = 0 as Φe(F e
∗ 1) = 0.

(3) In general, L ⊗ F e
∗F = F e

∗ (Lq ⊗F) for all invertible sheaves L and all OX -modules F. This
follows from the projection formula and the equality F e,∗L = Lq.
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Remark 2.2 (Generalized Cartier operators). — We briefly summarize the theory
of Cartier operators. For details see [BK05, Section 1.3]. Let Ω• := Ω•

X/k be the
exterior algebra of X/k, which is a graded-commutative OX-algebra. Let (Ω•, d)
be the corresponding de Rham complex. Although this is not a complex of OX-
modules (as the differentials are not OX-linear), (F e

∗ Ω•, F e
∗ d) is an OX-linear complex.

Let Z• := Z•
X/k ⊂ Ω• be the corresponding graded subspaces of exact forms and

B• := B•
X/k ⊂ Ω• be the ones of closed forms. Notice that F e

∗ Z• is a graded-
commutative OX-subalgebra of F e

∗ Ω• and F e
∗ B• is a graded ideal of F e

∗ Z•. Thus,

H•
(
F e

∗ Ω•
)

= F e
∗ Z•/F e

∗ B• = F e
∗

(
Z•/B•

)
= F e

∗ H•(Ω•)

is a graded-commutative OX-algebra. The importance of this is that there is a natural
isomorphism of graded-commutative OX-algebras

C−1 =
(
C−1

)•
: Ω• −→ H•

(
F e

∗ Ω•
)
.

The inverse isomorphism C = C• is (are) referred to as the Cartier operator(s) in
the literature. For further details, see [BK05, Car57, EV92]. In fact, the composition

F e
∗ ωX = F e

∗ Zd −→ Hd
(
F e

∗ Ω•
)

Cd

−→ Ωd = ωX

coincides with the Cartier operator κe : F e
∗ ωX → ωX defined via Grothendieck

duality. Thus, there is some abuse of terminology. To avoid confusion, we denote the
composition

F e
∗ Z• −→ H•

(
F e

∗ Ω•
)

C•
−→ Ω•

by κe
•. In particular, there is a canonical isomorphism of OX-modulesEe⊗ωX

∼= F e
∗ Bd,

as both are kernels of the same q−1-linear map. On the other hand, we have the
following exact sequence of OX-modules

0 −→ OX
F e,#
−−−→ F e

∗OX
F e

∗ d−−→ F e
∗ Z1 κe

1−→ Ω1 −→ 0.

Therefore, there is a canonical isomorphism of OX-modules E∨
e
∼= F e

∗ B1 and a short
exact sequence of OX-modules

0 −→E∨
e −→ F e

∗ Z1 −→ Ω1 −→ 0.

For ease of notation, we write Bi
e := F e

∗ Bi and Zi
e := F e

∗ Zi, so that there are exact
sequences

0 −→Bi
e −→Zi

e

κe
i−→ Ωi −→ 0,

and further
0 −→Zi

e −→ F e
∗ Ωi F e

∗ d−−→Bi+1
e −→ 0.

Summing up, B1
e and Bd

e are ω-dual to each other. Further, (B1
e )∨ ∼= Ee and

(Bd
e )∨ ∼= (Ee ⊗ ωX)∨ ∼= E∨

e ⊗ ω−1
X .

Remark 2.3 (On the cohomology of E∨
e and ordinarity). — From the exact se-

quence
0 −→ αq −→ Ga

F e

−→ Ga −→ 0

TOME 8 (2025)



728 J. CARVAJAL-ROJAS & Zs. PATAKFALVI

on Xfl, we obtain canonical isomorphisms H i(X,E∨
e ) ∼= H i+1(Xfl, αq), for H i(Xfl,Ga)

is H i(X,OX). In particular,

H0
(
X,E∨

e

) ∼= {
ω ∈ H0

(
X, Ω1

) ∣∣∣ dω = 0 and C1ω = 0
}

= H1(Xfl, αq).

See [Mil80, III, Proposition 4.14]. Following [BK86, Section 7], we say that X is
ordinary if H i(X, Bj) = 0 for all i, j. Since B1

e = F e
∗ B1 = E∨

e , we have H i(X,E∨
e ) = 0

for ordinary varieties, and so the action of Frobenius is injective on H i(X,OX).
Of course, these two notions are equivalent for curves as well as for surfaces as
B2

e = F e
∗ B2 = Ee ⊗ ωX by Serre duality.

The following result will be essential later on.

Proposition 2.4 (Naturality of Frobenius trace kernels). — Let f : X → S be a
smooth proper morphism between smooth varieties and e ∈ N be a positive integer.
Then, there is a canonical commutative diagram between exact sequences

0 //Ee,X
//

εe,X/S

��

F e
∗ ω1−q

X

τe
X

//

ϵe,X/S

��

OX
//

∼=
��

0

0 // f ∗Ee,S
// f ∗F e

∗ ω1−q
S

f∗τe
S
// f ∗OS

// 0

where ϵe,X/S and so εe,X/S are surjective.

Proof. — We explain first how ϵe,X/S is defined. Consider the following cartesian
diagram

X

f

��

F e

%%

F e
X/S

!!

X(q) Ge
//

g

��

X

f

��

S
F e

// S

defining F e
X/S : X → X(q) as the eth relative Frobenius morphism of f . Note that

f and g are smooth and proper whereas F e, F e
X/S, and Ge are finite. Since f and

g are smooth and proper, they define the exceptional inverse image functors given
by: f ! = ωX/S ⊗ f ∗ and g! = ωX(q)/S ⊗ g∗ = Ge,∗ωX/S ⊗ g∗, where this last equality
follows from

ωX(q)/S = det ΩX(q)/S = det Ge,∗ΩX/S = Ge,∗ det ΩX/S = Ge,∗ωX/S.

Thus, ωX = f !ωS and ωX(q) = g!ωS = Ge,∗ωX/S ⊗ g∗ωS. The projection formula then
yields

(2.4) Ge
∗ωX(q) ∼= ωX/S ⊗Ge

∗g
∗ωS
∼= ωX/S ⊗ f ∗F e

∗ ωS = f !F e
∗ ωS,

where the natural transformation f ∗F e
∗ → Ge

∗g
∗ is an isomorphism as f is flat. In

addition, Grothendieck trace γe : Ge
∗ωX(q) → ωX associated to Ge is going to be

given by f !κe
S : f !F e

∗ ωS → f !ωS = ωX under the natural identification (2.4).
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By the naturality of Grothendieck trace maps, κe
X : F e

∗ ωX → ωX is the composition
of the corresponding traces of F e

X/S and Ge. More precisely, if κe
X/S : F e

X/S,∗ωX →
ωX(q) is the relative Cartier operator, then κe

X = γe ◦Ge
∗κ

e
X/S.

Putting these observations together, we obtain a canonical factorization

F e
∗ ωX

//

κe
X %%

f !F e
∗ ωS

f !κe
S

��

ωX

where the horizontal arrow corresponds to Ge
∗κ

e
X/S under the isomorphism (2.4).

Twisting this diagram by ω−1
X yields:

F e
∗ ω1−q

X

ϵe,X/S
//

τe
X ''

f ∗F e
∗ ω1−q

S

f∗τe
S

��

OX

where the horizontal morphism is the map we aimed to define.
Finally, we explain why ϵe,X/S : F e

∗ ω1−q
X → f ∗F e

∗ ω1−q
S and so εe,X/S : Ee,X → f ∗Ee,S

are surjective. It suffices to show that Ge
∗κ

e
X/S is surjective and; since Ge is affine,

that κe
X/S is surjective, which can be checked along the geometric fibers of g. Note

that the pullback of κe
X/S along a geometric point s̄ → S is the (absolute) Cartier

operator of the geometric fiber Xs̄, i.e., (κe
X/S)s̄ = κe

Xs̄
[PSZ18, Lemma 2.16]. Since

f is smooth, Xs̄ is regular, and so κe
Xs̄

is surjective. □

3. Frobenius Pushforwards of Invertible Sheaves on Split
Projective Bundles

The goal of this section is to compute explicitly the Frobenius pushforward of
an invertible sheaf on a (split) projective bundle (e.g. Frobenius pushforwards of
invertible sheaves on projective spaces). From this, we will conclude that Ee is ample
for projective spaces. We will apply these calculations in Section 4 to compute Ee

for several other projective varieties (including some mildly singular ones). Some of
those computations will be crucial in our main theorems shown in Section 5.

Let X be a smooth variety and F be a locally free sheaf of rank d + 1 on X. Also
fix 0 ̸= e ∈ N. We denote by ϖ : V(F) → X and π : P(F) → X the respective
vector and projective bundles. To be clear on what convention we follow, we have
the following:

ϖ∗OV(F) = Sym(F) =
⊕
i∈Z

π∗OP(F)(i).

When no confusion is likely to occur, we may drop F from our notation. We set
S := SymF, Si = Symi F, and S+ = ⊕

i⩾1 Si. We say that ϖ and π are split if F
decomposes as a direct sum of invertible sheaves. In this case, say F = L0⊕· · ·⊕Ld,
we write

Si =
⊕

i0+···+id = i

Li0
0 ⊗ · · · ⊗Lid

d
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Recall that ϖ∗ : Pic X → PicV(F) is an isomorphism. Then, we have the following
decompositions.

Proposition 3.1. — With notation as above, let N be an invertible sheaf on X
and suppose that F = L0 ⊕ · · · ⊕Ld. Then, there is an isomorphism

Λ :
⊕

0⩽ i0,...,id ⩽q−1
ϖ∗F e

∗

(
Li0

0 ⊗ · · · ⊗Lid
d ⊗N

) ∼=−→ F e
∗ ϖ∗N.

In particular, if F = L is an invertible sheaf, then ⊕q−1
i=0 ϖ∗F e

∗L
i

∼=−→ F e
∗OV(L).

Proof. — We explain first what the OV-linear map Λ is. Since ϖ is affine, we
may equivalently specify what the S-linear map ϖ∗Λ is, which corresponds (by the
projection formula and the functoriality of Frobenius) to the description of a S-linear
map ⊕

0⩽ i0,...,id ⩽q−1
S ⊗ F e

∗

(
Li0

0 ⊗ · · · ⊗Lid
d ⊗N

)
−→ F e

∗ (S ⊗N).

Such description is done by taking the direct sum ⊕
0⩽ i0,...,id ⩽q−1

⊕
j

⊕
j0+···+jd =j

over the structural maps

Lj0
0 ⊗ · · · ⊗Ljd

d ⊗ F e
∗

(
Li0

0 ⊗ · · · ⊗Lid
d ⊗N

)
∼=−→ F e

∗

(
Lj0q+i0

0 ⊗ · · · ⊗Ljdq+id
d ⊗N

)
−→ F e

∗ (S ⊗N).

where the first arrow is simply the projection formula isomorphism associated to F e.
Finally, by the euclidean algorithm, we further see why ϖ∗Λ and so Λ are isomor-

phisms. □

Recall that Z → PicP(F); 1 7→ OP(1), and π∗ : Pic X → PicP(F) induce an
isomorphism Z⊕ Pic X

∼=−→ PicP(F). We then have the following.

Proposition 3.2. — With notation as above, let N be an invertible sheaf on X
and n ∈ Z. Write n = kq + m with 0 ⩽ m ⩽ q− 1. Suppose that F = L0⊕· · ·⊕Ld.
Then, there is an isomorphism

Π :
d⊕

i=0
OP(k − i)⊗

⊕
0⩽i0,...,id⩽q−1
i0+···+id=m+iq

π∗F e
∗

(
Li0

0 ⊗ · · · ⊗Lid
d ⊗N

) ∼=−→ F e
∗ (OP(n)⊗ π∗N).

In particular, if Li = OX for all i then

Π : π∗F e
∗N ⊗

d⊕
i=0

OP(k − i)⊕a(i,m;d,e) ∼=−→ F e
∗ (OP(n)⊗ π∗N),

where a(i, m; d, e) is the number of combinations of m + iq with d + 1 parts in the
interval [0, q − 1]. Concretely,

a(i, m; d, e) :=
∑

j+k = i

(−1)k

(
d + 1

k

)(
jq + m + d

d

)
.
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Likewise, if L0 = L and L1, . . . ,Ld = OX then

Π :
d⊕

i=0
OP(k − i)⊗

q−1⊕
j =0

π∗F e
∗

(
Lj ⊗N

)⊕a(i,m−j;d−1,e) ∼=−→ F e
∗ (OP(n)⊗ π∗N).

Proof. — Observe that F e
∗S is a 1

q
Z-graded S-module (where F e is the eth Frobe-

nius homomorphism on S) by declaring elements in F e
∗Si ⊂ F e

∗S to sit in degree i/q.
Thus, if x ∈ Si and F e

∗ y ∈ F e
∗Sj ⊂ (F e

∗S)j/q then

xF e
∗ y = F e

∗ (xqy) ∈ F e
∗Siq +j ⊂ (F e

∗S)i+j/q.

Of course, we meant the above description to be on local sections. The same applies
for S⊗ π∗N in place of S. In general, if M is a 1

q
Z-graded S-module, we can write

M =
q−1⊕
n=0

⊕
i∈Z

Mi+n/q

where the M(n) := ⊕
i∈ZMi+n/q are Z-graded S-modules. In other words, M admits

a graded direct sum decomposition

M =
q−1⊕
n=0

M(n),

where M(n) is a Z-graded direct summand of M. In the particular case M = F e
∗S,

we have
(F e

∗S)(n) =
⊕
i∈Z

F e
∗Siq +n.

Note that

Γ∗
(
F e

∗ (OP(n)⊗ π∗N)
)

=
⊕
i∈Z

π∗
(
OP(i)⊗ F e

∗ (OP(n)⊗ π∗N)
)

=
⊕
i∈Z

π∗
(
F e

∗ (OP(iq +n)⊗ π∗N)
)

=
⊕
i∈Z

F e
∗

(
π∗(OP(iq +n)⊗ π∗N)

)
=
⊕
i∈Z

F e
∗

(
π∗OP(iq +n)⊗N

)
=
⊕
i∈Z

F e
∗

(
Siq +n ⊗N

)
=
(
F e

∗ (S ⊗N)
)(n)

,

where, by an abuse of notation, we wrote equality instead of isomorphism when we
applied the projection formula. In particular, we have a natural isomorphism((

F e
∗ (S ⊗N)

)(n)
)∼ ∼=−→ F e

∗ (OP(n)⊗ π∗N).
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We compute (F e
∗ (S ⊗N))(n) next. By Proposition 3.1 and its proof,

F e
∗ (S ⊗N)

∼=←−
⊕

0⩽ i0,...,id ⩽q−1
S ⊗ F e

∗

(
Li0

0 ⊗ · · · ⊗Lid
d ⊗N

)

=
q−1⊕
n=0

⊕
0⩽i0,...,id⩽q−1

i0+···+id≡n mod q

S ⊗ F e
∗

(
Li0

0 ⊗ · · · ⊗Lid
d ⊗N

)
,

as S-modules. However, by definition, the S-linear map

(3.1) S ⊗ F e
∗

(
Li0

0 ⊗ · · · ⊗Lid
d ⊗N

)
−→ F e

∗ (S ⊗N)

becomes graded if we declare(
S ⊗ F e

∗

(
Li0

0 ⊗ · · · ⊗Lid
d ⊗N

))
i

:= Si−⌊(i0+···+id)/q⌋ ⊗ F e
∗

(
Li0

0 ⊗ · · · ⊗Lid
d ⊗N

)
.

In other words, the S-linear map (3.1) defines a graded homomorphism of S-modules

S

(
−
⌊
(i0 + · · ·+ id)/q

⌋)
⊗ F e

∗

(
Li0

0 ⊗ · · · ⊗Lid
d ⊗N

)
−→ F e

∗ (S ⊗N).

In conclusion,
(
F e

∗ (S ⊗N)
)(n)

∼=←−
⊕

0⩽i0,...,id⩽q−1
i0+···+id≡n mod q

S

(
−i0 + · · ·+ id − n

q

)
⊗ F e

∗

(
Li0

0 ⊗ · · · ⊗Lid
d ⊗N

)

as Z-graded S-modules.
Putting everything together, we obtain an isomorphism Π from

⊕
0⩽i0,...,id⩽q−1

i0+···+id≡n mod q

OP

(
−i0 + · · ·+ id − n

q

)
⊗ π∗F e

∗

(
Li0

0 ⊗ · · · ⊗Lid
d ⊗N

)

to F e
∗ (OP(n)⊗ π∗N).

On the other hand, the values of i0 + · · ·+ id congruent to n modulo q subject to
0 ⩽ i0, . . . , id ⩽ q − 1 are m, m + q, m + 2q, . . . , m + dq. Therefore,

Π :
d⊕

i=0
OP(k − i)⊗

⊕
0⩽i0,...,id⩽q−1
i0+···+id=m+iq

π∗F e
∗

(
Li0

0 ⊗ · · · ⊗Lid
d ⊗N

) ∼=−→ F e
∗ (OP(n)⊗ π∗N).

Of course, if L0, . . . ,Ld = OX , then⊕
0⩽i0,...,id⩽q−1
i0+···+id=m+iq

π∗F e
∗

(
Li0

0 ⊗ · · · ⊗Lid
d ⊗N

)
= (π∗F e

∗N)⊕a(i,m;d,e)

where a(i, m; d, e) is the number of combinations of m + iq with d + 1 parts in
the interval [0, q − 1]. In other words, a(i, m; d, e) is the coefficient of tm+iq in the
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following power series(
1 + t + t2 + · · ·+ tq−1

)d+1
=
(1− tq

1− t

)d+1

= (1− tq)d+1 ·
∑
l⩾0

(
l + d

d

)
tl

=
∑

0⩽k⩽d+1
l⩾0

(−1)k

(
d + 1

k

)(
l + d

d

)
tkq+l

=
∑

0⩽k⩽d+1
0⩽m⩽q−1

j⩾0

(−1)k

(
d + 1

k

)(
jq + m + d

d

)
tm+(k+j)q

Therefore,

a(i, m; d, e) =
∑

j+k = i

(−1)k

(
d + 1

k

)(
jq + m + d

d

)

=
i∑

j =0
(−1)i−j

(
d + 1
i− j

)(
jq + m + d

d

)
.

The proposition then follows. □

Remark 3.3. — Given d, e ∈ N \ {0} and i, m ∈ Z, the integer a(i, m; d, e) ̸= 0 if
and only if 0 ⩽ m + iq ⩽ (d + 1)(q − 1). For instance, a(d, q − 1; d, e) = 0 and

a(i, 0; d, e) =
i∑

j =0
(−1)i−j

(
d + 1
i− j

)(
jq + d

d

)
̸= 0 if and only if i = 0, . . . , d.

An easy case worth keeping in mind is a(0, m; d, e) =
(

m+d
d

)
. In general, observe that

a(i, m; d, e) is a polynomial in q of degree d. Its leading coefficient can be computed
as follows. First, we note that

lim
e→∞

a(i, 0; d, e)
qd/d! =

i∑
j =0

(−1)i−j

(
d + 1
i− j

)
jd =

i∑
j =0

(−1)j

(
d + 1

j

)
(i− j)d = A(d, i)

where the A(d, i) are the so-called Eulerian numbers; see [Sin05, Section 3] and the
references therein. Thus, the leading coefficient of a(i, 0; d, e) is A(d, i)/d!, which turns
out to be the F -signature of the cone singularity defined by the Segre embedding of
Pi−1 × P(d−1)−(i−1). More generally,

lim
e→∞

a(i, m; d, e)
qd/d! =

i∑
j =0

(−1)i−j

(
d + 1
i− j

)
(j + m/q)d.

Of course, one verifies that ∑d
i=0 a(i, m; d, e) = qd, ∑d

i=0 A(d, i) = d!.

Question 3.4. — Can we generalize Proposition 3.2 to the case where F is
not fully decomposable? For instance, can we describe the case of elliptic ruled
surfaces, i.e., the case where F is an indecomposable rank-2 locally free sheaf on
an elliptic C? In such a case, F is necessarily an extension of invertible sheaves;
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see [Har77, Section V, Corollary 2.7, Exercise 3.3]. The main difficulty seems to be
finding a nice description of Si = Symi F. It is unclear, at least for the authors,
whether [Har77, Section II, Exercise 5.16(c)] is good enough for such a purpose.
It is worth noting that we work out very explicitly the case of Hirzebruch surfaces
in Section 4.2 below. Already in this much simpler case, we can note some complexity
emerging.

Corollary 3.5. — On X = Pd, we have that

Ee = B1,∨
e
∼=

d⊕
i=1

O(i)⊕a(i,0;d,e) and E∨
e ⊗ ω−1 = Bd,∨

e
∼=

d⊕
i=1

O(d + 1− i)⊕a(i,0;d,e)

are both ample.

3.1. Graded Kunz’s Theorem

Let S = ⊕
i⩾0 Si be an N-graded ring that is finitely generated by S1 over S0 = k.

Let us set m = S+ = ⊕
i⩾1 Si. The following basic observations were made in the

proof Proposition 3.2. F e
∗ S = ⊕

i∈N F e
∗ Si is a 1

q
Z-graded S-module by declaring that

the summand F e
∗ Si sits in degree i/q. Thus, if x ∈ Si and F e

∗ y ∈ F e
∗ Sj ⊂ (F e

∗ S)j/q

then
xF e

∗ y = F e
∗ (xqy) ∈ F e

∗ Siq +j ⊂ (F e
∗ S)i+j/q.

In general, if M is 1
q
Z-graded S-module, we may write M = ⊕q−1

n=0
⊕

i∈N Mi+n/q

where the M (n) := ⊕
i∈N Mi+n/q are N-graded S-modules. In other words, M admits

a graded direct sum decomposition M = ⊕q−1
n=0 M (n), and so M (n) is a graded direct

summand of M . In the case M = F e
∗ S, we have (F e

∗ S)(n) = ⊕
i∈N F e

∗ Siq +n. Let
X = Proj S. We readily see that Γ∗(F e

∗OX(n)) = (F e
∗ S)(n). In particular, F e

∗OX(n) ∼=
((F e

∗ S)(n))∼. Hence, the following graded version of Kunz’s theorem holds.

Proposition 3.6. — With notation as above, S is regular if and only if (F e
∗ S)(n)

is free as a graded S-module for all n = 0, . . . , q − 1.

Proof. — If (F e
∗ S)(n) is free as a graded S-module for all n = 0, . . . , q−1, then it is

free as an ordinary S-module and so is F e
∗ S. Hence, S is regular by Kunz’s theorem.

Conversely, if S is regular, then F e
∗ S is a projective S-module according to Kunz’s

theorem. Therefore, (F e
∗ S)(n) is a direct summand of a projective S-module. Hence,

(F e
∗ S)(n) is a projective Z-graded S-module. Nonetheless, projective graded S-modules

are free graded S-modules. □

We recall the following well-known statements and prove them for the sake of
completeness.

Lemma 3.7. — With notation as above, S is regular if and only if S is isomorphic
to the standard graded polynomial ring over k. Indeed, if Sm is a regular local ring,
then S ∼= k[x1, . . . , xd] as graded rings, where d = dimk Sm/mSm = dim Sm.

Proof. — By [Mat89, Theorem 13.8(iii)], even without assuming that Sm is a
regular local ring, S is isomorphic (as graded rings) to the graded associated ring
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of the local ring Sm (with respect to its maximal ideal). On the other hand, if Sm is
such that mSm is generated by a regular sequence, then its associated graded ring is
a standard graded polynomial ring; see [BH93, Theorem 1.1.8]. □

The following well-known characterization of projective spaces is then obtained.

Corollary 3.8. — The projective spaces are the only ones that admit a regular
ring of sections. More precisely, if X is a variety that admits an ample invertible
sheaf A so that the corresponding ring of sections R(X,A) is regular, then X is
isomorphic to Pdim X .

We say that a locally free sheaf on a scheme X is L-split, for a given invertible
sheaf L, if it is isomorphic to a direct sum of invertible sheaves whose class in
Pic X belongs to ⟨L⟩Z ⊂ Pic X. Applying the graded Kunz theorem, we obtain the
following.

Corollary 3.9. — Let X be a variety admitting an ample invertible sheaf A
such that F e

∗A
n is A-split for all n = 0, . . . , q − 1 (for some 0 ̸= e ∈ N). Then,

X ∼= Pdim X .

Proof. — Set S = Γ∗A = R(X,A). Then F e
∗ S = ⊕q−1

n=0 Γ∗(F e
∗A

n). Our hypothesis
states that Γ∗(F e

∗A
n) = (F e

∗ S)(n) is a free graded S-module as Γ∗(Aa) = S(a). □

4. Examples

This section aims to describe some further examples of Frobenius pushforwards of
invertible sheaves (and so of Ee) on some basic varieties. Our main motivation is to
use them in the proofs of our main theorems in Section 5. For example, Section 4.2
gives an alternative proof of Corollary 5.15, and the computations of both Section 4.3
and Section 4.4 are essentially used in the proof of Proposition 5.17.

We commence with those examples that can be easily obtained from the formulas
in Propositions 3.1 and 3.2 (including singular ones such as those in Section 4.4).
The authors are aware that some of our examples are toric varieties, whose Frobenius
pushforwards have been greatly described in [Ach15, Tho00]. For instance, toric vari-
eties are characterized as those varieties whose Frobenius pushforwards of invertible
sheaves split as a direct sum of invertible sheaves.

More generally, there is a hearty body of works describing the Frobenius pushfor-
ward of the structure sheaf of certain homogeneous spaces in the context of D-affinity
and representation theory. See, for instance [Mas18, RŠVdB19, Sam14, Sam17] and
the references therein. It would be very interesting to use these computations to
analyze the positivity of EX ; this will be pursued elsewhere.

For another set of interesting examples, we recommend [ES19, Har15, ST16]. The
former two papers are concerned with (ordinary) abelian varieties (which shall not
concern us since these are not Fano) whereas the latter is concerned with the degree-5
del Pezzo surface. It is worth noting that in those works the emphasis has been on the
(in)decomposability of Frobenius pushforwards, whereas our focus is on positivity.
In this section, we fix 0 ̸= e ∈ N.
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4.1. Products of projective spaces

By direct application of Proposition 3.2 we see that
d⊕

i=0
OPd(k − i)⊕a(i,m;d,e) −→ F e

∗OPd(n),

where n = kq + m, 0 ⩽ m ⩽ q − 1. In particular, if d = 1:

OP1(k)⊕(m+1) ⊕OP1(k − 1)⊕(q−1−m) ∼=−→ F e
∗OP1(n).

For d = 2, we have that F e
∗OP2(n) is isomorphic to

OP2(k)⊕ (m+1)(m+2)
2 ⊕OP2(k − 1)⊕ q2+(2m+3)q−2(m+1)(m+2)

2 ⊕OP2(k − 2)⊕ (q−(m+1))(q−(m+2))
2 .

Let X = Pr × Ps, consider its canonical projections πr : X → Pr and πs : X → Ps,
and set O(u, v) := π∗

rOPr(u) ⊗ π∗
sOPs(v). Then, writing u = kq + m and v = lq + n

with 0 ⩽ m, n ⩽ q − 1, we have

F e
∗O(u, v) ∼=

 r⊕
i=0

π∗
rOPd(k − i)⊕a(i,m;r,e)

⊗
 s⊕

j =0
π∗

sOPd(l − j)⊕a(i,n;s,e)


=

⊕
0⩽i⩽r
0⩽j⩽s

O(k − i, l − j)⊕a(i,m;r,e)a(j,n;s,e).

In particular, ∑0⩽i⩽r
0⩽j⩽s

a(i, m; r, e)a(j, n; s, e) = qr+s. Moreover,

F e
∗O
∼=

⊕
0⩽i⩽r
0⩽j⩽s

O(−i,−j)⊕a(i,0;r,e)a(j,0;s,e) and Ee
∼=

⊕
0⩽i⩽r
0⩽j⩽s
0<i+j

O(i, j)⊕a(i,0;r,e)a(j,0;s,e).

Hence,Ee,X is nef yet not ample as it contains O(0, 1) and O(1, 0) as direct summands.

4.2. Hirzebruch surfaces

Let C := P1, Fε := OC(−ε) ⊕ OC with ε ∈ N,(4) and π : Xε → C be the
corresponding projective bundle. In what follows, we use [Har77, Section V, Nota-
tion 2.8.1]. That is, C0 will denote the section of π given by Fε → OC(−ε) → 0
(thus OXε(1) ∼= OXε(C0)), and f is the fiber of πε along a chosen point representing
the divisor class of OC(1). Recall that Xε can be thought of as the blowup at the
vertex singularity of the projective cone defined by the Veronese embedding of P1.
Indeed, the complete linear system |C0 + εf | defines the blowup morphism. Under
such description, C0 is none other than the exceptional divisor and, letting C1 denote
the section of π corresponding to the quotient Fε → OC → 0, we have the linear
equivalence C1 ∼ C0 + εf (which is the pullback of a ruling of the projective cone).

(4)We use ε instead of e to avoid any confusion with the exponent of Frobenius.
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See [Har77, Section V, Theorem 2.17]. Let u, v ∈ Z, and write u = kq + m with
0 ⩽ m ⩽ q − 1. Applying Proposition 3.2 yields

F e
∗OXε(uC0 + vf) ∼=

OXε(kC0)⊗
m⊕

j =0
π∗F e

∗OC(v − jε)


⊕

OXε((k − 1)C0)⊗
q−1⊕

j =m+1
π∗F e

∗OC(v − jε)


∼= F1 ⊕F2 ⊕F3 ⊕F4,

where:

F1 =
m⊕

j =0
OXε

(
kC0 + ⌊(v − jε)/q⌋f

)⊕([v−jε]q+1)

F2 =
m⊕

j =0
OXε

(
kC0 + (⌊(v − jε)/q⌋ − 1)f

)⊕(q−1−[v−jε]q)

F3 =
q−1⊕

j =m+1
OXε

(
(k − 1)C0 + ⌊(v − jε)/q⌋f

)⊕([v−jε]q+1)

F4 =
q−1⊕

j =m+1
OXε

(
(k − 1)C0 + (⌊(v − jε)/q⌋ − 1)f

)⊕(q−1−[v−jε]q)
.

In particular, setting u, v = 0 gives

F e
∗OXε

∼= OXε ⊕OXε(−f)⊕(q−1) ⊕
q−1⊕
j =1

OXε

(
− C0 + ⌊−jε/q⌋f

)⊕([−jε]q+1)

⊕
q−1⊕
j =1

OXε

(
− C0 + (⌊−jε/q⌋ − 1)f

)⊕(q−1−[−jε]q)
.

4.2.1. Case ε = 1

Specializing to ε = 1 gives the blowup of P2 at a point. In this case,
F e

∗OX1

∼= OX1 ⊕OX1(−f)⊕(q−1) ⊕
q−1⊕
j =1

OX1(−C0 − f)⊕(q−j+1) ⊕
q−1⊕
j =1

OX1(−C0 − 2f)⊕(j−1)

∼= OX1 ⊕OX1(−f)⊕(q−1) ⊕OX1(−C0 − f)⊕ (q+2)(q−1)
2 ⊕OX1(−C0 − 2f)⊕ (q−2)(q−1)

2 .

Equivalently, using C1 ∼ C0 + f , we may write

F e
∗OX1

∼= OX1 ⊕OX1(C0−C1)⊕(q−1)⊕OX1(−C1)⊕ (q+2)(q−1)
2 ⊕OX1(C0− 2C1)⊕ (q−2)(q−1)

2 .

Pulling this back to X1 \C0 recovers F e
∗OP2 and pulling it back along P1 ∼= C0 → X1

yields
O

⊕ q(q+1)
2

P1 ⊕OP1(−1)⊕ q(q−1)
2 ,

which implies that Ee,X1 is not ample.
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Let v = lq + n with 0 ⩽ n ⩽ q − 1. We may easily compute F e
∗OX1(uC0 + vf).

However, this will depend on whether m ⩽ n or m > n. If m ⩽ n, F e
∗OX1(uC0 + vf)

is isomorphic to

OX1(kC0 + lf)⊕ (m+1)(m+2+2(n−m))
2

⊕OX1(kC0 + (l − 1)f)⊕ (m+1)(2q−(m+2)−2(n−m))
2

⊕OX1((k − 1)C0 + lf)⊕ (n−m)(n−m+1)
2

⊕OX1((k − 1)C0 + (l − 1)f)⊕ (q−n−1)(q+n+2)−(n−m)(2q−n+m−1)
2

⊕OX1((k − 1)C0 + (l − 2)f)⊕ (q−n−1)(q−n−2)
2 .

If n > m, one has a similar description, but this time the invertible sheaves showing
up as direct summands are OX1(kC0 + lf), OX1(kC0 + (l− 1)f), OX1(kC0 + (l− 2)f),
OX1((k − 1)C0 + (l − 1)f), and OX1((k − 1)C0 + (l − 2)f).

4.2.2. Case ε = 2

This corresponds to the blowup of the singular quadric cone at its vertex. Let us
assume first p ̸= 2. If 1 ⩽ j ⩽ (q−1)/2 then q−1 ⩾ q−2j ⩾ 1 and so ⌊−2j/q⌋ = −1,
[−2j]q = q−2j. On the other hand, if (q +1)/2 ⩽ j ⩽ q−1 then q−1 ⩾ 2q−2j ⩾ 2
and so ⌊−2j/q⌋ = −2, [−2j]q = 2q − 2j. Therefore,

q−1⊕
j =1

OX2

(
− C0 + ⌊−2j/q⌋f

)⊕([−2j]q+1)

=
(q−1)/2⊕

j =1
OX2(−C0 − f)⊕(q−2j+1) ⊕

q−1⊕
j =(q+1)/2

OX2(−C0 − 2f)⊕(2q−2j+1)

= OX2(−C0 − f)⊕( q−1
2 )( q+1

2 ) ⊕OX2(−C0 − 2f)⊕( q−1
2 )( q+3

2 ).

Likewise,

q−1⊕
j =1

OXε

(
− C0 + (⌊−jε/q⌋ − 1)f

)⊕(q−1−[−jε]q)

= OX2(−C0 − 2f)⊕( q−1
2 )2

⊕OX2(−C0 − 3f)⊕( q−1
2 )( q−3

2 ).

Hence,

F e
∗OX2

∼= OX2 ⊕OX2(−f)⊕(q−1) ⊕OX2(C0 − f)⊕( q−1
2 )( q+1

2 )

⊕OX2(C0 − 2f)⊕( q−1
2 )( 2q+2

2 ) ⊕OX2(C0 − 3f)⊕( q−1
2 )( q−3

2 ).

Let us assume now p = 2. There are two cases depending on whether j belongs
to {1, . . . , 2e−1} or {2e−1 + 1, . . . , 2e − 1}. In the former case ⌊−2j/2e⌋ = −1 and
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[−2j]2e = 2e − 2j, while in the latter case ⌊−2j/2e⌋ = −2 and [−2j]2e = 2e+1 − 2j.
Thus, we have that

q−1⊕
j =1

OX2

(
− C0 + ⌊−2j/q⌋f

)⊕([−2j]q+1)

= OX2(−C0 − f)⊕22(e−1) ⊕OX2(−C0 − 2f)⊕(22(e−1)−1),

and
q−1⊕
j =1

OXε

(
− C0 + (⌊−jε/q⌋ − 1)f

)⊕
(

q−1−[−jε]q
)

= OX2(−C0 − 2f)⊕22(e−1) ⊕OX2(−C0 − 3f)⊕(2e−1−1)2
.

Therefore,

F e
∗OX2

∼= OX2 ⊕OX2(−f)⊕(q−1) ⊕OX2(C0 − f)⊕(q/2)2

⊕OX2(C0 − 2f)⊕(q2−2)/2 ⊕OX2(C0 − 3f)⊕( q−2
2 )2

where q = 2e.

4.2.3. Case ε = 3

There are three cases depending on whether q ≡ 0, 1, 2 mod 3.

Suppose first q ≡ 1 mod 3. Then, we may write a partition

{1, . . . , q−1} = {1, . . . , (q−1)/3}∪{(q+2)/3, . . . , 2(q−1)/3}∪{(2q+1)/3, . . . , q−1},

and we denote these subsets by J1, J2, and J3; respectively. Thus, if j ∈ Ji then
⌊−3j/q⌋ = −i and [3j]q = iq−3j. In particular, just as before, we get

F e
∗OX3

∼= OX3 ⊕OX3(−f)⊕(q−1) ⊕OX3(−C0 − f)⊕σ1⊕
OX3(−C0 − 2f)⊕σ2 ⊕OX3(−C0 − 3f)⊕σ3 ⊕OX3(−C0 − 4f)⊕σ4 ,

where the exponents σi are obtained as follows:

σ1 = σ′
1, σ2 = σ′

2 + σ′′
1 , σ3 = σ′

3 + σ′′
2 , σ4 = σ′′

3 ,

where

σ′
i :=

∑
j ∈Ji

(iq−3j + 1) = iq |Ji| −
∑

j ∈Ji

(3j − 1),

σ′′
i :=

∑
j ∈Ji

(
(1− i)q + 3j − 1

)
= −(i− 1)q|Ji|+

∑
j ∈Ji

(3j − 1),

where |Ji| = (q − 1)/3. Then a direct computation shows that

σ1 = q(q − 1)
6 , σ2 = (q + 1)(q − 1)

3 , σ3 = (q + 1)(q − 1)
3 , σ4 = (q − 4)(q − 1)

6 .

TOME 8 (2025)



740 J. CARVAJAL-ROJAS & Zs. PATAKFALVI

Let us suppose now q ≡ 2 mod 3 but q ̸= 2. (5) Then the same description as
above holds but this time using the following (asymmetric) partition:
{1, . . . , q − 1}

=
{

1, . . . ,
q − 2

3

}
∪
{

q + 1
3 , . . . ,

2(q − 2)
3 ,

2q − 1
3

}
∪
{2q + 2

3 , . . . , q − 2, q − 1
}

where |J1| = (q − 2)/3 = |J3| whereas |J2| = (q + 1)/3. In that case, we get

σ1 = (q + 1)(q − 2)
6 , σ2 = q2 + 2

3 , σ3 = (q + 2)(q − 2)
3 , σ4 = (q − 3)(q − 2)

6 .

The final case is q ≡ 0 mod 3. If q = 3, one readily verifies σ1 = 1, σ2 = 3,
σ3 = 2, and σ4 = 0. If q ⩾ 9, then one uses the partition
{1, . . . , q − 1} = {1, . . . , q/3} ∪ {q/3 + 1, . . . , 2q/3} ∪ {2q/3 + 1, . . . , q − 1}

to obtain, via similar computations, the following exponents:

σ1 = q(q − 1)
6 , σ2 = q2

3 , σ3 = q2 − 3
3 , σ4 = (q − 3)(q − 2)

6 .

4.2.4. General case

For general ε, let us suppose q ⩾ ε. Let us write the following partition
{1, . . . , q − 1} = J1 ∪ · · · ∪ Jε−1 ∪ Jε,

where
Ji := {⌊(i− 1)q/ε⌋+ 1, . . . , ⌊iq /ε⌋}

if i = 1, . . . , ε− 1, and
Jε := {⌊(ε− 1)q/ε⌋+ 1, . . . , q − 1}.

Thus, if j ∈ Ji then ⌊−εj/q⌋ = −i and [−εj]q = iq−εj. Hence, we may define
σ′

i := iq |Ji| −
∑

j ∈Ji

(εj − 1), σ′′
i := −(i− 1)q|Ji|+

∑
j ∈Ji

(εj − 1),

for i = 1, . . . , ε, and further
σ1 := σ′

1, σi := σ′
i + σ′′

i−1, σε+1 := σ′′
ε ,

for i = 2, . . . , ε. Then,

F e
∗OXε

∼= OXε ⊕OXε(−f)⊕(q−1) ⊕
ε+1⊕
i=1

OXε(−C0 − if)⊕σi .

Computing σi is rather subtle. To do so, we need to consider the arithmetic modulo ε.
Precisely, for k, l ∈ {0, . . . , ε−1}, let ρk,l ∈ {0, . . . , ε−1} be the residue of kl modulo ε.
For convenience, we also define ρk,ε := ε. The point is that, for i = 0, . . . , ε− 1, we
have ⌊iq /ε⌋ = (iq−ρk,i)/ε if k is the residue of q modulo ε. Further, one has

|Ji| =
q − ρk,i + ρk,i−1

ε
,

∑
j ∈J1∪···∪Ji

(εj − 1) = (iq−ρk,i)(iq−ρk,i + ε− 2)
2ε

(5)The case q = 2 is trivial for all ε. In the case ε = 3, we have σ1, σ2 = 1 and σ3, σ4 = 0.
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for i = 1, . . . , ε. Thus, a lengthy, direct computation shows that

σ1 = (q − ρk,1)(q + ρk,1 − ε + 2)
2ε

,

σi =
q2 −

(
ρ2

k,i − 2ρ2
k,i−1 + ρ2

k,i−2 − (ε− 2)(ρk,i − 2ρk,i−1 + ρk,i−2)
)
/2

ε
, 2 ⩽ i ⩽ ε,

σε+1 = (q − ε + ρk,ε−1)(q − ρk,ε−1 − 2)
2ε

where k is the residue of q modulo ε. Of course, there are two very simple cases.
Namely, k = 0 (i.e. ε = p) and k = 1 (e.g. p ≡ 1 mod ε) for ρ0,i = 0 and ρ1,i = i for
i = 0, . . . , ε− 1.

Note that the pullback of OXε(f) and OXε(C0) to C0 correspond; respectively, to
OP1(1) and OP1(−ε) under the isomorphism C0 ∼= P1.(6) Further,

(F e
∗OXε)|C0

∼= O
⊕(1+σε)
P1 ⊕OP1(−1)⊕(q−1+σε+1) ⊕

ε−1⊕
i=1

OP1(i)⊕σε−1 .

Therefore, Ee,Xε is not ample.

Remark 4.1. — Let us point out an interesting application to local algebra. Recall
that Xε is the blowup at the vertex singularity of the projective cone over the rational
normal curve in Pε; say 0 ∈ P , with C0 being the exceptional divisor. In particular,
restricting f to Xε \C0 = P \ {0} ⊂ P and pushing it forward to P gives us a ruling
of P ; say L. Thus, L is a Weil divisor on P of Cartier index ε. Our computations
above (with q ⩾ ε) then show

F e
∗OP

∼= O
⊕(1+σε)
P ⊕OP (−L)⊕(q−1+σ1+σε+1) ⊕

ε−1⊕
i=2

OP (−iL)⊕σi

where it is worth noting that

1 + σε =


q2/ε, if k = 0,

q2− 1
2

(
ρ2

k,2−2ρ2
k,1+(ε+2)(2ρk,1−ρk,2)

)
+ε

ε
, otherwise,

as ρk,ε−i = ε− ρk,i if k ̸= 0 and i = 1, . . . , ε− 1. Similarly,

q − 1 + σ1 + σε+1 =

q2/ε, if k = 0,
q2+ρk,1(ε−ρk,1)−ε

ε
, otherwise.

In particular, localizing at 0 yields that the F -splitting numbers of OP,0 are 1 + σε

(for q ⩾ ε) as well as a complete description of the OP,0-module F e
∗OP,0. For instance,

we recover that the F -signature of OP,0 is 1/ε. The authors were unaware of such
a complete description. We hope that the reader will appreciate the novelty in our
rather simple geometric approach.
(6) Indeed, the latter is formal as OP(F)(1) = OXε

(C0) and C0 is the section corresponding to
F → OP1(−ε) → 0. The former then follows from noticing that OXε

(C1) ∼= OXε
(C0 + εf) pulls

back to OP1 , which means that OXε
(εf) pulls back to OP1(ε) and then we just divide by ε.
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4.3. Blowups of projective spaces along linear subspaces

Let X := Pd, Y ⊂ X be a linear subspace of X of dimension r− 1, and X̃ → X be
the blowup of X along Y . Let us assume d−(r−1) ⩾ 2. Recall that X̃ can be realized
as a projective bundle over Pd−r. Indeed, X̃ ∼= P(F) where F = OPd−r(1) ⊕O⊕r

Pd−r ;
see [EH16, Section 9.3.2], cf. [Har77, Section V, Example 2.11.4]. Moreover, under
such an isomorphism, the blowup morphism X̃ → X = Pd is realized by the complete
linear system |OP(F)(1)|. Let H, H ′ be the divisors on X̃ defined by the pullback of
the hyperplane sections of X = Pd and Pd−r; respectively. Then, Cl X̃ = Z·H⊕Z·H ′,
and OP(F)(1) corresponds to 1 ·H. Applying Proposition 3.2 yields the isomorphism

F e
∗OX̃

∼=
r⊕

i=0
OX̃(−iH)⊗

q−1⊕
j =0

π∗F e
∗OPd−r(j)⊕a(i,−j;r−1,e) =:

r⊕
i=0

Gi,

where π : X̃ → Pd−r is the Pr-bundle morphism and Gi are defined in the obvious
way. We note that

G0 = π∗F e
∗OPd−r

∼=
d−r⊕
k =0

OX̃(−kH ′)⊕a(k,0;d−r,e)

and set b0,k := a(k, 0; d− r, e). For 1 ⩽ i ⩽ r − 1, we have

Gi = OX̃(−iH)⊗
π∗F e

∗O
⊕a(i,0;r−1,e)
Pd−r ⊕

q−1⊕
j =1

π∗F e
∗OPd−r(j)⊕a(i−1,q−j;r−1,e)


∼= OX̃(−iH)⊗

(
d−r⊕
k =0

OX̃(−kH ′)⊕a(k,0;d−r,e)·a(i,0;r−1,e)

⊕
q−1⊕
j =1

d−r⊕
k =0

OX̃(−kH ′)⊕a(k,j;d−r,e)·a(i−1,q−j;r−1,e)


=

d−r⊕
k =0

OX̃(−iH − kH ′)⊕bi,k .

where

bi,k := a(k, 0; d− r, e) · a(i, 0; r − 1, e) +
q−1∑
j =1

a(k, j; d− r, e) · a(i− 1, q − j; r − 1, e).

Likewise,

Gr = OX̃(−rH)⊗
q−1⊕
j =1

π∗F e
∗OPd−r(j)⊕a(r−1,q−j;r−1,e)

= OX̃(−rH)⊗
q−1⊕
j =1

d−r⊕
k =0

OX̃(−kH ′)⊕a(k,j;d−r,e)·a(r−1,q−j;r−1,e)

=
d−r⊕
k =0

OX̃(−rH − kH ′)⊕
∑q−1

j = 1 a(k,j;d−r,e)·a(r−1,q−j;r−1,e),
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so we set br,k := ∑q−1
j =1 a(k, j; d− r, e) · a(r − 1, q − j; r − 1, e). Summing up,

F e
∗OX̃

∼=
⊕

0⩽i⩽r
0⩽k⩽d−r

OX̃(−iH − kH ′)⊕bi,k

where

bi,k = a(k, 0; d− r, e) · a(i, 0; r − 1, e) +
q−1∑
j =1

a(k, j; d− r, e) · a(i− 1, q − j; r − 1, e),

for all 0 ⩽ i ⩽ r, 0 ⩽ k ⩽ d− r.
Let E be the exceptional divisor of X̃ → X and note that Cl X̃ = Z ·H ⊕ Z · E.

Set O(a, b) := OX̃(aH + bE). Observe that H ∼ H ′ + E; see [EH16, Corollary 9.12].
Hence,

F e
∗OX̃

∼=
⊕

0⩽i⩽r
0⩽k⩽d−r

OX̃

(
− iH − k(H − E)

)⊕bi,k =
⊕

0⩽i⩽r
0⩽k⩽d−r

OX̃

(
− (i + k)H + kE)

)⊕bi,k

=
⊕

0⩽i⩽r
0⩽k⩽d−r

O(−i− k, k)⊕bi,k

It is noteworthy that setting d = 2, r = 1 recovers our computation for X1 in Sec-
tion 4.2 as OX1(C0) = O(0, 1) and OX1(C1) = O(1, 0).

Pulling F e
∗OX̃ back to the big open X̃ \ E = X \ Y ⊂ X and then pushing it

forward to X = Pd yields ∑i+k = l bi,k = a(l, 0; d, e) for all l = 0, . . . , d (independently
of r). For r = 1:

a(l, 0; d, e) = b0,l + b1,l−1 = a(l, 0; d− 1, e) +
q−1∑
j =1

a(l − 1, j; d− 1, e)

for all l = 0, . . . , d. In other words,
q−1∑
j =1

a(l − 1, j; d− 1, e) = a(l, 0; d, e)− a(l, 0; d− 1, e).

Adding a(l − 1, 0; d− 1, e) on both sides yields

(4.1)
q−1∑
j =0

a(l − 1, j; d− 1, e) = a(l, 0; d, e)− a(l, 0; d− 1, e) + a(l − 1, 0; d− 1, e),

for all d, e and l = 1, . . . , d.
Next, recall that the exceptional divisor E → Y is realized as the projective bundle

P(I/I2)→ Y ∼= Pr−1 where I is the ideal sheaf cutting out Y and the conormal
bundle of E ⊂ X̃ corresponds to OE(−1) := OP(I/I2)(−1). Therefore, the pullback
of F e

∗OX̃ to E is(
F e

∗OX̃

)∣∣∣
E

∼=
⊕

0⩽k⩽d−r

OE(−k)⊕qr−1(a(k+1,0;d−(r−1),e)−a(k+1,0;d−r,e)+a(k,0;d−r,e))
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as the pullback of O(−i− k, k) to E is OE(−k) and
r∑

i=0
bi,k = qr−1 ·

q−1∑
j =0

a(k, j; d− r, e)

= qr−1
(
a(k + 1, 0; d− (r − 1), e)− a(k + 1, 0; d− r, e) + a(k, 0; d− r, e)

)
,

where the last equality is an application of (4.1). Further, by setting k = 0 above
and after a short calculation, we see that

O
⊕qr(q+d−r

d−r )
E

is a direct summand of
(
F e

∗OX̃

)∣∣∣
E

and so Ee,X̃ is not ample. Consequently:

Proposition 4.2. — Let S be a smooth variety of dimension d and f : X → S
be the blowup of S along a smooth closed subvariety C ⊂ S of dimension c−1 ⩽ d−2.
Further, set an isomorphism g : Âd ∼= Spec ÔS,s → S where s ∈ S is a smooth closed
point contained in C and write Âd = Speck[[x1, . . . , xd]] with (xc, . . . , xd) being local
equations for C. Consider the following cartesian diagram

Pd−c

Âc−1
//

��

X̂
h

//

f̂

��

X

f

��

Âc−1 xc,...,xd = 0
// Âd g

// S

so that f̂ is the blowup of Âd with respect to the ideal (xc, . . . , xd). Then,

h∗F e
∗OX = F e

∗OX̂
∼=

⊕
0⩽k⩽d−c

OX̂(kE)⊕qc−1(a(k+1,0;d−(c−1),e)−a(k+1,0;d−c,e)+a(k,0;d−c,e))

where E is the exceptional divisor of f̂ . Furthermore, the pullback of F e
∗OX to

E ∼= Pd−c

Âc−1 is(
F e

∗OX

)∣∣∣
E

∼=
⊕

0⩽k⩽d−c

OE(−k)⊕qc−1(a(k+1,0;d−(c−1),e)−a(k+1,0;d−c,e)+a(k,0;d−c,e)),

which has O⊕qc(q+d−c
d−c )

E as a direct summand. Therefore, Ee,X is not ample.

The importance of Lemma 4.2 for us can already be appreciated:

Corollary 4.3. — If X is a smooth surface that admits a (−1) curve, then Ee,X

is not ample.

Proof. — Use Castelnuovo’s contraction theorem and Lemma 4.2. □

Remark 4.4. — Let us stress how Corollary 4.3 works. We need to show thatEe,X |C
is not ample where P1 ∼= C ⊂ X is the (−1)-curve. By Castelnuovo’s contraction
theorem, C is the exceptional divisor of a blowup X → S at a closed point s ∈ S of
some smooth surface S. In principle, the computation of the restriction of Ee,X |C can
be carried out locally around s ∈ S yet we do something quite different. Since the
computation is local, we are free to replace X by another surface which is isomorphic
to X around C, say the blowup of P2 at the origin. Then, we exploit the global
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geometry of such blow up to carry out the intersection computation of interest
globally. This kind of idea will be exported to the threefold case in Section 5.3 in
the proof of Proposition 5.17. Nonetheless, we think it is instructive to show how
the direct local computation works in the simplest case of Bl0 P2.

Set x, y to be local coordinates around 0 ∈ P2. We illustrate next how to describe
(F e

∗ X)|P1 locally, where X := Bl0 A2 and P1 ⊂ X is the exceptional divisor. Recall
that X is described by the affine charts k[x, y/x] and k[x/y, y] inside k(x, y). On
k[x, y/x], F e

∗OX admits the decomposition ⊕0⩽ i,j⩽q−1 k[x, y/x]F e
∗ xi(y/x)j whereas

F e
∗OX equals⊕0⩽ i,j⩽q−1 k[x/y, y]F e

∗ (x/y)iyj on the chart k[x/y, y]. Thus, (F e
∗OX)|P1

equals ⊕0⩽ i,j⩽q−1 k[y/x]F e
∗ xi(y/x)j on k[y/x] and likewise F e

∗OX restricts to the
sheaf ⊕0⩽ i,j⩽q−1 k[x/y]F e

∗ (x/y)iyj on k[x/y]; where P1 is being realized by the
affine charts k[y/x] and k[x/y] inside k(y/x). Now, observe that

F e
∗ xi(y/x)j =

F e
∗ (x/y)i−jyi, if i ⩾ j,

(y/x)F e
∗ (x/y)q−(j−i)yi, if j > i.

In particular,⊕
0⩽ i,j⩽q−1

k[y/x]F e
∗ xi(y/x)j

=
q−1⊕
i=0

 i⊕
j =0

k[y/x]F e
∗ (x/y)jyi ⊕

q−1⊕
j = i+1

k[y/x](y/x)F e
∗ (x/y)jyi

.

Hence, by gluing k[y/x]F e
∗ (x/y)jyi with k[x/y]F e

∗ (x/y)jyi for j ⩽ i; obtaining a
copy of OP1 , and k[y/x](y/x)F e

∗ (x/y)jyi with k[x/y]F e
∗ (x/y)jyi for j > i; obtaining

a copy of OP1(−1), we see that (F e
∗OX)|P1 is a direct sum of 1 + · · ·+ q = q(q + 1)/2

many copies of OP1 and q2−q(q+1)/2 = q(q−1)/2 many copies of OP1(−1); agreeing
with our previous computations.

4.4. Cones

To set notation, we recall some general constructions. For details, see [The21, Tag
0EKF], [Har77, II, Exercise 6.3 and Section V, Example 2.11.4]. Let S = ⊕

i∈N Si

be a graded ring that is finitely generated by S1 as an S0-algebra and suppose S0
and so S to be noetherian (e.g. S0 = k). That is, S is a standard graded ring. Set:

Z := Spec S0, V := Proj S, C := Spec S, P := Proj S[t]
where S[t] is the graded ring obtained from S by adding a free variable t in degree 1.
These are all quasi-compact Z-schemes. Additionally, let us denote by σ : L → V
the cone defined by OV (1), that is, L := SpecV

⊕
n⩾0OV (n) = SpecV SymOV (1),

which is a line bundle as S is generated by S1 as an S0-algebra. Then, we have a
commutative diagram

(4.2)
V //

��

L
σ
//

g

��

V

��

Z // C // Z
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where:
• V → L is the zero section of σ; which is defined by 0 ∈ H0(V,OV (−1)) as
OV (1) is an invertible sheaf on V ,
• Z → C is the closed embedding cut out by the irrelevant ideal S+ ⊂ S, and
• g is the canonical morphism g : L→ Spec H0(L,OL)→ C.

Since S is generated by S1 as an S0-algebra, g is the blowup of C along Z and the
section V → L is its exceptional divisor.

Next, let π : X → V denote the P1-bundle P(F)→ V defined by F = OV ⊕OV (1).
Note that there are isomorphisms of graded OV -algebras

SymF ∼= SymOV (1)⊗OV
SymOV

∼=
(

SymOV (1)
)
⊗OV

OV [t] =:
(

SymOV (1)
)
[t]

In particular, the closed subscheme of X defined by t = 0 is the section of π : X → V
defined by the direct summand quotient F → OV (1) → 0, whose corresponding
Cartier divisor we denote by H. Further, the open complement of H ⊂ X is L =
SpecV SymOV (1) and L ⊂ X

π−→ V coincides with σ : L→ V .
Let E be the Cartier divisor on X defined by the section of π corresponding to

the other direct summand quotient F → OV → 0. Since F splits as a direct sum,
H ∩E = ∅. Moreover, the restriction of E to the open L is none other than the zero
section of σ : L→ V .

Note that Γ∗(X,OP(F)(1)) = H0(L,OL)[t] as graded rings. Thus, the canonical
graded homomorphism S[t] → Γ∗(X,OP(F)(1)) defines a morphism f : X → P
[The21, Tag 01NA], which restricts to g : L → C. Thus, there is the following
commutative diagram that extends (4.2):

V //

��

X
π
//

f

��

V

��

Z // P // Z

In particular, f is the blowup of P along Z and the section V → X; which defines E,
is its exceptional divisor. Moreover, f ∗OP (1) = OP(F)(1).

Let G be a Cartier divisor on X such thatOX(G) = π∗OV (1). Then, the tautological
quotient π∗F → OP(F)(1)→ 0 is OX⊕OX(G)→ OP(F)(1). We see that the divisor of
zeros of the global section of OP(F)(1) defined via the tautological quotient is precisely
H, whence OP(F)(1) ∼= OX(H). Thus, the tautological quotient can be thought of
as OX ⊕OX(G)→ OX(H)→ 0. Twisting it by OX(−G), we obtain a global section
of OX(H − G) whose divisor of zeros is E. In other words, we obtain the relation
H −G ∼ E.

Recall that π∗ : Pic V → Pic X and Z → Pic X; 1 7→ OX(H), define an isomor-
phism Z⊕ Pic V

∼=−→ Pic X. Let N be an invertible sheaf on V , then,

F e
∗

(
OX(nH)⊗N

) ∼= OX

(
⌊n/q⌋H

)
⊗

[n]q⊕
j =0

π∗F e
∗

(
OV (j)⊗N

)
(4.3)

⊕OX

(
(⌊n/q⌋ − 1)H

)
⊗

q−1⊕
j =[n]q +1

π∗F e
∗

(
OV (j)⊗N

)
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It is difficult to say much more for such a general V = Proj S. In what follows, we
specialize to Veronese and Segre embeddings.

4.4.1. Veronese embeddings

Let S be the εth Veronese subring of the standard graded polynomial ring
k[x0, . . . , xd]. That is, V is the εth Veronese embedding of Pd, and C and P are,
respectively, the affine and projective cones over V . Thus, X is the blowup of P at its
vertex, and it can be realized as the P1-bundle over Pd defined by F = OPd ⊕OPd(ε).
Specializing to d = 1 recovers the examples in Section 4.2. Denote by H ′ ⊂ X the
pullback of a hyperplane along the morphism π : X → Pd. In particular, G = εH ′,
and so H ∼ E + εH ′. The above formula (4.3) becomes

F e
∗

(
OX(nH + n′H ′)

) ∼= OX

(
⌊n/q⌋H

)
⊗

[n]q⊕
j =0

π∗F e
∗

(
OPd(εj + n′)

)

⊕OX

(
(⌊n/q⌋ − 1)H

)
⊗

q−1⊕
j =[n]q +1

π∗F e
∗

(
OPd(εj + n′)

)
,

where

π∗F e
∗

(
OPd(j + n′)

) ∼= d⊕
l=0

OX

(
(⌊(εj + n′)/q⌋ − l)H ′

)⊕a(l,[εj+n′]q ;d,e)
.

By the projection formula, it suffices to focus on the case 0 ⩽ n, n′ ⩽ q − 1. Hence,

F e
∗

(
OX(nH + n′H ′)

)
∼=

d⊕
l=0

n⊕
j =0

OX

(
(⌊(εj + n′)/q⌋ − l)H ′

)⊕a(l,[εj+n′]q ;d,e)

⊕
d⊕

l=0

q−1⊕
j =n+1

OX

(
− E + (⌊(εj + n′)/q⌋ − ε− l)H ′

)⊕a(l,[εj+n′]q ;d,e)

∼=
d⊕

l=0

n⊕
j =0

OX

(
(⌊(εj + n′)/q⌋ − l)H ′

)⊕a(l,[εj+n′]q ;d,e)

⊕
d⊕

l=0

q−1−n⊕
j =1

OX

(
− E + (⌊(−εj + n′)/q⌋ − l)H ′

)⊕a(l,[−εj+n′]q ;d,e)
,

where the last equality follows from noting that ⌊(ε(q−j)+n′)/q⌋−ε = ⌊(−εj+n′)/q⌋
and [ε(q−j)+n′]q = [−εj+n′]q for all j = 1, . . . , q−1. At this point, the computation
becomes quite involved. We next illustrate the easier, yet more important cases. Our
first simplification is the following assumption:

q ⩾ ε− n′ ⩾ 1.

Next, we introduce two partitions of {1, . . . , q − 1}.
{0, . . . , q − 1} = I1 ∪ I1 ∪ · · · ∪ Iε−1 ∪ Iε,
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where for i = 1, . . . , ε− 1 we set
Ii :=

{
⌊((i− 1)q − 1− n′)/ε⌋+ 1, . . . , ⌊(iq−1− n′)/ε⌋

}
,

Iε :=
{
⌊((ε− 1)q − 1− n′)/ε⌋+ 1, . . . , q − 1

}
.

Thus, if j ∈ Ii then ⌊(εj + n′)/q⌋ = i − 1 and [εj + n′]q = εj + n′ − (i − 1)q. The
other partition is

{1, . . . , q − 1} = J1 ∪ J2 ∪ · · · ∪ Jε−1 ∪ Jε

where for i = 1, . . . , ε− 1 we set
Ji :=

{
⌊((i− 1)q + n′)/ε⌋+ 1, . . . , ⌊(iq +n′)/ε⌋

}
,

Jε :=
{
⌊((ε− 1)q + n′)/ε⌋+ 1, . . . , q − 1

}
.

Hence, if j ∈ Ji then ⌊(−εj + n′)/q⌋ = −i and [−εj + n′]q = iq−εj + n′. Of course,
if n′ = 0, this is the partition we had in Section 4.2. It is convenient to define
J−1 := {0}.

Let in, i′
n be defined by n ∈ Iin and q − 1− n ∈ Ji′

n
. Then,

F e
∗OX(nH + n′H ′) ∼=

d⊕
k =−in+1

OX(−kH ′)⊕ςk ⊕
i′
n+d⊕
k =1

OX(−E − kH ′)⊕σk ,

where ςk and σk are computed as follows. For each l = 0, . . . , d and i = 1, . . . , ε,
define the following numbers:

ς
(l)
i :=

∑
j ∈Ii∩[0,n]

a(l, [εj + n′]q; d, e) =
∑

j ∈Ii∩[0,n]
a(l, εj + n′ − (i− 1)q; d, e)

σ
(l)
i :=

∑
j ∈Ji∩[1,q−1−n]

a(l, [−εj + n′]q; d, e) =
∑

j ∈Ji∩[1,q−1−n]
a(l, iq−εj + n′; d, e).

Then,

ςk =
∑

i−1−l=−k

ς
(l)
i =

∑
l=k+i−1

ς
(l)
i =

in∑
i=1

ς
(k+i−1)
i ,

and likewise

σk =
∑

i+l=k

σ
(l)
i =

i′
n∑

i=1
σ

(k−i)
i .

To go on, we set n, n′ = 0. Then, in = 1, i′
n = ε, and

F e
∗OX =

d⊕
k =0

OX(−kH ′)⊕ςk ⊕
ε+d⊕
k =1

OX(−E − kH ′)⊕σk ,

where,
ςk = ς

(k)
1 = a(k, 0; d, e), σk =

∑
1⩽i⩽ε
0⩽l⩽d
i+l=k

σ
(l)
i =

∑
1⩽i⩽ε
0⩽l⩽d
i+l=k

∑
j ∈Ji

a(l, iq−εj; d, e),

and
Ji =

{(
(i− 1)q − ρc,(i−1)

)
/ε + 1, . . . , (iq−ρc,i)/ε

}
, i = 1, . . . , ε.
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where ρc,i is defined as in Section 4.2 and c is the residue of q modulo ε.
Recall that E ∼= Pd and, under this isomorphism, OX(H ′)|E and OX(E)|E corre-

spond to OPd(1) and OPd(−ε). Then,

(F e
∗OX)|E ∼=Pd

∼=
d⊕

k =0
OPd(−k)⊕(ςk+σε+k) ⊕

ε−1⊕
k =1

OPd(k)⊕σε−k .

Therefore, by looking at the summand k = 0, we find that Ee,X is not ample.
Remark 4.5. — For Hirzebruch surfaces, we can use the above to compute F e

∗OP

even if P is singular; see Remark 4.1. Indeed, let L ⊂ P be the pushforward to P
of the restriction of H ′ to X \ E = P \ {0} ⊂ P . Thus, L is a Q-Cartier divisor
on P with Cartier index ε, indeed εL ∼ H where H ⊂ P denotes the closure of the
restriction of H ⊂ X to X \E = P \ {0}. Restricting F e

∗OX to X \E = P \ {0} ⊂ P
and then pushing it forward to P yields

F e
∗OP

∼=
d⊕

k =0
OP (−kL)⊕(ςk+σk+ε) ⊕

ε−1⊕
k =1

OP (−kL)⊕σk .

In particular, if d ⩾ ε− 1 then ς0 + σε = 1 + σε is the eth F -splitting number of S.
In general, it is ∑⌊d/ε⌋

k =0 ςkε + σ(k+1)ε. To the best of the author’s knowledge, such an
explicit description of F e

∗OP and so of F e
∗OP,0 has not been worked out before. We

recover that s(OP,0) = 1/ε.

4.4.2. Segre embeddings

Let S := k[x0, . . . , xr]#k[y0, . . . , ys] be the Segre product of two standard graded
polynomial k-algebras. Then, V ∼= Pr×Ps and X is the P1-bundle over Pr×Ps defined
by F = OPr×Ps ⊕OPr×Ps(1, 1). We let OX(G1) = π∗O(1, 0) and OX(G2) = π∗O(0, 1),
so that G = G1 + G2. Thus, the Cartier divisors H, G1, G2 are free generators of
Pic X. Letting 0 ⩽ n, n1, n2 ⩽ q − 1, we have

F e
∗OX(nH + n1G1 + n2G2)

∼=
n⊕

j =0
π∗F e

∗O(j + n1, j + n2)⊕
q−1⊕

j =n+1
OX(−H)⊗ π∗F e

∗O(j + n1, j + n2),

which is isomorphic to the direct sum of
n⊕

j =0

⊕
0⩽k⩽r
0⩽l⩽s

OX

(
(⌊(j + n1)/q⌋ − k)G1 + (⌊(j + n2)/q⌋ − l)G2

)⊕a(k,[j+n1]q ;r,e)a(l,[j+n2]q ;s,e)

with
q−1⊕

j =n+1

⊕
0⩽k⩽r
0⩽l⩽s

OX +
(
⌊(j + n1)/q⌋ − k)G1 + (⌊(j + n2)/q⌋ − l)G2

)⊕a(k,[j+n1]q ;r,e)a(l,[j+n2]q ;s,e)
.
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Let us set n, n1, n2 = 0. Then,
F e

∗OX
∼=

⊕
0⩽k⩽r
0⩽l⩽s

OX(−kG1 − lG2)⊕a(k,0;r,e)a(l,0;s,e)

⊕
⊕

0⩽k⩽r
0⩽l⩽s

OX(−H − kG1 − lG2)⊕
∑q−1

j = 1 a(k,j;r,e)a(l,j;s,e)

∼=
⊕

0⩽k⩽r
0⩽l⩽s

OX(−kG1 − lG2)⊕a(k,0;r,e)a(l,0;s,e)

⊕
⊕

1⩽k⩽r+1
1⩽l⩽s+1

OX(−E − kG1 − lG2)⊕σk−1,l−1 ,

where σk,l := ∑q−1
j =1 a(k, j; r, e)a(l, j; s, e). In this example, E ∼= Pr×Ps, and OX(E)|E,

OX(G1)|E, OX(G2)|E correspond to O(−1,−1), O(1, 0), O(0, 1); respectively. Then,

(F e
∗OX)|E ∼=Pr ×Ps

∼=
⊕

0⩽k⩽r
0⩽l⩽s

O(−k,−l)⊕
∑q−1

j = 0 a(k,j;r,e)a(l,j;s,e).

As before, looking at k, l = 0 let us conclude that Ee,X is not ample.

Remark 4.6. — We may describe F e
∗OP as in Remarks 4.1 and 4.5. Let Li be the

restriction of Gi to X \E = P \ {0} followed by its pushforward to P . Then, Li is a
Weil divisor on P and Cl P = Z ·L1 ⊕Z ·L2. Of course, L1 + L2 ∼ H where H ⊂ P
denotes the restriction of H to X \ E = P \ {0} followed by its pushforward to P .
Then, L1 + L2 ∼ 0 on the affine cone P \H = Spec S and

F e
∗OP \H

∼=
s⊕

i=−r

OP \H(iL)⊕
∑

l−k = i

∑q−1
j = 0 a(k,j;r,e)a(l,j;s,e)

where L denotes the class of L1 on P \H, which freely generates Cl(P \H) = Cl S.
Looking at i = 0, the eth F -splitting number of S is

∑
l=k

q−1∑
j =0

a(k, j; r, e)a(l, j; s, e) =
∑

k

q−1∑
j =0

a(k, j; r, e)a(k, j; s, e).

From the proof of Proposition 3.2, we know that a(k, j; r, e) is the coefficient of uj+kq

in (1+u+ · · ·+uq−1)r+1 and analogously for a(l, j; s, e). Thus, the above proves that
the eth F -splitting number of S is the sum of the coefficients of monomials {ukvk}k

in the product (1+u+ · · ·+uq−1)r+1(1+v + · · ·+vq−1)s+1 thereby recovering [Sin05,
Example 7].

4.5. Quadrics

Let Qd be the d-dimensional smooth quadric. That is, Qd is the hypersurface of
Pd+1 cut out by the equation x2

0 + x1x2 + · · · + xdxd+1 = 0 if d is odd or by the
equation x0x1+. . .+xdxd+1 = 0 if d is even. The Frobenius pushforwards of invertible
sheaves (in fact, of arithmetically Cohen–Macaulay locally free sheaves) on Qd have
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been thoroughly described in [Ach12, Lan08], where the reader can find the precise
description. Here, we are interested in the positivity of Ee, which we study below.
From Section 4.1, we know that Ee is ample for d = 1 but not for d = 2 as Q1 ∼= P1

and Q2 ∼= P1 × P1. We show next that Ee is ample for d ⩾ 3 if and only if p > 2.
Recall that ωQd = OQd(−d) so that

F e
∗ ω1−q

Qd
∼= F e

∗OQd(d(q − 1)).

Let S denote the spinor bundle on Qd (following the notation in [Ach12, Sec-
tion 1.2]),(7) which is a locally free sheaf of rank 2⌊d/2⌋. See [Ach12, Add11, Add09,
Kap86, Lan08, Ott88] for more on spinor sheaves on quadrics. According [Ach12,
Theorems 2 and 3], F e

∗ ω1−q
Qd admits a direct sum decomposition

(4.4) F e
∗ ω1−q

Qd
∼=
⊕
i∈Z

OQd(i)⊕ai ⊕
⊕
j ∈Z

S(j)⊕bj

where ai ̸= 0 if and only if

0 ⩽ d(q − 1)− iq ⩽ d(q − 1)

and bj ̸= 0 if and only if

d

2
(
pe − pe−1

)
− pe + pe−1 ⩽ d

(
pe − 1

)
− jpe

⩽
d

2
(
pe − pe−1

)
− pe−1 + d

(
pe−1 − 1

)
,

p ̸= 2,

(
⌊d/2⌋ − 1

)
2e−1 ⩽ d(2e − 1)− j2e

⩽ d(2e − 1)− 2e −
(
⌊d/2⌋ − 1

)
2e−1,

p = 2.

Equivalently, bj ̸= 0 if and only if
d
2pe −

(
d
2 − 1

)
pe−1 ⩽ jpe ⩽

(
d
2 + 1

)
pe +

(
d
2 − 1

)
pe−1 − d, p ̸= 2,

2e +
(
⌊d/2⌋ − 1

)
2e−1 ⩽ j2e ⩽ d(2e − 1)−

(
⌊d/2⌋ − 1

)
2e−1, p = 2.

In particular, ai ̸= 0 if and only if 0 ⩽ i ⩽ d−d/q. Thus, ai = 0 unless 0 ⩽ i ⩽ d− 1.
To analyze the vanishing of bj, we must consider whether or not p = 2.

Suppose p ≠ 2 first. Note that d/2 − 1 ⩾ 3/2 − 1 = 1/2 > 0 (if d ⩾ 3). In
particular, if bj ̸= 0 then

j ⩾
d

2 −
(

d

2 − 1
)

1
p
⩾

d

2 −
(

d

2 − 1
)

1
3 = d

3 + 1
3 ⩾ 1 + 1

3 ,

as p ⩾ 3. Hence, bj = 0 if j ⩽ 1. Likewise, if bj ̸= 0 then

j ⩽
d

2 + 1 +
(

d

2 − 1
)

1
p
− d

pe
<

d

2 + 1 +
(

d

2 − 1
)

1
3 = 2

3(d + 1),

(7)That is, S is the spinor bundle if d is odd and is the direct sum of the two spinor bundles if d is
even.
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and so j ⩽ d− 1. That is, bj ̸= 0 implies 2 ⩽ j ⩽ d− 1. In conclusion, if p ⩾ 3, the
only sheaves showing up in (4.4) are (possibly) in the list

OQd ,OQd(1), . . . ,OQd(d− 1),S(2), . . . ,S(d− 1) p ̸= 2.

The above list cannot be shortened as it is sharp for d = 3 and p ⩾ 5 (as well as
for d = 4 and e ⩾ 3). Indeed, we readily see that S(d− 1) shows up if and only if
d ⩽ (4pe−2pe−1)/(pe−pe−1 +2). In particular, for d = 3, this always happens unless
(e, p) = (1, 3). For d = 4, this is always the case unless either e = 1 or (e, p) = (2, 3).
However, for d ⩾ 5, this never happens for e≫ 0.

Let us suppose now that p = 2. If bj ̸= 0 then

j ⩾ 1+1
2
(
⌊d/2⌋−1

)
⩾ 1+1

2
(
⌊3/2⌋−1

)
= 1, j ⩽ d(1−1/2e)−1

2
(
⌊d/2⌋−1

)
⩽ d−1.

Thus, if bj ̸= 0 then 1 ⩽ j ⩽ d − 1. Hence, if p = 2, the only sheaves showing up
in (4.4) are (possibly) in the list

OQd ,OQd(1), . . . ,OQd(d− 1),S(1),S(2), . . . ,S(d− 1) p = 2,

which cannot be shortened any further as the case d = 3 shows (for all e ⩾ 1).
Observe that OQd must show up with multiplicity a0 = 1. Indeed,

(
F e

∗ ω1−q
Qd

)∨ ∼=
F e

∗OQd and by counting global sections we get a0 = 1. In particular, Ee admits a
direct sum decomposition with summands from the list
(4.5) OQd(1), . . . ,OQd(d− 1),S(1),S(2), . . . ,S(d− 1),
where S(1) occurs if and only if p = 2.

Claim 4.7. — S(1) is globally generated but not ample, and so S(j) is ample
for all j ⩾ 2.

Proof. — To see why S(1) is globally generated, use the short exact sequence

0 −→ S −→ O⊕2⌊d/2⌋+1

Qd −→ S(1) −→ 0;

see [Lan08, Section 1.2] or [Ach12, (1.3)]. It remains to explain why S(1) is not
ample. This can be done by induction on d using how S(1) restricts on hyperplane
sections; see [Add09, Section 2.2.2], and that S(1) is not ample for d = 2. Indeed,
using the inductive construction of S in terms of matrix factorizations enables us
to see that: S(1) = S+(1) ⊕ S−(1) on Q2k restricts to S(1) ⊕ S(1) on Q2k−1 =
Q2k ∩ (H : x0 = x1) and that S(1) on Q2k+1 restricts to S+(1) ⊕S−(1) = S(1) on
Q2k = Q2k+1 ∩ (H : x0 = 0). □

Additionally, S∨ ∼= S(1) [Lan08, Section 1.1]. In particular, for each sheaf F in
the above list (4.5), (F ⊗ ωQd)∨ is ample. Indeed,(

S(j)⊗ ωQd

)∨ ∼= S∨ ⊗OQd(d− j) ∼= S(d− j + 1),

which is ample if and only if j < d. In other words, (Bd
e )∨ is ample. Summing up:

Corollary 4.8. — On Qd with d ⩾ 3, B1,∨
e = Ee is ample if and only if p ≠ 2.

Further, Bd,∨
e = (Ee ⊗ ω)∨ is ample for all p.
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Remark 4.9. — In principle, one may combine the ideas of Section 4.4 with the
computations in [Ach12, Lan08] to compute F e

∗ Rd where Rd is the affine cone over
Qd, cf. [GM10, Tri23]. See Remarks 4.1, 4.5 and 4.6. However, this will be pursued
elsewhere.

5. On the Positivity of Frobenius Trace Kernels

In this section, we study the consequences that positivity conditions on Ee,X have
on the geometry of X. Throughout this section, we work on the following setup.

Notation 5.1. — Let X be a smooth projective variety of dimension d. Set
0 ̸= e ∈ N and We = We,X := F e

∗ ω1−q
X , so that Ee = Ee,X = ker(τ e : We → OX).

Remark 5.2 (On the positivity of Ee with respect to e). — We explain why there
is a sequence of quotient maps

· · · −→−→E3,X −→−→E2,X −→−→E1,X

In particular, letting P be a positivity property that is inherited to quotients (e.g.,
ampleness, nefness, global generation), if Ee,X has P for all e≫ 0 then it has it for
all e > 0. Consider the definitional short exact sequence

0 −→ OX
F e,#
−−−→ F e

∗OX −→B1
e,X −→ 0

and push it forward along F d to obtain

0 −→ F d
∗OX

F d
∗ F e,#

−−−−→ F d+e
∗ OX −→ F d

∗ B
1
e,X −→ 0

which is exact as F d is affine. Since we also have the short exact sequence

0 −→ OX
F d,#
−−−→ F d

∗OX −→B1
d,X −→ 0

we obtain the following one:
0 −→B1

d,X −→B1
d+e,X −→ F d

∗ B
1
e,X −→ 0

Dualizing it yields

(5.1) 0 −→ F d
∗

(
Ee,X ⊗ ω1−pd

X

)
−→Ed+e,X −→Ed,X −→ 0

However, it is unclear to the authors whether Ee,X being positive for some e ∈ N;
say e = 1, implies it for all e > 0. The reason is that it is unclear how to preserve
positivity along Frobenius pushforwards. Also, see Remark 5.12 and Question 5.13
below.

5.1. Global generation

In this subsection, we rely on the works of Murayama [Mur18, Mur19].

Lemma 5.3. — Working in Notation 5.1, We is globally generated if and only if
Ee is globally generated and X is F -split.
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Proof. — If X is F -split, then We
∼= Ee⊕OX and so it is globally generated if (and

only if) so is Ee. Conversely, suppose that We is globally generated, then there are
surjections O⊕n

X →→We→→OX . We then have n morphisms OX → OX , which amounts
to having n global sections of OX , i.e., n elements of k. By surjectivity, at least
one of these scalars must be nonzero. Thus, H0(X,We)→ H0(X,OX) is surjective.
An element in H0(X,We) that is mapped to 1 corresponds to a splitting of (2.1).
Therefore, X is F -split and Ee is globally generated. □

Definition 5.4. — Let F be a locally free sheaf on a scheme X. One says that
F separates l-jets at a closed point x ∈ X if the canonical restriction-of-sections
map

H0(X,F) −→ H0
(
X,F ⊗OX/ml+1

x

)
is surjective, where mx denotes the ideal sheaf defining x. Further, F is said to
separate l-jets if it separates l-jets at every closed point. Likewise, F separates
q-Frobenius l-jets at x ∈ X if

H0
(
X,F

)
−→ H0

(
X,F ⊗OX

/(
ml+1

x

)[q]
)

is surjective. If this holds for all x ∈ X, one says that F separates q-Frobenius l-jets.

Remark 5.5. — A locally free sheaf is globally generated if and only if it separates
0-jets.

Lemma 5.6. — Let X be an F -finite scheme and x ∈ X be a closed point. An
invertible sheaf L on X separates q-Frobenius l-jets at x if and only if F e

∗L separates
l-jets at x ∈ X.

Proof. — By definition, L separates q-Frobenius l-jets at x if and only if the
restriction map

H0
(
X,L

)
−→ H0

(
X,L ⊗OX

/(
ml+1

x

)[q]
)

is surjective. Nevertheless, the surjectivity of this map is equivalent to the surjectivity
of

H0
(
X, F e

∗L
)
−→ H0

(
X, F e

∗

(
L ⊗OX

/(
ml+1

x

)[q]
))

.

However,

F e
∗

(
L ⊗OX

/(
ml+1

x

)[q]
)

=
(
F e

∗L
)
⊗OX/ml+1

x .

Therefore, L separates q-Frobenius l-jets at x if and only if the restriction map

H0
(
X, F e

∗L
)
−→ H0

(
X, F e

∗L ⊗OX

/
ml+1

x

)
is surjective, which means that F e

∗L separates l-jets at x. □

Proposition 5.7. — Working in Notation 5.1, if Ee is globally generated and X
is F -split then X is Fano.
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Proof. — Note that ω1−q
X separates q-Frobenius 0-jets. Indeed, by Lemma 5.6, this

means that We separates 0-jets, i.e., it is globally generated. However, this follows
from Lemma 5.3. On the other hand, by [Mur18, Proposition 2.5(ii)], we have

εl
F

(
ω−1

X ; x
)
⩾ sup

m,e

q − 1
m/(l + 1) ,

where the supremum traverses all m, e such that ω−m
X separates q-Frobenius l-jets

at x. Notice that we are using the trivial inequality in [Mur18, Proposition 2.5(ii)],
which does not require X to be Fano. Therefore,

ε0
F

(
ω−1

X ; x
)
⩾ (q − 1)/(q − 1) = 1,

for all points x ∈ X. Nonetheless, ε(ω−1
X ; x) ⩾ εl

F (ω−1
X ; x) for all l and all x ∈ X (no-

tice that X is regular, and this inequality does not require X to be Fano); see [Mur18,
Proposition 2.9]. Hence, ε(ω−1

X ; x) ⩾ 1 for all points x. According to [Mur19, Corol-
lary 7.2.7], this suffices to prove that ω−1

X is ample, and so that X is Fano. □

Remark 5.8. — With notation as in Proposition 5.7, let L be an invertible sheaf
on X. Since (F e

∗L)∨ ∼= F e
∗ (L−1⊗ω1−q

X ), we have that (F e
∗L)∨ is globally generated

if and only if L−1⊗ω1−q
X separates q-Frobenius 0-jets. Therefore, the same argument

as in Proposition 5.7 proves that if (F e
∗L

q−1)∨ is globally generated then L−1⊗ω−1
X

is ample.

5.2. Ampleness and numerical effectiveness

We have the following result.
Proposition 5.9. — Working in Notation 5.1, ifEe is nef then so is ω−1

X . Further,
if Ee is ample then X is Fano.

Proof. — Pulling back (2.1) along F e yields a short exact sequence
0 −→ F e,∗Ee −→ F e,∗We −→ OX −→ 0.

Since F e is finite, F e,∗Ee is nef (resp. ample) if so isEe. Thus, ifEe is nef, F e,∗We is an
extension of nef locally free sheaves and so it is nef as well [Laz04b, Lemma 6.2.12(i)].
Thus, the canonical morphism F e,∗F e

∗ ω1−q
X → ω1−q

X realizes ω1−q
X as a quotient of a

nef locally free sheaf and hence ω1−q
X is nef [Laz04b, 6.1.2(i)]. Hence, ω−1

X is nef (for
one of its powers is nef).

The above argument fails in showing that the ampleness of Ee is inherited by ω−1
X

because OX is not ample. To bypass this, we prove that the composition
(5.2) F e,∗Ee −→ F e,∗We −→ ω1−q

X

is surjective. Consequently, if Ee is ample, a power of ω−1
X would be realized as the

quotient of an ample locally free sheaf and so ω−1
X would be ample.

In order to prove that (5.2) is surjective, we may restrict to stalks. Let x ∈ X
be a point. Twisting (2.1) by OX,x yields the following short exact sequence of
OX,x-modules

0 −→Ee,x −→ F e
∗OX,x

κe
x−→ OX,x −→ 0
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where κe
x : F e

∗OX,x → OX,x is the Cartier operator associated to the local regular
(and so Gorenstein) ring OX,x; see Remark 2.1. For notation ease, let us write O

1/q
X,x

instead of F e
∗OX,x. Thus, pulling back along Frobenius gives the following short exact

sequence

0 −→ O
1/q
X,x ⊗Ee,x −→ O

1/q
X,x ⊗O

1/q
X,x

O
1/q
X,x⊗κe

x−−−−−→ O
1/q
X,x −→ 0.

On the other hand, the localization of F e,∗We → ω1−q
X at x corresponds to the

diagonal homomorphism δ : O1/q
X,x ⊗O

1/q
X,x → O

1/q
X,x realizing O

1/q
X,x as an OX,x-algebra.

Therefore, it suffices to prove that the composition

O
1/q
X,x ⊗Ee,x −→ O

1/q
X,x ⊗O

1/q
X,x

δ−→ O
1/q
X,x

is surjective. By O
1/q
X,x-linearity, it suffices to show that 1 = 11/q ∈ O

1/q
X,x belongs to the

image. Note that 11/q ∈ O
1/q
X,x belongs to Ee,x as κe

x(11/q) = 0; see Remark 2.1. Then,
the image of 11/q ⊗ 11/q ∈ O

1/q
X,x ⊗Ee,x is δ(11/q ⊗ 11/q) = 11/q ∈ O

1/q
X,x; as desired. □

Scholium 5.10. — Work in the setup of Theorem 5.9. Let P be a (positivity)
property on locally free sheaves that can be induced via quotients and symmetric
powers and is preserved under finite pullbacks. If Ee satisfies P then so does ω−1

X .
Proof. — In the proof of Theorem 5.9, we showed that there is a surjective mor-

phism F e,∗Ee → ω1−q
X . Hence, if Ee satisfies P then so does F e,∗Ee by preservation

under finite pullback. Then ω1−q
X satisfies P by induction via quotients and so does

ω−1
X via induction by powers. □

Corollary 5.11. — Work in Notation 5.1 with d = 1. Then Ee is ample if and
only if X ∼= P1.

Remark 5.12. — In Remark 5.2, we had mentioned that it is unclear that Ee

being ample (or, say, nef) for some e implies that it is for all e ∈ N. One may wonder
whether the quotient map (5.2) may help to elucidate this. Combining it with (5.1)
and using the projection formula yields the exact sequence

Ed ⊗ F d
∗Ee −→Ed+e −→Ed −→ 0

However, due to the pushforward F d
∗ , it is unclear whether Ee+d is ample if so are

Ee and Ed. In fact, it is not true in general that F d
∗Ee nor Ed ⊗ F d

∗Ee are ample
if so are Ee and Ed. For instance, for X = P1, we have that Ee = O(1)⊕(q−1) but
F d

∗O(1) = O⊕2 ⊕O(−1)⊕(pd−2). However, one can still ask:
Question 5.13. — Suppose that E1 is ample (resp. nef). Is it true that F∗(E1 ⊗

ω1−p) is ample (resp. nef)?

5.3. Extremal contractions

In studying whenEe is ample, Theorem 5.9 let us restrict ourselves to Fano varieties.
To narrow this down further, we investigate the conditions that the ampleness of
Ee,X imposes on extremal contractions of X. We start off with a general remark
for smooth fibrations. By a fibration, we mean a proper morphism f : X → S with
connected fibers (i.e., f# : OX → f∗OX is an isomorphism).
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Proposition 5.14. — Let f : X → S be a fibration between smooth varieties
whose general fiber is smooth and fix 0 ̸= e ∈ N. IfEe,X is ample and dim S > 0, then
the general fiber of f is zero-dimensional. In particular, all fibers are zero-dimensional
if f is further flat.

Proof. — There is an open ∅ ≠ U ⊂ S such that the restriction fU : XU → U is a
smooth fibration between smooth varieties (using generic flatness, openness of the
regular locus of S, and the given hypothesis of smoothness of the general fiber). By
Remark 2.4, there is a surjective morphism εe,XU /U : Ee,XU

→ f ∗
UEe,U . Its pullback

along a fiber g : Xs → X at a closed point s ∈ U(k) (so Xs ⊂ XU) will be a
surjection of the form

g∗Ee,X −→ O
⊕(qdim S−1)
Xs

.

Therefore, ifEe,X is ample then so is O⊕(qdim S−1)
Xs

. Hence, dim Xs = 0 as dim S >0. □
We had seen above (see Corollary 4.3) that if Ee,X is ample for a surface X, then X

contains no (−1)-curve. We then obtain the following.
Corollary 5.15. — Work in Notation 5.1 with d = 2. Then Ee is ample if and

only if X ∼= P2.
Proof. — Suppose that Ee,X is ample. By Corollary 4.3, X contains no (−1)-curve.

Therefore, any extremal contraction X → S is a Mori fibration. More precisely,
f : X → C is either a ruled surface or X ∼= P2. We rule out the ruled surface case
by using Lemma 5.14.(8) □

With the above proof of Corollary 5.15 in place, we see how to proceed for three-
folds. Fortunately, we have a good description of extremal contractions on smooth
threefolds. We recall the following fundamental result, which was originally due to
S. Mori in characteristic zero in his seminal work [Mor82] and later generalized to
all characteristics by J. Kollár; see [Kol91, Main Theorem].

Theorem 5.16 (Kollár–Mori’s description of smooth threefold extremal contrac-
tions). — Let X be a smooth threefold and f : X → S be an extremal contraction.
If f is birational then it is one of the following divisorial contractions with exceptional
divisor E ⊂ X:

(1) S is smooth and f is the blowup along a smooth curve C ⊂ S. In this case,
fC : E → C is a smooth minimal ruled surface.

(2) S is smooth and f is the blowup at a point s ∈ S. In this case, E ∼= P2 with
normal bundle corresponding to OP2(−1).

(3) S has exactly one singular point s ∈ S and f is the blowup of S at s. Moreover,
one of the following three cases holds:
(a) ÔS,s

∼= k[[x, y, z]]Z/2 ∼= k[[x2, y2, z2, xy, yz, zx]] =: R1, where Z/2 acts via
the involution (x, y, z) 7→ (−x,−y,−z), and E ∼= P2 with normal bundle
OP2(−2).

(b) ÔS,s
∼= k[[x, y, z, t]]/(xy − z2 − t3) =: R2 and E is isomorphic to the

singular quadric cone Q ⊂ P3 with normal bundle corresponding to
OQ(−1).

(8) Note that we have done this explicitly in Section 4.2.
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(c) ÔS,s
∼= k[[x, y, z, t]]/(xy − zt) =: R3 and E ∼= Q2 ⊂ P3 with normal

bundle corresponding to OQ2(−1).

If f is not birational then it corresponds to one of the following Fano fibrations:

(i) S is a smooth surface and f : X → S is a flat conic bundle (i.e. every fiber is
isomorphic to a conic in P2). If p ̸= 2, the general fiber of f is smooth.

(ii) S is a smooth curve and every fiber of f : X → S is irreducible and every
reduced fiber is a (possibly nonnormal) del Pezzo surface. However, the general
fiber is a normal del Pezzo surface [FS20]. Further, if p > 7, the general fiber
of f is a smooth del Pezzo surface [PW22]. Noteworthy, f is necessarily flat;
see [Har77, Section III, Proposition 9.7].(9)

(iii) S is a point and so X is a Fano variety of Picard rank 1.

In this way, the ampleness of Ee,X rules out most possible extremal contractions
that X can undergo.

Proposition 5.17. — With notation as in Theorem 5.16, suppose that Ee,X is
ample (for some 0 ̸= e ∈ N) but the Picard rank ρ(X) ⩾ 2. Then f is either as
in case (ii) or a wild del Pezzo fibration (so p ⩽ 7); i.e., as in case (2) where the
geometric generic fiber (although normal) is not smooth.

Proof. — The tame (i.e. non-wild) instances of (1) and (2) are ruled out by
Lemma 5.14. Next, we explain why there cannot be wild conic fibrations (which only
happen if p = 2). Suppose p = 2 and that X admits a wild conic fibration f : X → S.
Fortunately, these have been classified in [MS03, Corollary 8]. There are two cases,
which we show next to be impossible, yielding the sought contradiction. The cases
are as follows.

First case. — X ⊂ P2 × P2 is a divisor of bidegree (1, 2) and f : X → S is
the projection into the second factor P2 (e.g. [Kol91, Example 4.12]). However, the
projection g : X → P2 onto the first factor is a smooth P1-fibration (see [Sai03, final
case in Section 2.3]) whose existence violates Lemma 5.14.

Second case. — f is given by X ⊂ P(O(1, 0)⊕O(0, 1)⊕O)→ P1×P1 where X is
a smooth prime divisor in the linear system |OP(2)|. However, by [MS03, Remark 10],
X is also the blowup of the smooth quadric threefold Q3 ⊂ P4 along the union of
two disjoint smooth conics C1, C2 ⊂ Q3 (e.g. [Sai03, Example 5.3]). Nonetheless, we
know that these cannot exist either if Ee,X is to be ample by Lemma 4.2.

(9) If p = 2, the generic fiber need not be smooth [FS20]. We do not know of examples if p = 3, 5, 7.
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We see that cases (3a) and (3b) are impossible by applying Lemma 4.2—just as
we did in the proof of Corollary 4.3 (cf. proof of Corollary 5.15). Thus, we are left
with ruling out cases (i) and (iii). Inspired by the previous two cases, our strategy
will be to pullback Ee,X to the exceptional divisor of the blowup arguing that such
pullback is not ample. We do it by computing the restriction explicitly and showing
it has a free direct summand. Since the argument is local around the singular point s,
we may replace S by any projective threefold realizing that singular point. Then,
we compute F e

∗O (and so Ee) for the blowup of that threefold at the singular point
and subsequently its pullback to the exceptional divisor. We start off with case (i).
We may consider S to be projective cone over the Veronese surface P2 ∼= V ⊂ P5;
see Section 4.4. Then, if X → S is the blowup of s at its vertex s, then Ee,X is not
ample and ÔS,s

∼= R1; see Section 4.4.1. Similarly, for case (iii), we may consider S
to be projective cone over the Segre embedding P1×P1 ∼= Q2 ⊂ P3. If s ∈ S denotes
the vertex singularity, then ÔS,s

∼= R3 and its blowup X → S is such that Ee,X is
not ample as demonstrated in Section 4.4.2. □

Unfortunately, the authors do not know how to rule out the remaining cases of
Proposition 5.17. For example, case ii. is quite different from the other two cases
of (3c). To bypass this issue, we are going to take a closer look at the structure of
extremal contractions of smooth Fano threefolds as pioneered by [MM81, MM83,
MM86], which were done in characteristic zero. For the positive characteristic case,
see [MS03, Sai03], cf. [Meg98, SB97, Tak89]. Now, we need not the full strength of
those analyses, as all we need is a result of the form [Wiś91, Corollary 1.3] or say
(much weaker versions of) [MM81, Theorem 5], [MM83, Theorem 1.6], or [MM86]. In
this regard, we have the following. The ideas are those of Mori–Mukai in op. cit. (so
no originality is claimed). However, we provide a proof for the lack of an adequate
reference in positive characteristics.

Proposition 5.18. — Let X be a smooth Fano threefold of Picard rank ρ(X) ⩾ 2.
Then, X admits an extremal contraction f : X → S that is either as in case (3a) or
as in case (1) of Theorem 5.16.

Proof. — Let Γ denote the (closed) cone of curves of X, which is a finite polyhedral
cone as X is a smooth Fano threefold. Let R1, . . . , Rn be the extremal rays of Γ with
corresponding extremal contractions fi : X → Si; see [KM08, Section 3.7]. Suppose,
for the sake of contradiction, that none of the fi is a smooth blowup (case (3a)) nor
a conic bundle (case (1)).

Let ∆ ⊂ Γ be the subcone spanned by those extremal rays that produce divisorial
contractions (only of the types (3b) and (3c) by assumption). For notation ease,
let us say that these are the first m extremal rays (if any). Let E1, . . . , Em ⊂ X
denote the corresponding exceptional divisors (if any). The first observation is that
these divisors are pairwise disjoint. Indeed, let L := Ei ∩ Ej for i ̸= j. Then, on
the one hand, L · Ei = L · Ei|Ei

< 0 as OEi
(Ei) is always negative (according to

Theorem 5.16). On the other hand, L ·Ei ⩾ 0 as curves in Ej move (see the options
in Theorem 5.16). Then, one readily sees that Z ·Ei ⩽ 0 for all Z ∈ ∆. In particular,
(−KX)2 /∈ ∆ and so ∆ ̸= Γ (i.e., n > m).
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In conclusion, f := fn : X → Sn =: S must be a del Pezzo fibration (with
normal general fiber). Since H1(X,OX) = 0 ([Kaw21, Corollary 3.7], [SB97, Corol-
lary 1.5]) and f∗OX = OS, then H1(S,OS) = 0 (as the Leray spectral sequence yields
H1(S,OS) ⊂ H1(X,OX)). In particular, S = P1 and so ρ(X) = ρ(S) + 1 = 2. Let
g : X → S be the other extremal contraction. By assumption, it is either another del
Pezzo fibration or a blowup at a point. If it were another del Pezzo fibration, then
it would give a surjective map f × g : X → P1 × P1 violating that ρ(X) = 2. Hence
g must be a blowup at a point (i.e. of type (3b) or (3c)). Let E be its exceptional
divisor, which is isomorphic to either P2, Q (singular quadric cone), or the smooth
quadric surface Q2 ∼= P1 × P1 (according to Theorem 5.16). In the first two cases,
it is clear that f would have to contract E to a point, and so E would be a fiber
of f , contradicting that OE(E) is negative. The same holds in the third case as well,
yet a little argument is needed for why f contracts E ∼= Q2 ∼= P1 × P1 to a point.
The key observation is that the ruling lines x × P1 and P1 × y (for closed points
x, y ∈ P1) are numerically equivalent inside X. Hence, if either of them does not
intersect the fibers of f then neither does the other. In particular, the restriction of
f to E cannot be one of the canonical projections P1 × P1 → P1 and hence it has to
be a contraction to a point. □

Theorem 5.19. — Work in Notation 5.1 with d = 3. Then, if Ee is ample then
X is a Fano threefold of Picard rank 1.

Proof. — By Theorem 5.9, X is a Fano threefold. Putting Proposition 5.17 and
Proposition 5.18 together yields ρ(X) = 1. □

Remark 5.20 (Converse of Theorem 5.19). — As we saw in Corollary 4.8, the
converse of Theorem 5.19 seems to be rather subtle. In principle, since we may have
a classification of Fano threefolds of Picard rank 1 [Kaw21, Meg98, SB97, Tak89],
one may analyze the ampleness of Ee,X case by case. Of course, the remaining cases
are those of index 2 (also known as del Pezzo threefolds) and those of index 1
where the former is arguably the most tractable by direct analysis. Recall that the
index-2 case includes P6 ∩G(2, 5) (inside P9 with respect to the Plücker embedding
G(2, 5) ⊂ P9), the complete intersection of two smooth quadrics in P5, and the
smooth cubic hypersurface in P4. These seem to be the easiest cases that might
be computed explicitly. For instance, the computations in [RŠVdB19] may be very
useful to answer this for P6∩G(2, 5). In general, a different approach seems necessary.
We do not attempt to pursue this here.

Remark 5.21 (Higher dimensions). — If the main results in [Wiś91] were to hold
in positive characteristics, we may reduce the study of the ampleness of Ee,X and
extremal contractions in dimensions ⩾ 4 to those where divisors are not contracted
(e.g., flipping contractions which we have not discussed so far) and of wild conic
bundles. For instance, in Mori–Mukai’s terminology, we may assume our Fano variety
to be primitive by Lemma 4.2 (which most likely sets an upper bound on the Picard
rank in general). We will not attempt this here.
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5.4. Further remarks

To conclude, we would like to add some final comments regarding the positivity of
the Frobenius trace kernels. For example, why is the positivity of Ee,X so (seemingly)
difficult to study for a hypersurface X ⊂ Pd? Is there some adjunction principle that
may help?

5.4.1. Hypersurfaces, complete intersections, and smooth blowups

Let X be a smooth variety and Y ⊂ X be a smooth irreducible closed subvariety
defined by I ⊂ OX (so I is locally generated by codim(Y, X) elements; see [Har77,
Section II, Theorem 8.17]). By adjunction, ωY

∼= ωX ⊗ detNY/X , where NY/X :=
Hom Y (I/I2,OY ) is the normal bundle of Y in X. We mention next how the Cartier
operator κe

Y : F e
∗ ωY → ωY is related to κe

X : F e
∗ ωX → ωX through adjunction. There

is a commutative diagram of exact sequences

0 // I ⊗ F e
∗ ω1−q

X
//

I⊗τe
X

��

F e
∗

((
I[q] : I

)
⊗ ω1−q

X

)
//

τe
Y/X

��

F e
∗ ω1−q

Y
//

τe
Y

��

0

0 // I // OX
// OY

// 0

where τ e
Y/X is the restriction of τ e

X : F e
∗ ω1−q

X → OX via the natural inclusion(
I[q] : I

)
⊗ ω1−q

X ⊂ ω1−q
X .

Further, if I is locally generated by a regular sequence f1, . . . , fm, then I[q] : I
is generated by f q

1 , . . . , f q
m, (f1 · · · fm)q−1; see [Hoc10, Proposition (d) p. 110]. The

above diagram works via the isomorphism of OY -modules

I[q] : I
I[q]

∼=−→
(
detNY/X

)1−q
=
(
detI/I2

)q−1
,

which is defined by g ·(f1 · · · fm)q−1 7→ g ·(f1∧· · ·∧fm)q−1 on an open neighborhood U
where I|U is defined by a regular sequence f1, . . . , fm.

By letting Ee,Y/X denote the kernel of τ e
Y/X : F e

∗ ((I[q] : I) ⊗ ω1−q
X ) → OX , we

obtain an exact sequence

(5.3) 0 −→I ⊗Ee,X −→Ee,Y/X −→Ee,Y −→ 0

If Y ⊂ X is a divisor, I[q] : I = OX((1− q)Y ) and Ee,Y/X is the kernel of(
F e

∗OX((q − 1)Y )
)∨ ∼= F e

∗OX

(
(1− q)(KX + Y )

)
−→ OX

where KX is a canonical divisor on X. By the same argument of Theorem 5.9, if
Ee,Y/X is ample then −(KX + Y ) is ample (implying that X and Y are both Fano).
In this case, (5.3) takes the form

0 −→Ee,X −→ OX(Y )⊗Ee,Y/X −→ OY (Y )⊗Ee,Y −→ 0
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Now, if X = Pd and Y is a smooth hypersurface of degree n ⩽ q, then

Ee,Y/X(n− 1) ∼=
d⊕

i=1
OX(i)⊕ai,q−n;d,e .

Therefore, Ee,Y (n−2) is globally generated and so Ee,Y (n−1) is ample. In general, it
is seemingly difficult to extract more information about Ee,Y from this. For instance,
whether or not OY (n− 2)⊗Ee,Y is ample is subtle and is not true in general in view
of Section 4.5. Also, for projective spaces, Ee(−1) is globally generated while this is
never true for quadrics.

Let us now mention the case of smooth blowups. With Y ⊂ X as above, suppose
that codim(Y, X) = r ⩾ 2 and let π : X̃ → X be the blowup of X along Y with
exceptional divisor Y ′ ⊂ X̃. Then, there is an exact sequence
0 −→ OX̃(−Y ′)⊗F e

∗OX̃((1−q)KX̃) −→ F e
∗OX̃((1− q)(KX̃ + Y ′)) −→ F e

∗ ω1−q
Y ′ −→ 0.

Equivalently,
0 −→ F e

∗OX̃((1− q)KX̃) −→ F e
∗OX̃((1− q)KX̃ + Y ′) −→ OP(−1)⊗ F e

∗ ω1−q
Y ′ −→ 0

as π|Y ′ : Y ′ → Y is the projective bundle P(I/I2)→ Y and NY ′/X̃ = OP(−1). It is
unclear to us how this could help in studying the positivity of Ee,X̃ , say by restricting
it to Y ′. This is why we needed to rely on Lemma 4.2.

5.4.2. Asymptotic Kunz’s theorem

There is an asymptotic aspect behind the local Kunz’s theorem, namely, the F -
signature. Let R be a complete local algebra. We may define 0 ⩽ ae ⩽ qdim R to
be the largest rank of a free quotient of F e

∗ R as an R-module. Then, the limit
0 ⩽ lime→∞ ae/qdim R ⩽ 1 exists, it is called the F -signature of R, and is denoted by
s(R). Then s(R) = 1 if and only if R ∼= k[[x1, . . . , xdim R]]. See [Tuc12] for details.

Proposition 5.22. — Let X be an F -split smooth projective variety. Then,
for every invertible sheaf L on X, the following formula for computing its volume
(see [Laz04a, Definition 2.2.31]) holds:

volX(L) = lim
e→∞

h0(X,L ⊗E∨
e,X)

qd/d! =: ϵ(L).

Proof. — Twist the split sequence (2.3) by L and use the projection formula to
conclude that h0(X,Lq) = h0(X,L) + h0(X,L ⊗E∨

e,X). Dividing by qd/d! and
letting e→∞ yield the desired equality. □

In this way, with notation as in Proposition 5.22, if X admits a very ample invertible
sheaf L such that ϵ(L) = 1 then X ∼= Pdim X (as for a very ample L its volume
equates to the degree of the closed embedding i : X → P(H0(X,L))). For instance,
if X admits a decomposition

F e
∗OX

∼= OX ⊕ (L−1)ae ⊕Fe

such that h0(L ⊗Fe) = 0 and lime→∞ ae/(qd/d!) = 1 (as the projective spaces do)
then ϵ(L) = 1 and X ∼= Pdim X .
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5.4.3. Miscellaneous

We may wonder about the structure of the mapping L 7→ det F e
∗L on Pic X. We

may further consider the mapping α : Pic X → Pic X given by

α : L 7−→
q−1⊗
n=0

det F e
∗L

n.

We can compute this for X = Pd and L = O(1). Let α(O(1)) ∼= O(−a). We compute
a as follows. If f(t) = ∑

l⩾0 alt
l = ∑q−1

n=0
∑

i⩾0 ai,ntiq +n, then

f ′(t) =
q−1∑
n=0

∑
i⩾0

(iq +n)ai,ntiq +n−1 = q
q−1∑
n=0

∑
i⩾0

iai,ntiq +n−1 +
q−1∑
n=0

n
∑
i⩾0

ai,ntiq +n−1.

Therefore, setting t = 1, we have

f ′(1) = q
q−1∑
n=0

∑
i⩾0

iai,n +
q−1∑
n=0

n
∑
i⩾0

ai,n

Therefore, applying this to f(t) = ((1− tq)/(1− t))d+1 gives

(d + 1)qd q(q − 1)
2 = q · a +

q−1∑
n=0

qd = q · a + qd q(q − 1)
2

by our calculations in Proposition 3.2, where we use that ∑i⩾0 ai,e;d,n = qd. Conse-
quently,

a = dqd(q − 1)
2 .

In general, (F e
∗L)∨ ∼= F e

∗ (L−1 ⊗ ω1−q
X ). Applying this to L = ω−1

X gives

F e
∗ ω−n

X
∼= F e

∗

(
ωq−1−n

X ⊗ ω1−q
X

)
=
(
F e

∗ ω
n−(q−1)
X

)∨

In particular,

det F e
∗ ω−n

X
∼=
(

det F e
∗ ω

n−(q−1)
X

)−1
.

Consequently,
α(ω−1

X ) = α(ω−1
X )−1,

and so α(ω−1
X ) = OX if there is no 2-torsion in Pic X. Further, if p ̸= 2 then

α(ω−1
X ) = det F e

∗ ω
(1−q)/2
X = α(ω−1

X )−1.

If p = 2,
α(ω−1

X ) = OX = α(ω−1
X )−1

It is worth observing that, if p ̸= 2 then F e
∗ ω

(1−q)/2
X is self-dual.

Question 5.23. — Assume p ̸= 2. Does the self-dual locally free sheaf F e
∗ ω

(1−q)/2
X

play any role in telling the projective spaces apart among projective varieties?
Consider the following q rank-q locally free sheaves

F e
∗OX , F e

∗ ω−1
X , F e

∗ ω−2
X , . . . , F e

∗ ω
(1−q)/2
X , . . . , F e

∗ ω3−q
X , F e

∗ ω2−q
X , F e

∗ ω1−q
X
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where the opposite sheaves in the list are dual pairs. On X = Pd, F e
∗OX is the most

negative while F e
∗ ω1−q

X is the most positive, and F e
∗ ω

(1−q)/2
X sits in between being

equally positive and negative. In fact, it is the one in that list with the largest
number of copies of OX as a direct summand. In fact, if ae denotes such number
of copies, then F e

∗ ω
(1−q)/2
X is the only one for which lime→∞ ae/(qd/d!) > 0. In this

paper, we have only considered F e
∗OX and F e

∗ ω1−q
X .
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