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ON THE FUNDAMENTAL GROUPS
OF COMMUTATIVE ALGEBRAIC
GROUPS
SUR LES GROUPES FONDAMENTAUX DES
GROUPES ALGÉBRIQUES COMMUTATIFS

Abstract. — Consider the abelian category C of commutative group schemes of finite
type over a field k, its full subcategory F of finite group schemes, and the associated pro-
category Pro(C) (resp. Pro(F)) of pro-algebraic (resp. profinite) group schemes. When k is
perfect, we show that the profinite fundamental group $1 : Pro(C) → Pro(F) is left exact
and commutes with base change under algebraic field extensions; as a consequence, the higher
profinite homotopy functors $i vanish for i > 2. Along the way, we describe the indecomposable
projective objects of Pro(C) over an arbitrary field k.

Résumé. — Considérons la catégorie abélienne C des schémas en groupes de type fini sur un
corps k, la sous-catégorie pleine F des schémas en groupes finis, et la catégorie correspondante
Pro(C) (resp. Pro(F)) des groupes proalgébriques (resp. profinis). Lorsque k est parfait, nous
montrons que le groupe fondamental profini $1 : Pro(C) → Pro(F) est exact à gauche et
commute aux extensions algébriques de corps ; il en résulte que les groupes d’homotopie
profinis supérieurs $i sont nuls pour i > 2. Au passsage, nous décrivons les objects projectifs
indécomposables de Pro(C) sur un corps k arbitraire.
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2 M. BRION

1. Introduction

Every real Lie group G gives rise to two exact sequences

0→ G0 → G→ π0(G)→ 0, 0→ π1(G)→ G̃→ G0 → 0,

where G0 denotes the identity component, G̃ its universal cover, and π0(G), π1(G)
are discrete groups; moreover, the second homotopy group π2(G) vanishes. This
classical result has a remarkable analogue for commutative algebraic groups over
an algebraically closed field k, as shown by Serre and Oort via a categorical ap-
proach (see [Ser60, Oor66]). More specifically, consider the category C of commu-
tative k-group schemes of finite type, and the full subcategory F of finite group
schemes; then C is an artinian abelian category, and F is a Serre subcategory. Let
Pro(C) (resp. Pro(F)) denote the associated pro-category, consisting of pro-algebraic
(resp. profinite) group schemes; recall that these categories have enough projectives,
and C (resp. F) is equivalent to the full subcategory of Pro(C) (resp. Pro(F)) con-
sisting of artinian objects. Assigning to each object of Pro(C) its largest profinite
quotient yields a right exact functor

$0 : Pro(C) −→ Pro(F).
It turns out that the left derived functors,

$i := Li$0 : Pro(C) −→ Pro(F),
vanish for i > 2; equivalently, $1 is left exact. Moreover, $0, $1 fit in an exact
sequence

0 −→ $1(G) −→ G̃ −→ G −→ $0(G) −→ 0
for any G ∈ Pro(C) (see [Ser60, 6.2, 10.2] when k has characteristic 0, and [Oor66,
II.7, II.14] in positive characteristics).
The construction of the “profinite homotopy functors” $i makes sense over an

arbitrary field k; it is easy to extend the above exact sequence to this setting. The
main result of this paper generalizes those of Serre and Oort as follows:

Theorem 1.1. — When k is perfect, the functor $1 : Pro(C) → Pro(F) is
left exact and commutes with base change under algebraic field extensions. As a
consequence, the higher profinite homotopy functors $i vanish for i > 2.

Our approach is independent of the general theory of étale homotopy groups of
schemes (see e.g. [AM69, Fri82]). We rather develop an ad hoc theory of homotopy
groups in the setting of pairs (A,B), where A is an artinian abelian category, and
B a Serre subcategory of A. For this, we build on constructions and results of
Gabriel (see [Gab62, Chap. III]) and on further developments in [Bri19], recalled
in Subsection 2.1. These may be conveniently formulated in terms of orthogonal
or perpendicular categories (see [BR07, II.2] and [GL91] for these two notions).
Homotopy groups are introduced in Subsection 2.2, which generalizes results of
Demazure and Gabriel on the profinite homotopy groups of affine group schemes
(see [DG70, V.3.3]). Subsection 2.4 investigates compatibility properties of homotopy
groups in the presence of a Serre subcategory C of B.
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Fundamental groups of algebraic groups 3

In Section 3, we first apply this formalism to the category C of (commutative) alge-
braic groups, and its full subcategory L of linear algebraic groups, over an arbitrary
field k; then Pro(L) is equivalent to the category of affine k-group schemes, in view
of [DG70, V.2.2.2]. The resulting homotopy functor πC,L1 turns out to be left exact
(Proposition 3.3). We then consider the pair (C,F), and obtain the left exactness of
$1 = πC,F1 when k is perfect; in addition, we show that the profinite universal cover
G̃ has homological dimension at most 1 for any G ∈ Pro(C) (Theorem 3.5).
When G is an abelian variety over an arbitrary field k, we construct a minimal

projective resolution of G̃ (Theorem 3.10). We also describe the projective objects
of Pro(C) (Proposition 3.11); for this, we use results of Demazure and Gabriel
on the projectives of Pro(L) over a perfect field (see [DG70, V.3.7]), combined
with properties of the isogeny category C/F (see [Bri17]). We then show that the
profinite homotopy functors commute with base change under separable algebraic
field extensions (Proposition 3.15), thereby completing the proof of the main result.
As an application of the above developments, we obtain a spectral sequence à la

Milne (see [Mil70]), which relates the extension groups in C and in the corresponding
category over a Galois extension of k. Further applications, to the structure of
homogeneous vector bundles over abelian varieties, are presented in [Bri18].
When the ground field k has characteristic p > 0, the prime-to-p part $(p′)

1 of the
profinite fundamental group commutes with arbitrary field extensions, and hence
is left exact (Proposition 3.17). But over an imperfect field k, the functors $0, $1
do not commute with purely inseparable field extensions, nor does the pro-étale
p-primary part of $1 (see Remarks 3.19, 3.20 and 3.21). In this setting, it seems
very likely that $2 is nontrivial, but we have no explicit example for this; also, the
profinite fundamental group scheme $1 deserves further investigation, already for
smooth connected unipotent groups.
Finally, it would be interesting to relate the above (affine, profinite or pro-étale)

fundamental groups with further notions of fundamental group schemes considered
in the literature. In this direction, note that the profinite fundamental group of
any abelian variety A coincides with Nori’s fundamental group scheme (defined
in [Nor76, Nor82]), as shown by Nori himself in [Nor83]. Also, when k is algebraically
closed, the affine fundamental group of A coincides with its S-fundamental group
scheme introduced by Langer in [Lan11], as follows from [Lan12, Thm. 6.1].

Acknowledgments. Many thanks to Cyril Demarche, Mathieu Florence, Roy
Joshua, Bruno Kahn, Chu Gia Vuong Nguyen and Takeshi Saito for very helpful
discussions on the topics of this paper. Special thanks to the referee for a careful
reading of the paper and valuable comments.

2. Homotopy groups in pro-artinian categories

2.1. Pro-artinian categories and colocalizing subcategories

Consider an artinian abelian category A, and the associated pro-category Pro(A).
Then Pro(A) is a pro-artinian category in the sense of [DG70, V.2.2]; equivalently,
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4 M. BRION

the opposite category is a Grothendieck category. Moreover, A is equivalent to the
Serre subcategory of Pro(A) consisting of artinian objects (see [DG70, V.2.3.1]). Let
B be a Serre subcategory of A; then we may view Pro(B) as a Serre subcategory of
Pro(A), stable under inverse limits (see [Bri19, Lem. 2.11]). We denote by ⊥ Pro(B)
the full subcategory of Pro(A) with objects those X such that HomPro(A)(X, Y ) = 0
for all Y ∈ Pro(B) (this is the left orthogonal subcategory to Pro(B) in Pro(A) in
the sense of [BR07, II.1]).

Lemma 2.1. — Let X ∈ Pro(A).
(1) X ∈ ⊥ Pro(B) if and only if HomPro(A)(X, Y ) = 0 for all Y ∈ B.
(2) X has a smallest subobject XB in Pro(A) such that X/XB ∈ Pro(B). More-

over, XB ∈ ⊥ Pro(B).
(3) For any morphism f : X → Y in Pro(A), we have f(XB) ⊂ Y B with equality

if f is an epimorphism. If in addition f is essential and Y ∈ ⊥ Pro(B), then
X ∈ ⊥ Pro(B).

Proof. —
(1). — Let Y ∈ Pro(B). Then Y = lim← Yi, where Yi ∈ B. Therefore, we have

HomPro(A)(X, Y ) = lim←HomA(X, Yi) = 0.
(2). — Let (Xi)i∈I be a family of subobjects of X such that X/Xi ∈ Pro(B) for

all i. Then X/(∩i∈IXi) is a subobject of ∏
i∈I X/Xi, and hence an object of Pro(B).

This shows the existence of XB.
If there exists a nonzero morphism f : XB → Y for some Y ∈ Pro(B), then

X ′ := Ker(f) is a subobject of XB such that XB/X ′ is a nonzero object of Pro(B). It
follows that X/X ′ ∈ Pro(B), contradicting the minimality of XB. So XB ∈ ⊥ Pro(B).
(3). — The composition XB → X → Y → Y/Y B is zero, hence f(XB) ⊂ Y B.

If f is an epimorphism, then it induces an epimorphism X/XB → Y/f(XB). So
Y/f(XB) ∈ Pro(B), i.e., Y B ⊂ f(XB). Hence Y B = f(XB). If in addition f is
essential and Y ∈ ⊥ Pro(B), then Y = f(XB) and hence XB = X. �

In view of Lemma 2.1, every X ∈ Pro(A) lies in a unique exact sequence
(2.1) 0 −→ XB −→ X −→ XB −→ 0,
where XB ∈ ⊥ Pro(B) and XB ∈ Pro(B). Moreover, every f ∈ HomPro(A)(X, Y )
induces compatible morphisms

fB : XB −→ Y B, fB : XB −→ YB.

This defines a functor
π0 = πA,B0 : Pro(A) −→ Pro(B), X 7−→ XB.

Since HomPro(A)(XB, Y ) = 0 for any Y ∈ Pro(B), the natural map
HomPro(B)(XB, Y ) −→ HomPro(A)(X, Y )

is an isomorphism. In other words, π0 is left adjoint to the inclusion of Pro(B) in
Pro(A). As a consequence, π0 is right exact and sends any projective object of Pro(A)
to a projective object of Pro(B).

Lemma 2.2. — The functor π0 commutes with filtered inverse limits.
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Fundamental groups of algebraic groups 5

Proof. — Consider a filtered inverse system (Xi) of objects of Pro(A). This yields a
filtered inverse system (XBi ) of objects of ⊥ Pro(B); moreover, we have an isomorphism

lim
→

HomPro(A)(XBi , Y )
∼=−→ HomPro(A)(lim← XBi , Y )

for any Y ∈ A (see [DG70, V.2.3.3]). Thus, HomPro(A)(lim←XBi , Y ) = 0 for any
Y ∈ B. In view of Lemma 2.1, it follows that lim←XBi ∈ ⊥ Pro(B). Also, we have an
isomorphism

(lim
←
Xi)/(lim← XBi ) ∼= lim

←
(Xi)B

by exactness of inverse limits (see [DG70, V.2.2]). So (lim←Xi)/(lim←XBi ) is an
object of Pro(B); this yields the assertion. �

We denote by
Q = QA,B : Pro(A) −→ Pro(A)/Pro(B)

the quotient functor. Then Q is exact, and commutes with inverse limits in view
of [Gab62, III.4.Prop. 9]. Also, recall from [Gab62, III.4.Prop. 8, Cor. 1] that Q has
a left adjoint: the cosection,

C = CA,B : Pro(A)/Pro(B) −→ Pro(A),
which also commutes with inverse limits and sends projectives to projectives. In
other words, Pro(B) is a colocalizing subcategory of Pro(A), in the dual sense of
[Gab62, III.2]. Conversely, every colocalizing subcategory of Pro(A) is equivalent to
Pro(B) for a unique Serre subcategory B of A, in view of [Gab62, III.4.Prop. 10]
and [Bri19, Rem. 2.13]. Moreover, Pro(A)/Pro(B) is equivalent to Pro(A/B)
by [Bri19, Prop. 2.12].
By [Gab62, III.2.Cor.], the essential image of C consists of those X ∈ Pro(A) such

that
(2.2) HomPro(A)(X, Y ) = 0 = Ext1

Pro(A)(X, Y ) for all Y ∈ Pro(B)
(these are the objects of the left perpendicular subcategory to Pro(B) in Pro(A), as
defined in [GL91]). Moreover, for any X ∈ Pro(A), the adjunction map CQ(X)→ X
has its kernel and cokernel in Pro(B) (see [GL91, III.2.Prop. 3]). This yields an exact
sequence in Pro(A)

(2.3) 0 −→ Y1
ι−→ X̃

ρ−→ X
γ−→ Y0 −→ 0,

where we set X̃ = X̃A,B := CQ(X) (in particular, X̃ ∈ ⊥ Pro(B)), and we have
Y0, Y1 ∈ Pro(B). Note that the long exact sequence (2.3) depends functorially on X.
Also, note the natural isomorphism

HomPro(A)(X̃, Y ) ∼= HomPro(A)/Pro(B)(Q(X), Q(Y ))
for any Y ∈ Pro(A). In particular, if X, Y ∈ A then
(2.4) HomPro(A)(X̃, Y ) ∼= HomA/B(Q(X), Q(Y )).

Lemma 2.3. — With the above notation, we have ρ(X̃) = XB and the induced
epimorphism η : X̃ → XB is essential. Also, there are functorial isomorphisms

π0(XB)
∼=−→ Y0, HomPro(B)(Y1, Y )

∼=−→ Ext1
Pro(A)(XB, Y ) for all Y ∈ Pro(B).
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6 M. BRION

Proof. — In view of (2.2) and the exact sequence
0 −→ Y1 −→ X̃ −→ ρ(X̃) −→ 0,

we obtain the vanishing of HomPro(A)(ρ(X̃), Y ) and an isomorphism

HomPro(B)(Y1, Y )
∼=−→ Ext1

Pro(A)(ρ(X̃), Y )

for all Y ∈ Pro(B). Thus, ρ(X̃) ∈ ⊥ Pro(B). Since X/ρ(X̃) ∼= Y0 ∈ Pro(B), it follows
that ρ(X̃) = XB.
It remains to show that η : X̃ → XB is essential. Let Z be a subobject of X̃ such

that the composition Z → X̃ → XB is an epimorphism. Then X̃ = Y1 +Z and hence
X̃/Z ∼= Y1/(Y1 ∩ Z) ∈ Pro(B). As X̃ ∈ ⊥ Pro(B), it follows that Y1/(Y1 ∩ Z) = 0,
i.e., Y1 is a subobject of Z. Thus, Z = X̃. �

Lemma 2.4. — With the notation of the exact sequence (2.3), the following
conditions are equivalent for X ∈ Pro(A):

(1) Y0 = Y1 = 0.
(2) HomPro(A)(X, Y ) = 0 = Ext1

Pro(A)(X, Y ) for all Y ∈ Pro(B).
(3) HomPro(A)(X, Y ) = 0 = Ext1

Pro(A)(X, Y ) for all Y ∈ B.
Proof. — The equivalence (1)⇔ (2) holds by [Gab62, III.2.Cor.]. As (2)⇒ (3) is

obvious, it suffices to show that (3)⇒ (1).
Let X ∈ Pro(A) satisfy (3), and Y ∈ Pro(B). Then HomPro(A)(X, Y ) = 0 by

Lemma 2.1(1). Consider an essential epimorphism f : P → X, where P ∈ Pro(A)
is projective (such a projective cover of X exists in view of [Gab62, II.6.Thm. 2]).
Then P ∈ ⊥ Pro(B) by Lemma 2.1(3). So the exact sequence

0 −→ X ′ −→ P
f−→ X −→ 0

yields isomorphisms
(2.5) HomPro(A)(X ′, Y )

∼=−→ Ext1
Pro(A)(X, Y )

for all Y ∈ Pro(B). In particular, HomPro(A)(X ′, Y ) = 0 for all Y ∈ B. It follows
that X ′ ∈ ⊥ Pro(B) by using Lemma 2.1(1). Thus, Ext1

Pro(A)(X, Y ) = 0 for all
Y ∈ Pro(B). �

2.2. Homotopy groups

We denote by
πi = πA,Bi := LiπA,B0 : Pro(A) −→ Pro(B) (i > 0)

the left derived functors of the right exact functor π0. In view of Lemma 2.2 together
with [DG70, V.2.3.8], the ith homotopy functor πi commutes with filtered inverse
limits for any i > 0. Also, for any exact sequence

0 −→ X1 −→ X −→ X2 −→ 0
in Pro(A), we have an associated homotopy exact sequence
(2.6) · · · → πi+1(X2)→ πi(X1)→ πi(X)→ πi(X2)→ πi−1(X1)→ · · ·
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Fundamental groups of algebraic groups 7

Lemma 2.5. — Assume that every projective object of Pro(B) is projective in
Pro(A). Then:

(1) πi(Y ) = 0 for all Y ∈ Pro(B) and i > 1.
(2) πi(XB)

∼=−→ πi(X) for all X ∈ Pro(A) and i > 1.

Proof. —
(1). — Let P• be a projective resolution of Y in Pro(B). Then π0(P•) = P• is still

a projective resolution of Y in Pro(A).
(2). — This follows from (1) in view of the exact sequence (2.1). �

Lemma 2.6. — With the assumption of Lemma 2.5, there is a functorial isomor-
phism π1(X) ∼= Y1 for any X ∈ Pro(A).

Proof. — The exact sequence (2.1) yields an isomorphism Q(XB) → Q(X) in
Pro(A)/Pro(B), and hence an isomorphism CQ(XB)→ CQ(X) in Pro(A). In turn,
this yields an isomorphism Y1(XB)→ Y1(X) in Pro(B), where Y1(XB) denotes the
kernel of the adjunction map CQ(XB)→ XB, and Y1(X) is defined similarly. Thus,
we may assume that X ∈ ⊥ Pro(B). We then have an exact sequence

0 −→ Y1 −→ X̃ −→ X −→ 0,
which yields an exact sequence

π1(X̃) −→ π1(X) −→ Y1 −→ π0(X̃).
Moreover, π0(X̃) = 0 by Lemma 2.4. So it suffices to show that π1(X̃) = 0.
As in the proof of Lemma 2.4, consider an exact sequence

0 −→ X ′ −→ P
f−→ X̃ −→ 0,

where P is projective and f is essential. We obtain an exact sequence
π1(P ) −→ π1(X̃) −→ π0(X ′) −→ π0(P ).

Moreover, π0(P ) = 0 by Lemma 2.1(3), and π1(P ) = 0 by definition. Thus, we have
π1(X̃) ∼= π0(X ′). Also, recall from (2.2) that Ext1

Pro(A)(X̃, Y ) = 0 for all Y ∈ Pro(B).
Using the isomorphism (2.5), this yields HomPro(A)(X ′, Y ) = 0, and hence π0(X ′) = 0.
Thus, π1(X̃) = 0 as desired. �

In view of Lemmas 2.3 and 2.6, the exact sequence (2.3) can be rewritten in a
more suggestive way. Namely, with the assumption of Lemma 2.5, we have an exact
sequence for any X ∈ Pro(A):
(2.7) 0 −→ π1(X) ιX−→ X̃

ρX−→ X
γX−→ π0(X) −→ 0.

In particular, when X ∈ ⊥ Pro(B), we obtain an extension
(2.8) 0 −→ π1(X) −→ X̃ −→ X −→ 0.
Using Lemmas 2.3 and 2.6 again, this yields in turn:

Corollary 2.7. — With the assumption of Lemma 2.5, let X ∈ ⊥ Pro(B) and
Y ∈ Pro(B). Then HomPro(A)(π1(X), Y )

∼=→ Ext1
Pro(A)(X, Y ) via pushout by the

extension (2.8).
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8 M. BRION

In other words, (2.8) is the universal extension of X by an object of Pro(B). We
now record a similar uniqueness result for the exact sequence (2.7), to be used in
Subsection 3.2.

Lemma 2.8. — With the assumption of Lemma 2.5, consider an exact sequence

(2.9) 0 −→ Y1 −→ X ′ −→ X −→ Y0 −→ 0

in Pro(A), where Y0, Y1 ∈ Pro(B) and X ′ is in the essential image of C. Then there
is a commutative diagram of exact sequences

0 // π1(X) //

f1
��

X̃ //

f ′

��

X //

f

��

π0(X) //

f0
��

0

0 // Y1 // X ′ // X // Y0 // 0,

where f1, f
′, f, f0 are isomorphisms.

Proof. — Cut the exact sequence (2.9) in two short exact sequences

0 −→ Y1 −→ X ′ −→ X ′′ −→ 0, 0 −→ X ′′ −→ X −→ Y0 −→ 0.

Since X ′ is an object of ⊥ Pro(B), so is X ′′. As Y0 ∈ B, we obtain a commutative
diagram of exact sequences

0 // XB //

f ′′

��

X //

f

��

π0(X) //

f0
��

0

0 // X ′′ // X // Y0 // 0,

where the vertical arrows are isomorphisms. As a consequence, we may replace X
with XB, and assume that π0(X) = 0 = Y0.
Also, the induced morphism Q(X ′) → Q(X) is an isomorphism, and hence so is

CQ(X ′) → CQ(X) = X̃. Since the adjunction CQ(X ′) → X ′ is an isomorphism,
this yields an isomorphism X̃ ∼= X ′. Thus, we may further assume that (2.9) is of
the form

0 −→ Y1 −→ X̃ −→ X −→ 0.
Then the associated map HomPro(B)(Y1, Y )→ Ext1

Pro(A)(X, Y ) is an isomorphism for
all Y ∈ Pro(B), by Lemma 2.4. In view of the uniqueness of the universal extension
of X by an object of Pro(B), this completes the proof. �

Next, we obtain two reformulations of the left exactness of the functor π1:

Lemma 2.9. — With the assumption of Lemma 2.5, the following conditions are
equivalent:

(1) The cosection functor C : Pro(A)/Pro(B)→ Pro(A) is exact.
(2) π1 is left exact.
(3) πi = 0 for all i > 2.
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Proof. —
(1)⇒ (2). — Consider an exact sequence

0 −→ X1 −→ X −→ X2 −→ 0

in Pro(A). Then we have a commutative diagram of exact sequences

0 // X̃1 //

��

X̃ //

��

X̃2 //

��

0

0 // X1 // X // X2 // 0.

In view of the exact sequence (2.7) and its analogues for X1, X2, the snake lemma
yields an exact sequence

0→ π1(X1)→ π1(X)→ π1(X2)→ π0(X1)→ π0(X)→ π0(X2)→ 0.

In particular, π1 is left exact.
(2)⇒ (1). — This follows from the dual statement of [Gab62, III.3.Prop. 7].
(2)⇒ (3). — This is obtained by a standard argument that we recall for complete-

ness. Let X ∈ Pro(A) and choose a projective cover

0 −→ X ′ −→ P −→ X −→ 0.

As πi(P ) = 0 for all i > 1, we obtain isomorphisms πi(X)
∼=→ πi−1(X ′) for all i > 2.

Since X ′ is a subobject of P , we have π1(X ′) = 0 by left exactness, hence π2(X) = 0.
Iterating this argument completes the proof.
(3)⇒ (2). — This follows from the homotopy exact sequence (2.6). �

Finally, we record an easy and useful divisibility property of homotopy groups. For
any X ∈ Pro(A) and any integer n, we denote by nX ∈ EndA(X) the multiplication
by n, and by X[n] its kernel. We say that X is divisible (resp. uniquely divisible) if
nX is an epimorphism (resp. an isomorphism) for any n > 1.

Lemma 2.10. — With the assumption of Lemma 2.5, let X be an object of
Pro(A). Assume that X is divisible and X[n] ∈ Pro(B) for any n > 1 (in particular,
πi(X[n]) = 0 for any such n and any i > 1). Then X̃ and the πi(X) (i > 2) are
uniquely divisible. Moreover, there is an exact sequence

0 −→ π1(X) n−→ π1(X) −→ X[n] −→ π0(X) n−→ π0(X) −→ 0

for any n > 1.

Proof. — By assumption, we have an exact sequence

(2.10) 0 −→ X[n] −→ X
nX−→ X −→ 0

for any n > 1. Thus, nX induces an automorphism of Q(X), and hence of CQ(X) =
X̃. In other words, X̃ is uniquely divisible. The remaining assertions follow from the
homotopy exact sequence associated with (2.10). �
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2.3. Structure of projective objects

In this subsection, we consider an artinian abelian category A and a Serre sub-
category B such that every projective object of Pro(B) is projective in Pro(A).
Our aim is to describe the projectives of Pro(A) in terms of those of Pro(B) and
Pro(A)/Pro(B) ∼= Pro(A/B). We first obtain a generalization of [DG70, V.3.3.9]:

Lemma 2.11. — For any projective object P ∈ Pro(A), there is an isomorphism
P ∼= PB ⊕ π0(P ) which is compatible with γP : P → π0(P ). Moreover, P̃ ∼= PB.

Proof. — Recall that π0 is left adjoint to the inclusion of Pro(B) in Pro(A). It
follows that π0(P ) is projective in Pro(B), and hence in Pro(A) as well. This yields a
compatible isomorphism P ∼= PB ⊕ π0(P ). In particular, PB is projective, and hence
in the essential image of C by (2.2). So the adjunction map CQ(PB) → PB is an
isomorphism. As CQ(PB)

∼=→ CQ(P ) = P̃ , this completes the proof. �

Corollary 2.12. — Let f : X → Y be an epimorphism in Pro(A), where Y is
an object of Pro(B). Then there exists a subobject Y ′ of X such that Y ′ ∈ Pro(B)
and the composition Y ′ → X → Y is an epimorphism.

Proof. — We may assume that X is projective. By Lemma 2.11, we may then
choose an isomorphism X ∼= X̃ ⊕ π0(X) compatibly with γX : X → π0(X). Since
π0(f) : π0(X)→ π0(Y ) is an epimorphism, and γY : Y → π0(Y ) is an isomorphism,
the statement holds with Y ′ = π0(X). �

The above corollary asserts that the pair (Pro(A),Pro(B)) satisfies the lifting
property introduced in [Bri19, §2.2]. Thus, this property holds for the pair (A,B) as
well. Conversely, if (A,B) satisfies the lifting property, then every projective object
in Pro(B) is projective in Pro(A) by [Bri19, Lem. 2.14].
Next, recall from [DG70, V.2.4] that every projective object of Pro(A) is a product

of indecomposable projectives, unique up to reordering; moreover, the indecompos-
able projectives are projective covers of objects of A. Also, given X ∈ Pro(A) such
that Q(X) is projective in Pro(A/B), the adjunction map ρ : X̃ = CQ(X) → X
is the projective cover of X (indeed, C sends projectives to projectives, and ρ is
essential by Lemma 2.3). Together with Lemma 2.11, this yields the following result
(see also [Gab62, III.3.Cor. 2]):

Corollary 2.13. — The indecomposable projectives of Pro(A) are exactly those
of Pro(B) and the X̃, where X ∈ ⊥ Pro(B) and Q(X) is indecomposable projective
in Pro(A/B).

The latter indecomposable projectives can be constructed as follows:

Lemma 2.14. — Let X ∈ ⊥ Pro(B).
(1) Consider an exact sequence in Pro(A),

0 −→ Z −→ Y
f−→ X −→ 0.

Then f is essential if and only if Z ∈ Pro(B) and Y ∈ ⊥ Pro(B).
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(2) Assume that Q(X) is projective in Pro(A)/Pro(B). Then the essential epi-
morphisms f : Y → X, where Ker(f) ∈ B, form a filtered inverse system
with limit the projective cover of X in Pro(A).

Proof. —
(1). — Note that f induces an epimorphism Y/Y B → X/f(XB). Since we have

that Y/Y B ∈ Pro(B) and X/f(XB) ∈ ⊥ Pro(B), we must have X/f(XB) = 0, i.e.,
the composition Y B → Y → X is an epimorphism.
Assume that f is essential. Then Y B = Y , i.e., Y ∈ ⊥ Pro(B). Also, by the lifting

property, we have Z = ZB +W for some subobject W of Z such that W ∈ Pro(B).
This yields an exact sequence

0 −→ Z/W −→ Y/W −→ X/f(W ) −→ 0

in Pro(A), and hence in Pro(A/B). As X/f(W ) ∼= X is projective in the latter
category, this sequence is split by some g ∈ HomPro(A/B)(X, Y/W ). In view of the
assumption that X ∈ ⊥ Pro(B), we may represent g by h ∈ HomPro(A)(X, Y/W ′) for
some W ′ ⊂ Y such that W ⊂ W ′ and W ′ ∈ Pro(B). Denote by p the composition
of morphisms in Pro(A)

X
h−→ Y/W ′ −→ X/f(W ′)

(where the morphism on the right is induced by f), and by q : X → X/f(W ′) the
quotient morphism in Pro(A). Then p represents the identity endomorphism of X
in Pro(A)/Pro(B); thus, p − q represents zero there. Using again the assumption
that X ∈ ⊥ Pro(B), it follows that p − q is zero in Pro(A). In particular, the
composition h(X)→ Y/W ′ → X is an epimorphism. Since f is essential, h must be
an epimorphism as well. So g is an isomorphism in Pro(A)/Pro(B), hence Z/W ∈
Pro(B). We conclude that Z ∈ Pro(B).
Conversely, assume that Z ∈ Pro(B) and Y ∈ ⊥ Pro(B). Let Y ′ ⊂ Y such that

the composition Y ′ → Y → X is an epimorphism. Then Y = Y ′ + Z, hence
Z → Y → Y/Y ′ is an epimorphism as well. So Y/Y ′ is an object of Pro(B), and
hence is zero. We conclude that f is essential.
(2). — Consider two exact sequences

0 −→ Zi −→ Yi
fi−→ X −→ 0 (i = 1, 2),

where f1, f2 are essential and Z1, Z2 ∈ B. Then the induced morphism

f : Y1 ×X Y2 =: Y −→ X

is an epimorphism with kernel Z1×Z2. In view of (1), it follows that the composition
Y B → Y → X is an essential epimorphism. Thus, these essential epimorphisms form
a filtered inverse system.
Given such an essential epimorphism f : Y → X, the map ρ : X̃ → X lifts to

a morphism ϕY : X̃ → Y . Moreover, ϕY is unique (since Ker(f) ∈ Pro(B) and
X̃ ∈ ⊥ Pro(B)), and is an epimorphism as well. So we obtain an epimorphism

ϕ : X̃ −→ lim
←
Y
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with an obvious notation. To show that ϕ is a monomorphism, consider the family
(Ki) of subobjects of Ker(ρ) such that Ker(ρ)/Ki ∈ B. Then X̃/Ki ∈ A and ρ

factors through an essential epimorphism X̃/Ki → X; moreover, the corresponding
morphism ϕi : X̃ → X̃/Ki is just the quotient morphism. Since ∩Ki is zero, this
completes the proof. �

2.4. Compatibility properties

Throughout this subsection, we consider an artinian abelian category A, a Serre
subcategory B such that the pair (A,B) satisfies the lifting property, and in addition
a Serre subcategory C of B. We first relate the homotopy functors associated to the
three pairs (A,B), (B, C) and (A, C):

Lemma 2.15. — Let X ∈ Pro(A).
(1) There is a natural isomorphism πA,C0 (X)

∼=→ πB,C0 (πA,B0 (X)).
(2) There is a spectral sequence πB,Ci (πA,Bj (X))⇒ πA,Ci+j (X).

Proof. —
(1). — This follows readily from the definitions.
(2). — Recall that πA,B0 : Pro(A)→ Pro(B) sends projectives to projectives; also,

every projective in Pro(B) is obviously acyclic for πB,C0 . In view of (1), this yields a
Grothendieck spectral sequence as stated. �

Remark 2.16. — When X ∈ B, the above spectral sequence yields isomorphisms
πB,Ci (X)

∼=→ πA,Ci (X) for all i > 0, in view of Lemma 2.5. Alternatively, these isomor-
phisms follow from the obvious equality πB,C0 (X) = πA,C0 (X), since every projective
object of Pro(B) is projective in Pro(A).
On the other hand, when X ∈ ⊥ Pro(B), the first terms of the spectral sequence

yield a natural isomorphism

πA,C1 (X)
∼=−→ πB,C0 (πA,B1 (X)).

This can also be seen directly: consider the universal extension of X by an object of
Pro(B),

0 −→ Y −→ X̃ −→ X −→ 0,
where Y := πA,B1 (X). Then one may readily check that the induced exact sequence

0 −→ Y/Y C −→ X̃/Y C −→ X −→ 0

is the universal extension of X by an object of Pro(C); thus, Y/Y C ∼= πA,B1 (X). But
also Y/Y C = πB,C0 (πA,B1 (X)).

Next, we investigate the behavior of the homotopy groups πA,Bi under the quotient
functor

QA,C : Pro(A) −→ Pro(A)/Pro(C).
We will need the following observation:
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Lemma 2.17. — Assume that the pair (A, C) satisfies the lifting property. Then
B/C is a Serre subcategory of A/C, and the quotient (A/C)/(B/C) is naturally
equivalent to A/C. Moreover, the pair (A/C,B/C) satisfies the lifting property.

Proof. — Let X ∈ B, Y ∈ A, and let ϕ : X → Y be an isomorphism in A/C.
By [Bri19, Lem. 2.7], there exists a subobject Y ′ ⊂ Y in A such that Y ′ ∈ C and ϕ
is represented by a morphism f : X → Y/Y ′ in A. Then Ker(f) and Coker(f) are
objects of C in view of [Gab62, III.1.Lem. 2]. Since B is a Serre subcategory of A
containing C, it follows that Y ∈ B. Thus, B/C is a strict subcategory of A/C.
Next, let 0→ X1 → X → X2 → 0 be an exact sequence in A/C. Then there exists

a commutative diagram in that category

0 // X1 //

��

X //

��

X2 //

��

0

0 // Y1 // Y // Y2 // 0,

where the vertical arrows are isomorphisms, and the bottom sequence is the image
of an exact sequence in A under the quotient functor QA,C (see [Bri19, Lem. 2.9]).
As a consequence, X ∈ B if and only if X1, X2 ∈ B. So B/C is a Serre subcategory
of A/C.
The equivalence of categories (A/C)/(B/C) ∼= A/B follows from the universal

property of quotient functors.
We now check that (A/C,B/C) satisfies the lifting property. Let ϕ : X → Y be

an epimorphism in A/C. In view of [Bri19, Lem. 2.7] again, replacing Y with an
isomorphic object in A/C, we may assume that ϕ is represented by a morphism
f : X → Y in A; then Coker(f) is an object of C by [Gab62, III.1.Lem. 2] again.
Next, we may replace X, Y with XC, Y C, and hence assume that f is an epimorphism
in A. Then there exists a subobject Y ′ of X such that Y ′ ∈ B and the composition
Y ′ → X → Y is an epimorphism in A, hence in A/C. �

Lemma 2.18. — With the assumption of Lemma 2.17, πA/C,B/Ci (X) is naturally
isomorphic to the image of πA,Bi (X) in Pro(B/C), for any i > 0 and X ∈ Pro(A).

Proof. — Recall that every projective object in Pro(C) is projective in Pro(A). By
the dual statement of [Gab62, III.3.Cor. 3], it follows that the quotient functor QA,C
sends projectives to projectives. Thus, it suffices to check the assertion for i = 0.
Let X ∈ Pro(A) and consider the exact sequence

0 −→ XB −→ X −→ πA,B0 (X) −→ 0

in Pro(A), where XB ∈ ⊥ Pro(B). This sequence is still exact in Pro(A/C); thus, it
suffices to show that XB ∈ ⊥ Pro(B/C). In view of Lemma 2.1, it suffices in turn to
show that every morphism ϕ : XB → Y in Pro(A/C), where Y ∈ B, is zero.
In Pro(A), we have XB = lim←Xi, where Xi ∈ A and the projections XB → Xi

are epimorphisms. Hence this also holds in Pro(A/C). Since

HomPro(A/C)(lim← Xi, Y ) = lim
→

HomA/C(Xi, Y ),
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we see that ϕ is represented by a morphism ϕi : Xi → Y in A/C. Using [Bri19,
Lem. 2.7], it follows that ϕ is represented by a morphism fi : Xi → Y/Y ′ in A, for
some Y ′ ⊂ Y such that Y ′ ∈ C. The composition XB → Xi → Y/Y ′ is zero, since
Y/Y ′ ∈ B. So fi = 0, and ϕ = 0. �

3. Fundamental groups of commutative algebraic groups

3.1. The affine fundamental group

Let k be a field. As in the introduction, we consider the artinian abelian category
C of commutative k-group schemes of finite type, and the associated pro-category
Pro(C) of pro-algebraic groups. We denote by L the full subcategory of C with objects
the affine (or equivalently, linear) algebraic groups. Then L is a Serre subcategory of
C, as follows from fpqc descent (see e.g. [Sta18, 34.20.18]). Also, recall that Pro(L)
is equivalent to the category of commutative affine k-group schemes.
By the results of Subsection 2.1, every object of Pro(C) has a largest affine quotient;

this yields a right exact functor
πC,L0 : Pro(C) −→ Pro(L),

which commutes with filtered inverse limits and extends the affinization functor
C → L considered for example in [DG70, III.3.8]. The results of Subsection 2.2 also
apply to this setting, in view of the following observation:

Lemma 3.1. — The pair (C,L) satisfies the lifting property.

Proof. — Let G ∈ C. By a variant of Chevalley’s structure theorem for algebraic
groups (see [Bri17, Thm. 2.3]) that we will use repeatedly, there is an exact sequence
(3.1) 0 −→ L −→ G −→ A −→ 0,
where L is a linear algebraic group and A is an abelian variety. Let f : G→ H be an
epimorphism, whereH is linear. Then G′ := G/(Ker(f)+L) is linear (as a quotient of
G/Ker(f) ∼= H) and is an abelian variety (as a quotient of G/L ∼= A). Thus, G′ = 0,
i.e., G = Ker(f) + L. So the composition L→ G→ H is an epimorphism. �

We now describe the quotient categories C/L and Pro(C)/Pro(L). Consider the
full subcategory A of C with objects the abelian varieties; then A is an addi-
tive subcategory, but not a Serre subcategory. Denote by A the corresponding
isogeny category: the objects of A are those of A, and the morphisms are defined
by HomA(G,H) := HomA(G,H) ⊗Z Q. Then A is a semi-simple artinian abelian
category; its simple objects are exactly the simple abelian varieties, i.e., those having
no non-trivial abelian subvariety.

Lemma 3.2. — With the above notation, the composite functor A → C → C/L
induces equivalences of categories

A
∼=−→ C/L, Pro(A)

∼=−→ Pro(C)/Pro(L).
Moreover, Pro(A) is semi-simple.
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Proof. — Denote by F : A → C/L the composite functor. Then F is essentially
surjective by Chevalley’s theorem again. Also, recall from [Gab62, III.1] that

HomC/L(G,H) = lim
→

HomC(G′, H/H ′)

for all G,H ∈ C, where G′ (resp. H ′) runs over the subgroup schemes of G such that
G/G′ is linear (resp. the linear subgroup schemes of H). When G and H are abelian
varieties, we must have G′ = G; moreover, H ′ is finite, or equivalently, contained in
the n-torsion subgroup scheme H[n] for some n > 1. As a consequence,

HomC/L(G,H) = lim
→

HomC(G,H/H[n]),

where the direct limit is over the positive integers ordered by divisibility. This yields
a natural isomorphism

HomC/L(G,H)
∼=−→ HomC(G,H)⊗Z Q

(see e.g. [Bri17, Prop. 3.6] for details), and hence the first equivalence of categories,
A ∼= C/L. Since Pro(C/L) ∼= Pro(C)/Pro(L), this yields the second equivalence of
categories Pro(A) ∼= Pro(C)/Pro(L).
To show that Pro(A) is semi-simple, it suffices to check that every object is

projective. In view of [DG70, V.2.3.5], it suffices in turn to check that for any
object G of Pro(A) and any epimorphism f : G1 → G2 in A, the induced map
HomA(G,G1)→ HomA(G,G2) is surjective. But this follows from the existence of a
section of f . �

Before stating our next result, we introduce some notation. We denote by
Q = QC,L : Pro(C) −→ Pro(C)/Pro(L)

the quotient functor, and by
C = CC,L : Pro(C)/Pro(L) −→ Pro(C)

the associated cosection functor. For any abelian variety A, we set
P (A) := CQ(A).

Proposition 3.3. —
(1) The functor C is exact.
(2) The projective objects of Pro(C) are exactly the products of those of Pro(L)

with the P (A), where A is an abelian variety. Moreover, P (A) is a projective
cover of A in Pro(C), and is uniquely divisible.

Proof. —
(1). — Recall that C commutes with inverse limits, and hence with products. Since

the category Pro(C)/Pro(L) is semi-simple (Lemma 3.2), this yields the assertion.
(2). — By Lemma 3.1 and [Bri19, Lem. 2.14], every projective object of Pro(L) is

projective in Pro(C). In view of the dual statement of [Gab62, III.3.Cor. 2], it follows
that the projective objects of Pro(C) are exactly the products of those of Pro(L)
with the images under C of projective objects of Pro(C)/Pro(L). Using again the
fact that this quotient category is semi-simple, this yields the first assertion.
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16 M. BRION

Let A be an abelian variety. Since every affine quotient of A is trivial, the adjunction
map ρ : P (A)→ A is an epimorphism. Also, ρ is essential by Lemma 2.3; thus, P (A)
is a projective cover of A in Pro(C). The unique divisibility assertion follows from
Lemma 2.10, since A is divisible and its n-torsion subgroup schemes are finite for all
n > 1. �

3.2. The profinite fundamental group

We now consider the Serre subcategory F of L with objects the finite group
schemes. As in the introduction, we denote by

$i := πC,Fi : Pro(C) −→ Pro(F)
the profinite homotopy functors. For any G ∈ Pro(C), the exact sequence (2.7) may
be rewritten as

0 −→ $1(G) −→ G̃ −→ G −→ $0(G) −→ 0,
where G̃ denotes the profinite universal cover of GF := Ker(G→ $0(G)).
The pair (C,F) satisfies the lifting property in view of [Bri15, Thm. 1.1]; thus, we

may again use the constructions and results of Section 2.

Lemma 3.4. — Let G ∈ Pro(C) be divisible.
(1) G[n] is profinite for any n > 1.
(2) $0(G) = 0.
(3) G̃ is the limit of the filtered inverse system (G, nG)n>1, where the positive

integers are ordered by divisibility. Also, G̃ is uniquely divisible.
(4) $1(G) = lim←G[n], where the limit is over the above system. Moreover, we

have $1(G)/n$1(G) ∼= G[n] for any n > 1.
(5) $i(G) = 0 for any i > 2.

Proof. —
(1). — Let G = lim←Gi, where the Gi are algebraic groups and the projections

G→ Gi are epimorphisms. Then the induced map G[n]→ lim←Gi[n] is a monomor-
phism. Moreover, each Gi is divisible (as a quotient of G); thus, Gi[n] is finite for
dimension reasons. So lim←Gi[n] is profinite.
(2). — Consider an epimorphism G→ H, where H ∈ F . Then H is divisible (as

a quotient of G) and torsion (as a finite group scheme), hence zero. This yields the
assertion.
(3). — Let G′ := lim←G (limit over the above system). For any H ∈ C and i > 0,

we have
ExtiPro(C)(G′, H) ∼= lim

→
ExtiPro(C)(G,H)

in view of [DG70, V.2.3.9]. Assume that H ∈ F ; then we may choose an integer
n > 1 such that nH = 0. Thus, ExtiPro(C)(G,H) is killed by n; as a consequence, we
have that ExtiPro(C)(G′, H) = 0. Using Lemma 2.4, it follows that the adjunction map
CQ(G′)→ G′ is an isomorphism.
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The projection π : G′ → G associated with n = 1, lies in an exact sequence

(3.2) 0 −→ lim
←
G[n] −→ G′

π−→ G −→ 0,

where lim←G[n] is profinite. Thus, π induces an isomorphism CQ(G′)→ CQ(G) =
G̃. So we may identify G′ with G̃. Then (3.2) is identified with the universal profinite
extension of G, in view of Lemma 2.8.
(4). — The first assertion has just been proved; the second one follows from

Lemma 2.10 in view of the vanishing of $0(G).
(5). — By Lemma 2.10 again, the profinite group scheme $i(G) is uniquely divisi-

ble for any i > 2. As a consequence, every finite quotient of $i(G) is divisible, hence
zero. This yields the assertion. �

We may now prove a large part of our main result:

Theorem 3.5. — Assume that k is perfect.
(1) We have $i = 0 for all i > 2; equivalently, $1 is left exact.
(2) The cosection functor C : Pro(C)/Pro(F)→ Pro(C) is exact.
(3) The profinite universal cover G̃ has projective dimension at most 1, for any

G ∈ Pro(C).

Proof. —
(1). — In view of the homotopy exact sequence and the fact that $i commutes

with filtered inverse limits, it suffices to show that $i(G) = 0 for any G ∈ C and any
i > 2. This follows from Lemma 3.4 when G is an abelian variety. On the other hand,
when G ∈ L, we have $i(G) = πL,Fi (G) in view of Remark 2.16 and Lemma 3.1.
So the assertion follows from [DG70, V.3.6.8] in that case. In the general case, just
recall that every G ∈ C is an extension of an abelian variety by a linear algebraic
group.
(2). — This is just a reformulation of (1) (see Lemma 2.9).
(3). — By the main result of [Bri17], the category C/F has homological dimen-

sion 1; hence the same holds for the category Pro(C)/Pro(F) ∼= Pro(C/F) (see
e.g. [Bri19, Prop. 2.12, Lem. 2.15]). As C sends projectives to projectives, this yields
the assertion. �

Remark 3.6. — Returning to an arbitrary ground field k, consider the full subcate-
gory E of C with objects the finite étale group schemes. Then E is a Serre subcategory
of F ; moreover, the pair (C, E) satisfies the lifting property if and only if k is perfect
(see e.g. [Bri15, Thm. 1.1, Rem. 3.3]). The functors

πi := πC,Ei : Pro(C) −→ Pro(E)

are the “pro-étale homotopy functors”, considered in [DG70, V.3.4.1] for affine group
schemes over perfect fields; note that π0(G) = G/G0 for any G ∈ C, where G0

denotes the neutral component (see e.g. [DG70, II.5.1]). The functor

πF ,E0 : Pro(F)→ Pro(E)
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is exact in view of [DG70, V.3.1.5]; using Lemma 2.15, this yields natural isomor-
phisms

πi(G)
∼=−→ πF ,E0 (πC,Fi (G))

for all G ∈ Pro(C) and all i > 0. As a consequence, the pro-étale fundamental group
π1 is left exact when k is perfect.

3.3. Projective covers of abelian varieties

Consider an abelian variety A, and its projective cover P (A) in Pro(C). By Propo-
sition 3.3, we have an exact sequence in Pro(C)
(3.3) 0 −→ L(A) −→ P (A) ρ−→ A −→ 0,
where L(A) is affine. Also, recall that (3.3) is the universal affine extension of A,
that is, the pushout by this extension yields an isomorphism
(3.4) HomPro(L)(L(A), G)

∼=−→ Ext1
Pro(C)(A,G)

for any G ∈ Pro(L).
Next, note that an algebraic group G is an object of ⊥ Pro(L) if and only if G

is anti-affine, i.e., O(G) = k (as follows from the affinization theorem, see [DG70,
III.3.8.2]). In view of Lemma 2.14, it follows that P (A) is the inverse limit of all
anti-affine extensions of A. Using the affinization theorem again, one can deduce that
the exact sequence (3.3) is the universal affine extension of A by a (not necessarily
commutative) affine k-group scheme. One can also obtain a structure result for P (A)
by using the classification of anti-affine groups (see [Bri09, Thm. 2.7]). We will rather
obtain such a result (Theorem 3.10) via an alternative approach, which relates P (A)
to the universal profinite cover of A.
Consider the exact sequence as in (2.1),

0 −→ L(A)F −→ L(A) −→ $0(L(A)) −→ 0.
Then the induced exact sequence

0 −→ $0(L(A)) −→ P (A)/L(A)F −→ A −→ 0
is the universal profinite extension of A, as observed in Remark 2.16. We thus identify
$0(L(A)) with $1(A), and P (A)/L(A)F with the profinite universal cover Ã. This
yields an exact sequence
(3.5) 0 −→ L(A)F −→ P (A) −→ Ã −→ 0.

Lemma 3.7. — With the above notation, $i(Ã) = 0 = $i(L(A)F) for any i > 0.
Proof. — Since A is divisible, we have $i(A) = 0 for i > 2 in view of Lemma 3.4.

Using the homotopy exact sequence associated with the universal profinite extension
0 −→ $1(A) −→ Ã −→ A −→ 0

together with Lemma 2.5, it follows that $i(Ã) = 0 for i > 2 as well. Also, we have
by construction $0(Ã) = 0 = $1(Ã).
The assertion on the $i(L(A)F) follows by using the exact sequence (3.5). �
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By [DG70, IV.3.1.1], there is a unique exact sequence in Pro(L)
(3.6) 0 −→M(A) −→ L(A) −→ U(A) −→ 0,
whereM(A) is of multiplicative type and U(A) is unipotent; if k is perfect, then (3.6)
has a unique splitting. We now investigate the unipotent part U(A):

Lemma 3.8. —
(1) There is an isomorphism

HomPro(L)(U(A),Ga) ∼= H1(A,OA)
which is compatible with the action of EndC(Ga).

(2) If char(k) = 0, then U(A) is the unipotent group with Lie algebra dual of
H1(A,OA). In particular, dim(U(A)) = dim(A).

(3) If char(k) > 0, then U(A) is profinite.

Proof. —
(1). — Since HomPro(L)(M(A),Ga) = 0, the exact sequence (3.6) yields an isomor-

phism
HomPro(L)(U(A),Ga)

∼=−→ HomPro(L)(L(A),Ga).
The latter is naturally isomorphic to Ext1

Pro(C)(A,Ga) in view of the isomorphism (3.4).
Moreover, we have natural isomorphisms

Ext1
Pro(C)(A,Ga) ∼= Ext1

C(A,Ga) ∼= H1(A,OA)

(see e.g. [Oor66, III.17]).
(2). — This follows from (1) combined with [DG70, IV.2.4.2].
(3). — Assume that U(A) is not profinite. By [DG70, V.3.2.5], there exists an

epimorphism U(A)→ Ga. This yields a monomorphism EndC(Ga)→ H1(A,OA), a
contradiction since the right-hand side is a finite-dimensional k-vector space. �

Next, we describe the part of multiplicative type, M(A). By Cartier duality
(see [DG70, IV.1.3.6]), this amounts to determining the character group X(M(A))
as a module under the absolute Galois group, Γ = Gal(ks/k), where ks denotes a
separable closure of k.

Lemma 3.9. —
(1) If k is perfect, then X(M(A)) ∼= X(L(A)) ∼= Â(ks) as Galois modules, where

Â denotes the dual abelian variety of A.
(2) For an arbitrary field k, we have

X(L(A)F) ∼= X(M(A))⊗Z Q ∼= X(L(A))⊗Z Q ∼= Â(ks)⊗Z Q

as Galois modules.

Proof. —
(1). — Recall that L(A) ∼= M(A)× U(A). In view of the isomorphism (3.4), this

yields a natural isomorphism for any torus T
HomPro(L)(M(A), T ) ∼= Ext1

C(A, T ).
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By the Weil–Barsotti formula (see e.g. [Oor66, III.17,III.18]), there is a natural
isomorphism

Ext1
C(A, T ) ∼= HomΓ(X(T ), Â(ks)).

Combining these isomorphisms yields the statement by using Cartier duality.
(2). — If k is perfect, then L(A)F ∼= M(A)F × U(A)F with an obvious notation.

Thus, X(L(A)F) ∼= X(M(A)F). In view of (1) combined with [DG70, V.3.5.2], the
Galois module X(M(A)F) is the quotient of Â(ks) by its torsion subgroup. As Â(ks)
is divisible, this yields the statement.
Next, if k is imperfect (in particular, of characteristic p > 0), then L(A)F ⊂M(A)

by Lemma 3.8(3); in particular, L(A)F is of multiplicative type. Also,we obtain that
$0(L(A)F) = 0 = $1(L(A)F) by using Lemma 3.7. In view of [DG70, V.3.5.2] again,
it follows that X(L(A)F) is a Q-vector space. Thus, so is HomPro(L)(L(A)F , T ) for
any torus T . Since M(A)/L(A)F is profinite, this yields a natural isomorphism

HomPro(L)(M(A), T )⊗Z Q ∼= HomPro(L)(L(A)F , T ).
Also, the exact sequence (3.6) yields an exact sequence

0 −→ HomPro(L)(L(A), T ) −→ HomPro(L)(M(A), T ) −→ Ext1
Pro(L)(U(A), T ).

Recall that U(A) is a filtered inverse limit of unipotent algebraic groups Ui. Then
Ext1

Pro(L)(U(A), T ) ∼= lim
→

Ext1
Pro(L)(Ui, T )

in view of [DG70, V.2.3.9]. Moreover, since each Ui is killed by a power of p, so is
each Ext1

Pro(L)(Ui, T ). As a consequence, we obtain a natural isomorphism
HomPro(L)(M(A), T )⊗Z Q ∼= HomPro(L)(L(A), T )⊗Z Q,

and hence a natural isomorphism
HomPro(L)(L(A)F , T ) ∼= HomPro(L)(L(A), T )⊗Z Q.

Arguing as in (1) completes the proof. �
We may summarize the main results of this subsection in the following:
Theorem 3.10. — Let A be an abelian variety over a field k with characteristic

p > 0 and separable closure ks.
(1) The universal profinite cover Ã is the limit of the filtered inverse system of

multiplication maps (A, nA)n>1.
(2) The exact sequence (3.5), 0 → L(A)F → P (A) → Ã → 0, is a projective

resolution of Ã.
(3) If p = 0 then L(A)F = M(A)F × U(A), where M(A)F is the group of

multiplicative type with character group Â(ks)⊗ZQ, and U(A) is the unipotent
group with Lie algebra dual of H1(A,OA).

(4) If p > 0 then L(A)F = M(A)F , where the latter is defined as above.
Proof. — All the assertions follow from Lemmas 3.4, 3.8 and 3.9, except for the

projectivity of L(A)F in Pro(C), or equivalently in Pro(L). If p > 0, then the group
L(A)F is of multiplicative type and its character group is a Q-vector space, hence
the desired assertion by [DG70, V.3.5.2]. If p = 0, then we use in addition the fact
that every unipotent group is projective in Pro(L) (see e.g. [DG70, V.3.6.5]. �
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3.4. Structure of indecomposable projectives

We still consider an arbitrary ground field k, of characteristic p > 0.
Proposition 3.11. — The indecomposable projectives of Pro(C) are exactly:
(1) the P (A), where A is a simple abelian variety,
(2) the universal profinite covers of the simple tori,
(3) the additive group Ga if p = 0, resp. the universal profinite cover of the Witt

group scheme W := lim←Wn if p > 0,
(4) the indecomposable projectives of Pro(F).

Proof. — Applying Corollary 2.13 to the pair (C,F), we see that the indecompos-
able projectives of Pro(C) are exactly those of Pro(F) and the universal profinite
covers P̃ , where P is an indecomposable projective of Pro(C/F). Also, every object
of C/F has finite length (see [Bri17, Prop. 3.2]). In view of [DG70, V.2.4.6], it follows
that every indecomposable projective of Pro(C/F) is the projective cover of a simple
object of C/F , unique up to isomorphism.
Next, the simple objects of C/F are exactly Ga, the simple tori and the simple

abelian varieties (see [Bri17, Prop. 3.2] again). Moreover, every torus is projective in
C/F , and hence in Pro(C/F); also, Ga is projective if and only if p = 0 (see [Bri17,
Thm. 5.14]. The universal profinite cover of a torus T is the group of multiplicative
type with character group X(T )⊗Z Q, in view of [DG70, V.3.5.2]. Also, G̃a = Ga if
p = 0, as follows e.g. from Lemma 3.4. If p > 0 and k is perfect, then the projective
cover of Ga in L (or equivalently, in C) is the universal profinite cover W̃ (see [DG70,
V.3.7.5]); equivalently,W is the projective cover of Ga in Pro(C/F). But the category
C/F is invariant under base change by purely inseparable field extensions (see [Bri17,
Thm. 3.11]); moreover,W is obtained by base change of a group scheme of finite type
over Z, and hence makes sense over an arbitrary field k. Thus, W̃ is the projective
cover of Ga in that setting, too. �

Remark 3.12. — We now describe the indecomposable projectives of the profinite
category Pro(F) in terms of those of the pro-étale category Pro(E). For this, we may
assume that p > 0, since F = E if p = 0.
We will adapt the arguments in the proof of Proposition 3.11 twice. First, consider

the pair (F , I), where I denotes the full subcategory of F consisting of the infin-
itesimal algebraic groups; then I is a Serre subcategory of F , and the pair (F , I)
satisfies the lifting property in view of [Bri17, Lem. 2.2]. Also, the quotient category
F/I is equivalent to the category E of étale algebraic groups, by assigning to any
finite algebraic group its largest étale quotient. It follows that the functor

πF ,E0 : Pro(F) −→ Pro(E)
yields an equivalence of categories Pro(F/I) ∼= Pro(E). Thus, the indecomposable
projectives of Pro(F) are exactly those of Pro(I) and the universal pro-infinitesimal
covers P̃ , where P is an indecomposable projective of E.
Next, consider the pair (I, Im), where Im denotes the full subcategory of I con-

sisting of (infinitesimal algebraic) groups of multiplicative type. Then again, Im is
a Serre subcategory; moreover, I/Im ∼= Iu, the full subcategory of I consisting of
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unipotent groups (see [DG70, IV.3.1.1]). Also, Iu has a unique simple object αp, the
kernel of the Frobenius endomorphism of Ga (see [DG70, IV.2.2.5]).
We now show that the pair (I, Im) satisfies the lifting property. Consider an

epimorphism f : G→ H in I, where H is multiplicative. Denote by M the largest
multiplicative subgroup of G; then G/M is unipotent, hence so is H/f(M). It follows
that H/f(M) = 0, i.e., the composition M → G→ H is an epimorphism as well.
As a consequence, we see that the indecomposable projectives of Pro(I) are exactly

those of Pro(Im) and the universal multiplicative cover P̃ , where P is the projective
cover of αp in Iu.
The above results take a much simpler form when k is perfect: then we have an

equivalence of categories
F ∼= Im × Iu × E

in view of [DG70, IV.3.5.9]. Thus, the indecomposable projectives of Pro(F) are
exactly those of Pro(Im), Pro(Iu) and Pro(E).

3.5. Field extensions

For any field extension k′/k, we denote by
⊗k k′ : Ck −→ Ck′ , G 7−→ Gk′

the associated base change functor. Then ⊗kk′ is exact and faithful; hence it extends
uniquely to an exact functor Pro(Ck) → Pro(Ck′) which commutes with filtered
inverse limits (see e.g. [KS06, Prop. 6.1.9, Cor. 8.6.8]). We still denote this extension
by ⊗k k′.

Lemma 3.13. — The functor ⊗k k′ : Pro(Ck) → Pro(Ck′) is faithful. If k′/k is
separable algebraic, then ⊗k k′ sends projectives to projectives.

Proof. — Let X, Y ∈ Pro(Ck) and f ∈ HomPro(Ck)(X, Y ) such that fk′ = 0. Then
Im(fk′) = 0. Since ⊗k k′ is exact, this means that Im(f)k′ = 0. Let Z := Im(f), then
Z = lim← Zi (filtered inverse limit), where Zi ∈ Ck and Z → Zi is an epimorphism
for all i. Thus, Zk′ is the filtered inverse limit of the (Zi)k′ , and Zk′ → (Zi)k′ is an
epimorphism for all i as well. As Zk′ = 0, it follows that (Zi)k′ = 0 for all i. So
Zi = 0 and Z = 0, that is, f = 0. This proves that ⊗k k′ is faithful.
Next, assume that k′/k is separable algebraic and let P ∈ Pro(Ck) be projective. To

show that Pk′ is projective in Pro(Ck′), it suffices to check that given an epimorphism
f : G→ H and a morphism g : Pk′ → H, where G,H ∈ Ck′ , there exists a morphism
h : Pk′ → G in Ck′ such that g = f ◦ h (see [DG70, V.2.3.5]). As above, we have
P = lim← Pi (filtered inverse limit), where Pi ∈ Ck and P → Pi is an epimorphism
for all i. So g lies in

HomPro(Ck′ )(Pk′ , H) = HomPro(Ck′ )(lim← (Pi)k′ , H) = lim
→

HomPro(Ck′ )((Pi)k′ , H).

Thus, g is represented by a morphism gi : (Pi)k′ → H for some i. Since the schemes
G,H, (Pi)k′ are of finite type over k′, the morphisms f : G→ H and gi : (Pi)k′ → H
are “defined over some finite subextension K/k”, i.e., there exist such a subextension
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and morphisms fK : GK → HK , (gi)K : (Pi)K → HK in CK such that f = fK ⊗K k′

and gi = (gi)K ⊗K k′. Then
(gi)K ∈ HomCK

((Pi)K , HK) = HomCk
(Pi,RK/k(HK)),

where RK/k denotes the Weil restriction (see e.g. [DG70, I.1.6.6] or [CGP15, App. B]).
As K/k is finite and separable and fK : GK → HK is an epimorphism, the map
RK/k(fK) : RK/k(GK)→ RK/k(HK) is an epimorphism as well (see [DG70, III.5.7.9]).
Since P is projective, it follows that (gi)K lifts to a morphism

(fj)K ∈ HomCk
(Pj,RK/k(GK)) = HomCK

((Pj)K , GK)
for some j. This yields a lift fj ∈ HomCk′

((Pj)k′ , Gk′) of gi, and in turn the desired
lift f ∈ HomC′

k
(Pk′ , Gk′) of g. �

Remark 3.14. — In the setting of affine group schemes, the fact that the base
change functor ⊗kk′ preserves projectives for any separable algebraic extension k′ of
k is due to Demazure and Gabriel (see [DG70, V.3.2.1]). For arbitrary group schemes,
this fact is stated and used in [Mil70, p. 437], but the argument sketched there is
flawed.
We may now complete the proof of the main theorem:
Proposition 3.15. — For any i > 0, the functors πC,Li and $i commute with

base change under separable algebraic field extensions. Moreover, the same holds for
the universal affine and profinite covers.
Proof. — The restriction of πC,L0 to C is the affinization functor C → L, which com-

mutes with base change under arbitrary field extensions (see e.g. [DG70, III.3.8.1]).
Thus, so does πC,L0 , since it commutes with filtered inverse limits. By Lemma 3.13,
it follows that πC,Li commutes with base change under separable algebraic field ex-
tensions for any i > 1. In view of Lemma 2.8, the universal affine cover satisfies the
same property.
We now show that $0 (the largest profinite quotient) commutes with ⊗kk′, where

k′/k is any separable algebraic field extension; this will imply the assertions on the
profinite homotopy groups and profinite universal cover by arguing as above. For any
X ∈ ⊥ Pro(Fk), we have to check that Xk′ ∈ ⊥ Pro(Fk′), i.e., HomCk′

(Xk′ , Y ) = 0
for any Y ∈ Fk′ . But this follows by a Weil restriction argument as in the proof of
Lemma 3.13.
More specifically, let X = lim←Xi (filtered inverse limit), where Xi ∈ Ck and

the natural map X → Xi is an epimorphism for all i. Then Xk′ = lim←(Xi)k′
(filtered inverse limit), where (Xi)k′ ∈ Ck′ and the natural map Xk′ → (Xi)k′ is an
epimorphism for all i as well. Thus, for any morphism f : Xk′ → Y , where Y ∈ Fk′ ,
there exists i such that f is the composition Xk′ → (Xi)k′ → Y for some morphism
fi : (Xi)k′ → Y . In turn, there exist a finite subextension K/k and a morphism
(fi)K : (Xi)K → YK in CK , such that fi = (fi)K ⊗K k′. We now have

(fi)K ∈ HomCK
((Xi)K , YK) = HomCk

(Xi,RK/k(YK)).
Moreover, RK/k(YK) ∈ Fk, since Y is a finite k′-group scheme and hence YK is a
finite K-group scheme. It follows that HomCk

(Xi,RK/k(YK)) = 0, as X ∈ ⊥ Pro(Fk).
Thus, (fi)K = 0, so that fi = 0 and f = 0. �
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Remark 3.16. — One may check similarly that the functors πF ,Ii and the universal
pro-infinitesimal cover (considered in Remark 3.12) also commute with base change
under separable algebraic field extensions. Indeed, being infinitesimal is preserved
under Weil restriction associated with finite separable field extensions.
Likewise, the functors πI,Im

i and the universal multiplicative cover commute with
such base change, since being of multiplicative type is preserved under Weil restriction
as above.

By Proposition 3.15, the profinite fundamental group $1 commutes with base
change under algebraic field extensions in characteristic 0. Yet this does not extend
to an imperfect ground field, see Remark 3.21 below. To remedy this, we now recall
the definition of the prime-to-p part of $1, and show that it satisfies the assertions
of the main theorem.
Every finite group scheme G decomposes into a product Gp ×Gp′ , where Gp is a

p-group, and Gp′ has order prime to p; moreover, Gp′ is étale. This decomposition
is clearly functorial, and yields an equivalence of categories F ∼= Fp × Fp′ with an
obvious notation. In turn, we obtain an equivalence of categories

Pro(F) ∼= Pro(Fp)× Pro(Fp′),
where every object of Pro(Fp′) is pro-étale. Composing the resulting exact functor
Pro(F)→ Pro(Fp′) (the prime-to-p part) with the profinite homotopy functors $i,
we obtain functors

$
(p′)
i : Pro(C) −→ Pro(Fp′).

Proposition 3.17. — With the above notation and assumptions, the functor
$

(p′)
1 is left exact and commutes with base change under algebraic field extensions. If

k is algebraically closed and G is a smooth connected algebraic group, then $(p′)
1 (G)

is the prime-to-p part of the étale fundamental group of the scheme G.

Proof. — To show the first assertion, it suffices to check that $(p′)
1 commutes with

purely inseparable field extensions, in view of Theorem 3.5 and Proposition 3.15. We
may identify the prime-to-p functor Pro(F) → Pro(Fp′) with the quotient functor
QF ,Fp : Pro(F) → Pro(F)/Pro(Fp); moreover, the pair (C,Fp) satisfies the lifting
property (see [Bri19, Lem. 3.1]). Thus, $(p′)

i (G) is identified with the image of $i(G)
in C/Fp for any G ∈ Pro(C) (Lemma 2.18). Moreover, the category C/Fp is invariant
under base change by purely inseparable extensions, in view of [Bri19, Thm. 3.17];
thus so is its torsion subcategory, F/Fp. This implies the desired statement.
The second assertion follows from the fact that every étale Galois cover of the

scheme G has the structure of a smooth commutative algebraic group, unique up to
the choice of the neutral element (see e.g. [BS13, Prop. 1.1]). �

Remark 3.18. — To obtain a version of the profinite fundamental group which
commutes with all algebraic field extensions, one may also consider the quotient
category of C by the Serre subcategory I of infinitesimal algebraic groups. We may
view C/I as the category of algebraic groups up to purely inseparable isogeny, or
alternatively as that of quasi-algebraic groups in the sense of [Ser60] (see also [DG70,
V.3.4.5]). The pair (C, I) satisfies the lifting property (see e.g. [Bri17, Lem. 2.2]); in
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view of Lemma 2.18, it follows that πC/I,F/Ii (G) is the image of $i(G) in Pro(F/I),
for any G ∈ Pro(C) and any i > 0. But Pro(F/I) ∼= Pro(E) via the largest pro-
étale quotient functor πC,E0 ; also, C/I and its subcategory F/I are invariant under
base change by purely inseparable field extensions (see [Bri19, Thm. 3.17]). As a
consequence, we obtain functors

π
C/I,E
i : Pro(C/I) −→ Pro(E)

which commute indeed with algebraic field extensions.
If k is perfect, then F ∼= I ×E ; thus, Pro(F) ∼= Pro(I)×Pro(E) and this identifies

the quotient functor
QF ,I : Pro(F) −→ Pro(F/I)

with the corresponding projection Pro(F)→ Pro(E). It follows that the composite
functor πC/I,Ei ◦QC,I is identified with the pro-étale homotopy functor πi discussed
in Remark 3.6. Thus, πC/I,E1 is left exact and its prime-to-p part is $(p′)

1 .
The latter assertion extends to an imperfect field k, since πC/I,E1 may be identified

with the pro-étale fundamental group over its perfect closure.
Remark 3.19. — The functor $0 does not commute with base change under

purely inseparable field extensions. Consider indeed an imperfect field k, and choose
t ∈ k \ kp. Let G denote the kernel of the morphism

Ga ×Ga −→ Ga, (x, y) 7−→ xp − typ.
Then G is connected and reduced; thus, $0(G) is connected and reduced as well,
hence zero. Let k′ := k(t1/p), then the map (x, y) 7→ (x, x− t1/py) yields an isomor-
phism Gk′

∼= Ga,k′ × αp,k′ , where αp,k′ denotes the kernel of the Frobenius endomor-
phism

F : Ga,k′ −→ Ga,k′ , x 7−→ xp.

Thus, $0(Gk′) ∼= αp,k′ .
Remark 3.20. — The functor $1 does not commute with base change under purely

inseparable field extensions either. Consider indeed a smooth connected algebraic
group G and a finite group scheme H. Then $0(G) = 0, hence we obtain canonical
isomorphisms

HomPro(F)($1(G), H) ∼= Ext1
Pro(C)(G,H) ∼= Ext1

C(G,H).
If $1 commutes with base change under a field extension k′/k, then the map

Ext1
C(G,H) −→ Ext1

Ck′
(Gk′ , Hk′)

is injective in view of the above isomorphisms and the faithfulness of ⊗k k′ (obtained
in Lemma 3.13).
Now assume that k is separably closed, but not algebraically closed; then there

exist nontrivial k-forms of Ga, and Ext1
C(G,Gm) 6= 0 for any such form G (see [Tot13,

Lem. 9.4]). As G is killed by p, so is Ext1
C(G,Gm). It follows that the natural map

Ext1
C(G, µp) −→ Ext1

C(G,Gm)
is surjective, where µp denotes the kernel of the pth power map of Gm. Thus,
Ext1

C(G, µp) 6= 0. On the other hand, Ext1
Ck̄

(Gk̄, µp,k̄) = Ext1
Ck̄

(Ga,k̄, µp,k̄) vanishes
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in view of the structure of commutative linear algebraic groups over algebraically
closed fields (see e.g. [DG70, IV.3.1.1]). So $1 does not commute with the (purely
inseparable) extension k̄/k.

Remark 3.21. — The above examples show that the “pro-infinitesimal part” of
$i (the largest pro-infinitesimal subobject) does not commute with base change
under purely inseparable field extensions for i = 0, 1. One may wonder whether the
“pro-étale part” (the largest pro-étale quotient of $i) is better behaved. The answer
is affirmative for $0, which commutes with arbitrary field extensions (see [DG70,
II.5.1]). Also, the answer is affirmative for the prime-to-p part of $1 by Proposi-
tion 3.17. But the answer is negative for its pro-étale p-primary part, as we now
show in the case of the additive group Ga.
Since Ga is killed by p, so are $1(Ga) and its largest pro-étale quotient Q. Denoting

by νp the constant k-group scheme associated with Z/pZ, it follows that the natural
map HomPro(C)(Q, νp)→ HomPro(C)($1(Ga), νp) is an isomorphism. So it suffices to
show that the formation of HomPro(C)($1(Ga), νp) does not commute with purely
inseparable field extensions.
As in 3.20 above, we have an isomorphism

HomPro(C)($1(Ga), νp) ∼= Ext1
C(Ga, νp)

of modules over EndC(Ga). Also, recall that EndC(Ga) consists of the additive poly-
nomials (also known as p-polynomials),

x 7−→ a0 x+ a1 x
p + · · ·+ an x

pn

,

where a0, . . . , an ∈ k (see e.g. [DG70, II.3.4.4]). By the proof of [Sai17, Prop. 1.20],
we have an “Artin–Schreier” exact sequence

(3.7) EndC(Ga) P−→ EndC(Ga) −→ Ext1
C(Ga, νp) −→ 0

of EndC(Ga)-modules, where EndC(Ga) acts on its two copies by right multiplication,
and P(f)(x) := f(x)p − f(x) for any f ∈ EndC(Ga) and x ∈ Ga. We claim that the
exact sequence (3.7) can also be obtained as follows: consider a nontrivial extension

0 −→ νp −→ G
x−→ Ga −→ 0.

Then G is smooth and unipotent; also, the composition G0 → G → Ga is an
epimorphism, whereG0 denotes the neutral component. It follows thatG is connected,
and hence is a k-form of Ga. By [Rus70, Lem. 1.3], there is an exact sequence

0 −→ I −→ G
y−→ Ga −→ 0,

where I is infinitesimal; moreover, we have y = F n
G for n� 0. Then the morphism

(x, y) : G→ Ga ×Ga has a trivial kernel; its cokernel is a quotient of Ga × {0} for
dimension reasons, and hence is isomorphic to Ga in view of [DG70, IV.2.1.1]. This
yields an exact sequence

0 −→ G
(x,y)−→ Ga ×Ga

f+g−→ Ga −→ 0,
where f, g ∈ EndC(Ga). So we may view G as the zero scheme V(f(x) + g(y)) in
Ga × Ga; this identifies νp = Ker(x : G → Ga) with Ker(g). We may thus assume
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that g(y) = yp − y, so that G = V(yp − y + f(x)). This defines a map

u : EndC(Ga) −→ Ext1
C(Ga, νp), f 7−→ V(yp − y + f(x)),

which is surjective as f = 0 gives the trivial extension. One may readily check that u
is a morphism of EndC(Ga)-modules; also, u(f) = 0 if and only if f(x) = h(x)p−h(x)
for some h ∈ EndC(Ga), that is, f = P(h). This completes the proof of the claim.
Clearly, we have Ker(P) = HomC(Ga, νp) = 0. To describe Coker(P), we first

consider the case where k is perfect. Then

a xp
n = P(a1/p xp

n−1) + a1/p xp
n−1

for all a ∈ k and all integers n > 1. It follows that Coker(P) ∼= k via the map
k → EndC(Ga) given by scalar multiplication. For an arbitrary field k, we obtain by
using a p-basis

Coker(P) ∼= k ⊕
∞⊕
n=1

k xp
n

/kp xp
n

.

In particular, the natural map k → Coker(P) is not surjective if k is imperfect. This
shows that Ext1

C(Ga, νp) does not commute with purely inseparable field extensions.
The above construction may be interpreted in terms of the exact sequence

0 −→ νp
ι−→ Ga

F−id−→ Ga −→ 0,

which yields an exact sequence

0 −→ EndC(Ga)/(F − id) −→ Ext1
C(Ga, νp) ι∗−→ Ext1

C(Ga,Ga),

where the image of ι∗ is the kernel of F − id. Since EndC(Ga) is the noncommutative
polynomial ring k[F ], we have EndC(Ga)/(F − id) ∼= k.
If k is perfect, then Ext1

C(Ga,Ga) is a free module over EndC(Ga) acting on the
left (see [DG70, V.1.5.2]). Thus, we obtain an isomorphism of EndC(Ga)-modules

Ext1
C(Ga, νp) ∼= k[F ]/(F − id) ∼= k.

This isomorphism does not extend to an imperfect field k, as the image of ι∗ may
be identified with ⊕∞

n=1 k/k
p.

3.6. The Milne spectral sequence

We first record a variant of a result obtained by Demazure and Gabriel in the
setting of affine group schemes (see [DG70, V.3.2.3]):

Lemma 3.22. — Let k′/k be a separable field extension. Then there are canonical
isomorphisms for any G ∈ Pro(C), H ∈ C and j > 0:

ExtjPro(Ck′ )
(Gk′ , Hk′) ∼= lim

→,K
ExtjPro(CK)(GK , HK),

where K/k runs over the filtered direct system of finite subextensions of k′/k.
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Proof. — We follow the argument of [DG70, V.3.2.3] closely. If G ∈ C then the
natural map

lim
→,K

HomCK
(GK , HK) −→ HomCk′

(Gk′ , Hk′)

is an isomorphism by the “principle of the finite extension” (see e.g. [DG70, I.3.2.2]).
For an arbitrary G ∈ Pro(C), consider the family (Gi) of its algebraic group

quotients. Then Gk′
∼= lim←,i(Gi)k′ , hence

HomPro(Ck′ )(Gk′ , Hk′) ∼= lim
→,i

HomCk′
((Gi)k′ , Hk′) ∼= lim

→,i
lim
→,K

HomCK
((Gi)K , HK)

∼= lim
→,K

lim
→,i

HomCK
((Gi)K , HK) ∼= lim

→,K
HomPro(CK)(GK , HK).

This yields the assertion for j = 0. Next, choose a projective resolution P• of G in
Pro(C); then (Pk′)• is a projective resolution of Gk′ by Lemma 3.13. Since we have

HomPro(Ck′ )((Pk′)•, Hk′) ∼= lim
→,K

HomPro(CK)((PK)•, HK),

this yields the statement by taking cohomology. �

Next, consider a Galois field extension k′/k. Then the profinite group
Γ := Gal(k′/k)

acts on the group ExtjPro(Ck′ )
(Gk′ , Hk′) for any G,H ∈ Pro(C), and j > 0. If H ∈ C,

then this Γ-module is discrete as a consequence of Lemma 3.22. We may now state
the following result, due to Milne in the case where k is perfect with algebraic
closure k′ (see [Mil70, Prop., p. 437]):

Theorem 3.23. — There is a spectral sequence

H i(Γ,ExtjPro(Ck′ )
(Gk′ , Hk′))⇒ Exti+jPro(C)(G,H)

for any G ∈ Pro(C) and H ∈ C.

The proof will combine the approach sketched in [Mil70] with the inductive de-
scription of indecomposable projectives obtained in Subsection 3.3. To simplify the
notation, we set

Gk′ =: G′, Hk′ =: H ′, Ck′ =: C ′, . . .

By Lemma 3.13, the base change functor Pro(C) → Pro(C ′) is exact and sends
projectives to projectives. Also, note that

H0(Γ,HomPro(C′)(G′, H ′)) = HomPro(C)(G,H),
since this holds by Galois descent when G ∈ C, and taking Γ-invariants commutes
with direct limits. So Theorem 3.23 will follow from the spectral sequence of com-
posite functors (see [Gro57, Thm. 2.4.1]), once we show:

Proposition 3.24. — Let G be a projective object of Pro(C), and H ∈ C. Then
the Γ-module HomPro(C′)(G′, H ′) is acyclic.

We start the proof of the above proposition with some observations and reductions.
Since being acyclic is preserved under taking direct limits, we may assume that k′/k
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is finite by combining Lemmas 3.13 and 3.22. Also, recall that G ∼=
∏
i∈I Pi, where

the Pi are indecomposable and projective. Thus, G′ ∼=
∏
i∈I P

′
i and

HomPro(C′)(G′, H ′) ∼=
⊕
i∈I

HomPro(C′)(P ′i , H ′).

To show the acyclicity of this Γ-module, we may therefore assume that G is inde-
composable. Thus, G is of one of the types listed in Proposition 3.11.
Assume first that G = P (A), where A is a simple abelian variety. Then G′ = P (A′)

(the universal affine cover of A′) in view of Proposition 3.15. So the adjunction
isomorphism (2.4) yields an isomorphism of Γ-modules

HomPro(C′)(G′, H ′) ∼= HomA′(A′, Q(H ′)),

where Q := QC
′,L′ . The right-hand side is a Q-vector space, and hence an acyclic

Γ-module in view of [DG70, V.3.5.1].
Next, assume that G is the universal profinite cover of a simple torus T . Then G′

is the universal profinite cover of T ′ in view of Proposition 3.15 again. By adjunction,
it follows that

HomPro(C′)(G′, H ′) ∼= HomC′/F ′(T ′, Q(H ′)),
where Q := QC

′,F ′ . This is a Q-vector space, since T ′ is divisible; so we conclude as
above.
The case where G = Ga in characteristic 0 is handled similarly: then

HomPro(C′)(G′, H ′) ∼= HomC′(G′a, H ′)
is again a Q-vector space, hence Γ-acyclic.
Next, let G = W̃ in characteristic p > 0. We obtain as above

HomPro(C′)(G′, H ′) ∼= HomPro(C′/F ′)(W ′, Q(H ′)),

where Q := QC
′,F ′ ; moreover, W ′ is the projective cover of G′a in Pro(C ′/F ′) in view

of [DG70, V.3.7.5]. To show that the above Γ-module is acyclic, we may assume that
H is simple in C/F (since every object in that category has finite length, and the
functor HomPro(C′/F ′)(W ′,−) is exact). So H is either a simple abelian variety, or
a simple torus, or Ga (see [Bri17, Prop. 3.2]). As W is unipotent, we may further
assume that H = Ga. We now need the following observation:

Lemma 3.25. — Let A be an abelian category, and f : X → Y an essential
epimorphism in A, where Y is simple. For any simple object Z of A, we have
HomA(X,Z) = 0 unless Z ∼= Y ; moreover, HomA(X, Y ) ∼= EndA(Y ) via composition
with f .

Proof. — Let g ∈ HomA(X,Z). If g 6= 0, then the composition Ker(g)→ X → Y
is not an epimorphism, since f is essential. As Y is simple, this composition is zero,
i.e., Ker(g) ⊂ Ker(f). This yields an exact sequence

0 −→ Ker(f)/Ker(g) −→ X/Ker(g) −→ Y −→ 0.

As Z is simple, we have X/Ker(g) ∼= Z. So Z ∼= Y and Ker(f) = Ker(g), i.e., g
factors uniquely through f . �
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Applying Lemma 3.25 to the abelian category Pro(C ′/F ′) and to the essential
epimorphism W ′ → G′a, we see that HomPro(C′/F ′)(W ′, H ′) = 0 unless H ′ ∼= G′a, and

HomPro(C′/F ′)(W ′,G′a) ∼= EndC′/F ′(G′a)
as Γ-modules.
We now make a further reduction to the case where k is perfect: indeed, the Galois

group Γ is invariant under purely inseparable field extensions of k, and the same
holds for the isogeny category C/F by [Bri17, Thm. 3.11]. Recall that EndC′(G′a) is
the noncommutative polynomial ring k′[F ], and EndC′/F ′(G′a) is its fraction skewfield
k′(F ), as follows e.g. from [DG70, V.3.6.7]. To show that k′(F ) is acyclic, it suffices
to check that it is the direct limit of its Γ-submodules g−1k′[F ] over all nonzero
g ∈ k[F ], since every such submodule is isomorphic to k′[F ] ∼= k′ ⊗k k[F ], hence is
acyclic. For this, we adapt a standard argument of commutative algebra.
Let g−1f ∈ k′(F ), where f, g ∈ k′[F ] and g 6= 0. Since the left k[F ]-module k′[F ]

is finitely generated and the ring k[F ] is left Noetherian, the increasing sequence of
submodules k[F ] + k[F ] g + · · ·+ k[F ] gn stops. So there exist an integer n > 1 and
a1, . . . , an ∈ k[F ] such that gn + a1g

n−1 + · · ·+ an = 0. Since k′[F ] is a domain and
g 6= 0, we may further assume that an 6= 0. Then g′g = −an ∈ k[F ] \ {0}, where
g′ := gn−1 + a1g

n−2 + · · ·+ an−1. Thus, g−1f = (g′g)−1g′f is as desired.
This completes the proof of the proposition for G = W̃ , and leaves us with the

case where G is profinite (and k is arbitrary). We now prove:

Lemma 3.26. — Let G ∈ Pro(F), H ∈ C, and f ∈ HomPro(C′)(G′, H ′). Then
there exists a finite subgroup F ⊂ H such that f factors through F ′ ⊂ H ′.

Proof. — Write G as a filtered inverse limit of finite quotients Gi; then G′ is the
filtered inverse limit of its finite quotients G′i. Thus,

HomPro(C′)(G′, H ′) = lim
→

HomC′(G′i, H ′).

We may therefore assume that G ∈ F ; then Im(f) is a finite k′-subgroup of H ′.
Let I ⊂ Im(f) denote the largest infinitesimal subgroup, then I is contained in
some Frobenius kernel Ker(F n

H′/k′). Hence I ⊂ Ker(F n
H/k)′ =: J ′, where J ⊂ H is

infinitesimal. Thus, I = J ′ ∩ Im(f), and Im(f)/I is a finite étale k′-subgroup of
H ′/J ′ = (H/J)′. So we may assume that Im(f) is étale; then we may view Im(f)
as a finite subgroup of H(ks), stable under Gal(ks/k′). In that case, the (finitely
many) conjugates of Im(f) under Gal(ks/k) generate the desired finite k-subgroup
F ⊂ H. �

By Lemma 3.26, we have
HomPro(C′)(G′, H ′) = lim

→
HomPro(F ′)(G′, F ′),

where the limit runs over all the finite subgroups F ⊂ H. Since taking Γ-cohomology
commutes with direct limits, it suffices to show that the Γ-module HomPro(F ′)(G′, H ′)
is acyclic whenever G is the projective cover of a finite simple group, and H is finite.
We may further assume H simple.
Consider the Serre subcategory I of F , and recall that F/I ∼= E . By Remark 3.12,

the indecomposable projective objects of Pro(F) are exactly those of Pro(I) and
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the universal pro-infinitesimal covers P̃ , where P ∈ Pro(E) is indecomposable and
projective. Also, the universal pro-infinitesimal cover commutes with base change
under separable algebraic field extensions by Remark 3.16. Thus, we obtain

HomPro(F ′)(P̃ ′, H ′) ∼= HomPro(E ′)(P ′, Q(H ′)),

where Q := QF
′,I′ .

To show that the above Γ-module is acyclic, we may assume H ∈ E . We now
adapt the argument in the proof of [Bri19, Lem. 3.10], by using results of Galois
cohomology from [Ser97, Chap. II]. Consider the Galois groups Γk := Gal(ks/k) and
Γk′ := Gal(ks/k′); these fit in an exact sequence

1 −→ Γk′ −→ Γk −→ Γ −→ 1.

By [DG70, II.5.1.7], E is equivalent to the category Γk −mod of finite commutative
groups equipped with a discrete action of Γk. The latter category has a duality given
by M 7→ Hom(M,Q/Z), where the right-hand side denotes the group homomor-
phisms on which Γk acts via its given action on M and the trivial action on Q/Z.
This yields an anti-equivalence between E and Γk − mod, which extends uniquely
to an anti-equivalence between Pro(E) and the category Γk −Mod of all discrete
Γk-modules (the latter is the ind-category of Γk−mod). Under this anti-equivalence,
the base change functor ⊗k k′ : Pro(E)→ Pro(E ′) corresponds to the restriction from
Γk to Γk′ . So it suffices to check that HomΓk′ (M,N) is Γ-acyclic for any object M
of Γk −mod and any injective object N of Γk −Mod.
We have an injective morphism of discrete Γk-modules

ι : N −→ Homcont(Γk, N), x 7−→ (γ 7−→ γx),

where the right-hand side denotes the group of continuous maps Γk → N , equipped
with the action Γk via right multiplication on itself. Since the Γk-module N is
injective, it is identified with a summand of Homcont(Γk, N) via ι; thus, the Γ-module
HomΓk′ (M,N) is a summand of

HomΓk′ (M,Homcont(Γk, N)) ∼= HomΓk′
cont(M × Γk, N)

∼= HomΓk′
cont(Γk,Hom(M,N)).

So it suffices in turn to show that the latter Γ-module is acyclic. Let P := Hom(M,N);
this is a discrete Γk-module, and hence we have an isomorphism

HomΓk′
cont(Γk, P )

∼=−→ Hom(Γ, P )

that sends f to the Γk′-invariant map

Γk −→ P, g 7−→ g−1f(g).

The inverse isomorphism sends ϕ : Γ→ P to the map

Γk −→ P, g 7−→ gϕ(ḡ),

where ḡ denotes the image of g in Γk/Γk′ = Γk. Moreover, Hom(Γ, P ) is an acyclic
Γ-module as desired.
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Thus, we may assume G ∈ Pro(I). Consider the Serre subcategory Im of I; then
I/Im ∼= Iu. Using again Remarks 3.12 and 3.16, we are reduced to showing the
above acyclicity assertion, with F replaced by Im or Iu.
By Cartier duality, Im is anti-equivalent to Ep (see [DG70, IV.1.3]); moreover, Ep

is self-dual via Hom(−,Qp/Zp). So the desired assertion for Iu follows from the
corresponding assertion for Ep.
Finally, if G ∈ Pro(Iu), then G is the projective cover (in Pro(Iu) or equivalently

in Pro(I), Pro(F), Pro(L), Pro(C)) of the unique simple object, αp. Thus, G′ is
the projective cover of α′p in view of Lemma 3.27 below. Also, H = αp and hence
H ′ = α′p. Using Lemma 3.25, it follows that

HomPro(I′u)(G′, H ′) = EndI′u(α′p) = k′.

Since the Γ-module k′ is acyclic, this completes the proof of Proposition 3.24, and
hence of Theorem 3.23.

Lemma 3.27. — Let G be the projective cover of αp, and k′/k a finite separable
field extension. Then G′ is the projective cover of α′p.

Proof. — By Lemma 3.13, G′ is projective in Pro(C ′). Also, G ∈ Pro(Iu) and hence
G′ ∈ Pro(I ′u) is projective there. Recall that I ′u has a unique simple object α′p, and
denote by P ′ its projective cover. Then G′ is a direct product of copies of P ′ in view
of [DG70, V.2.4.6b)]. Also, the natural map

k′ = EndC′(α′p) −→ HomPro(C′)(P ′, α′p)
is an isomorphism by Lemma 3.25. So it suffices to show that the analogous map

ϕ : k′ −→ HomPro(C′)(G′, α′p)
is an isomorphism as well. We have

HomPro(C′)(G′, α′p) = HomPro(C)(G,Rk′/k(α′p)),
where the Weil restriction Rk′/k(α′p) is an iterated extension of d := [k′ : k] copies
of αp. Using Lemma 3.25 again, it follows that HomPro(C′)(G′, α′p) has dimension
at most d when viewed as a k-vector space. Since ϕ is injective and k-linear, and
k′ has dimension d when viewed as a k-vector space, we conclude that ϕ is an
isomorphism. �
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