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a Filippov flow for this type of equations, we study an upwind finite volume numerical scheme
and we prove that it is convergent at order 1/2 in Wasserstein distance. The paper is illustrated
by numerical simulations that indicate that this convergence order should be optimal.
Résumé. — Dans cet article, nous proposons une analyse numérique de schémas de type

upwind pour l’équation d’agrégation nonlocale et nonlinéaire. Dans cette approche, l’équation
d’agrégation est interprétée comme une équation de transport conservative avec un champs de
vitesse nonlocal et nonlinéaire de faible régularité. En particulier, le potentiel d’interaction peut
être pointu, dans ce cas le champs de vitesse peut avoir des discontinuités. En se basant sur des
résultats récents d’existence et d’unicité d’un flot de Filippov pour ce type d’équations, nous
étudions un schéma volume fini de type upwind et nous montrons qu’il converge à l’ordre 1/2
en distance de Wasserstein. Ce résultat est illustré par des simulations numériques indiquant
que cet ordre de convergence est optimal.

1. Introduction

This paper is devoted to the numerical approximation of measure valued solutions
to the so-called aggregation equation in space dimension d. This equation reads
(1.1) ∂tρ = div

(
(∇xW ∗ ρ)ρ

)
, t > 0, x ∈ Rd,

with the initial condition ρ(0, · ) = ρini. Here, W plays the role of an interaction
potential whose gradient ∇xW (x− y) measures the relative force exerted by a unit
mass localized at a point y onto a unit mass located at a point x.
This system appears in many applications in physics and population dynamics. In

the framework of granular media, equation (1.1) is used to describe the large time
dynamics of inhomogeneous kinetic models, see [BCP97, CMV06, Tos04]. Models
of crowd motion with a nonlinear term of the form ∇xW ∗ ρ are also addressed
in [CGLM12, CLM13]. In population dynamics, (1.1) provides a biologically mean-
ingful description of aggregative phenomena. For instance, the description of the
collective migration of cells by swarming leads to such a kind of PDEs with non-local
interaction, see e.g. [MCO05, OL02, TB04]. Another example is the modelling of
bacterial chemotaxis. In this framework, the quantity S = W ∗ ρ is the chemoat-
tractant concentration, which is a substance emitted by bacteria allowing them to
interact with one another. The dynamics can be macroscopically modelled by the
Patlak–Keller–Segel system [KS70, Pat53]. In the kinetic framework, the most fre-
quently used model is the Othmer–Dunbar–Alt system, the hydrodynamic limit of
which leads to the aggregation equation (1.1), see [DS05, FLP05, JV13]. In many
of these examples, the potential W is usually mildly singular, i.e. W has a weak
singularity at the origin. Because of this low regularity, smooth solutions of such
systems may blow-up in finite time, see e.g. [BV06, BLR11, CDF+11, LT04]. In the
latter case, finite time concentration may be regarded as a very simple mathematical
way to account for aggregation of individuals, as opposed to diffusion.
Since finite time blow-up of smooth solutions may occur and since equation (1.1)

conserves mass, a natural framework to study the existence of global in time solutions
is to work in the space of probability measures. In this regard, two strategies have been
proposed in the literature. In [CDF+11], the aggregation equation is seen as a gradient
flow taking values in the Wasserstein space and minimizing the interaction energy.
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Numerical analysis for the aggregation equation 219

In [CJLV16, JV13, JV16, LV16], this system is considered as a conservative transport
equation with velocity field ∇xW ∗ ρ. Then a unique flow, say Z = (Z(t, · ))t>0, can
be constructed, hence allowing to define the solution as a pushforward measure by
the flow, namely ρ = (ρ(t) = Z(t, · )#ρ

ini)t>0. When the singularity of the potential is
stronger than the mild form described above, such a construction has been achieved
in the radially symmetric case in [BGL12], but uniqueness is then lacking. Actually,
the assumptions on the potential W that are needed to ensure the well-posedness
of the equation in the space of measure valued solutions require a certain convexity
property of the potential that allows only for a mild singularity at the origin. More
precisely, we assume that the interaction potential W : Rd → R satisfies the
following properties:
(A1) W (x) = W (−x) and W (0) = 0;
(A2) W is λ-convex for some λ ∈ R, i.e. W (x)− λ

2 |x|
2 is convex;

(A3) W ∈ C1(Rd \ {0});
(A4) W is Lipschitz-continuous.

Such a potential will be referred to as a pointy potential. Typical examples are fully
attractive potentials W (x) = 1− e−|x|, which is −1-convex, and W (x) = |x|, which
is 0-convex. Notice that the Lipschitz-continuity of the potential allows to bound
the velocity field: there exists a nonnegative constant w∞ such that for all x 6= 0,

(1.2) |∇W (x)| 6 w∞.

Observe also that (A4) forces λ in (A2) to be non-positive, as otherwise W would
be at least of quadratic growth, whilst (A4) forces it to be at most of linear growth.
However, we shall sometimes discard (A4), when the initial datum is compactly
supported. In this case, as W − λ|x|2/2 is convex, it is locally Lipschitz-continuous,
so that W is locally Lipschitz-continuous, what will be sufficient for compactly
supported initial data. In that case it perfectly makes sense to assume λ > 0 in (A2).
For numerical analysis, we will assume in this case that the potential is radial, that
is to say that W is a function of the sole scalar |x|, W (x) =W(|x|).
Although very accurate numerical schemes have been developed to study the blow-

up profile for smooth solutions, see [HB10, HB12], very few numerical schemes have
been proposed to simulate the behavior of solutions to the aggregation equation
after blow-up. The so-called sticky particles method was shown to be convergent
in [CDF+11] and used to obtain qualitative properties of the solutions such as the
time of total collapse. However, this method is not so practical to catch the behavior
of the solutions after blow-up in dimension d larger than one. In dimension d = 1, this
question has been addressed in [JV13]. In higher dimension, particle methods have
been recently proposed and studied in [CB16, CPCCC15], but only the convergence
of smooth solutions, before the blowup time, has been proved. Finite volume schemes
have also been developed. In [JV15], the authors propose a finite volume scheme
to approximate the behavior of the solution to the aggregation equation (1.1) after
blow-up and prove that it is convergent. A finite volume method for a large class
of PDEs including in particular (1.1) has been also proposed in [CCH15], but no
convergence result has been given. Finally, a finite volume scheme of Lax–Friedrichs
type for general measures as initial data has been introduced and investigated
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in [CJLV16]. Numerical simulations of solutions in dimension greater than one have
been obtained, allowing to observe the behavior after blow-up. Moreover, convergence
towards measure valued solutions has been proved. However, no estimate on the
order of convergence has been established so far. In the current work, we provide a
precise estimate of the order of convergence in Wasserstein distance for an upwind
type scheme. This scheme is based on an idea introduced in [JV13] and used later
on in [CJLV16, JV15]. It consists in discretizing properly the macroscopic velocity
so that its product with the measure solution ρ is well-defined. In this paper, we
introduce an upwind scheme for which this product is treated accurately, and we
prove its convergence at order 1/2 in Wasserstein distance (the definition of which
is recalled below).
For a given velocity field, the study of the order of convergence for the finite

volume upwind scheme for the transport equation has received a lot of attention.
This scheme is known to be first order convergent in L∞ norm for any smooth initial
data in C2(Rd) and for well-suited meshes, provided a standard stability condition
(Courant–Friedrichs–Lewy condition) holds, see [BGP05]. However, this order of
convergence falls down to 1/2 in Lp norm when considering non-smooth initial data
or more general meshes. This result has been first proved in the Cartesian framework
by Kuznetsov in [Kuz76]. In [Des04], a 1/2 order estimate in the L∞([0, T ], L2(Rd))
norm for H2(Rd) initial data has been established. Finally in [DL11, MV07], a 1/2
order estimate in L1 has been proved for initial data in L1(Rd)∩BV (Rd), whilst, for
Lipschitz-continuous initial data, an estimate of order 1/2−ε in L∞ for any ε > 0 has
been obtained in [DL11, Mer07]. We emphasize that the techniques used in [Mer07,
MV07] and [DL11] are totally different. In the former, the strategy of proof is based
on entropy estimates, whereas in the latter, the proof relies on the construction and
the analysis of stochastic characteristics for the numerical scheme. Finally, when
the velocity field is only L∞ and one-sided Lipschitz-continuous, solutions of the
conservative transport equation are defined only in the sense of measures. In this
regard, Poupaud and Rascle [PR97] have proved that solutions of the conservative
transport equation could be defined as the pushforward of the initial condition by a
flow of characteristics. A stability estimate for such solutions has been stated later
in [BG11]. In dimension d = 1, these solutions, as introduced in [PR97], are equivalent
to duality solutions, as defined in [BJ98]. Numerical investigations may be found
in [GJ00]. In such a framework with a low regularity, numerical analysis requires
to work with a sufficiently weak topology, which is precisely what has been done
in [DLV17]. Therein, the convergence at order 1/2 of a finite volume upwind scheme
has been shown in Wasserstein distance by means of a stochastic characteristic
method, as done in [DL11]. Observe also that, recently, such an approach has been
successfully used in [SS17] for the numerical analysis of the upwind scheme for the
transport equation with rough coefficients. In the current work, we adapt the strategy
initiated in [DLV17] to prove the convergence at order 1/2 of an upwind scheme
for the aggregation equation for which the velocity field depends on the solution in
a nonlinear way. We will strongly use the fact that, as mentioned above, measure
valued solutions of (1.1) are constructed by pushing forward the initial condition
by an Rd-valued flow. Noticeably, we entirely reformulate the stochastic approach
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used in [DLV17] by means of analytical tools. In the end, our proof is completely
deterministic. Although using analytical instead of probabilistic arguments do not
change the final result (neither nor the general philosophy of the proof), it certainly
makes the whole more accessible for the reader. As we pointed out, the key fact
in [DLV17] is to represent the scheme through a Markov chain; here, the main idea
is to use the sole transition kernel of the latter Markov chain to couple the measure-
valued numerical solution at two consecutive times (and hence to bypass any use of
the Markov chain itself). We refer to Remark 4.2 below for more details.
The outline of the paper is the following. In the next section, we introduce the

notations and recall the theory for the existence of a measure solution to (1.1). Then
we present the upwind scheme and state the main result: the scheme is convergent
at order 1/2. In case when the potential W is strictly convex and radially symmetric
and the initial condition has a bounded support, the rate is claimed to be uniform
in time. Section 3 is devoted to the properties of the scheme. The proof of the main
result for a Cartesian grid mesh is presented in Section 4. In Section 5, we explain
briefly how to extend our result to simplicial meshes. Finally, numerical illustrations
are given in Section 6. In particular, we show that the order of convergence is optimal
and we provide several numerical simulations in which we recover the behavior of
the solutions after blow-up time.

2. Notations and main results

2.1. Notations

Throughout the paper, we will make use of the following notations. We denote by
C0(Rd) the space of continuous functions from Rd to R that tend to 0 at∞. We denote
by Mb(Rd) the space of Borel signed measures whose total variation is finite. For
ρ ∈Mb(Rd), we call |ρ|(Rd) its total variation. The spaceMb(Rd) is equipped with
the weak topology σ(Mb(Rd), C0(Rd)). For T > 0, we let SM := C([0, T ];Mb(Rd)−
σ(Mb(Rd), C0(Rd))). For ρ a measure inMb(Rd) and Z a measurable map, we denote
Z#ρ the pushforward measure of ρ by Z; it satisfies, for any continuous function φ,∫

Rd
φ(x)Z#ρ(dx) =

∫
Rd
φ(Z(x)) ρ(dx).

We call P(Rd) the subset ofMb(Rd) of probability measures. We define the space
of probability measures with finite second order moment by

P2(Rd) :=
{
µ ∈ P(Rd),

∫
Rd
|x|2µ(dx) <∞

}
.

Here and in the following, | · |2 stands for the square Euclidean norm, and 〈 · , · 〉 for
the Euclidean inner product. The space P2(Rd) is equipped with the Wasserstein
distance dW defined by (see e.g. [AGS05, Vil03, Vil09, San15])

(2.1) dW (µ, ν) := inf
γ∈Γ(µ,ν)

{∫
Rd×Rd

|y − x|2 γ(dx, dy)
}1/2
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where Γ(µ, ν) is the set of measures on Rd × Rd with marginals µ and ν, i.e.

Γ(µ, ν) =
{
γ ∈ P2(Rd × Rd); ∀ ξ ∈ C0(Rd),

∫
ξ(y1)γ(dy1, dy2) =

∫
ξ(y1)µ(dy1),∫

ξ(y2)γ(dy1, dy2) =
∫
ξ(y2)ν(dy2)

}
.

By a minimization argument, we know that the infimum in the definition of dW is
actually a minimum. A measure that realizes the minimum in the definition (2.1) of
dW is called an optimal plan, the set of which is denoted by Γ0(µ, ν). Then, for all
γ0 ∈ Γ0(µ, ν), we have

dW (µ, ν)2 =
∫
Rd×Rd

|y − x|2 γ0(dx, dy).

We will make use of the following properties of the Wasserstein distance. Given
µ ∈ P2(Rd) and two µ-square integrable Borel measurable maps X, Y : Rd → Rd,
we have the inequality

dW (X#µ, Y#µ) 6 ‖X − Y ‖L2(µ).

It holds because π = (X, Y )#µ ∈ Γ(X#µ, Y#µ) and
∫
Rd×Rd |x − y|2 π(dx, dy) =

‖X − Y ‖2
L2(µ).

2.2. Existence of a unique flow

In this section, we recall the existence and uniqueness result for the aggregation
equation (1.1) obtained in [CJLV16] (and extend it a bit for non-globally Lipschitz-
continuous potentials). For ρ ∈ C([0, T ];P2(Rd)), we define the velocity field âρ
by

(2.2) âρ(t, x) := −
∫
Rd
∇̂W (x− y)ρ(t, dy) ,

where we have used the notation

∇̂W (x) :=

∇W (x), for x 6= 0,
0, for x = 0.

Due to the λ-convexity of W , see (A3), we deduce that, for all x, y in Rd \ {0},

(2.3) 〈∇W (x)−∇W (y), x− y〉 > λ|x− y|2.

Moreover, since W is even, ∇W is odd and by taking y = −x in (2.3), we deduce
that inequality (2.3) still holds for ∇̂W , even when x or y vanishes:

(2.4) ∀ x, y ∈ Rd, 〈∇̂W (x)− ∇̂W (y), x− y〉 > λ|x− y|2.

This latter inequality provides a one-sided Lipschitz-continuity (OSL) estimate for
the velocity field âρ defined in (2.2), i.e. we have

∀ x, y ∈ Rd, t > 0, 〈âρ(t, x)− âρ(t, y), x− y〉 6 −λ|x− y|2.
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We recall that, for a velocity field b ∈ L∞([0,+∞);L∞(Rd))d satisfying an OSL
estimate, i.e.

∀ x, y ∈ Rd, t > 0, 〈b(t, x)− b(t, y), x− y〉 6 α(t)|x− y|2,
for α ∈ L1

loc([0,+∞)), it has been established in [Fil64] that a Filippov characteristic
flow could be defined. For s > 0 and x ∈ Rd, a Filippov characteristic starting from
x at time s is defined as a continuous function Z( · ; s, x) ∈ C([s,+∞);Rd) such that
∂
∂t
Z(t; s, x) exists for a.e. t ∈ [s,+∞) and satisfies Z(s; s, x) = x together with the

differential inclusion
∂

∂t
Z(t; s, x) ∈ {Convess(âρ)(t, · )}(Z(t; s, x)), for a.e. t > s.

In this definition, {Convess(âρ)(t, · )}(x) denotes the essential convex hull of the
vector field âρ(t, · ) at x. We remind briefly the definition for the sake of completeness
(see [AC84, Fil64] for more details). We denote by Conv(E) the classical convex hull
of a set E ⊂ Rd, i.e., the smallest closed convex set containing E. Given the vector
field âρ(t, · ) : Rd → Rd, its essential convex hull at point x is defined as

{Convess(âρ)(t, · )}(x) :=
⋂
r>0

⋂
N∈N0

Conv[âρ(t, B(x, r) \N)] ,

where N0 is the set of zero Lebesgue measure sets.
Moreover, we have the semi-group property: for any t, τ, s ∈ [0,+∞) such that

t > τ > s and x ∈ Rd,

(2.5) Z(t; s, x) = Z(τ ; s, x) +
∫ t

τ
âρ(σ, Z(σ; s, x)) dσ.

From now on, we will make use of the notation Z(t, x) = Z(t; 0, x). Using this
characteristic, it has been established in [PR97] that solutions to the conservative
transport equation with a given bounded and one-sided Lipschitz-continuous velocity
field could be defined as the pushforward of the initial condition by the Filippov
characteristic flow. Based on this approach, existence and uniqueness of solutions
to (1.1) defined by a Filippov flow has been established in [CJLV16]. More precisely
the statement reads:

Theorem 2.1 ([CJLV16, Theorem 2.5 and 2.9]). —
(1) Let W satisfy assumptions (A1)–(A4) and let ρini be given in P2(Rd). Then,

there exists a unique solution ρ ∈ C([0,+∞);P2(Rd)) satisfying, in the sense
of distributions, the aggregation equation

(2.6) ∂tρ+ div(âρρ) = 0, ρ(0, · ) = ρini,

where âρ is defined by (2.2).
This solution may be represented as the family of pushforward measures

(ρ(t) := Zρ(t, · )#ρ
ini)t>0 where (Zρ(t, · ))t>0 is the unique Filippov character-

istic flow associated to the velocity field âρ.
Moreover, the flow Zρ is Lipschitz-continuous and we have

sup
x,y∈Rd, x 6=y

|Zρ(t, x)− Zρ(t, y)|
|x− y|

6 e|λ|t, t > 0.
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At last, if ρ and ρ′ are the respective solutions of (2.6) with ρini and ρini,′
as initial conditions in P2(Rd), then

dW (ρ(t), ρ′(t)) 6 e|λ|tdW (ρini, ρini,′), t > 0.
(2) Let W satisfy (A1)–(A3) and be radial, λ be (strictly) positive and let ρini be

given in P2(Rd) with compact support included in B∞(M1, R), where M1 is
the first moment of ρini (i.e. its center of mass) and B∞(M1, R) the closed ball
for the infinite norm on Rd centered atM1 with radius R. Then, there exists a
unique solution ρ ∈ C([0,+∞);P2(Rd)) with support included in B∞(M1, R)
satisfying, in the sense of distributions, the aggregation equation (2.6) where
âρ is defined by (2.2).
Moreover, the flow Zρ is Lipschitz-continuous and we have

(2.7) sup
x,y∈Rd, x 6=y

|Zρ(t, x)− Zρ(t, y)|
|x− y|

6 e−λt, t > 0.

At last, if ρini and ρini,′ have a bounded support, then,
dW (ρ(t), ρ′(t)) 6 dW (ρini, ρini,′), t > 0.

The stability estimates that are present in this result are Dobrushin type estimates
in the quadratic Wasserstein distance, in the case where the kernel is not Lipschitz-
continuous but only one-sided Lipschitz-continuous. See [Dob79] and [Gol16].
We mention that the solution, which is here represented by the Filippov charac-

teristic flow, may be also constructed as a gradient flow solution in the Wasserstein
space P2(Rd), see [CDF+11]. Here it is also important to remark that (2.7) is true
under the sole assumptions (A1)–(A3) whenever λ > 0 (which is a mere consequence
of (2.9) and (2.10) below). In that case, it ensures that B2(M1, R) (the closed Eu-
clidean ball) is preserved by the flow without the assumption that W is radial. As
a result, it may be tempting to address the analysis below without requiring the
potential to be radial. Nevertheless, the problem is that the numerical scheme does
not satisfy a similar property. Indeed, the Euclidean ball B2(M1, R) is not convex
from a numerical point of view, that is to say, if we regard the mesh underpinning
the scheme, then the union of the square cells whose center is included in B2(M1, R)
is not convex. Due to this drawback, the flow associated to the scheme does not
preserve the ball B2(M1, R). This is in contrast with Lemma 3.3 below, which shows
that, in the radial setting, the ball B∞(M1, R + ∆x) is kept stable by the scheme,
where ∆x is the step of the spatial mesh. This latter fact is the reason why we here
assume that the potential is radial.
Proof. — For the first two statements of the Theorem, existence of a unique

solution and Lipschitz-continuity of the flow, we refer to [CJLV16]. These statements
remain true whenever the sole (A1)–(A3) hold true, W is radial, λ is (strictly)
positive and the support of ρini is bounded, provided that the notion of solution
is limited to collections (ρ(t, · ))t>0 that have a compact support, uniformly in t in
compact subsets. Indeed, if we denote by M1(t) the center of mass of the solution
at time t, namely M1(t) :=

∫
Rd ρ(t, dx), then this center of mass is known to be

preserved: M1(t) = M1(0) =: M1 (see [CJLV16] or Lemma 3.2 below for the discrete
counterpart). Now, if λ > 0 and if W is radial, ∇W (x− y) is positively proportional
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to x− y, so that −∇W (x− y) is parallel to x− y and directed from x to y. Thus, if
ρ(t) is zero outside the ball B∞(M1, R), then, for any x ∈ ∂B∞(M1, R), the velocity
âρ(t, x) is directed toward the interior of B∞(M1, R). This shows that B∞(M1, R) is
preserved by the flow and guarantees that ρ(t) has its support included in B∞(M1, R)
for any time t > 0, if it is the case for t = 0. Given the fact that the support of ρ(t)
remains bounded in B∞(M1, R), everything works as if W was globally Lipschitz-
continuous. Existence and uniqueness of a solution to the aggregation equation can
thus be proved by a straightforward localization argument. Indeed, observe that from
the very definition of the velocity a, the Lipschitz-continuity constant of W that is
involved in the existence and uniqueness theory is the local one ofW on the compact
subset B∞(M1, R), provided that the support of ρini is included in B∞(M1, R).
Now it only remains to prove the two inequalities regarding the Wasserstein dis-

tance between solutions starting from different data. Under assumptions (A1)–(A4)
on the potential, it was proven in [CJLV16], but with a constant 2|λ| instead of
|λ| in the exponential (as in [Dob79] and [Gol16], where the convolution operator
is however replaced with a slightly more general integral operator), thus we here
provide a proof of the present better estimate.
We consider the two Filippov flows (Zρ(t, · ))t>0 and (Zρ′(t, · ))t>0 as defined in the

statement of Theorem 2.1. We recall that

(2.8) Zρ(t, · )#ρ
ini = ρ(t, · ), Zρ′(t, · )#ρ

ini,′ = ρ′(t, · ), t > 0.

To simplify, we just write Z(t, · ) = Zρ(t, · ) and Z ′(t, · ) = Zρ′(t, · ). Then, for any
x, y ∈ Rd and for a.e. t > 0,

d
dt |Z(t, x)− Z ′(t, y)|2

= −2
〈
Z(t, x)− Z ′(t, y),∫
Rd
∇̂W (Z(t, x)−Z(t, x′))ρini(dx′)−

∫
Rd
∇̂W (Z ′(t, y)−Z ′(t, y′))ρini,′(dy′)

〉
.

Call π ∈ Γ0(ρini, ρini,′) an optimal plan between ρini and ρini,′. Then,

d
dt |Z(t, x)− Z ′(t, y)|2

= −2
〈
Z(t, x)− Z ′(t, y),∫

R2d
[∇̂W (Z(t, x)− Z(t, x′))− ∇̂W (Z ′(t, y)− Z ′(t, y′))]π(dx′, dy′)

〉
.

This identity must be understood as an expression for |Z(t, x)−Z ′(t, y)|2 in terms of
the time integral of the right-hand side. Integrating the latter in (x, y) with respect
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to π, we get

d
dt

∫
R2d
|Z(t, x)− Z ′(t, y)|2π(dx, dy)

= −2
∫
R2d

∫
R2d

〈
Z(t, x)− Z ′(t, y),

[∇̂W (Z(t, x)−Z(t, x′))−∇̂W (Z ′(t, y)−Z ′(t, y′))]
〉
π(dx, dy) π(dx′, dy′).

Thanks to the fact that ∇̂W is odd, see (A1), we can write, by a symmetry argument,

d
dt

∫
R2d
|Z(t, x)− Z ′(t, y)|2π(dx, dy)

= −
∫
R2d

∫
R2d

〈
Z(t, x)− Z ′(t, y)− (Z(t, x′)− Z ′(t, y′)),

[∇̂W (Z(t, x)−Z(t, x′))−∇̂W (Z ′(t, y)−Z ′(t, y′))]
〉
π(dx, dy) π(dx′, dy′).

Using (2.4), we obtain

(2.9) d
dt

∫
R2d
|Z(t, x)− Z ′(t, y)|2π(dx, dy)

6 −λ
∫
R2d

∫
R2d
|Z(t, x)−Z ′(t, y)−(Z(t, x′)−Z ′(t, y′))|2π(dx, dy)π(dx′, dy′).

Observe that the above right-hand side is equal to

(2.10)
∫
R2d

∫
R2d
|Z(t, x)− Z ′(t, y)− (Z(t, x′)− Z ′(t, y′))|2 π(dx, dy)π(dx′, dy′)

= 2
∫
R2d
|Z(t, x)−Z ′(t, y)|2 π(dx, dy)− 2

∣∣∣∣∣
∫
R2d

(Z(t, x)−Z ′(t, y))π(dx, dy)
∣∣∣∣∣
2

.

1st case. — If λ 6 0, we deduce from (2.9) and (2.10) that

d
dt

∫
R2d
|Z(t, x)− Z ′(t, y)|2π(dx, dy) 6 2|λ|

∫
R2d
|Z(t, x)− Z ′(t, y)|2 π(dx, dy),

which suffices to complete the proof of the first claim by noting that∫
R2d
|Z(0, x)− Z ′(0, y)|2π(dx, dy) =

∫
R2d
|x− y|2π(dx, dy) = dW (ρini, ρini,′)2,

and ∫
R2d
|Z(t, x)− Z ′(t, y)|2π(dx, dy) > dW (ρ(t), ρ(t)′)2,

see (2.8).
2nd case. — If λ > 0, we just use the fact that the right-hand side in (2.9) is

non-positive. Proceeding as above, this permits to complete the proof of the second
claim. �
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2.3. Main result

The aim of this paper is to prove the convergence at order 1/2 of an upwind
type scheme in distance dW for the aggregation equation. The numerical scheme is
defined as follows. We denote by ∆t the time step and consider a Cartesian grid
with step ∆xi in the ith direction, i = 1, . . . , d; we then let ∆x := maxi ∆xi. We also
introduce the following notations. For a multi-index J = (J1, . . . , Jd) ∈ Zd, we call
CJ := [(J1− 1

2)∆x1, (J1 + 1
2)∆x1)× . . . [(Jd− 1

2)∆xd, (Jd + 1
2)∆xd) the corresponding

elementary cell. The center of the cell is denoted by xJ := (J1∆x1, . . . , Jd∆xd).
Also, we let ei := (0, . . . , 1, . . . , 0) be the ith vector of the canonical basis, for
i ∈ {1, . . . , d}, and we expand the velocity field in the canonical basis under the
form a = (a1, . . . , ad).
For a given nonnegative measure ρini ∈ P2(Rd), we put, for any J ∈ Zd,

(2.11) ρ0
J :=

∫
CJ

ρini(dx) > 0.

Since ρini is a probability measure, the total mass of the system is ∑J∈Zd ρ0
J = 1.

We then construct iteratively the collection ((ρnJ)J∈Zd)n∈N, each ρnJ being intended
to provide an approximation of the value ρ(tn, xJ), for J ∈ Zd. Assuming that the
approximating sequence (ρnJ)J∈Zd is already given at time tn := n∆t, we compute
the approximation at time tn+1 by:

(2.12) ρn+1
J := ρnJ−

d∑
i=1

∆t
∆xi

(
(ainJ)+ρnJ−(ainJ+ei

)−ρnJ+ei
−(ainJ−ei

)+ρnJ−ei
+(ainJ)−ρnJ

)
.

The notation (a)+ = max{0, a} stands for the positive part of the real a and respec-
tively (a)− = max{0,−a} for the negative part. The macroscopic velocity is defined
by

(2.13) ai
n
J := −

∑
K∈Zd

ρnK DiW
K
J , where DiW

K
J := ∂̂xi

W (xJ − xK).

Since W is even, we also have:

(2.14) DiW
K
J = −DiW

J
K .

The main result of this paper is the proof of the convergence at order 1/2 of the
above upwind scheme. More precisely the statement reads:

Theorem 2.2. —
(1) Assume that W satisfies hypotheses (A1)–(A4) and that the so-called strict

1
2 -CFL condition holds:

(2.15) w∞
d∑
i=1

∆t
∆xi

<
1
2 ,

with w∞ as in (1.2).
For ρini ∈ P2(Rd), let ρ = (ρ(t))t>0 be the unique measure solution to the

aggregation equation with initial data ρini, as given by Theorem 2.1. Define
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((ρnJ)J∈Zd)n∈N as in (2.11)–(2.12)–(2.13) and let

ρn∆x :=
∑
J∈Zd

ρnJδxJ
, n ∈ N.

Then, there exists a nonnegative constant C, only depending on λ, w∞ and
d, such that, for all n ∈ N∗,

(2.16) dW (ρ(tn), ρn∆x) 6 C e|λ|(1+∆t)tn (
√
tn∆x+ ∆x).

(2) Assume that W is radial and satisfies hypotheses (A1)–(A3) with λ (strictly)
positive, that ρini is compactly supported in B∞(M1, R) where M1 is the
center of mass of ρini, and that the CFL condition (2.15) holds, with w∞
defined as

(2.17) w∞ = sup
x∈B∞(0,2R+2∆x)\{0}

|∇W (x)|,

Assume also that ∆t 6 1/2 and 2λ∆t < 1. Then, there exists a nonnegative
constant C, only depending on λ, w∞, d and R such that, for all n ∈ N∗,
(2.16) is valid, as well as

(2.18) dW (ρ(tn), ρn∆x) 6 C (
√

∆x+ ∆x),

which proves that the error can be uniformly controlled in time.

We stress the fact that, under the setting defined in (2), (2.16) is valid. In small time,
it provides a better estimate than (2.18). As indicated in the statement, the constant
C in (2.18) may depend on the value of R in the assumption Supp(ρini) ⊂ B∞(M1, R).
We also point out that, although the computations below are performed for the sole

upwind scheme, the first part of the statement, which holds true under the full set of
hypotheses (A1)–(A4), can be straightforwardly adapted to other diffusive schemes,
see for instance our previous article [DLV17]. As for (2), the statement remains true
provided that the supports of the approximating measures (ρn)n>0 remain bounded
as n grows up. It must be stressed that there are some schemes for which the latter
property fails (e.g. Lax–Friedrichs’ scheme).
Moreover, as already mentioned in Introduction, the convergence rate is optimal;

this latter fact will be illustrated by numerical examples in Section 6.

Example 2.3. — In one dimension, the scheme (2.12) reads

ρn+1
i = ρni −

∆t
∆x

(
(ani )+ρni − (ani+1)−ρni+1 − (ani−1)+ρni−1 + (ani )−ρni

)
,

where i is just taken in Z. The scheme has then the following interpretation. Given
ρn∆x = ∑

j∈Z ρ
n
j δxj

, we construct the approximation at time tn+1 by implementing the
following two steps:

• The Delta mass ρni located at position xi moves with velocity ani to the position
xi + ani ∆t. Under the CFL condition w∞∆t 6 ∆x (which is obviously weaker
than what we require in (2.15)), the point xi + ani ∆t belongs to the interval
[xi, xi+1] if ani > 0, and to the interval [xi−1, xi] if ani 6 0.
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• Then the mass ρni is split into two parts; if ani > 0, a fraction ani ∆t/∆x of it
is transported to the cell i + 1, while the remaining fraction is left in cell i;
if ani 6 0, the same fraction |ani |∆t/∆x of the mass is not transported to the
cell i + 1 but to the cell i − 1. This procedure may be regarded as a linear
interpolation of the mass ρni between the points xi and xi+1 if ani > 0 and
between the points xi and xi−1 if ani 6 0.

This interpretation holds only in the one dimensional case. However thanks to this
interpretation, we can define a forward semi-Lagrangian scheme in any dimension on
(unstructured) simplicial meshes, which is then different from (2.12). Such a scheme
is introduced in Section 5.
Finally, we emphasize that this scheme differs from the standard finite volume

upwind scheme in which the velocity is computed at the interface ani+1/2. This subtlety
is due to the particular structure of the equation, as the latter requires the product
âρρ to be defined properly. A convenient way to make it proper is to compute, in the
discretization, the velocity and the density at the same grid points. This fact has
already been noticed in [JV15, GV16] and is also illustrated numerically in Section 6.

3. Numerical approximation

3.1. Properties of the scheme

The following lemma explains why we called CFL the condition on the ratios
(∆t/∆xi)i=1,...,d that we formulated in the statement of Theorem 2.2.
Lemma 3.1. — Assume that W satisfies hypotheses (A1)–(A4) and that the

condition (2.15) is in force. For ρini ∈ P2(Rd), define (ρ0
J)J∈Zd by (2.11). Then the

sequences (ρnJ)n∈N,J∈Zd and (ainJ)n∈N,J∈Zd , i = 1, . . . , d, given by the scheme defined
in (2.12)–(2.13), satisfy, for all J ∈ Zd and n ∈ N,

ρnJ > 0, |ainJ | 6 w∞, i = 1, . . . , d,
and, for all n ∈ N, ∑

J∈Zd

ρnJ = 1.

Proof. — The total initial mass of the system is ∑J ρ
0
J = 1. By summing equa-

tion (2.12) over J , we can show that the mass is conservative, namely, for all n ∈ N∗,∑
J ρ

n
J = ∑

J ρ
0
J = 1.

Also, we can rewrite equation (2.12) as

(3.1) ρn+1
J = ρnJ

[
1−

d∑
i=1

∆t
∆xi
|ainJ |

]
+

d∑
i=1

ρnJ+ei

∆t
∆xi

(ainJ+ei
)−+

d∑
i=1

ρnJ−ei

∆t
∆xi

(ainJ−ei
)+.

We prove by induction on n that ρnJ > 0 for all J ∈ Zd and for all n ∈ N. Indeed,
if, for some n ∈ N, it holds ρnJ > 0 for all J ∈ Zd, then, by definition (2.13) and
assumption (1.2), we clearly have

|ainJ | 6 w∞
∑
K∈Zd

ρnK = w∞, i = 1, . . . , d.
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Then, assuming that the condition (2.15) holds, we deduce that, in the relation-
ship (3.1), all the coefficients in front of ρnJ , ρnJ−ei

and ρnJ+ei
, i = 1, . . . , d, are

nonnegative. Thus, using the induction assumption, we deduce that ρn+1
J > 0 for all

J ∈ Zd. �

In the following lemma, we collect two additional properties of the scheme: the
conservation of the center of mass and the finiteness of the second order moment.

Lemma 3.2. — Let W satisfy (A1)–(A4) and condition (2.15) be in force. For
ρini ∈ P2(Rd), define (ρ0

J)J∈Zd by (2.11). Then, the sequence (ρnJ)J∈Zd given by the
numerical scheme (2.12)–(2.13) satisfies:

(1) Conservation of the center of mass. For all n ∈ N∗,∑
J∈Zd

xJρ
n
J =

∑
J∈Zd

xJρ
0
J .

We will denote the right-hand side (and thus the left-hand side as well) by
M1,∆x.

(2) Bound on the second moment. There exists a constant C > 0, independent
of the parameters of the mesh, such that, for all n ∈ N∗,

Mn
2,∆x :=

∑
J∈Zd

|xJ |2ρnJ 6 eCt
n
(
M0

2,∆x + C
)
,

where we recall that tn = n∆t.

Proof. — We recall from Lemma 3.1 that, for all n ∈ N, the sequence (ρnJ)J∈Zd is
nonnegative and that its sum is equal to 1.
(1). — Using (2.12) together with a discrete integration by parts, we have:∑
J∈Zd

xJρ
n+1
J =

∑
J∈Zd

xJρ
n
J

−
d∑
i=1

∆t
∆xi

∑
J∈Zd

(
(ainJ)+ ρnJ

(
xJ − xJ+ei

)
− (ainJ)− ρnJ

(
xJ−ei

− xJ
))
.

By definition of xJ , we deduce
∑
J∈Zd

xJρ
n+1
J =

∑
J∈Zd

xJρ
n
J + ∆t

d∑
i=1

∑
J∈Zd

ai
n
J ρ

n
J .

By definition of the macroscopic velocity (2.13) and by (2.14), we also have∑
J∈Zd

ai
n
J ρ

n
J = −

∑
J∈Zd

∑
K∈Zd

DiW
K
J ρnK ρ

n
J =

∑
J∈Zd

∑
K∈Zd

DiW
J
K ρ

n
K ρ

n
J

=
∑
J∈Zd

∑
K∈Zd

DiW
K
J ρnK ρ

n
J ,

where we exchanged the role of J andK in the latter sum. We deduce that it vanishes.
Thus, ∑

J∈Zd

xJρ
n+1
J =

∑
J∈Zd

xJρ
n
J .
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(2). — For the second moment, still using (2.12) and a similar discrete integration
by parts, we get∑
J∈Zd

|xJ |2ρn+1
J =

∑
J∈Zd

|xJ |2ρnJ

−
d∑
i=1

∆t
∆xi

∑
J∈Zd

[
(ainJ)+ ρnJ

(
|xJ |2−|xJ+ei

|2
)
− (ainJ)− ρnJ

(
|xJ−ei

|2−|xJ |2
)]
.

By definition of xJ , |xJ |2 − |xJ+ei
|2 = −2Ji ∆x2

i − ∆x2
i and |xJ−ei

|2 − |xJ |2 =
−2Ji ∆x2

i + ∆x2
i . Therefore, we get

∑
J∈Zd

|xJ |2ρn+1
J =

∑
J∈Zd

|xJ |2ρnJ + 2∆t
d∑
i=1

∑
J∈Zd

Ji∆xi ainJ ρnJ + ∆t
d∑
i=1

∆xi
∑
J∈Zd

ρnJ |ainJ |.

As a consequence of Lemma 3.1, we have |ainJ | 6 w∞. Using moreover the mass
conservation, we deduce that the last term is bounded by w∞∆t∑d

i=1 ∆xi. Moreover,
applying Young’s inequality and using the mass conservation again, we get∣∣∣∣∣ ∑

J∈Zd

ai
n
J ρ

n
J Ji∆xi

∣∣∣∣∣ 6 1
2

(
w2
∞ +

∑
J∈Zd

|Ji∆xi|2 ρnJ
)
6

1
2

(
w2
∞ +

∑
J∈Zd

ρnJ |xnJ |2
)
.

We deduce then that there exists a nonnegative constant C only depending on d and
w∞ such that

∑
J∈Zd

|xJ |2ρn+1
J 6 (1 + C∆t)

∑
J∈Zd

|xJ |2ρnJ + C∆t
(

d∑
i=1

∆xi + 1
)
.

We conclude the proof using a discrete version of Gronwall’s lemma. �

In case when W is radial and satisfies (A1)–(A3), λ is (strictly) positive and ρini
has a bounded support, Lemmas 3.1 and 3.2 become:

Lemma 3.3. — Assume that W is radial and satisfies (A1)–(A3), λ is (strictly
positive) and ρini has a bounded support, then the conclusions of Lemmas 3.1 and 3.2
remain true provided that w∞ is defined as in (2.17).
Moreover, for any R > 0 such that Supp(ρini) ⊂ B∞(M1, R), it holds, for any

n ∈ N,
Supp(ρn∆x) ⊂ B∞(M1,∆x, R + ∆x),

that is
∀ J ∈ Zd, xJ 6∈ B∞(M1,∆x, R + ∆x)⇒ ρnJ = 0.

The meaning of Lemma 3.3 is pretty clear. For R as in the statement, the mass,
as defined by the numerical scheme, cannot leave the ball B∞(M1,∆x, R + ∆x). We
here recover the same idea as in Theorem 2.1.
Proof. — As long as we can prove that the mass, as defined by the numerical

scheme, cannot leave the ball B∞(M1,∆x, R + ∆x), the proof is similar to that of
Lemmas 3.1 and 3.2. So, we focus on the second part of the statement.
We first recall that ρ0

J =
∫
CJ
ρini(dx), for J ∈ Zd. Hence, if xJ 6∈ B∞(M1,∆x, R+∆x),

we have xJ 6∈ B∞(M1, R + ∆x/2) and then CJ ∩ B∞(M1, R) = ∅ and thus ρ0
J = 0.
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Below, we prove by induction that the same holds true for any n ∈ N. To do so, we
assume that there exists an integer n ∈ N such that, for all J ∈ Zd, ρnJ = 0 if
(3.2) xJ 6∈ B∞(M1,∆x, R + ∆x).
The goal is then to prove that, for any J satisfying (3.2), ρn+1

J = 0. By (3.1), it
suffices to prove that, for any coordinate i ∈ {1, . . . , d} and any J as in (3.2),
(3.3) ρnJ+ei

(ainJ+ei
)− = 0, and ρnJ−ei

(ainJ−ei
)+ = 0.

Without any loss of generality, we can assume that there exists a coordinate i0 ∈
{1, . . . , d} such that (xJ)i0 > R + ∆x + (M1,∆x)i0 (otherwise (xJ)i0 < −R − ∆x +
(M1,∆x)i0 and the argument below is the same). Hence, (xJ+ei0

)i0 > R+∆x+(M1,∆x)i0
and, by the induction hypothesis, ρnJ+ei0

= 0, which proves the first equality in (3.3)
when i = i0. In order to prove the second equality when i = i0, we notice from (2.13)
that

ai0
n
J−ei0

= −
∑
K∈Zd

ρnK ∂̂xi0
W (xJ−ei0

− xK)

= −
∑

K∈Zd:(xK)i06R+∆x+(M1,∆x)i0

ρnK ∂̂xi0
W (xJ−ei0

− xK)

= −
∑

K∈Zd:(xK)i0<(xJ )i0

ρnK ∂̂xi0
W (xJ−ei0

− xK)

= −
∑

K∈Zd:(xK)i06(xJ−ei0
)i0

ρnK ∂̂xi0
W (xJ−ei0

− xK).

As W is radial and λ > 0, ∇W (x − y) is positively proportional to x − y. Hence,
∂̂xi0

W (xJ−ei0
− xK) > 0 when (xK)i0 6 (xJ−ei0

)i0 . Therefore, (ai0nJ−ei0
)+ = 0, which

proves the second equality in (3.3).
It remains to prove (3.3) for i 6= i0. Obviously, (xnJ−ei

)i0 = (xnJ+ei
)i0 = (xnJ)i0 >

R+∆x+(M1,∆x)i0 . By the induction hypothesis, ρnJ−ei
= ρnJ+ei

= 0, which completes
the proof. �

Remark 3.4. — Lemma 3.3 is the main rationale for requiring W to be radial.
Indeed, the counter-example below shows that the growth of the support of ρini can
be hardly controlled whenever λ > 0 and W is just assumed to satisfy (A1)–(A3).
Consider for instance the following potential in dimension d = 2:

W (x1, x2) = 1
2(x1 − qx2)2 + q2

2 x
2
2, (x1, x2) ∈ R2,

where q is a free integer whose value will be fixed later on. It is well checked that
∂x1W (x1, x2) = x1 − qx2, ∂x2W (x1, x2) = q(qx2 − x1) + q2x2.

Standard computations show that the smallest eigenvalue of the Hessian matrix
(which is independent of (x1, x2)) is

(1 + 2q2)− 2q2
√

1 + 1/(4q4)
2 ∼

q→∞

1
2 ,

so that W is λ-convex with λ converging to 1/2 as q tends to ∞.
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Take now a centered probability measure ρ and compute the first coordinate of
the velocity field âρ. By centering,

(âρ)1(x1, x2) = qx2 − x1.

In particular, if x2 = 1, then (âρ)1(x1, 1) = q − x1, which is non-negative as long
as x1 < q. Therefore, if the numerical scheme is initialized with some centered ρ0

∆x
supported by the unit square [−1, 1]2, it holds

(âρ0
∆x

)1(1, 1) > 0,

if q > 1. Hence, provided that condition (2.15) holds true, ρ1
∆x charges the point

(1 + ∆x, 1). Since the numerical scheme preserves the centering, we also have
(âρ1

∆x
)1(1 + ∆x, 1) > 0,

if q > 1 + ∆x, and then ρ2
∆x also charges the point (1 + 2∆x, 1), and so on up

until (∆xbq/∆xc, 1). This says that there is no way to control the growth of the
support of the numerical solution in terms of the sole lower bound of the Hessian
matrix. Somehow, the growth of ∇W plays a key role. This is in stark contrast
with the support of the real solution, which may be bounded independently of q, as
emphasized in the proof of Theorem 2.1.
A possible way to overcome the fact that the numerical scheme does not preserve

any ball containing the initial support in the general case whenW is not radial would
be to truncate the scheme. We feel more reasonable not to address this question in
this paper, as it would require to revisit in deep the arguments used to tackle the
case λ 6 0.

3.2. Comparison with a potential non-increasing scheme

It must be stressed that the scheme could be defined differently in order to force
the potential (or total energy:

∫∫
Rd×Rd W (x − y) ρ(dx) ρ(dy)) to be non-increasing.

Basically, this requires the velocity a to be defined as a discrete derivative.
For simplicity, we provide the construction of the scheme in dimension 1 only. For

a probability measure % ∈ P(Z) and a cell I ∈ Z, we consider the following two
discrete convolutions of finite differences:

1
∆x

∑
J∈Z

[(
W (∆x(I + 1− J))−W (∆x(I − J))

)
%J

]

=
[∫

Rd

W (x+ ∆x− y)−W (x− y)
∆x %∆x(dy)

]
|x=I∆x

and 1
∆x

∑
J∈Z

[(
W (∆x(I − 1− J))−W (∆x(I − J))

)
%J

]

=
[∫

Rd

W (x−∆x− y)−W (x− y)
∆x %∆x(dy)

]
|x=I∆x

,

where, as before, %∆x is obtained by pushing forward % by the mapping y 7→ ∆x y.
The two terms above define velocities at the interfaces of the cell I. Namely, we call
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the first term −a
I+ 1

2
and the second one a

I−1
2
. Of course, the sign − in the former

term guarantees the consistency of the notation, that is a
(I+1)−1

2
is equal to a

I+ 1
2
.

Following (2.12), the scheme is defined by:

(3.4) ρn+1
J := ρnJ −

∆t
∆x

(
(an
J+ 1

2
)+ρnJ − (an

J+ 1
2
)−ρnJ+1 + (an

J−1
2
)−ρnJ − (an

J−1
2
)+ρnJ−1

)
,

for n ∈ N and J ∈ Z. It is shown in [CCH15] that the potential is non-increasing for
the semi-discretized version of this scheme, which is to say that, up to a remainder
of order 2 in ∆t (the value of ∆x being fixed), the potential of the fully discretized
scheme does not increase from one step to another. The proof of the latter claim
follows from a direct expansion of the quantity

1
2

∫
Rd

∫
Rd
W (x− y)ρn+1

∆x (dx)ρn+1
∆x (dy)

by using the updating rule for ρn+1
J in terms of ρnJ , ρnJ−1 and ρnJ+1.

The numerical scheme investigated in this paper does not satisfy the same property.
Indeed, we provide a counter example, which shows that the potential may increase
when W is convex, as a consequence of the numerical diffusion. However, the same
example, but in dimension 1, shows that the scheme (3.4) may not be convergent
for certain forms of potential for which Theorem 2.2 applies, see Subsection 6.3.

Proposition 3.5. — Choose d = 2, W (x) = |x| and take ∆x1 = ∆x2 = 1. Let
the initial condition of the scheme, which we just denote by ρ0, charge the points
0 = (0, 0), e1 = (1, 0) and e2 = (0, 1) with 1− p, p/2 and p/2 as respective weights,
where p ∈ (0, 1).
Then, denoting by ρ1 the distribution at time 1 obtained by implementing the

upwind scheme, it holds that:

(3.5)
∫
R2

∫
R2
|x− y|ρ1(dx)ρ1(dy) =

∫
R2

∫
R2
|x− y|ρ0(dx)ρ0(dy)

+ (
√

2− 1)p2(2p− 1)∆t+O(∆t2),
where the Landau symbol O( · ) may depend upon p.

Choosing p > 1/2 in (3.5), we see that the potential may increase at the same rate
as the time step.
Proof. — We first compute the potential at time 0. To do so, we compute

∫
R2 |x−

y|ρ0(dy), for x ∈ {0, e1, e2}:∫
R2
|y|ρ0(dy) = p,

∫
R2
|e1 − y|ρ0(dy) =

∫
R2
|e2 − y|ρ0(dy) = (1− p) + p√

2
,

so that ∫
R2

∫
R2
|x− y|ρ0(dx)ρ0(dy) = 2(1− p)p+ p2

√
2
.

In order to compute the potential at time 1, we compute the velocity at each of
the above points. Observing that the velocity at point x is given by the formula:

ai
0
x =

∫
R2

yi − xi
|y − x|

ρ0(dy), i = 1, 2, with the convention 0
0 = 0,
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we get:

a1
0
(0,0) = p

2 , a2
0
(0,0) = p

2 ,

a1
0
(1,0) = −(1− p)− p

2
√

2
, a2

0
(1,0) = p

2
√

2
,

a1
0
(0,1) = p

2
√

2
, a2

0
(0,1) = −(1− p)− p

2
√

2
.

We then compute the new masses at time 1. There is one additional point which is
charged: e1 + e2 = (1, 1). We have:

ρ1(0) = (1− p) + p2

2
√

2
∆t,

ρ1(e1) = ρ1(e2) = p

2 −
p2

2
√

2
∆t,

ρ1(e1 + e2) = p2

2
√

2
∆t.

We now have all the required data to compute the potential at time 1.∫
R2
|y|ρ1(dy) = p− p2

√
2

∆t+ p2

2 ∆t,
∫
R2
|e1 − y|ρ1(dy) =

∫
R2
|e2 − y|ρ1(dy) = (1− p) + p√

2
+ p2
√

2
∆t− p2

2 ∆t,
∫
R2
|e1 + e2 − y|ρ1(dy) = (1− p)

√
2 + p+ p2

2 ∆t− p2
√

2
∆t.

Finally, the potential at time 1 is given by:∫
R2

∫
R2
|x− y|ρ1(dx)ρ1(dy) =

(
(1− p) + p2

2
√

2
∆t
)(
p− p2
√

2
∆t+ p2

2 ∆t
)

+
(
p− p2
√

2
∆t
)(

(1− p) + p√
2

+ p2
√

2
∆t− p2

2 ∆t
)

+ p2

2
√

2
∆t
(

(1− p)
√

2 + p+ p2

2 ∆t− p2
√

2
∆t
)
.

We expand the above right-hand side in powers of ∆t. The zero-order term is exactly
equal to

∫
R2
∫
R2 |x− y|ρ0(dx)ρ0(dy). So, we just compute the terms in ∆t. It is equal

to
(1−

√
2)(1− p)p2 + (

√
2− 1)p3 = (

√
2− 1)p2(2p− 1),

which completes the proof. �

4. Order of convergence

This section is devoted to the proof of Theorem 2.2.
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4.1. Preliminaries

Before presenting the proof, we introduce some notations and establish some useful
properties. We first define the following interpolation weights: for J ∈ Zd and y ∈ Rd,
we let

(4.1) αJ(y) =



1−∑d
i=1

|〈y−xJ ,ei〉|
∆xi

when y ∈ CJ ,
1

∆xi
(〈y − xJ−ei

, ei〉)+ when y ∈ CJ−ei
, for i = 1, . . . , d,

1
∆xi

(〈y − xJ+ei
, ei〉)− when y ∈ CJ+ei

, for i = 1, . . . , d,
0 otherwise.

The terminology interpolation weights is justified by the following straightforward
observation. Given a collection of reals (hJ)J∈Zd indexed by the cells of the mesh,
which we may regard as a real-valued function h : xJ 7→ hJ defined at the nodes of
the mesh, we may define an interpolation of h = (hJ)J∈Zd by letting

(4.2) I(h)(y) =
∑
J∈Zd

hJαJ(y), y ∈ Rd.

Obviously, the sum in the right-hand side makes sense since only a finite number of
weights are non-zero for a given value of y. Clearly, the functional I is an interpolation
operator. As explained below, I makes the connection between the analysis we
perform in this paper and the one we performed in our previous work [DLV17].
Several crucial facts must be noticed. The first one is that, contrary to what one

could guess at first sight, the weights are not necessarily non-negative. For a given J ∈
Zd, take for instance y = (yi = (Ji − 1

2)∆xi)i=1,...,d ∈ CJ . Then αJ(y) = 1− d
2 , which

is obviously negative if d > 3. However, the second point is that, for useful values of
y, the weights are indeed non-negative provided that the CFL condition (2.15) is in
force. For a given J ∈ Zd, call indeed UJ the subset of CJ of so-called useful values
that are in CJ , as given by

UJ = {y ∈ Rd : |〈y − xJ , ei〉| 6 w∞∆t, i = 1, . . . , d}.

Then, for any J, L ∈ Zd and any y ∈ UL, αJ(y) is non-negative, which is a direct
consequence of the CFL condition (2.15). In fact, the CFL condition (2.15) says
more, and this is the rationale for the additional factor 1

2 in (2.15): UJ is included
in CJ . Of course, the consequence is that, under the CFL condition (2.15), we have,
for any J ∈ Zd, xJ + anJ∆t ∈ CJ , where anJ is the d-dimensional vector with entries
(ainJ)i=1,··· ,d (indeed |ainJ |∆t 6 w∞∆t < ∆xi/2). Another key fact is that the definition
of αJ(y) in (4.1) is closely related to the definition of the numerical scheme (2.12).
Indeed, we have the following formula, for any J, L ∈ Zd,

(4.3) αJ(xL + ∆tanL) =



1−∑d
i=1 |ainJ | ∆t

∆xi
when L = J,

∆t
∆xi

(ainJ−ei
)+ when L = J − ei, for i = 1, . . . , d,

∆t
∆xi

(ainJ+ei
)− when L = J + ei, for i = 1, . . . , d,

0 otherwise.
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In particular, we may rewrite (2.12) as
(4.4) ∀ J ∈ Zd, ρn+1

J =
∑
L∈Zd

ρnLαJ(xL + ∆tanL),

which is the core of our analysis below. In this regard, The following lemma gathers
some useful properties.
Lemma 4.1. — Let (αL(y))L∈Zd,y∈Rd be defined as in (4.1). Then, for any y ∈ Rd,

we have ∑
L∈Zd

αL(y) = 1 and
∑
L∈Zd

xLαL(y) = y.

Proof. — There exists a unique J ∈ Zd such that y ∈ CJ . Then, we compute∑
L∈Zd

αL(y) = αJ(y) +
d∑
i=1

(αJ+ei
(y) + αJ−ei

(y))

= 1−
d∑
i=1

|〈y − xL, ei〉|
∆xi

+ 1
∆xi

d∑
i=1

(〈y − xJ , ei〉)+ + (〈y − xJ , ei〉)− = 1.

Then, using the fact that xJ+ei
− xJ = ∆xiei, for i = 1, . . . , d, we have∑

L∈Zd

xLαL(y) = xJαJ(y) +
d∑
i=1

(xJ+ei
αJ+ei

(y) + xJ−ei
αJ−ei

(y))

= xJ +
d∑
i=1

( 1
∆xi

(〈y − xJ , ei〉)+∆xiei −
1

∆xi
(〈y − xJ , ei〉)−∆xiei

)

= xJ +
d∑
i=1
〈y − xJ , ei〉ei = y,

which completes the proof. �

Remark 4.2. — Lemma 4.1 prompts us to draw a comparison with our previous
paper [DLV17]. For a given y ∈ Rd in the set of useful values U := ∪J∈ZdUJ , namely
y ∈ UJ for some J ∈ Zd, the collection of weights (αL(y))L∈Zd forms a probability
measure, as the weights are non-negative and their sum is 1! In particular, I(h)(y)
in (4.2), for y ∈ U , may be interpreted as an expectation.
Using the same terminology as in [DLV17] (which is in fact the terminology of the

theory of Markov chains), those weights should be regarded as transition probabilities:
For a given y in the set of useful values, αL(y) reads as the probability of jumping
from a certain state depending on the sole value of y to the node xL. Of course, the
interpretation of the so-called certain state depending on the sole value of y is better
understood from (4.3). In (4.3), if we fix a cell L ∈ Zd (or equivalently a node xL),
then αJ(xL+∆tanL) should read as the probability of passing from the node xL to the
node xJ (or from the cell L to the cell J) at the nth step of a (time inhomogeneous)
Markov chain having the collection of nodes (or of cells) as state space. In this regard,
(4.4) is nothing but the Kolmogorov equation for the corresponding Markov chain,
as (ρnJ)J∈Zd can be interpreted as the law at time n of the Markov chain driven by
the latter transition probabilities. The reader can easily check that the so-called
stochastic characteristic used in [DLV17] is in fact this Markov chain.
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Below, we do not make use of the Markov chain explicitly. Still, we use the weights
(αJ(y))J∈Zd,y∈Rd to construct a coupling between the two measures ρn∆x and ρn+1

∆x ,
that is to construct a specific element of Γ(ρn∆x, ρn+1

∆x ). In [DLV17], this coupling does
not explicitly show up but it is in fact implicitly used, as it coincides with the joint
law of two consecutive states of the aforementioned Markov chain.
In a nutshell, the reader can reformulate the whole analysis below in a probabilistic

fashion. The only (conceptual) difficulty to do so is that, in contrast with [DLV17],
the Markov chain is here nonlinear : as an in (2.13) depends on ρn, the transition
probabilities of the Markov do depend upon the marginal law of the Markov chain
itself, which fact gives rise to a so-called nonlinear Markov chain!

4.2. Proof of Theorem 2.2

1st step. — We first consider the case where the initial datum is given by ρini :=
ρ0

∆x = ∑
J∈Zd ρ0

JδxJ
, where we recall that ρ0

J is defined in (2.11). For n ∈ N∗, let us
define

Dn := dW (ρ(tn), ρn∆x).
Clearly, with our choice of initial datum, we have D0 = 0.
Let γ be an optimal plan in Γ0(ρ(tn), ρn∆x), we have

Dn =
(∫∫

Rd×Rd
|x− y|2γ(dx, dy)

)1/2
.

Let us introduce an∆x, the piecewise affine in each direction reconstruction of the
velocity such that for all J ∈ Zd, an∆x(xJ) = anJ Denote also by Z := Zρ the flow
given by Theorem 2.1, when ρini is prescribed as above. Recalling the definition of
αJ(y) from (4.1), we then consider a new measure γ′, defined as the image of γ by the
kernel K that associates with a point (x, y) ∈ Rd × Rd the point (Z(tn+1; tn, x), xL)
with measure αL(y + ∆tan∆x(y)), namely, for any two Borel subsets A and B of Rd,

K((x, y), A×B) = 1A(Z(tn+1; tn, x))
∑
L∈Zd

αL(y + ∆tan∆x(y))1B(xL)

=
∫∫

Rd×Rd
1A×B(x′, y′)

[
δZ(tn+1;tn,x) ⊗

(∑
L∈Zd

αL(y + ∆tan∆x(y))δxL

)]
(dx′, dy′),

where δz denotes the Dirac mass at point z, and then

γ′(A×B) =
∫∫

Rd×Rd
K((x, y), A×B)γ(dx, dy).

Equivalently, for any bounded Borel-measurable function θ : Rd × Rd → R,

(4.5)
∫∫

Rd×Rd
θ(x, y)γ′(dx, dy)

=
∫∫

Rd×Rd

[ ∑
L∈Zd

θ(Z(tn+1; tn, x), xL)αL(y + ∆tan∆x(y))
]
γ(dx, dy).
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Then we have γ′ ∈ Γ(ρ(tn+1), ρn+1
∆ ). Indeed, for any bounded Borel-measurable

function θ1 : Rd → R, we have, from (4.5) and Lemma 4.1,∫∫
Rd×Rd

θ1(x)γ′(dx, dy) =
∫∫

Rd×Rd

[ ∑
L∈Zd

θ1(Z(tn+1; tn, x))αL(y+∆tan∆x(y))
]
γ(dx, dy)

=
∫∫

Rd×Rd
θ1(Z(tn+1; tn, x)) γ(dx, dy)

=
∫
Rd
θ1(Z(tn+1; tn, x))ρ(tn, dx) =

∫
Rd
θ1(x)ρ(tn+1, dx),

where we used Theorem 2.1 and where ρ(tn, dx) is a shorter notation for ρ(tn)(dx)
and similarly for ρ(tn+1, dx). Similarly, for any bounded Borel-measurable function
θ2 : Rd → R,∫∫

Rd×Rd
θ2(y)γ′(dx, dy) =

∫∫
Rd×Rd

[ ∑
L∈Zd

θ2(xL)αL(y + ∆tan∆x(y))
]
γ(dx, dy)

=
∑
J∈Zd

∑
L∈Zd

θ2(xL)αL(xJ + ∆tanJ)ρnJ

=
∑
L∈Zd

θ2(xL)ρn+1
L =

∫
Rd
θ2(y)ρn+1

∆x (dy),

where we used (4.4). In particular, we deduce

D2
n+1 6

∫∫
Rd×Rd

|x− y|2γ′(dx, dy).

Using the definition of γ′ given in (4.5), we get

(4.6) D2
n+1 6

∫∫
Rd×Rd

∑
L∈Zd

|Z(tn+1; tn, x)− xL|2αL(y + ∆tan∆x(y))γ(dx, dy).

Using both equalities of Lemma 4.1, we compute(1)

(4.7)
∑
L∈Zd

|Z(tn+1; tn, x)− xL|2αL(y + ∆tan∆x(y))

=
∑
L∈Zd

∣∣∣∣Z(tn+1; tn, x)−(y+∆tan∆x(y))−
(
xL−(y+∆tan∆x(y))

)∣∣∣∣2αL(y+∆tan∆x(y))

= |Z(tn+1; tn, x)− y −∆tan∆x(y)|2 +
∑
L∈Zd

|xL − y −∆tan∆x(y)|2αL(y + ∆tan∆x(y))

− 2
〈
Z(tn+1; tn, x)−y−∆tan∆x(y),

∑
L∈Zd

(xL−y−∆tan∆x(y))αL(y+∆tan∆x(y)
〉
.

Now, as a consequence of Lemma 4.1, we observe that∑
L∈Zd

(xL − y −∆tan∆x(y))αL(y + ∆tan∆x(y)) = 0.

(1)The probabilistic reader will easily recognize the standard computation of the L2 norm of a
random variable in terms of its variance and its expectation, which indeed plays, but under a
conditional form, a key role in [DLV17].
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Thus, equation (4.7) rewrites∑
L∈Zd

|Z(tn+1; tn, x)− xL|2αL(y + ∆tan∆x(y))

= |Z(tn+1; tn, x)− y −∆tan∆x(y)|2

+
∑
L∈Zd

|xL − y −∆tan∆x(y)|2αL(y + ∆tan∆x(y)).

Injecting into (4.6), we deduce

(4.8) D2
n+1 6

∫∫
Rd×Rd

|Z(tn+1; tn, x)− y −∆tan∆x(y)|2γ(dx, dy)

+
∫
Rd

∑
L∈Zd

|xL − y −∆tan∆x(y)|2αL(y + ∆tan∆x(y))ρn∆x(dy),

where we used the fact that ρn∆x is the second marginal of γ. By definition, ρn∆x(y) =∑
J∈Zd ρnJδJ(y), so that
∑
L∈Zd

∫
Rd
|xL − y −∆tan∆x(y)|2αL(y + ∆tan∆x(y))ρn∆x(dy)

=
∑
J∈Zd

∑
L∈Zd

|xL − xJ −∆tanJ |2αL(xJ + ∆tanJ)ρnJ .

Moreover using the definition of αL in (4.1), we compute∑
L∈Zd

|xL − xJ −∆tanJ |2αL(xJ + ∆tanJ)

= ∆t2|anJ |2
(

1−
d∑
i=1

∆t
∆xi
|ainJ |

)

+
d∑
i=1

(
|∆xiei −∆tanJ |2

∆t
∆xi

(ainJ)+ + |∆xiei + ∆tanJ |2
∆t
∆xi

(ainJ)−
)

6 C∆t(∆t+ ∆x),

where we used, for the last inequality, the CFL condition (2.15) and the fact that
the velocity (anJ)J is uniformly bounded (see Lemma 3.1 or Lemma 3.3). Then, (4.8)
gives

(4.9) D2
n+1 6

∫∫
Rd×Rd

|Z(tn+1; tn, x)− y −∆tan∆x(y)|2γ(dx, dy) + C∆t(∆t+ ∆x).

2nd step. — We estimate the error between the exact characteristic Z(tn+1; tn, x)
and the forward Euler discretization y + ∆tan∆x(y). By definition of the characteris-
tics (2.5), we have

Z(tn+1; tn, x) = x+
∫ tn+1

tn
âρ(s, Z(s; tn, x))ds

= x−
∫ tn+1

tn

∫
Rd
∇̂W (Z(s; tn, x)− Z(s; tn, ξ))ρ(tn, dξ)ds.
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We recall also that, by definition (2.13), the approximating velocity is given by

anL = −
∑
J∈Zd

ρnJ∇̂W (xL − xJ),

so that for y, a node of the mesh,

y + ∆tan∆x(y) = y −∆t
∫
Rd
∇̂W (y − ζ)ρn∆x(dζ).

Thus, by a straightforward expansion and still for y a node of the mesh,
|Z(tn+1; tn, x)− y −∆tan∆x(y)|2

6 |x− y|2 − 2
∫ tn+1

tn

∫∫
Rd×Rd

〈x− y,

∇̂W (Z(s; tn, x)−Z(s; tn, ξ))−∇̂W (y−ζ)〉ρ(tn, dξ)ρn∆x(dζ) + C∆t2.
By definition of the optimal plan γ ∈ Γ0(ρ(tn), ρn∆x), we also have∫∫

Rd×Rd
〈x− y, ∇̂W (Z(s; tn, x)− Z(s; tn, ξ))− ∇̂W (y − ζ)〉ρ(tn, dξ)ρn∆x(dζ)

=
∫∫

Rd×Rd
〈x− y, ∇̂W (Z(s; tn, x)− Z(s; tn, ξ))− ∇̂W (y − ζ)〉γ(dξ, dζ)

Injecting into (4.9), we get
D2
n+1 6 D2

n + C∆t(∆t+ ∆x)

− 2
∫ tn+1

tn

∫∫
Rd×Rd

∫∫
Rd×Rd

〈x− y,

∇̂W (Z(s; tn, x)− Z(s; tn, ξ))− ∇̂W (y − ζ)〉γ(dξ, dζ)γ(dx, dy).
Decomposing x − y = x − Z(s; tn, x) + Z(s; tn, x) − y and using the fact that
|Z(s; tn, x)− x| 6 w∞|s− tn|, we get
D2
n+1 6 D2

n + C∆t(∆t+ ∆x)

− 2
∫ tn+1

tn

∫∫
Rd×Rd

∫∫
Rd×Rd

〈Z(s; tn, x)− y,

∇̂W (Z(s; tn, x)− Z(s; tn, ξ))− ∇̂W (y − ζ)〉γ(dξ, dζ)γ(dx, dy).
Then, we may use the symmetry of the potential W in assumption (A1) for the last
term to deduce
D2
n+1 6 D2

n + C∆t(∆t+ ∆x)

−
∫ tn+1

tn

∫∫
Rd×Rd

∫∫
Rd×Rd

〈Z(s; tn, x)− Z(s; tn, ξ)− y + ζ,

∇̂W (Z(s; tn, x)− Z(s; tn, ξ))− ∇̂W (y − ζ)〉 γ(dξ, dζ)γ(dx, dy).
Moreover, from the λ-convexity of W (2.4), we obtain
D2
n+1 6 D2

n + C∆t(∆t+ ∆x)

− λ
∫ tn+1

tn

∫∫
Rd×Rd

∫∫
Rd×Rd

|Z(s; tn, x)−y−Z(s; tn, ξ)+ζ|2 γ(dξ, dζ)γ(dx, dy).
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Expanding the last term, we deduce

(4.10) D2
n+1 6 D2

n + C∆t(∆t+ ∆x)− 2λ
∫ tn+1

tn

∫∫
Rd×Rd

|Z(s; tn, x)− y|2 γ(dx, dy)

+ 2λ
∫ tn+1

tn

∣∣∣∣∣
∫∫

Rd×Rd
(Z(s; tn, x)− y) γ(dx, dy)

∣∣∣∣∣
2

.

3rd step. — Now we distinguish between the two cases λ 6 0 and λ > 0.
Case λ 6 0. — We have that the last term in (4.10) is nonpositive. Using Young’s

inequality and the estimate |x− Z(s; tn, x)| 6 w∞(s− tn), we get, for any ε > 0,

|Z(s; tn, x)− y|2 6 (1 + ε)|x− y|2 +
(

1 + 1
ε

)
w2
∞|s− tn|2.

Hence, injecting into (4.10), we deduce

D2
n+1 6 (1 + 2(1 + ε)|λ|∆t)D2

n + C∆t
(

∆x+ ∆t
(

1 + ∆t
ε

))
.

Applying a discrete Gronwall inequality, we obtain

D2
n 6 e2(1+ε)|λ|tn

(
D2

0 + Ctn
(

∆x+ ∆t
(

1 + ∆t
ε

)))
.

We recall that our choice of initial data implies D0 = 0. Finally, taking ε = ∆t, we
conclude

dW (ρ(tn), ρn∆) 6 Ce(1+∆t)|λ|tn
√
tn(∆x+ ∆t).

It allows to conclude the proof of Theorem 2.2(1) in the case ρini = ρ0
∆x.

Case λ > 0. — We have∫∫
Rd×Rd

(Z(s; tn, x)− y) γ(dx, dy)

=
∫
Rd

(Z(s; tn, x)− x)ρ(tn, dx) +
∫
Rd
xρ(tn, dx)−

∑
J∈Zd

xJρ
n
J .

By conservation of the center of mass, see Lemma 3.2(1), we deduce that∫
Rd
xρ(tn, dx)−

∑
J∈Zd

xJρ
n
J =

∫
Rd
xρini(dx)−

∑
J∈Zd

xJρ
0
J = 0,

since we have chosen the initial data such that ρini = ρ0
∆x. Using also the bound

|Z(s; tn, x) − x| 6 w∞(s − tn), we may bound the last term of (4.10) by w2
∞∆t2.

Moreover, using again Young’s inequality and the estimate |Z(s; tn, x) − x| 6
w∞(s− tn), we have, for any ε > 0,

|x− y|2 6 (1 + ε)|Z(s; tn, x)− y|2 +
(

1 + 1
ε

)
w2
∞|s− tn|2.

It implies, for any ε ∈ (0, 1),

−|Z(s; tn, x)− y|2 6 − 1
1 + ε

|x− y|2 + 1
ε
w2
∞|s− tn|2

6 −(1− ε)|x− y|2 + 1
ε
w2
∞|s− tn|2.
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Thus we deduce that

−2λ
∫ tn+1

tn

∫∫
Rd×Rd

|Z(s; tn, x)− y|2γ(dx, dy) 6 −2λ(1− ε)∆tDn + 2
3
λ

ε
w2
∞∆t3.

Injecting this latter inequality into (4.10) and taking ε = ∆t, we deduce

D2
n+1 6 (1− 2λ(1−∆t)∆t)D2

n + C∆t(∆t+ ∆x)

Hence, since 2λ(1−∆t)∆t < 1, we have by induction, recalling that D0 = 0,

D2
n 6 C∆t(∆t+ ∆x)

n−1∑
k=0

(1− 2λ(1−∆t)∆t)k 6 C

2(1−∆t)λ(∆t+ ∆x).

Using the assumption ∆t 6 1/2, we conclude the proof of Theorem 2.2(2) in the
case ρini = ρ0

∆x.
4th step. — We are left with the case ρini 6= ρ0

∆x. Let us define ρ′(t) = Z ′(t)#ρ
0
∆x,

the exact solution with initial data ρ0
∆x. From the triangle inequality, we have

dW (ρ(tn), ρn∆x) 6 dW (ρ(tn), ρ′(tn)) + dW (ρ′(tn), ρn∆x).

The last term in the right hand side may be estimated thanks to the above computa-
tions. For the first term in the right hand side, we use the estimates in Theorem 2.1
(we apply (1) if λ 6 0 and (2) if λ > 0):

dW (ρ(tn), ρ′(tn)) 6 e(λ)−tndW (ρini, ρ0
∆x),

where (λ)− = max(−λ, 0) is the negative part of λ.
Let us define τ : [0, 1] × Rd → Rd by τ(σ, x) = σxJ + (1 − σ)x, for x ∈ CJ . We

have that τ(0, · ) = id and τ(1, · )#ρ
ini = ρ0

∆x. Then

dW (ρini, ρ0
∆x)2 6

∫
Rd×Rd

|x− y|2 [(id× τ(1, · ))#ρ
ini](dx, dy)

6
∑
J∈Zd

ρ0
J

∫
CJ

|x− xJ |2 ρini(dx).
(4.11)

We deduce dW (ρini, ρ0
∆x) 6 ∆x. Then, we get

dW (ρ(tn), ρ′(tn)) 6 e(λ)−tn∆x.

5. Unstructured mesh

We can extend our convergence result to more general meshes. For the sake of
simplicity of the notation, we present the case of a triangular mesh in two dimensions.
This approach can be easily extended to meshes made of simplices, in any dimension.
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5.1. Forward semi-Lagrangian scheme

Let us consider a triangular mesh T = (Tk)k∈Z with nodes (xi)i∈Z. We assume this
mesh to be conformal: A summit cannot belong to an open edge of the grid. The
triangles (Tk)k∈Z are assumed to satisfy ⋃k∈Z Tk = R2 and Tk ∩ Tl = ∅ if k 6= l (in
particular, the cells are here not assumed to be closed nor open). For any triangle
T with summits x, y, z, we will use also the notation (x, y, z) = T . We denote
by V(T ) = V(x, y, z) the area of this triangle, and h(T ) its height (defined as the
minimum of the three heights of the triangle T ). We make the assumption that the
mesh satisfies ~ := infk∈Z h(Tk) > 0.
For any node xi, i ∈ Z, we denote by K(i) the set of indices indexing triangles

that have xi as a summit, and we denote by Ti the set of all triangles of T that have
xi as a summit: thus Ti = {Tk; k ∈ K(i)}.
For any triangle Tk, k ∈ Z, we denote by

I(k) = {I1(k), I2(k), I3(k)}

the set of indices indexing the summits of Tk (for some arbitrary order, whose choice
has no importance for the sequel).
We consider the following scheme, which may be seen as a forward semi-Lagrangian

scheme on the triangular mesh.

• For an initial distribution ρini of the PDE (1.1), define the probability weights
(ρ0
i )i∈Z through the following procedure: Consider the one-to-one mapping

ι : Z 3 k 7→ ι(k) ∈ Z such that, for each k ∈ Z, xι(k) is a node of the
triangle Tk; ι is thus a way to associate a node with a cell; then, for all i ∈ Z,
let ρ0

i = ∑
k:ι(k)=i ρ

ini(Tk). Observe from (4.11) that ρ0
∆x = ∑

j∈Z ρ
0
jδxj

is an
approximation of ρini.
• Assume that, for a given n ∈ N, we already have probability weights (ρni )i∈Z
such that ρn∆x = ∑

j∈Z ρ
n
j δxj

is an approximation of ρ(tn, · ), where ρ is the
solution to (1.1) with ρini as initial condition. For i ∈ Z, we let

ani := −
∫
Rd
∇̂W (xi − y) ρn∆x(dy), and yni := xi + ani ∆t.

Under the CFL-like condition

(5.1) w∞∆t 6 ~,

yni belongs to one (and only one) of the elements of Ti. We denote by kni the
index of this triangle, namely yni ∈ Tkn

i
.

• We use a linear splitting rule between the summits of the triangle Tkn
i
: the

mass ρni is sent to the three points xI1(kn
i ), xI2(kn

i ), xI3(kn
i ) according to the

barycentric coordinates of yni in the triangle.
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xi = xI1(kn
i ) xI2(kn

i )

xI3(kn
i )

yni

Let us make more precise the latter point. Let T = (x, y, z) ∈ T , and ξ ∈ T . We
define the barycentric coordinates of ξ with respect to x, y and z, λTx , λTy and λTz :

(5.2) λTx (ξ) = V(ξ, y, z)
V(T ) , λTy (ξ) = V(ξ, x, z)

V(T ) , λTz (ξ) = V(ξ, x, y)
V(T ) ,

and then have ξ = λTx (ξ)x+λTy (ξ)y+λTz (ξ)z. Note also that λTx (ξ)+λTy (ξ)+λTz (ξ) = 1.
Therefore, we have the following fundamental property, which will be used in the
sequel:
(5.3) λTx (ξ)(x− ζ) + λTy (ξ)(y − ζ) + λTz (ξ)(z − ζ) = ξ − ζ,
for any ζ ∈ R2.
In the same spirit as in Section 4, we here define the interpolation weights by: For

j ∈ Z, and y ∈ R2,

(5.4) αj(y) :=

λTxj
(y), when y ∈ T,

0, otherwise.
Then, the numerical scheme reads
(5.5) ρn+1

j =
∑
i∈Z

ρni αj(xi + ani ∆t), j ∈ Z, n ∈ N.

We easily verify from (5.2) and (5.3) that the interpolation weights satisfy:

Lemma 5.1. — Let (αj(y))j∈Z,y∈R2 be defined as in (5.4). Then, for any j ∈ Z
and y ∈ R2, αj(y) > 0. Moreover, for any y ∈ R2,∑

j∈Z
αj(y) = 1,

∑
j∈Z

xjαj(y) = y.

5.2. Convergence result

By the same token as in Section 4, we can use Lemma 5.1 and Theorem 2.1 to
prove that the numerical scheme (5.5) is of order 1/2:

Theorem 5.2. — Assume that W satisfies hypotheses (A1)–(A4). For ρini ∈
P2(Rd), let (ρ(t))t>0 be the unique measure solution to the aggregation equation
with initial data ρini, as given by Theorem 2.1. Let us also consider a triangular
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conformal mesh (Tk)k∈Z with nodes (xj)j∈Z such that ~ = infk∈Z h(Tk) > 0 and the
CFL condition (5.1) holds true. We denote by ∆x the longest edge in the mesh.
Define ((ρnj )j∈Z)n∈N as in (5.5) and let

ρn∆x :=
∑
j∈Z

ρnj δxj
, n ∈ N.

Then, there exists a nonnegative constant C, independent of the discretization pa-
rameters, such that, for all n ∈ N∗,

dW (ρ(tn), ρn∆x) 6 Ce|λ|(1+∆t)tn(
√
tn∆x+ ∆x).

Importantly, we do not claim that (2) in the statement of Theorem 2.2 remains
true in the framework of Theorem 5.2. Indeed, it would require to prove that the
support of the numerical solution remains included in a ball when the support of the
initial condition is bounded. As made clear by the proof of Lemma 3.3, this latter
fact depends on the geometry of the mesh.

6. Numerical illustrations

We now address several numerical examples. In Subsection 6.2, we show that
the rate of convergence established in Theorem 2.2 is optimal in a one-dimensional
example. This prompts us to start with a short reminder on the Wasserstein distance
in dimension d = 1. In Subsection 6.3, we provide several numerical examples in
dimension d = 1 for the Newtonian potential, whilst examples in dimension d = 2
are handled in Subsection 6.4.

6.1. Wasserstein distance in one dimension

The numerical computation of the Wasserstein distance between two probability
measures in any dimension is generally quite difficult. However, in dimension d = 1,
there is an explicit expression of the Wasserstein distance and this allows for direct
computations, including numerical purposes, as shown in the pioneering work [GT06].
Indeed, any probability measure µ on the real line R can be described thanks to its
cumulative distribution function F (x) = µ((−∞, x]), which is a right-continuous and
non-decreasing function with F (−∞) = 0 and F (+∞) = 1. Then we can define the
generalized inverse Qµ of F (or monotone rearrangement of µ) by Qµ(z) = F−1(z) :=
inf{x ∈ R : F (x) > z}; it is a right-continuous and non-decreasing function, defined
on [0, 1). For every non-negative Borel-measurable map ξ : R→ R, we have∫

R
ξ(x)µ(dx) =

∫ 1

0
ξ(Qµ(z)) dz.

In particular, µ ∈ P2(R) if and only if Qµ ∈ L2((0, 1)). Moreover, in the one-
dimensional setting, there exists a unique optimal transport plan realizing the
minimum in (2.1). More precisely, if µ and ν belong to Pp(R), with monotone
rearrangements Qµ and Qν , then Γ0(µ, ν) = {(Qµ, Qν)#L(0,1)} where L(0,1) is the
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restriction to (0, 1) of the Lebesgue measure. Then we have the explicit expression
of the Wasserstein distance (see [RR98, Vil03])

(6.1) dW (µ, ν) =
(∫ 1

0
|Qµ(z)−Qν(z)|2 dz

)1/2
,

and the map µ 7→ Qµ is an isometry between P2(R) and the convex subset of
(essentially) non-decreasing functions of L2([0, 1)).
We will take advantage of this expression (6.1) of the Wasserstein distance in

dimension 1 in our numerical simulations to estimate the numerical error of the
upwind scheme (2.12). This scheme in dimension 1 on a Cartesian mesh reads, with
time step ∆t and cell size ∆x:

(6.2) ρn+1
j = ρnj −

∆t
∆x

(
(anj )+ρnj − (anj+1)−ρnj+1 − (anj−1)+ρnj−1 + (anj )−ρnj

)
.

With this scheme, we define the probability measure ρn∆x = ∑
j∈Z ρ

n
j δxj

. Then the
generalized inverse of ρn∆x, denoted by Qn

∆x, is given by

(6.3) Qn
∆x(z) = xj+1, for z ∈

[∑
k6j

ρnk ,
∑

k6j+1
ρnk

)
.

6.2. Optimality of the order of convergence

Thanks to formula (6.1) in dimension d = 1, we can verify numerically the op-
timality of our result. Let us consider the potential W (x) = 2x2 for |x| 6 1 and
W (x) = 4|x| − 2 for |x| > 1; such a potential verifies our assumptions (A1)–(A4)
with λ = 0. We choose the initial datum ρini = 1

2δ−x0 + 1
2δx0 with x0 = 0.25. Then

the solution to the aggregation equation (1.1) is given by

ρ(t) = 1
2δ−x0(t) + 1

2δx0(t), x0(t) = 1
4e
−4t, t > 0.

The generalized inverse Qρ(t, · ) = Qρ(t) of ρ(t) is given, for z ∈ [0, 1), by Qρ(t, z) =
−x0(t) if z ∈ [0, 1/2), and Qρ(t, z) = x0(t) if z ∈ [1/2, 1). Therefore, letting unj :=∑
k6j ρ

n
k for j ∈ Z, we can easily compute the error at time tn = n∆t by means of

the two formulas (6.1)–(6.3):

en := dW (ρ(tn), ρn∆x) =
∑
k∈Z

∫ un
k

un
k−1

|xk −Qρ(tn, z)|dz.

We then define the numerical error as e := maxn6T/∆t en. We display in Figure 6.1
the numerical error with respect to the number of nodes in logarithmic scale, as
computed with the above procedure (the time steps being chosen in a such a way
that the ratio (2.15) in the CFL condition is kept constant). We observe that the
computed numerical error is of order 1/2.
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Figure 6.1. Numerical error with respect to the number of nodes in logarithmic
scale for the upwind scheme in Wasserstein distance for the potential W defined
by W (x) = 2x2 for |x| 6 1 and W (x) = 4|x|− 2 for |x| > 1, and an initial datum
given by the sum of two Dirac deltas.

6.3. Newtonian potential in one dimension

An interesting and illustrative example is the Newtonian potential in dimension
d = 1. Let us indeed consider the case W (x) = |x| and an initial datum given
by the sum of two masses located at points xi1 and xi2 of the grid mesh, namely
ρini = 1

2δxi1
+ 1

2δxi2
, with say xi1 < xi2 . The solution of the aggregation equation in

Theorem 2.1 is given by ρ(t) = 1
2δx1(t) + 1

2δx2(t), where

x1(t) = xi1 + t

2 , x2(t) = xi2 −
t

2 , for t < xi2 − xi1 .

Indeed, recalling definition (2.2), we have, for t < xi2 − xi1 :

âρ(t, x) =



1, if x < x1(t),
1
2 , if x = x1(t),
0, if x1(t) < x < x2(t),
−1

2 , if x = x2(t),
−1, if x > x2(t).

At t = xi2 − xi1 , the two particles collapse, then for t > xi2 − xi1 , we have ρ(t) =
δ 1

2 (xi1+xi2 ).

Standard finite volume upwind scheme. This simple example explains why
we have chosen the scheme (6.2) instead of the standard finite volume upwind scheme
introduced in Subsection 3.2. In dimension d = 1 and on a Cartesian grid, this latter
one reads

(6.4) ρn+1
i = ρni −

∆t
∆x

(
(ani+1/2)+ρni − (ani+1/2)−ρni+1 − (ani−1/2)+ρni−1 + (ani−1/2)−ρni

)
,
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where ani+1/2 = −∑k∈Z ρ
n
k sign(xi+1/2 − xk).

Assume indeed that, at time tn, for some n ∈ N, we have obtained the approxima-
tion ρni = 0 for i ∈ Z \ {i1, i2}, and ρni1 = ρni2 = 1/2. We then compute

ani+1/2 =


1, for i < i1
0, for i1 6 i < i2

−1, for i > i2.

So, when applying the upwind scheme for i ∈ {i1 − 1, i1, i1 + 1}, we get

ρn+1
i1−1 = ρni1−1 −

∆t
∆x

(
ρni1−1 − ρni1−2

)
= 0,

ρn+1
i1 = ρni1 + ∆t

∆xρ
n
i1−1 = ρni1 ,

ρn+1
i1+1 = ρni1+1 = 0.

Doing the same computation for i ∈ {i2 − 1, i2, i2 + 1}, we deduce that ρn+1 = ρn.
Thus the above upwind scheme may be not able to capture the correct dynamics
of Dirac deltas. The above computation is illustrated by the numerical results in
Figure 6.2, where a comparison between the numerical results obtained with (6.4)
(left) and with (6.2) (right) is displayed. We observe that the Dirac deltas are
stationary when using the scheme (6.4), whereas the scheme (6.2) permits to catch
the right dynamics. Another interesting numerical illustration of this phenomenon
is provided by Figure 6.3. In this example, we choose the potential W (x) = 1 −
e−2|x|, which is −4-convex, and a smooth initial datum given by the sum of two
Gaussian functions: ρini(x) = 1

M
(e−20(x−0.5)2 + e−20(x+0.5)2), where M = ‖ρini‖L1 is a

normalization coefficient. With this choice, we observe that the solution blows-up
quickly. Dirac deltas appear in finite time and, as observed above, the scheme (6.4)
(Fig. 6.3-left) does not allow to capture the dynamics after blow-up time, whilst the
scheme (6.2) (Fig. 6.3-right) succeeds to do so. For these numerical simulations, the
numerical spatial domain is [−1.25, 1.25]; it is discretized with a uniform Cartesian
grid of 800 nodes, and the ratio in the CFL condition (2.15) is 1/2.

Comparison with Burgers–Hopf equation. Considering the potentialW (x) =
1
2 |x|, it has been proved in [JV16] (see also [BCDFP15]) that the following equivalence
holds true: ρ is the solution in Theorem 2.1 if and only if u = −W ′ ∗ ρ is the entropy
solution of the Burgers–Hopf equation ∂tu+ 1

2∂xu
2 = 0.

Let (ρni )i∈Z,n∈N be given by the scheme (2.12)–(2.13). By conservation of the total
mass, see Lemma 3.2, we have ∑k∈Z ρ

n
k = 1. Introducing

uni := 1
2 −

∑
k6i

ρnk , i ∈ Z, n ∈ N,

we deduce, by summing (2.12) and by using the fact that ρni = −(uni − uni−1), that
the family (uni )i∈Z,n∈N satisfies:

(6.5) un+1
i = uni −

∆t
∆x((ani )+(uni − uni−1)− (ani+1)−(uni+1 − uni )),
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Figure 6.2. Numerical result for the one dimensional aggregation equation with
W (x) = |x| and an initial datum given by two Dirac deltas. Left: Result obtained
with the standard upwind scheme (6.4) with a velocity computed at the interfaces
of the mesh. Right: Result with the scheme (6.2). As already emphasized in
Example 2.3, this shows once again that a great care must be paid to the choice
of the scheme in order to recover the correct dynamics of Dirac deltas.
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Figure 6.3. Numerical result for the one dimensional aggregation equation with
W (x) = 1− e−2|x| and an initial datum given by the sum of two Gaussian func-
tions. Left: Result obtained with the standard upwind scheme (6.4) with a veloc-
ity computed at the interfaces of the mesh. Right: Result with the scheme (6.2).
As in Fig. 6.2, the upwind scheme (6.4) does not capture the right dynamics of
the Dirac deltas after blow-up time.

where, with (2.13), we have

ani = −1
2
∑
k 6=i

ρnk sign(xi − xk).
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Then

ani = −1
2

(∑
k<i

ρnk −
∑
k>i

ρnk

)
= −1

2

(∑
k<i

ρnk − 1 +
∑
k6i

ρnk

)
= 1

2(uni−1 + uni ).

Moreover, as ρni remains nonnegative under the CFL condition (see Lemma 3.1),
uni − uni−1 = −ρni 6 0, so that

(ani )+(uni − uni−1) = −
(
ani (uni − uni−1)

)−
= −1

2
(
(uni )2 − (uni−1)2

)−
.

Similarly, we get

(ani+1)−(uni+1 − uni ) = −
(
ani+1(uni+1 − uni )

)+
= −1

2
(
(uni+1)2 − (uni )2

)+
,

so that the scheme (6.5) for u finally rewrites

(6.6) un+1
i = uni −

∆t
2∆x

(
((uni+1)2 − (uni )2)− − ((uni )2 − (uni−1)2)+

)
.

Then we may apply the main result of this paper and deduce the convergence at
order 1/2 of the above scheme:
Lemma 6.1. — Let uini be given in BV (R) such that ∂xuini 6 0 and TV (uini) = 1.

Define the family (uni )i∈Z,n∈N by means of (6.6), with the initial data u0
i := 1

2 +
∂xu

ini(−∞, xi+ 1
2
), and let un∆x := ∑

i∈Z u
n
i 1[xi,xi+1). Let u be the entropy solution to

the Burgers equation ∂tu + 1
2∂xu

2 = 0 with uini as initial condition. Then, there
exists C > 0, independent of the discretization parameters, such that if the CFL
condition ∆t < ∆x is satisfied, one has

‖u(tn)− un∆x‖L1 6 C(
√
tn∆x+ ∆x).

Remark 6.2. — We do not claim that the scheme converges for any initial datum
of the Cauchy problem for the Burgers equation (and actually it does not). The
convergence result above only applies to a non-increasing initial condition belonging
to [−1/2, 1/2].
Note that this scheme is not conservative, but, surprisingly (see [HLF94]) this does

not prevent it from converging toward the right solution.
Proof. — First remark that the CFL condition that is here required is w∞∆t <

1
2∆x, with w∞ = 1/2 as W (x) = 1

2 |x|.
The entropy solution u of the Burgers equation with a nonincreasing BV initial

datum is a nonincreasing BV function. By Cauchy–Schwarz inequality, we have∫ 1

0
|Qρ(tn)(z)−Qρn

∆x
(z)| dz 6 ‖Qρ(tn) −Qρn

∆x
‖L2(0,1) = dW (ρ(tn), ρn∆x),

where (ρ(t))t>0 is the solution of (1.1), with W (x) = 1
2 |x| as before and ρini =

−∂xuini as initial condition, and (ρn∆x)n>0 is the numerical solution obtained by
Scheme (2.12) with d = 1 together with initial condition (2.11) (numerical solution
whose convergence at order 1/2 is stated in Theorem 2.2).
Observing that W is convex, we apply Theorem 2.2 with λ = 0. We obtain∫ 1

0
|Qρ(tn)(z)−Qρn

∆x
(z)| dz 6 dW (ρ(tn), ρn∆x) 6 C(

√
tn∆x+ ∆x).

TOME 3 (2020)



252 F. DELARUE, F. LAGOUTIÈRE & N. VAUCHELET

The claim follows provided we prove that

(6.7)
∫
R
|u(tn, x)− un∆x(x)| dx =

∫ 1

0
|Qρ(tn)(z)−Qρn

∆x
(z)| dz.

In order to prove (6.7), we notice that, from a geometrical point of view, the left
hand side of equality (6.7) corresponds to the area between the curves x 7→ u(tn, x)
and x 7→ un∆x(x). Also, the right hand side is a measure of the area between their
generalized inverses. However, the graph of the pseudo-inverse of a function may be
obtained by flipping the graph of the function with respect to the diagonal. Since
this operation conserves the area, we deduce that both areas are equal, that is (6.7)
holds.
Another way to prove the identity (6.7) is to observe that the solution u of the

Burgers–Hopf equation reads:

u(t, x) = 1
2[ρ(t, (x,+∞))− ρ(t, (−∞, x))], t > 0, x ∈ R,

where ρ is the solution in Theorem 2.1. In fact, as the number of points x for which
ρ(t, {x}) > 0 is at most countable for any given t > 0, we have the almost everywhere
equality:

u(t, x) = ρ(t, (x,+∞))− 1
2 .

Similarly,

un∆x(t, x) =
∑
i∈Z

uni 1[xi,xi+1)(x) = 1
2 −

∑
i∈Z

1[xi,xi+1)(x)
∑
k6i

ρnk

= 1
2 −

∑
i∈Z

1[xi,xi+1)(x)ρn∆x(t, (−∞, xi])

= 1
2 − ρ

n
∆x(t, (−∞, x]) = ρn∆x(t, (x,+∞))− 1

2 .

So, to complete the proof, it suffices to use the fact that, for any two probability
measures µ and µ′ on R,∫

R
|µ((x,+∞))− µ′((x,+∞))|dx =

∫ 1

0
|Qµ(z)−Qµ′(z)|dz,

see [BL19, Theorems 2.9 and 2.10], noticing that the function Qµ we use here is the
right continuous version of the quantile function used in [BL19]. �

6.4. Numerical simulation in two dimensions

As an illustration, we propose now a numerical example in two dimensions. The
spatial domain is the square [0, 1]× [0, 1]; it is discretized with Nx = 70 nodes in the
x-direction and Ny = 70 nodes in the y-direction; we take a time step ∆t = 10−3.
We consider two different initial data: the sum of three bumps (as in [CJLV16])

ρini(t, x) = 1
M

(
e−100((x1−0.25)2+(x2−0.3)2) + e−100((x1−0.77)2+(x2−0.7)2)

+ 0.9e−100((x1−0.37)2+(x2−0.62)2)
)
,
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Figure 6.4. Time dynamics of the numerical solution of the aggregation equa-
tion (1.1) with W (x) = W1(x) = 1 − e−5|x| and an initial datum given by the
sum of three bumps. Time increases from top left to bottom right.

where M is a normalization constant such that ‖ρini‖L1 = 1; and an initial density
with a square shape

ρini(t, x) = 5× 1[0.2,0.8]×[0.2,0.8]\[0.3,0.7]×[0.3,0.7].

With these numerical data, we compare the numerical results between the two
potentials W1(x) = 1 − e−5|x| and W2(x) = 5|x|. For |x| close to 0, we have that
∇W1 ∼ ∇W2. Then the short range interaction is similar between both potentials,
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Figure 6.5. Time dynamics of the numerical solution of the aggregation equa-
tion (1.1) with W (x) = W2(x) = 5|x| and an initial datum given by the sum of
three bumps. Time increases from top left to bottom right.

but the long range interaction is different. The numerical results are displayed in
Figures 6.4 and 6.6 for the potential W1(x) = 1− e−5|x| and in Figures 6.5 and 6.7
for the potential W2(x) = 5|x|.
In each case, we observe, as expected, the aggregation in finite time of ρ towards

a Dirac delta. Indeed it has been proved in [CDF+11] that when the initial data is
compactly supported, solutions converge towards a Dirac delta in finite time. We
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Figure 6.6. Time dynamics of the numerical solution of the aggregation equa-
tion (1.1) with W (x) = W1(x) = 1 − e−5|x| and an initial datum given by a
square. Time increases from top left to bottom right.

also observe that the time dynamics during this step of concentration is different
between potentials W1 and W2.
The case with an initial datum with three bumps has been implemented in [CJLV16]

with a Lax–Friedrichs scheme. We obtain here similar results but we observe a smaller
numerical diffusion. Then we can make similar comments for the comparison between
the two potentials W1 and W2. For the potential W1, we observe that each bump
coalesces into a Dirac delta, then the three remaining Dirac deltas merge into a
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Figure 6.7. Time dynamics of the numerical solution of the aggregation equa-
tion (1.1) with W (x) = W2(x) = 5|x| and an initial datum given by a square.
Time increases from top left to bottom right.

single Dirac delta (see Fig. 6.4). For the potential W2, the solution seems to be more
regular and Dirac deltas seems to appear for larger time (see Fig. 6.5).
For the initial data with a square shape, the density ρ keeps, for both potentials,

a shape similar to the initial square shape which tightens as time increases. However
with the potential W1 (Fig. 6.6), we notice a strong concentration at the corners
of the square, whereas in the case of the potential W2 (Fig. 6.7) the density is
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homogeneous along the edges of the square with a slight concentration in the middle
of the edges.
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