
Annales Henri Lebesgue
3 (2020) 381-406

VIRGINIE BONNAILLIE-NOËL

CLAIR POIGNARD

GRÉGORY VIAL

ASYMPTOTIC EXPANSIONS FOR
THE CONDUCTIVITY PROBLEM
WITH NEARLY TOUCHING
INCLUSIONS WITH CORNER
DÉVELOPPEMENT ASYMPTOTIQUE POUR LE
PROBLÈME DE CAVITÉ SUR UN DOMAINE
CONTENANT DES INCLUSIONS AVEC
COINS PROCHES

Abstract. — We investigate the case of a medium with two inclusions or inhomogeneities
with nearly touching corner singularities. We present two different asymptotic models to
describe the phenomenon under specific geometrical assumptions. These asymptotic expansions
are analysed and compared in a common framework. We conclude by a representation formula
to characterise the detachment of the corners and we provide the possible extensions of the
geometrical hypotheses.

Keywords: Asymptotic expansion, corner singularity .
2020 Mathematics Subject Classification: 35B25, 35C20.
DOI: https://doi.org/10.5802/ahl.36

https://annales.lebesgue.fr/
https://doi.org/10.5802/ahl.36


382 Virginie BONNAILLIE-NOËL, Clair POIGNARD & Grégory VIAL

Résumé. — Nous considérons le problème de Laplace pour un matériau contenant deux
inclusions ou inhomogénéités avec coins proches. Nous présentons deux approches asymp-
totiques différentes pour décrire le phénomène sous certaines conditions géométriques. Ces
développements asymptotiques sont étudiés et comparés dans un même cadre. Nous aboutis-
sons à une formule de représentation qui caractérise l’éloignement des deux coins et proposons
une relaxation des hypothèses géométriques.

1. Introduction
The aim of the paper is to investigate the asymptotic behavior of the solution to

the conductivity (also called thermal) problem in a domain with two nearly touching
inclusions with corner singularity. It is well-known that behavior of the electrostatic
field near a corner of an inclusion depends on the angle of the corner, see [Gri85]
for instance. For acute angles, from the domain of computation, the electric field
remains bounded but as soon as the angle is larger than π, the electric field blows-up.
Problems with inclusions have given rise to an important literature, in various con-

texts, mainly motivated by mechanical and electrical engineering, or image processing.
In the special case of smooth inclusions close to each other, or close to the bound-
ary of the domain, we can mention for example the works [AKT06, BLY09, BT13,
BTT18, KLY13, NP18]. For nonsmooth inclusions, we can refer to [MN86, NT18].
The configuration we are looking at here is quite trickier since we consider a

domain with two inclusions with corner singularity at distance δ � 1 from each
other. Depending on the geometrical configuration, the corner asymptotics of the
solution to the conductivity problem at δ 6= 0 may be dramatically different from the
asymptotics of the solution at δ = 0. In this paper, we provide a common framework
for two different methods to derive the asymptotic expansions of the solution at
δ 6= 0. These expansions are mainly based upon the solution to the limit problem
δ = 0 and the appropriate so-called profile terms. These profiles are solution to the
conductivity problem in a sectorial domain with appropriate source terms. They
appear naturally from the expansion, in the same vein as in [CCDV06].
Precisely, we are interested in the model problem

(1.1)


−∆uδ = 0 in Πδ,

∂νuδ = g on ∂Πδ,

uδ→ 0 at infinity,
where g is a given datum (trace of a smooth function), and the unbounded domain
Πδ is defined by

Πδ = R2 \ ΩL
δ ∪ ΩR

δ,

the domains ΩL
δ and ΩR

δ standing for the inclusions. The distance between ΩL
δ and ΩR

δ

is 2δ, see Figure 1.1.
Naturally, the formal limit case where the inclusions touch each other corre-

sponds to

(1.2)


−∆u0 = 0 in Π0,

∂νu0 = g on ∂Π0,

u0 → 0 at infinity.
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Figure 1.1. The domain Πδ with the inclusions ΩL
δ, ΩR

δ, and the corresponding
limit domain Π0.

Nevertheless, the asymptotic model is not unique since the dependence of the
domains ΩL

δ, ΩR
δ with respect to the parameter δ is not explicitly given by the

physical situation. We will investigate the following two choices:
• Translation method. The size of the inclusions ΩL

δ and ΩR
δ is supposed to be

independent of δ. Changing the value of the parameter δ merely corresponds
to a translation of the inclusions along a given unit vector d. The subsequent
asymptotic expansion is detailed in Section 3.1 where the domain Πδ will be
denoted by

•
Πδ for notation consistency.

• Contraction method. The inclusions do not have a constant size with respect
to δ, but are contractions of the limit case (i.e. δ = 0). This case is precisely
addressed in Section 3.2. In particular, the geometrical setting will be made
clear in Subsection 3.2.1, where, here again, the domain Πδ will be denoted

?
Πδ.

If the two presented asymptotic models coincide for δ = 0, both have pros and cons
since they can handle different geometrical frameworks of inclusions. For comparison
purposes, which yield one of the main goal of this paper, we restrict the geometrical
configurations to a situation where both models might be considered. The precise
framework is detailed in the following assumptions, but the reader can keep in mind
the situation of Figure 1.1.
Assumption 1.1. — The geometrical hypotheses we make are the following
(H1) For δ = 0, the inclusions touch each other at one point, where we put the

origin 0.
(H2) The inclusions ΩL

0 and ΩR
0 are smooth domains, except at the point 0, where

they coincide with plane sectors.
(H3) There exists a direction d such that

∃ ρ0 > 0 {0 + ρd ; 0 < |ρ| < ρ0} ⊂ ΩL
0 ∪ ΩR

0.

By convention, we fix the horizontal axis along this direction. Moreover, ΩL
0

and ΩR
0 are supposed to be included into R− × R, and R+ × R, respectively.

Remark 1.2. — Replacing in Assumption (H1) one point by a finite number of
points generates only technical difficulties. We do not address the case of inclusions
without corners (for example two disks), which generates a cuspidal limit domain.
Hypothesis (H2) prevents from this situation. Besides, the regularity of the bound-
aries far from the origin is not necessary and is only assumed here for simplicity.
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Likewise, Hypothesis (H3) is technical and might be weakened. The relaxation of
theses hypotheses will be discussed in Section 5.

Section 2 recalls the decomposition in regular and singular parts of the Laplacian
equation (1.2) with adding a source term. Then we consider the two asymptotic
models. First in Section 3, we present a formal asymptotic expansion where we do
not take care of the corner singularities. Even though formal, this construction is
useful for the complete analysis and enables to deal with difficulties step by step. We
present an asymptotic model for the translation and contraction case and propose a
unified formulation in Section 3.3. In Section 4, we take the singularities into account,
we construct the corner profiles and we give the complete asymptotic expansions
obtained by the two methods.
As far as we know, the comparison of these two asymptotic methods has not been

addressed before. In this paper the two methods are studied in parallel and presented
in a unified formulation which allows us to deduce a generic full asymptotic expansion
of the solution of (1.1).
For δ > 0, the solution uδ of problem (1.1) and the limit solution u0 both have

singularities at the origin, but with different singular exponents because they are
associated with different angles. In the geometry of Figure 1.1, uδ has singularities
due to the re-entrant corners whereas u0 has only singularities of the convex corners
(of angle α±, see Figure 1.1). The asymptotic procedures that will be described in the
paper will allow to compare uδ and u0. Precisely, the first terms in the asymptotic
expansion read

(1.3) uδ(x) = ψ
(x
δ

)
u0(x)− χ(x)

(
g(0)M

(x
δ

)
+
∑
±
c±0,0 K

±
0

(x
δ

))
,

where
• The functions ψ and χ are smooth radial cutoff functions satisfying

ψ(x) = 0 and χ(x) = 1, near 0.

• The coefficients c±0,0 are the first singular coefficients of u0, solution to (1.2).
• The profiles K±0 and M are defined in the infinite domain P (see Figure 4.1)
as the respective solutions to Problems (4.6)–(4.7).

Let us give some indication on the magnitude of the profiles with respect to δ:∥∥∥∥K±0 ( ·δ
)∥∥∥∥

H1(Πδ)
= O(1),

∥∥∥∥M( ·
δ

)∥∥∥∥
H1(Πδ)

= O(1).

As we can see in (1.3), the singularities of u0 are canceled through the cutoff
function ψ (at distance O(δ) from the origin), and replaced by adapted counterparts
through the profiles terms, rescaled to fit the δ-depending domain Πδ. It is worth
noting whatever the method, the zeroth–order terms of the expansion of uδ are given
by (1.3). The differences in the expansions will appear at the next order terms.
The goal of the paper is to push forward the expansion for each method to provide
different ways to approximate uδ.
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2. Corner asymptotics for the limit problem

Let us consider now the solution u to the generic problem:

(2.1)


−∆u = f in Π0,

∂νu = h on ∂Π0,

u→ 0 at infinity,
where f and h are smooth given data (for f = 0 and h = g the solution u is nothing
but u0).
Since corners appear in the limit domain Π0, singularities arise for the solution

u near the origin, preventing a full elliptic regularity. Precisely, if α± denote the
absolute value of the sector angles involved in Π0 (see Figure 1.1) one has:

α± = θ±2 − θ±1 .
Notice that according to (H3), α± ∈ (0, π).

Assumption 2.1. — Let us add a geometrical hypothesis on α±
(H4) α± /∈ πQ.

With Assumption (H4), the following decomposition (2.2) is valid. Otherwise,
logarithmic singularities may appear in the corner asymptotics. We do not consider
this case here for simplicity.
The standard theory of corner problems applies here (see [Dau88, Gri85, Kon67]

for example). The potential u admits a splitting into regular and singular parts for
any integer p:
(2.2) u(x) = upflat(x) + χ(x)

∑
±

∑
λ∈Λ±p

c±λ s
±
λ (x) + χ(x)

∑
±

∑
σ=1,2

∑
16n6p−1

a±,σn a±,σn (x),

where, using polar coordinates (r, θ),
• upflat ∈ Hp

loc(Π0), and for any multi-index β with |β| 6 p, we have
∂βupflat(x) = O(rp−|β|), near the corner 0,(2.3)

• χ : R2 → R+ is a smooth radial cutoff function, with compact support and
equal to 1 near 0,
• we denote by

Λ±p =
{
λ = qπ

α±
; 0 6

qπ

α±
6 p with q ∈ N

}
,

• the coefficients c±λ ∈ R depend on f and h and are called the singular coeffi-
cients of order λ of u in the upper or lower part of Π0. They can be numerically
computed from the solution u via extraction formulae (see [Gri85, Chapter 8]),
• the singular functions s±λ are defined for any λ ∈ Λ±p by

s±λ (x) =

r
λ cos

(
λ(θ − θ±1 )

)
if θ±1 < θ < θ±2 ,

0 otherwise,

see Figure 1.1 for the definition of θ±1 and θ±2 . Note that for λ = 0, the
functions s±0 equal 1 for θ±1 < θ < θ±2 .
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• The last series in (2.2) comes from the data f and h, which do not necessarily
vanish near the corner. The coefficients a±,σn are explicitly determined by the
Taylor expansions of f and h. The functions a±,σn are defined for any positive
integer n and any σ ∈ {1, 2} by

a±,σn (x) =

rn cos(n(θ − θ±σ)) if θ±1 < θ < θ±2 ,

0 otherwise.

Let us comment the dependence with respect to p. The bigger p, the more terms
in the singular expansion, and the flatter the regular terms.
Before dealing with singularities, it is important to derive the asymptotic expansion

in the ideal case where no singularity appears at any order. Actually, understanding
how such a derivation occurs will facilitate the accurate asymptotic expansion with
the singularities.

3. Asymptotic models without singularities

The goal of the section is to present the formal derivation of the asymptotic
expansions for both translation and contraction cases, without accounting for the
influence of corner singularities. We emphasize that throughout this section, we
assume that no singularity appears in the derivation of the asymptotics, meaning
that all the coefficients c±λ and a±,σn of any expansion of type (2.2) equal zero. This
implies in particular that the datum g is flat at any order near the origin. Let us
mention that this assumption does not hold only for the limit term u0, but also for all
terms which will be constructed along the asymptotic expansion (see Equation (3.16)
for instance).
This ideal case has no chance to hold in general. Even the flatness of the data

f and h are not enough to ensure that no singularity appears in the solution of
one particular problem (2.1). Moreover during the procedure, the data will involve
complex combinations of the previous terms. It is then not possible to exhibit a
nontrivial case of such a situation (even if such a situation might theoretically
happen). The present section mainly has a pedagogical role.
Under the assumption that no singularity appear, the expansion that will be

derived below only involves coefficients with entire powers of δ. In the general case,
singularities will introduce non entire powers of δ, and they will lead to a modification
of the source terms of the following elementary problems, but the procedure will
remain unchanged. Therefore even though very specific, this ideal framework is
interesting for understanding the way the cascade of elementary problems is derived
at any order to get the asymptotics. We derive such “ideal” asymptotics, in the
two different geometrical frameworks. In addition, we unify both approach but
introducing appropriate notations, making thus possible a comparison of the two
methods. The difficulties arising from the corner singularities are postponed to
Section 4 where the corner profiles are introduced.
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3.1. Asymptotic model with translation of inclusions

This section is devoted to the construction of the asymptotic expansion for Prob-
lem (1.1) in the case where the inclusions are constant patterns translated from each
other by a distance of 2δ. As mentioned previously, to distinguish the two geometrical
frameworks, the notation will are enriched by a • for the translation case.

3.1.1. Geometrical setting

We assume here that the domains
•
ΩL
δ and

•
ΩR
δ are translations of constant size

inclusions :
•
ΩL
δ =

•
ΩL

0 − δd and
•
ΩR
δ =

•
ΩR

0 + δd.
We recall that

•
Πδ = Πδ = R2 \

•
ΩL
δ ∪

•
ΩR
δ.

It is classical to transform the problem into a domain independent of δ in order
to make the parameter δ appear in the equations. In the present case, the “gap”
between the inclusions can be seen as a thin layer. It is then natural to set the
change of variables

•
Φδ : x = (x1, x2) 7→ ξ = (η, τ),

defined as

(3.1) ξ =
•
Φδ(x) =


(x1 + δ − 1, x2) if x1 6 −δ,
(η, τ) =

(
x1
δ
, x2

)
if |x1| 6 δ,

(x1 − δ + 1, x2) if x1 > δ.

Through this change of variables, the domain
•
Πδ is transformed into

•
Π, see Figure 3.1.

Here, we obviously have
•
Π =

•
Π1.

We set
•
Πlay
δ = {|x1| < δ}, and

•
Πext
δ =

•
Πδ ∩ {|x1| > δ}.

2δ

•
Πext

δ

•
Πext

δ

•
Πlay

δ

•
ΩL
δ

•
ΩR
δ

•
Γtrans

δ

•
Γtrans

δ

0•
2

•
Πext •

Πext

•
Πlay

•
ΩL
1

•
ΩR
1

•
Γtrans

•
Γtrans

0•

Figure 3.1. The domain
•
Πδ and the domain

•
Π obtained after change of variables

•
Φδ given by (3.1).
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For any function v ∈ L2
loc(

•
Πδ), we denote by •vext and •vlay the restrictions of the

function v ◦
•
Φ−1
δ to

•
Πext =

•
Πext

1 (the exterior part), and
•
Πlay =

•
Πlay

1 (the layer),
respectively.

3.1.2. Elementary problems for the translation case

Starting from (1.1), we are now able to set the transformed problem in a domain
independent of the parameter δ. Expressed in terms of the unknowns •uext,δ and •ulay,δ,
it reads

(3.2)



∂2
η
•ulay,δ = −δ2∂2

τ
•ulay,δ in

•
Πlay,

•ulay,δ = •uext,δ on
•
Γtrans,

−∆•uext,δ = 0 in
•
Πext,

∂ν
•uext,δ = 1

δ
∂η
•ulay,δ on

•
Γtrans,

∂ν
•uext,δ = g ◦

•
Φ−1
δ (ξ) on ∂

•
Πext \

•
Γtrans,

•uext,δ→ 0 at infinity.

We now replace g ◦
•
Φ−1
δ (ξ) by its Taylor expansion:

(3.3) g ◦
•
Φ−1
δ (ξ) =

N∑
n=0

•gn(ξ)δn + O(δN).

Considering Problem (3.2), we postulate the two following Ansätze
•uext,δ =

∑
n>0

δn
•uextn ,

•ulay,δ =
∑
n>0

δn
•ulayn .

Note that the series are written in the sense of asymptotic expansions (i.e. truncate
the series and make δ → 0, see [MNP00] for example), we do not expect (nor need)
convergence as n → ∞. Inserting these Ansätze into Problem (3.2), we get the
following cascades of elementary problems:

(3.4)



∂2
η
•ulay
n+1 = −∂2

τ
•ulay
n−1 in

•
Πlay,

•ulay
n+1 = •uext

n+1 on
•
Γtrans,

−∆•uext
n = 0 in

•
Πext,

∂ν
•uext
n = ∂η

•ulay
n+1 on

•
Γtrans,

∂ν
•uext
n = •gn on ∂

•
Πext \

•
Γtrans,

•uext
n → 0 at infinity,

with the convention •uext
` = 0 and •ulay

` = 0 for ` < 0. In the first two equations of the
problem, solved by •ulay

n , the variable τ is actually only a parameter. The question of
the solvability of this sequence of problems will be discussed in Section 3.3.
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3.2. Asymptotic model with contraction of inclusions

As mentioned previously, the way each asymptotic expansion is derived is somehow
arbitrary, and it depends mostly of the point of view of the modeling. In Section 3.1,
we considered the case of two inclusions with δ–independent size, whose corners are
distant from 2δ.
In this section we adopt another point of view, leading to the same limit geometry:

we assume that the inclusions are contractions of the limit inclusion ΩL
0 ∪ ΩR

0 given
by Figure 1.1. Let us first make precise the geometrical assumptions. As mentioned
previously, to distinguish the two geometrical frameworks, the notation is enriched
by a ? for the contraction case.

3.2.1. Geometrical setting

Identification of the thin layer. For δ small enough, we define here
?
ΩR
δ and

?
ΩL
δ

as contractions in the normal direction ν of the respective limit inclusions
?
ΩL

0 and
?
ΩR

0. A thin layer
?
Πlay
δ appears naturally, when passing from the domain

?
Πδ to the

limit domain
?
Π0 := Π0 (see Figure 3.2).

We denote respectively by
?
Πext,

?
Πlay
δ and

?
Πδ the 3 domains (see Figure 3.2).

?
Πext = Π0,

?
Πlay
δ = (

?
ΩL

0 ∪
?
ΩR

0) \ (
?
ΩL
δ ∪

?
ΩR
δ),

?
Πδ =

?
Πext ∪

?
Πlay
δ .

2δ

?
ΩL
δ

?
ΩR
δ

?
Πextd

?
Πlay
δ

Γtrans
δ

•

0•
2δ

?
ΩL
δ

?
ΩR
δ

?
Πext

Γtrans
δ

?
Πlay
δ

•

0•

Figure 3.2. The domain
?
Πδ with the inclusions

?
ΩLR
δ (non symmetric and symmet-

ric cases).

Let us introduce a suitable parameterization of ∂
?
Πδ. In the interior of the ball

Bρ? = {|x| < ρ?}, the boundary ∂
?
Πδ is deduced by translation by ±δd from the

right and left parts of ∂
?
Π0.

(∂
?
Πδ) ∩ Bρ? = ({x− δd ; x ∈ ∂

?
ΩL

0} ∪ {x + δd ; x ∈ ∂
?
ΩR

0}) ∩ Bρ?.
Outside the ball B ρ?

2
= {|x| < ρ?

2 }, we choose a smooth, positive and δ-independent
function b to parameterize ∂

?
Πδ:

∂
?
Πδ \ B ρ?2 = {x + δb(x)ν(x) ; x ∈ ∂

?
Π0} \ B ρ?2 .

It is designed in such a way that the two definitions are consistent in the intersection
{ρ?2 6 |x| 6 ρ?}.
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Remark 3.1 (Arbitrary choice for b near 0). — The choice of ρ? is somehow
arbitrary, but it does not change dramatically the derivation of the expansion, since
the function u0 is supposed to be flat near the origin 0, as stated by (2.2)–(2.3).

Remark 3.2 (The case of constant thickness). — In the simple geometrical frame-
work where the plane sectors are equally distributed from both side of the horizontal
axis (0,d), the simplest choice for b is the constant function defined by

∀ x ∈ ∂
?
Πδ, b(x) = sin

(
ω

2

)
,

where ω = θ+
1 (and θ+

2 = π − ω, θ−1 = π + ω, θ−2 = 2π − ω).

Once the identification and the parameterization of
?
Πlay
δ is performed, it is natural

to introduce new variables (η, τ), which respectively correspond to the normal and
tangential variables along ∂Π0, in order to rewrite the Laplace operator in these new
coordinates. We parameterize ∂Π0 by the vector field Ψ defined on the torus T:

∂Π0 = {Ψ(τ), τ ∈ T}.

By abuse of notation, we still denote by b and ν the functions b ◦ Ψ and ν ◦ Ψ
defined on T. We then define the mapping

?
Φδ from (0, 1)× T into R2 as

(3.5) ξ =
?
Φδ(η, τ) = Ψ(τ) + δb(τ)η ν(τ), ∀ (η, τ) ∈ (0, 1)× T,

such that
?
Πlay
δ \ B ρ?2 =

?
Φδ

(
(0, 1)× T

)
\ B ρ?

2
.

Note that
?
Φδ applies only to the layer part (contrarily to

•
Φδ which is defined in R2).

In local coordinates (η, τ), the Euclidean metric (Gij)i,j∈{1,...,2} is given by

G11 = |∂η
?
Φδ|2, G22 = |∂τ

?
Φδ|2, G12 = G21 = 〈∂η

?
Φδ , ∂τ

?
Φδ〉.

Denoting by |G| its determinant:

|G| = det(Gij) = G11G22 −G2
12,

Laplace’s operator reads then

∆ = 1√
G
∂η

(
1√
G

(G22∂η −G12∂τ )
)

+ 1√
G
∂τ

(
1√
G

(−G12∂η +G11∂τ )
)

and thus it can be expanded as

(3.6) ∆ = 1
δ2b2

{
∂2
η + δbκ∂η + δ2

(
η2
(
b′
)2
∂2
η +

(
2
(
b
)2
− bb′′ − ηκ2b2

)
∂η

− 2ηbb′∂η∂τ + b∂2
τ

)
+ · · ·

}
= 1
δ2b2

(
∂2
η +

∑
k>1

δk
?
Tk

)
,

where
?
Tk are differential operators independent of δ and κ denotes the curvature

(extended by 0 at the origin). On the other hand, the normal derivative is rescaled
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by a factor 1/(δb):

∂ν |η=0 = 1
δb∂η,(3.7a)

∂ν |η=1 = 1
δb

(
∂η +

∑
k>1

δk
?
Bk

)
,(3.7b)

where
?
Bk are differential operators independent of δ.

3.2.2. Elementary problems for the contraction case

By analogy with the translation case, we denote by
?
Γtrans the interface across which

transmissions occur. In the contraction case,
?
Γtrans is nothing but ∂Π0:

?
Γtrans = ∂Π0 = ∂

?
Πext.

We denote respectively by ?uext,δ and ?ulay,δ the function u ◦
?
Φ−1
δ in

?
Πext and

?
Πlay.

After this change of variables, the elementary problems read

(3.8)



∂2
η
?ulay,δ = −∑k>1 δ

k
?
Tk(

?ulay,δ) in
?
Πlay,

?ulay,δ = ?uext,δ on
?
Γtrans,

1
δb

(
∂η +∑

k>1 δ
k
?
Bk

)
?ulay,δ = ∑

n>0 δ
n ?gn η = 1,

−∆?uext,δ = 0 in
?
Πext,

∂ν
?uext,δ = 1

δb∂η
?ulay,δ on

?
Γtrans,

?uext,δ→ 0 at infinity,

where ξ 7→ ?gn(ξ) are obtained from the Taylor expansion of g ◦
?
Φ−1
δ (ξ). Polynomial

Ansätze similar to the translation case,
?uext,δ =

∑
n>0

δn
?uext
n ,

?ulay,δ =
∑
n>0

δn
?ulay
n ,

lead to the following sequence of elementary problems:

(3.9)



∂2
η
?ulay
n+1 = −∑k+`=n+1 Tk

?ulay
` in

?
Πlay,

?ulay
n+1 = ?uext

n+1 for η = 0,

∂η
?ulay
n+1 = b?gn −

∑n
k=1

?
Bk

?ulay
n−k for η = 1,

−∆?uext
n = 0 in

?
Πext,

∂ν
?uext
n = 1

b∂η
?ulay
n+1 on η = 0,

?uext
n → 0 at infinity,

Again, we postpone the discussion of the well-posedness of this sequence of equa-
tions to Section 3.3.
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3.3. A unified formulation

In Sections 3.1 and 3.2 we have derived an asymptotic expansion for two different
asymptotic families converging to the same limit problem. Actually, it is possible to
describe a general framework containing the two procedures. Once again, we empha-
size that in this section, we are dealing with the ideal cases where the singularities
are omitted at any order. Section 4 is devoted to derive the sector profile problems
to account for the singularities, that appear in the general case.

Geometrical setting. We consider the problems obtained after change of vari-
ables (solved by •uδ and ?uδ, respectively). We denote by Π the domain where the
problem is set, it can be split into

Π = Πext ∪ Γtrans ∪ Πlay,

where Γtrans = ∂Πext ∩ ∂Πlay. The layer Πlay has the form (η−, η+) × I. Finally, we
set Γ = ∂Π \ Γtrans.

• In the translation case, η± = ±1, I = R, and Γtrans = ∂Πlay = {−1, 1} × I.
• In the contraction case, η− = 0, η+ = 1, I = ∂Π0, and Γtrans = ∂Πext =
{0} × I.

For the sake of conciseness, for any function u defined in Π we naturally denote
by uext and ulay its restrictions to Πext and Πlay respectively.

Layer problem. We consider the following equations

(3.10)


∂2
ηu

lay
n+1 = jn for η ∈ (η−, η+)

ulay
n+1 = uext

n+1 for η = η−,

∂ηulay
n+1 = kn for η = η+,

where the term

(3.11) jn = −
n+1∑
k=1

Tkulay
n+1−k

is given explicitly by ulay
` for 0 6 ` 6 n. Note that in the translation case, only the

term T2 = ∂2
τ does not vanish. The expression of kn depends on the geometrical

framework:
• In the translation case, kn = ∂νuext

n |η=η+ .

• In the contraction case, kn = b?gn −
∑n
k=1

?
Bk

?ulay
n−k.

Problem (3.10) is exactly obtained from (3.9) in the contraction case whereas the
two following equations are missing in the translation case:

(3.12)

 uext
n+1 = ulay

n+1 for η = η+,

∂νuext
n = ∂ηulay

n+1 for η = η−.

They will be taken into account in (3.16). In order to solve Problem (3.10), let us
now define the operator R for any function j as

(3.13) R[j](η, τ) = −
∫ η+

η
j(s, τ) ds.
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Thanks to (3.10), one easily obtains the formal expressions

∂ηulay
n+1(η, τ) = kn(τ) + R[jn](η, τ),(3.14)

ulay
n+1(η, τ) = uext

n+1(η−, τ) + (η − η−)kn(τ) +
∫ η

η−
R[jn](t, τ) dt.(3.15)

Exterior problem. In the outer domain Πext the problem at the order n has the
following form:

(3.16) Find uext
n such that



−∆uext
n = 0 in Πext,

γ̄(uext
n ) = φn on Γtrans,

∂νuext
n = gn on ∂Πext \ Γtrans,

uext
n → 0 at infinity,

where γ̄, φn and gn are defined below.
• In the translation case, equations (3.12) together with (3.14)–(3.15) make
appear the vector operator γ̄ defined by

γ̄(u) =
(
u|η=η+ − u|η=η− , ∂νu|η=η+ − ∂νu|η=η−

)
,

and the data given by

(3.17) φn(τ) =
(
ulay
n (η+, τ)− ulay

n (η−, τ), ∂ηulay
n+1(η+, τ)− ∂ηulay

n+1(η−, τ)
)
.

On the other hand, the Neumann datum gn is given by the Taylor expansion
of g (see (3.3)) gn = •gn.
• In the contraction case ∂Πext \ Γtrans = ∅ thus no need to define gn. The
operator γ̄ is scalar and given by

γ̄(u) = ∂νu|Γtrans ,

and the datum φn is given by

φn(τ) = 1
b(τ)∂ηu

lay
n+1(η−, τ).(3.18)

Sequential derivation of the terms. At order n = 0, the solution to Prob-
lem (3.10) is formally given by Formulae (3.14)–(3.15):

ulay
0 (η, τ) = uext

0 (η−, τ), ∂ηulay
1 (η, τ) = k0(τ),

where k0 = ∂νuext
0 |η=η+ in the translation case and k0 = b?g0 in the contraction case.

The exterior Problem (3.16) is thus completely determined since
• In the translation case, φ0 = (0, 0), and no •g0 is needed,
• In the contraction case, φ0 = 1

b∂ηu
lay
1 |η− = ?g0,

which thus entirely determines a posteriori the terms ulay
0 and ∂ηulay

1 .
The general procedure works as follows (each situation is detailed for the sake of

clarity).
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Algorithm A (Translation case). — Assume that (uext
` , ulay

` ) are known for any
` 6 n− 1.

• We compute
– kn−1(τ) = ∂νuext

n−1|η=η+ ,
– jn−1(η, τ) = −∂2

τu
lay
n−2(η, τ),

– jn(η, τ) = −∂2
τu

lay
n−1(η, τ).

• Equation (3.15) leads to

ulay
n (η+, τ)− ulay

n (η−, τ) =
∫ η+

η−
(kn−1(τ) + R[jn−1](η, τ)) dη,

and
∂ηulay

n+1(η+, τ)− ∂ηulay
n+1(η−, τ) =

∫ η+

η−
jn(η, τ) dη.

Thus, the datum φn is well defined, see (3.17).
• We can determine uext

n by solving Problem (3.16), since φn is known, and gn
only depends on the Taylor expansion of the Neumann datum g.
• Knowing uext

n , we compute ulay
n with Formula (3.15), which is recalled here

ulay
n (η, τ) = uext

n (η−, τ) + (η − η−)kn−1(τ) +
∫ η

η−
R[jn−1](t, η) dt.

Algorithm B (Contraction case). — Assume that (uext
` , ulay

` ) are known for any
` 6 n− 1.

• We compute the following terms, involving ulay
` for ` 6 n− 1 only.

– kn−1 = b?gn−1 −
∑n−1
k=1

?
Bk

?ulay
n−1−k,

– jn−1 = −∑n
k=1Tkulay

n−k,

– kn = b?gn− = −∑n
k=1

?
Bk

?ulay
n−k.

• Thanks to (3.14), ∂ηulay
n is known:

∂ηulay
n (η, τ) = kn−1(τ) + R[jn−1](η, τ).

• We compute jn

jn = −
n+1∑
k=1

Tkulay
n+1−k = −T1ulay

n −
n+1∑
k=2

Tkulay
n+1−k,

which is well defined since T1 = −bκ∂η, see (3.6), and ∂ηulay
n is known.

• We can determine ∂ηulay
n+1 with Formula (3.14)

∂ηulay
n+1(η, τ) = kn(τ) + R[jn](η, τ).

• Problem (3.16) can be solved to compute uext
n since φn is known, see (3.18).

• Knowing uext
n , we compute ulay

n with Formula (3.15), which is recalled here

ulay
n (η, τ) = uext

n (η−, τ) + (η − η−)kn−1(τ) +
∫ η

η−
R[jn−1](t, η) dt.
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The above derivation process can be summarized as follows

uext
n = Jext

n

(
(uext
` )06 `6n−1, (ulay

` )06 `6n−1
)
,(3.19a)

ulay
n = Jlay

n

(
(uext
` )06 `6n, (ulay

` )06 `6n−1
)
,(3.19b)

where Jext
n and Jlay

n are the operators defined by the above problems (3.16) and (3.10)
respectively. We will make use of Jlay

0 as well, setting ulay
−1 = 0 by convention.

Remark 3.3. — In the layer, the problem defining the terms ulay
n is one-dimensional,

and the tangential variable τ only acts as a parameter. The integration is only
performed in the normal variable η. It is straightforward that the dependence on
ulay
n is polynomial in η, its degree being increased by 1 at each step. The dependence

with respect to τ is more complex since it comes from traces on η = η± of the terms
uext
` for ` < n.

3.4. Back to the physical domain

Remember that the above procedure is based on the assumption that all the
coefficients c±λ and a±,σn vanish in the expansions of type (2.2), not only for the limit
term u0 but also for ulay

n with arbitrary n. This implies that at any order, all the
terms uext

n and thus ulay
n are flat near the origin, see Section 2. It is however important

to transfer the obtained approximate solution in the original domain.
• Limit domain δ = 0. In the contraction case, the first term uext

0 previously
determined coincides with the limit term u0 defined by (1.2).
In the translation case, the domain

•
Πext, where uext

0 is defined, is not con-
nected. However the function ũext

0 defined in Π0 by

∀ (x1, x2) ∈ Π0, ũext
0 (x1, x2) =

uext
0 (x1 + 1, x2), if x1 > 0,

uext
0 (x1 − 1, x2), if x1 < 0,

coincides with u0.
• Approximation of uδ in Πδ. In the translation case, an approximation at order
N is given by

u
[N ]
δ (x1, x2) =


∑N
n=0 δ

nuext
n (x1 − 1 + δ, x2) if x1 < −δ,∑N

n=0 δ
nulay

n

(
x1
δ
, x2

)
if − δ < x1 < δ,∑N

n=0 δ
nuext

n (x1 + 1− δ, x2) if x1 > δ.

In the contraction case, approximations far from the corner have been derived
thanks to the parameterization. In the vicinity of the corner, singularities
should be dominant. However since we have assumed throughout Section 3
that no singularity appears, this means that at any order the functions are
flat enough. Precisely, our hypothesis states that uδ is O(|x|p) for any p ∈ N.
This implies that 0 is a good approximation of uδ near the corner. Therefore
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an approximation of uδ at the order δN is given by

u
[N ]
δ (x) =


∑N
n=0 δ

nuext
n (x) in Π0 \ Bδρ? ,

0 in Bδρ? (i.e. for |x| < δρ?),∑N
n=0 δ

nulay
n

(
?
Φδ(x)

)
elsewhere,

where the mapping
?
Φδ is defined in (3.5).

4. Handling singularities
4.1. Need for a specific procedure

As mentioned before, the procedure described in Section 3.3 fails to provide an
asymptotic expansion of uδ when singularities appear. We detail here the reasons why.

First obstruction: lack of regularity for the sequential derivation. The
formal derivation described in Section 3.3 fails since singularities appear in the
solutions to (3.16). To explain this point, we distinguish the two configurations.

• Translation case. In order to solve Problem (3.16) in a variational framework,
it is necessary that φn has regularity H1/2(

•
Γtrans) × H−1/2(

•
Γtrans). In Algo-

rithm A, the condition over the first component needs generically kn−1 ∈
H1/2(

•
Γtrans) which requires •uext

n−1 ∈ H2(
•
Πext).

Thus we need that •uext
n−1 belongs to H2(

•
Πext) to ensure the existence of

•uext
n ∈ H1(

•
Πext). Actually one order of regularity is lost at each step. Since •uext

0
has limited regularity (due to the presence of singularities s±λ ), an expansion
at any order is hopeless (if the angles α± are close to π, the maximal order
for the construction may be n = 1).
• Contraction case. Here, φn has to belong to H−1/2(Γtrans), which requires,
according to Algorithm B and Definition (3.13), that τ 7→ jn(η, τ) has H−1/2–
regularity. But the expression of jn, see (3.11), involves

?
T2

?ulay
n−1 and with

?ulay
n−1|η=η− = ?uext

n−1| ?Γtrans
, and the condition ?uext

n−1 ∈ H2(
?
Πext) is needed. Once

again, we loose 2 orders of regularity every 2 steps.

Second obstruction: terms are not necessarily flat near the origin. We
assume here that the first obstruction occurs for the construction of uext

2 . This arises
if uext

1 /∈ H2(Πext). Precisely, according to (2.2) for p = 1, the following splitting holds
for the exterior part

(4.1) uext
1 (Φδ(x)) = u1,ext

flat,1(Φδ(x))
+ χ(x)

∑
±

∑
λ∈Λ±2

c±λ,1s
±
λ (x) + χ(x)

∑
±

∑
σ=1,2

a±,σ1,1 a±,σ1 (x),

with u1,ext
flat,1 ∈ H2(Πext), s±λ /∈ H2(Π0), a±,σ1 ∈ C∞(Π0). Therefore, if the coefficients

c±λ,1 vanish (again, this is not the general situation), we have uext
1 ∈ H2(Πext), which
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seems sufficient for the procedure. However the terms a±,σ1,1 , which come from the
Neumann traces, add new difficulties.

• Translation case. In order to build ulay
2 , it is necessary to derive ulay

0 (η, ·)
= uext

0 |Γtrans twice with respect to τ , which is impossible in general, since
a+,σ

1,1 6= a−,σ1,1 . Introducing a truncation near the origin makes it possible to
prevent this case, similarly to the contraction case. However this makes appear
a non negligible error near 0.
• Contraction case. Here, uext

2 can be built. Nevertheless, we do not end up
with a suitable asymptotic expansion. Indeed, coming back to the physical
domain (see Section 3.4), we get a correct approximation only away from the
origin because of the extension by 0 near 0.

Third obstruction: error estimates fail. Should the above obstructions be
overcome to define u1, a third issue would appear for the error estimates. Actually,
the terms uδ − u[1]

δ ψ(|x|/δ) cannot be used to obtain error estimates by computing
the residual, since ∆u1 is not well-defined in Πlay as a function.

How to overcome these obstructions? We have seen that the problem comes
from the limited regularity of uext

0 . We will tackle this issue by inserting only the
regular part of the terms (the “flat” terms in expansions of type (2.2)) in the
algorithmic procedure described in Section 3. The singularities will be handled in
a different way (and then stay unaffected by the change of variable Φδ), with the
introduction of profiles, see Section 4.2.
In the domain Π0, let us use the splitting into regular and singular parts, see (2.2),

(4.2) uext
0 (x) := up,ext

flat,0(x)
+ χ(x)

∑
±

∑
λ∈Λ±p

c±λ,0s
±
λ (x) + χ(x)

∑
±

∑
σ=1,2

∑
16n6p−1

a±,σn,0 a±,σn (x),

with up,ext
flat,0 ∈ Hp

loc(Π0), flat near the origin. In the layer Πlay, we set

(4.3) ulay
0 (x) := up,lay

flat,0(Φδ(x)))
+ χ(x)

∑
±

∑
λ∈Λ±p

c±λ,0s
±
λ (x) + χ(x)

∑
±

∑
σ=1,2

∑
16n6p−1

a±,σn,0 a±,σn (x),

with up,lay
flat,0 = Jlay

0 ((up,ext
flat,0), (0).

It is possible to build further the expansion, with upflat,0 instead of u0. The term u1
is replaced with ǔ1 defined by

ǔext
1 = Jext

1

((
up,ext

flat,0

)
,
(
up,lay

flat,0

))
,(4.4a)

ǔlay
1 = Jlay

1

((
up,ext

flat,0, ǔext
1

)
,
(
up,lay

flat,0

))
.(4.4b)

Of course, we do not have taken the singularities s±λ and a±,σn into account. This
requires to introduce corner profiles in the expansion.
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4.2. Heuristics for the introduction of the first profile

We have seen just above that the flat terms can be introduced in the procedure
exposed in Section 3.3. We now explain how to take the singularities into account.
Let us go back to the approximation at the order 0. We set rδ = uδ − ψ( · /δ)u[0]

δ

where u
[0]
δ is given in Section 3.4. Here ψ is a smooth radial(1) cutoff function

independent of δ and equal to 1 far from 0 and which vanishes near 0.
The remainder term rδ is well-defined in Πδ and satisfies the following transmission

problem:

(4.5)



∆rδ = −
[
∆;ψ

(
·
δ

)]
u0 + 1

δ2ψ
(
·
δ

) (
T1u0 +∑

k>2 δ
kTku0

)
◦ Φ−1

δ in Πlay
δ ,

∆rδ = −
[
∆;ψ

(
·
δ

)]
u0 in Πext

δ ,

[rδ
]

= 0 on Γtrans
δ ,

[∂νrδ] = −ψ
(
·
δ

)
∂νu0 on Γtrans

δ ,

∂νrδ =
(
1− ψ

(
·
δ

))∑
n>0 δ

ngn −
ψ( ·

δ
)

b
∑
k>2 δ

k(Bku0) ◦ Φ−1
δ ∂Πext

δ ,

rδ→ 0 at infinity,
where u0 is the solution to (1.2). Note that in the translation case, the operators Bk
are zero. The term [∆; Ψ] generically refers to the commutator operator given by

[∆; Ψ]V = 2∇Ψ · ∇V + V∆Ψ,
for smooth enough Ψ and V , and thus the term [∆;ψ( · /δ)]u0 is of order δ−2. In
Problem (4.5), the main source terms involve the contribution of u0 and g0 both
taken near the origin 0, since ψ( · /δ) equals 1 far from it.

P

0
•

Figure 4.1. The infinite domain P (corresponding to the non-symmetric case,
see Figure 1.1).

Splitting u0 near the origin into regular and singular parts, see (4.2)–(4.3), we see
that the principal part of the error is given by s±0 . It is natural to introduce the
profile in the infinite domain P = limδ→0 δ

−1Πδ, see Figure 4.1, defined as

(4.6)


∆K±0 = [∆;ψ] s±0 in P,

∂νK
±
0 = 0 on ∂P,

K±0 → 0 at infinity,

(1)By abuse of notation, we use “radial” in the layer as well, but in the translation case, this
corresponds to a dependence in η.
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where s±0 have been extended by a constant on the support of ∇ψ. Moreover, the
Neumann boundary condition also generates a profile denoted by M:

(4.7)


∆M = 0 in P,

∂νM = (1− ψ) on ∂P,
M→ 0 at infinity.

The well-posedness and the behavior at infinity of K±0 and M are discussed in
Section 4.4. These profiles make it possible to correct the expansion as follows

uδ(x) = ψ
(x
δ

)
u0(x)− χ(x)

(
g0(0)M

(x
δ

)
+
∑
±
c±0,0K

±
0

(x
δ

))
+ Rδ(x).

Thanks to (4.6), the remainder Rδ satisfies the following problem:

(4.8)



∆Rδ =
[
∆;ψ

(
·
δ

)] (∑
± c
±
0,0s
±
0 − u0

)
+ [∆;χ]

(
g0(0)M

(
·
δ

)
+∑

± c
±
0,0K

±
0

(
·
δ

))
in Πlay

δ ∪ Πext
δ ,

[Rδ] = 0 on Γtrans
δ ,

[∂νRδ] = O(1) on Γtrans
δ ,

∂νRδ = O(δ) on ∂Πext
δ ,

Rδ→ 0 at infinity.

The leading term of c+
0,0s

+
0 + c−0,0s

−
0 − u0 near the origin is supported by

(a±1,i)i=1,2 according to the splitting (4.2) of u0, and it is thus of order δ. The term

[∆;χ]
(

g0(0)M
( ·
δ

)
+
∑
±
c±0,0K

±
0

( ·
δ

))

vanishes inside a ball of radius O(1) centered at the origin, and thus its leading term
is given by the behavior of the profiles K±0 and M at infinity, that is O(δmin(λ+

1 ,λ
−
1 )),

where λ±1 = π/α± > 1. ThereforeRδ has a smaller residual than rδ, and the expansion
is improved.
In order to build the terms of order δ, it is necessary to account for three contri-

butions
• The next term in the splitting of uext

0 which involves the singular functions
a±,σ1 , see Section 2.
• The Neumann source term (1− ψ( · /δ)) g0 near the origin.
• The term ǔ1 defined in (4.4), and in particular its first singular terms, involv-
ing the singular functions s±0 .

The third contribution is addressed by the profile K±0 defined by (4.6), while the first
two contributions will be handled by new specific profiles L±,σ1 defined as:

(4.9)


∆L±,σ1 = [∆;ψ] a±,σ1 in P,

∂νL
±,σ
1 = 0 on ∂P,

L±,σ1 → 0 at infinity.
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The expansion at the next order reads then

(4.10) uδ(x) = ψ
(x
δ

)
u0(Φ−1

δ (x))− χ(x)
(∑
±
c±0,0K

±
0

(x
δ

)
+ g0(0)M

(x
δ

))

+ δψ
(x
δ

)
ǔ1(Φ−1

δ (x))

− δχ(x)
∑
±

c±1,0K±0 (x
δ

)
+
∑
σ=1,2

a±,σ1 L±,σ1

(x
δ

)+ g1(0)M
(x
δ

)
+OH1(δmin(λ+

1 ,λ
−
1 )),

where c±1,0 are the first singular coefficients of ǔext
1 in the splitting near the origin. The

remainder estimate comes from the first neglected term in the construction, that is

[∆;χ]
(

g0(0)M
( ·
δ

)
+
∑
±
c±0,0K

±
0

( ·
δ

))
.

Actually, to obtain the estimate in (4.10) requires a bit more work (see [CCDV06,
Section 4.2] for more details on such estimates). Let us point out that the exponents
λ±1 involved in this remainder are associated with the limit problem. They differ
from singular exponents which arise in the profile problems, corresponding to the
reentrant angles of the domain P. These additional exponents will actually not affect
the δ-expansion since only the profile behavior at infinity is involved thanks to the
rescaling x/δ, but the associated singularities impact the profiles themselves.
The above expansion has a priori an order of accuracy in O(δmin(λ+1 , λ−1)). To

go one step further, it is necessary to change the whole expansion, and to account
for one more singular term in the splitting of uext

0 , which modifies u0,ext
flat,0 and thus ǔ1.

So it is necessary to determine a priori the desired order of accuracy, so that uext
0 be

split with the appropriate number of singular functions, and then the expansion can
be performed.

4.3. Structure of the complete asymptotic expansion

In the previous section, we have described the construction of the first terms in
the expansion, taking into account the singularities coming from the corners of the
domain. It is possible to go further and build a complete asymptotic expansion at
any order. To do so, we need to fix a target order P , and expand every term defined
in Πext into singular and regular parts according to this choice. The contribution of
all singular functions arising in such splittings will be handled through profiles (of
type K, L, M) defined in the infinite domain P. The expansion of these profiles at
infinity will give birth to other terms defined in Πext, which in turn will be split into
regular and singular parts.
Theorem 4.1. — The solution uδ of Problem (1.1) admits the following asymp-

totic expansion

uext
δ (x) = ψ

(x
δ

) ∑
µ∈MP

δµuP,ext
µ (x)− χ(x)

∑
µ∈MP

∑
±

∑
σ=1,2

δµW±,σ,P
µ

(x
δ

)
+Rext

δ,P (x),
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where
• the terms uP,ext

µ are defined in the standard variable x inside Πext,
• the terms W±,σ,P

µ are defined on the infinite domain P, and are involved in
the asymptotic expansion as functions of the scaled variable x

δ
,

• the set of indices MP is given by

MP =
{
µ = p+ q−π

α−
+ q+π

α+
; p, q± ∈ N0, and µ 6 P

}
,

• for any compact subset ω ⊂ Πδ, the remainder Rext
δ,P satisfies

‖Rext
δ,P‖H1(ω) = O(δP ).

In the layer, the expansion has a similar structure, but involves the normal dilation
used to build the terms :

ulay
δ (x) = ψ

(x
δ

) ∑
µ∈MP

δµuP,lay
µ

(
η

δ
, τ
)
− χ(x)

∑
µ∈MP

∑
±

∑
σ=1,2

δµW±,σ,P
µ

(x
δ

)
+Rlay

δ,P (x).

The remainder Rlay
δ,P satisfies the following estimate on any compact subset ω ⊂ Πδ :

√
δ‖Rlay

δ,P‖H1(ω) = O(δP ).

Remark 4.2. — If P is changed, the terms involved in the expansion changes as
well, since the order of every splitting needs to be adapted accordingly.

4.4. Construction of profiles: existence and behavior at infinity

In the last two sections, we have made use of various profiles, which account for
the singularities appearing at each order in the construction of the expansion. All
the profiles (K±λ , L

±,σ
λ , M) satisfy a problem such as

(4.11)


∆Z = f in P,

∂νZ = g on ∂P,
Z→ 0 at infinity.

The existence for Problem (4.11) relies on the space

V =
{
Z ∈ H1

loc(P) ; ∇Z ∈ L2(P) and Z

(1 + |X|) log(2 + |X|) ∈ L2(P)
}
,

and the bilinear form
a(Z1,Z2) =

∫
P
∇Z1 · ∇Z2

which is coercive on the quotient space V/R, see [AGG97, Néd01]. Within this
variational framework, we can build the profiles and make precise their behavior at
infinity:
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Theorem 4.3. — If f and g are smooth functions with compact support in P,
and satisfy

(4.12)
∫
P
f +

∫
∂P

g = 0,

then problem (4.11) admits a unique solution Z ∈ V/R. The behavior of the solution
Z at infinity is given by
(4.13) Z =

∑
±

∑
λ∈Λ±p

Z±−λ + Rp,

with ∂βZ±−λ = O(|X|−λ−|β|), and ∂βRp = O(|X|−p−|β|) for any multi-index β (as
|X| → ∞).

Remark 4.4. —
• The compatibility condition (4.12) is satisfied in the construction of the
different profiles. Let us explain this point in the case where f = [∆;ψ]s±λ and
g = 0 (which is needed to define the profile K±λ ). We need to check that∫

P
[∆;ψ]s±λ = 0.

To do so, we introduce the bounded domain PR = {X ∈ P ; |X| < R}
(with R large enough to ensure ψ(X) = 1 for |X| > R), and make use of an
integration by parts

IR =
∫
PR

[∆;ψ]s±λ =
∫
PR

∆(ψs±λ ) =
∫
∂PR

∂ν(ψs±λ ) =
∫
BR

∂νs
±
λ ,

where BR = {X ∈ ∂P ; |X| = R}, since ∂νs±λ = 0 on ∂P, and ψ is identically
equal to 1 in BR. A direct integration based on the definition of s±λ implies
that IR = 0.
• Relation (4.13) shows in particular that Z → 0 at infinity, which is crucial
to deriving the asymptotic expansion, see Section 4.2. Note that Assumption
(H4) allows us to avoid the use of the logarithmic singularity, which naturally
appears in the two-dimensional Laplace–Neumann problem, see [CCDV06,
Theorem 3.25].

5. Discussion and concluding remarks

5.1. Representation formula

From the asymptotic expansion, one can easily infer a representation formula far
from the singularity. For any y far from the inclusions, let define the Neumann
function Ny as the solution to

(5.1)


−∆Ny = δy in Π0,

∂νNy = 0 on ∂Π0,

Ny → 0 at infinity.
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Then, simple integration by parts leads to the following equality

uδ(y)− u0(y) = −δ
∫
∂Π0

∂ν ǔ
ext
1 Ny dx + O(δ),

and by definition of ǔext
1 and thanks to (4.2), one infers the following representation

formula:
uδ(y)− u0(y) = δ

∫
∂Π0

∂τu
1,ext
flat,0 ∂τNy dx + O(δ).

Such a representation formula is useful to characterise (or to detect) the detachment
of the two inclusions tied up by the corners.

5.2. Other possible geometrical frameworks

Let us now discuss some possible extensions. We have detailed the two asymptotic
models (translation and contraction) in the special situation of assumptions (H1)–
(H2)–(H3). Other geometric situations may be considered, for which the two above
methods have to be slightly modified. We give in Figure 5.1 two examples for which
assumption (H3) is violated.

d

ΩL
δ

ΩR
δ0•

(a)

d

ΩL
δ

ΩR
δ

0•
•

(b)

Figure 5.1. Geometrical situations which do not fulfill assumption (H3).

In Figure 5.1a, the domains ΩL
δ and ΩR

δ do not lie in separated half planes orthogonal
to the horizontal direction. The contraction method can be applied directly but the
translation method needs to be adapted. Indeed, a vertical strip cannot be inserted
between the two inclusions and we need to use two slanted half-strips. The analysis
remains very similar.
In Figure 5.1b, the domains ΩL and ΩR

δ lie on the upper half plane. The translation
method applies directly but the contraction needs adaptation in this case. Actually,
the contraction method cannot be applied if the direction d remains to be horizontal.
It is necessary to assume that the inclusions converge to each other at a point which
lies under the origin 0.
In Figure 5.2, we present the situation of two nearly touching squares where both

methods need more important adaptations. The limit situation shows a contact on
a segment and not at a single point. Other profiles must be introduced to account
for the geometry near its extremity points.
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2δ

ΩL
δ

ΩR
δ

d

0•

Figure 5.2. Geometrical situations which do not fulfill assumption (H1).

Let us emphasize that hypothesis (H2) is crucial to our two asymptotic expansions.
In particular regarding the case of two kissing balls, the limit problem is no more
a corner problem, but a problem with a cusp. The structure of the singularities is
then rather different in this case as presented in see [Dau96]. Our methods cannot
be applied.

2δ
ΩL
δ ΩR

δ

d

0•

Figure 5.3. Geometrical situations which do not fulfill assumption (H2).
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