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Abstract. — Let us consider the family of one-dimensional probabilistic cellular automata
(PCA) with memory two having the following property: the dynamics is such that the value
of a given cell at time t + 1 is drawn according to a distribution which is a function of the
states of its two nearest neighbours at time t, and of its own state at time t − 1. We give
conditions for which the invariant measure has a product form or a Markovian form, and prove
an ergodicity result holding in that context. The stationary space-time diagrams of these PCA
present different forms of reversibility. We describe and study extensively this phenomenon,
which provides families of Gibbs random fields on the square lattice having nice geometric and
combinatorial properties. Such PCA naturally arise in the study of different models coming
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from statistical physics. We review from a PCA approach some results on the 8-vertex model
and on the enumeration of directed animals, and we also show that our methods allow to
find new results for an extension of the classical TASEP model. As another original result, we
describe some families of PCA for which the invariant measure can be explicitly computed,
although it does not have a simple product or Markovian form.
Résumé. — Considérons la famille d’automates cellulaires probabilistes (ACP) de dimen-

sion un avec mémoire deux ayant la propriété suivante : la dynamique est telle que la valeur
d’une cellule au temps t + 1 est tirée aléatoirement selon une distribution qui est une fonction
de l’état de ses deux voisines les plus proches au temps t, et de son propre état au temps t− 1.
Nous donnons des conditions pour lesquelles la loi invariante d’un tel ACP est une mesure de
forme produit ou une mesure markovienne, et prouvons un résultat d’ergodicité s’appliquant
dans ce contexte. Les diagrammes espace-temps de ces ACP possèdent différentes formes de
réversibilité. Nous décrivons et étudions ce phénomène, qui fournit des familles de champs
aléatoires de Gibbs sur la grille carrée ayant des propriétés géométriques et combinatoires re-
marquables. De tels ACP apparaissent de manière naturelle dans l’étude de différents modèles
de physique statistique. En utilisant le point de vue des ACP, nous retrouvons des résultats
portant sur le modèle à 8 sommets et sur l’énumération des animaux dirigés, et nous montrons
aussi que nos méthodes permettent de trouver de nouveaux résultats sur une extension du
modèle classique de TASEP. Un autre résultat original de ce travail est la description de
familles d’ACP pour lesquels la loi invariante est explicite, mais n’est ni une mesure de forme
produit, ni une mesure markovienne.

1. Introduction

Probabilistic cellular automata (PCA) are a class of random discrete dynamical
systems. They can be seen both as the synchronous counterparts of finite-range in-
teracting particle systems, and as a generalization of deterministic cellular automata:
time is discrete and at each time step, all the cells are updated independently in a
random fashion, according to a distribution depending only on the states of a finite
number of their neighbours.
In this article, we focus on a family of one-dimensional probabilistic cellular au-

tomata with memory two (or order two): the value of a given cell at time t + 1 is
drawn according to a distribution which is a function of the states of its two nearest
neighbours at time t, and of its own state at time t − 1. The space-time diagrams
describing the evolution of the states can thus be represented on a two-dimensional
grid.
We study the invariant measures of these PCA with memory two. In particular, we

give necessary and sufficient conditions for which the invariant measure has a product
form or a Markovian form, and we prove an ergodicity result holding in that context.
We also show that when the parameters of the PCA satisfy some conditions, the
stationary space-time diagram presents some multidirectional (quasi-)reversibility
property: the random field has the same distribution as if we had iterated a PCA
with memory two in another direction (the same PCA in the reversible case, or
another PCA in the quasi-reversible case). This can be seen has a probabilistic ex-
tension of the notion of expansivity for deterministic CA. For expansive CA, one can
indeed reconstruct the whole space-time diagram from the knowledge of only one
column. In the context of PCA with memory two, the criteria of quasi-reversibility
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that we obtain are reminiscent of the notion of permutivity for deterministic CA.
Stationary space-time diagrams of PCA are known to be Gibbs random fields
[GKLM89, LMS90]. The family of PCA that we will describe thus provide exam-
ples of Gibbs fields with i.i.d. lines in many directions and nice combinatorial and
geometric properties.
The first theoretical results on PCA and their invariant measures go back to

the seventies [BGM69, KV80, Vas78], and were then gathered in a survey which is
still today a reference book [TVS+90]. In particular, it contains a detailed study of
binary PCA of memory one with only two neighbours, including a presentation of the
necessary and sufficient conditions that the four parameters defining the PCA must
satisfy in order to have an invariant measure with a product form or a Markovian form.
Some extensions and alternative proofs were proposed by Mairesse and Marcovici in
a later article [MM14b], together with a study of some properties of the random fields
given by stationary space-time diagrams of PCA having a product form invariant
measure (see also the survey on PCA of the same authors [MM14a]). The novelty
was to highlight that these space-time diagrams are i.i.d. along many directions, and
present a directional reversibility: they can also be seen as being obtained by iterating
some PCA in another direction. Soon after, Casse and Marckert have proposed an
in-depth study of the Markovian case [Cas16, CM15]. Motivated by the study of
the 8-vertex model, Casse was then led to introduce a class of one-dimensional PCA
with memory two, called triangular PCA [Cas18].
In the present article, we propose a comprehensive study of PCA with memory

two having an invariant measure with a product form, and we show that their
stationary space-time diagrams share some specificities. We first extend the notion
of reversibility and quasi-reversibility to take into account other symmetries than the
time reversal and, in a second time, we characterize PCA with an invariant product
measure that are reversible or quasi-reversible. Even if most one-dimensional positive-
rates PCA are usually expected to be ergodic, the ergodicity of PCA is known to
be a difficult problem, algorithmically undecidable [BMM13, TVS+90]. In Section 3,
after characterizing positive-rates PCA having a product invariant measure, we
prove that these PCA are ergodic (Theorem 3.3). A novelty of our work is also
to display some PCA for which the invariant measure has neither a product form
nor a Markovian one, but for which the finite-dimensional marginals can be exactly
computed (Corollaries 4.10 and 5.7). In Section 5, we study PCA having Markov
invariant measures. Section 6 is then devoted to the presentation of some applications
of our models and results to statistical physics (8-vertex model, enumeration of
directed animals, TASEP). In particular, we introduce an extension of the TASEP
model, in which the probability for a particle to move depends on the distance of
the previous particle and of its speed. It can also be seen as a traffic flow model,
more realistic than the classical TASEP model. Finally, we give on one si
When describing the family of PCA presenting some given directional reversibility

or quasi-reversibility property, for each family of PCA involved, we give the conditions
that the parameters of the PCA must satisfy in order to present that behaviour, and
we provide the dimension of the corresponding submanifold of the parameter space,
see Table 2.1. Our purpose is to show that despite their specificity, these PCA build
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up rich classes, and we set out the detail of the computations of the dimensions in
the last section.

2. Definitions and presentation of the results

2.1. Introductory example

In this paragraph, we give a first introduction to PCA with memory two, using
an example motivated by the study of the 8-vertex model [Cas18]. We present some
properties of the stationary space-time diagram of this PCA: although it is a non-
trivial random field, it is made of lines of i.i.d. random variables, and it is reversible.
In the rest of the article, we will study exhaustively the families of PCA having an
analogous behaviour. We will also come back to the 8-vertex model in Section 6.
Let us set Z2

e = {(i, t) ∈ Z2 : i + t ≡ 0 mod 2}, and introduce the notations:
Zt = 2Z if t ∈ 2Z, and Zt = 2Z + 1 if t ∈ 2Z + 1, so that the grid Z2

e can be
seen as the union on t ∈ Z of the points {(i, t) : i ∈ Zt}, that will contain the
information on the state of the system at time t. Note that one can scroll the
positions corresponding to two consecutive steps of time along an horizontal zigzag
line: . . . (i, t), (i+ 1, t+ 1), (i+ 2, t), (i+ 3, t+ 1) . . . This will explain the terminology
introduced later.
We now define a PCA dynamics on the alphabet S = {0, 1}, which, through a

recoding, can be shown to be closely related to the 8-vertex model (see Section 6.1
for details). The configuration ηt at a given time t ∈ Z is an element of SZt , and the
evolution is as follows. Let us denote by B(q) the Bernoulli measure qδ1 + (1− q)δ0.
Given the configurations ηt and ηt−1 at times t and t−1, the configuration ηt+1 at time
t+ 1 is obtained by updating each site i ∈ Zt+1 simultaneously and independently,
according to the distribution T (ηt(i− 1), ηt−1(i), ηt(i+ 1); ·), where

T (0, 0, 1; ·) = T (1, 0, 0; ·) = B(q),
T (0, 1, 1; ·) = T (1, 1, 0; ·) = B(1− q)
T (0, 1, 0; ·) = T (1, 1, 1; ·) = B(r),
T (1, 0, 1; ·) = T (0, 0, 0; ·) = B(1− r).

As a special case, for q=r, we have T (a, b, c; ·)=q δa+b+c mod 2+(1−q) δa+b+c+1 mod 2,
so that the new state is equal to a+b+c mod 2 with probability q, and to a+b+c+1
mod 2 with probability 1 − q. Figure 2.1 shows how ηt+1 is computed from ηt and
ηt−1, illustrating the progress of the Markov chain.
Let us assume that initially, (η0, η1) is distributed according to the uniform product

measure λ = B(1/2)⊗Z0⊗B(1/2)⊗Z1 . Then, we can show that for any t ∈ N, (ηt, ηt+1)
is also distributed according to λ. We will say that the PCA has an invariant
Horizontal Zigzag Product Measure. By stationarity, we can then extend the space-
time diagram to a random field with values in SZ2

e . The study of the space-time
diagram shows that it has some peculiar properties, which we will precise in the
next sections. In particular, it is quasi-reversible: if we reverse the direction of
time, the random field corresponds to the stationary space-time diagram of another
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Figure 2.1. Illustration of the way ηt+1 is obtained from ηt and ηt−1, using the
transition kernel T . The value ηt+1(i) is equal to d with probability T (a, b, c; d),
and conditionally on ηt and ηt−1, the values (ηt+1(i))i∈Zt+1 are independent.

q = 0.9 and r = 0.2 q = r = 0.2

Figure 2.2. Examples of portions of stationary space-time diagrams of the
8-vertex PCA, for different values of the parameters. Cells in state 1 are repre-
sented in blue, and cells in state 0 are white.

PCA. Furthermore, the PCA is ergodic: whatever the distribution of (η0, η1), the
distribution of (ηt, ηt+1) converges weakly to λ (meaning that for any n ∈ N, the
restriction of (ηt, ηt+1) to the cells of abscissa ranging between −n and n converges to
a uniform product measure). For q = r, the stationary space-time diagram presents
even more symmetries and directional reversibilities: it has the same distribution as if
we had iterated the PCA in any other of the four cardinal directions. In addition, any
straight line drawn along the space-time diagram is made of i.i.d. random variables,
see Figure 2.2 for an illustration.
We will show that this PCA belongs to a more general class of PCA that are all

ergodic and for which the stationary space-time diagram share specific properties
(independence, directional reversibility).

2.2. PCA with memory two and their invariant measures

In this article, we only consider PCA with memory two for which the value of a
given cell at time t+1 is drawn according to a distribution which is a function of the
states of its two nearest neighbours at time t, and of its own state at time t− 1. We
thus introduce the following definition of transition kernel and of PCA with memory
two.
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Definition 2.1. — Let S be a finite set, called the alphabet. A transition kernel
is a function T that maps any (a, b, c) ∈ S3 to a probability distribution on S.
We denote by T (a, b, c; ·) the distribution on S which is the image of the triplet
(a, b, c) ∈ S3, so that: ∀ d ∈ S, T (a, b, c; d) ∈ [0, 1] and ∑d∈S T (a, b, c; d)=1.
A probabilistic cellular automaton (PCA) with memory two of transition ker-

nel T is a Markov chain of order two (ηt)t>0 such that ηt has values in SZt , and
conditionally on ηt and ηt−1, for any i ∈ Zt+1, ηt+1(i) is distributed according to
T (ηt(i− 1), ηt−1(i), ηt(i+ 1); ·), independently for different i ∈ Zt+1.

By definition, if (ηt(i−1), ηt−1(i), ηt(i+1)) = (a, b, c), then ηt+1(i) is equal to d ∈ S
with probability T (a, b, c; d), see Figure 2.1 for an illustration. We say that a PCA
has positive rates if its transition kernel T is such that ∀ a, b, c, d ∈ S, T (a, b, c; d) > 0.
One can consider a PCA of order 2 on S as a PCA of order 1 on S2, but the resulting
PCA then does not have positive rates, which leads to significant difficulties. We
thus introduce specific tools for the study of PCA of order 2.
Let µ be a distribution on SZt−1 × SZt , and let us introduce the two basis vectors

u = (−1, 1) and v = (1, 1) of Z2
e. We denote by σv(µ) the distribution on SZt ×SZt+1

which is the image of µ by the mapping:

σv :
(
(xk)k∈Zt−1 , (yl)l∈Zt

)
→
(
(xk−1)k∈Zt , (yl−1)l∈Zt+1

)
.

When considering the distribution µ as living on two consecutive horizontal lines
of the lattice Z2

e, corresponding to times t − 1 and t, the distribution σv(µ) thus
corresponds to shifting µ by a vector v = (1, 1). Similarly, we denote by σv−u(µ)
the distribution on SZt−1 × SZt which is the image of µ by the application: σv− u :(
(xk)k∈Zt−1 , (yl)l∈Zt

)
→
(
(xk−2)k∈Zt−1 , (yl−2)l∈Zt

)
.

For our specific context of PCA with memory two, we introduce the following
definitions.

Definition 2.2. — Let µ be a probability distribution on SZ0 × SZ1 .
• The distribution µ is said to be shift-invariant if σv− u(µ) = µ.
• The distribution µ on SZ0 × SZ1 is an invariant distribution of a PCA with
memory two if the PCA dynamics is such that: (η0, η1) ∼ µ =⇒ (η1, η2) ∼
σv(µ).

By a standard compactness argument, one can prove that any PCA has at least
one invariant distribution which is shift-invariant. In this article, we will focus on
such invariant distributions. Note that if µ is both a shift-invariant measure and an
invariant distribution of a PCA, then we also have (η0, η1) ∼ µ =⇒ (η1, η2) ∼ σu(µ).

Definition 2.3. — Let p be a distribution on S. The p-HZPM (for Horizontal
Zigzag Product Measure) on SZt−1 × SZt is the distribution πp = p⊗Zt−1 ⊗ p⊗Zt .

Observe that we do not specify t in the notation, since there will be no possible
confusion. By Definition 2.2, πp is invariant for a PCA if:

(ηt−1, ηt) ∼ πp =⇒ (ηt, ηt+1) ∼ πp.
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2.3. Stationary space-time diagrams and directional (quasi-)reversibility

Let A be a PCA and µ one of its invariant measures. Let Gk = (ηt(i) : t ∈
{−k, . . . , k}, i ∈ Zt) be a space-time diagram of A, started at time t = −k under its
invariant measure µ, until time t = k. Then (Gk)k>0 induces a sequence of compatible
measures on Z2

e and, by Kolmogorov’s extension theorem, defines a unique measure
on Z2

e, that we denote by L(A, µ).

Definition 2.4. — Let A be a PCA and µ one of its invariant distributions
which is shift-invariant. A random field (ηt(i) : t ∈ Z, i ∈ Zt) which is distributed
according to L(A, µ) is called a stationary space-time diagram of A taken under µ.

We will use the notation G(A, µ) to represent a stationary space-time diagram of
A taken under µ, that is, a random field with distribution L(A, µ).
We denote by D4 the dihedral group of order 8, that is, the group of symmetries

of the square. We denote by r the rotation of angle π/2 and by h the horizontal
reflection. We denote the vertical reflection by v = r2 ◦h, and the identity by id. For
a subset E of D4, we denote by 〈E〉 the subgroup of D4 generated by the elements
of E.

Definition 2.5. — Let A be a positive-rates PCA, and let µ be an invariant
measure of A which is shift-invariant. For g ∈ D4, we say that (A, µ) is g-quasi-
reversible, if there exists a PCA Ag and a measure µg such that the associated
stationary space time-diagrams satisfy

G(A, µ) (d)= g−1 ◦G(Ag, µg).
In this case, the pair (Ag, µg) is the g-reverse of (A, µ). If, moreover, (Ag, µg) = (A, µ),
then (A, µ) is said to be g-reversible.
For a subset E of D4, we say that A is E-quasi-reversible (resp. E-reversible) if it

is g-quasi-reversible (resp. g-reversible) for any g ∈ E.

Classical definitions of quasi-reversibility and reversibility of PCA correspond to
time-reversal, that are, h-quasi-reversibility and h-reversibility. Geometrically, the
stationary space-time diagram (A, µ) is g-quasi-reversible if after the action of the
isometry g, the random field has the same distribution as if we had iterated another
PCA Ag (or the same PCA A, in the reversible case). In particular, if (A, µ) is
r-quasi-reversible (resp. r2, r3), it means that even if the space-time diagram is
originally defined by an iteration of the PCA A towards the North, it can also be
described as the stationary space-time diagram of another PCA directed to the East
(resp. to the South, to the West).
The stationary space-time diagram of a PCA (see Definition 2.4) is a random

field indexed by Z2
e. For a point x = (i, t) ∈ Z2

e, we will also use the notation
η(x) = η(i, t) = ηt(i), and for a family L ⊂ Z2

e, we define η(L) = (η(x))x∈L.
The following Lemma 2.6 proves that the space-time diagram of a positive-rate

PCA characterizes its dynamics. Precisely, if two positive-rates PCA A and A′ have
the same space-time diagram (in law) taken under their respective invariant measures
µ and µ′, then A = A′ and µ = µ′.
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Lemma 2.6. — Let (A, µ) and (A′, µ′) be two positive-rates PCA with one of
their invariant measure. Then, L(A, µ) = L(A′, µ′) =⇒ (A, µ) = (A′, µ′).

Proof. — Let G = G(A, µ) = (ηt(i) : t ∈ Z, i ∈ Zt) and G′ = G(A′, µ′) = (η′t(i) :
t ∈ Z, i ∈ Zt) be two space-time diagrams of law L(A, µ) and L(A′, µ′). By definition,
G|t=0,1 ∼ µ and G′|t=0,1 ∼ µ′. Since G (d)= G′, we obtain µ = µ′.
Let us denote µ(a, b, c) = P (η1(−1) = a, η0(0) = b, η1(1) = c). As a consequence of

the fact that A has positive rates, we have ∀ (a, b, c) ∈ S3, µ(a, b, c) > 0. Thus, for
any a, b, c, d ∈ S, we have

P (η1(−1) = a, η0(0) = b, η1(1) = c, η2(0) = d) = µ(a, b, c)T (a, b, c; d) > 0.

The same relation holds for A′ and as G (d)= G′, we obtain µ(a, b, c)T (a, b, c; d) =
µ′(a, b, c)T ′(a, b, c; d). Since µ = µ′, we deduce that T (a, b, c; d) = T ′(a, b, c; d) for
any a, b, c, d ∈ S. Hence, A = A′. �
By Lemma 2.6, if a PCA is g-quasi-reversible (see Definition 2.5), its g-reverse is

thus unique. Let us now enumerate some easy results on quasi-reversible PCA and
reversible PCA. Although the following proposition is quite straightforward, we are
not aware of any reference formalizing the notion of directional reversibility and the
properties below.

Proposition 2.7. — Let A be a positive-rates PCA and let µ be one of its
invariant measures.

(1) (A, µ) is id-reversible.
(2) (A, µ) is v-quasi-reversible and the v-reverse PCA is defined by the transition

kernel Tv(c, b, a; d) = T (a, b, c; d).
(3) For any g ∈ D4, if (A, µ) is g-quasi-reversible, then its g-reverse (Ag, µg) is

g−1-quasi-reversible and (A, µ) is the g−1-reverse of (Ag, µg).
(4) If (A, µ) is g-quasi-reversible and (Ag, µg) is its g-reverse and if (Ag, µg) is

g′-quasi-reversible and (Ag′g, µg′g) is its g′-reverse, then (A, µ) is g′g-quasi-
reversible and (Ag′g, µg′g) is its g′g-reverse.

(5) For any subset E of D4, if (A, µ) is E-reversible, then (A, µ) is 〈E〉-reversible.

Remark 2.8. — Since 〈r, v〉 = D4, a consequence of the last point of Proposition 2.7
is that if (A, µ) is r and v-reversible, then it is D4-reversible.

Table 2.1 presents a summary of the results that will be proven in the next sec-
tions, concerning PCA having a p-HZPM invariant distribution and their stationary
space-time diagrams. For each possible (quasi-)reversibility behaviour, we give the
conditions that the parameters of the PCA must satisfy (see Section 4 for details),
and provide the number of degrees of freedom left by these equations, that is, the
dimension of the corresponding submanifold of the parameter space (see Section 9).
In a similar fashion, Table 2.2 synthesized the main results about PCA having a
Markovian invariant measure (see Section 5).
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Table 2.1. Summary of the characterization of (quasi-)reversible PCA having a
p-HZPM invariant distribution. We denote by n the cardinal of the alphabet S.

Conditions Property Dim. of the submanifold
on the parameters of the PCA (nb. of deg. of freedom)

Cond. 1 . — ∀ a, c, d ∈ S,
p(d) = ∑

b∈S p(b)T (a, b, c; d)

p-HZPM invariant
{r2, h}-quasi-reversible

Tr2(c, d, a; b) = p(b)
p(d)T (a, b, c; d)

Th(a, d, c; b) = p(b)
p(d)T (a, b, c; d)

n2(n− 1)2

Cond. 1 +
Cond. 2 . — ∀ a, b, d ∈ S,
p(d) = ∑

c∈S p(c)T (a, b, c; d)

r-quasi-reversible

Tr(d, a, b; c) = p(c)
p(d)T (a, b, c; d)

n(n− 1)3

Cond. 1 +
Cond. 3 . — ∀ b, c, d ∈ S ,
p(d) = ∑

a∈S p(a)T (a, b, c; d)

r−1-quasi-reversible

Tr−1(b, c, d; a) = p(a)
p(d)T (a, b, c; d)

n(n− 1)3

Cond. 1 + Cond. 2 + Cond. 3 D4-quasi-reversible (n− 1)4

Cond. 1 +
∀ a, b, c, d ∈ S,

T (a, b, c; d) = T (c, b, a; d)
v-reversible (n− 1)2n(n+ 1)

2

Cond. 1 +
∀ a, b, c, d ∈ S,

p(b)T (a, b, c; d) = p(d)T (c, d, a; b)
r2-reversible (n− 1)2n(n+ 1)

2

Cond. 1 +
∀ a, b, c, d ∈ S,

p(b)T (a, b, c; d) = p(d)T (a, d, c; b)
h-reversible n3(n− 1)

2

Cond. 1 +
∀ a, b, c, d ∈ S,

T (a, b, c; d) = T (c, b, a; d) and
p(b)T (a, b, c; d) = p(d)T (c, d, a; b)

< r2, v >-reversible (n− 1)n2(n+ 1)
4

Cond. 1 +
∀ a, b, c, d ∈ S,

p(a)T (a, b, c; d) = p(d)T (b, c, d; a)
〈r〉-reversible n(n− 1)(n2 − 3n+ 4)

4

Cond. 1 +
∀ a, b, c, d ∈ S,

p(a)T (a, b, c; d) = p(d)T (d, c, b; a)
< r ◦ v >-reversible (n− 1)2(n2 − 2n+ 2)

2

Cond. 1 +
∀ a, b, c, d ∈ S,

p(a)T (a, b, c; d) = p(d)T (b, c, d; a) and
T (a, b, c; d) = T (c, b, a; d)

D4-reversible
n(n− 1)(n2 − n+ 2)

8

3. Invariant product measures and ergodicity

In this section, we lay the groundwork for the study of PCA with memory two
having an invariant measure with a product form. First, Theorem 3.1 gives the
necessary and sufficient condition for a PCA to have a p-HZPM invariant distribution

TOME 3 (2020)



510 Jérôme CASSE & Irène MARCOVICI

Table 2.2. Summary of the characterization of (quasi-)reversible PCA having a
(F,B)-HZMC invariant distribution.

Conditions Property
on the parameters of the PCA

Cond. 4 . — ∀ a, c, d ∈ S,
F (a; d)B(d; c) =

∑
b∈S B(a; b)F (b; c)T (a, b, c; d)

(F, B)-HZMC invariant
{r2, h}-quasi-reversible

Tr2 (c, d, a; b) = B(a;b)F (b;c)
F (a;d)B(d;c) T (a, b, c; d)

Th(a, d, c; b) = B(a;b)F (b;c)
F (a;d)B(d;c) T (a, b, c; d)

Cond. 4 +

Cond. 5 . — ∀ a, c, d ∈ S,
F (a; d) =

∑
c∈S F (b; c)T (a, b, c; d)

r-quasi-reversible

Tr(d, a, b; c) = F (b;c)
F (a;d) T (a, b, c; d)

Cond. 4 +

Cond. 6 . — ∀ b, c, d ∈ S,
ρ(d)
ρ(c) B(d; c) =

∑
a∈S

ρ(a)
ρ(b) B(a; b)T (a, b, c; d)

r−1-quasi-reversible

Tr−1 (b, c, d; a) = ρ(a)ρ(c)B(a;b)
ρ(b)ρ(d)B(d;c) T (a, b, c; d)

(Cond. 1). This condition will be extensively used in the continuation of the article.
We then prove that any PCA satisfying this condition is ergodic, meaning that
whatever the initial distribution for times t = 0 and t = 1, when iterating the
dynamics, the PCA converges to the product measure of parameter p. Finally, we
show that the stationary space-time diagrams of PCA having a p-HZPM invariant
distribution share the following property: not only all the horizontal zigzag lines are
distributed according to the product measure of parameter p, but also more general
zigzag lines (in the sense of Definition 3.4).

3.1. Conditions for having an invariant HZPM

To start with, next Theorem 3.1 gives a characterization of PCA with memory
two having a p-HZPM invariant distribution.
Theorem 3.1. — Let A be a positive-rates PCA with transition kernel T , and

let p be a probability vector on S. The p-HZPM distribution πp is invariant for A if
and only if:

Cond 1. — for any a, c, d ∈ S, p(d) = ∑
b∈S p(b)T (a, b, c; d).

Note that since A has positive rates, if πp is invariant for A, then the vector p has
to be positive. For a positive probability vector p on S, we define TS (p) as the set
of positive-rates PCA for which the measure πp is invariant. We denote by TS the
set of all positive-rates PCA with set of symbols S having an invariant p-HZPM, for
some positive probability vector p on S.
As an immediate consequence of Theorem 3.1, one obtains the following result.
Corollary 3.2. — Let A be a positive-rates PCA with transition kernel T .

Then, A ∈ TS if and only if for any a, c ∈ S, the left eigenspace Ea,c of matrices
(T (a, b, c; d))b,d∈S related to the eigenvalue 1 is the same. In that case, the invariant
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Probabilistic cellular automata with memory two 511

HZPM is unique: it is the measure πp defined by the unique vector p such that
Ea,c = Vect(p) for all a, c ∈ S and ∑b∈S p(b) = 1.

Proof of Theorem 3.1. — Let p be a positive vector such that πp is invariant by
A and assume that (ηt−1, ηt) ∼ πp. Then, on the one hand, since πp is invariant by
A, we have

P (ηt(i− 1) = a, ηt+1(i) = d, ηt(i+ 1) = c) = p(a)p(c)p(d).

And on the other hand, by definition of the PCA,

P (ηt(i− 1) = a, ηt+1(i) = d, ηt(i+ 1) = c) =
∑

b∈S
p(a)p(b)p(c)T (a, b, c; d).

Cond. 1 follows.
Conversely, assume that Cond. 1 is satisfied, and that (ηt−1, ηt) ∼ πp. For some

given choice of n ∈ Zt, let us denote: Xi = ηt−1(n + 1 + 2i), Yi = ηt(n + 2i), Zi =
ηt+1(n + 1 + 2i), for i ∈ Z, see Figure 3.1 for an illustration. Then, for any k > 1,
we have

P
(
(Yi)06i6k = (yi)06i6k, (Zi)06i6k−1 = (zi)06i6k−1

)

=
∑

(xi:06i6k−1)
P ((Xi)06i6k = (xi)06i6k−1, (Yi)06i6k =(yi)06i6k)

k−1∏

i=0
T (yi, xi, yi+1; zi)

=
∑

(xi:06i6k−1)

k−1∏

i=0
p(xi)

k∏

i=0
p(yi)

k−1∏

i=0
T (yi, xi, yi+1; zi)

=
k∏

i=0
p(yi)

k−1∏

i=0

∑

xi∈S
p(xi)T (yi, xi, yi+1; zi)

=
k∏

i=0
p(yi)

k−1∏

i=0
p(zi) by Cond. 1, thus, πp is invariant by A. �

x0 x1 x2 x3 x4

z0 z1 z2 z3 z4

y0 y1 y2 y3 y4 y5

ηt+1

ηt

ηt−1

Figure 3.1. Illustration of the proof of Theorem 3.1.

As a consequence of Corollary 3.2, A ∈ TS if and only if A ∈ TS (p) for the unique
p given by the corollary.
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3.2. Ergodicity

Theorem 3.3. — If A ∈ TS(p), then, A is ergodic. Precisely, for any distribution
of (η0, η1), the distribution of (ηt, ηt+1) converges weakly to πp.

Proof. — The proof we propose is inspired from [Vas78], see also [TVS+90] and
[Mar16]. Let us fix some boundary conditions (`, r) ∈ S2. Then, for any k > 0,
the transition kernel T induces a Markov chain on S2k+1, such that the probability
of a transition from the sequence (a0, b0, a1, b1, . . . , bk−1, ak) ∈ S2k+1 to a sequence
(a′0, b′0, a′1, b′1, . . . , b′k−1, a

′
k) ∈ S2k+1 is given by:

P
(`,r)
k

(
(a0, b0, a1, b1, . . . , bk−1, ak), (a′0, b′0, a′1, b′1, . . . , b′k−1, a

′
k)
)

= T (`, a0, b0; a′0)T (a′0, b0, a1; b′0)T (b0, a1, b1; a′1) · · ·T (bk−1, ak, r; a′k)

= T (`, a0, b0; a′0)T (bk−1, ak, r; a′k)
k−1∏

i=1
T (bi−1, ai, bi+1; a′i)

k−1∏

i=0
T (a′i, bi, a′i+1; b′i).

We refer to Figure 3.2 for an illustration. Let us observe that the restriction
πkp = p⊗2k+1 of the p-HZPM is left invariant by this Markov chain. This is an
easy consequence of Cond. 1. For any (`, r) ∈ S2, the transition kernel P (`,r) is
positive. Therefore, there exists θ(`,r) < 1 such that for any probability distributions
ν, ν ′ on S2k+1, we have

∥∥∥P (`,r)
k ν − P (`,r)

k ν ′
∥∥∥

1
6 θ

(`,r)
k ‖ν − ν ′‖1,

the above inequality being true in particular for θ(`,r)
k = 1− ε(`,r)

k , where:

ε
(`,r)
k = min{P (`,r)

k (x, y) : x, y ∈ S2k+1}.

Let us set θk = max{θ(`,r)
k : (`, r) ∈ S2}. It follows that for any sequence (`t, rt)t>0

of elements of S2, we have
∥∥∥P (`t−1,rt−1)

k · · ·P (`1,r1)
k P

(`0,r0)
k ν − P (`t−1,rt−1)

k · · ·P (`1,r1)
k P

(`0,r0)
k ν ′

∥∥∥
1
6 θt‖ν − ν ′‖1.

In particular, for ν ′ = πkp , we obtain that for any distribution ν on S2k+1 and any
sequence (`t, rt)t>0 of elements of S2, we have

∥∥∥P (`t−1,rt−1)
k · · ·P (`1,r1)

k P
(`0,r0)
k ν − πkp

∥∥∥
1
6 2θt.

Let now µ be a distribution on SZ0∪Z1 , and let k > 0. When iterating A, the
distribution µ induces a random sequence of symbols `t = η2t+1(−(2k + 1)) and
rt = η2t+1(2k + 1). Let us denote by νt the distribution of the sequence (η2t(−2k),
η2t+1(−2k + 1), η2t(−2k + 2), . . . , η2t(2k − 2), η2t+1(2k − 1), η2t(2k)), and let π2k

p =
p⊗4k+1. We have

∀ t >0, ‖νt−π2k
p ‖1 6 max

(`0,r0)...(`t−1,rt−1)∈S2

∥∥∥P (`t−1,rt−1)
2k . . . P

(`1,r1)
2k P

(`0,r0)
2k ν0 − π2k

p

∥∥∥
1
6 2θt.

This concludes the proof. �

ANNALES HENRI LEBESGUE



Probabilistic cellular automata with memory two 513

r�

a0 a1 a2 a3 a4

a′
0 a′

1 a′
2 a′

3 a′
4

b0 b1 b2 b3

b′
0 b′

1 b′
2 b′

3

Figure 3.2. Illustration of the proof of Theorem 3.3.

3.3. First properties of the space-time diagram

Let us now focus on the space-time diagram G(A, πp) of a PCA A ∈ TS (p), taken
under its unique invariant measure πp. By definition, any horizontal line of that
space-time diagram is i.i.d. The following proposition extends this result to other
types of lines.

Definition 3.4. — A zigzag polyline is a sequence (i, ti)m16i6m2 ∈ Z2
e such that

for any i ∈ {m1, . . . ,m2}, (ti+1 − ti) ∈ {−1, 1}.
Proposition 3.5. — Let A ∈ TS (p) be a PCA of stationary space-time diagram

G(A, πp) = (ηt(i) : t ∈ Z, i ∈ Zt). For any zigzag polyline (i, ti)m16i6m2 , we have
(ηti(i) : i ∈ {m1, . . . ,m2}) ∼ B(p)⊗(m2−m1+1).

Observe that Proposition 3.5 implies that (bi-)infinite zigzag polylines are also
made of i.i.d. random variables with distribution p.
Proof. — The proof is done by induction on T = max(ti)−min(ti). If T = 1, then

the zigzag polyline is an horizontal zigzag, and since A ∈ TS (p), the result is true.
Now, suppose that the result is true for any zigzag polyline such that max(ti)−

min(ti) = T , and consider a zigzag polyline (i, ti)m16i6m2 such that max(ti) −
min(ti) = T + 1. Then, there exists t such that min(ti) = t and max(ti) = t+ T + 1.
Let M = {i ∈ {m1, . . . ,m2} : ti = t+ T + 1}. For any i ∈M , we have ti±1 = t+ T
(we assume that m1,m2 /∈ M , even if it means extending the line). So, by induc-
tion, we have (η(i, ti − 2 1i∈M) : i ∈ {m1, . . . ,m2}) ∼ B(p)⊗(m2−m1+1). For any
(ai)m16i6m2 ∈ Sm2−m1+1, we have

P (η(xi, ti) = ai : m1 6 i 6 m2)

=
∑

(bi:i∈M)∈SM
P
(
{η(i, ti) = ai : i /∈M}, {η(i, ti−2) = bi : i∈M}

) ∏

i∈M
T (ai−1, bi, ai+1; ai)

=
∑

(bi:i∈M)∈SM

∏

i/∈M
p(ai)

∏

i∈M
p(bi)T (ai−1, bi, ai+1; ai)

=
∏

i/∈M
p(ai)

∏

i∈M

∑

bi∈S
p(bi)T (ai−1, bi, ai+1; ai) =

m2∏

i=m1

p(ai). �
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4. Directional (quasi-)reversibility of PCA having an
invariant product measure

We now explore the directional reversibility and quasi-reversibility properties of
PCA having an invariant p-HZPM. First, for any transformation g of the dihedral
group D4, we give the necessary and sufficient condition under which the PCA is
g-quasi-reversible or g-reversible, thus proving the results that were announced in
Table 2.1. We then present some further properties of the stationary space-time
diagrams that hold in this context, beyond Proposition 3.5. Finally, these results
will allow us to exhibit a family of PCA having an invariant measure that can be
computed explicitly, although it does not have a product form or a Markovian one.

4.1. (Quasi-)reversible PCA with invariant p-HZPM

In this section, we characterize PCA of TS (p) that are g-quasi-reversible, for each
possible g ∈ D4. Let A ∈ TS (p), and g ∈ D4. From the transition kernel T of A, we
define a map Tg : S3 × S → R+ by:

∀ a, b, c, d ∈ S, Tg(g(a, b, c); g(d)) ,
p(g(d))
p(d) T (a, b, c; d),

where in the above expression, we use some abuse of notation when denoting by
g(a, b, c) and g(d) the images of the vertices by the permutation induced by the
transformation g ∈ D4 (see Figure 2.1). For example, in the case where g = r, we
have g(a, b, c) = (d, a, b), g(d) = c, and the expression above stands for:

∀ a, b, c, d ∈ S, Tr(d, a, b; c) ,
p(c)
p(d)T (a, b, c; d).

The expressions of Tr2 , Th, and Tr−1 can be found in Table 2.1.
Observe that Tg is not necessarily a transition kernel. For example, Tr is a transition

kernel if and only if:

∀ a, b, d ∈ S,
∑

c∈S

p(c)
p(d)T (a, b, c; d) = 1,

which is equivalent to Cond. 2, see again Table 2.1. Analogously, Tr−1 is a transition
kernel if and only if Cond. 3 is satisfied. And it appears that as soon as a PCA
belongs to TS (p), Tr2 and Th are transition kernels, since Cond. 1 is satisfied.

Theorem 4.1. — A PCA A ∈ TS (p) of transition kernel T is g-quasi-reversible
if and only if Tg is a transition kernel. In that case, Tg is the transition kernel of the
g-reverse Ag of A.

Before proving Theorem 4.1, let us present two corollaries that derive from it. First,
the next result is a direct consequence of Theorem 4.1.

Corollary 4.2. — Any PCA A ∈ TS (p) is r2-quasi-reversible and h-quasi-
reversible.
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For any stationary Markov chain, we can define a time-reversed chain, which still
has the Markov property. But in general, the time-reversed chain of a stationary
PCA is no more a PCA. Indeed, nothing ensures that for the time-reversed process,
the states of different cells are independently distributed, conditionally on the states
of their neighbours at the previous time step. So, it is restrictive to ask that the time
reversal of the stationary Markov chain associated to a PCA of transition kernel T
is still distributed according to some transition kernel T ′. Here, Corollary 4.2 shows
that any PCA in TS (p) is r2-quasi-reversible, which means that the time-reversed
chain of a PCA of TS (p) is still a PCA with memory two, which furthermore belongs
to TS (p), since it preserves the measure πp.
We also have the following characterization of reversible PCA.

Corollary 4.3. — Let A ∈ TS (p) and g ∈ D4. The PCA A is g-reversible iff
Tg = T .

Proof of Corollary 4.3. — By Theorem 4.1, A is g-quasi-reversible iff Tg is a
transition kernel. It is furthermore reversible if Tg = T . Since T is obviously a
transition kernel, A is g-reversible iff Tg = T . �
As a direct consequence, we obtain easily all the conditions for reversibility that

are given in Table 2.1.
Let us now prove Theorem 4.1. We begin the proof with the case g = r2. The cases

g = id and g = v are obvious by Proposition 2.7, and the case g = h will directly
follow from the case g = r2.
Proof of Theorem 4.1, case g = r2. — If A ∈ TS (p), its transition kernel T satisfies

Cond. 1, and thus, Tr2 is a transition kernel. It only remains to prove that A is indeed
r2-quasi-reversible, and that Tr2 is the transition kernel of the r2-reverse of A.
For some given choice of n ∈ Zt, let us denote again: Xi = ηt−1(n + 1 + 2i),

Yi = ηt(n+ 2i), Zi = ηt+1(n+ 1 + 2i), for i ∈ Z, see Figure 3.1.
The following computation proves the result wanted.

P
(
(Xi)06i6k = (xi)06i6k|(Yi)06i6k+1 = (yi)06i6k+1, (Zi)06i6k = (zi)06i6k

)

=
P
(
(Xi)06i6k = (xi)06i6k, (Yi)06i6k+1 = (yi)06i6k+1, (Zi)06i6k = (zi)06i6k

)

P
(
(Yi)06i6k+1 = (yi)06i6k+1, (Zi)06i6k = (zi)06i6k}

)

= p(y0)
∏k
i=0 p(xi)p(yi+1)T (yi, xi, yi+1; zi)
p(y0)

∏k
i=0 p(zi)p(yi+1)

=
k∏

i=0

p(xi)
p(zi)

T (yi, xi, yi+1; zi)

=
k∏

i=0
Tr2(yi+1, zi, yi;xi). �

Now, we will characterize PCA in TS(p) that are r-quasi-reversible.
We give now the proof of Theorem 4.1 in the case g = r. The case g = r−1 is

similar and the cases g = r ◦ v, g = r−1 ◦ v then follow.
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Proof of Theorem 4.1, case g = r. — Let us first prove that if A is r-quasi-
reversible, then Cond. 2 is satisfied and the transition kernel T̃ of the r-reverse Ar
of A is equal to Tr. Let us recall the notations u = (−1, 1) and v = (1, 1). Since
A ∈ TS (p), for any x ∈ Z2

e and a, b, c, d ∈ S, we have

P (η(x+ u) = a, η(x) = b, η(x+ v) = c, η(x+ u + v) = d) = p(a)p(b)p(c)T (a, b, c; d).

Hence, the transition kernel T̃ of Ar satisfies:

(4.1)

T̃ (d, a, b; c) = P (η(x+ v) = c|η(x+ u) = a, η(x) = b, η(x+ u + v) = d)

= p(a)p(b)p(c)T (a, b, c; d)
∑
c′∈S p(a)p(b)p(c′)T (a, b, c′; d)

= p(c)T (a, b, c; d)
∑
c′∈S p(c′)T (a, b, c′; d) .

b0

a0

b1

c1c0

d0

Figure 4.1. The pattern L.

For some x ∈ Z2
e, let us introduce the pattern L = (x, x + u, x + v, x + 2 u,

x + u + v, x + 2 u + v), see Figure 4.1. For a0, b0, b1, c0, c1, d0 ∈ S, we are interested
in the quantity:

Q(a0, b0, b1, c0, c1, d0) = P (η(L) = (a0, b0, b1, c0, c1, d0)) .

On the one hand, using the fact that we have a portion of the space-time diagram
G(A, πp), Proposition 3.5 implies that:

P (η(x+ 2 u) = c0, η(x+ u) = b0, η(x) = a0, η(x+ v) = b1) = p(c0)p(b0)p(a0)p(b1).

We thus obtain

Q(a0, b0, b1, c0, c1, d0) = p(c0)p(b0)p(a0)p(b1)T (b0, a0, b1; c1)T (c0, b0, c1; d0).

On the other hand, using the fact that A is r-quasi-reversible, we have

Q(a0, b0, b1, c0, c1, d0) =
∑

b′1,c
′
1∈S

Q(a0, b0, b
′
1, c0, c

′
1, d0)T̃ (d0, c0, b0; c1)T̃ (c1, b0, a0; b1).
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It follows that:

(4.2)

1 =
∑

b′1,c
′
1∈S

Q(a0, b0, b
′
1, c0, c

′
1, d0)

Q(a0, b0, b1, c0, c1, d0)
T̃ (d0, c0, b0; c1)T̃ (c1, b0, a0; b1)

=
∑

b′1,c
′
1∈S

p(b′1)T (b0, a0, b
′
1; c′1)T (c0, b0, c

′
1; d0)

p(b1)T (b0, a0, b1; c1)T (c0, b0, c1; d0)
T̃ (d0, c0, b0; c1)T̃ (c1, b0, a0; b1)

By (4.1), we have

T̃ (d0, c0, b0; c1) = p(c1)T (c0, b0, c1; d0)∑
c∈S p(c)T (c0, b0, c; d0)

,

T̃ (c1, b0, a0; b1) = p(b1)T (b0, a0, b1; c1)∑
b∈S p(b)T (b0, a0, b; c1)

.

After replacing in (4.2), we obtain:
(∑

b∈S
p(b)T (b0, a0, b; c1)

)(∑

c∈S
p(c)T (c0, b0, c; d0)

)

= p(c1)
∑

b′1,c
′
1∈S

p(b′1)T (b0, a0, b
′
1; c′1)T (c0, b0, c

′
1; d0).

Summing over d0 ∈ S on both sides and simplifying gives: ∑b∈S p(b)T (b0, a0, b;
c1) = p(c1). Hence, Cond. 2 is necessary, and T̃ = Tr.
Let us now assume that Tr is a transition kernel, meaning that Cond. 2 holds.
For some x ∈ Z2

e, and m ∈ N let us define the pattern M = (x + i u +j v)06i,j6m.
Using Proposition 3.5, for any (ai,j)06i,j6m ∈ S{0,1,...,m}2 , we have

P
(
η(M) = (ai,j)06i,j6m

)
=

m∏

i=0
p(ai,0)

m∏

j=1
p(a0,j)

m∏

i=1

m∏

j=1
T (ai,j−1, ai−1,j−1, ai−1,j; ai,j).

This computation is represented on Figure 4.3(a). The points for which p(ai,j) ap-
pears in the product are marked by black dots, while the black vertical arrows
represent the values that are computed through the transition kernel T . Now, by
definition of Tr, we have
(4.3) ∀ a, b, c, d ∈ S, p(c)T (a, b, c; d) = p(d)Tr(d, a, b; c).
It means that in the product above, we can perform flips as represented in
Figure 4.2, where an arrow to the right now represents a computation made with
the transition kernel Tr. We say that such a use of (4.3) is a flip of (c, d). By flip-
ping successively the cells from right to left and bottom to top: first (a0,m, a1,m),
then (a0,m−1, a1,m−1), (a1,m, a2,m), and (a0,m−2, a1,m−2), (a1,m−1, a2,m−1), (a2,m, a3,m)
etc., we finally obtain (see Figure 4.3 for an illustration):

(4.4) P (η(M) = (ai,j)06i,j6m)

=
m∏

i=0
p(ai,0)

m∏

j=1
p(am,j)

m−1∏

i=0

m∏

j=1
Tr(ai+1,j, ai+1,j−1, ai,j−1; ai,j).
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a

b

c

d

 
a

b

c

d

Figure 4.2. Elementary flip illustrating the relation p(c)T (a,b,c;d) = p(d)Tr(d,a,b;c).
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Figure 4.2. Elementary flip illustrating the relation p(c)T (a, b, c; d)=p(d)Tr(d, a, b; c).
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a3,3

(a) (b) (c)

Figure 4.3. From T to Tr using flips.

represent the values that are computed through the transition kernel T . Now, by
definition of Tr, we have

(4.3) ∀ a, b, c, d ∈ S, p(c)T (a, b, c; d) = p(d)Tr(d, a, b; c).

It means that in the product above, we can perform flips as represented in
Figure 4.2, where an arrow to the right now represents a computation made with
the transition kernel Tr. We say that such a use of (4.3) is a flip of (c, d). By flip-
ping successively the cells from right to left and bottom to top: first (a0,m, a1,m),
then (a0,m−1, a1,m−1), (a1,m, a2,m), and (a0,m−2, a1,m−2), (a1,m−1, a2,m−1), (a2,m, a3,m)
etc., we finally obtain (see Figure 4.3 for an illustration):

(4.4) P (η(M) = (ai,j)06i,j6m) =

=
m∏

i=0
p(ai,0)

m∏

j=1
p(am,j)

m−1∏

i=0

m∏

j=1
Tr(ai+1,j, ai+1,j−1, ai,j−1; ai,j).

Let us define the vertical lines: V−1 = (x+ (m− i) u +(m− i− 1) v)06i6m−1, V0 =
(x+(m−i) u +(m−i) v)06i6m, V1 = (x+(m−i−1) u +(m−i) v)06i6m−1. From (4.4),
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Figure 4.3. From T to Tr using flips.

Let us define the vertical lines: V−1 = (x + (m − i) u +(m − i − 1) v)06i6m−1,
V0 = (x + (m − i) u +(m − i) v)06i6m, V1 = (x + (m − i − 1) u +(m − i) v)06i6m−1.
From (4.4), we deduce that:

P
(
η(V1)= (am,m−1, . . . , a1,0)

∣∣∣ η(V0)= (am,m, . . . , a0,0), η(V−1)= (am,m−1, . . . , a1,0)
)

=
m−1∏

i=0
Tr(am−i,m, am−i,m−i−1, am−i−1,m−i−1; am−i−1,m−i)

Since this is true for any x ∈ Z2
e and any m ∈ N, it follows that the rotation of

G(A, πp), the space-time diagram of A, by the rotation r is a space-time diagram of
Ar, whose transition kernel is Tr, under one of its invariant measure that we denote
by µ (observe that we do not specify the dependence on A in that last notation,
although the measure depends on A). Furthermore, we can express explicitly the
finite-dimensional marginals of µ. For any m ∈ N, we have

µ((ai+1,i)06i6m−1, (ai,i)06i6m)
= P (η(V0) = (am,m, . . . , a0,0), η(V1) = (am,m−1, . . . , a1,0))

=
∑

(ai,j : i,i+16=j)

m∏

i=0
p(ai,0)

m∏

j=1
p(a0,j)

∏

16i,j6m
T (ai,j−1, ai−1,j−1, ai−1,j; ai,j)(4.5)

=
∑

(ai,j : j<i)

m∏

i=0
p(ai,0)

m∏

j=1
p(am,j)

∏

16j6i+16m
Tr(ai+1,j, ai+1,j−1, ai,j−1; ai,j) �(4.6)
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Note that in Theorem 4.1 (case g = r), the reverse PCA is not necessarily an ele-
ment of TS (p). In the space-time diagram G(A, πp), the points x, x+u, x+2 u, . . . , x+
m u, x + m u + v, . . . , x + m u +m v consist in independent random variables with
distribution p. But if we now consider only the three points x, x+ v, x+ u + v, they
have no reason to be independent, so that µ can be different from πp. Proposition 4.4
below specifies the cases for which the reverse PCA Ar is an element of TS (p),
meaning that µ = πp.

Proposition 4.4. — Let A ∈ TS (p). The following properties are equivalent:
(1) A is {r, r−1}-quasi-reversible,
(2) A is r-quasi-reversible and Ar ∈ TS (p),
(3) A is r−1-quasi-reversible and Ar−1 ∈ TS (p),
(4) Cond. 2 and Cond. 3 hold,
(5) A is D4-quasi-reversible.

Proof.
(1)⇒ (2). — If A is r-quasi-reversible, then the transition kernel Tr of its r-reverse

Ar satisfies:
∑

a∈S
p(a)Tr(d, a, b; c) =

∑

a∈S
p(a)p(c)

p(d)T (a, b, c; d) = p(c),

using Cond. 3, since A is r−1-quasi-reversible. Thus, Cond. 1 holds for Tr and, by
Theorem 3.1, Ar ∈ TS (p).
(1)⇐ (2). — Since Ar ∈ TS (p), by Corollary 4.2, Ar is r2-quasi-reversible. Then,

by the property (4) of Proposition 2.7, A is r3 = r−1-quasi-reversible.
(1)⇔ (3). — Same proof as (1)⇔ (2).
(1)⇔ (4). — It is a consequence of Theorem 4.1.
(1) ⇔ (5). — It is a consequence of the points (2) and (4) of Proposition 2.7,

together with Corollary 4.2. �

4.2. Independence properties of the space-time diagram

Theorem 4.5. — Let us consider a PCA A ∈ TS(p) and its stationary space-time
diagram G = (A, πp). Then for any |a| 6 1, the points of G indexed by the discrete
line La,b = {(x, y) ∈ Z2

e : y = ax+ b} consist in i.i.d. random variables.

Proof. — This is a consequence of Proposition 3.5. We can assume without loss
of generality that b = 0 and that 0 < a 6 1, and we assume that the discrete line
is non-empty. Let (x, y) ∈ Z2

e be the first point with positive coordinates belonging
to the integer line, so that we have in particular 0 < y 6 x. Let us define the
sequence (ti)∈Z by ti+kx = i+ ky for i ∈ {0, . . . , y− 1} and ti+kx = y+ (−1)i−y−1

2 + ky
for i ∈ {y, . . . , x − 1}, and any k ∈ Z. This sequence satisfies the conditions of
Proposition 3.5, so that (ηti(i) : i ∈ Z) ∼ p⊗Z. Since La,b ⊂ {(i, ti) : i ∈ Z}, the
result follows. �
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Theorem 4.6. — Let us consider a PCA A ∈ TS(p) satisfying Cond. 2 or Cond. 3.
Then, for any line of its stationary space-time diagram G = (A, πp), nodes on that
line are i.i.d.
Proof. — We prove the result for a PCA A ∈ TS(p) satisfying Cond. 2. In that

case, A is r-quasi-reversible. Now, take any line L in G.
Let us now consider an equation of the form y = ax+ b with |a| > 1, or x = c. We

can assume without loss of generality that b = 0. Let (x, y) ∈ Z2
e be the first point

with a positive coordinates belonging to the integer line, so that we have in particular
0 < |x| < y. Then we can perform flips, similarly as the ones done in the proof of
the Theorem 4.1, case g = r (see Figure 4.3), to obtain that, for any m, the points
m u, (m− 1) u, . . . , u, (0, 0), (x, y), (2x, 2y), . . . , (kx, ky) (with k = bm/(x+ y)c) are
i.i.d. In particular, (0, 0), (x, y), (2x, 2y), . . . , (kx, ky) are i.i.d. �

PCA with strong independence

Let us recall the notations u = (−1, 1), v = (1, 1).
Definition 4.7. — Let G = (A, µ) be a stationary space-time diagram of a PCA

A under one of its invariant measure µ. We say that G is top (resp. bottom, left,
right) i.i.d. if, for any x ∈ Z2

e, {η(x), η(x−u), η(x−v)} (resp.{η(x), η(x+u), η(x+v)},
{η(x), η(x− u), η(x+ v)} {η(x), η(x+ u), η(x− v)}) are i.i.d. A PCA is said to be
3-to-3 i.i.d. if it is top, bottom, left and right i.i.d.
Proposition 4.8. — G = (A, µ) is both top and bottom i.i.d. if and only if

A ∈ TS and µ is its invariant HZPM.
Proof. — Let G = (A, µ) be a top and bottom i.i.d. PCA. We denote by p the

one-dimensional marginal of µ. Then, we have, for any a, b, c, d ∈ S,
P (η(x) = d, η(x− u) = a, η(x− v) = c) = p(a)p(d)p(c) (top i.i.d.)

=
∑

b∈S
p(a)p(b)p(c)T (a, b, c; d)(bottom i.i.d.).

Hence, Cond. 1 holds and, by Theorem 3.1, A ∈ TS (p), and µ = πp. The reverse
statement is trivial. �
Proposition 4.9. — G = (A, µ) is 3-to-3 i.i.d. if and only if A is a D4-quasi-

reversible PCA of TS and µ is its invariant HZPM.
Proof. — Let (A, µ) be a 3-to-3 i.i.d. PCA, then A ∈ TS because A is both top

and bottom i.i.d. Moreover,
p(a)p(b)p(d) =

∑

c∈S
p(a)p(b)p(c)T (a, b, c; d)

and p(c)p(b)p(d) =
∑

a∈S
p(a)p(b)p(c)T (a, b, c; d),

using the fact that A is top and left (resp. right) i.i.d. But these are respectively
Cond. 2 and Cond. 3 and, so, by Theorem 4.4, A is D4-quasi-reversible. The reverse
statement is trivial. �
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Note that G = (A, µ) is top, bottom, and left (resp. right) i.i.d. if and only if A is a
r-quasi-reversible PCA (resp. r−1-quasi-reversible PCA) of TS and µ is its invariant
HZPM.

Connection with previous results for PCA with memory one

In the special case when the PCA has memory one, meaning that the transition
probabilities T (a, b, c; d) do no depend on b ∈ S, Cond. 1 reduces to: ∀ a, c, d ∈ S,
p(d) = T (a, · , c; d). So, the only PCA having an invariant HZPM are trivial ones
(no time dependence at all). In that context, it is in fact more relevant to study
PCA having simply an invariant horizontal product measure, as done in [MM14b].
Observe that when there is no dependence on b ∈ S, Cond. 2 et Cond. 3 become
∀ a, d ∈ S,

∑

c∈S
p(c)T (a, ·, c; d) = p(d) and ∀ c, d ∈ S,

∑

a∈S
p(a)T (a, · , c; d) = p(d).

We recover the two sufficient conditions for having an horizontal product measure, as
described in Theorem 5.6 of [MM14b]. In that article, the space-time diagrams are
represented on a regular triangular lattice, which is more adapted to the models that
are considered. The authors show that under one or the other of these two conditions,
there exists a transversal PCA, so that after an appropriate rotation of the triangular
lattice, the stationary space-time diagram can also be described as the one of another
PCA. With our terminology, this corresponds to a quasi-reversibility property.

4.3. PCA with an explicit invariant law that is not HZPM

As already mentioned, if a PCA A ∈ TS (p) satisfies Cond. 2 and not Cond. 3 (or
the reverse), we get a PCA C = Ar (or Ar−1) for which we can compute exactly
the marginals of an invariant measure µ, see equations (4.5) and (4.6). Using the
previous results, we can describe conditions on the transitions of a PCA C for being
of the form C = Ar, with A having an invariant p-HZMP. We thus obtain next
corollary, highlighting a family of PCA having an invariant measure that can be
computed explicitly, although it does not have a well-identified form.
Corollary 4.10. — Let C be a PCA with transition kernel U . If there exists a

probability distribution p such that Cond. 2 and Cond. 3 hold, then there exists a
unique probability distribution µ on SZ0 × SZ1 such that

• µ is invariant by C,
• (C, µ) is {r−1, r}-quasi-reversible and

– its r−1-reverse is (Cr−1 , πp) with Cr−1 ∈ TS (p), and the transition kernel
of Cr−1 is equal to Ur−1 .

– its r-reverse is (Cr, πp) with Cr ∈ TS (p), and the transition kernel of Cr
is equal to Ur.

• µ|Z0 = p⊗Z0 and µ|Z1 = p⊗Z1 .
Moreover, we have explicit formulas for marginals of µ.
In Section 7, Example 7.7 provides an example of a PCA satisfying only Cond. 2,

so that its r-reverse Ar satisfies the conditions of Corollary 4.10 above.
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5. Horizontal zigzag Markov chains

After having extensively studied PCA with memory two having an invariant mea-
sure with a product form, we now focus on PCA having an invariant measure with
a Markovian form, with a similar approach. We characterize such PCA, and among
them, those having a quasi-reversibility property, thus justifying the results that
were announced in Table 2.2. As in the previous section, our results will also allow us
to exhibit a new family of PCA having an invariant measure that can be computed
explicitly, although it does not have a simple form.

5.1. Conditions for having an invariant HZMC

In this section, we recall some previous results obtained in [Cas18] about PCA
with memory two having an invariant measure which is a Horizontal Zigzag Markov
Chain. Our purpose is to keep the present article as self-contained as possible.
First, let us recall what is a (F,B)-HZMC distribution. This is the same notion as

(D,U)-HZMC in [Cas18], but to be consistent with the orientation chosen here for
the space-time diagrams, we prefer using the notations F for forward in time, and
B for backward in time (rather than D for down and U for up). The definition we
give below relies on the following Lemma 5.1.
Lemma 5.1. — Let S be a finite set, and let F = (F (a; b) : a, b ∈ S) and

B = (B(b; c) : b, c ∈ S) be two positive transition matrices from S to S. We denote
by ρB (resp. ρF ) the invariant probability distribution of B (resp. F ), that is, the
normalised left-eigenvector of B (resp. F ) associated to the eigenvalue 1. If FB = BF,
then ρB = ρF .
Proof. — Note that by Perron–Frobenius, B and F have a unique invariant proba-

bility distribution, satisfying respectively ρBB = B and ρFF = F . Since FB = BF ,
we have ρBFB = ρBBF = ρBF, so that the vector ρBF is an invariant proba-
bility distribution of B. By uniqueness, we obtain ρBF = ρB. Since the invariant
probability distribution of F is also unique, we obtain ρB = ρF . �
Definition 5.2. — Let S be a finite set, and let F and B be two transition

matrices from S to S, such that FB = BF . We denote by ρ their (common) left-
eigenvector associated to the eigenvalue 1. The (F,B)-HZMC (for Horizontal Zigzag
Markov Chain) on SZt × SZt+1 is the distribution ζF,B such that, for any n ∈ Zt, for
any a−n, a−n+2, . . . , an ∈ S, b−n+1, nn+3, . . . , bn−1 ∈ S,
P ((ζF,B(i, t) = ai, ζF,B(i, t+ 1) = bi : −n 6 i 6 n))

= ρ(a−n)
n−1∏

i=−n+1
F (ai−1; bi)B(bi; ai+1).

We give a simple necessary and sufficient condition that depends on both T and
(F,B) for a (F,B)-HZMC to be an invariant measure of a PCA with transition
kernel T (in order to remove any ambiguity, let us precise that the definition of a
transition kernel is exactly the same as in the previous sections).
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ηt+1

ηt
a−n a−n+2 an−2 an

b−n+1 bn−1

F B F B

Figure 5.1. Illustration of Definition 5.2.

Proposition 5.3 (Lemma 5.10 of [Cas18]). — Let S be a finite set. Let A be a
PCA with positive rates and let F and B be two transition matrices from S to S.
The (F,B)-HZMC distribution is an invariant probability distribution of A if and
only if:
Cond. 4: for any a, c, d ∈ S, F (a; d)B(d; c) = ∑

b∈S B(a; b)F (b; c)T (a, b, c; d).

We denote by TS (F,B) the subset of positive-rates PCA with set of symbols S
having an invariant (F,B)-HZMC.
In the context of PCA having an invariant (F,B)-HZMC, Proposition 3.5 can be

extended as follows. The proof being similar, we omit it.

Proposition 5.4. — Let A ∈ TS (F,B), of stationary space-time diagram G(A,
ζF,B) = (ηt(i) : t ∈ Z, i ∈ Zt). For any zigzag polyline (i, ti)m6i6n, and any
(ai)m6i6n ∈ Sn+1, we have
P (η(i, ti) = ai : m 6 i 6 n) = ρ(a0)

∏

m∈{0,...,n−1}
ti+1=ti+1

F (ai; ai+1)
∏

m∈{0,...,n−1}
ti+1=ti−1

B(ai; ai+1).

In general, the knowledge of the transition kernel T alone is not sufficient to be
able to tell if the PCA A admits or not an invariant (F,B)-HZMC. Until now, the
characterization of PCA having an invariant (F,B)-HZMC is known in only two
cases: when |S| = 2 [Cas18, Theorem 5.3], and when F = B [Cas18, Theorem 5.2].
In the other cases (F 6= B and |S| > 2), it is an open problem.

5.2. Quasi-reversible PCA with invariant HZMC

This section is devoted to PCA having an HZMC invariant measure, and that are
(quasi-)reversible.
Let A ∈ TS (F,B). For a, b ∈ S, let us define

Mu(b; a) = ρ(a)
ρ(b)B(a; b) and M− v(b; a) = ρ(a)

ρ(b)F (a; b).

We also introduce the notations M− u = B and Mv = F (recall that u = (−1, 1)
and v = (1, 1)). For g ∈ D4, we define

pFB(g(a, b, c)) , ρ(g(a))Mg(− u)(g(a), g(b))Mg(v)(g(b), g(c)),
where g(− u) corresponds to the vector g(a)g(b), and g(v) to g(b)g(c) (note again the
small abuse of notation for the images of the vertices by the permutation induced
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by g). If g is the identity, we have pFB(a, b, c) = ρ(a)B(a, b)F (b, c). And for example
in the case where g = r, we have

pFB(r(a, b, c)) = pFB(d, a, b) = ρ(d)M− v(d, a)B(a, b) = ρ(a)F (a, b)B(a, b).
From the transition kernel T of A, we define a map Tg : S3 × S → R+ by:

∀ a, b, c, d ∈ S, Tg(g(a, b, c); g(d)) ,
pFB(a, b, c)
pFB(g(a, b, c))T (a, b, c; d).

For example, in the case where g = r, this gives:

(5.1) ∀ a, b, c, d ∈ S, Tr(d, a, b; c) ,
F (b; c)
F (a; d)T (a, b, c; d).

The expressions of Tr2 , Th, and Tr−1 can be found in Table 2.2.
Observe that Tg is not necessarily a transition kernel. For example, Tr is a transition

kernel if and only if:

∀ a, c, d ∈ S,
∑

c∈S

F (b; c)
F (a; d)T (a, b, c; d) = 1,

which is equivalent to Cond. 5, see again Table 2.2. Analogously, Tr−1 is a transition
kernel if and only if Cond. 6 is satisfied. And it appears that as soon as a PCA
belongs to TS (F,B), Tr2 and Th are transition kernels, since Cond. 4 is satisfied.

Theorem 5.5. — A PCAA ∈ TS (F,B) of transition kernel T is g-quasi-reversible
if and only if Tg is a transition kernel. In that case, Tg is the transition kernel of the
g-reverse Ag of A.

The next result is a direct consequence of Theorem 5.5.

Corollary 5.6. — Any PCA A ∈ TS (F,B) is r2-quasi-reversible and h-quasi-
reversible.

Proof of Theorem 5.5. — The cases g = id and g = v are obvious by Proposi-
tion 2.7, and the cases g = h and g = r2 can be handled exactly as in the proof of
Theorem 4.1. We thus focus on the case g = r, for which the proof also follows the
same idea as in Theorem 4.1. Suppose that A is r-quasi-reversible, and denote by T̃
the transition kernel of Ar. Then, for any a, b, c, d ∈ S, and any x ∈ Z2

e,

(5.2)
T̃ (d, a, b; c) = P (η(x+ v) = c|η(x+ u + v) = d, η(x+ u) = a, η(x) = b)

= ρ(a)B(a; b)F (b; c)T (a, b, c; d)
∑
c′∈S ρ(a)B(a; b)F (b; c′)T (a, b, c′; d) = F (b; c)T (a, b, c; d)

∑
c′∈S F (b; c′)T (a, b, c′; d) .

For some x ∈ Z2
e, let us reintroduce the pattern L = (x, x + u, x + v, x + 2 u,

x + u + v, x + 2 u + v), see Figure 4.1. For a0, b0, b1, c0, c1, d0 ∈ S, we are interested
in the quantity: Q(a0, b0, b1, c0, c1, d0) = P (η(L) = (a0, b0, b1, c0, c1, d0)) .
On the one hand, we have

Q(a0, b0, b1, c0, c1, d0)
= ρ(c0)B(c0; b0)B(b0; a0)F (a0; b1)T (b0, a0, b1; c1)T (c0, b0, c1; d0).
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On the other hand, we have

Q(a0, b0, b1, c0, c1, d0) =
∑

b′1,c
′
1∈S

Q(a0, b0, b
′
1, c0, c

′
1, d0)T̃ (d0, c0, b0; c1)T̃ (c1, b0, a0; b1).

Using the expressions of T̃ (d0, c0, b0; c1) and T̃ (c1, b0, a0; b1) given by (5.2) and
simplifying, we get:
(∑

b∈S
F (a0; b)T (b0, a0, b; c1)

)(∑

c∈S
F (b0; c)T (c0, b0, c; d0)

)

= F (b0; c1)
∑

b,c∈S
F (a0; b)T (b0, a0, b; c)T (c0, b0, c; d0).

Now summing on d0 ∈ S, we find, for any b0, c1 ∈ S,
F (b0; c1) =

∑

b∈S
F (a0; b)T (b0, a0, b; c1),

so that T̃ = Tr.
Conversely, suppose that A is a PCA having an invariant measures (F,B)-HZMC

and that Cond. 5 holds. Then, we can perform flips thanks to (5.1) as in Figures 4.2
and 4.3 to obtain the result. �

5.3. PCA with an explicit invariant law that is not HZMC

As mentioned in Section 4.3, there exist PCA A ∈ TS(p) that are r-quasi-reversible,
and for which the r-reverse Ar does not belong to TS(p). In that case, Ar has
an invariant measure µ which is not a product measure, and for which we know
formulas allowing to compute exactly all the marginals, see equations (4.5) and (4.6).
Let us point out that the measure µ cannot be a (F,B)-HZMC. Indeed, consider
the stationary space-time diagram (A, πp) = (η(i, t) : (i, t) ∈ Z2

e), and assume
that µ is a (F,B)-HZMC measure. Then, the marginal of size one of µ is equal
to ρ = p, and for any x ∈ Z2

e, we have P (η(x+ u) = a, η(x) = b) = p(a)p(b) =
ρ(a)F (a; b) and P (η(x) = b, η(x+ v) = c) = p(b)p(c) = ρ(c)B(c; b). Thus, we obtain
F (a; b) = B(c; b) = p(b) for any a, b, c ∈ S, meaning that the (F,B)-HZMC is in fact
a p-HZMP, which is not possible since Ar does not belong to TS(p).
So, the PCA Ar has an invariant measure that we can compute, and that has

neither a product form nor a Markovian one. That was a real surprise of this work.
We give an explicit example of such a PCA in Section 7, see Example 7.7.
Similarly, if a PCA A with a (F,B)-invariant HZMC is r-quasi-reversible, and is

such that its r-reverse Ar does not have an invariant HZMC, then we can compute
exactly the invariant measure of Ar, although it does not have a well-known form.
This provides an analogous of Corollary 4.10, in the Markovian case. Precisely, next
Corollary 5.7 gives conditions on the transitions of a PCA C for being of the form
C = Ar, with A having a (F,B)-invariant HZMC. To the best knowledge of the
authors, this is the first time that we can compute from the transition kernel an
invariant law that is not Markovian.
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Corollary 5.7. — Let C be a PCA of positive transition kernel U . If there
exist two positive transition matrices F and B from S to S such that FB = BF ,
and such that the two following conditions hold:

Cond. 7 . — for any a, b, c ∈ S, F (b; c) = ∑
d∈S F (a; d)U(d, a, b; c);

Cond. 8 . — for any a, c, d ∈ S, B(d; c) = ∑
b∈S B(a; b)U(d, a, b; c);

then there exists a probability measure µ on S such that
• µ is invariant by C,
• (C, µ) is {r, r−1}-quasi-reversible and

– its r−1-reverse is (Cr−1 , ζF,B), with Cr−1 ∈ TS (F,B), and the transition
kernel of Cr−1 is given by T (a, b, c; d) = F (a;d)

F (b;c)U(d, a, b; c).
– its r-reverse is (Cr, ζMu,M− v), with Cr ∈ TS (Mu,M− v), and the transition
kernel of Cr is given by Tr2(c, d, a; b) = B(a;b)

B(d;c)U(d, a, b; c).
Moreover, we have explicit formulas for marginals of µ.
Note that in the above Theorem 5.5, the transition kernel T , which is the transition

kernel of Cr−1 , corresponds to the transition kernel of the PCA A (having a (F,B)-
invariant HZMC) such that C = Ar. The transition kernels T of Cr−1 and Tr2 of Cr
can be written as being equal respectively to Ur−1 and Ur, but with (F,B) replaced
by (B,M− v) when applying the formulas given in Table 2.2.
Remark 5.8. — In Cond. 7 (resp. Cond. 8), by putting a = b (resp. a = d), we

find that for any a ∈ S, the vector (F (a; d) : d ∈ S) (resp. (B(a; b) : b ∈ S)) is
the left eigenvector of (U(d, a, a; c))d,c∈S (resp. (U(a, a, b; c))b,c∈S) associated to the
eigenvalue 1. In particular, this allows to determine F and B, knowing only U . This
is in contrast with Proposition 5.3, where in general, the knowledge of T does not
allow to find F and B.
Proof. — Let us define

T (a, b, c; d) = F (a; d)
F (b; c)U(d, a, b; c).

Then, as Cond. 7 and Cond. 8 hold, we can check that T is a transition kernel and
satisfies Cond. 4, so ζF,B is an invariant measure of the PCA whose transition kernel
is T . Moreover,

∑

c∈S
F (b; c)T (a, b, c; d) =

∑

c∈S
F (a; d)U(d, a, b; c) = F (a; d).

That is Cond. 5, and we conclude by application of Theorem 5.5 (case g = r). Finally,
multidimensional laws of µ are deduced from the space-time diagram (C, µ). Indeed,
after action of the rotation r−1, it has the same distribution as (Cr−1 , ζF,B) whose
transition kernel is T . So, we can compute all the finite-dimensional marginals of
the space-time diagram, and in particular the multidimensional laws of µ. �

6. Applications to statistical physics

In many models of statistical physics (6 and 8-vertex models, enumeration of di-
rected animals, TASEP model, First Passage Percolation / Last Passage Percolation,
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Eden growth model, Box-Ball Systems. . . ), one can find a PCA of order 1 or 2 that
provides an alternative description of the system. In most cases, the original models
are integrable only on a submanifold of their parameter space, and this corresponds
to choices of parameters for which the corresponding PCA has a simple invariant
measure, with a product or a Markovian structure.
In Section 6.1 and 6.2, we show that using this PCA approach, results of previous

sections provide new proofs of known results about the 8-vertex model and about
the enumeration of directed animals, after associating suitable PCA with these two
models. This gives a simpler alternative to transfer-matrix methods, that does not
require tedious computations.
The PCA approach also often suggests relevant ways to extend the initial models

of statistical physics. Let us indeed assume that when studying the PCA involved,
it appears that the family of parameters for which they have a closed-form invariant
measure belong to a larger submanifold, defined with more parameters. Then, one
can try to backtrack this observation to the original model, by the introduction of new
parameters preserving the physical meaning of the model, with a larger domain of
parameters on which the model is integrable. This is what we illustrate in Section 6.3,
where we define a new TASEP model with variable speed that extends the classical
parallel TASEP. The results of previous sections (Theorem 3.1 and Proposition 5.3)
do not apply directly because the PCA does not have positive rates. Nevertheless,
our techniques can still be used to compute some invariant measures of this new
model.

6.1. The 8-vertex model

For some k ∈ 2Z, we consider the graph Gk whose set of vertices is Vk = Z2
e ∩

[−k, k]2, the restriction of the even lattice to a finite box, and whose set of edges
is Ek = {(x, x + u) : x, x + u ∈ Vk} ∪ {(x, x + v) : x, x + v ∈ Vk}. We define the
boundary of Vk by ∂Vk = {(x1, x2) ∈ Vk : max(|x1|, |x2|) = k}.
For each edge of Gk, we choose an orientation. This defines an orientation O of Gk,

and we denote by Ok the set of orientations of Gk. For a given orientation O ∈ Ok,
and an edge e ∈ Ek, we denote:

o(e) =




0 if the edge e is oriented from top to bottom in O (↘ or ↙),
1 if the edge e is oriented from bottom to top in O (↖ or ↗).

Hence, an orientation O ∈ Ok can be seen as an element (o(e))e∈Ek of {0, 1}Ek .
Around each vertex x ∈ Vk \ ∂Vk, there are 4 oriented edges, giving a total of

16 possible local configurations, defining the type of the vertex x. In the 8-vertex
model case, we consider only the orientations O such that around each vertex x ∈
Vk \ ∂Vk, there is an even number (0, 2 or 4) of incoming edges, so that only 8 local
configurations remain, see Figure 6.1. To each local configuration i among these 8
local configurations, we associate a local weight wi > 0. This allows to define a global
weight W on the set Õk of admissible orientations, by:

W (O) =
∏

x∈Vk\∂Vk
wtype(x), for O ∈ Õk.

TOME 3 (2020)



528 Jérôme CASSE & Irène MARCOVICI

w1 = w2 = a w3 = w4 = b w5 = w6 = c w7 = w8 = d

(1) (3) (5) (7)

(2) (4) (6) (8)

Figure 6.1. The 8 possible local configurations around any vertex.

Thanks to these weights, we finally define a probability distribution PW on Õk, by:

PW (O) = W (O)
Zk

, with Zk =
∑

O∈Õk
W (O).

In the following, we assume that the parameters satisfy w1 = w2 = a, w3 = w4 = b,
w5 = w6 = c and w7 = w8 = d, which corresponds to the most studied 8-vertex
model. We furthermore assume that a+ c = b+ d. Let us briefly comment on this
condition. Among 6 and 8-vertex models, a different case that has attracted much
attention is the case when a = b, which corresponds to the XXZ model [DCGH+18].
But from a physical point of view, this condition is quite restrictive, since it amounts
to assuming that the oxygen atoms are arranged on a square lattice. We can relax
this condition by assuming that the oxygen atoms are arranged on a diamond-
shaped lattice, and within this framework, an interesting specific case for some
ranges of temperature and pressure consists in assuming that a+ c = b+ d. As we
will see, from a mathematical point of view, this choice of parameters has also the
advantage of allowing simple explicit computations. For more information on the
8-vertex model, we refer the interested reader to [Bax82, Cas16, DCGH+18, Mel18],
and references therein. In [BCG16], the authors study the 6-vertex model under an
analogous condition, using transfer matrices. Understanding the links between these
two techniques would be a very interesting subject, but the authors of the present
article are not yet sufficiently familiar with these techniques to achieve this.
Following Baxter [Bax82, Section 10.2], let us define a “two-to-one” map C8 between

2-colorings of faces of Gk and admissible orientations of the 8-vertex model on Gk. Let
Fk be the set of faces of Gk, that is, the set of quadruples (x, x+u, x+u + v, x+v) ∈
(Z2

e)4 for which at least 3 of the 4 vertices belong to Gk. Let C ∈ {0, 1}Fk be a
2-coloring of faces of Gk, and take any edge e ∈ Ek. We denote by fe and f ′e the two
adjacent faces of e. The map consists in setting:

o(e) =




1 if C(fe) = C(f ′e),
0 otherwise (i.e. if C(fe) 6= C(f ′e)).

It is a “two-to-one” map because from an admissible orientation O, we obtain two
2-colorings in C−1

8 (O) = {C0, C1}. These two colorings satisfy C0(f) = 1−C1(f) for
any f ∈ Fk, see Figure 6.2.
Let us set q = a/(a + c) and r = b/(b+ d), and consider the PCA A8 defined in

Section 2.1. We denote Fk the law of its space-time diagram G(A8, πp) under its
invariant measure πp restricted to Gk.
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Figure 6.2. An orientation O and its two possible 2-colorings.

Proposition 6.1 (Lemma 5.4 and Proposition 1.3 of [Cas18]). — If C ∼ Fk,
then C8(C) ∼ PW .

This proposition is the first application of PCA with memory two in the literature.
One can check that the PCA A8 satisfies Cond. 1 with p(0) = p(1) = 1/2. Theo-
rem 3.3 implies that this PCA is ergodic. When n→∞, the center of the square has
the same behaviour whatever the boundary conditions are [Cas18, Proposition 1.6].
Note that in what precedes, we have assumed that the weights satisfy the relation

a + c = b + d. If we now assume that they rather satisfy a + d = b + c, we can
design a PCA that, when iterated from left to right (or equivalently, from right to
left), generates configurations distributed according to the required distribution PW .
When a = b and c = d, so that both relations are satisfied, we obtain q = r, and the
dynamics is D4-reversible.

6.2. Enumeration of directed animals

In this section, we give a new proof about a known result (Lemma 6.3) about
enumerations of directed animals. Our new proof is based on the fact that, to any
PCA with memory 2 with an HZMC invariant law, one can associate a PCA with
memory 1 with the same invariant law.
A directed animal on the square lattice (resp. on the triangular lattice) is a set

A ⊂ Z2
e such that (0, 0) ∈ A and, for any z ∈ A there exists a directed path

w = ((0, 0) = x0, x1, . . . , xm−1, xm = z) such that, for any 1 6 k 6 m,
xk − xk−1 ∈ {u, v}(resp.{u, v, u+ v}),

see Figure 6.2 for an illustration on the triangular lattice. Let us denote by AS
(resp. AT ) the set of directed animals on the square (resp. triangular) lattice.
The area of an animal A is the cardinal of A and the perimeter of an animal A is

the cardinal of P (A) = {x : x /∈ A, {x} ∪ A is a directed animal}. Let us introduce
the generating functions of directed animals enumerated according to their area, on
the square lattice and on the triangular lattice:

GS(z) =
∑

A∈AS
z|A| GT (z) =

∑

A∈AT
z|A|.
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(0, 0) (0, 0)

Figure 6.3. The set on the left is a directed animal on the triangular lattice,
while the set on the right is not.

The computation of these series was done by Dhar in 1982 via the study of hard-
particles model [Dha82]. Here, we will present this work using PCA, see also [MM14a]
for details. Let us introduce the binary state PCA BS with memory one, and the bi-
nary state PCA BT with memory two, defined respectively by the following transition
kernels:

TS(a, b; 1) =



pS if a = b = 0,
0 else.

TT (a, b, c; 1) =



pT if a = b = c = 0,
0 otherwise.

The following Theorem 6.2 connects the generating functions GS and GT with
these PCA.
Theorem 6.2 ([Dha82, BM98, LBM07]). — For any pS, pT ∈ (0, 1), let (ηS(i, t) :

(i, t) ∈ Z2
e) and (ηT (i, t) : (i, t) ∈ Z2

e) be respectively the space-time diagram of BS

and BT under their invariant probability measures. Then,
P (η(0, 0) = 1) = −GS(−pS) P (η(0, 0) = 1) = −GT (−pT ).

In the case of directed animal on the square lattice, it is well known that BS

has a simple (F,B)-HZMC invariant measure, that can be computed explicitly,
see [BM98, CM15, Dha82, LBM07]. Note also that the ergodicity of BS, for any
choice of pS ∈ (0, 1), was proven in [HMM19]. Using Proposition 5.3, one obtain that
if pS = pT

1+pT , then Cond. 4 holds, so that the same (F,B)-HZMC is also an invariant
measure of BT . We thus obtain the following Lemma 6.3 (although BS and BT do
not have positive rates, we can easily extend our sufficient conditions to them).
Lemma 6.3. — We have the following:

(6.1) GT

(
z

1 + z

)
= GS(z).

This allows to obtain the expression of the area generating function of directed
animals on the triangular lattice from the one on the square lattice. We give below
the two expressions of GS and GT .
Theorem 6.4 ([BM98, Dha82]). — The area generating function of directed

animals on the square lattice and on the triangular lattice are respectively given by:

GS(z) = 1
2

((
1− 4z

1 + z

)−1/2
− 1

)
and GT (z) = 1

2
(
(1− 4z)−1/2 − 1

)
.
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The same questions can be asked for the enumeration according to area and
perimeter, but in this case we have no explicit description of the invariant measures
of the PCA involved. For more references on the question, see [LBM07, MM14a].

6.3. Parallel TASEP of order two

The TASEP (Totally ASymmetric Exclusion Process) describes the evolution
of some particles that go from the left to the right on a line without overtaking.
There are various kinds of TASEP models, with discrete or continuous time and
space, and one or more types of particles. We refer the interested readers to the
following articles [BC15, BF05, GG01] for the description of some models with
discrete time and space. Here, we present a new (to the best knowledge of the
authors) generalization of TASEP called TASEP of order two on real line and
discrete time.
The TASEP presented here models the behaviour of an infinite number of particles

(indexed by Z) on the real line, that move to the right, and that do not bypass and
do not overlap. For i, t ∈ Z, we denote by xi(t) ∈ R the position of particle i at time
t. Time is discrete, and at time t, each particle i ∈ Z moves with a random speed
vi(t), independently of the others. The random speed vi(t) depends on the distance
xi+1(t)− xi(t) between the particle i and the particle i+ 1 in front of it, and of the
speed vi+1(t− 1) = xi+1(t)− xi+1(t− 1) of the particle i+ 1 at time t− 1. Formally,
the evolution of (xi(t))i∈Z is defined by:

∀ i ∈ Z, xi(t+ 1) = xi(t) + vi(t),
where vi(t) is random and distributed following µ(xi+1(t)−xi(t),vi+1(t−1)), a probabil-
ity distribution on R+, and (vi(t))i∈Z are independent, knowing (xi(t))i∈Z and
(xi(t− 1))i∈Z.
It is known that TASEP with discrete time can be represented by PCA [Cas16,

MM14a]. We adopt the approach presented in [Cas16] to show that the TASEP of
order two can be represented by a PCA with memory two: take η(i, t) = xi(t), then
(η(i, t) : i ∈ Z, t ∈ N) is the space-time diagram of a PCA with memory two whose
transition kernel T is, for any a ∈ R, x, y, v ∈ R+,

T (a, a+ x, a+ x+ y; a+ v) = µ(x+y,y)(v).
Now, we will focus as an example on the simplest case where v ∈ {0, 1} a.s. and

particles move on the integer line (for any i ∈ Z, t ∈ N, xi(t) ∈ Z). The constraints
we have on T are the following:

• T (a, a+ 1, a+ 1; a) = 1 for any a ∈ Z (and T (a, b, b+ i; c) can take any value
if i 6= 0, 1 or b 6 a),
• T (a, a+ k, a+ k + i; c) = 0 for any a, k > 0, i ∈ {0, 1} and c /∈ {a, a+ 1},
• T (a, a + k, a + k + i; a) = T (b, b + k, b + k + i; b) for any k > 1, i ∈ {0, 1},
a, b ∈ Z.

The first two points mean that the next position has to be empty for a particle
to move, and that a particle can only move of one unit forward. The last point is
an hypothesis of translation invariance. Hence, the PCA can be described by the
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t

0

1

2

3

x
−2 −1 0 1 2 3 4 5 6 7

particle’s labels

−1 0 1 2

−1 0 1 2 −2 0 1 5

−1 0 1 2 −2 0 2 6

−1 0 1 2 −1 0 3 6

−1 0 1 2 −1 1 4 7

Figure 6.4. On the left, the classical representation of a TASEP: a white square
is an empty square; a black square is a square that contains a particle, the white
number is the label of this particle. On the right, the PCA that represents this
TASEP; each column represents the trajectory of a particle.

transitions (T (0, k, k; 0))k>2 and (T (0, k, k+1; 0))k>1. Although this PCA is not with
positive rates and does not admit an invariant measure, it has some interesting
properties that permit to find invariant measures for the parallel TASEP.
The model above is reminiscent of q-TASEP models as defined in [BC15]. In

particular, the discrete time Bernoulli q-TASEP can be interpreted as a TASEP of
order two with a time change. In contrast to our model, the number of particles is
assumed to be finite, and at each time step, the positions of the particles are updated
successively from right to left: each particle can move by one unit, with a probability
that depends both on the length of the gap with the foregoing particle and on the
fact that the jump of the foregoing particle did occur or not. The Poisson q-TASEP
is a continuous time TASEP, but it also shares the property that the rate at which
particles jump forward is modulated by the distance to the next particle, which is
also the case of the discrete time geometric q-TASEP. In this last model, particles
can move by several units in one time step. It follows that the geometric q-TASEP is
tightly related to TAZRP models, and as we may detail in a future work, the PCA
approach can be extended to these models.
The first result of this section is about the fact that there exists a family of

(F,B)-HZMC that is stable by this PCA. First, let us define a (q, p)-HZMC for
any probability q and p on Z: a (q, p)-HZMC is a (F,B)-HZMC such that, for any
a, k ∈ Z, F (a; a+ k) = q(k) and B(a; a+ k) = p(k).

Lemma 6.5. — For any transition kernel T , if there exist p a probability on N∗
and q on {0, 1} such that, for any k > 1,

(6.2) p(k)q(1)T (0, k, k + 1; 0) + p(k + 1)q(0)T (0, k + 1, k + 1; 0) = p(k + 1)q(0)

then if we start under the law such that (η0, η1) is a (q, p)-HZMC with η0(0) = 0 a.s.,
then any double line (ηt, ηt+1) is also distributed as a (q, p)-HZMC but the starting
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point is now ηt(0) with

P (ηt(0) = k) =
(
t

k

)
q(1)kq(0)t−k.

Note that (6.2) also implies

(6.3) p(k)q(1)T (0, k, k + 1; 1) + p(k + 1)q(0)T (0, k + 1, k + 1; 1) = p(k)q(1),

both equations being equivalent to:

(6.4) p(k)q(1)T (0, k, k + 1; 0) = p(k + 1)q(0)T (0, k + 1, k + 1; 1).

These two conditions (6.2) and (6.3) are similar to Cond. 4 of Proposition 5.3.
Proof. — The proof is done by induction on t ∈ N. For t = 0, we assume that

(η0, η1) is a (q, p)-HZMC with η0(0) = 0 a.s. Now, let us suppose that (ηt, ηt+1) is
a (q, p)-HZMC with P (ηt(0) = k) =

(
t
k

)
q(1)kq(0)t−k. Then, by conditioning on the

possible values (ai)06i6k+1 for (ηt(i))06i6k+1, we obtain that the finite dimensional
laws of (ηt+1, ηt+2) are given by:

P ((ηt+1(i) = bi)06i6k, (ηt+2(i) = ci)06i6k−1)

=
∑

a0,...,ak+1

(
t

a0

)
q(1)a0q(0)t−a0q(b0−a0)

k−1∏

i=0
p(ai+1−bi)q(bi+1−ai+1)T (bi, ai+1, bi+1; ci)

=
(∑

a0

(
t

a0

)
q(1)a0q(0)t−a0q(b0 − a0)

)



k−1∏

i=0

∑

ai+1

p(ai+1 − bi)q(bi+1 − ai+1)T (bi, ai+1, bi+1; ci)

 .

Since the only non-zero terms correspond to ai ∈ {bi, bi − 1}, the left parenthesis is
equal to:

∑

a0∈{b0,b0−1}

(
t

a0

)
q(1)a0q(0)t−a0q(b0 − a0) =

(
t+ 1
b0

)
q(1)b0q(0)t+1−b0 ,

and the right one to:
k−1∏

i=0

∑

ai+1∈{bi+1,bi+1−1}
p(ai+1 − bi)q(bi+1 − ai+1)T (bi, ai+1, bi+1; ci)

=
k−1∏

i=0

∑

ai+1∈{bi+1,bi+1−1}

p(ai+1 − bi)q(bi+1 − ai+1)T (0, ai+1 − bi, bi+1 − bi; ci − bi)

=
k−1∏

i=0
p(bi+1 − ci)q(ci − bi), using (6.2) and (6.3). �

We can remark that q is the speed law of a particle under the stationary regime
and p the distance law between two successive particles (to be precise the left one
at current time t and the right one at previous time t− 1).
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Theorem 6.6. — For any T , for any distribution q on {0, 1} such that

(6.5) Z =
∞∑

k=0

(
q(1)
q(0)

)k k∏

m=1

T (0,m,m+ 1; 0)
T (0,m+ 1,m+ 1; 1) <∞,

there exists a unique distribution p on N∗ such that (6.2) hold.
Moreover, this distribution p is, for any k > 1,

(6.6) p(k) =

(
q(1)
q(0)

)k−1 k−1∏

m=1

T (0,m,m+ 1; 0)
T (0,m+ 1,m+ 1; 1)
Z

.

Proof. — Let q be a probability measure on {0, 1}. By (6.4), we have

(6.7) ∀ k > 1, p(k + 1) = p(k) T (0, k, k + 1; 0)
T (0, k + 1, k + 1; 1)

q(1)
q(0) .

By induction, we obtain

∀ k > 1, p(k + 1) =
(
q(1)
q(0)

)k k∏

m=1

T (0,m,m+ 1; 0)
T (0,m+ 1,m+ 1; 1)p(1)

As ∑k∈N∗ p(k) = 1, we need (6.5). In that case, (6.6) follows. �
In the classical case of parallel TASEP (presented in [MM14a, Sections 2.3 &

4.3], [Cas16, Section 3.3]), we have

(6.8) T (0, k, k + 1; 1) = T (0, k + 1, k + 1; 1) = p.

With Theorem 6.6, we recover the invariant measures of the classical parallel TASEP
and can express the one of the generalized TASEP as a renewal process.

Corollary 6.7. — For any distribution q on {0, 1} such that (6.5) holds and
p (given by (6.6), with p(0) = 0) has a finite mean, the TASEP of order 2 has
an invariant measure on {0, 1}Z × {0, 1}Z such that on the same line, the distance
between two consecutive 1s are i.i.d. and distributed according to γ with, for any
k > 1, γ(k) = q(0)p(k) + q(1)p(k − 1).

This example goes beyond our previous framework for many reasons. First, the
PCA does not have positive rates. Second, studying the invariant measures of this
PCA is not interesting because they only correspond to states where nobody moves.
That is why we have focused here on families of distributions that are stable by
the PCA rather than on only one invariant distribution. And by studying carefully
the eigenvectors on the good subspaces, we are able to solve the algebraic issues.
This provides some interesting results on a PCA with an infinite alphabet, involving
a family of (F,B)-HZMC laws (with F 6= B), whereas our main explicit results
on PCA involve general (F,B)-HZMC measures but on an alphabet of size 2, or
PCA with a general alphabet but with an invariant (F, F )-HZMC (see the end of
Section 5.1 and Section 8).
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7. The binary case

In this section, we specify the conditions obtained in Section 4 to the case of a
binary symbol set S = {0, 1}.
Proposition 7.1. — For a binary symbol set S = {0, 1},
(1) Cond. 1 is equivalent to

Cond. 9 . — ∀ a, c ∈ S, p(0)T (a, 0, c; 1) = p(1)T (a, 1, c; 0).
(2) Cond. 2 is equivalent to

Cond. 10 . — ∀ a, b ∈ S, p(0)T (a, b, 0; 1) = p(1)T (a, b, 1; 0).
(3) Cond. 3 is equivalent to

Cond. 11 . — ∀ b, c ∈ S, p(0)T (0, b, c; 1) = p(1)T (1, b, c; 0).
Proof. — In the binary case, Cond. 1 reduces to:

∀ a, c ∈ S, p(1) = p(0)T (a, 0, c; 1) + p(1)T (a, 1, c; 1),
which is itself equivalent to Cond. 9. The proof is analogous for Cond. 10 and
Cond. 11. �
Let p be a probability measure on S = {0, 1}. If we specify some results of Table 2.1

to the case |S| = 2, we obtain
dim (TS (p)) = dim ({A ∈ TS (p) : A is h-reversible}) = 4,

dim ({A ∈ TS (p) : A is v-reversible}) = dim
(
{A ∈ TS (p) : A is r2-reversible}

)
= 3,

dim ({A ∈ TS (p) : A is D4-quasi-reversible})
= dim ({A ∈ TS (p) : A is D4-reversible}) = 1.

In this section, we describe more precisely these different sets, which give an
alternative proof of the value of their dimension, in the binary case. First, the next
result shows that in the binary case, the sets above having the same dimension are
equal.
Proposition 7.2. — Let p be any positive probability on S = {0, 1}, and let

A ∈ TS (p). Then, we have the following properties.
(1) A is h-reversible.
(2) A is v-reversible iff A is r2-reversible.
(3) A is D4-quasi-reversible iff A is D4-reversible.
Proof.
(1). — Since A is in TS (p), A is h-quasi-reversible, and the transition kernel Th

of its h-reverse satisfies, for any a, b, c, d ∈ S,

Th(a, d, c; b) = p(b)
p(d)T (a, b, c; d).

For b = d, this gives Th(a, b, c; d) = T (a, b, c; d), and for b 6= d, Cond. 9 provides the
result.
(2). — It is a corollary of 1. Indeed, if A is in TS (p) and v-reversible, then it is h

and v-reversible, and so also r2 = v◦h-reversible. And conversely, if it is r2-reversible,
then it is v = r2 ◦ h-reversible.
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(3). — This will be a consequence of Proposition 7.5. �
As a consequence of Proposition 7.1, we obtain the following descriptions of binary

PCA having an invariant HZPM.

Proposition 7.3. — Let A be a PCA with transition kernel T (with positive
rates). Then A has an invariant HZPM iff

Cond. 12 . — there exists k ∈ ]0,∞[ such that for any a, c ∈ S,
T (a, 1, c; 0)
T (a, 0, c; 1) = k.

More explicitly, this is equivalent to the following condition.
Cond. 13 . — there exists k ∈ ]0,∞[ and




q0,0, q0,1, q1,0, q1,1 ∈ (0, 1) if k ∈ (0, 1]
q0,0, q0,1, q1,0, q1,1 ∈ (1− k−1, 1) if k ∈ [1,∞)

such that, for any a, c ∈ S,
T (a, 0, c; 0) = qa,c,

T (a, 1, c; 0) = k(1− qa,c) = k − kqa,c.

In that case, the p-HZPM invariant is (p(0), p(1)) where

p(1) = 1− p(0)= 1
1 + k

.

Proof. — The PCA A has an invariant HZPM iff there exists a probability p on
S such that Cond. 9 is satisfied, which can easily be shown to be equivalent to the
above conditions. �

Proposition 7.4. — Let p be a positive probability on S, and let k = p(0)/p(1).
Then, A is a r-quasi-reversible PCA of TS (p) iff

Cond. 14 . — There exist



q0, q1 ∈ (0, 1) if k ∈ (0, 1]
q0, q1 ∈ (1− k−1, 1− k−1 + k−2) if k ∈ [1,∞)

such that, for any a ∈ S:
T (a, 0, 0; 0) = qa,

T (a, 0, 1; 0) = T (a, 1, 0; 0) = k(1− qc) = k − kqa
T (a, 1, 1; 0) = k(1− k(1− qc)) = k − k2 + k2qa.

Similarly, A is a r−1-quasi-reversible PCA of TS (p) iff
Cond. 15 . — There exist



q0, q1 ∈ (0, 1) if k ∈ (0, 1]
q0, q1 ∈ (1− k−1, 1− k−1 + k−2) if k ∈ [1,∞)
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such that, for any c ∈ S:
T (0, 0, c; 0) = qc,

T (0, 1, c; 0) = T (1, 0, c; 0) = k(1− qc) = k − kqc
T (1, 1, c; 0) = k(1− k(1− qc)) = k − k2 + k2qc.

Proof. — We prove the first statement. Let A be a r-quasi-reversible PCA in TS (p).
Then T satisfies Cond. 9 and 10, meaning that for any a, b, c ∈ S,

T (a, 1, c; 0)
T (a, 0, c; 1) = T (a, b, 1; 0)

T (a, b, 0; 1) = k = p(0)
p(1) .

Taking b = c = 0, we find, for any a ∈ S,
T (a, 1, 0; 0) = T (a, 0, 1; 0) = kT (a, 0, 0; 1)

and taking b = c = 1, we find that for any a ∈ S,
T (a, 0, 1; 1) = T (a, 1, 0; 1) = k−1T (a, 1, 1; 0).

Hence, for any a ∈ S, we obtain
T (a, 1, 1; 0) = k(1− T (a, 0, 1; 0)) = k(1− k(1− T (a, 0, 0; 0))).

Then, every T (a, b, c; d) can be express in terms of T (0, 0, 0; 0) = q0, T (0, 0, 1; 0) =
q1 and k, which gives Cond. 14, and the range of q0, q1 is deduced from the fact that,
for any a, b, c, d ∈ S, T (a, b, c; d) ∈ (0, 1).
Conversely, let A be such that Cond. 14 holds. Then Cond. 9 and 10 hold, so

A ∈ TS (p) and A is r-quasi-reversible. �
Proposition 7.5. — Let p be a positive probability on S, and let k = p(0)/p(1).
Then, A is a {r, r−1}-quasi-reversible PCA of TS (p) iff
Cond. 16 . — There exists



q0 ∈ (0, 1) if k ∈ (0, 1]
q0 ∈ (1− k−1 + k−2 − k−3, 1− k−1 + k−2) if k ∈ [1,∞)

such that
T (0, 0, 0; 0) = q0,

T (0, 0, 1; 0) = T (0, 1, 0; 0) = T (1, 0, 0; 0) = k(1− q0) = k − kq0

T (0, 1, 1; 0) = T (1, 1, 0; 0) = T (1, 0, 1; 0) = k(1− k(1− q0)) = k − k2 + k2q0

T (1, 1, 1; 0) = k(1− k(1− k(1− q0))) = k − k2 + k3 − k3q0.

Moreover, in that case, A is D4-reversible.

Proof. — The PCA A is a {r, r−1}-quasi-reversible PCA of TS (p) iff Cond. 9,
10 and 11 are satisfied, which can easily be shown to be equivalent to the above
condition. Now, we prove the D4-reversibility of A. First, A is symmetric, so A is
v-reversible. Second, it is easy to check that Tr = T , so that A is r and v-reversible.
By (5) of Proposition 2.7, A is D4-reversible. �
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Example 7.6. — Let us consider the special case when p is the uniform distribution
on S, meaning that p(0) = p(1) = 1/2. Then, k = 1, and the family of PCA above
corresponds to:

∀ a, b, c, d ∈ S, T (a, b, c; d) =




q0 if d = a+ b+ c mod 2
1− q0 otherwise.

In the deterministic case (q0 = 1), we get a linear CA. Such CA have been intensively
studied. Here, in the probabilistic setting, the PCA we obtain can be seen as noisy
versions of that linear CA (with a probability 1− q0 of doing an error, independently
for different cells). This is a special case of the 8-vertex PCA, with p = r.
Example 7.7. — Let us consider the probability distribution on S given by p(0) =

1/3 and p(1) = 2/3, so that k = 2. When specifying Cond. 14 to q0 = 3/4 and
q1 = 4/5, we obtain

T (0, 0, 0; 0) = 3/4, T (1, 0, 0; 0) = 4/5,
T (0, 0, 1; 0) = T (0, 1, 0; 0) = 1/8, T (1, 0, 1; 0) = T (1, 1, 0; 0) = 1/10,
T (0, 1, 1; 0) = 7/16, T (1, 1, 1; 0) = 9/20.

The PCA A of transition kernel T is r-quasi-reversible, but one can check that it does
not satisfy Cond. 11, so that it is not r−1-quasi-reversible. So, Tr does not belong
to TS (p), and following the argument developed in Section 5.3, Tr does not have an
invariant HZMC either. Nevertheless, one can exactly compute the marginals of its
invariant measure µ, see (4.5) and (4.6). The transitions of Tr are the following ones:

Tr(0, 0, 0; 0) = 3/4, Tr(1, 0, 0; 0) = 1/8,
Tr(0, 0, 1; 0) = 1/8, Tr(1, 0, 1; 0) = 7/16,
Tr(0, 1, 0; 0) = 4/5, Tr(1, 1, 0; 0) = 1/10,
Tr(0, 1, 1; 0) = 1/10, Tr(1, 1, 1; 0) = 9/20.

8. Extension to general alphabet

We now present some extensions of our methods and results to general sets of
symbols. First of all, we extend the definition of PCA to any Polish space S, as it
has been done in [Cas16] for PCA with memory one. The transition kernel T of a
PCA with memory two must now satisfy

• for any Borel set D ∈ B (S), the map
TD : S3 −→ R

(a, b, c) 7−→ T (a, b, c;D)
is B(S3)-measurable;
• for any a, b, c ∈ S, the map

Ta,b,c : B (S) −→ R
D 7−→ T (a, b, c;D)

is a probability measure on S.
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For any σ-finite measure µ on S, the transition kernel T is said to be µ-positive if,
for µ3-almost every (a, b, c) ∈ S3, T (a, b, c; .) is absolutely continuous with respect
to µ and µ is absolutely continuous with respect to T (a, b, c; .). In that case, thanks
to Radon–Nikodym theorem, we can define the density of T with respect to µ, that
is a µ4-measurable positive function where, for µ3-almost every (a, b, c) ∈ S3,

t(a, b, c; d) = dT (a, b, c; · )
dµ (d)

where dT (a,b,c; · )
dµ is the Radon–Nikodym derivative of T (a, b, c; · ) with respect to µ.

Theorem 8.1. — Let µ be any σ-finite measure on a Polish space S. Let A be a
PCA with a µ-positive transition kernel T on S. Then, A has an invariant µ-positive
HZPM iff Cond. 17 . — there exists a µ-measurable positive function p on S such
that, for µ3-almost every (a, c, d) ∈ S3,

p(d) =
∫

E
p(b)t(a, b, c; d)dµ(b)

and µ(p) =
∫

E
p(b)dµ(b) <∞,

where t is the µ-density of T .
Then, the P -HZPM is invariant by A where p(·)/µ(p) is the µ-density of P .

Proof. — The proof follows the same idea as that of Theorem 3.1, except that we
are now on a Polish space S. Let A be a µ-positive triangular PCA with alphabet S.
Suppose that A has an invariant µ-positive P -HZPM and that (ηt, ηt+1) follows a

P -HZPM distribution. Then, for any Ã, B̃, C̃, D̃ ∈ B (S),

P
(
ηt(i− 1) ∈ Ã, ηt+1(i) ∈ D̃, ηt(i+ 1) ∈ C̃

)

=
∫

Ã×C̃×D̃
p(a)p(c)p(d)dµ3(a, c, d) on the one hand,

=
∫

Ã×C̃×D̃

(∫

S
p(a)p(b)p(c)t(a, b, c; d)dµ(b)

)
dµ3(a, c, d) on the other hand.

Hence, for µ-almost a, c, d ∈ S,

p(a)p(c)
∫

S
p(b)t(a, b, c; d)dµ(b) = p(a)p(d)p(c)

and so, as p(a), p(c) > 0 for µ-almost a, c ∈ S, Cond. 17 holds.
Conversely, assume that Cond. 17 is satisfied, and that (ηt−1, ηt) follows a µ-positive

P -HZPM distribution. For some given choice of n ∈ Zt, let us denote: Xi = ηt−1(n+
1+2i), Yi = ηt(n+2i), Zi = ηt+1(n+1+2i), for i ∈ Z, see Figure 3.1 for an illustration.
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Then, for any k > 1, for any µ-measurable Borel sets B0, B1, . . . , Bk, C0, . . . , Ck−1,
P ((Yi)06i6k ∈ B0 × · · · ×Bk, (Zi)06i6k−1 ∈ C0 × · · · × Ck−1)

=
∫

C0×···×Ck−1

∫

B0×···×Bk

(
k−1∏

i=0

∫

S
t(yi, xi, yi+1; zi)p(xi)dµ(xi)

)

p(y0) . . . p(yk)dµ(y0, . . . , yk)dµ(z0, . . . , zk−1)

=
∫

C0×···×Ck−1

∫

B0×···×Bk

(
k−1∏

i=0
p(zi)

)
p(y0) . . . p(yk)dµ(y0, . . . , yk)dµ(z0, . . . , zk−1)

thus, the P -HZPM distribution is invariant by A. �
Now, the problem is reduced to finding eigenfunction associated to the eigenvalue 1

of some integral operator. If this problem is solved by Gauss elimination in the case
of a finite space, this is more complicated in the general case. Indeed, such a function
does not always exist, but, when it is the case, the solution is unique (up to a
multiplicative constant), see the following lemma.

Lemma 8.2 ([Dur10, Theorem 6.8.7]). — Let A be an integral operator of kernel
m:

A : f →
(
A(f) : y →

∫

S
f(x)m(x; y)dµ(x)

)
.

If m is the µ-density of a µ-positive t. k. M from S to S, then A possesses at most
one positive eigenfunction in L1(µ) (up to a multiplicative constant).

Moreover, the previous results concerning the characterization of reversible and
quasi-reversible PCA extend to PCA with general alphabet. The difference is that
we are considering µ-positive PCA and that Cond. 2 and 3 are respectively replaced
by the two following Conditions (18) and (19).

Cond. 18 . — for µ3-almost every (a, b, d) ∈ S3,
∫
S p(c)t(a, b, c; d)dµ(c) = p(d)

Cond. 19 . — for µ3-almost every (b, c, d) ∈ S3,
∫
S p(a)t(a, b, c; d)dµ(a) = p(d).

Following the same idea as in [Cas16], many results on PCA with invariant (F,B)-
HZMC can also be generalized to PCA on general alphabets.

9. Dimensions of the manifolds

In this section, we give the dimensions of TS (p) and of its subsets of (quasi-)
reversible PCA, as functions of the cardinal n of the alphabet S (see Table 2.1). But
first, we need some results about dimensions of sets of matrices.

9.1. Preliminaries: dimensions of sets of matrices with a given
eigenvector

Let S be a finite set of size n, and let u, v be two positive probabilities on S. We
denote by MS(u, v) the set of positive matrices M = (mij)i,j∈S such that M is a
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stochastic matrix and uM = v, i.e.
MS(u, v) = {M = (mij)i,j∈S : for any i, j ∈ S, 0 < mij < 1;

for any i ∈ S,
∑

j∈S
mij = 1;

for any j ∈ S,
∑

i∈S
u(i)mij = v(j)}.

As a particular case, when u = v = p, the vector p is a left-eigenvector of M
associated to the eigenvalue 1 and we denote the setMS(p, p) simply byMS(p). We
also define a subsetMsym

S (p) ofMS(p) by:
Msym

S (p) = {M ∈MS(p) :∀ i, j ∈ S, p(i)mij = p(j)mji}.
Our first Lemma 9.1 is about the dimension ofMS(u, v).

Lemma 9.1. — For any positive probabilities u and v on S, the manifoldMS(u, v)
satisfies:

dimMS(u, v) = (n− 1)2.

Proof. — First, we prove dimMS(u, v) 6 (n − 1)2. MS(u, v) is defined by the
2n linear equations ∀ i ∈ S, ∑j∈Smij = 1 and ∀ j ∈ S, ∑i∈S u(i)mij = v(j).
This gives 2n − 1 independent linear equations on the n2 variables (mij)i,j∈S. So
dimMS(p) 6 n2 − (2n− 1) = (n− 1)2.
We do not have the equality yet because we have the additional condition: ∀ i, j ∈ S,

mij > 0. Hence, we have to ensure thatMS(u, v) is not empty, and that we are not
in any other degenerate case for which the dimension would be strictly smaller than
(n − 1)2. For that, we first exhibit a solution of the system such that mij > 0 and
then find a neighbourhood around this solution having the dimension we want.
First, the matrix M = (v(j))i,j∈S is in MS(u, v). Now, let s ∈ S be a distin-

guished element of S. Let us set: S? = S\{s}. One can check that there exists a
neighbourhood V0 of 0 in R(S?)2 such that for any (εij : i, j ∈ S?) ∈ V0, the matrix
Mε = (mij)i,j∈S defined by:

mij = v(j) + εij for any i, j ∈ S?,
mis = v(s)−

∑

j′∈S?
εij′ ,

msj = v(j)−
∑
i′∈S? u(i′)εi′j
u(s) ,

mss = v(s) +
∑
i′∈S?

∑
j′∈S? u(i′)εi′j′
u(s) ,

is positive, stochastic, and satisfies uM = v. So,
dimMS(p) > dim(S?)2 = (n− 1)2. �

In the particular case when u = v = p, we obtain the following.

Corollary 9.2. — Let S be a finite set of size n, then:
dimMS(p) = (n− 1)2.
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Now we give two properties about families of matrices inMS(p).
Lemma 9.3. — Let S be a finite set and p be a probability on S. Let (Mk =

(mk,ij)i,j∈S : k ∈ S) be a collection of positive matrices indexed by S such that, for
any i, j ∈ S,
(9.1)

∑

k∈S
p(k)mk,ij = p(j).

Let s ∈ S and define S? = S\{s}. If, for any k ∈ S?,Mk ∈MS(p), thenMs ∈MS(p).
Proof. — By (9.1), the coefficients of the matrix Ms satisfy, for any i, j ∈ S,

ms,ij = p(j)−∑k∈S? p(k)mk,ij

p(s) .

First, let us prove that Ms is stochastic: for any i,
∑

j∈S
ms,ij = 1−∑k∈S? p(k)

p(s) = 1− (1− p(s))
p(s) = 1;

then, that p is a left-eigenvector of Ms: for any j,
∑

i∈S
p(i)ms,ij = p(j)−∑k∈S? p(k)∑i∈S p(i)mk,ij

p(s)

= p(j)−∑k∈S? p(k)p(j)
p(s)

= p(j)1− (1− p(s))
p(s) = p(j). �

Lemma 9.4. — Let S be a finite set and let p be a probability on S. Let M =
(mij)i,j∈S be a matrix inMS(p). Then M̃ =

(
p(j)
p(i)mji

)
i,j∈S

∈MS(p).

Proof. — First, let us prove that M̃ is stochastic: for any i ∈ S, ∑j∈S m̃ij =
∑
j∈S

p(j)
p(i)mji = 1; then, that p is a left-eigenvector of M̃ : for any j ∈ S, ∑i∈S p(i)

m̃ij = ∑
i∈S p(j)mji = p(j). �

Finally, we get the dimension ofMsym
S (p).

Lemma 9.5. — Let S be a finite set of size n and p be a positive probability on
S, then:

dimMsym
S (p) = (n− 1)n

2 .

Proof. — First, dimMsym
S (p) 6 (n−1)n

2 because we know by the proof of Lemma 9.1
that we can describe a matrix in the manifoldMS(p) by knowing (mij : i, j ∈ S∗).
But, with the new constraint p(i)mij = p(j)mji for any i, j ∈ S, it is sufficient to
know only (mij : i 6 j, i, j ∈ S∗).
Conversely, let us take (mij : i 6 j, i, j ∈ S∗) in a neighbourhood V of

(mij = p(j) : i 6 j, i, j ∈ S∗) in Rn(n−1)/2. Let us take:
• for any i, j ∈ S∗, i > j, mij = p(j)

p(i)mji;
• for any i ∈ S∗, mis = 1−∑j∈S∗mij;
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• for any j ∈ S∗, msj = p(j)−
∑

i∈S∗ p(i)mij
p(s) ;

• mss = 1−∑j∈Smsj.
By the same argument as in the proof of Lemma 9.1, there exists a neighbourhood
V of dimension (n−1)n

2 such that for any point on it, M = (mij)ij∈S ∈Msym
S (p). So,

dimMsym
S (p) > (n− 1)n

2 . �

These preliminary results will be useful to prove dimensions of sets of (quasi-)
reversible PCA.

9.2. Dimensions of TS (p) and its subsets

Theorem 9.6. — Let S be a set of size n, and p be a positive probability on S.
(1) dim (TS (p)) = n2(n− 1)2.
(2) dim ({A ∈ TS (p) : A is r-quasi-reversible}) = n(n− 1)3,
(3) dim ({A ∈ TS (p) : A is r−1-quasi-reversible}) = n(n− 1)3,
(4) dim ({A ∈ TS (p) : A is D4-quasi-reversible}) = (n− 1)4.
(5) dim ({A ∈ TS (p) : A is v-reversible}) = (n−1)2n(n+1)

2 .
(6) dim ({A ∈ TS (p) : A is r2-reversible}) = (n−1)2n(n+1)

2 .
(7) dim ({A ∈ TS (p) : A is h-reversible}) = n3(n−1)

2 .
(8) dim ({A ∈ TS (p) : A is < r2, v >-reversible}) = (n−1)n2(n+1)

4 .
(9) dim ({A ∈ TS (p) : A is 〈r〉-reversible}) = n(n−1)(n2−3n+4)

4 .(1)

(10) dim ({A ∈ TS (p) : A is < r ◦ v >-reversible}) = (n−1)2(n2−2n+2)
2 .(2)

(11) dim ({A ∈ TS (p) : A is D4-reversible}) = n(n−1)(n2−n+2)
8 .(3)

Proof. — Let s ∈ S, and S? = S\{s}.
(1). — By Theorem 3.1, a PCA A is in TS (p) if for all a, c ∈ S, (T (a, b, c; d))b,d∈S ∈
MS(p). It follows, by Corollary 9.2, that: dim TS (p) = |S|2 dimMS(p) = n2(n− 1)2.
(2). — By Theorem 3.1, as A ∈ TS (p), for any a, c ∈ S, (T (a, b, c; d))b,d∈S ∈
MS(p). Moreover, A is r-reversible so: ∑c∈S p(c)T (a, b, c; d) = p(d). By Lemma 9.3,
for any a ∈ S, we can choose freely (T (a, b, c; d))b,d∈S : c ∈ S?) ∈ MS(p), and
(T (a, b, s; d))b,d∈S is then uniquely obtained from them and inMS(p). Thus,

dim ({A ∈ TS (p) : A is r-quasi-reversible}) = |S||S∗| dimMS(p) = n(n− 1)3.

(3). — The proof is similar to the proof of Lemma 9.5.

(1)OEIS A006528
(2)OEIS A037270
(3)OEIS A002817
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(4). — As before, for any a, c ∈ S, (T (a, b, c; d))b,d∈S ∈ MS(p). By Theorem 4.4,
we need in addition that, for any b, d ∈ S,

∑

a∈S
p(a)T (a, b, c; d) = p(d) for any c ∈ S, and

∑

c∈S
p(c)T (a, b, c; d) = p(d) for any a ∈ S.

Hence, we can choose freely a collection of |S∗|2 matrices ((T (a, b, c; d))b,d∈S ∈
MS(p) : a, c ∈ S?). Then, by Lemma 9.3, matrices ((T (s, b, c; d))b,d∈S : c ∈ S?)
and (T (a, b, s; d)b,d∈S : a ∈ S?) are uniquely defined and inMS(p). Finally, the last
matrix (T (s, b, s; d))b,d∈S can be obtained from two various methods but define the
same matrix at the end (the proof is similar to the one of Lemma 9.1). Hence,

dim ({A ∈ TS (p) : A is D4-quasi-reversible}) = |S∗|2 dimMS(p) = (n− 1)4.

(5). — If A ∈ TS (p) is v-reversible, then (T (a, b, c; d))b,d∈S ∈ MS(p) and T (a, b,
c; d) = T (c, b, a; d). So, matrices {(T (a, b, a; d))b,d∈S : a ∈ S} can be freely chosen in
MS(p), but as T (a, b, c; d) = T (c, b, a; d) when a 6= c, hence only {(T (a, b, c; d))b,d∈S :
a < c} can be chosen freely inMS(p), {(T (a, b, c; d))b,d∈S : a > c} are imposed by
{(T (c, b, a; d))b,d∈S : c < a}. Hence

dim ({A ∈ TS (p) : A is v-reversible}) =
(
|S|+

(
|S|
2

))
dimMS(p)

=
(
n+ n(n− 1)

2

)
(n− 1)2

= (n− 1)2n(n+ 1)
2 .

(6). — If A ∈ TS (p) is r2-reversible, then (T (a, b, c; d))b,d∈S ∈ MS(p) and
T (c, d, a; b) = p(b)

p(d)T (a, b, c; d). Hence, if we take a matrix (T (a, b, c; d))b,d∈S ∈MS(p)
with a < c, then (T (c, b, a; d))b,d∈S is known and ∈ MS(p) by Lemma 9.4. So, we
can just choose freely matrices (T (a, b, c; d))b,d∈S ∈MS(p) with a 6 c. That is why
the dimension is the same as for v-reversible matrices.

(7). — If A ∈ TS (p) is h-reversible, then (T (a, b, c; d))b,d∈S ∈ MS(p) and
T (a, d, c; b) = p(b)

p(d)T (a, b, c; d). Then, for any a, c ∈ S, (T (a, b, c; d))b,d∈S ∈ Msym
S (p)

and, moreover, they can be chosen freely. So, by Lemma 9.5,

dim ({A ∈ TS (p) : A is h-reversible}) = |S|2 dimMsym
S (p) = (n− 1)n3

2 .

(8). — If A ∈ TS (p) is < r2, v >-reversible, then (T (a, b, c; d))b,d∈S ∈ MS(p),
T (a, b, c; d) = T (c, b, a; d) and T (a, d, c; b) = p(b)

p(d)T (a, b, c; d). Then, it is equivalent to
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choose freely {(T (a, b, c; d))b,d∈S : a 6 c} inMsym
S (p). That’s why,

dim
(
{A ∈ TS (p) : A is < r2, v >-reversible}

)
=
(
|S|+

(
|S|
2

))
dimMsym

S (p)

= n(n+ 1)
2

(n− 1)n
2

= (n− 1)n2(n+ 1)
4 .

(9), (10), (11). — Proofs are long and relatively similar. They are done in Sec-
tion 9.3. �
Corollary 9.7. — Let S be a set of size n, then:

dim (∪pTS (p)) = (n3 − n2 + 1)(n− 1).

Proof. — We just add to the previous result the dimension of the set of positive
probability measures on S, which is equal to n− 1. �
Let us now say a word about the dimension of the set TS (F,B) of PCA having a

(F,B)-HZMC invariant distribution.

Proposition 9.8. — Let S be a set of size n. For any (F,B) such that FB = BF ,
dim TS (F,B) = n2(n− 1)2.

Proof. — For any (F,B), A is in TS (F,B) iff the two following conditions hold
(see Proposition 5.3):

(1) for any a, b, c ∈ S, ∑d∈S T (a, b, c; d) = 1,
(2) for any a, c, d ∈ S,

F (a; d)B(d; c)
(FB)(a; c) =

∑

b∈S

B(a; b)F (b; c)
(FB)(a; c) T (a, b, c; d).

Now, by Lemma 9.1, for any positive vectors u, v,
dimMS(u, v) = (n− 1)2.

To conclude, we just have to say that, for any a, c ∈ S, we can take freely
(T (a, b, c; d))b,d∈S ∈MS(u, v)

with u =
(
B(a; b)F (b; c)

(FB)(a; c)

)

b∈S
and v =

(
F (a; d)B(d; c)

(FB)(a; c)

)

d∈S
. �

Let us however mention that getting the dimension of ∪{(F,B):FB=BF}TS (F,B)
seems out of reach. Understanding the structure of the set {(F,B) : FB = BF} is
indeed listed as a difficult problem, see [Ger61, Gur92, MT55].

9.3. Proofs of Points 9, 10 and 11 of Theorem 9.6

We recall that S is a set of size n, s a given element of S, and p a positive probability
measure on S. We denote S∗ = S\{s}.
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The proofs of the last three points of Theorem 9.6 are long because they consist
in reducing an affine system with |S|4 equations and |S|4 variables (containing some
redundant equations) into one with only free equations describing the same manifold.
Furthermore, we must ensure that there exists a solution with positive coefficients
and that we are not in a degenerate case (see the discussion in the middle of the
proof of Lemma 9.1). Since the proofs of the three points are similar, but not exactly
the same, we first define some conditions that are useful for the three cases, then
we detail the proof of Point (9) and finally, we focus on the differences for the two
other cases in comparison with Point (9).

9.3.1. Preliminary results

This section is technical and must be seen as a reference for the sections that are
following, so it can be omitted in a first lecture.
First, we define some conditions on the transition kernel T .
Cond. 20 . — For any a, b, c, d ∈ S∗, we have

T (a, b, c; s) = 1−
∑

d∈S∗
T (a, b, c; d);(9.2)

T (s, b, c; d) = p(d)
p(s) −

∑

a∈S∗

p(a)
p(s)T (a, b, c; d);(9.3)

T (a, s, c; d) = p(d)
p(s) −

∑

b∈S∗

p(b)
p(s)T (a, b, c; d);(9.4)

T (a, b, s; d) = p(d)
p(s) −

∑

c∈S∗

p(c)
p(s)T (a, b, c; d);(9.5)

T (s, b, c; s) = p(s)

1−

(
1− p(s)
p(s)

)2

+

∑

a∈S∗

∑

d∈S∗

p(a)
p(s)T (a, b, c; d);(9.6)

T (a, s, c; s) = p(s)

1−

(
1− p(s)
p(s)

)2

+

∑

b∈S∗

∑

d∈S∗

p(b)
p(s)T (a, b, c; d);(9.7)

T (a, b, s; s) = p(s)

1−

(
1− p(s)
p(s)

)2

+

∑

c∈S∗

∑

d∈S∗

p(c)
p(s)T (a, b, c; d);(9.8)

T (s, s, c; d) = p(d)

1−

(
1− p(s)
p(s)

)2

+

∑

a∈S∗

∑

b∈S∗

p(a)p(b)
p(s)2 T (a, b, c; d);(9.9)

T (s, b, s; d) = p(d)

1−

(
1− p(s)
p(s)

)2

+

∑

a∈S∗

∑

c∈S∗

p(a)p(c)
p(s)2 T (a, b, c; d);(9.10)

T (a, s, s; d) = p(d)

1−

(
1− p(s)
p(s)

)2

+

∑

b∈S∗

∑

c∈S∗

p(b)p(c)
p(s)2 T (a, b, c; d);(9.11)

T (s, s, c; s) = p(s)

1 +

(
1− p(s)
p(s)

)3

−

∑

a∈S∗

∑

b∈S∗

∑

d∈S∗

p(a)p(b)
p(s)2 T (a, b, c; d);(9.12)
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T (s, b, s; s) = p(s)

1 +

(
1− p(s)
p(s)

)3

−

∑

a∈S∗

∑

c∈S∗

∑

d∈S∗

p(a)p(c)
p(s)2 T (a, b, c; d);(9.13)

T (a, s, s; s) = p(s)

1 +

(
1− p(s)
p(s)

)3

−

∑

b∈S∗

∑

c∈S∗

∑

d∈S∗

p(b)p(c)
p(s)2 T (a, b, c; d);(9.14)

(9.15) T (s, s, s; d) = p(d)

1 +

(
1− p(s)
p(s)

)3



−
∑

a∈S∗

∑

b∈S∗

∑

c∈S∗

p(a)p(b)p(c)
p(s)3 T (a, b, c; d);

(9.16) T (s, s, s; s) = p(s)

1−

(
1− p(s)
p(s)

)4



+
∑

a∈S∗

∑

b∈S∗

∑

c∈S∗

∑

d∈S∗

p(a)p(b)p(c)
p(s)3 T (a, b, c; d).

Cond. 21 . — For any a, b, c ∈ S, ∑d∈S T (a, b, c; d) = 1.
Cond. 22 . — For any a, c, d ∈ S, ∑b∈S p(b)T (a, b, c; d) = p(d).
Cond. 23 . — For any a, b, c, d ∈ S, 0 < T (a, b, c; d) < 1.

Lemma 9.9. — Cond. 20 ⇒ Cond. 21

Proof. — For any a, b, c ∈ S∗,
∑

d∈S
T (a, b, c; d) = T (a, b, c; s) +

∑

d∈S∗
T (a, b, c; d)

= 1−
∑

d∈S∗
T (a, b, c; d) +

∑

d∈S∗
T (a, b, c; d)

= 1.
For any a, b ∈ S∗,

∑

d∈S
T (a, b, s; d) = T (a, b, s; s) +

∑

d∈S∗
T (a, b, s; d)

= p(s)

1−

(
1− p(s)
p(s)

)2

+

∑

c∈S∗

∑

d∈S∗

p(c)
p(s)T (a, b, c; d)

+
∑

d∈S∗

(
p(d)
p(s) −

∑

c∈S∗

p(c)
p(s)T (a, b, c; d)

)

= p(s)

1−

(
1− p(s)
p(s)

)2

+ 1− p(s)

p(s)

= p(s)− (1− p(s))1− p(s)
p(s) + 1− p(s)

p(s)
= p(s) + (1− p(s)) = 1.
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Similarly, for any a, b, c ∈ S∗,
∑

d∈S
T (a, s, c; d) = 1 and

∑

d∈S
T (s, b, c; d) = 1.

For any a ∈ S∗,
∑

d∈S
T (a, s, s; d) = T (a, s, s; s) +

∑

d∈S∗
T (a, s, s; d)

= p(s)

1 +

(
1− p(s)
p(s)

)3

−

∑

b∈S∗

∑

c∈S∗

∑

d∈S∗

p(b)p(c)
p(s)2 T (a, b, c; d)

+
∑

d∈S∗


p(d)


1−

(
1− p(s)
p(s)

)2

+

∑

b∈S∗

∑

c∈S∗

p(b)p(c)
p(s)2 T (a, b, c; d)




= p(s)

1 +

(
1− p(s)
p(s)

)3

+ (1− p(s))


1 +

(
1− p(s)
p(s)

)2



= p(s) + (1− p(s))3

p(s)2 + 1− p(s)− (1− p(s))3

p(s)2

= 1.
Similarly, for any b, c ∈ S∗,

∑

d∈S
T (s, b, s; d) = 1 and

∑

d∈S
T (s, s, c; d) = 1.

Finally,
∑

d∈S
T (s, s, s; d) = T (s, s, s; s) +

∑

d∈S∗
T (s, s, s; d)

= p(s)

1−

(
1− p(s)
p(s)

)4

+

∑

a∈S∗

∑

b∈S∗

∑

c∈S∗

∑

d∈S∗

p(a)p(b)p(c)
p(s)3 T (a, b, c; d)

+
∑

d∈S∗


p(d)


1+

(
1−p(s)
p(s)

)3

−

∑

a∈S∗

∑

b∈S∗

∑

c∈S∗

p(a)p(b)p(c)
p(s)3 T (a, b, c; d)




= p(s)− (1− p(s))4

p(s)3 + 1− p(s) + (1− p(s))4

p(s)3

= 1. �

9.3.2. Proof of (9) of Theorem 9.6 (r-reversible)

To prove point (9), we define now the following condition:
Cond. 24 . — For any a, b, c, d ∈ S, p(a)T (a, b, c; d) = p(d)T (b, c, d; a). Hence, by

Theorems 3.1 and 4.3,

(9.17) dim ({A ∈ TS (p) : A is 〈r〉-reversible})
= dim{(T (a, b, c; d) : a, b, c, d ∈ S) : Cond. 21 + Cond. 22 + Cond. 23 + Cond. 24}

ANNALES HENRI LEBESGUE



Probabilistic cellular automata with memory two 549

Now, we define a condition similar to Cond. 24 but only on S∗:
Cond 24* . — For any a, b, c, d ∈ S∗, p(a)T (a, b, c; d) = p(d)T (b, c, d; a).
We have some properties that connect all these previous conditions by the two

following Lemmas 9.10 and 9.11.

Lemma 9.10. — (Cond. 21 + Cond. 22 + Cond. 24) ⇔ (Cond. 21 + Cond. 24)

Proof. — ⇒ is obvious. Now to prove⇐ we do the following computation: for any
a, c, d ∈ S,

∑

b∈S
p(b)T (a, b, c; d) =

∑

b∈S
p(b)p(d)

p(a)T (b, c, d; a)

=
∑

b∈S
p(b)p(d)

p(a)
p(a)
p(b)T (c, d, a; b) = p(d). �

Lemma 9.11. — (Cond. 21 + Cond. 24) ⇔ (Cond. 20 + Cond. 24*)

Proof. — This proof is algebraic.
⇒. — Let suppose that T satisfy Cond. 21 + Cond. 24. Then Cond. 24* obviously

holds. Now, we will prove that Cond. 20 holds too. For any a, b, c ∈ S∗,

T (a, b, c; s) = 1−
∑

d∈S∗
T (a, b, c; d).

For any a, b, d ∈ S∗,

T (a, b, s; d) = p(d)
p(s)T (d, a, b; s)

= p(d)
p(s)

(
1−

∑

c∈S∗
T (d, a, b; c)

)
= p(d)
p(s) −

∑

c∈S∗

p(c)
p(s)T (a, b, c; d).

Similarly, we get (9.3) and (9.4).
For any a, b ∈ S∗,

T (a, b, s; s) = 1−
∑

d∈S∗
T (a, b, s; d)

= 1−
∑

d∈S∗

(
p(d)
p(s) −

∑

c∈S∗

p(c)
p(s)T (a, b, c; d)

)

= 2p(s)− 1
p(s) +

∑

c∈S∗

∑

d∈S∗

p(c)
p(s)T (a, b, c; d)

= p(s)− (1− p(s))2

p(s) +
∑

c∈S∗

∑

d∈S∗

p(c)
p(s)T (a, b, c; d)

= p(s)

1−

(
1− p(s)
p(s)

)2

+

∑

c∈S∗

∑

d∈S∗

p(c)
p(s)T (a, b, c; d).

Similarly, we get (9.6) and (9.7).
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For any a, d ∈ S∗,

T (a, s, s; d) = p(d)
p(s)T (d, a, s; s)

= p(d)
p(s)


2− 1

p(s) +
∑

b∈S∗

∑

c∈S∗

p(b)
p(s)T (d, a, b; c)




= p(d)
p(s)

(
2− 1

p(s)

)
+
∑

b∈S∗

∑

c∈S∗

p(b)p(c)
p(s)2 T (a, b, c; d)

= p(d)

1−

(
1− p(s)
p(s)

)2

+

∑

b∈S∗

∑

c∈S∗

p(b)p(c)
p(s)2 T (a, b, c; d);

Similarly, we get (9.10) and (9.9).
For any a ∈ S∗,

T (a, s, s; s) = 1−
∑

d∈S∗
T (a, s, s; d)

= 1−
∑

d∈S∗


p(d)
p(s)

(
2− 1

p(s)

)
+
∑

b∈S∗

∑

c∈S∗

p(b)p(c)
p(s)2 T (a, b, c; d)




= 3p(s)2 − 3p(s) + 1
p(s)2 −

∑

b∈S∗

∑

c∈S∗

∑

d∈S∗

p(b)p(c)
p(s)2 T (a, b, c; d)

= p(s)

1 +

(
1− p(s)
p(s)

)3

−

∑

b∈S∗

∑

c∈S∗

∑

d∈S∗

p(b)p(c)
p(s)2 T (a, b, c; d);

Similarly, we get (9.13) and (9.12).
For any d ∈ S∗,

T (s, s, s; d) = p(d)
p(s)T (s, s, d; s)

= p(d)
(

1− (1− p(s))3

p(s)3

)
−
∑

a∈S∗

∑

b∈S∗

∑

c∈S∗

p(b)p(c)p(d)
p(s)3 T (b, c, d; a)

= p(d)

1 +

(
1− p(s)
p(s)

)3

−

∑

a∈S∗

∑

b∈S∗

∑

c∈S∗

p(a)p(b)p(c)
p(s)3 T (a, b, c; d)

and, finally,

T (s, s, s; s) = 1−
∑

d∈S∗
T (s, s, s; d)

= 1−
∑

d∈S∗

(
p(d)

(
1 + (1− p(s))3

p(s)3

)

−
∑

a∈S∗

∑

b∈S∗

∑

c∈S∗

p(a)p(b)p(c)
p(s)3 T (a, b, c; d)

)
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= 1− (1− p(s))
(

1 + (1− p(s))3

p(s)3

)

+
∑

a∈S∗

∑

b∈S∗

∑

c∈S∗

∑

d∈S∗

p(a)p(b)p(c)
p(s)3 T (a, b, c; d)

= p(s)

1−

(
1− p(s)
p(s)

)4

+

∑

a∈S∗

∑

b∈S∗

∑

c∈S∗

∑

d∈S∗

p(a)p(b)p(c)
p(s)3 T (a, b, c; d).

So, Cond. 20 holds.

⇐. — Now, suppose that Cond. 20 and Cond. 24* hold. Cond. 21 hold by
Lemma 9.9. We will prove that Cond. 24 holds. It is obvious when a, b, c, d ∈ S∗ by
Cond. 24*. Furthermore, we have the following properties.
For any a, b, c ∈ S∗,

p(a)T (a, b, c; s) = p(a)

1−

∑

d∈S∗
T (a, b, c; d)




= p(a)−
∑

d∈S∗
p(a)T (a, b, c; d)

= p(s)

p(a)
p(s) −

∑

d∈S∗

p(d)
p(s)T (b, c, d; a)




= p(s)T (b, c, s, a).

For any a, b, d ∈ S∗,

p(a)T (a, b, s; d) = p(a)p(d)
p(s) −

∑

c∈S∗

p(c)
p(s)p(a)T (a, b, c; d)

= p(a)p(d)
p(s) −

∑

c∈S∗

p(c)
p(s)p(d)T (b, c, d; a)

= p(d)
(
p(a)
p(s) −

∑

c∈S∗

p(c)
p(s)T (b, c, d; a)

)

= p(d)T (b, s, d; a).

Similarly, for any a, c, d ∈ S∗, p(a)T (a, s, c; d) = p(d)T (s, c, d; a).
For any b, c, d ∈ S∗,

p(s)T (s, b, c; d) = p(d)−
∑

a∈S∗
p(a)T (a, b, c; d)

= p(d)(1−
∑

a∈S∗
T (b, c, d; a)

= p(d)T (b, c, d; s).
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For any a, b ∈ S∗,

p(a)T (a, b, s; s) = p(a)p(s)

1−

(
1− p(s)
p(s)

)2

+

∑

c∈S∗

∑

d∈S∗

p(c)
p(s)p(a)T (a, b, c; d)

= p(a)p(s)

1−

(
1− p(s)
p(s)

)2

+

∑

c∈S∗

∑

d∈S∗

p(c)
p(s)p(d)T (b, c, d; a)

= p(s)

p(a)


1−

(
1− p(s)
p(s)

)2

+

∑

c∈S∗

∑

d∈S∗

p(c)p(d)
p(s)2 T (b, c, d; a)




= p(s)T (b, s, s; a).
The other cases are similar and left to the readers. �
Due to (9.17) and the two preceding lemmas, we obtain

dim ({A ∈ TS (p) : A is 〈r〉-reversible})
6 dim{(T (a, b, c; d) : a, b, c, d ∈ S∗) : Cond. 24∗}.

Now, we compute dim{(T (a, b, c; d) : a, b, c, d ∈ S∗) : Cond. 24∗} to find the upper
bound.

Lemma 9.12. — For any finite set S,

dim {(T (a, b, c; d) : a, b, c, d ∈ S∗) : Cond. 24∗} = n(n− 1)(n2 − 3n+ 4)
4 .

Proof. — This proof is half-algebraic and half-combinatorics. The goal is to use
Cond. 24* to split the set {T (a, b, c; d) : a, b, c, d ∈ S∗} in some subsets such that
variables in each subset depend of only one free parameter. The partition is the
following one:
{{T (i, i, i; i)} : i ∈ S∗}
⋃
{{T (i, i, i; j), T (i, i, j; i), T (i, j, i; i), T (j, i, i; i)} : i, j ∈ S∗, i 6= j}

⋃
{{T (i, j, i; j), T (j, i, j; i)} : i, j ∈ S∗, i < j}

⋃
{{T (i, i, j; j), T (i, j, j; i), T (j, j, i; i), T (j, i, i; j)} : i, j ∈ S∗, i 6= j}

⋃
{{T (i, k, i; j), T (k, i, j; i), T (i, j, i; k), T (j, i, k; i)} : i, j, k ∈ S∗, i 6= j, k, j < k}

⋃
{{T (i, i, j; k), T (i, j, k; i), T (j, k, i; i), T (k, i, i; j)} : i, j, k ∈ S∗, i 6= j 6= k 6= i}

⋃
{{T (a, b, c; d), T (b, c, d; a), T (c, d, a; b), T (d, a, c; b)}

: a, b, c, d ∈ S∗, a 6= b 6= c 6= d 6= a 6= c, d 6= b}

One can check that, in each subset of this partition, there is exactly only one free
variable, according to Cond. 24*, see Table 9.1 to find the equations that connect
them. Now, the dimension is just the size of this partition. Enumeration is done in
Table 9.1. By adding the fourth column, we find

dim{(T (a, b, c; d) : a, b, c, d ∈ S∗) : Cond. 24∗} = n(n− 1)(n2 − 3n+ 4)
4 . �
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Table 9.1. Partition of {T (a, b, c; d) : a, b, c, d ∈ S∗} according to Cond. 24*. On
each line, we detail one of the type of the subset involved in the partition. The
first column is the subset type. The second gives the equations that connect
the variables in the subset; these equations are obtained by specifications of
Cond. 24*. The third column gives conditions on the arguments to get indepen-
dent sets when we enumerate them. The fourth column is the enumeration of
subsets of that type.

Subset type Involved equations Conditions on Number of subsets
the arguments of this type

{T (i, i, i; i)} T (i, i, i; i) i ∈ S∗ |S∗| = n− 1
{T (i, i, i; j),
T (i, i, j; i),
T (i, j, i; i),
T (j, i, i; i)}

p(i)T (i, i, i; j)
= p(j)T (i, i, j; i)
= p(j)T (i, j, i; i)
= p(j)T (j, i, i; i)

i, j ∈ S∗

i 6= j

(|S∗|
1

)(|S∗| − 1
1

)

= (n− 1)(n− 2)

{T (i, j, i; j),
T (j, i, j; i)}

p(i)T (i, j, i; j)
= p(j)T (j, i, j; i)

i, j ∈ S∗

i < j

(|S∗|
2

)
= (n− 1)(n− 2)

2
{T (i, i, j; j),
T (i, j, j; i),
T (j, j, i; i),
T (j, i, i; j)}

p(i)T (i, i, j; j)
= p(j)T (i, j, j; i)
= p(j)T (j, j, i; i)
= p(i)T (j, i, i; j)

i, j ∈ S∗

i 6= j

(|S∗|
2

)
= (n− 1)(n− 2)

2

{T (i, k, i; j),
T (k, i, j; i),
T (i, j, i; k),
T (j, i, k; i)}

p(i)p(k)T (i, k, i; j)
= p(j)p(k)T (k, i, j; i)
= p(i)p(j)T (i, j, i; k)
= p(j)p(k)T (j, i, k; i)

i, j, k ∈ S∗

i 6= j, k

j < k

(|S∗|
1

)(|S∗| − 1
2

)

= (n− 1)(n− 2)(n− 3)
2

{T (i, i, j; k),
T (i, j, k; i),
T (k, j, i; i),
T (j, i, i; k)}

p(i)p(j)T (i, i, j; k)
= p(j)p(k)T (i, j, k; i)
= p(j)p(k)T (j, k, i; i)
= p(i)p(k)T (k, i, i; j)

i, j, k ∈ S∗

i 6= j 6= k 6= i

(|S∗|
1

)(|S∗ − 1|
1

)(|S∗| − 2
1

)

= (n− 1)(n− 2)(n− 3)

{T (a, b, c; d),
T (b, c, d; a),
T (c, d, a; b),
T (d, a, b; c)}

p(a)p(b)p(c)T (a, b, c; d)
= p(b)p(c)p(d)T (b, c, d; a)
= p(a)p(c)p(d)T (c, d, a; b)
= p(a)p(b)p(d)T (d, a, b; c)

a, b, c, d ∈ S∗

a < b, c, d

b 6= c 6= d 6= b

1
4 |S

∗|(|S∗| − 1)(|S∗| − 2)(|S∗| − 3)

= (n− 1)(n− 2)(n− 3)(n− 4)
4

To get the lower bound for dim ({A ∈ TS (p) : A is 〈r〉-reversible}), we use a similar
trick that we have done in the proof of Lemma 9.1. We first remark that T (a, b, c; d) =
p(d) is a solution and, then by all the previous equations, it is not difficult to construct
a neighbourhood whose dimension is dim{(T (a, b, c; d) : a, b, c, d ∈ S∗) : Cond. 24∗}
and for which we do not lose positivity of T (a, b, c; d) for any a, b, c, d ∈ S. Then, we
obtain

dim ({A ∈ TS (p) : A is 〈r〉-reversible})
> dim{(T (a, b, c; d) : a, b, c, d ∈ S∗) : Cond. 24∗}.
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That ends the proof of point (9) of Theorem 9.6.

9.3.3. Proof of (10) of Theorem 9.6 (r ◦ v-reversible)

The proof of (10) is similar to the one of (9). Hence, we will omit some parts of
the proof that are the same. We only detail the partition in Lemma 9.14, because it
differs from the one of Lemma 9.12.
The conditions we will need here are the two following ones.
Cond. 25 . — For any a, b, c, d ∈ S, p(a)T (a, b, c; d) = p(d)T (d, c, b; a).
Cond 25* . — For any a, b, c, d ∈ S∗, p(a)T (a, b, c; d) = p(d)T (d, c, b; a).
The conditions above are linked by the following lemma.

Lemma 9.13. — (Cond. 21 + Cond. 22 + Cond. 25)⇔ (Cond. 20 + Cond. 25∗).

Proof. — The proof is similar to the one of Lemma 9.11. �
Hence, by Theorems 3.1 and 4.3 and Lemma 9.13, we obtain

dim ({A ∈ TS (p) : Ais 〈r ◦ v〉 − reversible})
6 dim{(T (a, b, c; d) : a, b, c, d ∈ S∗) : Cond. 25∗}.

Now, we compute the upper bound.

Lemma 9.14. — For any finite set S:

dim{(T (a, b, c; d) : a, b, c, d ∈ S∗) : Cond. 25∗} = (n− 1)2(n2 − 2n+ 2)
2 .

Proof. — The proof is similar to the one of Lemma 9.12, except that the variable
space is not partitioned in the same way. The new partition (based on Cond. 25*)
and its enumeration is given in the Table 9.2. Thus, the size of this partition is
(n−1)2(n2−2n+2)

2 .
The end of the proof is like the ones of Lemmas 9.1 and 9.12. It consists in checking

that there exists a neighbourhood of the point (T (a, b, c; d) = p(d) : a, b, c, d ∈ S)
with the good dimension such that any point of this neighbourhood satisfies the
required conditions. �

9.3.4. Proof of (11) of Theorem 9.6 (D4-reversible)

The proof of point (11) is similar to the two previous ones. We begin by introducing
the two new following conditions.

Cond. 26 . — For any a, b, c, d ∈ S, T (a, b, c; d) = T (c, b, a; d).
Cond 26* . — For any a, b, c, d ∈ S∗, T (a, b, c; d) = T (c, b, a; d).
We have then the following relation.

Lemma 9.15. — (Cond. 21 + Cond. 24 + Cond. 26)⇔ (Cond. 20 + Cond. 24∗ +
Cond. 26∗).

ANNALES HENRI LEBESGUE



Probabilistic cellular automata with memory two 555

By Theorems 3.1 and 4.3 and Lemma 9.15, we have

dim ({A ∈ TS (p) : A is D4-reversible})
6 dim{(T (a, b, c; d) : a, b, c, d ∈ S∗) : Cond. 24∗ + Cond. 26∗}.

Now, we compute the dimension.
Lemma 9.16. —

dim{(T (a, b, c; d) : a, b, c, d ∈ S∗) : Cond. 24∗+Cond. 26∗} = (n− 1)2(n2 − 2n+ 2)
2 .

Proof. — As before, the main argument is to find the partition of T based on
Cond. 24* and Cond. 26*. This partition and its enumeration is given in Table 9.3.
Thus, the size of this partition is n(n−1)(n2−n+2)

8 .
To prove equality between dim ({A ∈ TS (p) : A is D4-reversible}) and dim{(T (a, b,

c; d) : a, b, c, d ∈ S∗) : Cond 24∗ + Cond 26∗}, we use the same trick as developed in
the end of the proof of Lemma 9.1. �
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Table 9.2. Partition of {T (a, b, c; d) : a, b, c, d ∈ S∗} according to Cond. 25*.

Subset type Involved equations Conditions on Number of subsets
the arguments of this type

{T (i, i, i; i)} T (i, i, i; i) i ∈ S∗ |S∗| = n− 1

{T (i, i, i; j),

T (j, i, i; i)}

p(i)T (i, i, i; j)

= p(j)T (j, i, i; i)

i, j ∈ S∗

i 6= j

(|S∗|
1

)(|S∗| − 1
1

)

= (n− 1)(n− 2)

{T (i, i, j; i),

T (i, j, i; i)}

p(i)T (i, i, j; i)

= p(j)T (i, j, i; i)

i, j ∈ S∗

i 6= j

(|S∗|
1

)(|S∗| − 1
1

)

= (n− 1)(n− 2)

{T (i, j, i; j),

T (j, i, j; i)}

p(i)T (i, j, i; j)

= p(j)T (j, i, j; i)

i, j ∈ S∗

i < j

(|S∗|
2

)
= (n− 1)(n− 2)

2

{T (i, i, j; j),

T (j, j, i; i)}

p(i)T (i, i, j; j)

= p(j)T (j, j, i; i)

i, j ∈ S∗

i < j

(|S∗|
2

)
= (n− 1)(n− 2)

2

{T (i, j, j; i)} T (i, j, j; i)
i, j ∈ S∗

i 6= j

(|S∗|
1

)(|S∗| − 1
1

)

= (n− 1)(n− 2)

{T (i, i, j; k),

T (k, j, i; i)}

p(i)T (i, i, j; k)

= p(k)T (k, j, i; i)

i, j, k ∈ S∗

i 6= j 6= k 6= i

(|S∗|
1

)(|S∗| − 1
1

)(|S∗| − 2
1

)

= (n− 1)(n− 2)(n− 3)

{T (i, j, i; k),

T (k, i, j; i)}

p(i)T (i, j, i; k)

= p(k)T (k, i, j; i)

i, j, k ∈ S∗

i 6= j 6= k 6= i

(|S∗|
1

)(|S∗| − 1
1

)(|S∗| − 2
1

)

= (n− 1)(n− 2)(n− 3)

{T (i, j, k; i),

T (i, k, j; i)}

T (i, j, k; i)

= T (i, k, j; i)

i, j, k ∈ S∗

i 6= j, k

j < k

(|S∗|
1

)(|S∗| − 1
2

)

= (n− 1)(n− 2)(n− 3)
2

{T (j, i, i; k),

T (k, i, i; j)}

p(j)T (j, i, i; k)

= p(k)T (k, i, i; j)

i, j, k ∈ S∗

i 6= j, k

j < k

(|S∗|
1

)(|S∗| − 1
2

)

= (n− 1)(n− 2)(n− 3)
2

{T (a, b, c; d),

T (d, c, b; a)}

p(a)T (a, b, c; d)

= p(d)T (d, c, b; a)

a, b, c, d ∈ S∗

a < d

a 6= b 6= c 6= a

d 6= b, c

1
2 |S

∗|(|S∗| − 1)(|S∗| − 2)(|S∗| − 3)

= (n− 1)(n− 2)(n− 3)(n− 4)
2
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Table 9.3. Partition of {T (a, b, c; d) : a, b, c, d ∈ S∗} according to Cond. 24* and
Cond. 26*.

Subset type Involved equations Conditions on Number of subsets
the arguments of this type

{T (i, i, i; i)} T (i, i, i; i) i ∈ S∗ |S∗| = n− 1
{T (i, i, i; j),
T (i, i, j; i),
T (i, j, i; i),
T (j, i, i; i)}

p(i)T (i, i, i; j)
= p(j)T (i, i, j; i)
= p(j)T (i, j, i; i)
= p(j)T (j, i, i; i)

i, j ∈ S∗

i 6= j

(|S∗|
1

)(|S∗| − 1
1

)

= (n− 1)(n− 2)

{T (i, j, i; j),
T (j, i, j; i)}

p(i)T (i, j, i; j)
= p(j)T (j, i, j; i)

i, j ∈ S∗

i < j

(|S∗|
2

)
= (n− 1)(n− 2)

2
{T (i, i, j; j),
T (i, j, j; i),
T (j, j, i; i),
T (j, i, i; j)}

p(i)T (i, i, j; j)
= p(j)T (i, j, j; i)
= p(j)T (j, j, i; i)
= p(i)T (j, i, i; j)

i, j ∈ S∗

i < j

(|S∗|
2

)
= (n− 1)(n− 2)

2

{T (i, i, j; k),
T (k, i, i; j),
T (j, k, i, i),
T (i, j, k; i),
T (j, i, i; k),
T (i, i, k; j),
T (i, k, j; i),
T (k, j, i; i)}

p(i)p(j)T (i, i, j; k)
= p(j)p(k)T (i, j, k; i)
= p(j)p(k)T (j, k, i; i)
= p(i)p(k)T (k, i, i; j)
= p(i)p(j)T (j, i, i; k)
= p(j)p(k)T (k, j, i; i)
= p(j)p(k)T (i, k, j; i)
= p(i)p(k)T (i, i, k; j)

i, j, k ∈ S∗

i 6= j, k

j < k

(|S∗|
1

)(|S∗| − 1
2

)

= (n− 1)(n− 2)(n− 3)
2

{T (i, j, i; k),
T (k, i, j; i),
T (i, k, i; j),
T (j, i, k; i)}

p(i)p(k)T (i, k, i; j)
= p(j)p(k)T (k, i, j; i)
= p(i)p(j)T (i, j, i; k)
= p(j)p(k)T (j, i, k; i)

i, j, k ∈ S∗

i 6= j, k

j < k

(|S∗|
1

)(|S∗ − 1|
2

)

= (n− 1)(n− 2)(n− 3)
2

{T (a, b, c; d),
T (d, a, b; c),
T (c, d, a; b),
T (b, c, d; a),
T (c, b, a; d),
T (b, a, d; c),
T (a, d, c; b),
T (d, c, b; a)}

p(a)p(b)p(c)T (a, b, c; d)
= p(b)p(c)p(d)T (b, c, d; a)
= p(a)p(c)p(d)T (c, d, a; b)
= p(a)p(b)p(d)T (d, a, b; c)
= p(a)p(b)p(c)T (c, b, a; d)
= p(b)p(c)p(d)T (d, c, b; a)
= p(a)p(c)p(d)T (a, d, c; b)
= p(a)p(b)p(d)T (b, a, d; c)

a, b, c, d ∈ S∗

a < b, c, d

b < c, d

c 6= d

1
8 |S

∗|(|S∗| − 1)(|S∗| − 2)(|S∗| − 3)

= (n− 1)(n− 2)(n− 3)(n− 4)
8
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