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i=1ai(x)yi = 0, 0 6 x 6 1
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Abstract. — We study irreducible components of the set of polynomial plane differential
systems with a center, which can be seen as a modern formulation of the classical center-focus
problem. The emphasis is given on the interrelation between the geometry of the center set and
the Picard–lefschetz theory of the bifurcation (or Poincaré–Pontryagin–Melnikov) functions.
Our main illustrative example is the center-focus problem for the Abel equation on a segment,
which is compared to the related polynomial Liénard equation.
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1. The center-focus problem

The plane differential system
ẋ = P (x, y), ẏ = Q(x, y)(1.1)

is said to have a center at the singular point (0, 0), if in a sufficiently small neigh-
bourhood of this point all orbits are closed. Consider the scalar differential equation

dy
dx + f(x, y) = 0, x ∈ [0, 1](1.2)

in which f(x, 0) = 0,∀ x ∈ [0, 1]. The equation (1.2) is said to have a center at y = 0,
if all solutions y(x) starting near the origin, satisfy y(0) = y(1) (the interval [0, 1]
can be replaced by any closed interval).
Note on the terminology. We do not specify here the category to which belong

P,Q, f . They will be either analytic or polynomial, depending on the context. The
base field will be either R or C depending on the context too. Most results will be
valid for both. Thus, the definition of a center for (1.2) is the same in the real and
in the complex case. In the case of an analytic complex plane vector field (1.1) the
“complex” definition of a center is less straightforward. We say that the origin is a
non-degenerate center, if the vector field has an analytic first integral with a Morse
critical point at the origin. If this is the case, we shall also say that (1.1) has a Morse
singular point, e.g. [CLN96, Dul08]. We recall therefore

Definition 1.1. — The analytic complex vector field (1.1) is said to have a
Morse singular point, if it allows an analytic first integral in a neighbourhood of this
point, which has a Morse type singularity.

If (1.1) has a Morse singular point, then the linear part of (1.1) is diagonalisable
with non-zero eigenvalues, that is to say the singular point of the vector field is
non-degenerate.
An example is the saddle x′ = x, y′ = −y which has an analytic first integral xy

of Morse type, and hence a Morse critical point. Of course, it is linearly equivalent
(over C) to x′ = y, y′ = −x with first integral x2 + y2 which is the usual linear
real center. The advantage to study Morse critical points over C is that we can use
complex analysis and complex algebraic geometry. This is the point of view adopted
in these notes.
The two equations (1.1) and (1.2) are closely related. First, a polar change of

variables transforms a plane system (1.1) with a center, to equivalent equation of the
form (1.2) with a center along the interval [0, 2π]. Second, if the family of functions
f( · , y), x ∈ [0, 1] is replaced by its Fourier series f̂( · , y) (so f̂(x + 1, y) = f̂(x, y))
and the equation (1.2) has a center at y = 0, then the new system

dy
dx + f̂(x, y) = 0, (x, y) ∈ R/Z× R(1.3)

will have all its orbits starting near the periodic solution y = 0 on the cylinder
R/Z × R, periodic too. Of course, if the smooth function f is non-periodic, then
the function f̂ is only piece-wise continuous in x. The transport map of (1.2) along
[0, 1] becomes a return map for (1.3) and the definition of a limit cycle for (1.2)
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is straightforward too. Actually, the scalar equation (1.2) in which f is a regular
function, should be considered as a simplified model of the eventually singular
equation

dy
dx = P (x, y)

Q(x, y) .

We resume the above considerations in the following definitions, which make sense
both on R or C:

Definition 1.2. — Let ϕ = ϕ( · ;x0, y0) be the general solution of the equation
dy + f(x, y)dx = 0 with initial condition y0 = ϕ(x0;x0, y0), on the interval [x0, x1].

(i) The solution ϕ = ϕ( · ;x0, y0) is said to be periodic iff ϕ(x1;x0, y0) = y0
(ii) The solution ϕ = ϕ( · ;x0, y0) is said to be a limit cycle, provided that it is

periodic and isolated, that is to say there is a neighbourhood of its orbit on
S1 × R free of periodic solutions.

(iii) the map y 7→ ϕ(x1;x0, y) is the first return map of (1.2) in a neighbourhood
of y = y0.

(iv) The equation (1.2) defines a center in a neighbourhood of the periodic solution
ϕ provided that the first return map is the identity map in a neighbourhood
of y0. If the return map is not the identity map, then we say that (1.2) defines
a focus at the periodic solution ϕ.

The center focus-problem for the equation (1.2) or (1.1) is, roughly speaking, to
distinguish between a center and a focus. The algebro-geometric content of the
problem is as follows. Suppose, that (1.2) is polynomial, more precisely

dy
dx +

m∑
i=0

ai(x)yi+1, ai ∈ C[x], deg ai 6 n, x ∈ [0, 1].(1.4)

The first return map y 7→ ϕ(1; 0, y) is well defined and analytic near the periodic
solution y = 0, and moreover

ϕ(1; 0, y) = y +
∞∑
n=1

cn(a)yn+1.

As we shall see in Theorem 2.3, under the condition a1 = 0, the coefficients
cn = cn(a), n > 1, are polynomials in the coefficients of aj = aj(x), j 6 n. The
condition that ϕ(1; 0, · ) is the identity map determines an infinite number of polyno-
mial relations {cn(a) = 0} on the coefficients of the polynomials aj. By the Hilbert
basis theorem, only a finite number of them are relevant, and they define an algebraic
variety (the so called center variety Cm,n) in the vector space of all coefficients of the
polynomials aj. The problem is therefore (as formulated by Lins Neto [LN14] in the
context of a polynomial foliation induced by (1.1)):

Describe the irreducible components of Cm,n.
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The content of the paper is as follows.
In Section 2 we give first an explicit formula for the general solution of the equation

dy
dx +

n∑
i=0

ai(x)yi+1 = 0, 0 6 x 6 1

in terms of iterated path integrals, see Theorem 2.1. As a by-product we obtain a
formula for the first return map, and explicit center conditions found first by Brudnyi,
see Theorem 2.3.
Section 3 is devoted to the perturbation theory of the integrable Abel equation

dy
dx = a(x)y2

with first integral
H = 1

y
+ A(x), A(x) =

∫
a(x)dx.

It is assumed that A(0) = A(1), so the equation has a center along [0, 1]. We are
interested in the number of limit cycles (isolated solutions, such that y(0) = y(1))
which the perturbed equation dy

dx = a(x)y2 + . . . can have. The center-focus problem
for this perturbed equation leads to a well known polynomial moment problem. Under
general assumptions this problem has an elegant solution, due to Colin Christopher,
Theorem 3.2, which is presented here in the setting of Abelian integrals of dimension
zero.
In Section 4 we study irreducible components of the center variety of the polynomial

Abel equation (on the interval [0, 1])
dy
dx = p(x)y2 + q(x)y3(1.5)

as well center variety of the related Liénard equation (by “center” we mean the usual
Morse center in a neighbourhood of the origin in C2)

ẋ = y, ẏ = −q(x)− yp(x).(1.6)
In Section 4.1 we prove that the set of Abel equations coming from “pull back”
provide irreducible components of the center set, Theorem 4.1. These results are
inspired by previous contributions of Movasati.
In Sections 4.2 we revisit the classical center-focus for quadratic vector fields, with

special attention to the Q4 component of the center set.
In Section 4.3 we give a full description of the center set of Liénard type equa-

tions (1.6). These results belong mainly to Cherkas and Christopher, but we present
them in the broader context of the present notes. In particular, the base field will
be C, see Theorem 4.8 and 4.10. The centers found in this way are always of “pull
back” type. This suggests that the only centers of the related Abel equation (1.5)
are of “pull back” type too, which is the content of the so called Composition Con-
jecture for the Abel equation (1.5) [BRY10, p. 444] to be discussed in Section 4.4.
In this last section we show, however, that there are scalar Abel equations with a
center along [0, 1], which can not be obtained by a “pull back”. These equations
have a Darboux type first integral, and their construction is inspired by the study of
the Q4 component in Section 4.2. Among them we find the recent counter-example
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to the Composition Conjecture mentioned above, found first by Giné, Grau and
Santallusia [GGS19].(1)

Acknowledgement
The author is obliged to Jean-Pierre Françoise for the illuminating discussions on

the center-focus problem. I thank also the anonymous referees for several suggestions,
which helped to improve the text.

2. The first return map and the Brudnyi formula
In this section we shall describe the return map of (1.4) as a power series involving

iterated path integrals. We prove an explicit formula, due to Brudnyi [Bru06], which
amounts to solve the differential equation. The classical approach to do this is by
the Picard iteration method. If y0 is the initial condition at x0 of the differential
equation

dy = f(x, y)dx
then the Picard iteration is

yn+1(x) = y0 +
∫ x

x0
yn(t)dt

where yn tends to the solution of the equation as n→∞. We illustrate this on the
example dy = ydx. If y0 is the initial condition at x = 0 then

y1(x) = y0 +
∫ x

0
y0dt

y2(x) = y0 +
∫ x

0
y1(t)dt = y0 +

∫ x

0
y0dt+

∫∫
06t26t16x

y0dt1dt2.

As ∫
. . .
∫

06tn6···6t16x
y0dt1 . . . dtn = y0

xn

n!
we get y(x) = y0e

x as expected. The multiple (or iterated) integrals above appear in
a similar way in the non-autonomous linear dy = a(x)ydx, or even non-linear case
dy = f(x, y)dx. The non-linear case is more involved, it is reduced to the linear one,
but after introducing infinitely many new variables y, y2, y3, . . . . To get around this
reduction we shall use a simple Ansatz, for which we need a formal definition of
iterated integral.
Let Assω be the graded free associative algebra generated by the infinite dimen-

sional vector space of differential one-forms ω = a(x, y)dx, a ∈ C{x, y}. Its elements
are non-commutative polynomials in such one-forms. The differential operator

D : Ass1
ω → Ass1

ω

D(a(x, y)dx) = ∂

∂y
a(x, y)dx

(1) The present paper is an extended version of two lectures given during the Zagreb Dynamical
Systems Workshop, October 22-26, 2018.
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induces a differential operator on Assω which acts by the Leibnitz rule. The readers
familiar with the Picard–Lefschetz theory will recognize in D an avatar of the
covariant derivative of an Abelian differential on the level sets {y = c}c.
To save brackets, it is convenient to introduce the following notation

(2.1) Dω1ω2 . . . ωn = D(ω1ω2 . . . ωn)
so that (using brackets)

Dω1ω2 = D(ω1ω2) = (Dω1)ω2 + ω1(Dω2).
and

Dω1Dω2 = D(ω1Dω2) = (Dω1)(Dω2) + ω1(D2ω2).
If we use the notation

Dkω = ω(k)

then
Dω1ω2 = ω′1ω2 + ω1ω

′
2

and
Dω1Dω2 = (ω1ω

′
2)′ = ω′1ω

′
2 + ω1ω

′′
2 .

For ω1ω2 . . . ωn ∈ Assnω, ωk = ϕk(x, y)dx, define the iterated integral
∫ x
x0
ω1ω2 . . . ωn

of length n, as equal to

(2.2)
∫
. . .
∫
x06tn6···6t16x

ϕ1(t1, y) . . . ϕn(tn, y)dt1 . . . dtn.

The iterated integral allows also a recursive definition (hence the name):

(2.3)
∫ x

x0
ωnωn−1 . . . ω1 =

∫ x

x0
(ϕn(t)

∫ t

x0
ωn−1 . . . ω1)dt

where in the case n = 1 we have the Riemann integral
∫ x
x0
ω1. We note, that the

usual notation for the multiple integral (2.2) is
∫ x
x0
ωnωn−1 . . . ω1 on the place of∫ x

x0
ω1ω2 . . . ωn, see Chen [Che77] or Hain [Hai87]. The reason to prefer the def-

inition (2.3) is that it is better adapted to applications in differential equation,
e.g. [Gav05]. Recall in this context, that∫ x

x0
ωnωn−1 . . . ω1 = (−1)n

∫ x0

x
ω1ω2 . . . ωn.

For a short summary of properties of iterated integrals which we use, see [Gav05,
Appendix], [GMN09, Section 2].

Theorem 2.1. — With the notation (2.1), a first integral of the differential
equation dy + f(x, y)dx = 0 is given by the following recursively defined convergent
series

ϕ(x0;x, y) = y +
∫ x

x0
ω +

∫ x

x0
ωDω +

∫ x

x0
ωDωDω + . . .(2.4)

where
ω = f(x, y)dx.

The general solution of (1.2) with initial condition (x0, y0) is given by
y = ϕ(x;x0, y0).
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Example 2.2. — In the linear case
y′ + αy = 0 ⇐⇒ dy + αydx = 0

we obtain

ϕ(x0;x, y) = y
(

1 + α
∫ x

x0
dx+ α2

∫ x

x0
dx.dx+ . . .

)
= y(1 + α(x− x0) + α2 (x− x0)2

2 + · · · = yeα(x−x0)

and the general solution is
y = ϕ(x;x0, y0) = y0e

α(x0−x).

In the quadratic case
dy + 2xy2dx = 0, ω = 2xy2dx

we compute recursively ∫ x

x0
ω =

∫ x

x0
2xy2dx = x2 − x2

0∫ x

x0
ωDω =

∫ x

x0
2xy2dx.4xydx = y3(x2 − x2

0)2

∫ x

x0
ωDω . . .Dω = (x2 − x2

0)n.

Therefore we get the first integral
ϕ(x0;x, y) = y + y2(x2 − x2

0) + y3(x2 − x2
0)2 + . . .

and the corresponding general solution is
y = ϕ(x;x0, y0) = y0 + y2

0(x2
0 − x2) + y3(x2

0 − x2)2 + . . .

= y0

1− y0(x2
0 − x2) .

Proof of Theorem 2.1.We first verify, that for every fixed x0, the function ϕ(x0;x, y)
is a first integral :

dϕ(x0;x, y) = ∂

∂x
ϕ(x0;x, y)dx+ ∂

∂y
ϕ(x0;x, y)dy

= ω + ω
∫ x

x0
Dω + ω

∫ x

x0
DωDω + ω

∫ x

x0
DωDωDω + . . .

+
(

1 +
∫ x

x0
Dω +

∫ x

x0
DωDω +

∫ x

x0
DωDωDω + . . .

)
dy

= (ω + dy) ∂
∂y
ϕ(x0;x, y) = 0.

As ϕ(x0;x0, y0) = y0 then the level set {(x, y) : ϕ(x0;x, y) = y0} contains both
(x0, y0) and (x, y). By symmetry

y = ϕ(x;x0, y0)
is the solution of (1.2) with initial condition y(x0) = y0. The convergency proof is
by standard a priori estimates (omitted) �
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Note that for fixed x0, x1 the two return maps
y 7→ ϕ(x1;x0, y), y 7→ ϕ(x0;x1, y)

are mutually inverse. Therefore ϕ(x1;x0, · ) = id if and only if ϕ(x0;x1, · ) = id. Using
Theorem 2.1 we can give explicit center conditions. Assume that

f(x, y) =
∞∑
i=1

ai(x)yi+1

and develop the return map ϕ(x0;x1, y) as a power series in y

(2.5) ϕ(x0;x1, y) = y +
∞∑
n=1

cn(a)yn+1.

If we denote, by abuse of notations, ai = ai(x)dx then we get for the first few
coefficients cn(a) (compare to [BRY10, p. 450])

c1(a) =
∫ x1

x0
a1

c2(a) =
∫ x1

x0
a2 + 2a1a1

c3(a) =
∫ x1

x0
a3 + 2a2a1 + 3a1a2 + 6a3

1

c4(a) =
∫ x1

x0
a4 + 2a3a1 + 3a2

2 + 4a1a3 + 6a2a
2
1 + 8a1a2a1 + 12a2

1a2 + 24a4
1

and so on. The general form of the coefficients cn(a) is found immediately from
Theorem 2.1. We resume this in the following
Theorem 2.3 (Brudnyi’s formula [Bru06]). — The coefficients cn(a) of the first

return map (2.5) for the differential equation
dy
dx +

∞∑
i=1

ai(x)yi+1 = 0, x ∈ [x0, x1]

are given by the formulae

cn(a) =
∑

i1+···+ik=n
ci1,...,ik

∫ x1

x0
ai1 · · · aik

where
ci1 = 1

ci1,i2 = i2 + 1
ci1,i2,i3 = (i3 + 1)(i2 + 1)

...
ci1,...,ik = (ik + 1)(ik + ik−1 + 1) . . . (ik + · · · i2 + 1).

The above formula was deduced first by Brudnyi [Bru06, p. 422] under equivalent
form, see also [BRY10, Proposition 2.4] in the case (4.28).
Corollary 2.4. — The equation (1.2) has a center on the interval [x0, x1] if and

only if cn(a) = 0, for every integer n > 1.
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Example 2.5. — Suppose that the equation
dy
dx + a1(x)y2 + a2(x)y3 + · · · = 0

has a center on the interval [x0, x1]. Then, using as above the notation ai = ai(x)dx
we have

c1 =
∫ x1

x0
a1 = 0

c2 =
∫ x1

x0
a2 + 2

∫ x1

x0
a2

1 = 0.

The identity

2
∫ x1

x0
a2

1 =
(∫ x1

x0
a1

)2

implies then, that
∫ x1
x0
a2 = 0. If we consider more specifically the Abel equation

(2.6) dy
dx + a1(x)y2 + a2(x)y3 = 0

then taking into consideration that
∫ x1
x0
a3

1 = 0 and∫ x1

x0
(a2a1 + 3a1a2) =

∫ x1

x0
a1a2 = 0

we obtain c3 =
∫ x1
x0
a1a2. Therefore a necessary condition for the Abel equation (2.6)

to have a center on [x0, x1] is

(2.7)
∫ x1

x0
a1 = 0,

∫ x1

x0
a2 = 0,

∫ x1

x0
a1a2 = 0

If we suppose that a1, a2 are polynomials of degree at most two, these conditions are
also sufficient. The case deg a1, a2 = 3 can be studied similarly, see [BFY98, BFY99,
BFY00].

In general, an obvious sufficient condition to have a center is therefore

(2.8)
∫ x1

x0
ai1 · · · aik = 0, ∀ ij, k > 1.

Centers with the property (2.8) were called universal in [Bru06].
Consider, more specifically, the following equation with polynomial coefficients ai

(2.9) dy +
n∑
i=1

yi+1ai(x)dx = 0, ai(x) ∈ K[x].

Theorem 2.6 ([Bru06, Corollary 1.20]). — The polynomial equation (2.9) has
an universal center on the interval [x0, x1], if and only if, it is a pull back of some
polynomial equation

(2.10) dy =
(

n∑
i=1

bi(ξ)yi+1
)

dξ, bi(ξ) ∈ K[ξ].

via a suitable polynomial map ξ = ξ(x) having the property ξ(x0) = ξ(x1).

Not all centers of (2.9) are universal, as discovered recently in [GGS19].
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3. Bifurcation functions related to Abel equation and a
Theorem of Christopher

In this section we study the following perturbed Abel differential equation on the
interval [0, 1]

y′ = a(x)y2 −
∞∑
j=1

εj
(
y2pj(x) + y3qj(x)

)
or equivalently

(3.1) dy
y2 = a(x)dx− εω1 − ε2ω2 − . . .

where
ωj = (pj(x) + yqj(x))dx, a = a(x), pj = pj(x), qj = qj(x)

are polynomials of degree
deg a = n, deg pj 6 n, deg qj 6 n

and ε is a small parameter, see [BFY98, BFY99, BFY00, Chr00, Yom03]. For
ε = 0 (3.1) has a first integral

H(x, y) = 1
y

+ A(x), A(x) =
∫
a(x)dx.

Question. — How many limit cycles has the perturbed system (3.1) on the
interval [0, 1]?

Recall from the preceding section that a solution y(x) such that y(0) = y(1), is
called periodic on [0, 1]. A limit cycle of (3.1) on [0, 1] is therefore an isolated periodic
solution on [0, 1].
The number of the limit cycles in a compact set are bounded by the number of the

zeros of the so called bifurcation function, which we define bellow. A limit cycle which
remains bounded when ε → 0, tends to a periodic solution of the non perturbed
system. If the non-perturbed system (ε = 0) has a periodic solution, then necessarily
A(0) = A(1), which already implies that it has a center. For this reason we assume
from now on that A(0) = A(1) = 0, so that

dy = a(x)y2dx⇐⇒ dH = 0
has a center along 0 6 x 6 1. The perturbed equation can be written
(3.2) dH − εω1 − ε2ω2 − · · · = 0.
For a solution y(x), let Pε be the first return map which sends the initial condition
y0 = y(0) to y1 = y(1). We parameterise Pε by h = 1

y
= H(0, y) = H(1, y) and note

that Pε is analytic both in h and ε (close to zero). We have therefore for the first
return map
(3.3) Pε(h)− h = εkMk(h) +O(εk+1), Mk 6= 0.
The function Mk is the bifurcation function, associated to the equation (3.1). It

is also known as “first non-zero Melnikov function”. The reader may compare this
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to (2.4) which is another representation of the first return map, defined for small
y. As we shall see, the bifurcation function is globally defined. Therefore for every
compact set K, [0, 1] ⊂ K ⊂ R2 and all sufficiently small |ε|, the number of the
limit cycles of (3.1) in K is bounded by the number of the zeros of the bifurcation
function Mk (counted with multiplicity).
Mk allows an integral representation

Mk(h) =
∫
{H=h}

Ωk

where the integration is along the level set

{H = h} = {(x, y) : 1/y + A(x) = h, 0 6 x 6 1}.

The differential form Ωk is computed by the classical Françoise’s recursion for-
mula [Fra96, Ili98, Rou98] as follows:

If k = 1 then Ω1 = ω1, otherwise

(3.4) Ωm = ωm +
∑

i+j=m
riωj, 2 6 m 6 k

and the functions ri, 1 6 i 6 k − 1 are determined successively from
the identities Ωi = dRi + ridH.

Note that neither ri nor Ri are uniquely defined. The integrals Mi(h) are, however,
defined unambiguously.
The first order Melnikov function M1 was computed first by Lins Neto [LN80,

Section 3], see also [BFY00]. We have

M1(h) =
∫
{H=h}

ω1

=
∫
{H=h}

p1(x)dx+ yq1(x)dx

=
∫ 1

0
p1(x)dx+

∫ 1

0

q1(x)
h− A(x)dx

=
∫ 1

0
p1(x)dx+

∞∑
k=0

h−k−1
∫ 1

0
q1(x)Ak(x)dx.

M1 vanishes identically if and only if
∫ 1

0 p1(x)dx = 0 and∫ 1

0
q1(x)Ak(x)dx = 0, k = 0, 1, 2, . . .

which is the content of the famous polynomial moment problem for q1 and A, solved
in full generality by Pakovich and Muzychuk [PM09], see also [BFY98, BFY99,
BFY00, Chr00, Yom03]. If M1 = 0 by the above formula we get

M2(h) =
∫
{H=h}

r1ω1 +
∫
{H=h}

ω2

where r1 is computed from the identity ω1 = dR1 + r1dH. As dω1 = dr1 ∧ dH then
dr1 = ω′1 = dω1

dH is the Gelfand–Leray form of ω1. From the identity H(x, y(x, h)) ≡ h
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we have ∂y
∂h

= −y2 and hence

r(x, y) =
∫ x

0
ω′1 = −

∫ x

0
y2q(x)dx.

We conclude

Proposition 3.1 ([Gav05, Formula (2.8)]). — Under the hypothesis M1 = 0 the
second Melnikov function is given by the following iterated integral of length two

(3.5) M2(h) =
∫
{H=h}

ω1ω
′
1 +

∫
{H=h}

ω2

where
ω1 = p1(x)dx+ yq1(x)dx, ω′1 = −y2q1(x)dx, ω2 = p2(x)dx+ yq2(x)dx.

The hypothesis M1 = 0 is of interest for us, as it will allow to compute the tangent
space to the center set at the point (a, 0), see the next Section 4. For our purposes
the polynomial a(x) can be taken in a general position, in which case the polynomial
moment problem for q(x), A(x) has the following elegant solution

Theorem 3.2 ([Chr00]). — Assume that A, q are complex univariate polynomials,
such that

A(0) = A(1) = 0, A′(0) 6= 0, A′(1) 6= 0.
The multivalued transcendental function

(3.6) I(h) =
∫ 1

0

q(x)
h− A(x)dx

vanishes identically, if and only if the polynomials Q =
∫
q and A satisfy the following

“Polynomial Composition Condition” (PCC):
There exist polynomials Q̃, Ã,W , such that

A = Ã ◦W, Q = Q̃ ◦W, W (0) = W (1).

Before recalling the proof of Christopher, we put I in the broader context of the
Picard–Lefschetz theory.
The function I(h) is well defined for sufficiently big h, and has an analytic con-

tinuation in a complex domain to certain multivalued function. It is in fact an
Abelian integral depending on a parameter. More precisely, consider the genus zero
affine curve

Γh =
{

(x, y) ∈ C2 : 1
y

+ A(x) = h

}
, A(0) = A(1) = 0.

It is a Riemann sphere with n+2 removed points, provided that h 6= 0. The removed
points correspond to (x = xi(h), y =∞), where A(xi(h)) ≡ h, and to (x =∞, y = 0).
Given a divisor m = P0 + P1 on Γh, where

P0 =
(

0, 1
h

)
, P1 =

(
1, 1
h

)
we define a singularized algebraic curve Γsingh , see Figure 3.1.
As a topological space it is just the curve Γh with the two points P0 and P1

identified to a point m. The structural sheaf of Γsingh is the same as the structural

ANNALES HENRI LEBESGUE



On the center-focus problem 627

Figure 3.1. The singularized algebraic curve Γsingh .

sheaf of Γh, except at the point m ∈ Γsingh . A function f on Γsingh is said to be regular,
if it is regular on Γh, and moreover f(P0) = f(P1). The path [0, 1] connecting the
points x = 0 and x = 1 closes on the singular algebraic curve Γsingh . The function
I(h) defined in (3.6) is an Abelian integral on Γsingh

I(h) =
∫
δ(h)

yq(x)dx, y = 1
h− A(x)

where δ(h) ∈ H1(Γsingh ,Z) is represented by the closed loop on Γsingh corresponding
to the interval [0, 1].
We note that given an arbitrary effective divisor m = P0 + P1 + . . . Pk on Γh, one

constructs in a similar way a singularized curve Γsingh , which is the natural framework
of the generalized center problem for the Abel equation, see [BFY99, Conjecture 1.7]
and [BRY10].

Proof of Theorem 3.2. — The homology group H1(Γsingh ,Z) is of dimension n+ 2.
It is generated by n+ 1 simple closed loops γi = γi(h) which make one turn around
the n+ 1 punctures xi(h) on Γh, A(xi(h))− h = 0, as well the loop δ(h) connecting
0 and 1 on the singularized curve Γsingh . The monodromy of the loop δ(h) is shown
on the Figure 3.2.
As the integral I(h) is constant, it follows that

∫
γi(h)−γj(h)

yq(x)dx ≡ 0
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Figure 3.2. The monodromy of xi(h), xj(h) and the loop δ(h).

where A(xi(0)) = A(xj(0)) = 0 and xi(0) = 0, xj(0) = 1. We have also∫
γi(h)−γj(h)

yq(x)dx =
∫
γi(h)−γj(h)

q(x)
h− A(x)dx

= −2πi
(
q(xi(h))
A′(xi(h)) −

q(xj(h))
A′(xj(h))

)
= −2πi

[
q(xi(h))x′i(h)− q(xj(h))x′j(x)

]
= −2πi d

dh
[
Q(xi(h))−Q(xj(h))

]
where

Q(x) =
∫
q(x)dx

is a primitive of q, and xi(h) are the roots of the polynomial A(x)− h (we used that
A′(xi(h))x′i(h) ≡ 1). We denote,

(3.7) J(h) =
∫
xi(h)−xj(h)

Q = Q(xi(h))−Q(xj(h))

and call J an Abelian integral of dimension zero along the zero-cycle

xi(h)− xj(h) ∈ H0({A(x) = h},Z)

([GM07, Definition 1]). If the Abelian integral I(h) vanishes identically, then the
same holds true for J ′(h), hence J(h) = const. and it is easy to check that the
constant is zero, J(h) ≡ 0.
The set of rational functions Q such that Q(xi(h)) ≡ Q(xj(h) is a subfield of the

field of all rational functions C(x). By the Lüroth theorem this subfield is of the
form C(W ) for suitable rational function W . It follows that Q = Q̃ ◦W,A = Ã ◦W
where Q̃, Ã,W are rational functions. As Q is a polynomial, then Q−1(∞) = {∞}
which implies that Q̃−1(∞) = {p} for some p ∈ P1 and also W−1(p) = {∞}, and
similarly Ã−1(∞) = {p} Let ϕ be a Mobius functions such that ϕ(p) =∞. Then the
functions

Q̃ ◦ ϕ−1, ϕ ◦W, Ã ◦ ϕ−1

are polynomials. For this reason we may suppose that Q̃, Ã,W are polynomials. If
W (xi(h)) ≡ W (xj(h)), then clearly W (0) = W (1) and the Theorem 3.2 is proved.
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If W (xi(h)) 6≡ W (xj(h)), then we denote wi(h) = W (xi(h)), wj(h) = W (xj(h)) and
note that

Ã(wi(h)) ≡ A(wj(h)) ≡ h, Q̃(wi(h)) = Q̃(wj(h)).

We may reason then by induction on Ã, Q̃ which have a smaller degree than A,Q
respectively. Thus this process must stop and we get W with W (xi(h)) ≡ W (xj(h)),
and hence W (0) = W (1). �

4. Irreducible components of the Center set

An affine algebraic variety V in Cn is the common zero locus of a finite collection
of polynomials fi ∈ C[z1, . . . , zn]. The variety V is said to be irreducible, if for any
pair of closed varieties V1, V2 such that V = V1 ∪ V2, either V1 = V or V2 = V . Of
course, it might happen that a variety V is reducible V = V1 ∪ V2, where V1, V2 6= V .
In this case we may ask whether V1 and V2 are further reducible and so on. It is a
basic fact of commutative algebra that in this way only a finitely many irreducible
subvarieties Vi ⊂ V can be found, and more precisely:

Any variety V can be uniquely expressed as a finite union of irreducible
varieties Vi with Vi $ Vj for i 6= j, e.g. [Har95].

The varieties Vi which appear in the finite decomposition

V = ∪iVi

are the irreducible components of V .
Let W ⊂ V be another algebraic variety. Is W an irreducible component of V ? It

is usually easy to verify, whether W is irreducible. It is much harder to check that
W is an irreducible component of V . Indeed, it might happen that W $ Vi where Vi
is an irreducible component of V . To verify this, one may compare the dimensions of
the tangent spaces TxW and TxV at some smooth point x ∈ V ∩W (one point x is
enough!). ThenW $ Vi if and only if TxW $ TxV . Of course, there might be no way
to know that x is a smooth point, in which case we use the tangent cones TCxW and
TCxV . For every x ∈ W on an irreducible variety W holds dimTCxW = dimW .
Thus, for irreducible varieties W ⊂ V holds

dimTCxW < dimTCx ⇐⇒ W $ V.

The choice of x ∈ W is irrelevant, which allows a great flexibility.
The above observation will be applied in the case when V is the center set of

the equation (1.2), and W is a subset of equations with a center. In the planar
case (1.1) this approach was developed by Movasati [Mov04]. He observed that the
vanishing of the first Melnikov function, related to one-parameter deformations (arcs)
of systems (1.1) with a center, provides equations for the tangent space TxW , while
the vanishing of the second Melnikov function provides equations for the tangent
cone TCxW . This remarkable connection between algebraic geometry and dynamics
will allow us to go farther in the description of irreducible components of the center
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set. We adapt the approach of Movasati [Mov04] and Zare [Zar19] to (1.2) in the
context of the set An of Abel differential equations

dy
dx = a(x)y2 + b(x)y3(4.1)

parameterised by the polynomials a(x), b(x) of degree at most n. They form therefore
a vector space of dimension 2n + 2, and consider the subset Cn ⊂ An of Abel
differential equations having a center on the interval 0 6 x 6 1. As we saw in the
preceding section, Cn is defined by finitely many polynomial relations cn(a, b) = 0
and therefore is an algebraic set.

4.1. Universal centers of the Abel equation define irreducible
components of the center set

If the integer k > 1 divides n+ 1, then we denote by Un/k ⊂ Cn ⊂ An the algebraic
closure of the set of pairs of polynomials (a, b) (or Abel equations (4.1)), such that
the following Polynomial Composition Condition (PCC) is satisfied
There exist polynomials Ã, B̃,W of degrees (n+ 1)/k, (n+ 1)/k, k, such that

(PCC) A = Ã ◦W, B = B̃ ◦W, W (0) = W (1).

The differential form associated to (4.1)

dy −
(
a(x)y2 + b(x)y3

)
dx = dy − y2dA(x)− y3dB(x)

is a pull back of the differential form

(4.2) dy −
(
Ã′(w)y2 + B̃′(w)y3

)
dw = dy − y2dÃ(w)− y3dB̃(w)

under the map (x, y)→ (w, y), where w = W (x). In other words the equation (4.1)
is obtained from

dy
dw = Ã′(w)y2 + B̃′(w)y3

via the substitution w = W (x). This, combined toW (0) = W (1) implies that the set
of Abel equations Un/k have a center at y = 0 along [0, 1]. Of course one could check
directly that the center conditions cn(a) = 0 are satisfied for all n (Theorem 2.3).
Indeed, the iterated integrals

∫ x1
x0
ai1 · · · aik vanish, because they are pull backs under

W of iterated integrals along an interval, contractible to the point W (x0) = W (x1).
Following Brudnuyi [Bru06], we say that (4.1) determines an universal center if and
only if ∫ x1

x0
ai1 · · · aik = 0, ∀ ij ∈ N.

It is shown then that a center is universal, if and only if the corresponding equa-
tion (4.1) is a pull back under an appropriate polynomial as above, see Brud-
nyi [Bru06, Corollary 1.20]. Thus, the universal centers are exactly those, obtained
by a polynomial pull back in the sense (4.2), see the Polynomial Composition Con-
dition (PCC).
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Note that the universal center set Un/k is an irreducible algebraic variety, as a
Zariski open subset of it is parametrized by the polynomials Ã, B̃,W of degrees
respectively (n+ 1)/k, (n+ 1)/k, k. The main result of the section is

Theorem 4.1. — The algebraic sets Un/k are irreducible components of the center
set Cn of the Abel equation

dy
dx = a(x)y2 + b(x)y3, deg a, deg b 6 n.

We shall illustrate first the idea of the proof of Theorem 4.1 on the rather elemen-
tary case k = n+ 1. The closure of the universal center set Un/n+1 consists of Abel
equations (4.1) such that

deg a, deg b 6 n,
∫ 1

0
a(x)dx =

∫ 1

0
b(x)dx = 0

and moreover the polynomials a(x), b(x) are co-linear. Thus, Un/n+1 is identified to
the vector space of pairs of polynomials (a(x), b(x)) with the above properties, and
is therefore of dimension n + 1. Consider now the point (a(x), 0) ∈ Un/n+1 where
a(x) is a degree n polynomial.

Proposition 4.2. — The tangent space T(a,0)Un/n+1 is a vector space of dimen-
sion n + 1, which consists of pairs of polynomials (p, q) of degree at most n, such
that q and a are co-linear polynomials, and

∫ 1
0 p(x)dx = 0.

The proof is left to the reader. Next, we compute the tangent cone TC(a,0)Cn at
(a, 0) to the center set Cn. To avoid complications, we choose a to be a non-composite
polynomial.

Proposition 4.3. — Lat a be a non-composite polynomial of degree n, such
that a(0) 6= 0, a(1) 6= 0. Then

TC(a,0)Cn = T(a,0)Un/n+1.

The above implies that the algebraic set Un/n+1 is an irreducible component of the
center set Cn.
Proof of Proposition 4.3. — Consider a one-parameter deformation

ε→ (a− εp+ . . . ,−εq + . . . )(4.3)
of (4.1) at the point (a, 0). For ε = 0 the equation is

dy
y2 = a(x)dx

and has a first integral H(x, y) = 1
y

+A(x) where A is a primitive of a, A(0) = A(1).
The perturbed equation is

dH − ε[p(x) + yq(x)]dx+ · · · = 0.
We parameterize the cross-sections {x = 0}, {x = 1} by h = H(0, y) = H(1, y) = 1/y
and write for the return map ϕε

ϕε(h) = h+ εM1(h) +O(ε2).
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The Melnikov function M1, according to Section 3, is computed to be

M1(h) =
∫
{H=h}

p(x)dx+ yq(x)dx =
∫ 1

0
p(x)dx+

∫ 1

0

q(x)
h− A(x)dx.

Assuming that for all sufficiently small ε the deformed Abel equation belongs to the
center set Cn, implies M1 = 0, which on its turn imposes rather severe conditions
on the polynomials p, q. First,

∫ 1
0 p(x)dx = 0 as follows already from (2.7). The

second condition ∫ 1

0

q(x)
h− A(x)dx ≡ 0

is well studied in a number of articles, and is known as the polynomial moment
problem, e.g. [BRY10] and the references there. For the case of a general A, see the
Addendum by Pakovich in [Yom03]. As a(0) 6= 0, a(1) 6= 0 then by Theorem 3.2 we
have that

∫ 1
0

q(x)
h−A(x)dx ≡ 0 if and only if the composition condition holds true. As A

is supposed to be prime, this means that A and Q =
∫
q are co-linear polynomials.

This completes the proof of Proposition 4.3 and Theorem 4.1 in the case k = n. �
Note that in full generality, a vector (p, q) which belongs to the tangent cone is a

vector, such that there is a one-parameter deformation

ε→ (a+ εkp+ . . . , εkq + . . . )

at the point (a, 0) which belongs to the center set Cn. The same arguments give the
same constraints to the vector (p, q).
Proof of Theorem 4.1 in the general case. — Assume that the integer k > 1 divides

n + 1 and consider the algebraic set Un/k of Abel differential equations, at y = 0
along [0, 1]. The proof follows the same lines as the case k = n, with the notable
difference that the second Melnikov function M2 will be needed.
We compute first the tangent space to Un/k at a general point (a, 0). Consider for

this purpose the one-parameter deformation

(4.4) Fε : dy
y2 = a(x)dx− εω1 − εω2 − . . .

where
ωi = pi(x)dx+ yqi(x)dx

are polynomial one-forms, deg pi 6 n, deg qi 6 n. As before we denote

A =
∫
a, Pi =

∫
pi, Qi =

∫
qi

where

A(x) = Ã(W (x)), W (0) = W (1), Pi(0) = Pi(1), Qi(0) = Qi(1).

The point (a, 0) belongs to Un/k if and only if A = Ã ◦ W for some degree k
polynomial W .
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Proposition 4.4. — The tangent space T(a,0)Un/k is the vector space of polyno-
mials (p1, q1) such that

P1(x) = P̃ 1 ◦W (x) +R(x).Ã′(W (x)), Q1(x) = Q̃1(W (x))

where P̃ 1, Q̃1 are arbitrary polynomials of degree at most (n + 1)/k and R = R(x)
is any degree k polynomial, such that R(0) = R(1).

The proof is straightforward, it suffices to consider the first order approximation
in ε of the general deformation

ωε1 = d
[
(Ã+ εP̃ ) ◦ (W + εR)(x)

]
+ εyd

[
Q̃ ◦ (W + εR)(x)

]
of ω0

1 = adx.
Next, we study the tangent cone TC(a,0)Cn. We need to compare the affine varieties

T(a,0)Un/k ⊂ TC(a,0)Cn.

Proposition 4.5. — In a sufficiently small neighbourhood of every general point
(p, q) ∈ T(a,0)Un/k the tangent cones TC(a,0)Cn and T(a,0)Un/k coincide.

The above Proposition 4.5 shows that there is no irreducible component of TC(a,0)Cn
which contains an irreducible component of T(a,0)Un/k of strictly smaller dimension.
This would imply Theorem 4.1.
The first Melnikov function, as in the case k = n, is M1 =

∫ 1
0 p1dx + yq1dy. By

Christopher’s theorem M1 = 0 implies that q1 satisfies the composition condition
Q1(x) = Q̃1(W (x)).

Additional obstructions on the form of p1 will be found by inspecting the second Mel-
nikov function M2. Under the condition that M1 = 0 we find [Gav05, Formula (2.8)]

M2 =
∫ 1

0
ω1ω

′
1 +

∫ 1

0
ω2

where the derivative ′ is with respect to the parameter h. The identity h = A(x) + 1
y

shows that y′ = −y2 and ω′1 = −y2dx, it is clearly a covariant derivative in a
cohomology bundle (although we do not need this interpretation here). Therefore,
for the iterated integral of length two we find∫ 1

0
ωω′ = −

∫
{H=h}

(p1dx+ q1ydx)(y2q1dx)

= −
∫
{H=h}

(p1dx)(y2q1dx)

=
∫
{H=h}

y2q1P1dx

where P1 is a primitive of p1. Indeed, M1 = 0 implies the composition condition for
Q1 =

∫
q1 and A, that is to say the integral

∫
{H=h} yq1dx vanishes as a pull back. The

same then holds true for its derivative
∫
{H=h} y

2q1dx as well for the iterated integral∫
{H=h}(yq1dx))(y2q1dx). Further, by the shuffle relation for iterated integrals∫
{H=h}

(p1dx)(y2q1dx) +
∫
{H=h}

(y2q1dx)(p1dx) =
∫
{H=h}

p1dx
∫
{H=h}

y2q1dx = 0.
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Further, for
∫ 1

0 ω2 we find∫ 1

0
ω2 =

∫ 1

0
(p2 + yq2)dx =

∫ 1

0

dQ2

h− A(x)

= −
∫ 1

0

Q2dA

(h− A)2 + Q2

h− A
|10

= −
∫ 1

0
y2Q2adx,

so that under the condition M1 = 0 implies

M2(h) =
∫
{H=h}

y2q1P1dx− y2Q2adx =
∫ 1

0

q1(x)P1(x)−Q2(x)a(x)
(h− A(x))2 dx.

We apply Christopher’s theorem to M2 and conclude that the primitive of the
polynomial q1(x)P1(x)−Q2(x)a(x) is a composite polynomial, it can be expressed
as a polynomial function in W (x), and therefore

q1(x)P1(x)−Q2(x)a(x) = P (W (x))W ′(x)
or equivalently

Q̃′1(W (x))P1(x)−Q2(x)Ã′(W (x)) = R1(W (x))

for certain polynomial R1. Assuming that Q̃′1 and Ã′ are mutually prime, there exist
polynomials R2, R3 such that

Q̃′1(W )R2(W )− Ã′(W )R3(W ) = R1(W )
so

Q̃′1(W (x))(P1(x)−R2(W (x)))− (Q2(x)−R3(W (x)))Ã′(W (x)) = 0.
This implies finally that Ã′(W (x)) divides P1(x)−R2(W (x)) and

P1(x) = R2(W (x)) +R(x)Ã′(W (x)).
Proposition 4.4, and hence Theorem 4.1 is proved. �

4.2. The center set of plane quadratic vector fields

Let An be here the set of all polynomial vector fields of degree at most n. The
only (non-trivial) case in which the center set Cn ⊂ An is completely known is
the quadratic one, n = 2. For comprehensive description and historical comments
concerning the center-focus problem in the quadratic case see Zoladek [Żoł94]. To
the plane quadratic vector field (1.1) we associate a foliation Fω = {ω = 0} on C2,
defined by the polynomial one-form

ω = P (x, y)dy −Q(x, y)dx.
The leaves of the foliation are the orbits of the plane vector field (1.1), and the
restriction of the one-form ω on the leaves of Fω vanishes identically.
In this section we assume that the polynomials P,Q are of degree at most two,

and the system has a center. As the foliation is over C we must be more careful
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in the definition. We shall say that a singular point is a center, if the point is non-
degenerate, and has a local holomorphic first integral with a Morse critical point.
Thus, in a neighbourhood of such a point, and up to a complex affine change of the
variables, the system can be written in the form
(4.5) ẋ = x+ P2(x, y), ẏ = −y +Q2(x, y)
for some homogeneous polynomials P2, Q2. The following classical result is implicit
in Zoladek [Żoł94, Theorem 1]

Theorem 4.6. — The center set C2 of plane polynomial quadratic systems with
a Morse center has four irreducible components.

The above claim is a modern interpretation of the Dulac’s classification [Dul08] of
such Morse centers in a complex domain, see Lins Neto [LN14, Theorem 1.1]. Indeed,
it is easier to decide that a given variety is irreducible, than to decide that it is an
irreducible component of some algebraic set. Sketch of the proof of Theorem 4.6 can
be found in [FGX16, Appendix].
To describe explicitly the four components of the center variety C2, recall that the

foliation Fω, respectively the vector field (1.1), is said to be logarithmic, if

(4.6) P (x, y)dy −Q(x, y)dx = f1 . . . fk
k∑
i=1

λi
dfi
fi
, fi ∈ K[x, y], λi ∈ K

for suitable polynomials fi and exponents λi. As
k∑
i=1

λi
dfi
fi

= d log
k∏
i=1

fλi
i

then the logarithmic foliation Fω has a first integral of Darboux type
k∏
i=1

fλi
i .

Let L(d1, d2, . . . , dk) denotes the set of such logarithmic foliations (or plane vector
fields) with

deg f1 6 d1, deg f2 6 d2, . . . , deg fk 6 dk.

For generic polynomials fi of degree di the degree of the associated vector field is∑
di − 1. Therefore L(d1, d2, . . . , dk) is quadratic, provided that d1 = 3 or d1 = 1,

d2 = 2 or d1 = d2 = d3 = 1. This defines three large irreducible components of
the center set C2 of quadratic systems with a Morse center, L(3),L(1, 2),L(1, 1)
respectively. We have, however, one more irreducible component of C2 which is

Q4 = L(2, 3) ∪ A2.

Here L(2, 3) is the set of polynomial foliations as above, with a first integral f 3
2 /f

2
3

where deg f2 = 2, deg f3 = 3. Generically such a foliation is of degree four, but
it happens that its intersection Q4 with the space A2 of quadratic foliations is
non empty and it is an irreducible algebraic set. The notation Q4 is introduced by
Zoladek [Żoł94], the index 4 indicates the co-dimension of the set in the space of
quadratic vector fields A2.
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The exceptional set Q4 might look not quite explicit, we investigate it in details
below.
The space An of polynomial vector fields of degree at most n are identified to a

vector space of dimension (n+ 1)(n+ 2). On An acts the affine group Aff2 of affine
transformations of K2 (as usual K = R or K = C), as well the multiplicative group
K∗ corresponding to “change of time”, dimAff2 ×K∗ = 7. Therefore the dimension
of the orbit of a general polynomial vector field is 7. For this reason it is expected
that the minimal dimension of a component of the center set Cn is also 7. Such
components, if exist, will be in a sense exceptional.
In the quadratic case n = 2 the dimension of the four components of C2 are easily

found. For instance, in the case L(1, 1, 1) ⊂ A2, and up to an affine changes of
variables and time, one may suppose that the first integral is in the form xyλ(1 −
x − y)µ. Therefore the dimension of L(1, 1, 1) is 2 + 7 = 9 and the codimension is
3 = 12− 9. We find similarly that dimL(2, 1) = dimL(3) = 9.
We describe now the last componentQ4. Let [x : y : z] be homogeneous coordinates

in P2

P2(x, y, z) = a2(x, y) + a1(x, y)z + a0(x, y)z2(4.7)
P3(x, y, z) = b3(x, y) + b2(x, y)z + b1(x, y)z2 + b0(x, y)z3(4.8)

be homogeneous polynomials in x, y, z of degree 2 and 3. The function

H = P 3
2 /P

2
3

is therefore rational on P2 and induces a foliation on P2

(4.9) 3P3(x, y, z)dP2(x, y, z)− 2P2(x, y, z)dP3(x, y, z) = 0.

The corresponding affine foliation on the chart C2 defined by z = 1

(4.10) 3P3(x, y, 1)dP2(x, y, 1)− 2P2(x, y, 1)dP3(x, y, 1) = 0

is of degree 4. We may obtain a plane polynomial foliation of degree 2 by imposing
the following additional conditions.
Suppose first, that the infinite line {z = 0} is invariant, that is to say (up to affine

change)

(4.11) H(x : y : 1) = a2(x, y)3

b3(x, y)2 = 1.

This condition can be written as

P2(x, y, z)3 = P3(x, y, z)2 +O(z).

The foliation (4.9) takes the form

z
[
P (x, y, z)dx+Q(x, y, z)dy

]
+R(x, y, z)dz = 0

where degP, degQ 6 3, so (4.10) is of degree 3. If we further suppose that z divides
the homogeneous one form 3P3dP2 − 2P2dP3 then (4.9) takes the form

z2
[
P (x, y, z)dx+Q(x, y, z)dy

]
+ zR(x, y, z)dz = 0
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where degP, degQ 6 2, so (4.10) is a plane quadratic foliation. The condition that
z2 divides 2P3dP2 − 3P2dP3 can be written as

P2(x, y, z)3 = P3(x, y, z)2 +O(z2)

or equivalently

a2(x, y)3 = b3(x, y)2(4.12)
3a2(x, y)2a1(x, y) = 2b3(x, y)b2(x, y).(4.13)

These polynomial relations can be further simplified by affine changes of the variables
x, y. First, (4.12) implies that a2 is a square of a linear function in x, y which we
may suppose equal to x, that is to say

a2(x, y) = x2, b3(x, y) = x3.

The second condition (4.13) becomes 3xa1 = 2b2 where we may put a1 = 2y, and
hence

a1(x, y) = 2y, b2(x, y) = 3xy.
It is seen that the polynomial P3(x, y, 1) has a real critical point which we can put
at the origin, so we shall also suppose that b1 = 0. Using finally a “change of time”
(the action of K∗) we assume that b0 = 1 while a0 = α ∈ K is a free parameter
(modulus). The first integral takes therefore the form

(4.14) Hα(x, y) = (x2 + 2y + α)3

(x3 + 3xy + 1)2

with induced quadratic foliation

(4.15) (−αx2 − 2y2 − αy + x)dx+ (xy − αx+ 1)dy.

This is the exceptional co-dimension four component of Q4.
The reader may check that the corresponding vector field

x′ = xy − αx+ 1, y′ = αx2 + 2y2 + αy − x

has a Morse center at x = 1/α, y = 0 which is moreover a usual real center for α ∈
(1, 0). The above computation is suggested by [LN14] where, however, the modulus
α is wrongly fixed equal to α =∞). The foliation on P2 corresponding to

H∞(x, y) = (x2 + 2y + 1)3

(x3 + 3xy)2

has two invariant lines {x = 0} and {z = 0}, in contrast to the general foliation
defined by dHα(x, y) = 0 which has only one invariant line {z = 0}. We resume the
above as follows

Proposition 4.7. — Every polynomial vector field having a rational first integral
of the form

H(x, y) =

(
a0(x, y) + a1(x, y) + a2(x, y)

)3

(
b0(x, y) + b1(x, y) + b2(x, y) + b3(x, y)

)2
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where the homogeneous polynomials ai, bj of degrees 0 6 i 6 2, 0 6 j 6 3 are subject
to the relations

a2(x, y)3 = b3(x, y)2

3a2(x, y)2a1(x, y) = 2b3(x, y)b2(x, y)
is of degree two. The set of such quadratic vector fields form the irreducible compo-
nentQ4 of the center set C2. Up to an affine change of the variables x, y the polynomial
H can be assumed in the form H(x, y) = (x2+2y+α)3

(x3+3xy+1)2 where α is a parameter.

We conclude this section with the following remarkable property of Q4. One may
check that general rational function of the form H(x, y) = P 3

2 /P
2
3 , where P2, P3 are

bi-variate polynomials of degree two and three, defines a pencil of genus four curves
Γt = {(x, y) : H(x, y) = t} on C2. However, the special rational function Hα (4.14)
defines an elliptic pencil, that is to say the level sets

Γt =
{

(x, y) ∈ C2 : Hα(x, y) = t
}

are genus one curves, see [GI09].

4.3. The center set of the polynomial Liénard equation

Consider the following polynomial Liénard equation
(4.16) ẋ = y, ẏ = −q(x)− yp(x)
in which the origin (0, 0) is an isolated singular point. The following is an obvious
necessary and sufficient condition the equation (4.16) to have a linear center

q(0) = p(0) = 0, q′(0) > 0.
The description of the non-degenerate centers of (4.16) is due to Cherkas [Che72] in
the real analytic case, and to Christopher [Chr99] in the polynomial case.
Consider the following Polynomial Composition Condition (PCC)

There exist polynomials P̃ , Q̃,W such that

(PCC) P = P̃ ◦W, Q = Q̃ ◦W
where P ′(x) = p(x), Q′(x) = q(x).

The Theorem of Cherkas and Christopher can be formulated as follows

Theorem 4.8. — The real polynomial Liénard equation (4.16) has a non-dege-
nerate real center at the origin in R2, if and only if

p(0) = q(0) = 0, q′(0) > 0
and the polynomials p, q satisfy the above Polynomial Composition Condition, where
the real polynomial W has a Morse critical point at the origin.

The proof of Theorem 4.8, see [Chr99, CL07], is based on the following simple
observation due to Cherkas [Che72, Lemma 1]
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Lemma 4.9. — The real analytic equation

(4.17) ẋ = y, ẏ = −x+ y
∞∑
i=1

aix
i

has a center at the origin, if and only if a2j = 0, ∀ j > 1.

Indeed, the truncated equation

(4.18) ẋ = y, ẏ = −x+ y
∞∑
j=0

a2j+1x
2j+1

is reversible in x, and hence it has a center at the origin. In a sufficiently small
neighbourhood of the origin, (4.18) is rotated with respect to the vector field (4.17),
unless a2j = 0, ∀ j > 1. The final argument of Christopher is to use the Lüroth
theorem, to deduce the (PCC) condition. This topological argument of Cherkas does
not apply in a complex domain. We shall prove, however, the following more general

Theorem 4.10. — The (possibly complex) polynomial Liénard equation (4.16)
has a Morse critical point at the origin in C2, if and only if

p(0) = q(0) = 0, q′(0) 6= 0
and the polynomials p, q satisfy the above Polynomial Composition Condition, where
the (possibly complex) polynomial W has a Morse critical point at the origin.

Theorem 4.10 implies Theorem 4.8. Its meaning is, that the origin is a Morse
center if and only if the Liénard equation is a “pull back”. More precisely, the
Liénard equation (4.16) induces a polynomial foliation
(4.19) ydy + (q(x) + yp(x))dx = 0.
which is pull back of the foliation
(4.20) ydy + dQ̃(W ) + ydP̃ (W ) = 0

under the map W = W (x), y = y. We may assume that Q̃(0) = P̃ (0) = 0 and
Q̃′(0) 6= 0. Under these hypothesis (4.20) has a local first integral of the form

W + c1y
2 + c2Wy + c2W

2 + . . . , c1 6= 0
which implies that the pull back foliation (4.19) has an analytic first integral with a
Morse critical point at the origin.
To the end of this subsection 4.3 we prove Theorem 4.10. Assume that the Liénard

equation (4.16) has a Morse critical point at the origin. As q(0) = 0, q′(0) 6= 0
and p(0) = 0, then the polynomial 1

2y
2 + Q(x) has a Morse critical point at the

origin and there exists a local bi-analytic change of the variable x → X such that
1
2y

2 +Q(x(X)) = 1
2(y2 +X2). Thus

(4.21) ydy + (q(x) + yp(x))dx = 1
2d(y2 +X2) + ydP (x(X)).

We expand

dP (x(X)) =
( ∞∑
i=1

aiX
i

)
dX
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and obtain the equivalent foliation

(4.22) 1
2d(y2 +X2) + y

( ∞∑
i=1

aiX
i

)
dX = 0.

By analogy to the Cherkas Lemma we shall prove

Lemma 4.11. — The foliation (4.22) has a Morse critical point at the origin if
and only if a2j = 0, ∀ j > 1.

Proof. — After rescaling (X, y) 7→ ε(X, y) the foliation takes the form

(4.23) Fε : 1
2d(y2 +X2) + y

( ∞∑
i=1

εiaiX
i

)
dX = 0

and it suffices to prove that for sufficiently small ε it has a Morse critical point. Note
first that the truncated foliation F tε

(4.24) F tε : 1
2d(y2 +X2) + y

 ∞∑
j=0

ε2j+1a2j+1X
2j+1

 dX = 0

is a pullback of

(4.25) 1
2d(y2 + ξ) + 1

2y
 ∞∑
j=0

ε2j+1a2j+1ξ
j

 dξ = 0

under the map π : (X, y) 7→ (ξ, y), ξ = X2. The foliation (4.25) is regular at the
origin and has a first integral

1
2(y2 + ξ) +O(ε)

where O(ε) is analytic in ε, ξ, Y , and vanishes as ε = 0. Thus F tε has a first integral

Hε(x, y) = 1
2(y2 +X2) +O(ε)

where O(ε) is analytic in ε,X2, Y , and vanishes as ε = 0. This also shows that the
origin is a Morse critical point of the truncated foliation F tε.
As Hε is a first integral of F tε then for every fixed ε we have

(1 +O(ε))dHε(x, y) = 1
2d(y2 +X2) + y

 ∞∑
j=0

ε2j+1a2j+1X
2j+1

 dX.

Suppose now that for some j > 1, a2j 6= 0 and let j = k be the smallest integer
with this property. We have

(4.26) Fε : (1 +O(ε))dHε(x, y) + ε2kya2kX
2kdX +O(ε2k+1)dX = 0

where by abuse of notations O(ε2k+1) denotes an analytic function in X, y, ε which
is divisible by ε2k+1. The origin is a Morse critical point if and only if the holonomy
map of the two separatrices of Fε at the origin, are the identity maps. The holonomy
map will be evaluated by the usual Poincaré–Pontryagin–Melnikov formula. The
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separatrices are tangent to the lines y ± iX = 0. We take a cross-section to one of
the separatrices, parameterised by the restriction of Hε(x, y) on it. Let

γε(h) ⊂ {(x, y) : Hε(x, y) = h}

be a continuous family of closed loops vanishing at the origin as h→ 0. The holonomy
map of Fε, corresponding to this closed loop is

h 7→ h+ ε2k

1 +O(ε)

(∫
γε(h)

ya2kX
2kdX +O(ε)dX

)

= h+ ε2k
∫
γε(h)

ya2kX
2kdX +O(ε2k+1)dX

= h+ ε2ka2k

∫
γ0(h)

yX2kdX +O(ε2k+1)dX

where
γ0(h) ⊂

{
(x, y) : H0(x, y) = h

}
=
{

(x, y) : 1
2(y2 +X2) = h

}
.

By homogeneity of the polynomials∫
γ0(h)

yX2kdX = hk+1
∫
γ0(1)

yX2kdX.

As the homology of the algebraic curve {(y,X) ∈ C2 : y2 + X2 = 2h} has one
generator we can suppose that this generator is just the real circle γ0(1) = {(y,X) ∈
R2 : y2 +X2 = 2} and in this case∫

γ0(1)
yX2kdX =

∫∫
y2+X262

X2kdXdy 6= 0.

We conclude that if the holonomy map is the identity map, then a2k = 0 which is
the desirable contradiction. Lemma 4.11 is proved. �

Proof of Theorem 4.10. — Assuming that the Liénard equation has a Morse
critical point, and hence Q(x) has a Morse critical point at the origin, denote
x1(h), x2(h) the two roots of the polynomial Q(x)− h which vanish at 0 as h tends
to 0. We have obviously that X(x1(h)) = −X(x2(h)). By Lemma 4.11 the analytic
function P (x(X)) is even in X, and hence P (x1(h)) ≡ P (x2(h)). Following an idea
of Christopher (already used at the end of Section 3), consider now the subfield
C ⊂ C(x) formed by all rational functions R = R(x) ∈ C(x) satisfying the identity

R(x1(h)) ≡ R(x2(h)).

According to the Lüroth theorem, every subfield of C(x) is of the form C(W ) for some
rational function W = W (x). Thus we have C = C(W ) where P,Q ∈ C. Therefore
there exist rational functions P̃ , Q̃ such that

P = P̃ ◦W, Q = Q̃ ◦W.

Using the same argument as in the proof of Theorem 3.2 we may suppose that
P̃ ,W, Q̃ are polynomials, and hence P,Q satisfy (PCC) which completes the proof
of the Theorem 4.10. �
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4.4. Abel equations with Darboux type first integral

The polynomial Liénard equation

(4.27) ẋ = y, ẏ = −q(x)− yp(x)

with associated foliation ydy+ (q(x) + yp(x))dx = 0, after the substitution y → 1/y,
becomes the following Abel equation

(4.28) dy
dx = y2p(x) + y3q(x).

Equivalently, we consider the foliation

(4.29) dy =
(
y2p(x) + y3q(x)

)
dx.

The classification of Morse critical points of the Liénard equation (4.16) obtained
in Section 4.3 suggests that a similar claim would hold true for the scalar Abel
equation (4.29). This is the content of the following

Composition Conjecture [BRY10, p. 444]. — The Abel equation (4.29) has a
center at the solution y = 0 along some fixed interval [a, b] if and only if the following
Polynomial Composition Condition (PCC) holds true

(PCC) P = P̃ ◦W, Q = Q̃ ◦W, W (a) = W (b).

Note that the Cherkas–Christopher theorem is for non-degenerate centers. The
Composition Conjecture missed the possibility for the Abel or Liénard equations to
have a Darboux type first integral, with resonant saddle point and characteristic ratio
p : −q (instead of a non-degenerate center with 1 : −1 ratio). Incidentally, Liénard
equations with a Darboux type first integral will produce counter-examples to the
Composition Conjecture, which is the subject of the present section. We explain in
this context the recent counter-example of Giné, Grau and Santallusia [GGS19].
The method of constructing such systems is based on the example of the

co-dimension four center set Q4 for quadratic system, as explained in Section 4.2.
Let

P2 = a0(x) + a1(x)y + a2(x)y2

Q2 = b0(x) + b1(x)y + b2(x)y2

where ai, bj are polynomials, such that P p
2 = Qq

2 + O(y3), where p, q are positive
relatively prime integers. This implies that the corresponding one-form

pQ2dP2 − qP2dQ2

is divisible by y2, and then the associated reduced foliation (after division by y2) is of
degree two in y, and moreover {y = 0} is a leaf. Therefore the foliation is defined as

(4.30) (r1y + r2)dy = y(r3y + r4)dx = 0, ri ∈ C[x]
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where
r1 = 2(p− q)a2b2

r2 = (p− 2q)a1b2 − (q − 2p)b1a2

r3 = pa′2b2 − qb′2a2

r4 = pa′1b2 − qb′1a2.

Note that if a2 = const. 6= 0, b2 = const. 6= 0 the foliation takes the Liénard form
(4.31) (r1y + r2)dy = yr4dx, r1 = const. .
Of course, it is not clear, whether such polynomials exist. To verify this we have to
solve the equation(

a0(x) + a1(x)y + a2(x)y2
)p

=
(
b0(x) + b1(x)y + b2(x)y2

)q
mod y3

assuming that ai(x), bj(x) are polynomials, and a2, b2 are constants. A first condition
is given by

ap0 = bq0

which implies(
1 + a1(x)

a0(x)y + a2(x)
a0(x)y

2
)p

=
(

1 + b1(x)
b0(x)y + b2(x)

b0(x)y
2
)q

mod y3

or equivalently

p
a1(x)
a0(x) = q

b1(x)
b0(x)

p
a2(x)
a0(x) + p(p− 1)

2

(
a1(x)
a0(x)

)2

= q
b2(x)
b0(x) + q(q − 1)

2

(
b1(x)
b0(x)

)2

.

Thus ai, bj are polynomials which satisfy the following redundant system of equa-
tions

a0(x)p = b0(x)q

p
a1(x)
a0(x) = q

b1(x)
b0(x)

p
a2(x)
a0(x) −

p

2

(
a1(x)
a0(x)

)2

= q
b2(x)
b0(x) −

q

2

(
b1(x)
b0(x)

)2

.

It follows that for some polynomial R,
a0(x) = R(x)q, b0 = R(x)p

and moreover
pa2R(x)−q − qb2R(x)−p

is a square of a rational function, where we recall that a2 = const., b2 = const.. It is
easy to check that this is only possible if, say p < q, and p = 2k − 1, q = 2k for an
integer k > 1. With this observation the analysis of the system is straightforward
and is left to the reader. We formulate the final result in the following
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Theorem 4.12. — For every integer k > 1 and polynomial r(x) the function

H(x, y) =

[
(1− r(x)2)2k + 2kr(x)(1− r(x)2)ky + ky2

]2k−1

[
(1− r(x)2)2k−1 + (2k − 1)r(x)(1− r(x)2)k−1y + 2k−1

2 y2
]2k

is the first integral of a Liénard type equation of the form

(4.32)


dx
dt = −y + r2(x),
dy
dt = yr4(x),

for suitable polynomials r2, r4.

It is clear that the above Liénard system is a polynomial pull back under x→ r(x)
of a simpler master Liénard system with first integral

(4.33) Hk(x, y) =

[
(1− x2)2k + 2kx(1− x2)ky + ky2

]2k−1

[
(1− x2)2k−1 + (2k − 1)x(1− x2)k−1y + 2k−1

2 y2
]2k

which can not be further reduced. As the Liénard equation (4.32) is equivalent to
the Abel equation

(4.34) dz
dx = p(x)z2 + q(x)z3

where z = 1/Y and Y = y − r2(x) and
p(x) = r4(x) + r′2(x), q(x) = r2(x)r4(x)

then we obtain for every k ∈ N∗ an Abel equation with a Darboux type first
integral. Except in the case k = 1 these Abel equations will have a center along the
interval [−1, 1].
To the end of the Section 4.4 we consider in more detail the simplest cases k = 1

and k = 2. For k = 1 we get

H1(x, y) = (1− x2)2 + 2x(1− x2)y + y2(
1− x2 + xy + 1

2y
2
)2 .

which is the first integral of the following cubic Liénard equation :

(4.35)


dx
dt = y + 3x(1− x2)
dy
dt = −y(1 + 3x2).

The characteristic ratios of the singular points (0, 0), (±1, 0) are equal to 3 : −1
and 3 : −4 and the characteristic values of

(
+ 1√

3 ,−
1√
3

)
and

(
− 1√

3 ,+
1√
3

)
equal −1

(so we have integrable cubic saddles, presumably new). The Liénard transformation
Y = 2y + 3x(1− x2) transforms the above to the standard form

dx
dt = Y,

dY
dt = p(x) + q(x)Y ⇐⇒ Y

dY
dx = p(x) + q(x)Y

or also to the Abel type equation
d

dx(1/Y ) = −q(x)
( 1
Y

)2
− p(x)

( 1
Y

)3
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with respect to the variable z = 1/Y .
Assume that k = 2, the first integrals takes the form

H2(x, y) =

(
y2 − 2xy(1− x2)2 + 1

2(1− x2)4
)3

(
y2 − 2xy(1− x2) + 2

3(1− x2)3
)4

while the corresponding foliation of Liénard type is defined by
(4.36) (15x4 − 6x2 − 1)ydx− ((5x2 − 3)(x2 − 1)x+ y)dy = 0.
Namely, the Liénard transformation

y → −y − (5x2 − 3)(x2 − 1)x
transforms the equation (4.36) to
(4.37) (q(x) + p(x)y)dx+ ydy = 0
or equivalently to 

dx
dt = −y
dy
dt = q(x) + p(x)y

where
p(x) = 2(20x4 − 15x2 + 1)
q(x) = x(x− 1)(x+ 1)(5x2 − 3)(15x4 − 6x2 − 1).

The first integral H2 takes the form(
y2 − 8x(1− x2)(x2 − 1

2)y + (1− x2)2(x2 − 1
2)(15x4 − 6x2 − 1)

)3

(
y2 − 2x(1− x2)(5x2 − 2)y + 1

3(1− x2)2(5x2 − 2)(15x4 − 6x2 − 1)
)4 .

However, after the substitution 1→ 1/y, the above Liénard equation is equivalent
to the Abel equation

(4.38) dy
dx = p(x)y2 + q(x)y3

with Darboux type first integral H(x, y) given by the expression

y2
[
1− 8x(1− x2)(x2 − 1

2)y + (1− x2)2(x2 − 1
2)(15x4 − 6x2 − 1)y2

]3
[
1− 2x(1− x2)(5x2 − 2)y + 1

3(1− x2)2(5x2 − 2)(15x4 − 6x2 − 1)y2
]4 .

The above first integral of the Abel equation (4.38) has been found first by Giné,
Grau and Santallusia [GGS19]. Using this fact they deduced the following

Theorem 4.13. — The Abel equation (4.38) has a center at y = 0 along the
interval [−1, 1] but this center is not universal.

Proof. — As y = 0 is a solution of (4.38) then for all sufficiently small |ε| the
solution y = y(x) with initial condition y(−1) = ε 6= 0 exists along the compact
interval [−1, 1]. The identity H(±1, y) = y2 shows that y(1) = ε or y(1) = −ε and
it is easy to check that in fact y(1) = ε, Indeed, for real ε the solution y(x) does
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not vanish and hence it has the same sign as ε. Therefore the transport map along
the interval [−1, 1] is the identity map, and the Abel equation has a center at the
solution y = 0.
The polynomials P =

∫
p and Q =

∫
q are of degrees 5 and 10. Therefore if they had

a common non-trivial composition factor, then the factor would be P and Q = Q̃◦P
for suitable quadratic polynomial Q̃. It follows that p = P ′ divides q = Q′ which is
obviously not true. Thus P,Q can not have a common composition factor, and (by
the Brudnuy’s theorem) the center is not universal. �
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