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Résumé. — Un célèbre résultat de Wolpert dit que si on calcule la forme symplectique de
Weil–Petersson sur l’espace de Teichmüller de deux twists infinitésimaux le long de géodésiques
fermées simples sur une surface hyperbolique donnée, on obtient la somme des cosinus des
angles d’intersection. Nous définissons des déformations infinitésimales à partir d’objets plus
généraux qui sont des graphes géodésiques pondérés. Ils peuvent représenter n’importe quel
vecteur tangent de l’espace de Teichmüller. Nous démontrons une formule qui généralise la
formule de Wolpert à ces nouveaux objets. Dans le cas de courbes fermées simples, nous
retrouvons exactement le résultat de Wolpert.

1. Introduction

Given a closed oriented surface S of genus g > 2, Teichmüller space T (S) is
classically defined as the space of complex structures on S, up to biholomorphisms
isotopic to the identity. By the uniformization theorem, it is naturally identified to
what is sometimes called Fricke space F(S), namely the space of hyperbolic metrics
on S up to isometries isotopic to the identity.
The Weil–Petersson metric is a Kähler metric on T (S), whose definition only

involves the point of view of T (S) as the space of complex structures on S. However,
it turns out to be an extremely interesting object from the hyperbolic geometric point
of view. An example of the bridge between the two viewpoints is in fact provided by
Wolpert’s theorem ([Wol81, Wol83]), which we now briefly recall. Given two simple
closed geodesics c, c′ on a fixed closed hyperbolic surface (S, h), let us denote by tc
and t′c the infinitesimal twists along c and c′, namely

tc = d

dw

∣∣∣∣∣
w=0

Ew·c
l (h) ,

where Ew·c
l (h) is the new hyperbolic surface obtained from h by a left earthquake

along c — that is, by cutting along c and re-glueing after a left twist of length w.
Then Wolpert showed that, if ωWP denotes the symplectic form of the Weil–Petersson
Kähler metric, then

(1.1) ωWP(tc, tc′) = 1
2
∑

p∈c∩c′
cos θp ,

where, for every point of intersection p between c and c′, θp denotes the angle of
intersection at p.

1.1. Balanced geodesic graphs

In this paper, we will define a more general type of infinitesimal deformations on
T (S), which generalize twists along simple closed geodesics. These will be associated
to a balanced geodesic graph, namely a weighted graph (G,w) on (S, h) whose edges
are geodesic segments and whose weights satisfy a balance condition at every vertex
p, namely:
(1.2)

∑
p∈e

weve = 0 ,
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Wolpert formula for balanced geodesic graphs 875

where the sum is over all edges e which are adjacent to the vertex p, we denotes the
weight of e and ve is the tangent vector to e in TpS.
Clearly, every simple closed geodesic can be regarded as a balanced geodesic

graph, just by adding a number of vertices so as to make sure that every edge is
a segment, and choosing the same weight w for all edges. The balance condition is
then trivially satisfied. In fact, the infinitesimal deformation t(G,w) we define reduces
to the infinitesimal twist in this case.
In order to define t(G,w), it is easier to use the identification of T (S) to the space

of discrete and faithful representations of π1(S) into Isom(H2) (i.e. the group of
orientation-preserving isometries of the hyperbolic plane), up to conjugacy. The
identification is obtained by associating to a hyperbolic metric h on S its holo-
nomy representation ρ. The tangent space to the space of representations up to
conjugacy is then known to be identified (see [Gol84]) to the group cohomology
H1

Ad ρ(π1(S), isom(H2)). The tangent vector t(G,w) is then defined by lifting to the
universal cover of S a generic closed loop representing γ ∈ π1(S), and taking the
weighted sum of the infinitesimal twists along the lifts of the edges of G met by the
lift of the closed loop. The balance condition ensures that t(G,w) is well-defined. If
(G,w) = (c, 1) is a simple closed geodesic with weight 1, t(G,w) actually coincides with
the variation of the holonomy of the twisted metrics Ew·c

l (h), and we thus recover
the infinitesimal twist tc.

1.2. Motivations

Besides the main result explained below, the main motivation for this paper is the
introduction of the balanced geodesic graphs. Weighted multicurves are a particular
case of our balanced geodesic graph, as well as a particular case of measured geodesic
laminations. While the original motivation behind measured geodesic laminations is
to construct a natural completion of the space of weighted multicurves, the space
of balanced geodesic graphs seems an interesting object to consider because it is
endowed with a natural vector space structure (described below), thus including
the “span” of weighted multicurves. In turn, balanced geodesic graphs have a more
combinatorial nature, easier to handle with than measured geodesic laminations —
see e.g. [SB01] where Wolpert formula where generalized to the case of geodesic
laminations.
Let us highlight two main motivations behind the study of balanced geodesic

graphs. The first motivation is directly related to hyperbolic geometry, in the spirit
of the study of earthquakes of hyperbolic surfaces, see for instance [Bon92, McM98,
Thu86]. In fact, in [FS12] left/right flippable tilings were introduced. These are
(non-continuous) transformations between hyperbolic surfaces, associated to certain
geodesic graphs on (S, h) such that the faces of the graph are divided into black
and white faces, and the transformation is obtained by flipping the black faces,
see Figure 5.1. A balanced geodesic graph (G,w) can be interpreted as a tangent
vector to a path of flippable tilings on hyperbolic surfaces, where the black faces are
collapsing to the vertices of G and the weights w are the derivatives of the lengths
of such black faces. Flippable tilings are thus a generalization of the deformations
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by earthquakes along simple closed curves, which have an infinitesimal twist as
tangent vector. Balanced geodesic graph, that are the object of the present paper,
are generalizations of (left, say) infinitesimal earthquake.
The second motivation comes from the deep relation between Teichmüller theory

and geometric structures on three-dimensional manifolds. In the case of hyperbolic
structures in dimension three, this is an important phenomenon, which goes back
to Bers’ simultaneous uniformization theorem for quasi-Fuchsian manifolds [Ber60],
and has been widely developed [Bon86, Bro03, Sep16, Tau04, Uhl83]. Analogous of
quasi-Fuchsian manifolds in Lorentzian geometry are maximal globally hyperbolic
manifolds, and their relation with Teichmüller theory has been initiated in [Mes07].
Here we are mostly interested in flat maximal globally hyperbolic manifolds, as
studied in [Bar05, Bon05, BS16]. The relevant point here is that a balanced geodesic
graph with positive weights, and such that S\G is a disjoint union of convex polygons,
is naturally the dual to convex polyhedral surface in a flat globally hyperbolic
manifold M of dimension three homeomorphic to S × R. Moreover, as observed by
Mess, the isomorphism between Minkowski space R2,1 and the Lie algebra isom(H2)
∼= so(2, 1) induces a correspondence between the tangent space of T (S), in the model
H1

Ad ρ(π1(S), isom(H2)) of the representation variety, and the translation part of the
holonomies of manifolds M as above.
This enables us to show that the map which associated to a balanced geodesic

graph (G,w) the deformation t(G,w) in T[h]T (S) is surjective. In other words, any
tangent vector to T (S) can be represented as the deformation associated to some
balanced geodesic graph. This is not true if one only considers (weighted) simple
closed geodesics. Hence in this sense our main result below, which extends Wolpert’s
formula, is quite more general since it can be used to represent the Weil–Petersson
form applied to any two tangent vectors to T (S).

1.3. Main result

Let us now come to the statement of the main result. Recall that ωWP denotes the
symplectic form of the Weil–Petersson metric on T (S).
Theorem. — Let (G,w) and (G ′,w′) be two balanced geodesic graphs on the

hyperbolic surface (S, h). Then

(1.3) ωWP
(
t(G,w), t(G′,w′)

)
= 1

2
∑

p∈e∩e′
wew

′
e cos θe,e′ ,

where e and e′ are intersecting edges of G and G ′ and θe,e′ is the angle of intersection
between e and e′ according to the orientation of S.
Therefore, when (G,w) = (c, 1) is a simple closed geodesic with weight 1, we

recover Wolpert’s Formula (1.1). Let us remark again that our construction permits
to represent any tangent vector in T[h]T (S) as t(G,w) for some balanced geodesic
graph (G,w), and thus our result is in a greater generality than Wolpert’s.
There is a small caveat in interpreting (1.3). If the two geodesic graphs G and G ′ do

not have vertices in common and intersect transversely, it is clear what the intersec-
tion points and angles are. On the other hand, if G and G ′ have some non-transverse
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intersection or share some vertex, the points of intersection must be counted by
perturbing one of the two graphs by a small isotopy, so as to make the intersection
transverse. See Figures 7.2 and 7.3. This is just a caveat for counting points of
intersections (it turns out that the result not depend on the chosen perturbation, as
a consequence of the balance Condition (1.2)), while of course the angles cos θe,e′ are
the angles between the original geodesic edges e, e′.
To conclude the introduction, let us mention that the proof of our main result

relies on two main tools. The first tool is a theorem of Goldman ([Gol84]) which
shows that the Weil–Petersson symplectic form on T (S) equals (under the holonomy
map) a form defined only in terms of the group cohomology H1

Ad ρ(π1(S), isom(H2)).
The second tool is de Rham cohomology with values in certain flat vector bundles
over S of rank 3. In this setup, our proof becomes rather elementary, and we thus
also provide a simple proof of Wolpert’s formula for simple closed geodesics as a
particular case.
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our paper and suggesting some improvements in Section 4. We are grateful to an
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2. Teichmüller space and Weil–Petersson metric

Let S be a closed oriented surface of genus g > 2. The Teichmüller space of S is
defined as:

T (S) = {complex structures on S}/Diff0(S) ,
where Diff0(S) is the group of diffeomorphisms of S isotopic to the identity, and it
acts by pre-composition of a complex atlas. Namely, two complex structures on S
are equivalent in T (S) if and only if there exists a biholomorphism isotopic to the
identity. In this section we collect some preliminary results on Teichmüller space,
spaces of representations of the fundamental group of S, and Weil–Petersson metric.

2.1. Weil–Petersson metric

Teichmüller space T (S) is a manifold of real dimension 3|χ(S)|, and is endowed
with a structure of complex manifold. Moreover, it is endowed with several metric
structures, one of which is theWeil–Petersson metric, which turns out to be a natural
Kähler structure on T (S). Let us recall briefly its definition.
Let us fix a complex structure X on S. It is known that the tangent space T[X]T (S)

of T (S) is naturally identified to a quotient of the vector space BD(X) of Beltrami
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differentials, namely sections of the vector bundle KX ⊗ K−1
X , where KX is the

canonical bundle of (S,X). More precisely, T[X]T (S) ∼= BD(X)/BD0(X), where
BD0(X) is the subspace of Beltrami differentials which induce trivial infinitesimal
deformations of X.
On the other hand, the cotangent space T ∗[X]T (S) is naturally identified to the

space of holomorphic quadratic differentials QD(X) = H0(S,K2
X). The identification

is given by the pairing on QD(X)×BD(X) defined by

(φ, µ) 7→
∫
S
φµ .

In fact, if in local complex coordinates φ = φ(z)dz2 and µ = µ(z)dz̄/dz, then
φµ = φ(z)µ(z)dz ∧ dz̄ is a quantity which can be naturally integrated over S. The
fundamental property is then the fact that for every φ ∈ QD(X),∫

S
φµ = 0 for every µ ∈ BD(X)⇔ µ ∈ BD0(X) .

Hence we have a vector space isomorphism QD(X) ∼= (BD(X)/BD0(X))∗.
The Weil–Petersson product is then easily defined on the cotangent space, by

(φ, φ′) 7→
∫
S

φφ′

hX
,

where hX is the unique hyperbolic metric (i.e. Riemannian metric of constant curva-
ture −1) compatible with the complex structure X, provided by the Uniformization
Theorem ([Koe09]). By a similar argument as above, the quantity φφ′/hX is indeed
of the correct type to be integrated on S.

Hyperbolic metrics and Fuchsian representations

We will be using other two important models of T (S).
(1) By the aforementioned Uniformization Theorem, given any complex structure

X on S, there is a unique hyperbolic metric hX on S compatible with X. Let
us define the Fricke space of S as:

F(S) = {hyperbolic metric on S}/Diff0(S) ,
where Diff0(S) clearly acts by pull-back. It is easy to check that the map
X → hX is equivariant for the actions of Diff0(S), and therefore induces a
diffeomorphism

(2.1) U : T (S)→ F(S) .
The inverse of U is simply the map which associates to a hyperbolic metric
h the complex structure induced by h, which is obtained by choosing local
isothermal coordinates.

(2) Given a hyperbolic metric h on S, let π : S̃ → S be the universal cover of S.
Then π∗h is a hyperbolic metric, which is complete since S is compact, on the
simply connected surface S. Hence (S̃, π∗h) is isometric to the hyperbolic plane
H2 by [Rat06, Theorem 8.6.2]. Such an isometry (chosen to be orientation-
preserving) is unique up to post-compositions with elements in group Isom(H2)
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of orientation-preserving isometries of H2, and is called developing map. Let
us denote it by dev : (S̃, π∗h)→ H2. It turns out to be equivariant for some
representation ρ : π1(S)→ Isom(H2), called the holonomy map. That is:

dev ◦γ = ρ(γ) ◦ dev
for every γ ∈ π1(S). Since dev is well-defined up to post-composition, ρ is
well-defined up to conjugacy by elements of Isom(H2). This provides a map

F(S)→ χ
(
π1(S), Isom(H2)

)
,

where χ(π1(S), Isom(H2)) is the character variety

Hom
(
π1(S), Isom(H2)

)
// Isom(H2) .

By a theorem of Goldman [Gol80], this map is a diffeomorphism onto the space
of faithful and discrete representations (called Fuchsian representations) up to
conjugacy, which is precisely a connected component of χ(π1(S), Isom(H2)):

(2.2) Hol : F(S)→ χfd
(
π1(S), Isom(H2)

)
,

where
χfd

(
π1(S), Isom(H2)

)
= Homfd

(
π1(S), Isom(H2)

)
/ Isom(H2)

and Homfd denotes the faithful and discrete representations.

2.2. Group cohomology

The model of Teichmüller space T (S) as χfd(π1(S), Isom(H2)) enables to give a
simple description of the tangent space. In fact, using the differentials of the maps
U and Hol, we can identify

T[X]T (S) ∼= T[hX ]F(S) ∼= T[ρ]χ(π1(S), Isom(H2)) ,
where [ρ] = Hol([hX ]). In [Gol84], the tangent space to the space of representations
is described as the group cohomology with values in the Lie algebra isom(H2):

T[ρ]χ
(
π1(S), Isom(H2)

) ∼= H1
Ad ρ(π1(S), isom(H2)) .

The vector space H1
Ad ρ(π1(S), isom(H2)) is the quotient

H1
Ad ρ

(
π1(S), isom(H2)

)
=
Z1

Ad ρ (π1(S), isom(H2))
B1

Ad ρ (π1(S), isom(H2)) ,

where:
• Z1

Ad ρ(π1(S), isom(H2)) is the space of cocycles τ : π1(S) → isom(H2) with
respect to the adjoint action of ρ, that is, functions with values in the Lie
algebra isom(H2) satisfying:

(2.3) τ(γη) = Ad ρ(γ) · τ(η) + τ(γ) .
This is essentially the condition of being a representation of π1(S) into
Isom(H2), at first order.
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• B1
Ad ρ(π1(S), isom(H2)) is the space of coboundaries, namely cocycles of the

form
(2.4) τ(γ) = Ad ρ(γ) · τ0 − τ0 ,

for some τ0 ∈ isom(H2). This is the first-order condition for a deformation
of being trivial in χ(π1(S), Isom(H2)), that is, of being tangent to a path of
representations ρt obtained from ρ by conjugation.

2.3. Goldman symplectic form

In the fundamental paper [Gol84], Goldman introduced a symplectic form ωG
on the space χ(π1(S), isom(H2)) (actually, the construction holds when replacing
isom(H2) by a more general Lie group G) and showed that it coincides (up to a
factor) with the symplectic form ωWP of the Weil–Petersson Hermitian metric.
The Goldman form is defined as follows. Recall from the previous Section 2.2

that the tangent space T[ρ]χ(π1(S), Isom(H2)) is identified to the group cohomology
H1

Ad ρ(π1(S), isom(H2)). Then one can define a pairing

H1
Ad ρ

(
π1(S), isom(H2)

)
×H1

Ad ρ

(
π1(S), isom(H2)

)
ωG−→ H2

Ad ρ(π1(S),R) ∼= R .

The first arrow is obtained by the cup product in group cohomology, paired by using
the Killing form of isom(H2). The identification between H2(π1(S),R) and R is then
given by evaluation on the fundamental top-dimensional class of the closed oriented
manifold S.
Recall that the map Hol ◦U associates to the Teichmüller class of a complex

structure X on S the holonomy representation of the uniformizing hyperbolic metric
hX . The differential of Hol ◦U should hence be consider as a vector space isomorphism

d(Hol ◦U) : T[X]T (S)→ H1
Ad ρ

(
π1(S), isom(H2)

)
.

In [Gol84], Goldman proved:

(2.5) (Hol ◦U)∗ωG = 1
4ωWP .

Concerning Equation (2.5), we remark that in Goldman’s original paper [Gol84]
there is a different factor appearing. This is due to two reasons:

• Goldman uses the trace form in the sl(2,R) model of isom(H2), which is
defined as b(X, Y ) = tr(XY ), instead of the Killing form which turns out to
be κ = 4b.
• The original theorem of Goldman concerns the Weil–Petersson metric on
T ∗T (S), hence the choice of an identification between T[X]T (S) and T ∗[X]T (S)
may result in different coefficients for the Weil–Petersson metric.

As a reference for Equation (2.5), which is the formula we actually need in this
paper, see [Lou15, Section 2].
There actually is another description of the Goldman form in terms of de Rham

cohomology, which will be introduced in Section 6.

ANNALES HENRI LEBESGUE



Wolpert formula for balanced geodesic graphs 881

3. Some properties of the hyperboloid model

It will be useful for this paper to consider the hyperboloid model of H2. Namely,
let us consider (2+1)-dimensional Minkowski space, which is the vector space R3

endowed with the standard bilinear form of signature (2, 1):

R2,1 =
(
R3, 〈x, x′〉 = x1x

′
1 + x2x

′
2 − x3x

′
3

)
.

It turns out that the induced bilinear form on the upper connected component of the
two-sheeted hyperboloid (which is simply connected) gives a complete hyperbolic
metric. It is thus isometric to H2, again by [Rat06, Theorem 8.6.2]. Hence we will
identify

H2 =
{
x ∈ R2,1 : 〈x, x〉 = −1 , x3 > 0

}
.

3.1. Description of the Lie algebra

By means of this identification, we have

Isom(H2) = SO0(2, 1) ,

namely, the group of orientation-preserving isometries ofH2 is the identity component
in the group of linear isometries of the Minkowski bilinear form. We then also have
the following identification for the Lie algebra:

isom(H2) = so(2, 1) ,

where so(2, 1) are skew-symmetric matrices with respect to the Minkowski metric.
A useful description for this Lie algebra is provided by the Minkowski cross product,
which is the analogue for R2,1 of the classical Euclidean cross product. This provides
an isomorphism

Λ : R2,1 → so(2, 1) ,
namely

Λ(x)(y) = y � x ∈ R2,1

for any y ∈ R2,1. More explicitly,

Λ

x1
x2
x3

 =

 0 x3 −x2
−x3 0 x1
−x2 x1 0

 .

Hyperbolic isometries

An example is given by hyperbolic isometries. Every geodesic ` of H2 is of the
form ` = H2 ∩ x⊥ ⊂ R2,1, for some x ∈ R2,1 with 〈x, x〉 = 1, and x⊥ is the plane
orthogonal to the vector x for 〈·, ·〉. Moreover, the orientation of H2 and the direction
of x determine an orientation of `. Then we define Tt(`) the hyperbolic isometry
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x

ℓ

H2

Figure 3.1. In the hyperboloid model H2, the geodesic ` = H2 ∩ x⊥.

which preserves ` setwise and translates every point of ` by a length t according to
the orientation of `. We will also denote

t(`) := d

dt

∣∣∣∣∣
t=0

Tt(`) ,

namely, t(`) is the generator of the 1-parameter group Tt(`), or in other words the
infinitesimal translation along `.

Example 3.1. — If we pick x = (1, 0, 0), then ` = H2 ∩ {x1 = 0} (see also
Figure 3.1) and

Tt(`) =

1 0 0
0 cosh t sinh t
0 sinh t cosh t

 .

Hence the infinitesimal isometry is

t(`) := d

dt

∣∣∣∣∣
t=0

Tt(`) =

0 0 0
0 0 1
0 1 0

 = Λ

1
0
0

 .

In general, if ` is an (oriented) geodesic, intersection of H2 and x⊥ endowed with
the induced orientation, then the following formula holds:
(3.1) t(`) = Λ(x) .

Additional structures on so(2, 1)

Finally, two important properties of the isomorphism Λ are the following. See
also [BS18, Section 2]

• Λ is equivariant for the actions of SO0(2, 1): the standard action on R2,1 and
the adjoint action on so(2, 1). Namely, for every η ∈ SO0(2, 1),

(3.2) Λ(η · x) = Ad η · Λ(x) .
• Λ is an isometry between the Minkowski metric and the Killing form on
so(2, 1), up to a factor:

(3.3) κ(Λ(x),Λ(x′)) = 2〈x, x′〉 ,
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where the Killing form κ for so(2, 1) is:
κ(a, a′) = tr(aa′) .

4. Balanced geodesic graphs on hyperbolic surfaces

In this section we introduce balanced geodesic graphs on a closed hyperbolic surface,
we show that there is a vector space structure on the space of such objects, and we
construct an element in T[h]F(S) from any balanced geodesic graph on (S, h). For
convenience, we will use H2 in the hyperboloid model defined in the previous section,
and hence we will identify Isom(H2) = SO0(2, 1) and isom(H2) = so(2, 1).

4.1. Balanced geodesic graphs

Let us fix a hyperbolic metric h on the closed oriented surface S.

Definition 4.1. — A balanced geodesic graph on (S, h) is the datum of
• A finite embedded graph G = (E ,V) in S, where E is the set of (unoriented)
edges of G and V is the set of vertices;
• The assignment w : E → R of weights w(e) = we for every e ∈ E ;

satisfying the following conditions:
• Every edge e is a geodesic interval between its endpoints;
• For every p ∈ V , the following balance condition holds:

(4.1)
∑
p∈e

weve = 0 ,

where p ∈ e denotes that p is an endpoint of an edge e ∈ E , and in this case
ve is the unit tangent vector at p to the geodesic edge e.

We provide several classes of examples which should account for the abundance of
such objects on any surface (S, h).

Example 4.2. — Given a simple closed geodesic c on (S, h) and a weight w, c is
the support of a balanced geodesic graph with weight w. In fact, it suffices to declare
that the vertex set V consists of n > 1 points on c. Then c is split into n edges,
and we declare that each edge has weight w. Clearly the balance Condition (4.1) is
satisfied, since there are only two vectors to consider at every vertex, opposed to
one another, with the same weight. See the curve in the left of Figure 4.1. Hence the
class of balanced geodesic graphs include weighted simple closed geodesics.

Example 4.3. — More generally, given any finite collection c1, . . . , cn of (not
necessarily simple) closed geodesics (S, h), and any choice of weights w1, . . . , wn,
the union ∪ici can be made into a balanced geodesic graph. In fact, it suffices to
choose the vertices of V on the geodesics c1, . . . , cn, so that every intersection point
between ci and some other geodesic cj (including self-intersections of ci) is in the
vertex set V . Moreover, it is necessary to add vertices to geodesics ci which are disjoint
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′
e

Figure 4.1. The balance condition is trivially satisfied in the case of closed
geodesics, as in Examples 4.2 and 4.3.

from all the geodesics cj (in particular, ci has no self-intersection) so as to make every
edge of the graph an interval, as in Example 4.2. Then we declare that the weight
of an edge contained in ci is wi. In fact, in this case the balance condition will be
automatically satisfied, since at every vertex p ∈ V , tangent vectors come in opposite
pairs with the same weight. (A pair is composed of the two opposite vectors tangent
to the same geodesic ci.) See Figure 4.1. Therefore the balance Condition (4.1) is
satisfied regardless of the initial choice of wi. In particular, weighted multicurves (i.e.
collections of disjoint simple closed geodesics endowed with positive weights) are
balanced geodesic graphs.
Example 4.4. — Colin de Verdière in [CdV91] proved that, given any topological

triangulation of (S, h), and any choice of positive weights we assigned to each edge
e, there exists a geodesic triangulation, with the same combinatorics of the original
triangulation, which satisfies the balance Condition (4.1) for the prescribed weights
we divided by the length of e. Therefore, this geodesic realization of a topological
triangulation is a balanced geodesic graph in the sense of Definition 4.1.

4.2. Vector space structure

In this subsection we will introduce the space of balanced geodesic graphs on a
hyperbolic surface, and show that this space has a vector space structure.
Let us consider the space

BG(S,h) := {balanced geodesic graphs on (S, h)}/ ∼ ,
where the equivalence relation ∼ is defined as follows: two balanced geodesic graphs
are equivalent if they can be obtained from one another by adding, or deleting:

• Points which are endpoints of only two edges (possibly coincident);
• Edges of weight zero.

The space BG(S,h) defined in this way is naturally endowed with a structure of vector
space, defined in the following way. For (G,w) in BG(S,h) and λ ∈ R, we define
λ(G,w) = (G, λw). For the addition, we define (G,w)+(G ′,w′) = (G + G ′,w + w′),
where

• G +G ′ = (E ′′,V ′′) if G = (E ,V) and G ′ = (E ′,V ′), where V ′′ = V ∪V ′ ∪ V̄ , and
V̄ is the set of intersecting points of E and E ′ (may be empty), and E ′′ is the
set of edges between elements of V ′′ which are subsets of elements of E ∪ E ′;
• w + w′ are the weights on E ′′ defined as follows. For e ∈ E :
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Figure 4.2. New assignments of weights for the addition of two balanced geodesic
graphs.

– if e does not meet any element of E ′, then the same weight is kept;
– if e meets an element of E ′ creating a new vertex (an element of V̄), new
weights are assigned as in the top of Figure 4.2;

– if e meets an element of E ′ without creating a new vertex, new weights
are assigned as in the bottom of Figure 4.2.

• This procedure is done for every element of E , and eventually the same weights
are kept for elements of E ′ that don’t meet any element of E .

It is easy to check that (4.1) is satisfied in every case.
Finally, the zero element of the vector space is the class of any geodesic graph

whose weights are all zero. Let us observe that, for every (fixed) geodesic graph
G0, the subset of BG(S,h) composed of classes of balanced geodesic graphs having
underlying geodesic graph G0 is a finite-dimensional vector subspace.

4.3. Construction of the map Φ

We are now ready to define the map from the space BG(S,h) to the tangent space
of Teichmüller space. We will actually define a deformation of the holonomy rep-
resentation of h, thus providing a tangent vector to the character variety of π1(S).
Namely, we will define a map:

Φ : BG(S,h) → H1
Ad ρ(π1(S), so(2, 1)) ,

where [ρ] = Hol([h]). For this purpose, consider the universal cover π : S̃ → S and
fix a developing map

dev :
(
S̃, π∗h

)
→ H2

which is a global isometry, equivariant for the representation ρ : π1(S)→ SO0(2, 1).
Let us fix a balanced geodesic graph (G,w) and lift it to (G̃, w̃) on (S̃, π∗h). Let us

also fix a basepoint x0 ∈ S̃, which we assume does not lie in G̃. We define a cocycle
τ : π1(S)→ so(2, 1) in the following way. We say a path σ : [0, 1]→ S̃ is transverse
to G̃ if the intersection Im σ ∩ G̃ of the image of σ and G̃ consists of a finite number
of points, which are not vertices of G̃, and for every point p = σ(t0) ∈ Im σ ∩ G̃ there
exists ε > 0 such that σ|(t0−ε) and σ|(t0+ε) are contained in two different connected
component of U \ G̃, where U is a small neighborhood of p in S̃.
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x0

γ · x0

σ

p

ẽ

Figure 4.3. To define Φ, we lift a generic closed loop representing γ ∈ π1(S) to
a path σ in S̃, and consider a sum over the points of intersection with lifted edges
ẽ.

Now, pick γ ∈ π1(S) and let σ : [0, 1] → S̃ be a path such that σ(0) = x0 and
σ(1) = γ · x0, transverse to G̃. Then we define the following element of so(2, 1):
(4.2) τ(γ) =

∑
p∈Imσ∩ẽ

w̃ẽt(dev(ẽ)) ,

where:
• The sum is over all points p of intersection of the image of the path σ with
the lift G̃ of the balanced geodesic graph G, see Figure 4.3;
• We orient ẽ on the left when it is crossed by σ. Hence dev(ẽ) is an oriented
(subinterval of) a geodesic ` of H2, and recall from Section 3 that we denote
t(`) ∈ so(2, 1) the infinitesimal hyperbolic translation along `, using the
orientation of `. Namely,

t(`) = d

dt

∣∣∣∣∣
t=0

Tt(`)

where Tt(`) ∈ SO0(2, 1) is the isometry of H2 which preserves ` and translates
every point of ` by a length t according to the orientation of `. This is thus
applied in Equation (4.2) with t(dev(ẽ)) = t(`) ∈ so(2, 1).
Equivalently, t(dev(ẽ)) = Λ(x) where dev(ẽ) ⊂ x⊥, and x is pointing in the

same halfspace than the tangent vector of dev(σ) (seen as a space-like vector
in R2,1) when it crosses dev(ẽ). See Figure 4.4.
• The coefficient w̃ẽ in the sum equals the weight we of the edge e = π(ẽ).

We then define
Φ(G,w) = [τ ] ∈ H1

Ad ρ(π1(S), so(2, 1)) .
Under the identification between H1

Ad ρ(π1(S), so(2, 1)) and T[X]T (S), we thus define
(4.3) t(G,w) = d(Hol ◦U)−1 ◦ Φ(G,w) .

4.4. Well-definiteness of Φ

There is a number of points to be verified in order to check that the map Φ is
well-defined. First, we need to show that the value τ(γ) does not depend on the
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dev(σ)

ℓ

dev(ẽ)

Figure 4.4. The image H2 (in the Poincaré disc model) of the path σ. The
geodesic ` contains the development of the edge ẽ. The arrows represent some
vectors of the Killing field t(dev(ẽ)).

chosen path σ : [0, 1] → S̃, as long as σ is transverse to G̃. (This is the same as
choosing a representative of the closed loop in S, based at π(x0), which represents
γ and is transverse to G.)
In fact, there are three cases to consider. See also Figure 4.5.
(1) If two representatives σ and σ′ can be isotoped to one another by a family

of paths σt : [0, 1] → S̃ which is transverse for all t, then the value of τ is
the same when computed with respect to σ or σ′, since the quantities w̃ẽ and
t(dev(ẽ)) only depend on the edge ẽ, and not on the intersection point of σ
with ẽ.

(2) Suppose σ and σ′ agree on the complement of a small neighborhood Up of
a vertex p ∈ V, and consider an isotopy for σ and σ′ which crosses p at
some time t0 ∈ (0, 1) and is constant in S̃ \ Up. Observe that the balance
Condition (4.1) is equivalent to the following condition:

(4.4)
∑
p∈ẽ

w̃ẽt(dev(ẽ)) = 0 .

Indeed, from Equation (4.1), by lifting to the universal cover and rotating all
vectors by π/2, one obtains ∑

p∈ẽ

w̃ẽyẽ = 0 ,

where yẽ is the unit vector orthogonal to the geodesic containing the edge
ẽ, and can thus be interpreted as a unit spacelike vector in R2,1. This shows
that the result for τ , defined in Equation (4.2), is the same if computed using
σ or σ′.

(3) Finally, suppose σ and σ′ only differ in such a way that one of the two paths
intersects the same edge ẽ at two consecutive points while the other does not.

TOME 3 (2020)



888 François FILLASTRE & Andrea SEPPI

σ
σ

σ

σ′

σ′

σ′

Figure 4.5. The three cases in the proof of well-definiteness of Φ.

Then the contributions given by such consecutive intersections cancel out,
hence the result is again the same.

Since every two transverse paths connecting x0 and γ · x0 can be deformed to one
another by a sequence of moves of the three above types, we have shown that the
definition of τ(γ) does not depend on the choice of the path σ representing γ.
Second, we need to check τ ∈ Z1

ρ(π1(S), so(2, 1)), that is, τ satisfies the cocycle
condition of Equation (2.3). In fact, let σ1 be a transverse path connecting x0 and
γ · x0 as in the definition, and similarly let σ2 be a transverse path connecting x0
and η · x0. To represent ηγ, we can use the concatenation of σ1 and η · σ2. Let σ be
such a concatenation of paths. Then we have
(4.5) τ(γη) =

∑
p∈Imσ1∩ẽ

w̃ẽt(dev(ẽ)) +
∑

p∈Im(η·σ2)∩ẽ

w̃ẽt(dev(ẽ)) .

Now, the first term in the summation is τ(γ), while the second term equals∑
p∈Imσ2∩ẽ

w̃ẽt(dev(η · ẽ)) =
∑

p∈Imσ2∩ẽ

w̃ẽt(ρ(η) dev(ẽ)) =
∑

p∈Imσ2∩ẽ

w̃ẽ Ad ρ(η) · t(dev(ẽ)) ,

where we have applied the equivariance of (G̃, w̃) and of dev for the holonomy
representation ρ, and the property that the infinitesimal hyperbolic translation along
the geodesic ρ(η) · ` coincides with the infinitesimal translation along ` composed
with Ad ρ(η). This shows that the second term in (4.5) coincides with Ad ρ(η) · τ(γ)
and thus concludes the claim.
It now only remains to show that the definition of Φ does not depend on the choice

of the basepoint x0. In fact, given another basepoint x′0, let σ′ be a path connecting
x′0 and γ · x′0 and let τ ′(γ) be obtained by applying the Definition (4.2) to σ′. Then
one has

τ ′(γ)− τ(γ) = Ad ρ(γ) · τ0 − τ0 ,

where τ0 is the quantity obtained by a summation, exactly as in (4.2), along a
transverse path which connects x0 and x1. This shows that [τ ] is well-defined in
H1

Ad ρ(π1(S), so(2, 1)).

Remark 4.5. — We remark that, in the case the balanced geodesic graph is a
weighted multicurve, our construction recovers a tangent vector on Teichmüller space
which is an infinitesimal left earthquake. In fact, the piecewise Killing vector field
we construct is, on each stratum, nothing but the (infinitesimal) displacement with
respect to the stratum containing x0, which is fixed by construction. The fact that
the definition of Φ does not depend on the choice of the basepoint nor on the path
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σ essentially reflect the fact that for earthquakes on surfaces, relative displacements
are well-defined, once one stipulates that all earthquakes are left.

5. Geometric description

In this section we will give two types of interpretations of the infinitesimal de-
formation Φ(G,w) we have produced out of a balanced geodesic graph. The first
interpretation should be interpreted as a motivation, since it generalizes infinitesi-
mal twist along simple closed geodesics. The second concerns polyhedral surfaces in
Minkowski space, and is then applied to show that Φ is surjective. Some details are
omitted, since investigation of these viewpoints is beyond the scope of this paper
and is thus left for future work.

5.1. Infinitesimal twist along simple closed geodesics

Let us consider a simple closed geodesic c on (S, h). As in Example 4.2, one can
turn c into a balanced geodesic graph Gc, with constant weight w. If we put w = 1,
then Φ(Gc, 1) is the infinitesimal left twisting, or infinitesimal left earthquake, along
the simple closed geodesic c, see [BS12, Proposition B.3]. This is exactly the object
which appears in Wolpert’s formula in the articles [Wol83] and [Wol81].

5.2. Flippable tilings on hyperbolic surfaces

More generally, let us assume G is a geodesic graph, which disconnects S in convex
geodesic faces. Then there are (differentiable) deformations ht of the hyperbolic
metric h so that ht contains a geodesic graph Gt which is a left flippable tiling in the
sense of [FS12] (which is the reference to be consulted for more details). Roughly
speaking, this means that the faces of Gt can be divided into black faces and white
faces, and the black faces can be flipped to obtain a new hyperbolic metric h′t. The
metric h′t is also endowed with a geodesic graph, which is a right flippable tiling. As
t→ 0, the metrics ht and h′t converge to the original metric h. The black faces of Gt
and G ′t collapse continuously to the vertices of the original graph G, while the white
faces converge to the connected components of S \G. Moreover, the derivatives of the
lengths of the edges of the black faces satisfy the balance condition, and thus define
(positive) weights w such that (G,w) is a balanced geodesic graph. See Figure 5.1.
A deformation of (G,w) by left and right flippable tilings is not canonical, but by

a direct computation one can show that their difference at first order is uniquely
determined by (G,w), and coincides with the quantity Φ(G,w) we defined. Namely,

Φ(G,w) = 1
2

(
d

dt

∣∣∣∣∣
t=0

[ρt]−
d

dt

∣∣∣∣∣
t=0

[ρ′t]
)
,

where ρt is the holonomy of ht and ρ′t is the holonomy of h′t.
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Figure 5.1. The left hand side of the picture is a piece of a left flippable tiling on
a hyperbolic surface. The picture on the right hand side is a right flippable tiling
instead, obtained from the left one by a flip. In particular, the corresponding
polygons are isometric. The tilings are deformed such that the length of the edges
of the black faces goes to zero and the resulting tiling of white faces gives the
hyperbolic metric (S, h). If the edges around p are weighted by the derivatives
of the lengths of the black faces, then the balance Condition (1.2) is satisfied.

5.3. Polyhedral surfaces in Minkowski space

Let us now move to the second interpretation of the map Φ. Let ρ : π1(S) →
SO0(2, 1) be the holonomy representation of a hyperbolic surface (S, h) and let
[τ ] ∈ H1

Ad ρ(π1(S), so(2, 1)). Using the isomorphism Λ : R2,1 → so(2, 1) introduced at
the end of Section 3, and the equivariance of Λ for the natural SO0(2, 1)-actions, we
have an isomorphism, which we still denote by Λ, between the spaces of cocycles:

Λ : Z1
ρ

(
π1(S),R2,1

)
→ Z1

Ad ρ (π1(S), so(2, 1)) .

Analogously, it induces an isomorphism between the spaces of coboundaries, and
thus we have an isomorphism

[Λ] : H1
ρ

(
π1(S),R2,1

)
→ H1

Ad ρ (π1(S), so(2, 1)) .

Recall that the identity component of the isometry group of R2,1 is isomorphic to
SO0(2, 1) oR2,1 ,

and that, given a representation ρ̂ : π1(S) → SO0(2, 1) o R2,1 with linear part ρ,
the translation part of such representation is a cocycle in Z1

ρ(π1(S),R2,1). Now, let
[τ ] ∈ H1

Ad ρ(π1(S), so(2, 1)) and suppose Σ is a convex polyhedral surface in R2,1 with
spacelike faces, invariant by the action of ρ̂(π1(S)), where the linear part is ρ(π1(S))
and the translation part is Λ(τ). (This corresponds to the lift to R2,1 of a convex
polyhedral surface in a maximal globally hyperbolic flat three-manifold, studied from
this point of view in [Mes07].) It then turns out that the Gauss map G : Σ→ H2 is
a set-valued map equivariant with respect to the action of ρ̂ on Σ, and of ρ on H2.
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The image of the faces of Σ are points in H2, the image of edges of Σ are geodesic
edges. Therefore G defines a geodesic graph G on (S, h).
Moreover, we can define a set of weights w on G. Given an edge e of G, let ẽ be any

lift of e to H2, and let ẽ′ = G−1(ẽ) be the corresponding edge of the polyhedral surface
Σ. Then we define we as the length (for the Minkowski metric) of ẽ′, which clearly
does not depend on the chosen lift. It can be easily seen that (G,w) is balanced,
since the balance Condition (4.1) is exactly equivalent to the condition that the faces
of Σ are bounded by a set of edges which “close up” in R2,1.
Finally, let us remark that the balanced geodesic graph constructed in this way

has positive weights on all edges. Moreover, the connected components of S \ G are
convex geodesic polygons.

Remark 5.1. — From the above construction, if (G,w) is the balanced geodesic
graph on (S, h) associated to an invariant convex polyhedral surface Σ, then the
translation part of the representation ρ̂ : π1(S) → SO0(2, 1) o R2,1 is precisely
[Λ]−1 ◦ Φ(G,w). See also [FV16, Section 4.4] and the references therein.

This construction shows the abundance of examples of balanced geodesic graphs
on a closed hyperbolic surface. In fact, it enables to show the following.

Proposition 5.2. — The map Φ : BG(S,h) → H1
Ad ρ(π1(S), so(2, 1)) is surjective.

Proof. — Given any [τ ] ∈ H1
Ad ρ(π1(S), so(2, 1)), by the work of Mess ([Mes07]),

the image of the representation ρ̂ : π1(S) → SO0(2, 1) o R2,1 with linear part ρ
and translation part Λ−1(τ) acts freely and properly discontinuously on a future-
convex domain D in R2,1. Then take a finite number of points pi in a fundamental
domain for the action of ρ̂(π1(S)) on D. The convex hull of the orbit ∪iρ̂(π1(S)) · pi
is a future-convex domain in R2,1 (actually, contained in D), whose boundary is a
ρ̂(π1(S))-invariant spacelike convex polyhedral surface. Let (G,w) be the balanced
geodesic graph on (S, h) associated to Σ, as constructed above. By Remark 5.1,
Φ(G,w) = [τ ]. This concludes the proof of Proposition 5.2. �

6. De Rham cohomology

In this section we introduce the final tool needed to prove our main theorem,
namely de Rham cohomology with values in a certain vector bundle over (S, h). We
then conclude the proof of the generalization of Wolpert’s formula.

6.1. Flat vector bundles

Given a hyperbolic surface (S, h), let ρ : π1(S) → SO0(2, 1) be its holonomy
representation. Let us consider the flat vector bundle Fρ defined in the following way.
Let S̃ be the universal cover of S, and let

Fρ =
(
S̃ × so(2, 1)

)
/π1(S) ,
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where π1(S) is acting on S̃ × so(2, 1) by

γ · (p, x) = (γ · p,Ad ρ(γ) · x) .

Then Fρ is endowed with a flat vector bundle structure with base the original surface
(S, h). Hence we can consider de Rham cohomology with values in Fρ, namely

H1
dR(S, Fρ) = Z1

dR(S, Fρ)
B1

dR(S, Fρ)
,

where Z1
dR(S, Fρ) is the vector space of closed Fρ-valued 1-forms and B1

dR(S, Fρ) the
subspace of exact 1-forms.
It is well-known that there exists a natural vector space isomorphism

Ψ : H1
dR(S, Fρ)→ H1

Ad ρ(π1(S), so(2, 1)) .

Nevertheless, we review for convenience of the reader the construction of such vector
space isomorphism, as it will be useful to prove our main theorem. First, observe
that Fρ-valued closed 1-forms α are in 1-1 correspondence with closed so(2, 1)-valued
1-forms α̃ on S̃ satisfying the equivariance

(6.1) α̃ ◦ γ∗ = Ad ρ(γ) ◦ α̃ .

Hence, given a Fρ-valued closed 1-form α, we define a cocycle τα by

τα(γ) =
∫ γ·x0

x0
α̃ :=

∫
σ
α̃ ,

where σ : [0, 1]→ S̃ is a smooth path such that σ(0) = x0 and σ(1) = γ · x0. Then
we define

Ψ([α]dR) = [τα] ∈ H1
Ad ρ(π1(S), so(2, 1)) .

Since α is closed (hence also α̃) and S̃ is simply connected, τα(γ) does not depend on
the choice of the path σ with fixed endpoints. This authorizes us to use the notation∫ γ·x0
x0

α̃. By an argument analogous to that of Section 4, changing the basepoint x0
results in changing τα by a coboundary.
Moreover, if α = df is exact, where f is a global section of Fρ, then α̃ = df̃ and f̃

satisfies
f̃ ◦ γ = Ad ρ(γ) · f̃ .

Hence in this case, by the fundamental theorem of calculus,

τα =
∫ γ·x0

x0
df̃ = f̃(γ · x0)− f̃(x0) = Ad ρ(γ) · f̃(x0)− f̃(x0)

is a coboundary as in (2.4). This shows that the map α 7→ τα induces a well-defined
map from H1

dR(S, Fρ) to H1
Ad ρ(π1(S), so(2, 1)).

As a warm-up, and for convenience of the reader, we also show that Ψ is injective.

Lemma 6.1. — The linear map Ψ : H1
dR(S, Fρ) → H1

Ad ρ(π1(S), so(2, 1)) is injec-
tive.
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Proof. — Suppose the image of α is trivial in the cohomology H1
Ad ρ(π1(S), so(2, 1)).

Since S̃ is simply connected, there exists a function g : S̃ → so(2, 1) such that α̃ = dg.
Since [τα] = 0, there exists ξ ∈ so(2, 1) such that

τα(γ) = g(γ · x0)− g(x0) = Ad ρ(γ) · ξ − ξ .
Now choose a section f0 ∈ H0(S, Fρ) such that its lift f̃0 : S̃ → so(2, 1) at the

point x0 takes the value f̃0(x0) = ξ. By this choice, τdf (γ) = Ad ρ(γ) · ξ− ξ, and thus
τα−df0 = 0. This implies that

(6.2)
∫ γ·x0

x0
α̃− df̃0 :=

∫
σ
α̃− df̃0 = 0 ,

where γ ∈ π1(S) and σ is any path connecting x0 and γ · x0.
The proof will be concluded if we show that α − df0 is an exact 1-form. In fact,

define f1 : S̃ → so(2, 1) by

f1(x) =
∫ x

x0
α̃− df̃0 .

Clearly
α̃ = df̃0 + df1 .

If we show that f1 induces a section of Fρ, this will imply that df1 induces an exact
Fρ-valued 1-form on S and α = df0 + df1, and we will be done. In fact, we have

f1(γ · x) =
∫ γ·x0

x0
α̃− df̃0 +

∫ γ·x

γ·x0
α̃− df̃0 = ρ(γ)

∫ x

x0
α̃− df̃0 = ρ(γ) · f1(x) ,

where we have used Equation (6.2) and the equivariance of α̃− df̃0. Hence f1 comes
from a section in H0(S, Fρ) and this shows the claim of Lemma 6.1. �

6.2. Reconstructing 1-forms from cocycles

Although surjectivity of the map H1
dR(S, Fρ)→ H1

Ad ρ(π1(S), so(2, 1)) follows from
injectivity and the fact that both vector spaces have dimension 3|χ(S)|, we will need
an explicit construction for the inverse of this map.
Given [τ ] ∈ H1

Ad ρ(π1(S), so(2, 1)), let (G,w) be a balanced geodesic graph such
that Φ(G,w) = [τ ]. Let us denote Nε(G) the ε-neighborhood of G for the hyperbolic
metric (S, h), and B(p, ε) the h-geodesic ball of radius ε centered at p ∈ S. Let us
now pick ε > 0 such that N3ε(G) is embedded and the balls B(p, 3ε) centered at the
vertices p ∈ V are pairwise disjoint.
Now, define a Fρ-valued closed 1-form α ∈ B1

dR(S, Fρ) as follows. First, define

α = 0 on S \
⋃
p∈V

B(p, 2ε) ∪Nε(G)
 .

Second, for every edge e of G, let ẽ be a lift of e to S̃, and put:
(6.3) α = (wet(dev(ẽ))) d(f ◦ δ) on Nε(e) \

⋃
p∈V

B(p, 2ε) ,

where:
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p

B(p, 3ǫ)

Nǫ(G)

Figure 6.1. The 1-form α, first defined in the complement of the balls of radius
2ε around the vertices, can be extended smoothly inside the balls.

• δ : Nε(G)→ R is the signed distance function δ(q) = d(S,h)(q,G);
• f : [−ε, ε] → R is a smooth function such that f(ε) = 1/2, f(−ε) = −1/2,
f(−x) = −f(x), and the derivative f ′ is compactly supported in (−ε, ε);
• t(dev(ẽ)) is the infinitesimal hyperbolic isometry along the geodesic containing

dev(ẽ), where dev is the developing map of (S, h) and ẽ is a lift of the edge
e. We choose t(dev(ẽ)) to be the infinitesimal translation on the left, as seen
from {δ < 0} to {δ > 0}.

Observe that the definition of t(dev(ẽ)) depends on the chosen orientation of dev(ẽ),
which is implicitly induced by the choice of the sign of the distance function δ.
However, the quantity (wet(dev(ẽ))) d(f ◦ δ) is independent of such choice, since if
one replaces δ by −δ, t(dev(ẽ)) takes the opposite sign, and also d(f ◦ δ) changes
sign since f(−x) = −f(x).
Moreover, since dev(γ · ẽ) = ρ(γ) ·dev(ẽ), we have t(dev(γ · ẽ)) = Ad ρ(γ) ·t(dev(ẽ)),

and therefore α is well-defined as a 1-form with values in Fρ (which is only defined
on the complement of the balls B(p, 2ε) centered around vertices, for the moment).
To conclude the definition, it remains to define α on the balls B(p, 2ε) centered at

vertices of V . Before doing this, we give a remark.

Remark 6.2. — For every path σ : [0, 1]→ S̃ transverse to G̃ (which we suppose
has image in the complement of the 2ε-balls centered at vertices, for the moment),
if σ(0) and σ(1) lie outside the ε-neighborhood Nε(G̃), then the integral of α̃ over σ
is given by the sum of wet(dev(ẽ)) over all edges ẽ met by σ, and e = π(ẽ).

Hence for every vertex p of G, if γ is any loop which generates the fundamental
group of the annulus B(p, 3ε) \ B(p, 2ε),

∫
γ α = 0 as a consequence of the balance

Condition (4.4). It follows that α is exact on the annulus, hence it can be smoothly
extended to a closed 1-form on the disc, and in turn on S. See Figure 6.1.
Using again Remark 6.2, and comparing the definitions of the linear maps Ψ :

H1
dR(S, Fρ) → H1

Ad ρ(π1(S), so(2, 1)) and Φ : BG(S,h) → H1
Ad ρ(π1(S), so(2, 1)), it

follows that the 1-form α we have constructed satisfies Ψ([α]dR) = Φ(G,w) = [τ ],
namely, α realizes the cohomology class [τ ] we started from. Hence we provided a
direct proof of the following:
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Lemma 6.3. — The linear map Ψ : H1
dR(S, Fρ)→ H1

Ad ρ(π1(S), so(2, 1)) is surjec-
tive.

6.3. The Goldman form in de Rham cohomology

Following [Gol84], we can now express the Goldman form in terms of de Rham
cohomology. In fact, using the isomorphism Ψ : H1

dR(S, Fρ)→ H1
Ad ρ(π1(S), so(2, 1))

we have just introduced, Goldman showed that the cup product in the group coho-
mology H1

Ad ρ(π1(S), so(2, 1)) corresponds to the wedge operation between 1-forms —
where in both cases we use the Killing form as a pairing. That is,

(6.4) ωG (Ψ[α],Ψ[α′]) =
∫
S
κ(α ∧ α′) ,

where κ(α∧α′) denotes the wedge product paired by using the Killing form of so(2, 1):
if X, Y are smooth vector fields on S, then κ(α ∧ α′)(X, Y ) = κ(α(X), α′(Y )) −
κ(α(Y ), α′(X)).

7. Proof of the generalized Wolpert formula

We are now ready to prove our main result, namely:

Theorem 7.1. — Let (G,w) and (G ′,w′) be two balanced geodesic graphs on
the hyperbolic surface (S, h). Then

ωWP
(
t(G,w), t(G′,w′)

)
= 1

2
∑

p∈e∩e′
wew

′
e cos θe,e′ ,

where e and e′ are intersecting edges of G and G ′ and θe,e′ is the angle of intersection
between e and e′ according to the orientation of S.
If G and G ′ have some non-transverse intersection, the points of intersection must

be counted by perturbing one of the two graphs by a small isotopy, so as to make
the intersection transverse.

Proof. — Let α and α′ be the closed 1-forms constructed in the previous subsection,
so that Ψ([α]dR) = Φ(G,w) and Ψ([α′]dR) = Φ(G ′,w′). By Goldman theorem (recall
Equation (2.5)), the definition in Equation (4.3) and Equation (6.4), we have:

ωWP
(
t(G,w), t(G′,w′)

)
= 1

4ωG (Φ(G,w),Φ(G ′,w′)) = 1
4

∫
S
κ(α ∧ α′) ,

To compute the integral, first suppose that all points of intersection of G and G ′
are transverse and do not coincide with any of the vertices in V and V ′. Replace
the ε in the construction of α and α′ by a smaller ε if necessary, so that Nε(G) and
Nε(G ′) intersect only in the complement of the vertices of G and G ′. Since α vanishes
in the complement of Nε(G), and α′ vanishes in the complement of Nε(G ′), we have

ωWP
(
t(G,w), t(G′,w′)

)
= 1

4

∫
Nε(G)∩Nε(G′)

κ(α ∧ α′) .
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p

Nǫ(G′)

Nǫ(G)
Qp

Figure 7.1. The regions Qp in the intersection of the tubular neighborhoods of
G and G ′, which are used in the proof.

Now, for every point of intersection p of edges e of G and e′ of G ′, let Qp be the
connected component of Nε(G) ∩Nε(G ′) containing p. See Figure 7.1.
Hence

ωWP
(
t(G,w), t(G′,w′)

)
= 1

4
∑

p∈e∩e′

∫
Qp
κ(α ∧ α′) .

Let us now analyze each of the regions Qp. Recall that α = (wet(dev(ẽ))) d(f ◦ δ)
inside Qp, from the definition in Equation (6.3). Analogously, let us write α =
(w′e′t(dev(ẽ′))) d(f ◦ δ′). Observe moreover that, if x and x′ are the unit orthogonal
vectors in R2,1 to the geodesics containing t(dev(ẽ)) and t(dev(ẽ′)) respectively (where
their direction is induced by the orientation), then by Equation (3.3),

κ(t(dev(ẽ)), t(dev(ẽ′))) = 2〈x, x′〉 = 2 cos θe,e′ .
Hence we have∫

Qp
κ(α ∧ α′) = 2wew′e′ cos θe,e′

∫
Qp
d(f ◦ δ) ∧ d(f ◦ δ′) .

We claim that
∫
Qp
d(f ◦ δ) ∧ d(f ◦ δ′) = 1, which will thus conclude the proof that∫

Qp
κ(α ∧ α′) = 2wew′e′ cos θe,e′

and therefore
ωWP

(
t(G,w), t(G′,w′)

)
= 1

2
∑

p∈e∩e′
wewe′ cos θe,e′ .

To show the claim, by Stokes Theorem we have:∫
Qp
d(f ◦ δ) ∧ d(f ◦ δ′) =

∫
Qp
d((f ◦ δ)d(f ◦ δ′)) =

∫
∂Qp

(f ◦ δ)d(f ◦ δ′) .

The region Qp has four smooth boundary components, namely:

(∂Qp)± = Qp ∩
{
f ◦ δ = ±1

2

}
and

(∂Qp)′± = Qp ∩
{
f ◦ δ′ = ±1

2

}
.

ANNALES HENRI LEBESGUE



Wolpert formula for balanced geodesic graphs 897

Figure 7.2. Perturbation by a small isotopy, when G and G ′ share a common
vertex.

Since f ′ ◦ δ′ is constant on (∂Qp)′+ and (∂Qp)′−, these two components do not
contribute to the integral. On the other hand, let q2 and q1 be the two endpoints of
(∂Qp)+. By taking the orientation into account,∫

(∂Qp)+
(f ◦ δ)d(f ◦ δ′) = 1

2

∫
(∂Qp)+

d(f ◦ δ′) = 1
2(f ◦ δ′(q2)− f ◦ δ′(q1)) = 1

2 .

Similarly, we obtain ∫
(∂Qp)−

(f ◦ δ)d(f ◦ δ′) = 1
2 ,

since f ◦ δ = −1/2 on (∂Qp)− but the component (∂Qp)− is endowed with the
opposite orientation from the orientation of Qp, and therefore the two minus signs
cancel out. This therefore shows

∫
Qp
d(f ◦ δ) ∧ d(f ◦ δ′) = 1 as claimed, and thus

concludes the proof under the hypothesis of transversality.
When the intersection of G and G ′ is not transverse, or contains some of the vertices

(hence V ∩ V ′ 6= ∅), then we can perturb G by an isotopy ht : S → S (with t ∈ [0, 1]
and h0 = id), so as to make h1(G) transverse to G ′ and to ensure that there are no
vertices in common between h1(G) and G ′, see Figures 7.2 and 7.3. Moreover, we can
also assume that the intersection of h1(G) with an ε-neighborhood of G ′ is geodesic.
Since α and h∗1α are in the same de Rham cohomology class, we can repeat the same
computation using h∗1α and α′. Hence the result is the same as before, namely

ωWP
(
t(G,w), t(G′,w′)

)
= 1

2
∑

p∈h1(e)∩e′
wew

′
e cos θe,e′ ,

where p are the intersection points of h1(G) and G ′, belonging to edges h1(e) and e′,
and the angle θe,e′ is the angle between the geodesic edges e and e′ of the original
balanced geodesic graphs. �
As we said, if G and G ′ are not transverse, or intersect on vertices, the only caveat

in applying the Formula (1.3) is to slightly perturb (topologically) one of the two
graphs and use the perturbed graph to count intersection points. It follows from
the Theorem that the result will not change if one chooses two different isotopies to
perturb G, which therefore result in different edge intersections. Let us remark that
this is also a consequence of the balance Condition (4.1).
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Figure 7.3. Perturbation by a small isotopy, when G and G ′ share an edge.
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