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1. Introduction

This paper examines the structure of finitely generated soluble groups of infinite
torsion-free rank which have no sections isomorphic to Z o Z. The existence of such
groups was established in [Kro85]. Here we prove two theorems. Theorem A applies
to any finitely generated soluble group of infinite torsion-free rank and shows in
particular that there is a quotient G of such a group that has an abelian Fitting
subgroup F with infinite torsion-free rank such that G/F has finite torsion-free rank.
These conclusions are drawn in Section 2 where we also establish some results on
Krull dimensions of soluble and nilpotent groups. Theorem A also asserts that when
the group has no Z oZ sections then G can be chosen to be residually finite. To prove
this last part we require a more detailed structural result, Theorem B which is stated
and proved in Section 3. Theorem B has a number of further corollaries. For example,
Corollary B1 asserts that finitely generated soluble groups with Krull dimension and
no Z o Z sections have finite torsion-free rank. We offer an interesting application to
return probabilities for random walks on Cayley graphs for finitely generated soluble
linear groups (see Corollary B3 below). In the concluding Section 4 of the paper we
extend ideas of [Kro85] to construct examples of groups with no Z o Z sections and
generalizations of lamplighter groups. We observe there is a very close connection
with a recent construction of Brieussel and Zheng, see [Bri15, BZ15]. In particular,
both constructions produce groups that are abelian-by-(locally finite)-by-cyclic.

2. Notation, Background, and Theorem A

2.1. Classes of soluble groups

The terms of the derived series of a group G are denoted G(n), inductively defined
with G(0) = G and G(n+1) being the commutator subgroup [G(n), G(n)]. The soluble
groups are those for which some term of the derived series is trivial and the derived
length is the length of the derived series. Recall that a group G is soluble and
minimax provided it has a series {1} = G0 / G1 / · · · / Gn = G in which the factors
are cyclic or quasicyclic. By a quasicyclic group, we mean a group Cp∞ , where p is
a prime number, isomorphic to the group of p-power roots of unity in the field C
of complex numbers. For a useful alternative point of view, the exponential map
z 7→ e2πiz identifies the additive group Z[ 1

p
]/Z with Cp∞ . The terminology Prüfer

p-group is often used to mean the quasicyclic group Cp∞ . For brevity, we write M
for the class of soluble minimax groups.
For soluble groups the Hirsch length or torsion-free rank can be defined in terms of

the derived series (G(i)) by the formula h(G) = ∑
i>0 dimQG

(i)/G(i+1)⊗Z Q. Finitely
generated soluble groups of finite torsion-free rank possess a locally finite normal
subgroup such that the quotient belongs to M. We write τ(G) for the largest normal
locally finite subgroup of G.
Let X denote the class of soluble groups of finite torsion-free rank, and let Xq be the

subclass of those having torsion-free rank q. Let A0 denote the class of torsion-free
abelian groups. For classes of groups Y and Z, we write YZ for the class of groups
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Soluble groups with no Z o Z sections 983

that have a normal Y-subgroup with corresponding quotient in Z. If G is a finitely
generated soluble group not in X then it is a triviality to choose a quotient of G that
belongs to A0X but not X. For example, let d be least such that G(d−1)/G(d) has
infinite torsion free rank and let H/G(d) be the torsion subgroup of G(d−1)/G(d). Then
G/H belongs to A0XrX. While it is not in general possible to choose a quotient that
is just-non-X we can nevertheless find quotients enjoying certain key properties. We
write Fitt(G) for the join of the normal nilpotent subgroups of G. This is the Fitting
subgroup. Fitting’s lemma states that the join of two nilpotent normal subgroups
is nilpotent and consequently the Fitting subgroup is locally nilpotent. It is the
directed union of the nilpotent normal subgroups and it contains every subnormal
nilpotent subgroup.

Theorem A. — Every finitely generated soluble group of infinite torsion-free
rank has a quotient G with the following properties:

(i) The Fitting subgroup F of G is torsion-free abelian of infinite rank.
(ii) The factor group G/F has finite torsion-free rank.
(iii) τ(G) is trivial.
(iv) If K is a normal subgroup of G then either K is abelian-by-torsion or G/K

has finite torsion-free rank.
Moreover, if the original group has no Z o Z sections then every such G is residually
finite.

Part (i) should be compared with the standard fact that the Fitting subgroup
of a just-infinite or just-non-polycyclic group is abelian. See [RW84] for further
information. The last part of Theorem A concerning groups with no Z o Z sections
requires a further result, Theorem B, which is proved in Section 3.
To prove the first part of Theorem A including items (i)—(iv) we need the following

facts about nilpotent groups. Here and subsequently, ζ(K) denote the centre of the
group K. We write γi(K) for the ith term of the lower central series of K, that is
γ1(K) = K and inductively γi+1(K) = [γi(K), K]. For nilpotent groups the lower
series terminates in 1 by definition and the class of a nilpotent group is its length.

Lemma 2.1. — Let K be a nilpotent group.
(i) The set of elements of finite order in K is a subgroup.
(ii) If K is torsion-free then so is K/ζ(K).
(iii) If K/ζ(K) is torsion then [K,K] is torsion.
(iv) If K is torsion-free and possesses an abelian normal subgroup A such that

K/A is a torsion group then K is abelian.

Proof. — Parts (i), (ii) and (iii) are standard results and we refer the reader
to [Rob96] for these and further background. For readers’ convenience we include an
argument to prove (iv). Since K is torsion-free, so is K/ζ(K) by (ii). By induction
on class we may assume the result true of K/ζ(K) so we reduce at once to the
case when K/ζ(K) is abelian. In this case, for any a ∈ A, the map x 7→ [x, a] is a
homomorphism from K to ζ(K). For any x there is an m > 1 with xm ∈ A and
the homomorphism evaluates to 1 this power of x. Since K is torsion-free it follows
that the homomorphism is trivial and hence A lies in the centre of K, and K/ζ(K)
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(being a quotient of K/A) is torsion. Now (iii) implies that [K,K] is torsion and
since K is torsion-free the result follows. �
The following further result about arbitrary groups is extremely important in

analysing the structure of nilpotent groups.
Lemma 2.2. — Let K be a group. Then for each i there is a natural surjective

homomorphism
K/[K,K]⊗ · · · ⊗K/[K,K]︸ ︷︷ ︸

i

→ γi(K)/γi+1(K).

In particular, if K is nilpotent and Z is an extension and quotient closed class of
groups such that tensor products of abelian Z-groups are in Z then K belongs to Z
if and only if K/[K,K] belongs to Z.

This result, including the application to classes of groups Z with the stated closure
properties is the content of Robinson’s book: see [Rob96, 5.2.5 and 5.2.6]. By taking
Z to be the class of nilpotent groups of finite torsion-free rank we deduce the
Corollary 2.3. — If K is a nilpotent group of infinite torsion-free rank then

K/[K,K] has infinite torsion-free rank.

Proof of the first part of Theorem A. — We may replace the original group by
a quotient G that lies in A0Xq, that has infinite torsion-free rank, and so that q is
as small as possible amongst quotients of G with these two properties. Quotienting
by τ(G) we may also assume that τ(G) = 1. Let A be an abelian normal subgroup
such that G/A ∈ Xq. Since τ(G) = 1 we see that A is torsion-free.
If N is a nilpotent normal subgroup of G then K := NA is nilpotent of infinite

torsion-free rank and hence K/[K,K] has infinite torsion-free rank by Corollary 2.3.
It follows that G/K has torsion-free rank q and so K/A is torsion. Again, since
τ(G) = 1, we have that K is torsion-free. By Lemma 2.1(iv) K is abelian and
therefore N is abelian. Hence every nilpotent normal subgroup of G is abelian.
Therefore the Fitting subgroup is abelian. �

2.2. The set of rational numbers

The set of rational numbers has two roles in this paper. First it is the prime field of
characteristic zero and we denote this by Q. Secondly it is a countable dense linear
order and when in this guise we denote it by Q. In general a poset is a set with
a reflexive antisymmetric and transitive relation 6. We shall write x < y to mean
(x 6 y and x 6= y). We also freely use the notation x > y and x > y to mean y < x
and y 6 x respectively. The interval notation [x, y] is used for the set {z; x 6 z 6 y}.
The poset Q enjoys a special role on account of
Cantor’s Theorem ([BMMN97, Theorem 9.3]). — Every countable dense lin-

early ordered set without endpoints is order-isomorphic to Q.

We refer the reader to [BMMN97, Chapter 9] for a careful introduction to Cantor’s
Theorem and its ramifications.
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2.3. On deviation and Krull dimension

We write dev(S) for the deviation of a poset S. The definition can be found
in [MR87] and can be stated like this:

(i) dev(S) = −∞ if S is trivial (meaning that a 6 b⇒ a = b for all a, b ∈ S).
(ii) dev(S) = 0 if S is non-trivial and artinian.
(iii) And in general by transfinite induction: dev(S) is defined and equal to the

ordinal α if S does not have defined deviation β for any predecessor β of α
and, in every strictly descending chain x0 > x1 > x2 > . . . , all but finitely
many of the intervals [xi+1, xi] have deviation defined and preceding α.

For a group G we write dev(G) for the deviation of the poset of subgroups of
G and we write Krull(G) for the deviation of the poset of normal subgroups of G.
This last is known as the Krull dimension of G [Tus03]. In ring theory, the Krull
dimension of a module over a ring is defined to be the deviation of the poset of its
submodules.
If a group H acts on a group M , we write devH(M) for the deviation of M as

an H-group, which is the deviation of the subposet of subgroups of M that are
stable under the action of H. Similarly, if a group H acts on a group M so that the
action contains the inner automorphisms of M , we write KrullH(M) for the Krull
dimension of M as an H-group, defined as the deviation of the subposet of normal
subgroups of M that are stable under the action of H.

Remark 2.4. — In this subsection, we shall visit two results, Lemmas 2.8 and 2.10
about deviation in nilpotent and soluble groups. In both cases there may be more
general statements one could make using recent work of Cornulier, see [Cor19, The-
orem 1.4].

The next proposition studies how deviation and Krull dimension of G behave with
respects to extensions. It is stated in ([Jac19, Lemma 2.24]) for the Krull dimension.
The argument for the deviation is the same.

Lemma 2.5. — Let
M ↪→ G� Q

be a sequence of H-groups. Then,
KrullH(G) = max{KrullH(M),KrullH(Q)},

devH(G) = max{devH(M), devH(Q)}.

Lemma 2.6. — Let S be a poset. Then dev(S) exists if and only if S has no
subposet isomorphic to Q.

Proof. — McConnell and Robson supply a statement and proof in [MR87, Chap-
ter 6, §1.13], but using the poset D := {m2n; m,n ∈ Z} ∩ [0, 1] instead of Q.
Cantor’s theorem allows us to reconcile theirs with ours since it implies that D
minus endpoints is order-isomorphic to Q. �

The Krull dimension of a nilpotent group can be expressed in terms of the dimen-
sion of the factors of its lower central series, and is equal to its deviation.
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Proposition 2.7. — Let N be a nilpotent group. Then,

Krull(N) = max
16 i6n

{Krull(γi(N)/γi+ 1(N))}

= max
16 i6n

{dev(γi(N)/γi+ 1(N))} = dev(N),

where n denotes the nilpotency class of N and the groups γi(N) form the lower
central series of G.

Proof. — Iterated applications of Lemma 2.5 yields

Krull(N) = max
i=1...n

{
KrullN(γi(N)/γi+1(N))

}
and

dev(N) = max
i=1...n

{
dev(γi(N)/γi+ 1(N))

}
The action of N on the factor γi(N)/γi+ 1(N) is trivial. Indeed, let n ∈ N

and niγi+ 1(N) an element of this factor, where ni ∈ γi(N). Then, n · niγi+ 1(N)
= nnin

−1γi+ 1(N) = ni[n−1
i , n]γi+ 1(N) = niγi+ 1(N) and therefore we get the for-

mula stated above. �

Lemma 2.8. — Let G be a nilpotent group. Then the following are equivalent:
(i) dev(G) exists.
(ii) dev(G) 6 1.
(iii) Krull(G) exists.
(iv) Krull(G) 6 1.
(v) G is minimax.

Proof. — Proposition 2.7 above and stability under extension of the minimax
property imply that it is enough to prove the lemma for abelian groups. Hence, we
may assume that G is abelian. Note that (i) and (iii) are the same, as well as (ii)
and (iv). We shall prove that (v) ⇒ (ii) ⇒ (i) ⇒ (v).
If G is a minimax abelian group, then it is max-by-min. Finitely generated abelian

groups have deviation 0 or 1 ([Jac19, Lemma 2.19]), hence G has deviation less or
equal to 1. It follows at once that (ii) ⇒ (i), and (i) ⇒(v) is proved in ([BCGS14,
Lemma 4.6]). �

An alternative proof of (i) ⇒ (v) can be devised by employing the variation on
Corollary 2.3 that says G is minimax if G/[G,G] is minimax.

Remark 2.9. — Therefore, the Krull dimension of a nilpotent group N
• is −∞ if N = {0},
• is 0 if N is non-trivial artinian,
• is 1 if N is minimax non-artinian,
• is not defined otherwise.

The following similar lemma already appeared in the paper [Tus03] by Tushev. We
provide a different proof.
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Lemma 2.10 ([Tus03]). — Let G be a soluble group. Then the following are
equivalent:

(1) dev(G) exists.
(2) dev(G) 6 1.
(3) G is minimax.

Proof. — If G is abelian, this is the content of the previous lemma. If G is soluble,
the result follows by induction on its derived length. �

The Krull dimension of metanilpotent groups can be expressed using particular
module sections.

Proposition 2.11. — Let G be a metanilpotent group, that is
N ↪→ G� P

where N and P are nilpotent. Then,

Krull(G) = max
{

max
i= 1...n

{
KrullZP (γi(N)/γi+ 1(N))

}
, max
i= 1...p

{
Krull(γi(P )/γi+ 1(P ))

}}
,

where n, resp. p, denote the nilpotency class of N , resp. P , and the groups γi(N),
resp. γi(P ), form the lower central series of N , resp. P .

Proof. — Lemma 2.5 applied to the action of G by conjugation yields
Krull(G) = max{KrullG(N),KrullG(P )}.

First, note that theG-action on P is actually a P -action and KrullG(P ) = Krull(P ).
The desired formula for this last term is given in Proposition 2.7. Hence, we are left
with studying KrullG(N).
Using the decomposition of N , we get

KrullG(N) = max
i=1...n

{
KrullG(γi(N)/γi+1(N))

}
.

For brevity, write γi for γi(N). We claim that the G-action on γi/γi+ 1 induces
an action of the quotient P , for 1 6 i 6 n. Indeed, let xγi+ 1 be an element of
γi/γi+ 1 and g, g′ two elements of G such that g′ = gn, for some n in N . We have
g′ · xγi+ 1 = g′x(g′)−1γi+ 1 = g · (nxn−1γi+ 1) = g · xγi+1, where the last equality uses
nxn−1 = x[x−1, n] ∈ xγi+ 1. Hence, the action of an element of G only depends on
its image on the quotient P . Moreover, the groups γi/γi+ 1 are abelian groups, hence
their dimension as P -groups is equal to their dimension as ZP -modules.
This proves the formula. �

Remark 2.12. —
(i) When N is abelian (so that G is abelian-by-nilpotent), we have

Krull(G) = max
{

KrullZP (N), max
i= 1...n

{
Krull(γi(P )/γi+ 1(P ))

}}
.

IfG is moreover finitely generated,N is a finitely generated module over a Noe-
therian ring, hence is Noetherian. Indeed, this is a result, due to Hall [Hal54]
that the integral group ring of a polycyclic group is Noetherian. Hence, G
admits a Krull dimension.
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(ii) When P is abelian (so that G is nilpotent-by-abelian), we have

Krull(G) = max
{

Krull(P ), max
i= 1...n

{
KrullZP (γi(N)/γi+ 1(N))

}}
.

If G is moreover finitely generated, Krull(P ) is either 0 or 1 and the ZP -
modules γi(N)/γi+1(N) are finitely generated, hence Noetherian. As a conse-
quence, G admits a Krull dimension.

Example 2.13. — Let Z act on the polynomial ring Z[X] by f(X)∗m := f(X+m).
Then Z[X] o∗ Z is metabelian, locally nilpotent and has

(i) Krull dimension 2,
(ii) infinite torsion-free rank, and
(iii) no section isomorphic to Z o Z.
Proof. — Denote by G the group Z[X] o∗ Z.
(i) The group G is metabelian, we have the following short exact sequence

Z[X]� G� Z. Therefore, by ([Jac19, Proposition 2.24]) its Krull dimension
is the Krull dimension of the ZZ-module Z[X]. As the annihilator of Z[X] in
the group ring ZZ is trivial, this dimension equals 2.

(ii) G has infinite torsion-free rank, as it contains Z[X] which is abelian of infinite
torsion-free rank.

(iii) Existence of a section of G isomorphic to Z o Z would contradict local nilpo-
tency. �

3. The Main Structure Theorem

Let V denote the class of finitely generated groups in A0Xr X and let U denote
the class of those V-groups that have no Z oZ sections. Our goal in this section is to
provide a description of the groups in U. Of course all such groups have a quotient
satisfying all the conclusions of the Theorem A, but our structure theorem applies
to arbitrary U-groups.
For a group Q and a QQ-module V , define the top rank of V to be the minimum

over the dimensions of the irreducible quotients of V , that is
toprkQ V = min{dimQ V/W | W is a maximal proper submodule of V }.

Theorem B. — Let G be a U-group. Then G has subgroups A ⊂ K and (Aj)j∈N
such that the following hold:

(i) All the subgroups Ai, A and K are normal.
(ii) A is torsion-free abelian of infinite rank.
(iii) For each j, Aj ⊂ A, Aj has finite rank, and A is the direct product of the Aj.
(iv) K/A is locally finite.
(v) G/K is a virtually torsion-free M-group.
(vi) For each j, K/CK(Aj) is finite.
(vii) For each subgroup H of finite index in K that is normal in G, CA(H) has

finite rank.
(viii) For every r in N, the set {j ∈ N | toprkG/A(Aj ⊗Q) 6 r} is finite.
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The following corollary should be compared with the main result of [Kro84]: a
finitely generated soluble group is either minimax or contains a section isomorphic
to Z/pZ o Z.

Corollary B 1. — Let G be a finitely generated soluble group with Krull
dimension. Then G has finite torsion-free rank if and only if G has no sections
isomorphic to Z o Z.

Example 2.13 shows that finite generation is an essential hypothesis here.
Proof. — The direct implication follows from the fact that Z oZ has infinite torsion-

free rank.
We prove the reverse implication. Let G be a finitely generated soluble group with

Krull dimension that has no section isomorphic to Z o Z. We proceed by induction
on the length of the derived series of G. Let B be the last non-trivial term of this
series. By induction, G/B has finite torsion-free rank. We aim to prove that B has
finite torsion-free rank as well.
Quotienting out the torsion subgroup of B has no impact on the torsion-free rank,

thus we may assume that B is a torsion-free abelian normal subgroup of G.
By contradiction, if B were not of finite torsion-free rank, the group G would

belong to the class U. Therefore, the description given in Theorem B would provide
a torsion-free abelian normal subgroup A of G, of infinite rank, such that A is the
direct product of infinitely many ZQ-modules, where Q stands for the quotient group
G/A. Hence A would have infinite uniform dimension, and consequently would not
admit a Krull dimension, by [MR87, 6.2.6]. This contradicts the existence of the
Krull dimension of G. �

Corollary B 2. — Let G be a finitely generated soluble group with no Z o Z
sections. Then G has finite torsion-free rank if and only if there is a finite bound on
the torsion-free ranks of the metabelian-by-finite quotients of G.

Proof. — We need to show that if the rank ofG is infinite then there are metabelian-
by-finite quotients of arbitrarily large rank. Assume then that G has infinite rank.
Theorem B applies and G has a normal subgroup A such that the quotient Q = G/A
belongs to X. The group A is the direct product of infinitely many torsion-free
abelian groups Aj of finite rank. By (viii), for every fixed integer r, one can find a
j with toprkQ(Aj ⊗Q) > r. Hence there is a maximal proper QQ-submodule W of
Aj ⊗Q such that the rank of Aj/(Aj ∩W ) is greater than r. Let pj : A→ Aj denote
the projection and let B denote the kernel of the composite pj→ Aj → Aj/(Aj ∩W ).
Then B is normal in G and writing Ḡ for G/B and Ā for A/B we have a short exact
sequence

Ā� Ḡ� Q.

Denote by K the Fitting subgroup of Ḡ. Let L denote the isolator in K of K(1),
that is L = {x ∈ K; xm ∈ K(1) for some m ∈ N}. There are two possibilities : either
L ∩ Ā = {1} or Ā ⊂ L.
The first case produces a metabelian-by-finite quotient of G with torsion-free rank

greater than r.
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In the second case the quotient group K/L is a section of Q. Denote by c the
class of the Fitting subgroup of Q and by h the Hirsch length of its abelianization.
The Hirsch length of K/L is bounded above by h. A version of Lemma 2.2 for the
isolator series applied to the group K then implies that the rank of A is bounded
by hc. Therefore, it cannot happen when r > hc. �
The Theorem B also has the following consequence for random walks on soluble

linear groups. We refer for example to the survey of Tessera [Tes16] for background
and definitions. In [Jac19], a group is said to have large return probability whenever
its return probability is equivalent to exp(−n 1

3 ).
Corollary B 3. — Let G be a finitely generated soluble linear group. Then

either G has large return probability or G has a section isomorphic to Z o Z.
Proof. — By results of Mal′cev [Mal51] and Schur, the group G has a finite index

subgroup H which is virtually torsion-free nilpotent-by-abelian. By Remark 2.12(ii),
the group H admits a Krull dimension. The dichotomy of Corollary B1 above applies:
either H has finite torsion-free rank or H has a section isomorphic to Z oZ. Therefore,
either G has finite rank or G has a section isomorphic to Z o Z. The lower bound
for the return probability of finitely generated soluble groups of finite rank is due to
Pittet and Saloff–Coste [PSC03]. �
Completion of the Proof of Theorem A. — Suppose now that G is a finitely

generated soluble group with the following properties.
• The Fitting subgroup F of G is torsion-free abelian (of infinite torsion-free
rank).
• G/F has finite torsion-free rank.
• G has no Z o Z sections

Let R denote the finite residual of G. Let Aj be a family of subgroups of F as in
the statement of Theorem B. For each j let A∗j denote the direct sum of all Ai with
i 6= j. Then G/A∗j has finite torsion-free rank. Every finitely generated soluble group
of finite torsion-free rank has a locally finite normal subgroup module which the
group is minimax and residually finite, hence the finite residual of G/A∗j is torsion.
In particular, RA∗j/A∗j is torsion and it follows that Aj ∩R is trivial for each j. From
this it follows that R∩F is trivial. Since any non-trivial normal subgroup of a soluble
group meets the Fitting subgroup ([LR04, 1.2.10] for instance), it follows that R = 1
as required. �

Proof of the Structure Theorem

Lemma 3.1. — Let Q be a soluble group with a locally finite normal subgroup K
such that Q/K is minimax. Let M be a QQ-module on which K acts trivially and
which is locally finite dimensional. Then for any cohomology class ξ ∈ Hn(Q,M)
there exists a finite dimensional submodule L of M such that ξ lies in the image of
the map Hn(Q,L)→ Hn(Q,M) induced by the inclusion of L in M .
This is minor extension of Proposition 4 in [Kro84]. Example 3.2 below shows that

the assumption that K acts trivially on M cannot be dropped.
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Proof. — Let (Mj)j∈N be an ascending chain of finite-dimensional submodules
that exhaust M . Triviality of the K-action implies that M and the Mj’s are QQ/K-
modules, and that

Hq(K,Mj) =

Mj if q = 0,
0 otherwise,

and Hq(K,M) =

M if q = 0,
0 otherwise.

Therefore the spectral sequence
lim
→
Hp(Q/K,Hq(K,Mj))⇒ lim

→
Hp+q(Q,Mj)

collapses when q > 0, and takes value lim
→
Hp(Q/K,Mj) when q = 0. We also have

the following spectral sequence
Hp(Q/K,Hq(K,M))⇒ Hp+q(Q,M),

which collapses for q > 0 and takes value Hp(Q/K,M) when q = 0. In addition,
there is a natural map from the first of these to the second. As a consequence, it is
sufficient to prove that this natural map

lim
→
Hp(Q/K,Mj)→ Hp(Q/K,M)

is an isomorphism for all p. As Q/K is minimax and Mj is finite dimensional, this
follows from [Kro84, Proposition 4]. �

Example 3.2. — Let K = F2[t]. For every natural number j, let Mj be a finite
dimensional QK-module on which ⊕

l6j

F2t
j

acts trivially and such that MK
j = 0. As an example, one can take Q with the

following K-action: for every i in Z and every x in Q,

ti.x =

−x provided i = j + 1,
x otherwise.

We have the following exact sequence⊕
j∈N

Mj �
∏
j∈N

Mj � X

where X denotes the quotient of the product of the M ′
js by their direct sum. By

construction, K acts trivially on X. The long-exact sequence of cohomology⊕
j∈N

Mj

K �
∏
j∈N

Mj

K → XK → H1

K,⊕
j∈N

Mj

→ H1

K,∏
j∈N

Mj


has many simplifications. First, note that the two left terms are trivial, and the third
one is actually X. Moreover, by [Bie81],

H1(K,
∏
Mj) =

∏
H1(K,Mj) = 0

because each term of the product is zero. Therefore, H1(K,⊕Mj) is isomorphic to
X, whereas the direct sum ⊕

j H
1(K,Mj) is trivial.
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Let G be a group, and M a ZG-module. We shall say that M is a constrained
module if and only if for each g ∈ G, and m ∈M,m.Z〈g〉 has finite abelian section
rank. Similarly, if k is a field, a kG-module will be called constrained if and only if
for each g ∈ G it is locally finite-dimensional as a k〈g〉-module. For a given group
ring, the class of constrained modules is both section and extension closed. These
definitions were introduced in [Kro84] by the second author, who proved that a
finitely generated soluble group with no section isomorphic to (Z/pZ) oZ is minimax.

Proposition 3.3 ([Kro85, Lemma 3.3]). — Let Q be a finitely generated soluble
group of finite torsion-free rank and let M be a constrained QQ-module. Then M is
locally finite dimensional.

Lemma 3.4. — Let Q be a group, T a normal subgroup of Q and V a QQ-module.
Assume that V is completely reducible as a QT -module. Denote by Λ the set of
isomorphisms classes of simple QT -submodules of V and set, for every λ ∈ Λ and
for every orbit σ ∈ Λ/Q,

Vλ =
∑
S6V
S∈λ

S and Wσ =
∑
λ∈σ

Vλ.

Then Wσ is the QQ-submodule of V generated by Vλ and
V =

⊕
σ∈Λ/Q

Wσ.

Proof. — By construction, Wσ is a QQ-submodule of V and ∑Wσ = V . Assume
that σ and γ are such that Wσ and Wγ intersect non-trivially. Then this intersection
contains a simple QT -submodule S ' λ for some λ ∈ Λ and Wσ = Wγ. �

We may now proceed to the proof of the Structure Theorem B.
Proof of the Structure Theorem B. — As G belongs to the class U, it has a normal

torsion-free abelian subgroup A with infinite torsion-free rank such that the quotient
Q = G/A is a finitely generated soluble group of finite torsion-free rank. The group Q
has a locally finite normal subgroup T = K/A such that the quotient Q/T = G/K
belongs to M. Let ξ ∈ H2(Q,A) be the cohomology class corresponding to the
extension

A� G� Q.

Denote by V the tensor product A⊗Q. Since G has no section isomorphic to Z oZ,
it follows that V must be a constrained QQ-module. Then, by Proposition 3.3, V is
locally finite dimensional.

Claim 1. — The module V is a direct sum of simple QT -modules.

Proof. — To prove this claim, consider

X =
{
X ⊂ V | X.QT '

⊕
x∈X

x.QT and for each x in X, x.QT is simple
}
.

Zorn’s lemma provides a maximal element X in X . If X.QT 6= V , choose v ∈
V rX.QT . By Maschke’s theorem, v.QT decomposes as a direct sum of simple QT -
modules, and at least one of them is not contained in X.QT . Therefore, by changing
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the choice of v if necessary, we may assume that v.QT is simple. Set X ′ = X ∪ {v}.
The set X ′ belongs to X and that is a contradiction. Therefore X.QT = V .

Lemma 3.4 applies and allows to write V as the direct sum of the QQ-modules
V = ⊕σWσ where σ runs along the orbits of the action of Q on the set Λ of
isomorphisms classes of simple QT -submodules of V and

Wσ =
∑
λ∈σ

Vλ, where Vλ =
∑
S6V
S∈λ

S. �

Claim 2. — The QQ-modules Wσ are finite dimensional over Q.

Let λ ∈ σ and S ∈ λ. Consider the QQ-module S.QG: by local finiteness, it is
finite dimensional over Q. Set T0 = CT (S.QG). The subgroup T0 is normal in Q and
has finite index in T . It follows that the module Wσ is acted on trivially by T0, hence
Wσ ⊂ V T0 . Denote by [V, T0] the span of the elements v(t− 1) for v ∈ V and t ∈ T0.
It intersects V T0 trivially as V/[V, T0] is the biggest quotient of V on which T0 acts
trivially. Therefore, the second claim follows from

Claim 3. — The quotient V/[V, T0] is finite dimensional.

Proof. — To prove this third claim, first note that Q/T0 is minimax. Let ξ̂ be the
image of ξ in H2(Q, V/[V, T0]). Lemma 3.1 provides a finite dimensional submodule
L/[V, T0] of V/[V, T0] such that ξ̂ lies in the image of the map H2(Q,L/[V, T0])
→ H2(Q, V/[V, T0]) induced by the inclusion of L/[V, T0] in V/[V, T0]. Consequently,
ξ̂ goes to zero in H2(Q, V/L). As G is finitely generated and the extension

A/A ∩ L� G/L� Q

splits, we have V = L and therefore V/[V, T0] is finite dimensional. This ends the
proof of the Claim 3. �

Consequently, Wσ is finite dimensional and V is a direct sum of finite dimensional
QQ-modules. Set Ai = Vi ∩ A, this is a normal subgroup of G with finite rank. The
group A contains the infinite direct sum of the Ai’s and the corresponding quotient
A/(⊕Ai) is torsion. Hence, we may replace A with ⊕Ai. This proves (i)-(vi).
The proof of (vii) is similar to the third claim: if H is a finite index subgroup of

K, it acts trivially on CA(H) and similarly, V/[V,H] is finite dimensional.
To prove (viii), fix r ∈ N and set Jr := {j; dj := toprkQ(Aj ⊗ Q) 6 r}. For

every j ∈ Jr, there is a maximal proper QQ-submodule Wj of Aj ⊗ Q such that
Āj = Aj/(Aj ∩Wj) has rank less or equal to r.
Set

W =
⊕
j∈Jr

Wj, B =
⊕
dj6r

Āj and C =
⊕
dj>r

Aj.

Modulo C ⊕W , we obtain a quotient Ḡ of G satisfying the extension

B� Ḡ� Q
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Claim 4. — There exists a subgroup H of finite index in Ḡ such that B ⊂ H
and H(1) is nilpotent.

As CḠ(Āj) acts trivially on Āj, Ḡ/CḠ(Āj) ↪→ GLr(Q) and there is a constant Cr
such that, for all j ∈ Jr, there exists a nilpotent-by-abelian normal subgroup Hj of
Ḡ such that Āj ⊂ H, [Ḡ : Hj] 6 Cr and the subgroup H(1)

j acts nilpotently on Āj.
The intersection

H =
⋂
j∈Jr

Hj

still has finite index in Ḡ, contains B and H(1) acts nilpotently on B. Consequently,
H(1) itself is nilpotent.
Assume that Jr is infinite, then H(1) is a nilpotent group of infinite torsion-free

rank. By Corollary 2.3, its abelianization H(1)/H(2) also has infinite torsion-free
rank.
Therefore we obtain a metabelian quotient of G with infinite torsion-free rank,

contradicting the fact that G does not admit a section isomorphic to Z o Z. �

4. Explicit Examples

Theorem B gives elaborate information about finitely generated soluble groups
that have no Z o Z sections that have infinite torsion-free rank. Here we give a
general recipe for such groups. In fact examples can be found in early literature:
their existence is made explicit in [Kro85]. Examples are also present in more recent
literature, for example in the work of Brieussel [Bri15] and Brieussel–Zhang [BZ15],
where their role is to provide examples of exotic analytic behaviour.

Definition. — We shall say that a group Q is of lamplighter type if it has all
the following properties:

(i) Q is finitely generated.
(ii) Q is residually finite.
(iii) Q has a normal locally finite subgroup B and an element t of infinite order

such that
Q =

⋃
i∈Z

Bti.

(iv) Q is not finite-by-cyclic.

Groups satisfying (i),(iii) and (iv) do not necessarily satisfy (ii). For example,
the (standard restricted) wreath product S o Z is never residually finite if S is a
(non-abelian) finite simple group although it has all the other properties of group
of lamplighter type. The following fact is noteworthy and easily seen directly. We
remark that the lemma also has a second proof based on our examples.

Lemma 4.1. — If a finitely generated group Q satisfies property (iii) above then
it is finite-by-cyclic if and only if it is finitely presented.
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First proof. — Suppose that Q satisfies property (iii) with B and t as witnesses.
If Q is finitely presented then it is an HNN extension over a finite subgroup of B
by [BS78, Theorem A] and the only possibility is that B itself is finite and Q is
finite-by-cyclic. Conversely, all finite-by-cyclic groups are finitely presented. �

Lemma 4.2. — Let Q = ⋃
i∈ZBt

i be a lamplighter-type group. Then there is a
sequence (Fi, Ωi), (i > 0) with the following properties.

(i) The sequence
F0 < F1 < F2 < . . .

is an ascending chain of finite subgroups of B such that B = ⋃
i Fi.

(ii) each Ωi is a finite Q-set that
• contains a t-fixed point,
• is transitive as an Fj-set for j > i, and
• is intransitive as an Fj-set for j 6 i.

Proof. — Choose any strictly ascending chain of finite subgroups Fi of finite sub-
groups of B so that (i) holds. Using residual finiteness, we can find NiCQ such that
(B ∩Ni)Fi < B. We now set Ωi = B/B ∩Ni with B acting by right multiplication
and t acting by conjugation. The first and third bullet points are automatically
satisfied. The second bullet point may not hold but certainly, for any i, there is some
j > i such that Fj acts transitively on Ωi and we can simply replace the sequence
(Fi, Ωi) by a subsequence to ensure this is achieved with j = i+ 1. �

Now let Q = ⋃
i∈ZBt

i and (Fi,Ωi) be as in Lemma 4.2. Define Mi to be the kernel
of the augmentation map ZΩi → Z (given by ω 7→ 1 for ω ∈ Ωi). Let ∗i denote a
t-fixed point in Ωi. Let S be a finite subset of B such that Q is generated by {t}∪S.
Let Wi and Xi be distinct Fi-orbits in Ωi, one of which contains ∗i. Set

wi :=
∑
ω∈Wi

ω

xi :=
∑
ω∈Xi

ω

ξi := |Xi|wi − |Wi|xi.
We now have, for all i,

ξi ∈MFi
i †

and
ξi /∈ ZΩi(t− 1). ‡

Let ξ denote the element (ξ0, ξ1, . . . ) of M := ∏
iMi Recall that the semidirect

product QnM consists of ordered pairs (q, η) where q ∈ Q, η ∈ M and the group
multiplication is given by

(q, η)(q′, η′) = (qq′, η.q′ + η′).
Inside this semidirect product let G be the subgroup generated by {t} ∪ S where

t := (t, ξ)
S := {(s, 0); s ∈ S}.
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Claim 1. — Any word in {t} ∪ S that has exponent sum zero in t yields an
element in the subgroup B nM where M = ⊕

iMi.

Claim 2. — G has infinite torsion-free rank.

Claim 1 follows from † and Claim 2 follows from ‡. We leave the details to the
interested reader. The result is that we now have a finitely generated subgroup of
QnM which has derived length 3, has infinite torsion-free rank, and which has no
Z o Z sections.
Second proof of Lemma 4.1 in case Q is residually finite. — We have constructed

a group G that fits into a short exact sequence

A� G� Q

where Q is a group of lamplighter type by choosing a finitely generated subgroup
of the semidirect product Q n M . The image of the generating set {t} ∪ S in
Q generates Q. Moreover, the subgroup A lies in M . In this situation, Q cannot
be finitely presented because G is finitely generated and A is plainly not finitely
generated as normal subgroup. �

Remark 4.3. — It is not clear just how much more general our concept of group
of lamplighter type is when compared to the standard lamplighter groups Z/pZ o Z.
However, by using the above construction while replacing the modules Mi by the
kernels of augmentation maps Z/piZ[Ωi]→ Z/piZ for a sequence of non-zero integers
pi we can build groups which are still of lamplighter type but clearly not of the
classical form. It is perhaps worth remarking that groups B that are simultaneously
locally finite and residually finite have strong structural restrictions: a just-infinite
such group is constructed in [BGS17] where the authors also point out structural
restrictions on such groups when they have finite exponent. Our construction yields
new groups of lamplighter type where the base B can have finite or infinite exponent.

Remark 4.4. — The group G should be compared with the examples constructed
in [Bri15] (and generalized in [BZ15]) to provide various behaviour of several charac-
teristics associated to random walks on groups. The examples therein are diagonal
products of finite lamplighter groups Dl o Z/mZ, where Dl = 〈a, b | a2 = b2 = (ab)l〉
denotes the dihedral group of size 2l. Just like the group G, they are 3-step soluble
groups. Brieussel constructs them as extensions of metabelian by abelian while our
examples are constructed as abelian by metabelian. The end results are essentially
the same in spirit.
More precisely, for k > 0, consider the groups Dl o Z/mZ with generating set

(+1,1), (0, aδ0) and (0, bδk), where 1 is the identically neutral function and, for any
g ∈ Dl, δg is the function taking value 1 at g and neutral elsewhere.
Let (ks), (ls) and (ms) be three sequences of integers. The value ∞ is allowed for

(ls) and (ms). In [Bri15], Brieussel considered the infinite diagonal product ∆ of
the groups Z/msZ oDls which is the subgroup of ∏s Z/msZ oDls generated by the
sequences

(
(+1,1)

)
,
(
(0, asδ0)

)
and

(
(0, bsδks)

)
. The projection onto Z of an element

of ∆ does not depend on s, a feature shared with the group G.
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