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Résumé. — L’objet de cet article est d’étudier les effets spectraux d’une interface entre le
vide et un matériau à indice négatif (NIM), c’est-à-dire un matériau dispersif dont la permitti-
vité électrique et la perméabilité magnétique deviennent négatives dans une certaine gamme
de fréquences. Nous considérons ici une situation élémentaire, à savoir, 1) un modèle très
simple de NIM : le modèle de Drude non dissipatif, pour lequel la négativité se produit à basse
fréquence ; 2) une équation de propagation scalaire bidimensionnelle déduite des équations de
Maxwell ; 3) le cas d’une cavité bornée occupant un domaine polygonal partiellement rempli
d’une portion de matériau Drude. En raison de la dispersion fréquentielle (la permittivité et
la perméabilité dépendent de la fréquence), l’analyse spectrale d’une telle cavité conduit à un
problème aux valeurs propres non linéaire. Grâce à l’utilisation d’une inconnue supplémen-
taire, nous linéarisons le problème et nous présentons une description complète du spectre.
Nous montrons en particulier que l’interface entre le NIM et le vide est à l’origine de divers
phénomènes de résonance liés aux différentes composantes d’un spectre essentiel.

1. Introduction

An electromagnetic negative-index material (NIM), often also called left-handed
material, is a material whose microscopic structure leads to an unusual macroscopic
behavior: in some frequency range(s), both macroscopic electric permittivity and
magnetic permeability (or at least their real parts) become negative. Such materi-
als were first introduced theoretically in the late sixties by Veselago [Ves68] who
exhibited the concept of negative refraction. The potentialities of NIMs for practical
applications were investigated about 30 years later, mainly after the famous paper by
Pendry [Pen00] who opened the quest for spectacular devices such as the perfect flat
lens or the invisibility cloak. Since then, these extraordinary materials have gener-
ated a great effervescence among the communities of physicists and mathematicians.
Surprisingly very little has been achieved in the spectral analysis of systems involving
a NIM. The present paper intends to bring a contribution in this framework. Its
purpose is to show on a simple example that the presence of an interface between a
NIM and a usual material is responsible for an essential spectrum.
One inherent difficulty of the spectral analysis of NIMs follows from an intrinsic

physical property of such materials: frequency dispersion. Indeed, an electromagnetic
NIM is necessarily a dispersive material in the sense that in the frequency domain,
its permittivity and permeability (thus also the wave velocity) depend on the fre-
quency. As a consequence, contrary to the case of a usual dielectric medium, the
time-harmonic Maxwell’s equations depend non-linearly on the frequency. Hence,
when looking for the spectrum of an electromagnetic device involving a NIM, one has
to solve a non-linear eigenvalue problem. This issue is very rarely mentioned in the
mathematical literature. Indeed, most existing works concern the behavior of NIMs
in the frequency domain, that is, propagation of time-harmonic waves at a given fre-
quency. Our study relies on these works, which enlighten the fundamental role played
by the contrasts, that is, the respective ratios of permittivity and permeability across
the interface. The first study in this context is due to Costabel and Stephan [CS85]
in the mid-eighties. They considered a scalar transmission problem (which involves
only one contrast) and showed by an integral equation technique that in the case of
a smooth interface, the transmission problem is well-posed if and only if the contrast
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is different from the critical value −1. The detailed study of this critical value of
the contrast is achieved in [Ola95] and more recently in [CPP19], both for smooth
interfaces. The case of a two-dimensional non-smooth interface was tackled about
fifteen years after the pioneering work of Costabel and Stephan: it was understood
in [BDR99] that in the presence of a corner, this critical value becomes a critical
interval (which contains −1) depending on the angle of the corner. About another fif-
teen years later, the elegant T-coercivity technique gave a new light on these critical
sets for two- and three-dimensional scalar transmission problems [BCC12, Ngu16],
as well as Maxwell’s equations [BCC14a, BCC14b]. An alternative point of view,
based on the so-called Neumann–Poincaré operator, has received recently a resur-
gence of interest [ACK+13, AK16, AMRZ17, BZ19, PP17]: it provides another way
to investigate these critical sets. From a physical point of view, the critical sets of
the contrast are related to remarkable physical phenomena. On the one hand, the
critical value −1 associated to a smooth interface ensures the existence of surface
waves (localized near the interface) called surface plasmons [GM12, Gri14]. On the
other hand, the critical interval associated with a corner on the interface gives rise
to a possible concentration of energy near the vertex, which has been interpreted as
a “black hole” effect at the corner [BCCC16].
There are very few papers in the literature which deal directly with the non-

linear eigenvalue problem resulting from frequency dispersion. Let us cite for in-
stance [CMM12] where some generic well-posedness results are established thanks
to Fredholm’s analytical theory, with various applications to metamaterials. In cases
where the dependence on the spectral parameter is rational, it is possible to get
rid of the spectral non-linearity by introducing suitable auxiliary fields. The initial
non-linear eigenvalue problem can then be re-written as a linear one which involves
both original and auxiliary fields. This augmented formulation technique actually
comes within a general approach for rational operator valued functions which can
be related with block operator matrices. It has a long history which seems to start
at the end of the 70’s with the concept of transfer function [BGK79] and was then
widely developed under the name Schur complement borrowed from the theory of
matrices [Nag89, Tre08]. Similar ideas also apply for the numerical solution of ra-
tional eigenvalue problems [GT17, SB11]. From a theoretical point of view, this
approach was used for instance in [AL95] to study completeness properties of a
family of eigenvectors of a rational operator valued function. More recently, it is
developed in [ELT17] to establish min-max characterizations of eigenvalues of some
kinds of rational operator functions, with applications to photonics which are closed
to the problem addressed in the present paper. The augmented formulation approach
is used in [CHJ17] to achieve a complete spectral analysis of Maxwell’s equations
in the case of a plane interface between a NIM and vacuum. It is also developed
in [BGD16] to perform the numerical calculation of modes for cavities or photonic
crystals containing a dissipative NIM. Let us finally mention that in the context
of Maxwell’s equations, the idea of introducing auxiliary fields was investigated
by Tip [Tip98] in dissipative and dispersive linear media. Compared to the Schur
complement technique, the originality of the augmented formulation proposed by
Tip concerns dissipative problems for which a suitable choice of auxiliary variables
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leads to a selfadjoint operator. The same idea applies actually in a very wide frame
of systems [FS07] which observe two fundamental assumptions: causality (causes
precede effects) and passivity (nothing comes from nothing).
The aim of the present paper is to explore the spectrum of the linear augmented

formulation constructed from the initial non-linear eigenvalue problem, considering
an elementary situation. Firstly, instead of the three-dimensional Maxwell’s equa-
tions, we deal with a two-dimensional scalar equation (which can be derived from
Maxwell’s equations in a medium which is invariant in one space direction). Sec-
ondly, we choose the simplest existing model of NIM, namely the non dissipative
Drude model, for which negativity occurs at low frequencies. Finally, we consider
the case of a bounded cavity consisting of two polygonal parts: one part filled with
a Drude material and the complementary part filled with vacuum. We will see that
contrary to a cavity filled with a usual dielectric (for which the spectrum is always
purely discrete: it is made of a sequence of positive eigenvalues which tends to +∞),
the presence of the Drude material gives rise to various components of an essential
spectrum corresponding to various unusual resonance phenomena:

(i) A low frequency bulk resonance: the zero frequency is an accumulation point
of positive eigenvalues whose associated eigenvectors are confined in the Drude
material.

(ii) A surface resonance: for the particular frequency which corresponds to the
critical value −1 of the contrast, localized highly oscillating vibrations are
possible near any “regular point” of the interface between the Drude material
and the vacuum (by “regular point”, we mean a point which is not a vertex
of a corner).

(iii) A corner resonance: for any frequency in the frequency intervals which cor-
respond to the critical intervals of the contrast associated to each corner,
localized highly oscillating vibrations are possible near the vertex, which is
related to the “black hole” phenomenon.

A crucial issue will remain open at the end of the paper: what is the relation
between the essential spectrum of the linear augmented formulation studied here
and that of the initial non-linear problem? Can we deduce from our results that
the latter has the same components of essential spectrum? In some situations, the
answer to such a question follows from general results (which is one of the main
objectives of spectral theory of block operator matrices, see [Tre08]). Unfortunately,
none of these general results applies to our situation and we are unable to give here
a satisfying answer to this delicate question.
The paper is organized as follows. In Section 2, we present our scalar problem as

well as its augmented formulation and give the main results of the paper. Section 3 is
devoted to the proof of these results, which mainly consists in investigating the above
mentioned resonance phenomena using the notion of Weyl sequences. We conclude
with some perspectives. Finally Appendix A presents a short discussion about the
tricky question of the relation between the respective essential spectra of both linear
and non-linear problems.
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Throughout the paper, we use the following notations for usual functional spaces.
For an open set Ω ⊂ Rd (d > 1), we denote by D(Ω) the space of infinitely dif-
ferentiable functions with compact support contained in Ω, by L2(Ω) the space of
square integrable functions in Ω, by Hs(Ω), for s ∈ R, the usual Sobolev space of
order s and by H1

0 (Ω) the closure of D(Ω) in H1(Ω). Moreover, in order to avoid the
appearance of non meaningful constants in inequalities, we employ the symbols .
and & which mean that the inequality is satisfied up to a positive factor which does
not depend on the parameters involved in the inequality (for instance, |f(x)| . 1
means that f is bounded).

2. Formulation of the problem and main results

2.1. Original non-linear problem

Our aim is to study the spectral properties of a two-dimensional bounded cavity
partially filled with a NIM. We consider a polygonal cavity C (bounded open set
of R2) divided into two open polygonal domains N and V (such that N ∪ V = C
and N ∩ V = ∅, see Figure 2.1). As these notations suggest, N and V are filled
respectively with a NIM and vacuum. We denote by Σ the interface between N and
V (that is, Σ := ∂N ∩∂V), which clearly consists of one or several polygonal curve(s).
In the case of several curves, we assume that they do not intersect (in particular
checkerboard-like cavities are excluded).
We consider in this paper the simplest model of NIM, known as the non-dissipative

Drude model, for which the electric permittivity and the magnetic permeability are
respectively defined in the frequency domain by

(2.1) εNλ := ε0

(
1− Λe

λ

)
and µNλ := µ0

(
1− Λm

λ

)
,

where λ := ω2 denotes the square of the (circular) frequency, ε0 and µ0 are the
permittivity and the permeability of the vacuum and the coefficients Λe and Λm
are positive constants which characterize the Drude material. Such a material is a
negative material at low frequencies (since εNλ < 0 if 0 < λ < Λe, respectively µNλ < 0

•
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•B2

ΣV
N
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Cp

Σ
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γq
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Σ

∂C

Figure 2.1. Left: The polygonal cavity C divided into N (NIM: dark gray) and
V (vacuum: light gray). Middle: an inner vertex Cp of the interface Σ between
N and V . Right: a boundary vertex Bq of Σ.
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if 0 < λ < Λm) and behaves like the vacuum at high frequencies (since εNλ → ε0 and
µNλ → µ0 when λ→ +∞). Note that the ratio µNλ /µ0 (respectively, εNλ /ε0) is equal
to the critical value −1 if λ = Λm/2 (respectively, λ = Λe/2).
In V , the permittivity and permeability are those of the vacuum, which leads us

to introduce two piecewise constant functions defined in the cavity C by

(2.2) ελ(x) := ε0

(
1− 1N (x) Λe

λ

)
and µλ(x) := µ0

(
1− 1N (x) Λm

λ

)

for x ∈ C, where 1N denotes the indicator function of N . The starting point of our
study is the following eigenvalue problem, which describes the resonances of the
cavity:

Find λ ∈ C and a nonzero ϕ ∈ H1
0 (C) such that

div
(

1
µλ

gradϕ
)

+ λ ελ ϕ = 0 in C.(2.3)

The latter equation has to be understood in the distributional sense. In other words,
the above problem is a condensed form of the following system:

∆ϕ+ λ εNλ µ
N
λ ϕ = 0 in N ,(2.4a)

∆ϕ+ λ ε0µ0 ϕ = 0 in V ,(2.4b)

[ϕ]Σ = 0 and
[

1
µλ

∂ϕ

∂n

]

Σ
= 0,(2.4c)

ϕ = 0 on ∂C,(2.4d)

where [f ]Σ denotes the jump of a function f across Σ, that is, the difference of
the traces of f obtained from both sides. In the transmission conditions (2.4c),
n denotes a unit normal to Σ. These conditions couple the Helmholtz equations (2.4a)
and (2.4b) on both sides of Σ. The Dirichlet boundary condition (2.4d) is contained
in the choice of the Sobolev space H1

0 (C) for ϕ.
The above eigenvalue problem is clearly non-linear with respect to λ, unless N

is empty (i.e., C only contains vacuum). In this latter case, (2.3) is linear since it
reduces to (2.4b)-(2.4d), which means that λ ε0µ0 is an eigenvalue of the Dirichlet
Laplacian, that is, the selfadjoint operator −∆dir defined by

−∆dirϕ := −∆ϕ, ∀ ϕ ∈ D(−∆dir) :=
{
ϕ ∈ H1

0 (C); ∆ϕ ∈ L2(C)
}
.

It is well known that the spectrum σ(−∆dir) of this operator is purely discrete: it is
composed of a sequence of positive eigenvalues of finite multiplicity which tends to
+∞.

On the other hand, if V = ∅ (i.e., if C only contains the Drude material), (2.3)
reduces to (2.4a)-(2.4d), which means that λ εNλ µNλ is an eigenvalue the operator
−∆dir defined above. Hence the set of eigenvalues of our non-linear problem is simply
the inverse image of σ(−∆dir) under the function f defined by

(2.5) f(λ) := λ εNλ µ
N
λ = λ ε0µ0

(
1− Λe

λ

)(
1− Λm

λ

)
,
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| | |
0 Λe Λm

λ

f(λ)

λdir
1

λdir
2

λdir
3

λdir
4

•••••••••• • • •

Figure 2.2. The dots on the λ-axis represent the inverse image of σ(−∆dir) =
{λdir

n ; n > 1} under the function f defined in (2.5) (in the case Λe < Λm).

which is represented in Figure 2.2. As f(λ) tends to +∞ when λ goes to 0 or +∞,
the eigenvalues accumulate at +∞ as well as 0.
Of course, when both vacuum and Drude material are present in the cavity, such

simple arguments can no longer be used. As mentioned in the introduction, general
techniques of block operator matrices allow us to transform the non-linear eigen-
value problem (2.3) into a linear one which involves a selfadjoint operator, thanks
to the introduction of an additional unknown. This is the object of the following
subsection 2.2.

2.2. Linearization of the problem

Let us first introduce some notations. We denote by R : L2(C) → L2(N ) the
operator of restriction from C to N and by R∗ : L2(N ) → L2(C) the operator of
extension by 0 from N to C, that is, for all (ϕ, ψ) ∈ L2(C)× L2(N ),

Rϕ := ϕ|N and R∗ψ(x) :=



ψ(x) if x ∈ N ,
0 if x ∈ V .

These operators are clearly adjoint to each other since
∫

N
Rϕ(x)ψ(x) dx =

∫

C
ϕ(x)R∗ψ(x) dx.

Note that RR∗ is the identity in L2(N ), whereas R∗R is the operator of multipli-
cation by 1N in L2(C). We shall keep the same notations R and R∗ if ϕ and ψ are
replaced by vector-valued functions in L2(C)2 × L2(N )2.
The construction of a linear eigenvalue problem equivalent to (2.3) is quite simple.

We assume in the sequel that λ 6= Λm, so that µ−1
λ remains bounded. Note that for

λ = 0, problem (2.3) still makes sense provided we replace (µNλ )−1 and λ εNλ by their
limiting values, respectively, 0 and −ε0Λe. Using the definition (2.2) of ελ and µλ,
which shows in particular that

1
µλ

= 1
µ0

(
1 + 1N

Λm

λ− Λm

)
,
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we can rewrite (2.3) in the form
1

ε0µ0
div

{(
1 + 1N

Λm

λ− Λm

)
gradϕ

}
+ (λ− 1N Λe) ϕ = 0.

Hence, setting

(2.6) u := Λm

λ− Λm
R gradϕ,

equation (2.3) is equivalent to
−1
ε0µ0

div {gradϕ+R∗u}+ 1N Λe ϕ = λϕ in C,(2.7a)

ΛmR gradϕ+ Λm u = λu in N ,(2.7b)

where the latter equation is nothing but the definition (2.6) of u. In this system of
equations, λ only appears in the right-hand side: it is a linear eigenvalue problem
for the pair (ϕ, u). To sum up, if λ 6= Λm, a function ϕ ∈ H1

0 (C) is a solution to (2.3)
if and only if (ϕ, u) ∈ H1

0 (C)× L2(N )2 satisfies

(2.8) A
(
ϕ
u

)
= λ

(
ϕ
u

)

where

(2.9) A
(
ϕ
u

)
:=



−1
ε0µ0

div {gradϕ+R∗u}+ 1N Λe ϕ

ΛmR gradϕ+ Λm u


 .

It remains to make precise the proper functional framework in which A is selfadjoint.
Consider the Hilbert space

H := L2(C)× L2(N )2

equipped with the inner product

(2.10)
(

(ϕ, u), (ϕ′, u′)
)

H
:= ε0µ0

∫

C
ϕ(x)ϕ′(x) dx+ 1

Λm

∫

N
u(x) · u′(x) dx.

Proposition 2.1. — The operator A defined by (2.9) with domain

(2.11) D(A) :=
{

(ϕ, u) ∈ H1
0 (C)× L2(N )2; div(gradϕ+R∗u) ∈ L2(C)

}

is selfadjoint and non-negative in H.
Proof. — Consider the following sesquilinear form a defined for all pairs Φ := (ϕ, u)

and Φ′ := (ϕ′, u′) in D(a) := H1
0 (C)×L2(N )2 equipped with the usual norm, denoted

by ‖ · ‖D(a):

a(Φ,Φ′) :=
∫

C
(gradϕ+R∗u) · (gradϕ′ +R∗u′) dx+ Λeε0µ0

∫

N
ϕϕ′ dx.

Thanks to Green’s formula, we deduce from the definition (2.9) of A that
(2.12) (AΦ,Φ′)H = a(Φ,Φ′) ∀ Φ ∈ D(A), ∀ Φ′ ∈ D(a).
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It is clear that a is continuous, non-negative and symmetric in D(a), which is
continuously embedded in H. Hence, if there exist λ ∈ R and m > 0 such that
(2.13) a(Φ,Φ) + λ‖Φ‖2

H > m‖Φ‖2
D(a) ∀ Φ ∈ D(a),

it is well-known [Kat13, Theorem 2.1, p. 322] that (2.12) defines a unique non-
negative selfadjoint operator A with domain

D(A) :=
{

Φ ∈ D(a); ∃ Ψ ∈ H, ∀ Φ′ ∈ D(a), a(Φ,Φ′) = (Ψ,Φ′)H
}
.

It is easy to see that this definition coincide with (2.11). In order to check inequal-
ity (2.13), note that for any λ > 0, we have

‖gradϕ+R∗u‖2
L2(C) =

∥∥∥∥∥∥

√
Λm

λ
gradϕ+

√
λ

Λm
R∗u

∥∥∥∥∥∥

2

L2(C)

+
(

1− Λm

λ

)
‖ gradϕ‖2

L2(C) +
(

1− λ

Λm

)
‖u‖2

L2(N ).

As a consequence,

a(Φ,Φ) + λ‖Φ‖2
H >

(
1− Λm

λ

)
‖ gradϕ‖2

L2(C) + λε0µ0 ‖ϕ‖2
L2(C) + ‖u‖2

L2(N ).

So, if λ > Λm, inequality (2.13) holds with m = min(1− Λm/λ, λε0µ0, 1). �

Summing up, the above linearization process amounts to identifying the point
spectrum σp(A) of A with that of a rational family of operators associated to
the original non-linear problem (2.3). It seems natural to consider here the family
C \ {Λm} 3 λ 7→ Sλ of unbounded operators defined in L2(C) by

D(Sλ) :=
{
ϕ ∈ H1

0 (C); div(µ−1
λ gradϕ) ∈ L2(C)

}
and(2.14)

Sλϕ := − div
(
µ−1
λ gradϕ

)
− λ ελ ϕ ∀ ϕ ∈ D(Sλ).(2.15)

Thus if we define
(2.16) σp(Sλ) :=

{
λ ∈ C \ {Λm}; Ker(Sλ) 6= {0}

}
,

we have proved that σp(Sλ) = σp(A) \ {Λm}.
Proposition 2.1 tells us that the spectrum σ(A) of A is real and non-negative.

Contrary to the case of a cavity filled by ordinary materials, this spectrum is not
only discrete. The rest of the paper is precisely to describe and analyze the content
of the essential spectrum σess(A) of A. The latter should reasonably be expected to
coincide with that of Sλ. Unfortunately, we are not able to prove rigorously such
a plausible assertion. Some explanations about this awkward question are given in
the Appendix A.

2.3. Main results

Recall (see, e.g., [EE87]) that the discrete spectrum σdisc(A) is the set of isolated
eigenvalues of finite multiplicity. The essential spectrum is its complement in the
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spectrum, that is, σess(A) := σ(A) \ σdisc(A), which contains either accumulation
points of the spectrum or isolated eigenvalues of infinite multiplicity. Our study of
σess(A) is based on a convenient characterization of the essential spectrum: a real
number λ belongs to σess(A) if and only if there exists a sequence (Φn)n∈N ⊂ D(A)
such that

‖Φn‖H = 1, lim
n→∞

‖AΦn − λΦn‖H = 0 and lim
n→∞

(Φn,Ψ)H = 0, ∀ Ψ ∈ H,

which is called aWeyl sequence for λ (or a singular sequence). The two first conditions
actually characterize any point of σ(A), whereas the last one (weak convergence to 0)
is specific to σess(A).
We summarize below the main results of the paper about the various components

of σess(A).
First, the value λ = Λm is an eigenvalue of infinite multiplicity of A (see Propo-

sition 3.1). The non-linear eigenvalue problem (2.3) does not make sense for this
particular value, since µ−1

λ becomes infinite in N . We will see that this eigenvalue
of A is actually an artifact of the augmented formulation (see Remark 3.2).
The other components of σess(A) correspond to various unusual resonance phe-

nomena. A bulk resonance in the Drude material corresponds to the value λ = 0,
which is an accumulation point of the discrete spectrum. A surface resonance at
the interface Σ between N and V corresponds to the value λ = Λm/2. Finally, a
corner resonance at every vertex of the interface Σ gives rise to a continuous set in
the essential spectrum. To make this set precise, we have to distinguish between the
inner vertices {Cp ∈ Σ; p = 1, . . . , P} located inside C and the boundary vertices
{Bq ∈ Σ; q = 1, . . . , Q} located on the boundary ∂C (see Figure 2.1). On the one
hand, for an inner vertex Cp, the corner resonance is observed in two intervals which
are symmetric with respect to Λm/2:

Jp :=
{
λ ∈ R; 0 <

∣∣∣∣∣λ−
Λm

2

∣∣∣∣∣ <
Λm

2

∣∣∣∣1−
αp
π

∣∣∣∣

}
(2.17)

=
]

Λm

2

(
1−

∣∣∣∣1−
αp
π

∣∣∣∣
)
,
Λm

2

[
∪
]

Λm

2 ,
Λm

2

(
1 +

∣∣∣∣1−
αp
π

∣∣∣∣
)[
,

where αp ∈ (0, 2π)\{π} denotes the angle of the Drude sector as shown in Figure 2.1.
We see that if αp is close to 0 or 2π (which means that the corner is sharp either
in N or in V), this set fills almost ]0,Λm[\{Λm/2}, whereas if αp is close to π, this
set concentrates near Λm/2 (it becomes empty if αp = π, i.e., no corner). On the
other hand, for a boundary vertex Bq, the corner resonance is observed in only one
interval defined by

(2.18) Iq :=
]

Λm

2 min
(

1, 2βq
γq

)
,
Λm

2 max
(

1, 2βq
γq

)[
,

where the angles βq, γq ∈ (0, 2π) are defined in Figure 2.1. As above, if βq/γq is
close to 0 (respectively, to 1), this set fills almost ]0,Λm/2[ (respectively ]Λm/2,Λm[),
whereas if βq/γq is close to 1/2, this set concentrates near Λm/2 and becomes empty
if βq = γq/2.
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Figure 2.3. Examples of cavities leading to an essential spectrum which is sym-
metric with respect to Λm/2. Each column shows two different cavities leading
to the same essential spectrum represented by dots and a thick line on the λ-axis.
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Figure 2.4. Examples of cavities leading to an essential spectrum which is not
symmetric with respect to Λm/2. In each column, the domains filled by the Drude
material and vacuum are interchanged.

The main result of this paper is the following Theorem 2.2 whose proof is the
subject of the next section (in particular Section 3.6).
Theorem 2.2. — Suppose that N 6= ∅ and V 6= ∅. Then the essential spectrum

σess(A) ⊂ σ(A) ⊂ [0,+∞) of A is given by
σess(A) = {0,Λm/2,Λm} ∪

⋃

p=1, P
Jp ∪

⋃

q=1, Q
Iq.

Moreover the eigenvalues of the discrete spectrum σdisc(A) accumulate at 0 and +∞.
Figures 2.3 and 2.4 show various examples which illustrate this theorem.
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In Figure 2.3, each cavity has an essential spectrum which is symmetric with
respect to Λm/2. This clearly holds if there is no boundary vertex Bq (that is, if
Σ ∩ ∂C = ∅), since the sets Jp are symmetric. This is shown in the left column
where we notice that the essential spectrum remains unchanged if we interchange
both media, since Jp is unchanged if αp is replaced by 2π − αp. The middle column
highlights the fact that Iq = ∅ if βq = γq/2, that is, if the angles of both Drude
and vacuum sectors at a boundary vertex Bq are equal. Finally, the right column
illustrates the fact that Iq is equal to one of the two intervals which compose Jp
if 2βq/γq = αp/π. Hence, two very different cavities may have the same essential
spectrum.
Figure 2.4 shows examples of cavities leading to an essential spectrum which is no

longer symmetric with respect to Λm/2. We notice that if we interchange both media,
the new essential spectrum is simply deduced from the initial one by a symmetry
with respect to Λm/2, which holds true for all cavities considered here.

3. Exploration of the spectrum

3.1. Preliminaries

We first consider the two particular values λ = 0 and λ = Λm, which are poles of
εNλ and (µNλ )−1 respectively (see (2.1)). The following proposition tells us that 0 is
not an eigenvalue of A, whereas Λm is an eigenvalue of infinite multiplicity of A.

Proposition 3.1. — We have KerA = {0} and Ker(A−ΛmI) = H∞⊕H0 where
H∞ :=

{
(0, u) ∈ H; div u = 0 in N and u · n = 0 on Σ

}
is of infinite dimension

whereas H0 is a finite dimensional subspace of H.

Proof. — Suppose that (ϕ, u) ∈ KerA, which means that (ϕ, u) ∈ D(A) satis-
fies (2.7a) and (2.7b) with λ = 0. Equation (2.7b) shows that u = −R gradϕ, so
that (2.7a) becomes

1
ε0µ0

div(1V gradϕ) = Λe1Nϕ in C.

The left-hand side of this equation vanishes in N , therefore ϕ = 0 in N , which
implies that u = 0. Moreover, this equation shows that ∆ϕ = 0 in V . The trace of ϕ
vanishes on ∂V ∩ ∂C (since ϕ ∈ H1

0 (C)) as well as on Σ (since ϕ is continuous across
Σ, see (2.4c)), which implies that ϕ = 0 in V . We conclude that (ϕ, u) = (0, 0).
Suppose now that (ϕ, u) ∈ Ker(A− ΛmI), which means that (ϕ, u) ∈ D(A) satis-

fies (2.7a) and (2.7b) with λ = Λm, that is,
−1
ε0µ0

div {gradϕ+R∗u}+ (1N Λe − Λm)ϕ = 0 in C,

R gradϕ = 0 in N .
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The latter equation implies that ϕ is constant in N . Assuming for simplicity that
∂N ∩ ∂C 6= ∅, this constant must vanish (since ϕ|∂C = 0), so the former equation
shows on the one hand that ϕV := ϕ|V is a solution in H1

0 (V) to
−∆ϕV − ε0µ0Λm ϕV = 0 in V ,

and on the other hand that u satisfies

div u = 0 in N and u · n = ∂ϕV
∂n

on Σ.

If ε0µ0Λm is not an eigenvalue of the Dirichlet Laplacian in V , we conclude that
ϕV = 0. This shows that Ker(A− ΛmI) coincide in this case with the subspace H∞
defined in the Proposition 3.1, whose dimension is clearly infinite since it contains
all pairs (0, curl2D ψ) where ψ ∈ H1(N ) satisfies ψ|Σ = 0 (here, curl2D denotes the
two-dimensional curl of a scalar function, i.e., curl2D ψ := (∂ψ/∂y,−∂ψ/∂x).
But if by chance, ε0µ0Λm is an eigenvalue of the Dirichlet Laplacian in V , then

ϕV can be any associated eigenfunction, which yields element (φ, u) ∈ Ker(A−ΛmI)
with φ 6= 0. Hence in this case, Ker(A − ΛmI) does not reduce to H∞, but the
orthogonal complement of H∞ in Ker(A − ΛmI) has necessarily a finite dimension
since the eigenvalues of the Dirichlet Laplacian have a finite multiplicity.
The above arguments are easily adapted if ∂N ∩ ∂C = ∅. �

Remark 3.2. — The above Proposition 3.1 shows that the fact that Λm belongs
to the essential spectrum of A is related to the infinite dimensional subspace H∞.
The eigenfunctions (ϕ, u) of this subspace are such that ϕ = 0. Hence these states
cannot be revealed by the nonlinear eigenvalue problem (2.3). This is why Λm can
be seen as an artifact of the augmented formulation (2.8).

3.2. Bulk resonance in the Drude material

As mentioned in Section 2.3, each point of the essential spectrum of A (except Λm)
is related to an unusual resonance phenomenon. The case of λ = 0 is related to the
existence at low frequencies of highly oscillating vibrations which are confined in the
Drude material. Assuming ∂V ∩ ∂C 6= ∅ (which is not necessary in Proposition 3.3
below), this can be understood intuitively from (2.4a)–(2.4d) by first noticing that in
the second transmission condition of (2.4c), 1

µN
λ

tends to 0 when λ tends to 0, which
shows that on the vacuum side, the normal derivative of ϕ must be small. Hence, in
the vacuum, ϕ is close to a solution to the Helmholtz equation (2.4b) which vanishes
on ∂V ∩ ∂C and such that ∂ϕ/∂n = 0 on Σ. The eigenvalues λ of this problem are
positive (thanks to the assumption ∂V ∩ ∂C 6= ∅), so the only possible solution for
small λ is ϕ|V = 0, which means that ϕ is confined in N . Besides, we have seen
in Section 2.1 that in a cavity which only contains a Drude material, eigenvalues
accumulate at 0. This gives the idea of the construction of a Weyl sequence for λ = 0.
Consider a sequence (ϕNn ) of eigenfunctions of the Dirichlet Laplacian in N , i.e.,

a sequence of nonzero solutions ϕNn ∈ H1
0 (N ) to −∆ϕNn = λnϕ

N
n , where (λn) is the

sequence of associated eigenvalues, which tends to +∞. The idea is simply to extend
ϕNn by 0 in V and introduce the corresponding auxiliary unknown defined by (2.6)
with λ = 0.
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Proposition 3.3. — Let Φn := (ϕn, un) where ϕn := R∗ϕNn and un :=
−R gradϕn. Then Φn/‖Φn‖H is a Weyl sequence for λ = 0.

Proof. — As ϕNn ∈ H1
0 (N ), we have grad(R∗ϕNn ) = R∗ gradϕNn , so ϕn ∈ H1

0 (C)
and un = − gradϕNn ∈ L2(N ). Moreover, div(gradϕn + R∗un) = 0, which shows
that Φn ∈ D(A) (see (2.11)).
Besides, from the definition (2.9) of A, we see that AΦn = (1NΛe ϕn, 0), so

‖AΦn‖H
‖Φn‖H

.
‖ϕNn ‖L2(N )

‖un‖L2(N )
= ‖ϕNn ‖L2(N )

‖ gradϕNn ‖L2(N )
= 1√

λn
,

where the last equality follows from the definition of ϕNn . As λn → +∞, we deduce
that 0 is in the spectrum of operator A.
It is not necessary here to check the weak convergence to 0 of Φn/‖Φn‖H. Indeed,

Proposition 3.1 tells us that 0 is not an eigenvalue of A, so it belongs necessarily to
its essential spectrum. �

We show in the next Subsections 3.3–3.6 that the other components of the essential
spectrum of A are located outside a vicinity of 0. In other words, 0 is an isolated
point of σess(A). Therefore, as it is not an eigenvalue, 0 is an accumulation point of
σdisc(A), as in the case V = ∅ mentioned in Section 2.1. The following Proposition 3.4
confirms the initial intuitive assertion of this subsection: the eigenfunctions associated
to eigenvalues close to 0 are actually confined in the Drude material.

Proposition 3.4. — Assume that ∂V ∩ ∂C 6= ∅. Let (λj)j∈N be a sequence of
σdisc(A) which tends to 0 and Φj = (ϕj, uj) a sequence of associated eigenvectors
chosen such that ‖Φj‖H = 1. Then the restrictions ϕj|V tend to 0 in H1(V).

Proof. — In Section 2.2, we have seen that the linear eigenvalue equation AΦj

= λj Φj is equivalent to the initial nonlinear one

div
(

1
µλj

gradϕj
)

+ λj ελj ϕj = 0 in C,

together with uj = Λm (λj − Λm)−1R gradϕj. Using Green’s formula, we deduce
from the above equation that

∫

C

(
1
µλj
| gradϕj|2 − λj ελj |ϕj|2

)
dx = 0.

Splitting the integral in two parts on V and N and gathering the terms with same
sign yields
1
µ0

∫

V
| gradϕj|2 dx+λj |εNλj |

∫

N
|ϕj|2 dx = 1

|µNλj |
∫

N
| gradϕj|2 dx+λj ε0

∫

V
|ϕj|2 dx.

The right-hand side of this equality tends to 0, for both integrals are bounded (since
‖Φj‖H = 1) and both factors 1/µNλj and λj tend to 0. Therefore the left-hand side also
tends to 0, which implies that gradϕj|V → 0 in L2(V). Thanks to the assumption
∂V ∩ ∂C 6= ∅, Poincaré’s inequality then shows that ϕj|V tend to 0 in H1(V). �
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x1

x2

•
O

vacuum NIM

Figure 3.1. Cartesian coordinates near a point of the interface Σ.

3.3. Surface resonance at the interface between both media

We prove now that λ = Λm/2 also belongs to the essential spectrum. This value
corresponds to the case where µNλ = −µ0, that is, the critical value −1 of the
contrast µNλ /µ0, which is known to lead to an ill-posed time-harmonic problem (see
the references quoted in the introduction). As shown below, it is related to the
existence of highly oscillating vibrations that can be localized near any point of the
interface Σ except the vertices. We first show how such surface waves can be derived
from our initial equation (2.3).

3.3.1. Surface waves

Consider the case of a rectilinear interface between two half-planes. Choose a
Cartesian coordinate system (O, x1, x2) so that the half-plane x1 > 0 is filled by our
NIM, whereas x1 < 0 contains vacuum (see Figure 3.1). Consider then the equation

(3.1) div
(

1
µΛm/2

gradψ
)

= 0,

which is deduced from (2.3) with λ = Λm/2 by removing the term λ ελ ϕ (as shown
in the following, this term acts as a “small” perturbation for highly oscillating
solutions). It is readily seen that for any k > 0, the function exp(ik(x2 + i|x1|) is
a solution to (3.1). It represents a surface wave which propagates in the direction
of the interface and decreases exponentially as x1 → ±∞. Any superposition of
such surface waves (for various k) is still solution to (3.1). In particular, for a given
f ∈ D(R+), the function ψ defined by

ψ(x) = ψ(x1, x2) :=
∫

R+
f(k) eik(x2+i|x1|) dk

is a solution to (3.1), as well as

ψn(x) := ψ(nx1, nx2) =
∫

R+

1
n
f

(
k

n

)
eik(x2+i|x1|) dk for n > 1.

Remark 3.5. — By successive integrations par parts, we see that ψ(x) = o(|x|−p)
for all p ∈ N as |x| :=

√
x2

1 + x2
2 goes to +∞, and the same holds for the first-order

partial derivatives of ψ (note that ∂ψ/∂x1 is discontinuous across x1 = 0). This shows
in particular that ψ ∈ H1(R2). Hence ψ represents vibrations which are localized in
a bounded region near the interface, whereas ψn becomes more and more confined
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near O as n increases. Notice that ψ (as well as ψn) is symmetric with respect to
x1 = 0, that is, ψ(−x1, x2) = ψ(x1, x2).

3.3.2. A Weyl sequence

Returning to our cavity, we are now able to construct a Weyl sequence for
λ = Λm/2. Suppose that the center O of our coordinate system (O, x1, x2) is a
given point of the interface Σ different from the vertices and that the x1 and x2-axes
are chosen such that our medium is described by Figure 3.1 in a vicinity of O. More
precisely, this means that one can choose a given small enough R > 0 such that
BR ⊂ C, N ∩ BR ⊂ {x1 > 0} and V ∩ BR ⊂ {x1 < 0}, where we have denoted
BR := {x ∈ R2; |x| 6 R} the ball of radius R centered at O. Let us then define
(3.2) ϕn := ψn χ and un := −2R gradϕn,
where χ ∈ D(R2) is a cutoff function which vanishes outside BR, is equal to 1 in
some ball BR1 with 0 < R1 < R and is symmetric with respect to x1 = 0, that is,
χ(−x1, x2) = χ(x1, x2). Note that the above definition of un follows from (2.6) with
λ = Λm/2.

Proposition 3.6. — Let Φn := (ϕn, un) defined by (3.2). Then Φn/‖Φn‖H is a
Weyl sequence for λ = Λm/2.

Proof.
i. — Let us first prove that Φn ∈ D(A). It is clear that ψn is a C∞ function in both

half-planes ±x1 > 0 and is continuous at the interface x1 = 0. Hence ϕn ∈ H1
0 (C)

(since χ = 0 on ∂C), which implies that un ∈ L2(N )2. It remains to check that
div(gradϕn + R∗un) = − div(s1 gradϕn) belongs to L2(C), where s1 denotes the
sign function s1(x1, x2) := sgn x1. As ϕn is smooth on both sides of the interface,
this amounts to proving that s1 ∂ϕn/∂x1 is continuous across the interface. We have

∂ϕn
∂x1

= ψn
∂χ

∂x1
+ ∂ψn
∂x1

χ.

As χ ∈ D(R2) is symmetric with respect to x1 = 0, its partial derivative ∂χ/∂x1
vanishes on the interface. On the other hand, ψn is continuous but not differentiable
on the interface. However it is symmetric with respect to x1 = 0, so that s1 ∂ψn/∂x1
is continuous across the interface, which yields the desired result.
ii. — We prove now that ‖AΦn−(Λm/2) Φn‖H/‖Φn‖H tends to 0 as n→∞. First,

using the fact that ψn is solution to (3.1) where µΛm/2 = −s1 µ0, we infer that

AΦn −
Λm

2 Φn =




s1

ε0µ0

(
2 gradψn · gradχ+ ψn ∆χ

)
+
(

1NΛe −
Λm

2

)
ψn χ

0


 .

As gradχ and ∆χ vanish outside BR \BR1 , we deduce
∥∥∥∥∥AΦn −

Λm

2 Φn

∥∥∥∥∥
H
.
∥∥∥ψn

∥∥∥
H1(BR\BR1 )

+
∥∥∥ψn

∥∥∥
L2(BR)

.
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Both terms of the right-hand side tend to 0 as n→∞, which follows from the fact
that ψ ∈ H1(R2) (see Remark 3.5). Indeed, by a simple change of variable nx 7→ x,
we have on the one hand,

(3.3)
∥∥∥ψn

∥∥∥
2

L2(BR)
=
∫

BR
|ψ(nx)|2 dx = 1

n2

∫

BnR
|ψ(x)|2 dx 6 1

n2

∥∥∥ψ
∥∥∥

2

L2(R2)
→ 0

and on the other hand, for j = 1, 2,

(3.4)
∥∥∥∥∥
∂ψn
∂xj

∥∥∥∥∥

2

L2(BR\BR1 )
=
∫

BnR\BnR1

∣∣∣∣∣
∂ψ

∂xj
(x)
∣∣∣∣∣

2

dx 6
∥∥∥∥∥
∂ψ

∂xj

∥∥∥∥∥

2

L2(R2\BnR1 )
→ 0.

It remains to check that ‖Φn‖H & 1. First notice that

‖Φn‖H & ‖un‖L2(N )2 &

∥∥∥∥∥
∂ϕn
∂x1

∥∥∥∥∥
L2(N )

>

∥∥∥∥∥
∂ψn
∂x1

χ

∥∥∥∥∥
L2(N )

−
∥∥∥∥∥ψn

∂χ

∂x1

∥∥∥∥∥
L2(N )

.

As χ = 1 in BR1 and χ = 0 outside BR, we infer that

‖Φn‖H &
∥∥∥∥∥
∂ψn
∂x1

∥∥∥∥∥
L2(B+

R1
)
− ‖ψn‖L2(B+

R)

∥∥∥∥∥
∂χ

∂x1

∥∥∥∥∥
L2(B+

R)
,

where we have denoted B+
R := BR ∩N . We know from (3.3) that ‖ψn‖L2(BR) tends

to 0, thus so does ‖ψn‖L2(B+
R). Moreover, similarly as in (3.4), we have

∥∥∥∥∥
∂ψn
∂x1

∥∥∥∥∥

2

L2(B+
R1

)
=
∫

B+
nR1

∣∣∣∣∣
∂ψ

∂x1
(x)
∣∣∣∣∣

2

dx −→
∥∥∥∥∥
∂ψ

∂x1

∥∥∥∥∥

2

L2(R+×R)
> 0 as n→∞.

We conclude that ‖Φn‖H & 1 for large enough n, so

‖AΦn − (Λm/2) Φn‖H
‖Φn‖H

→ 0 as n→∞.

iii. — Lastly, we prove that Φn converges weakly to 0 as n→∞ (so the same holds
true for Φn/‖Φn‖H since ‖Φn‖H & 1). For any given Φ′ := (ϕ′, u′) ∈ D(C)×D(N )2,
we have ∣∣∣∣(Φn,Φ′)H

∣∣∣∣ .
∫

BR

(∣∣∣ψ(nx)
∣∣∣+ n

∣∣∣ gradψ(nx)
∣∣∣
)

dx.

So, using again the change of variable nx→ x, we deduce that
∣∣∣∣(Φn,Φ′)H

∣∣∣∣ .
∫

BnR

( 1
n2

∣∣∣ψ(x)
∣∣∣+ 1

n

∣∣∣ gradψ(x)
∣∣∣
)

dx.

As ψ(x) = o(|x|−p) and gradψ(x) = o(|x|−p) for all p ∈ N as |x| → +∞ (see
Remark 3.5), we infer that ψ and both components of gradψ belong to L1(R2). The
conclusion follows.

�
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•
Cp

• θ
r αp/2

•
r θ

βq

γq

•
Bq

Figure 3.2. Polar coordinates near an inner vertex Cp (left) and near a boundary
vertex Bq (right).

3.4. Corner resonance at an inner vertex

It remains to deal with the intervals of essential spectrum Jp and Iq defined in
Section 2.3, associated respectively with the inner and boundary vertices of the
interface Σ between N and V . In this subsection, we consider the case of an inner
vertex Cp near which the NIM fills a sector of angle αp ∈ (0, 2π) (see Figure 2.1).
The next Subsection 3.5 is devoted to boundary vertices.

3.4.1. Black hole waves

The part of the essential spectrum that we study here is related to the existence
of highly oscillating vibrations localized near Cp, which have been interpreted as
a “black hole” phenomenon in [BCCC16]. We first recall the construction of the
so-called black hole waves, first introduced in [BDR99]. As in Section 3.3, we are
interested in solutions to

(3.5) div(µ−1
λ gradψλ) = 0 in the whole plane R2,

but instead of a plane interface, we suppose now that the two sectors of NIM and
vacuum defined near Cp are extended up to infinity. More precisely, by choosing polar
coordinates (r, θ) ∈ R+ × (−π,+π] centered at Cp and such that the Drude sector
corresponds to |θ| < αp/2 (see Figure 3.2, left), this equation writes equivalently as

r
∂

∂r

(
r
∂ψλ
∂r

)
+ µλ

∂

∂θ

(
1
µλ

∂ψλ
∂θ

)
= 0

where µλ = µλ(θ) is defined by µλ(θ) = µNλ if |θ| < αp/2 and µλ(θ) = µ0 if |θ| > αp/2.
In this situation, we can use the technique of separation of variables (which would
have not been possible without removing the term λ ελ ϕ in (2.3)), which yields

(3.6) ψλ(r, θ) = riηλ mλ(θ),

where ηλ is a complex parameter and the angular modulation mλ is a 2π-periodic
solution to

(3.7) µλ
d
dθ

(
1
µλ

dmλ

dθ

)
− η2

λmλ = 0 in (−π,+π).
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Figure 3.3. For αp = π/4, representation of the real part of the black hole wave
riηλmλ(θ) for λ = Λm/4 (left, mλ given by (3.9)) and λ = 3Λm/4 (right, mλ

given by (3.10)).

represents a wave which propagates towards the corner and whose energy accumulates
near this corner, which explains its interpretation as a black hole wave.
Without loss of generality, we can restrict ourselves to positive ηλ. Noticing that

the function (0,+∞) 3 η 7→
∣∣∣ sinh

(
η(π − αp)

)
/ sinh(ηπ)

∣∣∣ is strictly decreasing with
range (0, |1− αp/π|), we infer that (3.8) has a unique solution ηλ ∈ (0,+∞) if and
only if

0 <
∣∣∣∣∣λ−

Λm

2

∣∣∣∣∣ <
Λm

2

∣∣∣∣1−
αp
π

∣∣∣∣ ,

which leads to the definition (2.17) of Jp. Moreover, when λ varies in one of the two
intervals which compose Jp, the solution ηλ ranges from +∞ (as λ → Λm/2) to 0
(as λ→ {1± |1− αp/π|}Λm/2).
For a given λ ∈ Jp, the expression of the corresponding solution mλ to (3.7)

depends on the respective signs of the quantities inside both squared terms in (3.8).
Two situations occur. On the one hand, if (αp < π and λ < Λm/2) or (αp > π and
λ > Λm/2), then the angular modulation mλ is given (up to a complex factor) by

(3.9) mλ(θ) :=





sinh(ηλθ)
sinh(ηλαp/2) if |θ| < αp

2 ,

sgn(θ) sinh
(
ηλ(π − |θ|)

)

sinh
(
ηλ(π − αp/2)

) if |θ| > αp
2 .

On the other hand, if (αp < π and λ > Λm/2) or (αp > π and λ < Λm/2), then

(3.10) mλ(θ) :=





cosh(ηλθ)
cosh(ηλαp/2) if |θ| < αp

2 ,

cosh
(
ηλ(π − |θ|)

)

cosh
(
ηλ(π − αp/2)

) if |θ| > αp
2 .

These formulas are illustrated by Figure 3.3 which represents the associated black
hole wave defined by (3.6) in two particular cases that correspond to the same ηλ.
Both figures are very similar: both represent surface waves which propagate along
the interfaces and concentrate near the vertex. The main difference is the symmetry
or skew-symmetry with respect to the symmetry axis of the corner.

TOME 00 (XXXX)

Figure 3.3. For αp = π/4, representation of the real part of the black hole wave
riηλmλ(θ) for λ = Λm/4 (left, mλ given by (3.9)) and λ = 3Λm/4 (right, mλ

given by (3.10)).

It is easily seen that this equation admits a non-trivial solution if and only if ηλ
satisfies the dispersion equation

(3.8)



sinh
(
ηλ(π − αp)

)

sinh(ηλπ)




2

=
(
µ0 + µNλ
µ0 − µNλ

)2

where µ0 + µNλ
µ0 − µNλ

= λ− Λm/2
Λm/2

.

We are actually interested in real solutions ηλ of this equation. Indeed, in this
case, the radial behavior riηλ = exp(iηλ log r) of ψλ has a constant amplitude and
is increasingly oscillating as r goes to 0. Because of these oscillations, gradψλ is
not square-integrable near Cp (indeed |∂ψλ(r, θ)/∂r| & r−1). From a physical point
of view, this means that any vicinity of Cp contains an infinite energy. In fact, ψλ
represents a wave which propagates towards the corner and whose energy accumulates
near this corner, which explains its interpretation as a black hole wave.
Without loss of generality, we can restrict ourselves to positive ηλ. Noticing that

the function (0,+∞) 3 η 7→ | sinh
(
η(π − αp)

)
/ sinh(ηπ)| is strictly decreasing with

range (0, |1− αp/π|), we infer that (3.8) has a unique solution ηλ ∈ (0,+∞) if and
only if

0 <
∣∣∣∣∣λ−

Λm

2

∣∣∣∣∣ <
Λm

2

∣∣∣∣1−
αp
π

∣∣∣∣ ,

which leads to the definition (2.17) of Jp. Moreover, when λ varies in one of the two
intervals which compose Jp, the solution ηλ ranges from +∞ (as λ → Λm/2) to 0
(as λ→ {1± |1− αp/π|}Λm/2).
For a given λ ∈ Jp, the expression of the corresponding solution mλ to (3.7)

depends on the respective signs of the quantities inside both squared terms in (3.8).
Two situations occur. On the one hand, if (αp < π and λ < Λm/2) or (αp > π and
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λ > Λm/2), then the angular modulation mλ is given (up to a complex factor) by

(3.9) mλ(θ) :=





sinh(ηλθ)
sinh(ηλ αp2 ) if |θ| < αp

2 ,

sgn(θ) sinh
(
ηλ(π − |θ|)

)

sinh
(
ηλ(π − αp

2 )
) if |θ| > αp

2 .

On the other hand, if (αp < π and λ > Λm/2) or (αp > π and λ < Λm/2), then

(3.10) mλ(θ) :=





cosh(ηλθ)
cosh(ηλ αp2 ) if |θ| < αp

2 ,

cosh
(
ηλ(π − |θ|)

)

cosh
(
ηλ(π − αp

2 )
) if |θ| > αp

2 .

These formulas are illustrated by Figure 3.3 which represents the associated black
hole wave defined by (3.6) in two particular cases that correspond to the same ηλ.
Both figures are very similar: both represent surface waves which propagate along
the interfaces and concentrate near the vertex. The main difference is the symmetry
or skew-symmetry with respect to the symmetry axis of the corner.

3.4.2. Weyl sequences

Black hole waves are the basic ingredients for the construction of Weyl sequences
here. As mentioned above, the gradient of ψλ is not square-integrable near Cp because
of its increasingly oscillating behavior. Hence, a natural idea for a Weyl sequence is
to truncate ψλ using a sequence of cutoff functions whose supports get closer and
closer to Cp. As shown at the end of this subsection, this is a bad idea! A proper
idea to define a Weyl sequence for a given λ∗ ∈ Jp consists in considering continuous
superpositions of the black hole waves ψλ, choosing smooth densities of superposition
with increasingly small supports near λ∗. Such superpositions regularize the behavior
of the black hole waves near the corner (thanks to the smoothness of the densities)
and resemble more and more ψλ∗ (thanks to the increasingly small supports).
From a practical point of view, it is actually more convenient to consider superpo-

sitions with respect to the variable η (instead of λ) near η∗ := ηλ∗ ∈ (0,+∞). This
leads to introduce the inverse function η 7→ λ(η) of λ 7→ ηλ considered in the half
part of Jp which contain our given λ∗. We deduce from (3.8) that this function is
given by

λ(η) = Λm

2


1 + sgn

(
λ∗ −

Λm

2

) sinh
(
η |π − αp|

)

sinh(η π)


 , ∀ η ∈ (0,+∞).

Then, for all integer n > 1, we define

(3.11)
(
ϕn
un

)
:= χ

(
ϕ̃n
ũn

)
where





ϕ̃n :=
∫

R
fn(η)ψλ(η) dη and

ũn :=
∫

R
fn(η) Λm

λ(η)− Λm
R gradψλ(η) dη,
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where χ and fn are chosen as follows. First choose some R > 0 such that N ∩ BR

and V ∩BR are contained respectively in the sectors |θ| < αp/2 and |θ| > αp/2. On
the one hand, χ ∈ D(R2) is a cutoff function with support in the ball BR of radius
R centered at Cp and equal to 1 in BR1 for some R1 ∈ (0, R). On the other hand,
for a given function f ∈ D(R) with support contained in (−η∗,+η∗) and such that∫
R f(η) dη = 1, we define fn(η) := n f

(
n(η− η∗)

)
for all n > 1 (it is an easy exercise

to prove that fn tends to the Dirac measure at η∗ in the distributional sense). Note
finally that, as in Section 3.3, the above definition of ũn follows from that of ϕ̃n
using (2.6) inside the integral.

Proposition 3.7. — Let Φn := (ϕn, un) defined by (3.11). Then Φn/‖Φn‖H is a
Weyl sequence for λ∗ ∈ Jp.

Proof.
i. — Let us first examine some general properties of ϕ̃n and ũn, in particular their

behavior near the vertex. Using the change of variables ξ = n(η − η∗), we have

(3.12) |ϕ̃n(r, θ)| =
∣∣∣∣
∫

R
f(ξ) ri(η∗+ξ/n) mη∗+ξ/n(θ) dξ

∣∣∣∣ . 1,

since the sequence of functions (ξ, θ) 7→ mη∗+ξ/n(θ) is uniformly bounded. Setting
gn(ξ, θ) := f(ξ)mη∗+ ξ

n
(θ) and integrating by part yields

|ϕ̃n(r, θ)| =
∣∣∣∣∣
n riη∗

i log r

∫

R

∂gn
∂ξ

(ξ, θ) riξ/n dξ
∣∣∣∣∣ .

n

| log r| ,

which shows that unlike ψλ, each function ϕ̃n tends to 0 as r → 0.
Similar arguments can be used for both components of grad ϕ̃n and ũn. The only

change is the appearance of a factor r−1. We obtain on the one hand

|grad ϕ̃n(r, θ)| . 1
r

and |ũn(r, θ)| . 1
r
,(3.13)

and on the other hand
|grad ϕ̃n(r, θ)| . n

r | log r| and |ũn(r, θ)| . n

r | log r| .(3.14)

ii. — We check now that Φn ∈ D(A). First, (3.12) shows that ϕ̃n ∈ L2(C) and
‖ϕ̃n‖L2(C) is bounded, so the same holds true for ϕn. Then, as r−1| log r|−2 is integrable
near r = 0, (3.14) shows that grad ϕ̃n ∈ L2(C)2 and ũn ∈ L2(N )2, so ϕn ∈ H1

0 (C)
(since χ vanishes near ∂C) and un ∈ L2(N )2. It remains to check that div(gradϕn +
R∗un) ∈ L2(C). We have

div(gradϕn +R∗un) =

χ div(grad ϕ̃n +R∗ũn) + gradχ ·
(

2 grad ϕ̃n +R∗ũn
)

+ (∆χ) ϕ̃n.

The first term of the right-hand side writes as

χ div(grad ϕ̃n +R∗ũn) = χ
∫

R
fn(η) div

(
µ0

µλ(η)
gradψλ(η)

)
dη,
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which vanishes since ψλ(η) satisfies (3.5). Both remaining terms belong to L2(C), for
ϕ̃n, grad ϕ̃n and R∗ũn are square integrable in C, which yields the desired result.
Moreover, we can notice that these terms are bounded in L2(C), which follows
from (3.12) and (3.13) and the fact that gradχ and ∆χ vanish near Cp. Hence
div(gradϕn +R∗un) is bounded in L2(C).
iii. — Let us prove that AΦn − λ∗Φn is bounded in H. We have

AΦn − λ∗Φn =



−1
ε0µ0

div {gradϕn +R∗un}+
(
1N Λe − λ∗

)
ϕn

ΛmR gradϕn +
(
Λm − λ∗

)
un


 .

The first component is bounded in L2(C) since we have just seen that div(gradϕn +
R∗un) and ϕn are bounded in L2(C). The second component can be split as

Λm
(
R gradχ

)
ϕ̃n + χ

(
ΛmR grad ϕ̃n + (Λm − λ∗) ũn

)
.

The first term is clearly bounded in L2(N )2 (by (3.12)) and the second writes as
χΛm In where

In :=
∫

R
fn(η) λ(η)− λ∗

λ(η)− Λm
R gradψλ(η) dη.

We can use the same arguments as in (i) to study this integral, noticing that
λ(η)− λ∗
λ(η)− Λm

= (η − η∗) τ(η)

where τ ∈ C∞(R+) (since λ ∈ C∞(R+), λ(η∗) = λ∗ and λ(η) − Λm never vanishes).
Using the change of variables ξ = n(η − η∗), the integral becomes

In =
∫

R
f(ξ) ξ

n
τ(η∗ + ξ/n)R gradψλ(η∗+ξ/n) dξ.

Compared with the case of grad ϕ̃n and ũn considered in (i), the only change lies
in the factor n−1. Hence, instead of (3.14), an integration by parts shows that
|In(r, θ)| . r−1 | log r|−1, which implies that In is bounded in L2(N )2 and yields the
conclusion.
iv. — It remains to prove that ‖Φn‖H tends to ∞ as n → ∞. First notice that
‖Φn‖H & ‖un · er‖L2(N ), where er is the unit local basis vector in the radial direction.
For all r ∈ (0, R1) and θ ∈ (−π,+π], we have χ(r, θ) = 1, so

un · er(r, θ) = riη∗

r

∫

R
f(ξ) g

(
η∗ + ξ

n
, θ

)
riξ/n dξ

where

g(η, θ) := iΛm η mλ(η)(θ)
λ(η)− Λm

.

By the Lebesgue dominated convergence theorem, we see that the above integral
tends to g(η∗, θ) as n→∞ (recall that we have chosen f such that

∫
R f(ξ) dξ = 1).

In order to estimate the rate of convergence, define

Dn(r, θ) :=
∫

R
f(ξ) g

(
η∗ + ξ

n
, θ

)
riξ/n dξ − g(η∗, θ),
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which can be rewritten as the sum
∫

R
f(ξ)

(
g

(
η∗ + ξ

n
, θ

)
− g(η∗, θ)

)
riξ/n dξ + g(η∗, θ)

∫

R
f(ξ)

(
riξ/n − 1

)
dξ.

On the one hand, we deduce from the differentiability of λ(η) and mλ(η) with respect
to η that |g(η∗+ ξ/n, θ)−g(η∗, θ)| . 1/n (uniformly with respect to ξ in the support
of f and θ ∈ (−π,+π]). On the other hand, we have |riξ/n − 1| . | log r|/n| (since
|eix−1| 6 |x| for all x ∈ R). As a consequence, |Dn(r, θ)| . (1+ | log r|)/n. Assuming
for simplicity that R1 < 1 (so that | log r| > | logR1| > 0 for all r ∈ (0, R1)), this
shows that there exists a constant C > 0 such that∣∣∣∣∣un · er(r, θ)−

riη∗

r
g(η∗, θ)

∣∣∣∣∣ 6 C
| log r|
r n

, ∀ r ∈ (0, R1), ∀ θ ∈ (−π,+π].

Therefore, by the triangle inequality (squared), we infer that

|un · er(r, θ)|2 >
|g(η∗, θ)|2

2r2 − C2 | log r|2
n2r2 , ∀ r ∈ (0, R1), ∀ θ ∈ (−π,+π].

As g(θ, η∗) is not zero everywhere in (−π, π), one can find an interval (θ1, θ2) ⊂
(−π, π) and a constant gmin > 0 such that |g(θ, η∗)| > gmin for all θ ∈ (θ1, θ2). Hence,
for any s > 0 and n > ns := max

{
1, s−1| logR1|

}
, we have

‖un · er‖2
L2(N ) > (θ2 − θ1)

∫ R1

e−sn

(
g2

min
2 − C2 | log r|2

n2

)
dr
r
.

Notice that | log r|/n < s in the interval of integration. So, choosing s = gmin/(2C),
we infer that for all n > ns,

‖un · er‖2
L2(N ) > (θ2 − θ1)

∫ R1

e−sn

g2
min
4

dr
r
& logR1 + sn.

To sum up, we have proved that ‖Φn‖H &
√
n for large enough n. Together with (iii),

this shows that ‖AΦn − λ∗Φn‖H/‖Φn‖H tends to 0, which means that λ∗ belongs to
the spectrum of A.
To conclude, we do not need to check the weak convergence to 0 of Φn/‖Φn‖H.

Indeed we know now that any point of Jp belongs to σ(A). Hence it is an accumulation
point of σ(A), so it belongs to σess(A).

�

3.4.3. A natural but bad idea

At first glance, the above construction of a Weyl sequence for a given λ ∈ Jp
may seem complicated and one can legitimately wonder if there is no simpler way
to deduce a Weyl sequence from the black hole waves. In particular, a natural idea
(applied in [BZ19] for the Neumann–Poincaré operator) is to truncate ψλ closer and
closer to Cp, by setting for instance Φn := (ϕn, un) with

ϕn(x) := χn(|x|) ψλ(x) and un(x) := χn(|x|) Λm

λ− Λm
R gradψλ(x).

TOME 3 (2020)



1184 Christophe HAZARD & Sandrine PAOLANTONI

where (χn)n∈N ⊂ D(R+) is a sequence of radial real-valued functions such that
χn(r) = 0 if r < 1/n or r > R, whereas χn(r) = 1 if 2/n < r < R/2 (where R is
chosen as in (3.11)). It is easy to see that Φn ∈ D(A) for all n ∈ N. But Φn/‖Φn‖H
is not a Weyl sequence for λ. Indeed the ratio ‖AΦn − λΦn‖H/Φn‖H does not tend
to 0 as n → ∞. To see this, notice that |ψλ(r, θ)| . 1 and | gradψλ(r, θ)| . r−1 in
BR, which shows on the one hand that

‖Φn‖2
H .

∫ R

0
|χn(r)|2 r dr +

∫ R

0

|χn(r)|2
r

dr .
∫ R

0

|χn(r)|2
r

dr.

On the other hand, using the fact that ∂ψλ/∂r = iηλ ψλ/r, we obtain

AΦn − λΦn =




({
−∆χn
ε0µ0

+
(

1NΛe − λ
)
χn

}
− i

{
ηλ
ε0µ0

(
1 + µ0

µλ

)
χ′n
r

})
ψλ

ΛmR (ψλ gradχn)


 .

Noticing that both terms in braces in the first component are real and |ψλ(r, θ)|
= |mλ(θ)|, we deduce that

‖AΦn − λΦn‖2
H &

∫ R

0

|χ′n(r)|2
r

dr .

As a consequence
‖AΦn − λΦn‖2

H
‖Φn‖2

H
&
∫ R

0

|χ′n(r)|2
r

dr
/∫ R

0

|χn(r)|2
r

dr.

The right-hand side cannot tend to 0. Otherwise it would contradict the inequality
∫ R

0

|χn(r)|2
r

dr 6 R2

4

∫ R

0

|χ′n(r)|2
r

dr,

which follows from the expression χn(r) =
∫ r

0
√
s (χ′n(s)/

√
s) ds and Cauchy–Schwarz

inequality.

3.5. Corner resonance at a boundary vertex

The construction of Weyl sequences associated to a boundary vertex Bq is exactly
the same as for inner vertices. The only difference lies in the expression of the black
hole wave ψλ. As in Section 3.4, this function is still solution to (3.5), but instead
of the whole plane R2, we consider now an infinite sector of angle γq divided in
two sub-sectors of angles βq and γq − βq filled respectively by our NIM and vacuum
(see Figure 3.2, right). Moreover ψλ must vanish on the boundary of the sector of
angle γq. Using polar coordinates as shown in Figure 3.2, separation of variables
yields again ψλ(r, θ) = riηλ mλ(θ), where ηλ ∈ C and mλ is a solution to (3.7) in
(0, γq) which satisfies the boundary conditions mλ(0) = mλ(γq) = 0. One can readily
check that this equation admits a non-trivial solution if and only if ηλ satisfies the
dispersion equation
(3.15) µNλ tanh(ηλβq) + µ0 tanh

(
ηλ(γq − βq)

)
= 0.

Again we are only interested in positive real solutions ηλ to this equation. By a
simple monotonicity argument, we see that it admits a unique solution if and only
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if λ belongs to the interval Iq defined in (2.18). In this case, we conclude that the
angular modulation of the black hole wave is given (up to a complex factor) by

mλ(θ) :=





sinh(ηλθ)
sinh(ηλβq)

if 0 < θ < βq,

sinh
(
ηλ(γq − θ)

)

sinh
(
ηλ(γq − βq)

) if βq < θ < γq.

We can remark that this expression can be deduced from (3.9) by a simple angular
dilation which consists in replacing simultaneously in (3.7) θ by θ π/γq and ηλ by
ηλ γq/π and choosing αp = 2βq π/γq. Actually, the same angular dilation also connects
the dispersion equation (3.8) with (3.15), since the latter can be written equivalently

sinh
(
ηλ(γq − 2βq)

)

sinh(ηλγq)
= −µ0 + µNλ

µ0 − µNλ
This remark is related to the comment made about the examples of cavities shown
in the right column of Figure 2.3.
Thanks to this new black hole wave adapted to a boundary vertex Bq, we can

reuse the definition (3.11) of (ϕn, un) and follow exactly the same lines as in the
proof of Proposition 3.7, which yields:
Proposition 3.8. — Let Φn := (ϕn, un) defined by (3.11) with the above defini-

tion of ψλ(r, θ) = riηλ mλ(θ). Then Φn/‖Φn‖H is a Weyl sequence for λ∗ ∈ Iq.

3.6. Proof of Theorem 2.2

We can now collect the results of the preceding subsections. We have constructed
Weyl sequences for λ = 0 (Proposition 3.3), λ = Λm/2 (Proposition 3.6), λ ∈ Jp
for p = 1, . . . , P (Proposition 3.7) and λ ∈ Iq for q = 1, . . . , Q (Proposition 3.8).
Moreover, Proposition 3.1 tells us that λ = Λm is an eigenvalue of infinite multiplicity.
Hence all these points belongs to σess(A). As the essential spectrum is closed, we
have proved that

σall := {0,Λm/2,Λm} ∪
⋃

p=1,P
Jp ∪

⋃

q=1,Q
Iq ⊂ σess(A).

It remains to check that there is no other point in σess(A), that is, σall ⊃ σess(A). To
do this, we use the following characterization of the complementary of the essential
spectrum [EE87]: a point λ ∈ R does not belong to σess(A) if and only if A− λI is a
semi-Fredholm operator (i.e., its range is closed and its kernel is finite dimensional).
We thus have to check this property for all λ ∈ R+ \ σall.
This result is far from obvious. Fortunately, it can be easily deduced from an

existing nearby result proved in [BCC12], which involves a functional framework
that is slightly different from ours. Keeping our notations, this paper studies the
operator A : H1

0 (C) → H−1(C) defined by Aϕ := − div(σ gradϕ) where σ is a
bounded real-valued function such that |σ(x)| > c for almost every x ∈ C, for some
constant c > 0, and which is positive in V and negative in N . Here we are only
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interested in the case where σ is constant in both subdomains V and N . Denoting by
σN < 0 and σV > 0 these constants, we define the contrast between both media by
κ := σN/σV . [BCC12, Theorem 4.3], proved by means of the so-called T-coercivity
technique, provides sufficient conditions on κ for A to be a Fredholm operator, thus
a fortiori a semi-Fredholm operator. These conditions exclude a set of critical values
of the contrast which always contains −1. This set is the union of critical intervals
associated to the vertices of the interface Σ which are defined as follows. For an inner
vertex Cp, the critical interval is

K(Cp) := [−ρp,−ρ−1
p ] where ρp := max

{
αp

2π − αp
,
2π − αp
αp

}
> 1,

whereas for a boundary vertex Bq, it is given by

K(Bq) :=
[
min

{
−1, −βq

γq − βq

}
,max

{
−1, −βq

γq − βq

}]
.

For our model problem, the contrast is a function of λ given by κλ = (1− Λm/λ)−1

(see (2.1)), which is negative for all λ ∈ (0,Λm). Using (2.17) and (2.18), it is then
readily seen that κλ ∈ K(Cp) if and only if λ ∈ Jp, whereas κλ ∈ K(Bq) if and
only if λ ∈ Iq. As a consequence we know that for all λ ∈ (0,Λm) which does not
belong to the union of these closed intervals, the operator ϕ 7→ div(µ−1

λ gradϕ)
considered from H1

0 (C) to H−1(C) is Fredholm. Besides, the fact that it is also
Fredholm for all λ > Λm is a straightforward consequence of Lax–Milgram theorem
which actually shows that it is an isomorphism. Hence, by virtue of the compactness
of the embedding H1

0 (C) ⊂ L2(C), the operator
S̃λ : H1

0 (C) −→ H−1(C)
ϕ 7−→ − div

(
µ−1
λ gradϕ

)
− λ ελ ϕ

is Fredholm, thus semi-Fredholm, for all λ ∈ R+ \ σall.
This implies that A− λI is a semi-Fredholm operator for all λ ∈ R+ \ σall, which

follows from two results proved in the Appendix where we introduce the operator
Sλ = ε−1

0 S̃λ (see (A.1)). Indeed, the first implication of Lemma A.1 tells us that
Ran(A− λ) is closed in H if Ran(Sλ) is closed in H−1(C), whereas (A.5) shows that
Ker(A − λ) is finite dimensional if KerSλ is so. This concludes the proof of the
equality σall = σess(A).
Finally, as regards the two accumulation points 0 and +∞ of the discrete spectrum

σdisc(A), we have already justified in Section 3.2 the case of 0. For +∞, recall that
A is an unbounded selfadjoint operator, so its spectrum is necessarily unbounded.
We have proved that its essential spectrum is contained in [0,Λm], hence there is a
sequence of eigenvalues of σdisc(A) which tends to +∞. This completes the proof of
Theorem 2.2.

4. Conclusion
In this paper, we have explored in a simple academic situation the spectral effects

of an interface between vacuum and a negative-index material. Much more needs to
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be done to deal with more involved situations. In particular, it should be interesting
to understand whether the results obtained here extend to cavities with piecewise
smooth (curved) boundaries. Besides, instead of the Drude model studied here, one
could consider a Lorentz model [GM12, GT10], for which negativity arises near a
non-zero frequency: the Drude’s laws (2.1) are replaced by

εNλ := ε0

(
1− Λe

λ− λe

)
and µNλ := µ0

(
1− Λm

λ− λm

)
,

where Λe, λe, Λm and λm are non-negative coefficients which characterize the medium.
For generalized Lorentz material [Tip04], εNλ and µNλ express as finite sums of sim-
ilar terms. The case of dissipative media should also be studied (see [CJK17] for
an overview of the possible models). Finally, it seems necessary to tackle three-
dimensional problems, for scalar and vector propagation equations, in particular
Maxwell’s equations. Works in these directions are in progress.

Appendix A. Non-linear versus linear
In this appendix, we go back to the links between the initial non-linear eigenvalue

problem (2.3) and its linearized version (2.8) studied in the present paper, more
precisely, the link between the spectrum of the rational family of operators λ 7→ Sλ
defined in (2.14)-(2.15) and that of operator A defined in (2.9)-(2.11). We have seen
in Section 2.2 that their respective point spectra coincide. But what can be said
about the other components of their spectra? Such an issue comes within spectral
theory of block operator matrices [Tre08] which explores in particular the relation
between the spectrum of a block operator matrix, here our operator A, and that
of its Schur complement, here the family Sλ. Unfortunately, general results of this
theory cannot apply here. This is mainly due to the fact that the domain of Sλ
depends on λ, which is related to the coupling between both fields ϕ and u in the
definition of the domain of A.
In order to make this difficulty clear, we first introduce bounded operators Sλ and
A similar to Sλ and A but acting in a different functional framework. In addition
to the Hilbert space H := L2(C) × L2(N )2 defined in Section 2.2, consider the
Hilbert spaces

H1 := H1
0 (C)× L2(N )2 and H−1 := H−1(C)× L2(N )2

which are dual to each other if H is identified with its own dual. Hence we have
H1 ⊂ H ⊂ H−1 where both embeddings are continuous and dense. Moreover, the
duality product between H1 and H−1 appears as an extension of the inner product
(· , ·)H given by (2.10) in the sense that 〈X, Y 〉 = (X, Y )H for all X ∈ H and Y ∈ H1.
We then define the bounded block operator matrix A : H1 → H−1 by

A :=
(
A B∗

B C

)
:=



−1
ε0µ0

∆ + 1N Λe
−1
ε0µ0

divR∗

ΛmR grad Λm


 ,

where A : H1
0 (C) → H−1(C), B : H1(C) → L2(N )2, B∗ : L2(N )2 → H−1(C) and

C : L2(N )2 → L2(N )2 are bounded operators (note that the fact that B and B∗
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are adjoint to each other results from the choice of the inner product (2.10)). The
so-called Frobenius–Schur factorization provides the link between A − λ and its
Schur complement

Sλ := A− λ−B∗ (C − λ)−1B.

It can be written for all λ in the resolvent set of C as
A− λ = T̂λDλ Ťλ where

Dλ :=
(
Sλ 0
0 C − λ

)
, T̂λ :=

(
I B∗ (C − λ)−1

0 I

)
and Ťλ :=

(
I 0

(C − λ)−1B I

)
.

The same calculation as in Section 2.2 shows that the Schur complement is given
here by

(A.1) Sλϕ = 1
ε0

(
− div

(
1
µλ

gradϕ
)
− λ ελ ϕ

)
,

which appears as a bounded operator from H1
0 (C) to H−1(C). The other term of the

diagonal block operator matrix Dλ : H1 → H−1 is simply C − λ = Λm − λ. Finally,
for all λ 6= Λm, the triangular block operator matrix Ťλ is an automorphism of H1:

Ťλ :=
(
I 0
B̌λ I

)
where B̌λ := B

Λm − λ
= Λm

Λm − λ
R grad,

whereas T̂λ appears as an automorphism of H−1. Denoting B̂λ := (Λm−λ)−1B∗, the
above Frobenius–Schur factorization can be rewritten

(A.2) (A−λ)
(
ϕ
u

)
=
(
Sλϕ+ (Λm − λ) B̂λ(B̌λϕ+ u)

(Λm − λ) (B̌λϕ+ u)

)
, ∀ λ 6= Λm, ∀

(
ϕ
u

)
∈ H1,

from which we deduce in particular that

(A.3) (A− λ)
(
ϕ
u

)
=
(
ψ
0

)
⇐⇒

{
u = −B̌λϕ and ψ = Sλϕ

}
.

It is readily seen that the initial definitions (2.9)-(2.11) and (2.14)-(2.15) of A and
Sλ can now be reformulated equivalently as

AX = AX, ∀ X ∈ D(A) =
{
X ∈ H1; AX ∈ H

}
and

Sλϕ = ε0 Sλϕ, ∀ ϕ ∈ D(Sλ) =
{
ϕ ∈ H1

0 (C); Sλϕ ∈ L2(C)
}
.

Note that (A.3) implies that

ϕ ∈ D(Sλ) ⇐⇒
(

ϕ

−B̌λϕ

)
∈ D(A),(A.4)

as well as

ϕ ∈ Ker(Sλ) = Ker(Sλ) ⇐⇒
(

ϕ

−B̌λϕ

)
∈ Ker(A− λ) = Ker(A− λ).(A.5)

The latter equivalence is nothing but a condensed expression of the linearization
process of Section 2.2, that is, the equality of the respective point spectra of A and
Sλ (see (2.16)). What can be said about their respective essential spectra? First
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recall that for A, the various possible definition of σess(A) coincide since A is selfad-
joint [EE87, Theorem 1.6, p. 417]. This is no longer true for Sλ which is symmetric
but not necessarily selfadjoint (see below). Following [Tre08, Section 2.4], define

σess(Sλ) :=
{
λ ∈ C; Sλ is not Fredholm

}
,

where we recall that Sλ is said to be Fredholm if it is a closed operator whose range
Ran(Sλ) is closed and both nullity dim(Ker(Sλ)) and deficiency dim(L2(C)/Ran(Sλ))
are finite. Hence relating the respective essential spectra of A and Sλ amounts to
relating their respective Fredholmness. This is where the problem lies: we did not
succeed in proving any such relation! The difficulty arises from the fact that there is
no Frobenius–Schur factorization connecting directly A− λ and Sλ. This is mainly
due to the impossibility of relating all the elements of D(A) with those of D(Sλ).
Indeed (A.4) provides only a partial relation: many elements X = (ϕ, u) of D(A) are
such that ϕ /∈ D(Sλ). The difficulty is twofold. On the one hand, if Sλ is Fredholm,
we cannot prove that Ran(A − λ) is closed. As shown in Lemma A.1 below, we
need a stronger assumption, namely that Ran(Sλ) is closed in H−1(C). On the other
hand, if A− λ is Fredholm, we can prove that Ran(Sλ) is closed (this is the second
implication of Lemma A.1), but not that the operator Sλ itself is closed!

Lemma A.1. — For all λ 6= Λm, we have (i) =⇒ (ii) =⇒ (iii) where
(i) : Ran(Sλ) closed in H−1(C),

(ii) : Ran(A− λ) closed in H,
(iii) : Ran(Sλ) closed in L2(C).

Proof. — For the first implication, assume that Ran(Sλ) is closed in H−1(C) and
consider a sequence (Xn) ∈ D(A)N such that Yn := (A − λ)Xn converges in H to
some Y. Denote Xn = (ϕn, un), Yn = (ψn, vn) and Y = (ψ, v). As H is continuously
embedded in H−1, the convergence Yn → Y holds true a fortiori in H−1, which means
from (A.2) that

Sλϕn + (Λm − λ) B̂λ

(
B̌λϕn + un

)
→ ψ in H−1(C),

(Λm − λ)
(
B̌λϕn + un

)
→ v in L2(N )2.

As B̂λ is continuous from L2(N )2 to H−1(C), we deduce that Sλϕn → ψ − B̂λv in
H−1(C). Hence there exists ϕ ∈ H1

0 (C) such that Sλϕ = ψ − B̂λv, since Ran(Sλ) is
closed. Setting X := (ϕ, u) with u := (Λm − λ)−1v − B̌λϕ, we have by construction
(A− λ)X = Y ∈ H, so X ∈ D(A) and (A− λ)X = Y, which shows that Ran(A− λ)
is closed in H.
For the second implication, consider a sequence (ϕn) ∈ D(Sλ)N such that

ψn := Sλϕn converges in L2(C) to some ψ. Setting Xn := (ϕn,−B̌λϕn), which
belongs to D(A) by (A.4), we deduce from (A.3) that

(A− λ)Xn =
(
Sλϕn

0

)
→ Y :=

(
ψ
0

)
in H.
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As Ran(A − λ) is assumed closed in H, there exists X := (ϕ, u) ∈ D(A) such that
(A − λ)X = Y. Relation (A.3) then shows that u = −B̌λϕ and ψ = Sλϕ. Hence
ϕ ∈ D(Sλ) and ψ = Sλϕ, which shows that Ran(Sλ) is closed in L2(C). �
To sum up, the present paper gives no information about the essential spectrum

of Sλ. There are few results about this operator in the literature. A necessary and
sufficient condition for Sλ to be selfadjoint was shown in [BDR99]: it corresponds
exactly to λ /∈ σess(A). Besides for some geometric situations which exclude corner
resonances, it is proved in [CPP19, Pan19] that Sλ is selfadjoint with compact
resolvent for λ /∈ {0,Λm/2}, whereas it is not closed but is essentially selfadjoint if
λ = Λm/2 (the case λ = 0 is not dealt with). This shows that {Λm/2} ⊂ σess(Sλ) ⊂
{0,Λm/2} in these situations, which supports the natural conjecture that σess(Sλ)
= σess(A) \ {Λm}.
In view of the above discussion, one can legitimately wonder if the definition

(2.14)-(2.15) of the non-linear family of operators λ 7→ Sλ is well suited to tackle
the spectral properties of the physical model studied here. Our feeling is that the
nonlinear formulation hides some essential features of the problem, which are unveiled
in the linear formulation. One of these features is energy conservation which seems
no longer ensured since Sλ is not selfadjoint for all λ. Actually a natural definition of
energy for the linear model is ‖(ϕ, u)‖2

H/2 (see (2.10)). It involves ‖u‖L2(N 2)2 which
plays a crucial role in the construction of the Weyl sequences in Section 3. This
contribution is hidden in the nonlinear formulation, which prevents us to deduce
Weyl sequences for Sλ from those we have constructed for A. To our knowledge, the
construction of Weyl sequences for Sλ remains an open question.
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