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Résumé. — Nous étudions la transformée de Berezin, un opérateur de Markov associé aux
mesures à valeur opérateurs positifs (POVM), dans un certain nombre de contextes incluant
la quantificaton de Berezin–Toeplitz, le système dynamique de Donaldson sur l’espace des
produits Hermitiens d’un espace vectoriel complexe, les représentations de groupes finis, et le
bruit quantique. En particulier, nous calculons le trou spectral de la quantification en termes
de l’harmonique fondamentale de l’espace des phases. Nos résultats confirment une prédiction
de Donaldson à propos du spectre de l’opérateur Q sur les variétés de Kähler à coubure scalaire
constante, et impliquent la convergence exponentielle du système dynamique de Donaldson
vers son point fixe. De plus, en regardant un POVM comme un nuage de points, nous étudions
ses propriétés spectrales à travers la géométrie des espaces métriques mesurés et la distance
de diffusion.

1. Introduction

Given a function f on a classical phase space X, let us first quantize it and then
dequantize. This operation on functions, f 7→ Bf , is called the Berezin transform.
As a result of this operation, the function f blurs on the phase space. The intuition
behind this is as follows(1) : assume that f is the Dirac delta-function at a point x ∈ X.
Its quantization is a coherent state at x, whose dequantization is approximately a
Gaussian centered at x. In the framework of the Berezin–Toeplitz quantization of
closed Kähler manifolds, B is known to be a Markov operator with finite-dimensional
image, and is closely related to the Laplace–Beltrami operator ∆ of the Kähler
manifold. In fact, the Berezin transform has the following asymptotic expansion as
~→ 0, due to Karabegov and Schlichenmaier [KS01](2) :

(1.1) B~(f) = f − ~
4π∆f +O(~2) ,

for every smooth function f on X, with remainder depending on f and where ~
stands for the Planck constant (see Section 3 for notations and conventions).

We focus on the spectral properties of B. For fixed ~, this operator factors through
a finite-dimensional space and hence its spectrum consists of a finite collection of
points lying in the interval [0, 1]. Moreover, multiplicities of positive eigenvalues are
finite, and 1 is the maximal eigenvalue corresponding to the constant function. Write
its spectrum (with multiplicities) in the form

1 = γ0 > γ1 > γ2 > . . . > γk > . . . > 0 .
The quantity γ := 1− γ1 is called the spectral gap, a fundamental characteristic of a
Markov chain responsible for the rate of convergence to the stationary distribution.
Our first result, Theorem 3.1, implies that in the context of the Berezin–Toeplitz
quantization, the spectral gap γ of the Berezin transform equals

(1.2) γ = ~
4πλ1 +O(~2) ,

(1)We thank S. Nonnenmacher for this explanation.
(2)Note that after renormalization, there is a missing factor of 1

2 in front of the second term of the
analogous formula in [KS01, (1.2)].
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where λ1 stands for the first eigenvalue of ∆. Note that the upper bound on the gap
readily follows from (1.1). The proof follows a work of Lebeau and Michel [LM10]
on semiclassical random walks on manifolds with extra ingredients such as an as-
ymptotic expansion for the Bergman kernel due to Dai, Liu and Ma [DLM06], a
comparison between the Berezin transform and the heat operator motivated by the
work of Liu and Ma [LM07], and a refined version of the above-mentioned Karabegov–
Schlichenmaier asymptotic expansion [KS01]. In fact, Theorem 3.1 shows much more
than (1.2), namely that one can approximate the full spectrum of ∆, as well as the
associated eigenfunctions, with those of B.

Let us point out that the proof of Theorem 3.1 can be extended to Berezin–
Toeplitz quantization of closed symplectic manifolds, using the quantum spaces
given by the eigenstates corresponding to the small eigenvalues of the renormalized
Bochner Laplacian. This uses the associated generalized Bergman kernel of Ma and
Marinescu [MM08] and asymptotic estimates refining those of Ma, Marinescu and
Lu [LMM17] (see the discussion at the end of Section 3).

The Berezin transform is defined in the more general context of positive operator
valued measures (POVMs). In fact, the Berezin–Toeplitz quantization is nothing else
but the integration over a certain POVM on the phase space M with values in the
space of quantum observables, and the dequantization is the dual operation [CP18b,
Lan98]. In addition to quantization, POVMs appear in quantum mechanics in another
setting: they model quantum measurements [BLPY16]. Interestingly enough, within
this model the spectral gap of the Berezin transform corresponding to a POVM
admits two different interpretations: it measures the minimal magnitude of quantum
noise production, and it equals the spectral gap of the Markov chain corresponding
to repeated quantum measurements (see Section 7 for details).

Another theme of this paper is related to Donaldson’s program [Don09] of de-
veloping approximate methods for detecting canonical metrics on Kähler manifolds.
Interestingly enough, our study of the Berezin transform yields the asymptotic be-
haviour of the spectrum and of the eigenfunctions of the Q-operator, a geometric
operator arising in this program, for Kähler metrics of constant scalar curvature. This
behaviour, which was predicted by Donaldson in [Don09], is stated in Theorem 3.2
below.

Additionally, Donaldson discovered in [Don09] a remarkable class of dynamical
systems on the space of all Hermitian products on a given complex vector space.
Section 4 deals with the spectrum of the linearization of such a system at a fixed
point. We show that it can be identified with the quantum channel associated to
a certain POVM. Using the positivity of the associated spectral gap and under
certain natural assumptions, we prove that this linearization is contracting, which
confirms Donaldson’s prediction via numerical computations in [Don09, Section 3].
By the Grobman–Hartman theorem and earlier results of Donaldson, this implies in
particular that the iterations of this system converge exponentially fast to its fixed
point (see Theorem 4.4), and not only for “almost all initial conditions”, as predicted
in [Don09, Section 4.1]. The use of Hartman’s theorem in a related context has been
suggested by Fine in [Fin12b].
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This naturally brings us, in Section 5, to a geometric viewpoint at POVMs.
Following Oreshkov and Calsamiglia [OC09, VII.C], we encode them as probability
measures in the space of quantum states S equipped with the Hilbert–Schmidt metric.
It turns out that the spectral gap admits a transparent description in terms of the
geometry of such metric measure spaces and exhibits a robust behaviour under
perturbations of POVMs in the Wasserstein metric. In a similar spirit, one can
consider a POVM as a data cloud in S, which leads us to a link between the spectral
gap and the diffusion distance, a notion coming from geometric data analysis.

Section 6 contains a case study of POVMs associated to irreducible unitary repre-
sentations of finite groups. In this case the spectrum of the Berezin transform and the
diffusion distance associated to the corresponding Markov chain can be calculated
explicitly via the character table of the group, and their properties reflect algebraic
features. In particular, we prove that any non-trivial irreducible representation of a
simple group has a strictly positive spectral gap (see Corollary 6.6).

2. Preliminaries

The mathematical model of quantum mechanics starts with a complex Hilbert
space H. In what follows we consider finite-dimensional Hilbert spaces only. Ob-
servables are represented by Hermitian operators whose space is denoted by L (H).
Quantum states are provided by density operators, i.e., positive trace-one operators
ρ ∈ L (H). They form a subset S(H) ⊂ L (H). Notation: We write ((A,B)) for the
scalar product tr(AB∗) = tr(AB) on L (H).

Let Ω be a set equipped with a σ-algebra C of its subsets. By default, we assume
that Ω is a Polish topological space (i.e., it is homeomorphic to a complete metric
space possessing a countable dense subset) and C is the Borel σ-algebra.

An L (H)-valued positive operator valued measure W on (Ω,C ), which we ab-
breviated to POVM, is a countably additive map W : C → L (H) which takes each
subset X ∈ C to a positive operator W (X) ∈ L (H) and which is normalized by
W (Ω) = 1l. According to [CDS07], every L (H)-valued POVM possesses a density
with respect to some probability measure α on (Ω,C ), that is having the form

(2.1) dW (s) = nF (s)dα(s) ,

where n = dimCH and F : Ω→ S(H) is a measurable function.
A POVM W given by formula (2.1) is called pure if
(i) for every s ∈ Ω the state F (s) is pure, i.e. a rank one projector;
(ii) the map F : Ω→ S(H) is one to one.

Pure POVMs, under various names, arise in several areas of mathematics including
the Berezin–Toeplitz quantization, convex geometry (see [GM00] for the notion of
an isotropic measure and [AS17] for the resolution of identity associated to John and
Löwner ellipsoids), signal processing (see [EF02] for a link between tight frames and
quantum measurements) and Hamiltonian group actions [FM05]. When Ω is a finite
set, a pure POVM with a given measure α exists if and only if the measure α({s})
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of each point s ∈ Ω is 6 1
n
, see [FM05] for a detailed account on the structure of the

moduli spaces of pure POVMs on finite sets up to unitary conjugations.
Let us introduce the main character of our story, the spectral gap of a POVM of

the form (2.1). Define a map T : L1(Ω, α)→ L (H) by

T (φ) =
∫

Ω
φ dW = n

∫
Ω
φ(s)F (s)dα(s) .

(here and below we work with spaces of real-valued functions). The dual map T ∗ :
L (H) → L∞(Ω, α) is given by T ∗(A)(s) = n((F (s), A)). Since L∞ ⊂ L1, we have
an operator

E = 1
n
TT ∗ : L (H)→ L (H) ,

(2.2) E(A) = n
∫

Ω
((F (s), A))F (s)dα(s) .

Observe that E is a unital trace-preserving completely positive map. In the termi-
nology of [Hay06, Example 5.4], this is an example of an entanglement-breaking
quantum channel.

Furthermore, set

B = 1
n
T ∗T : L1(Ω, α)→ L∞(Ω, α) ,

(2.3) B(φ)(t) = n
∫

Ω
φ(s)((F (s), F (t)))dα(s) .

Observe that the image of B is finite-dimensional as B factors through L (H).
Write (φ, ψ) :=

∫
Ω φψ dα for the scalar product on L2(Ω, α), and ‖ · ‖ for the

associated norm. Note that B is defined as an operator on L2(Ω, α) and its spectrum
belongs to [0, 1], with 1 being the maximal eigenvalue associated with the constant
function.

Note now that positive eigenvalues of E and B coincide. Indeed, T ∗ maps isomor-
phically an eigenspace corresponding to a positive eigenvalue of E to the eigenspace
of B corresponding to the same eigenvalue. Write

1 = γ0 > γ1 > γ2 > γk > . . . > 0
for the eigenvalues of B with multiplicities.

Definition 2.1. — The non-negative number
γ(W ) := 1− γ1 > 0

is called the spectral gap of the POVM W .

With slight abuse of terminology, we sometimes refer to γ(W ) as the spectral
gap of the operators B and E .

Several aspects of this paper concern the positivity of such a spectral gap, and are
related to the theory of Markov chains with state space Ω. The notion of the spectral
gap, while seemingly being unnoticed in the context of POVMs, naturally appears
in the study of Markov chains, where it is responsible for the rate of convergence
to the stationary measure. In Section 3, Markov chains will provide a useful link
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between Berezin–Toeplitz quantization and semiclassical random walks studied by
Lebeau and Michel [LM10], to get a semi-classical estimation of the spectral gap
of the Berezin–Toeplitz POVM. In fact, the result of Lebeau and Michel can be
applied directly to get a lower bound on this spectral gap, giving a weak version
of Theorem 3.1. Finally, as we have already mentioned, POVMs play a central role
in the mathematical theory of quantum measurements, and, interestingly enough,
Markov chains arise in the context of repeated quantum measurements, see Section 7.
Let us recall some basic notions from the theory of Markov chains [BGL13, Rud13]. A
Markov kernel on Ω is a map x 7→ σx sending a point x ∈ Ω to a probability measure
σx on (Ω,C ) such that x 7→ σx(A) is a measurable function for every A ∈ C . With
every Markov kernel σ one associates a Markov chain, i.e., a sequence of Ω-valued
random variables ζk, k = 0, 1, . . . defined on the same probability space, such that
for every n and every sequence xi ∈ Ω the conditional probabilities satisfy

P(ζn | ζn−1 = xn−1, . . . , ζ0 = x0) = σxn−1 .

If ζ0 is distributed according to a probability measure ν0 on Ω, then ζ1 is distributed
according to ν1 given by the formula

ν1(A) =
∫

Ω
σx(A)dν0(x) , ∀ A ∈ C .

If ν0 = ν1, we say that ν0 is a stationary measure for the Markov chain.
The Markov kernel is called reversible with respect to a measure ν on Ω if

dν(x)dσx(y) = dσy(x)dν(y) ,

as measures on Ω× Ω. In this case ν is a stationary measure of the Markov chain.
Given a ν-reversible Markov kernel σ with the state space Ω, define the Markov
operator A on L1(Ω, ν) by

(2.4) A(φ)(x) =
∫

Ω
φ(y)dσx(y) .

Note that A preserves positivity: A(φ) > 0 for φ > 0, A(1) = 1, and its operator
norm is6 1. The reversibility readily yields that the Markov operatorA is self-adjoint
on L2(Ω, ν). Denote by 1⊥ the orthogonal complement to the constant function 1 on
Ω, i.e., the space of functions with zero mean. Then A preserves 1⊥. By definition,
the spectral gap γ(A) is defined as

(2.5) γ(A) = 1− ‖A|1⊥‖ = inf
φ 6=0

(φ−Aφ, φ)
(φ, φ)− (φ, 1)2 .

With this language, the operator B given by (2.3) is a Markov operator with the
Markov kernel

(2.6) t 7→ n((F (s), F (t)))dα(s) .

It is reversible with respect to the stationary measure α.
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3. Spectral gap for quantization

3.1. Berezin transform vs. Laplace–Beltrami operator

Pure POVMs naturally appear in the context of Berezin–Toeplitz quantization
of closed Kähler manifolds (X,ω), which are quantizable in the sense that the co-
homology class [ω] of the Kähler symplectic form ω ∈ Ω2(X,R) is integral. Recall
that this last condition is equivalent to the existence of a holomorphic Hermitian
line bundle (L, h) over X whose Chern connection has curvature −2πiω.

Let us briefly recall the construction of this quantization (see [BMS94, LF18,
Sch10] for preliminaries). Let X be a quantizable closed Kähler manifold with
dimCX = d, and let (L, h) be a holomorphic Hermitian line bundle as above. Write
Lp for the pth tensor power of L, and hp for the Hermitian metric on Lp induced
by h, for any p ∈ N∗ (3) . Then the Hilbert space of quantum states in the space Hp

of global holomorphic sections of Lp, together with the L2-inner product induced
by the Hermitian metric hp on Lp and the Liouville measure dvX associated to the
canonical volume form ω

d
d! . We set np = dimCHp. The quantity ~ = 1

p
plays the role

of the Planck constant, so that the classical limit is given by p→ +∞. For all p ∈ N∗
large enough, we define a pure L (Hp)-valued POVM on X through its density (2.1)
by the formula
(3.1) dWp = np Fp dαp ,

where the map Fp : X → S(Hp) sends a point x ∈ X to the coherent state projector
with kernel the space of sections vanishing at x ∈ X, and where the measure αp is
given at any x ∈ X by

(3.2) dαp(x) = Rp(x)
np

dvX(x) ,

with density Rp : X → R called the Rawnsley function. From the viewpoint of
complex geometry, the map Fp is given by the Kodaira map and the Rawnsley
function is given by the value on the diagonal of the Bergman kernel, i.e. the Schwarz
kernel with respect to dvX of the orthogonal projection Πp : L2(X,Lp) → Hp. By
the Kodaira embedding theorem, for all p ∈ N∗ large enough, the map Fp is well
defined and injective, and we have Rp(x) 6= 0 for all x ∈ X, so that the L (Hp)-
valued measure Wp defines a pure POVM in the sense of Section 2, called the
Berezin–Toeplitz POVM.

In this context, the operator Bp := 1
np
T ∗p Tp given by formula (2.3) is known as

the Berezin transform. Recall that for any p ∈ N∗, the operator Bp has a finite-
dimensional image, and all its eigenvalues lie in the interval [0, 1]. There is a finite
number of positive eigenvalues with multiplicities, while 0 has infinite multiplic-
ity. Write

1 = γ0,p > γ1,p > γ2,p > . . . > γk,p > . . . > 0
for the eigenvalues of Bp with multiplicities.
(3)Our convention is that the set of natural numbers N contains 0. We write N∗ for strictly positive
natural numbers.
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Let ∆f = −div∇f be the (positive) Laplace–Beltrami operator associated with
the Kähler metric, acting on functions on X with eigenvalues
(3.3) 0 = λ0 < λ1 6 λ2 6 . . . 6 λk 6 . . . .

Theorem 3.1. — For every integer k ∈ N, we have the following asymptotic
estimate as p→ +∞,

(3.4) 1− γk,p = 1
4πpλk +O

(
p−2

)
.

Furthermore, every sequence in p ∈ N∗ of L2(X,αp)-normalized eigenfunctions of
Bp corresponding to the eigenvalue γk,p contains a subsequence converging to an
eigenfunction of the Laplace–Beltrami operator corresponding to λk in the C∞-sense.

The proof of Theorem 3.1 is given in Section 3.5. Note that in the context of
Section 2, Theorem 3.1 is equivalent to the same statement via T ∗p for the operator
Ep : L (Hp)→ L (Hp) defined from Bp by the formula (2.2). Let us emphasize also
that the remainder O(p−2) in (3.4) is not uniform in k.

The Berezin transform Bp and its associated operator Ep have prominent cousins,
theQK,p-operator and theQp-operator, respectively introduced by Donaldson [Don09,
Section 4] in the framework of his program of finding numerical approximation to
distinguished Kähler metrics on complex projective manifolds. They are defined as

QK,p = Vol(X)
np

ιpTp : L1(X)→ L∞(X) ,

Qp = Vol(X)
np

Tpιp : L (Hp)→ L (Hp) ,
(3.5)

where for any p ∈ N∗, the map ιp : L (Hp) → L∞(X) has been defined in [Don09,
Section 2.2.1] for all A ∈ L (Hp) and x ∈ X by the formula

(3.6) ιp(A)(x) =
np∑
j=1

hp(Asj(x), sj(x)) ,

where {sj}npj=1 is an orthonormal basis of Hp. By definition of the coherent state
projector Fp : X → S(Hp) and in the language of Section 2, equation (3.6) reads

(3.7) ιp(A)(x) = 1
np
Rp(x)T ∗p (A)(x) .

On the other hand, by their definitions (3.5), the non-vanishing parts of the spectra
of QK,p and Qp are finite and coincide together with their multiplicities. Write the
eigenvalues of Qp as
(3.8) β0,p > β1,p > β2,p > . . . > βk,p > . . . ,

and set

p′ :=
(

np
Vol(X)

) 1
d

.

For some Kähler metrics of constant scalar curvature, Donaldson considered the Qp-
operator as a finite-dimensional approximation of the heat operator and predicted
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(see [Don09, p. 611]) that as p→ +∞, the spectrum of Qp approximate the spectrum
of e−

∆
4πp′ , and an approximation to the eigenfunctions of e−

∆
4πp′ can be extracted from

the eigenvectors of Qp. The following result, which follows from Theorem 3.1 using
the classical asymptotics of the Rawnsley function as p→ +∞, confirms Donaldson’s
prediction for all Kähler metrics of constant scalar curvature. A detailed proof is
given in Section 3.5.

Theorem 3.2. — Assume that the Kähler metric of X has constant scalar
curvature. For every integer k ∈ N, we have the following asymptotic estimate as
p→ +∞,

(3.9) 1− βk,p = 1
4πp′λk +O

(
p−2

)
.

Furthermore, for every sequence in {Ap}p∈N∗ of normalized eigenvectors of Qp in
L (Hp) corresponding to the eigenvalue βk,p for all p ∈ N∗, there is a subsequence of

(3.10)
{

ιpAp
‖ιpAp‖p

}
p∈N∗

converging to an eigenfunction of the Laplace–Beltrami operator corresponding to
λk in the C∞-sense, where ‖ · ‖p is the norm on L2(X,αp).

We refer to [Fin12b, KMS16] for a related study of the asymptotic behaviour of
the spectrum of certain geometric operators arising in Donaldson’s program.

Let us introduce the following useful notion [Don09, Fin12a].

Definition 3.3. — Let (X,ω) be a closed Kähler manifold, and let (L, h) be a
Hermitian holomorphic line bundle over X whose Chern connection has curvature
−2πiω. Fix a positive integer p ∈ N∗ so that the Kodaira map X → H0(X,Lp) is
an embedding. We say that the data (X,Lp, hp) is balanced if the corresponding
Rawnsley function Rp : X → R is constant.

Note that for the balanced data (X,Lp, hp) the Berezin transform Bp and the
QK,p-operator coincide, as well as Ep and the Qp-operator. In that case, the result
of Theorem 3.1 is relevant in [Don09, Section 4.3]. We refer the reader to [Don09,
Section 4.1] and to [Fin10, Section 1.4.1] for an interpretation of these operators in
terms of complex geometry of (X,Lp). Let us finally mention that the approximation
of the heat operator by the QK-operator has been explored by Liu and Ma in [LM07],
and that the analogue of the refined Karabegov–Schlichenmaier expansion of Propo-
sition 3.8 for the QK-operator has been shown by Ma and Marinescu in [MM12,
Theorem 6.1]. Some ingredients of their approach are instrumental for us.

It follows from Theorem 3.1 that the spectral gap of the Berezin–Toeplitz POVM
equals

(3.11) γ(Wp) = ~
4πλ1 +O

(
~2
)
, ~ = 1

p
.

In particular, this yields that the eigenvalue 1 of Bp is simple (i.e., has multiplicity 1)
for all sufficiently large p.
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Example 3.4. — Take the projective line X = CP 1 = S2 of area 1. Let L = O(1)
be the holomorphic line bundle over X dual to the tautological one. The quantum
Hilbert space Hp of global holomorphic sections of Lp can be identified with the
(p + 1)-dimensional space of homogeneous polynomials of degree p of 2 variables.
A representation-theoretical argument (see [Zha98, Don09] and Remark 6.7 below)
shows that the eigenvalue γ1 of the Berezin transform equals p

p+2 . The Kähler metric
on X has constant curvature. For such metrics the first eigenvalue λ1 of the Laplace–
Beltrami operator equals 8π

Area = 8
π
. We get that

γ = 1− γ1 = 2
p+ 2 = 1

4πpλ1 +O
(
p−2

)
,

as predicted by (3.11).

The upper bound in (3.11) immediately follows from the Karabegov–Schlichen-
maier asymptotic expansion (1.1) of the Berezin transform [KS01]

Bp(f) = f − 1
4πp∆f +O

(
p−2

)
,

for every smooth function f on X, where the remainder O(p−2) depends on f . Indeed,
choosing f to be the L2(X,αp)-normalized first eigenfunction of ∆, we see that

γ(Wp) 6 ((1l− Bp)f, f)p 6
1

4πpλ1 +O
(
p−2

)
,

where (·, ·)p is the scalar product on L2(X,αp).
The prototypical example illustrating a link between the Berezin transform and

the Laplace–Beltrami operator is the flat space R2n, where the Berezin transform Bp
simply coincides with the heat operator e−~∆

4π (see [Ber75]). It would be interesting
to explore the following problem motivated by a conversation with J.-M. Bismut.
Denote by χ(t) the indicator function of the interval [0, 1].

Problem 3.5. — Call a non-decreasing sequence r(p) in p ∈ N∗ admissible if∥∥∥∥∥(Bp − e− ∆
4πp )χ

(
∆
r(p)

)∥∥∥∥∥ = O
(
p−2

)
,

where the norm stands for the operator norm in L2. According to Theorem 3.1,
the constant sequence r(p) = C is admissible for all C. Is the sequence r(p) = pτ

admissible for τ > 0? What is the maximal possible growth rate of an admissible
sequence?

Let us finally make a couple of comments on the physical intuition behind the
Berezin transform. It has been noted in the introduction that the Berezin transform
can be defined as the composition of the quantization and the dequantization. It
is instructive to interpret it in terms of the quantization only. Let σ be a classi-
cal state, i.e. a Borel probability measure on X, and following [CP18a], define its
quantization as

Θp(σ) =
∫
X
F (x)dσ(x) ,
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where as earlier F (x) stands for the coherent state projector at x ∈ X. Let further
f ∈ L2(X) be a classical observable. It was noticed in [CP18a, (11)] that the
expectation ((Tp(f),Θp(σ))) of the value of the quantized observable Tp(f) in the
quantized state Θp(σ) equals the classical expectation

∫
X B(f) dσ of the Berezin

transform B(f) in the classical state σ. Thus in the context of Berezin–Toeplitz
quantization, we get another interpretation of the blurring of quantization measured
by B. Furthermore, in view of Theorem 3.1, we know that B is a Markov operator
with strictly positive spectral gap. Thus it has unique stationary measure αp whose
density against the phase volume is given by Rp

np
, as in formula (3.2). Interestingly

enough, this provides an interpretation of the Rawnsley function without appealing
to a specific choice of coherent states.

3.2. Comments on the proof

The proof of Theorem 3.1 occupies the rest of this section, and we will deduce
Theorem 3.2 as a consequence of it in Section 3.5. Our argument has the same
structure as the one in a paper by Lebeau and Michel [LM10] on the Markov operator
associated to the semiclassical random walk on manifolds. The key intermediate
results are as follows:

(i) An apriori estimate stating that for any eigenfunction f of Bp whose eigenvalue
is sufficiently bounded away from 0, any Sobolev norm ‖f‖Hq is bounded by
Cq‖f‖L2 . See Lemma 3.10 below which is a counterpart of [LM10, Lemma 5].

(ii) The operators Ap := p(1l−Bp) and ∆
4π turn out to be ∼ p−1-close as operators

from L2 to Hq for the Sobolev space Hq with some sufficiently large q, see
formula (3.41) below which is a counterpart of [LM10, formula (3.28)], and
which can be considered as a refinement of the expansion (1.1) obtained
in [KS01].

Combining (i) and (ii) we conclude that, roughly speaking, eigenfunctions of Ap as
in (i) are “approximate” eigenfunctions of the Laplacian, which eventually implies
that the spectra of Ap and ∆ are close to one another, which yields the desired result
(see the ending of our proof which is parallel to the one in [LM10]).

Proving (i) and (ii) forms the main bulk of the work. In contrast to [LM10],
our proof does not involve micro-local analysis. The main ingredients we use is the
expansion of the Bergman kernel due to Dai, Liu and Ma [DLM06] (see Theorem 3.7)
and a comparison between the Berezin transform and the heat operator motivated
by the work of Liu and Ma on Donaldson’s QK-operator [LM07] (see Proposition 3.9
below).

Finally, an acknowledgment is in order. After a weaker version of Theorem 3.1
was posted and formula (3.11) was stated as a question, Alix Deleporte kindly shared
with us his ideas concerning the proof of (3.11). He sent us notes [Del] containing a
number of preliminary steps in the direction of (i) and (ii) above. While the original
arguments of Deleporte dealt with the case of real-analytic Kähler manifolds and
line bundles and were based on the asymptotic expansion from [RSVN18, Del], he
informed us that they also could be adjusted to the C∞-case.
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3.3. Preparations

Recall that the measure dvX associated to the canonical volume form ωd

d! is also
the Riemannian volume form of X. Let 〈·, ·〉L2 be the usual L2-scalar product on
C∞(X,C), and let ‖ · ‖L2 be the associated norm. For all j ∈ N, let ej ∈ C∞(X,C)
be the normalized eigenfunction associated with the jth eigenvalue of the Laplace–
Beltrami operator, so that ‖ej‖L2 = 1 and ∆ej = λjej as in (3.3) for all j ∈ N. Then
for any f ∈ C∞(X,C), we have the following equality in L2,

(3.12) f =
+∞∑
j=0
〈f, ej〉L2ej.

For any F : R → R bounded, we define the bounded operator F (∆) acting on
L2(X,C) by the formula

(3.13) F (∆)f =
+∞∑
i=0

F (λj)〈f, ej〉L2ej .

The bounded operator e−t∆ thus defined for all t > 0 is called the heat operator. For
any m ∈ N, let | · |Cm be a Cm norm on C∞(X,C). The following result is classical
and can be found for example in [Kan77], [BGV92, Theorem 2.29(2.8)].

Proposition 3.6. — For any m ∈ N, there exists Cm > 0 such that for any
f ∈ C∞(X,C) and all t > 0, we have

(3.14)
∣∣∣e−t∆f − f + t∆f

∣∣∣
Cm
6 Cmt

2|f |Cm+4 .

For any m ∈ N∗, let ‖ · ‖Hm be a Sobolev norm of order m on C∞(X,C). Using
the elliptic estimates for the Laplace–Beltrami operator, for m even we define ‖ ·‖Hm

by
(3.15) ‖f‖Hm :=

∥∥∥∆m
2 f
∥∥∥
L2

+ ‖f‖L2 .

Note that the Laplacian ∆ is symmetric with respect to the corresponding scalar
product on Hm. By convention, we set ‖f‖H0 := ‖f‖L2 .

Next, turn to the Berezin transform. Recall that the Hermitian product on L and
the Riemannian measure dvX induce an L2-scalar product on sections of Lp for any
p ∈ N∗, and write L2(X,Lp) for the associated Hilbert space. The central tool for
the study of the Berezin transform is the Schwartz kernel Πp(x, y) of the orthogonal
projector Πp : L2(X,Lp) → Hp, called the Bergman kernel. Recall that for fixed x
and y, this is an element of Lpx⊗L̄py, where Lpx denotes the fiber of Lp at x ∈ X and the
bar stands for the conjugate line bundle. Since the bundle L comes with a Hermitian
metric, we can measure the point-wise norm |Πp(x, y)|. By [LF18, Corollary 9.1.4(2)],
we have that |Πp(x, y)| = |〈ξx,p, ξy,p〉|, where ξx,p is the non-normalized coherent state
at x ∈ X defined up to a phase factor (see e.g. [CP18b, LF18] for the definition). The
Rawnsley function Rp is given by Rp(x) = |ξx,p|2, and thus satisfies Rp(x) = Πp(x, x).
Since Fp(x) is the projector to ξx,p, we have that∣∣∣Πp(x, y)

∣∣∣2 = ((Fp(x), Fp(y)))Rp(x)Rp(y) .
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It follows from (2.6) and (3.2) that

(3.16)
(Bpf)(x) = np

∫
X

((Fp(x), Fp(y)))f(y)dαp(y)

= 1
Rp(x)

∫
X
|Πp(x, y)|2f(y)dvX(y) ,

so that the Schwarz kernel of Bp with respect to dvX is given by

(3.17) Bp(x, y) = |Πp(x, y)|2
Rp(x) .

Let ‖ · ‖p be the norm on L2(X,αp). From the classical asymptotic expansion of Rp

as p→ +∞, we get a constant C > 0 such that

(3.18)
(

1
Vol(X) − Cp

−1
)
‖ · ‖L2 6 ‖ · ‖p 6

(
1

Vol(X) + Cp−1
)
‖ · ‖L2 .

3.4. Asymptotic expansion of the Berezin transform

For a comprehensive account on the off-diagonal expansion of the Bergman kernel
as well as tools of Berezin–Toeplitz quantization in this context, we refer to [MM07].

We always assume that p ∈ N∗ is as large as needed. For any s > 0, we use
the notation O(p−s) as p → +∞ in the usual sense, uniformly in Cm-norm for all
m ∈ N∗. The notation O(p−∞) means O(p−s) for any s > 0.

Let ε0 > 0 be smaller than the injectivity radius of X. Fix a point x0 ∈ X, and
let Z = (Z1, . . . , Z2d) ∈ R2d with |Z| < ε0 be geodesic normal coordinates around x0,
where | · | is the Euclidean norm of R2d. In these coordinates, the canonical volume
form is given by

(3.19) dvX(Z) = κx0(Z)dZ ,

with κx0(0) = 1. For any kernel K(·, ·) ∈ C∞(X × X,C), we write Kx0(·, ·) for its
image in these coordinates, and we write |Kx|Cm(X) for the Cm-norm of the family
of functions Kx with respect to x ∈ X.

Let dX be the Riemannian distance on X. We will derive Theorem 3.1 as a
consequence of the following asymptotic expansion as p → +∞ of the Schwartz
kernel of the Berezin transform.

Theorem 3.7. — For any m, k ∈ N and ε > 0, there is C > 0 such that for all
p ∈ N∗ and x, y ∈ X satisfying dX(x, y) > ε,

(3.20) |Bp(x, y)|Cm 6 Cp−k .
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For any m, k ∈ N, there is N ∈ N and C > 0 such that for any x0 ∈ X, |Z|, |Z ′| < ε0
and for all p ∈ N∗, we have

(3.21)
∣∣∣∣p−dBp,x0(Z,Z ′)

−
k−1∑
r=0

p
−r
2 Jr,x0(√pZ,√pZ ′) exp(−πp|Z − Z ′|2)κ−1

x0 (Z ′)
∣∣∣∣
Cm(X)

6 Cp−
k
2
(
1 +√p|Z|+√p|Z ′|

)N
exp

(
−√p

∣∣∣∣∣Z − Z ′C

∣∣∣∣∣
)

+O(p−∞) ,

where {Jr,x0(Z,Z ′)}r∈N is a family of polynomials in Z,Z ′ ∈ R2n of the same parity
as r, depending smoothly on x0 ∈ X. Furthermore, for any Z,Z ′ ∈ R2n we have
(3.22) J0,x0(Z,Z ′) = 1 and J1,x0(Z,Z ′) = 0 .

This readily follows from formula (3.17) expressing the Schwarz kernel of the
Berezin transform via the Bergman kernel Πp and the analogous result of Dai, Liu
and Ma in [DLM06, Theorem 4.18’] for the Bergman kernel.

For any x ∈ X, let BX(x, ε0) be the geodesic ball of radius ε0 > 0 around x,
and write B(0, ε0) ⊂ R2d for the Euclidean ball of radius ε0 around 0. The following
proposition is a refinement of the Karabegov–Schlichenmaier expansion [KS01, (1.2)]
of the Berezin transform, where we make explicit the remainder term.

Proposition 3.8. — For any m ∈ N, there exists Cm > 0 such that for any
f ∈ C∞(X,C) and all p ∈ N∗, we have

(3.23)
∣∣∣∣∣Bpf − f + ∆

4πpf
∣∣∣∣∣
Cm
6
Cm
p2 |f |Cm+4 .

Proof. — For any x ∈ X, write fx for the image of f restricted to BX(x, ε0) in
normal coordinates around x. From (3.20), we know that for any ε > 0 and x ∈ X,

(Bpf)(x) =
∫
X
Bp(x, y)f(y)dvX(y)

=
∫
BX(x,ε0)

Bp(x, y)f(y)dvX(y) +O(p−∞) |f |C 0

=
∫
B(0,ε0)

Bp,x(0, Z)fx(Z)κx(Z)dZ +O(p−∞) |f |C 0 .

(3.24)

For any k ∈ N∗ and m ∈ N, we will use the following Taylor expansion of fx up to
order k − 1, for all p ∈ N∗ and |Z| < ε0,

fx(Z) =
∑

06|α|6k−1

∂|α|fx
∂Zα

Zα

α! +Om(|Z|k)|f |Cm+k

=
∑

06|α|6k−1
p−
|α|
2
∂|α|fx
∂Zα

(√pZ)α

α! + p−
k
2Om(|√pZ|k)|f |Cm+k ,

(3.25)

where Om means that the expansion is uniform in x ∈ X as well as all its derivatives
up to order m ∈ N, and does not depend on f .
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We will compute the asymptotic expansion as p→ +∞ of (3.24) using the Taylor
expansion (3.25) of f and the asymptotic expansion (3.21) of the Berezin transform
up to order 3. First, using the fact that Bp1 = 1 for all p ∈ N∗, we know that the
polynomials Jr,x(Z,Z ′) of the asymptotic expansion (3.21) of the Berezin transform
satisfy

(3.26)
∫
R2n

Jr,x(0, Z) exp
(
−πp|Z|2

)
dZ = 0 ,

for all x ∈ X and r ∈ N∗. On another hand, recall from (3.22) that J0,x ≡ 1 and
J1,x ≡ 0 for all x ∈ X. Using the parity of Gaussian functions, a change of variable
Z 7→ Z√

p
and the Taylor expansion (3.25) for k = 4, we get that

(3.27) pd
∫
B(0,ε0)

exp
(
−πp|Z|2

)
fx(Z)dZ

= f(x) + p−1
2n∑
j=1

∂2fx
∂Z2

j

(0)
∫
R2n

Z2
j

2 exp
(
−π|Z|2

)
dZ + |f |Cm+4Om

(
p−2

)

= f(x)− p−1 ∆
4πf(x) + |f |Cm+4Om

(
p−2

)
.

Recall that Jr,x(0, Z) ∈ C[Z] is a polynomial in Z ∈ R2n of the same parity than
r ∈ N, so that using (3.25), (3.26) and the parity of Gaussian functions, we get in
the same way

(3.28) pd
∫
B(0,ε0)

J2,x(0,
√
pZ) exp

(
−πp|Z|2

)
fx(Z)dZ

= f(x)
∫
R2n

J2,x(0, Z) exp
(
−π|Z|2

)
dZ +Om(p−1)|f |Cm+2

= Om

(
p−1

)
|f |Cm+2 , pd

∫
B(0,ε0)

J3,x(0,
√
pZ) exp

(
−πp|Z|2

)
fx(Z)dZ

= Om

(
p−

1
2
)
|f |Cm+1 .

Finally, again using a change of variable Z 7→ Z√
p
, we get for any N ∈ N∗ and p ∈ N∗,

(3.29) pd
∫
B(0,ε0)

(1 + |√pZ|)N exp
(
−√p|Z|

C

)
fx(Z)dZ = Om(1)|f |Cm .

This completes the proof of (3.23). �

In view of Propositions 3.6 and 3.8, it is natural to compare the Berezin transform
with the heat operator by setting t = (4πp)−1. This leads to the following result,
which is essentially a refinement of [LM07, Theorem 0.1].

Proposition 3.9. — For any m ∈ N, there exists Cm > 0 such that for any
f ∈ C∞(X,C) and all p ∈ N∗, we have

(3.30)
∥∥∥∥(e− ∆

4πp − Bp
)
f
∥∥∥∥
Hm
6
Cm
p
‖f‖Hm .
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Proof. — Set Sp := e
∆

4πp − Bp, which acts on L2(X,C) for all p ∈ N∗ and admits
a smooth Schwartz kernel Sp(·, ·) with respect to dvX . Comparing Theorem 3.7 with
the classical asymptotic expansion of the heat kernel, as given for example in [BGV92,
Theorem 2.29],[Kan77], we see that
(3.31) Sp(x, y) = O(p−∞) ,
for all x, y ∈ X satisfying dX(x, y) > ε0, and using the formula (3.22) for the first
two coefficients, we get for any m ∈ N a constant C > 0 and N ∈ N such that

(3.32) |Sp,x0(Z,Z ′)|Cm(X)

6 Cp−1(1 +√p|Z|+√p|Z ′|)N exp
(
−√p|Z − Z ′|

C

)
+O(p−∞) .

Let us first show (3.30) for m = 0. For any f ∈ C∞(X,C) and any ε > 0, by Cauchy–
Schwarz inequality and (3.31) for Sp, we get the following version of the Schur test
for all p ∈ N∗,

(3.33) ‖Spf‖2
L2 6

∫
X

(∫
X
|Sp(x, y)| dvX(y)

)(∫
X
|Sp(x, y)| |f(y)|2 dvX(y)

)
dvX(x)

6 sup
x∈X

(∫
X
|Sp(x, y)| dvX(y)

)
sup
y∈X

(∫
X
|Sp(x, y)| dvX(x)

)
‖f‖2

L2

6 sup
x∈X

(∫
B(x,ε0)

|Sp(x, y)| dvX(y)
)

sup
y∈X

(∫
B(x,ε0)

|Sp(x, y)| dvX(x)
)
‖f‖2

L2

+O(p−∞)‖f‖2
L2 .

Then (3.30) for m = 0 follows from (3.32) with Z = 0 or Z ′ = 0 respectively, as
in (3.29).

To deal with the case of arbitrary m ∈ N∗, let us assume by induction that (3.30)
is satisfied for m−1. Considering the estimates (3.31) and (3.32) with corresponding
m ∈ N∗, note that for any differential operator Dx of order m in x ∈ X, there exists
a differential operator D′x,y in x, y ∈ X of total order m but of order at most m− 1
in x ∈ X, such that the operator S(m)

p defined through its kernel for all x, y ∈ X by

(3.34) S(m)
p (x, y) := DxSp(x, y) +D′x,ySp(x, y)

also satisfies (3.31) and (3.32). Then for all x ∈ X and p ∈ N∗, we get∫
X
DxSp(x, y)f(y)dvX(y) = −

∫
X

(
D′x,ySp(x, y)

)
f(y)dvX(y) + (S(m)

p f)(x)

=
∫
X
D′xSp(x, y)

(
D′′yf(y)

)
dvX(y) + (S(m)

p f)(x) ,
(3.35)

where D′x and D′′y are differential operators, respectively in x and in y, obtained from
D′x,y using a partition of unity and integration by parts in local charts, so that in
particular D′x is of order m− 1 in x ∈ X. Then using the induction hypothesis, the
inequality (3.30) for m follows from the same inequality for m − 1 replacing f by
any number of derivatives of f , and from the estimates (3.32) and (3.33) for S(m)

p in
the same way than before. �
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3.5. Spectrum

Recall that ‖ · ‖p denotes the norm on L2(X,αp). In this section, we consider a
sequence {fp}p∈N∗ , with fp ∈ C∞(X,C) such that
(3.36) ‖fp‖p = 1 , Bpfp = µpfp ,

for some µp ∈ Spec(Bp) for all p ∈ N∗. The following estimate is crucial for the proof
of Theorem 3.1.

Lemma 3.10. — Assume that the sequence {p(1−µp)}p∈N∗ is bounded by some
constant L > 0. Then for all m ∈ N, there exists CL,m > 0 such that for all p ∈ N∗,
we have
(3.37) ‖fp‖H2m 6 CL,m .

Proof. — Note that (3.37) is automatically verified form = 0 by (3.18) and (3.36).
By induction on m ∈ N, let us assume that (3.37) is satisfied for m− 1. Let us write

p
(
e−

∆
4πp − Bp

)
fp = p(1− µp)fp − p

(
1l− e−

∆
4πp

)
fp

= p(1− µp)fp −∆F
(

∆
p

)
fp ,

(3.38)

where the bounded operator F (∆/p) acting on L2(X,C) is defined as in (3.13) for
the continuous function F : R→ R given for any s ∈ R∗ by F (s) = 4π(1− e−s/4π)/s.
As |p(1− µp)| < L for all p ∈ N∗, by Proposition 3.9 and formula (3.15) for ‖ · ‖H2m ,
this gives a constant Cm > 0 such that

(3.39)
∥∥∥∥∥F

(
∆
p

)
fp

∥∥∥∥∥
H2m
6 Cm‖fp‖H2m−2 .

On the other hand, note that by hypothesis, we have µp → 1 as p → +∞. Using
Proposition 3.9 again, we then get εm > 0 and pm ∈ N∗ such that for all p > pm,

(3.40)
∥∥∥∥∥F

(
∆
p

)
fp

∥∥∥∥∥
H2m

>

∥∥∥∥∥F
(

∆
p

)
fp +

(
Bp − e−

∆
4πp

)
fp

∥∥∥∥∥
H2m
−
∥∥∥∥(Bp − e− ∆

4πp

)
fp

∥∥∥∥
H2m

> inf
s>0

{
F (s) + µp − e

−s
4π
}
‖fp‖H2m − Cmp−1‖fp‖H2m

> εm‖fp‖H2m .

This together with (3.39) gives (3.37). �

Proof of Theorem 3.1. — For any f ∈ C∞(X,C), by Proposition 3.8, we get that

(3.41)
∥∥∥∥∥p(1l− Bp)f − ∆

4πf
∥∥∥∥∥
L2

6 Cp−1|f |C 4 6 Cp−1‖f‖Hq ,

with q even and large enough. The inequality on the right follows from Sobolev
embedding theorem, and the same is true in L2(X,αp)-norm by (3.18). Let now

TOME 3 (2020)



1360 Louis IOOS, Victoria KAMINKER, Leonid POLTEROVICH & Dor SHMOISH

j ∈ N be fixed. If ej ∈ C∞(X,C) satisfies ∆ej = λjej and ‖ej‖L2 = 1, then by (3.41)
we get Cj > 0 not depending on p ∈ N∗ such that

(3.42)
∥∥∥∥∥p(1l− Bp)ej − λj

4πej
∥∥∥∥∥
p

6 Cjp
−1 .

Thus if mj ∈ N is the multiplicity of λj as an eigenvalue of ∆, the estimate (3.42)
for all eigenfunctions of ∆ associated with λj gives a constant C > 0 such that

(3.43) #
(

Spec
(
p(1l− Bp)

)
∩
[
λj
4π − Cp

−1,
λj
4π + Cp−1

])
> mj .

This immediately follows from the variational principle for the operator

p(1l− Bp)−
λj
4π1l

acting on L2(X,αp).
Consider now for every p ∈ N∗ a normalized eigenfunction fp ∈ C∞(X,C) of

Bp as in (3.36) such that the associated sequence {p(1− µp)}p∈N∗ of eigenvalues of
p(1l − Bp) is bounded. Combining Lemma 3.10 with the right inequality in (3.41),
we get C > 0 such that
(3.44)

∥∥∥p(1− µp)fp −∆fp
∥∥∥
L2
6 Cp−1 .

In particular, we get that
(3.45) dist

(
p(1− µp), Spec ∆

)
6 Cp−1 .

Finally, let us show that there exists p0 ∈ N∗ such that (3.43) is in fact an equality
for p > p0. To this end, let l ∈ N∗ with l > mj be such that for all p ∈ N∗, there
exists an orthonormal family fk,p, 1 6 k 6 l, of eigenfunctions of Bp in L2(X, dαp)
with associated eigenvalues µk,p ∈ R, 1 6 k 6 l, satisfying

(3.46) p(1− µk,p) ∈
[
λj − Cp−1, λj + Cp−1

]
, for all 1 6 k 6 l .

As the inclusion of the Sobolev space Hq in Hq−1 is compact, by Lemma 3.10 there
exists a subsequence of {fk,p}p∈N∗ converging to a function fk in Hq−1-norm, for all
1 6 k 6 l. In particular, taking q > 2, the family fk, 1 6 k 6 l, is orthonormal in
L2(X,C) and satisfies ∆fk = λjfk for all 1 6 k 6 l by (3.44). By definition of the
multiplicity mj ∈ N of λj, this forces l = mj.

Let us sum up our findings. First, the equality

#
(

Spec
(
p(1l− Bp)

)
∩
[
λj
4π − Cp

−1,
λj
4π + Cp−1

])
= mj ,

where mj is the multiplicity of λj as the eigenvalue of ∆, together with (3.45) readily
yields the first statement of the theorem:

1− γk,p = 1
4πpλk +O

(
p−2

)
.

Second, observe that we got a subsequence of fk,p, p ∈ N∗ converging to fk in the
Sobolev Hq−1 sense, where q even can be chosen arbitrarily large. By the Sobolev
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embedding theorem, this yields a subsequence which C l-converges to fk with ar-
bitrary l. Iterating this argument for this subsequence we get that there exists a
sequence pl → +∞ such that

|fk,pl − fk|C l 6
1
l
,

which means that fk,pl converges to fk in the C∞-sense. This completes the proof. �
Proof of Theorem 3.2. — For any p ∈ N∗, using equation (3.7) for ιp and

combining the definition (3.5) of the QK,p-operator with formula (3.16) for the
Berezin transform Bp = 1

np
T ∗p Tp acting on f ∈ C∞(X,C), we get

(3.47) (QK,pf)(x) = Vol(X)
np

Rp(x)Bp(f)(x) = Vol(X)
np

∫
X
|Πp(x, y)|2 f(y) dvX(y) .

We will show that when the scalar curvature is constant, the analogue of Theorem 3.1
holds for this operator. As p′

p
= 1 +O(p−1) by the Riemann–Roch theorem, this will

imply Theorem 3.2 via the morphism ιp which relates Qp with QK,p, see (3.5).
Recall that Rp : X → R denotes the Rawnsley function, and that np = dimC Hp.

By the classical asymptotic expansion of the Bergman kernel, which can be found
for example in [MM07, Section 4.1.1], we know that when the scalar curvature is
constant, we have

(3.48) Vol(X)
np

Rp = 1 +O
(
p−2

)
.

As this expansion holds in Cm-norm for all m ∈ N∗ and by the definition Bp and
QK,p in formulas (3.16) and (3.47) respectively, we get a constant Cm > 0 for any
m ∈ N∗ such that
(3.49) ‖QK,p − Bp‖Hm 6 Cmp

−2.

It is then easy to see that Lemma 3.10 holds for any sequence {fp}p∈N∗ with fp ∈
C∞(X,C) such that
(3.50) ‖fp‖L2 = 1 , QK,pfp = µpfp ,

with {p(1 − µp)}p∈N∗ bounded, simply using the estimate (3.49) to replace Bp by
QK,p in (3.38) and (3.40). We can then follow the proof of Theorem 3.1 above
to get the same result for QK,p, using the estimate (3.49) to replace Bp by QK,p

in (3.41) and (3.42), and using (3.18) to replace ‖ · ‖p by ‖ · ‖L2 in (3.42). Finally, the
form (3.10) for the normalized sequence of eigenfunction of QK,p follows from the
fact that ιpQp = QK,pιp by definition (3.5) of Qp and QK,p. This completes the proof
of Theorem 3.2. �

Remark 3.11. — Theorem 3.1 can be extended to the case of a general closed
symplectic manifold (X,ω) of real dimension 2d, and (L, h,∇) a Hermitian line
bundle with Hermitian connection ∇ of curvature −2πiω. In fact, one can in general
consider the following renormalized Bochner Laplacian acting on C∞(X,Lp) for any
p ∈ N∗, first introduced by Guillemin and Uribe [GU88],
(3.51) ∆p := ∆Lp − 2πdp ,
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where ∆Lp stands for the usual Bochner Laplacian on Lp. By [GU88, Theorem 2.a],
the spectrum of ∆p is contained in I ∪ (C1p − C2,+∞) for all p ∈ N∗, for some
C1, C2 > 0 and some interval I ⊂ R containing 0. We can then consider Πp as
the associated spectral projection corresponding to I and set Hp = Im(Πp). Using
the work [MM08] of Ma and Marinescu on the kernel of Πp, we can then consider
the Berezin–Toeplitz POVM of Section 3.1. By [LMM17, (2.31), (3.2)], the Berezin
transform admits an asymptotic expansion similar to Theorem 3.7, except for the
formula (3.22), where we only have J1,x0(0, Z ′) = 0 for all Z ′ ∈ R2d as a consequence
of [ILMM17, Lemma 6.1, Lemma 6.2] (see also [MM08, (2.32)]). Then Proposi-
tions 3.8 and 3.9 hold, and it is straightforward to adapt the rest of the proof of
Theorem 3.1 in Section 3.5. Note that the corresponding estimates in Proposition 3.8
and 3.9 can be seen as refinements of [LMM17].

Remark 3.12. — On the other hand, Theorem 3.1 can be extended to the case
of weighted Berezin transforms, introduced by Englis in [Eng00] in the case of pseu-
doconvex domains. This corresponds to the case where one replaces the canonical
volume form ωd

d! by a general smooth volume form ν in the setting of Section 3.1.
In fact, let us consider the Hilbert space Hν,p of global holomorphic sections of
Lp together with the L2-inner product with respect to the measure dν instead of
the Liouville measure dvX . Then using the trick of Ma and Marinescu in [MM07,
Section 4.1.9], we can define for any p ∈ N∗ large enough the L (Hν,p)-valued POVM

(3.52) dWν,p = npFν,pdαν,p ,

where Fν,p : X → S(Hν,p) is the map sending x ∈ X to the orthogonal projector
with kernel the space of sections vanishing at x ∈ X and αp,ν is given by

(3.53) dαν,p(x) = Rν,p(x)
np

dν(x) ,

where Rν,p : X → R is the weighted Rawnsley function, given by the value on the
diagonal of the Schwarz kernel with respect to ν of the orthogonal projector operator
Πν,p : L2(X,Lp, dν)→ Hν,p. Using [MM07, Section 4.19] again as well as the general
version of the expansion Theorem 3.7 given in [DLM06, Theorem 4.18’], the proof
of Theorem 3.1 above extends verbatim to this case, to get the estimate

(3.54) 1− γν,k,p = 1
4πpλk +O

(
p−2

)
as p→∞, where γν,k,p is the kth eigenvalue of the Berezin transform of Wν,p and λk
is the kth eigenvalue of the Laplace–Beltrami operator associated with the Kähler
metric, for all k ∈ N. Note in particular that the first term of the right hand side
of equation (3.54) does not depend on the choice of the smooth volume form ν. It
would be interesting to understand the general mechanism behind this fact, in the
spirit of Theorem 5.4.(ii), showing that the spectral gap of Wν,p is constant up to
O( 1

p2 ) under deformations of ν.
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4. Berezin transform and Donaldson’s iterations
In [Don09] Donaldson, as a part of his program of developing approximate meth-

ods for detecting canonical metrics on Kähler manifolds, discovered a remarkable
class of dynamical systems on the space of all Hermitian inner products on a given
complex vector space. We shall show in this section that the linearization of such
a system at a fixed point can be identified with the quantum channel introduced
in (2.2) above and prove that under certain natural assumptions, it is injective and
has strictly positive spectral gap. Using earlier results by Donaldson, we will then
deduce the main result of this section, Theorem 4.4, stating that the iterations of
this system converge exponentially fast to the fixed point.

For a complex n-dimensional vector space V, denote by Prod(V) the space of
Hermitian inner products on V. Given such a q ∈ Prod(V), let H := (V , q) be the
corresponding Hilbert space, and define a map
(4.1) Φq : P(V∗) −→ L (H)
sending a hyperplane H ⊂ V , naturally seen as an element of P(V∗) via the kernel
of linear forms, to the unique orthogonal projector Φq(H) ∈ L (H) with respect to
q satisfying Ker Φq(H) = H.

Let ν be a Borel measure on P(V∗), so that |ν| := ν(P(V∗)) < ∞. Following
Donaldson [Don09, p. 581], we say that q ∈ Prod(V) is ν-balanced if the operator-
valued measure

(4.2) dWq(z) := nΦq(z)dν(z)
|ν|

,

defines an L (H)-valued POVM on P(V∗) as in (2.1). This translates into the condi-
tion

(4.3) n
∫
P(V∗)

Φq(z)dν(z)
|ν|

= 1l .

Example 4.1. — Consider a Hilbert space H = (V , q) with dimCH = n, and let
W be a pure L (H)-valued POVM, defined as in formula (2.1). Let us identify the
measure α on Ω with a measure on P(V∗) via push-forward by the associated map
(4.4) F : Ω −→ P(V∗) ,
where P(V∗), seen as the set of hyperplanes in V, is identified with the set of rank
one projectors in S(H) ⊂ L (H) via their kernel as above. It is then an immediate
consequence of the definitions that q ∈ Prod(V) is α-balanced.

Example 4.2. — As a particular case of Example 4.1, consider the Berezin–
Toeplitz POVM Wp on a closed quantizable Kähler manifold X associated to a
Hermitian holomorphic line bundle L for p ∈ N∗ large enough, as in Section 3.1. The
associated Hilbert space is Hp = (H0(X,Lp), qp), where H0(X,Lp) is the space of
holomorphic sections of Lp and qp ∈ Prod(H0(X,Lp)) is the L2-Hermitian product
induced by the Kähler metric. In this case, the map (4.4) is given by the Kodaira
embedding
(4.5) Fp : X −→ P

(
H0(X,Lp)∗

)
,

TOME 3 (2020)



1364 Louis IOOS, Victoria KAMINKER, Leonid POLTEROVICH & Dor SHMOISH

and we get as a special case of the previous example that qp ∈ Prod(H0(X,Lp)) is
αp-balanced. Then following e.g. [Fin12a, Proposition 8.3] and by formula (3.2) for
αp, the data (X,Lp, hp) is balanced in the sense of Definition 3.3 if and only if the
product qp is dvX-balanced.

Example 4.3. — Let X be a complex manifold together with a holomorphic
line bundle L over X such that the Kodaira map Fp given by (4.5) is an embed-
ding for p ∈ N∗ sufficiently large, and let ν be a smooth volume form over X.
Then Lp over X is naturally identified with the pullback by Fp of the dual of the
tautological line bundle over P(H0(X,Lp)∗), and given a Hermitian inner product
qp ∈ Prod(H0(X,Lp)) on H0(X,Lp), we write hp for the Hermitian metric induced
on Lp by the corresponding Fubini–Study metric. Then by e.g. [Don09, p. 581], the
product qp ∈ Prod(H0(X,Lp)) is ν-balanced if and only if it coincides up to con-
stant with the L2-inner product on H0(X,Lp) induced by hp and the measure dν.
On the other hand, following [MM07, Section 4.19, Section 5.1.4], the last assertion
of Example 4.2 holds in the same way when one replaces dvX by dν, so that the
weighted Rawnsley function Rν,p : X → R of Remark 3.12 is constant if and only
if qp is ν-balanced. This shows that if qp is ν-balanced, the induced POVM (4.2)
coincides with the Berezin–Toeplitz POVM (3.52) weighted by ν of Remark 3.12.

Donaldson proved [Don09, p. 582] (see also an extensive discussion below) that for
every p ∈ N∗ large enough, there always exists a unique ν-balanced Hermitian inner
product qp ∈ Prod(H0(X,Lp)). For p ∈ N∗ large enough, consider the symplectic
form ωp on X obtained by the pull-back under the Kodaira map Fp of the Fubini–
Study form on P(H0(X,Lp)∗) corresponding to qp. Equivalently, −2iπωp is the Chern
curvature of hp. By [Don09, p. 584] (see also [Kel09]), the sequence {1

p
ωp}p converges

as p→∞ to the unique Kähler form ω∞ in c1(L) solving the Calabi problem ωd = cν,
for some c > 0. This illustrates the role of ν-balanced products as finite-dimensional
approximations of the solution of the Calabi problem.

Under some natural assumptions on the measure ν, the existence of ν-balanced
Hermitian inner products was established by Bourguignon, Li and Yau [BLY94],
where they use such products to give an upper bound for the first eigenvalue of the
Laplacian of complex manifolds embedded in the projective space. This generalizes
the seminal work of Hersch [Her70], where he shows that the first eigenvalue of any
metric over S2 is smaller than the one of the round metric, using the notion of
balanced product in its simplest form.

Following instead Donaldson in [Don09], let us associate to a measure ν on P(V∗)
the dynamical system Tν : Prod(V)→ Prod(V) defined for all q ∈ Prod(V) by

(4.6) Tν(q) := n
∫
P(V∗)

q
(
Φq(z) · , ·

) dν(z)
|ν|

.

Using condition (4.3), we then see that q ∈ Prod(V) is ν-balanced if and only if it
is a fixed point of Tν . Under mild conditions on the measure ν, Donaldson proved
that for every initial condition q0 ∈ Prod(V), the iterations T r

ν (q0) converge to such
a fixed point as r → +∞, and that this fixed point is unique up to the action of R+
on Prod(V) by scalar multiplication.
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The main result of this section is the exponential convergence of Donaldson’s
iteration process to the ν-balanced product, for all initial conditions.

Theorem 4.4. — Suppose that the measure ν on P(V∗) is supported on a
complex subvariety Y ⊂ P(V∗), with ν absolutely continuous on every irreducible
component of Y . Assume that

(i) for any projective subspace Σ of P(V∗), we have

(4.7) ν(Σ)
dim Σ + 1 <

|ν|
n

;

(ii) at least one irreducible component of Y is not contained in any proper pro-
jective subspace of P(V∗).

Then for any q0 ∈ Prod(V), there exists a ν-balanced product q ∈ Prod(V) and
constants C > 0, β ∈ (0, 1), such that for all r ∈ N, we have

(4.8) dist
(
T r
ν (q0), q

)
6 Cβr .

Note that if Y is irreducible, assumptions (i) and (ii) are satisfied as soon as
Y is not contained in a proper projective subspace of P(V∗). Thus Theorem 4.4
applies in particular to the important case of Example 4.3, where ν is induced by
a smooth volume form over a complex manifold Y embedded in a projective space
via Kodaira embedding. Conversely, if the whole variety Y (in contrast with its
irreducible components) lies in a proper projective subspace of P(V∗), then there
exists u ∈ V such that Φq(z)u = 0 for all z ∈ Y , contradicting condition (4.3), so
that there does not exist any ν-balanced Hermitian product.

The proof of Theorem 4.4 will rely on the Propositions 4.6, 4.7 and 4.8 below.
In particular, Proposition 4.6 generalizes the result of Donaldson in [Don09, p. 581],
which essentially states that the iterations T r

ν (q0) converge to a ν-balanced product
as r → +∞ for all q0 ∈ Prod(V) if either Y is a complex variety which is not
contained in any proper projective subspace, or Y is a finite collection of points
satisfying (i). Specifically, Donaldson’s assumption 2 in [Don09, p. 581] is precisely
assumption (i) in the case dim Y = 0, and Donaldson’s assumption 1 in [Don09,
p. 581] is satisfied in the case Y is a complex variety which is not contained in any
proper projective subspace, but do not imply assumption (ii) in general. The proof
of Proposition 4.6 follows closely the lines of [Don09, p. 581].

On the other hand, the role of Propositions 4.7 and 4.8 in the proof of Theorem 4.4
is based on the key observation, which is a reformulation of [Don09, p. 609], that
the linearization of Tν at a fixed point q ∈ Prod(V) coincides with the quantum
channel (2.2) of the POVM (4.2) associated with q.

To see this, let us first choose a base point q0 ∈ Prod(V) and identify (V , q0) with
(Cn, 〈·, ·〉), where 〈z, w〉 = ∑

j zjw̄j. Writing L (Cn)+ for the set of positive Hermitian
n× n matrices, this identifies G ∈ L (Cn)+ with q(·, ·) := 〈G·, ·〉 ∈ Prod(V). Next,
identify [z] ∈ CP n−1 with the hyperplane{

w : 〈z, w〉 = q(G−1z, w) = 0
}
.
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From the definition (4.1) of Φq we have

Φq([z])ξ = 〈Gξ,G−1z〉
〈GG−1z,G−1z〉

G−1z = G−1
(
〈ξ, z〉
|z|2

z

)
· |z|2

〈G−1z, z〉
= G−1Πzξ ·

|z|2

〈G−1z, z〉
,

where Πz denotes the orthogonal projector with respect to 〈·, ·〉 to the line generated
by z ∈ Cn\{0}. Thus,

q(Φq(z)ξ, ξ) = 〈Πzξ, ξ〉 ·
|z|2

〈G−1z, z〉
.

Therefore, we can reformulate the definition (4.6) of Tν in coordinates by the formula

(4.9) Tν(G) = n
∫
CPn−1

Πz
|z|2

〈G−1z, z〉
dν(z)
|ν|

.

Recall that the tangent space of Prod(V) at any q ∈ Prod(V) is canonically
identified with the space of Hermitian operators L (H) of H := (V , q). Then if
q ∈ Prod(V) is ν-balanced, so that Tν(q) = q, the differential DqTν of Tν at q acts
on L (H).

Lemma 4.5. — For any ν-balanced Hermitian product q ∈ Prod(V), the differ-
ential of Tν at q satisfies DqTν = Eq, where Eq is the quantum channel (2.2) of the
associated POVM Wq defined by (4.2).

Proof. — Let q ∈ Prod(V) be a ν-balanced Hermitian product, and let us identify
(V , q) with (Cn, 〈·, ·〉) as above. Let G(t) ∈ L (Cn)+ be a path such that G(0) = 1l.
Abbreviating Ġ := Ġ(0) and using formula (4.9), we get

d

dt

∣∣∣∣
t=0

Tν(G(t)) = n
∫
CPn

Πz
〈Ġz, z〉
|z|2

dν(z)
|ν|

.

Recall that ((·, ·)) denotes the natural scalar product on L (H). Then noticing that
〈Ġz, z〉/|z|2 = ((Ġ,Πz)), we get

d

dt

∣∣∣∣
t=0

Tν(G(t)) = n
∫
CPn

Πz((Ġ,Πz))
dν(z)
|ν|

,

which is precisely formula (2.2) for the quantum channel associated to Wq defined
by (4.2), as we have Φq(z) = Πz for all z ∈ Cn\{0} in the identification of (V , q)
with (Cn, 〈·, ·〉). This concludes the proof. �

Recall that the quantum channel Eq : L (H) → L (H) satisfies Eq(1l) = 1l, and
that its spectral gap is the quantity γ = 1− λ1, where
(4.10) 1 = λ0 > λ1 > λ2 > · · · > 0
is the decreasing sequence of eigenvalues of Eq. Then Proposition 4.7 establishes
the positivity of the spectral gap of Eq = DqTν under assumption (i), showing
that Donaldson’s prediction in [Don09, Section 4.1] on the largest eigenvalue of
the linearization of Tν at a ν-balanced product in fact holds for general projective
smooth manifolds Y , as assumption (i) is automatically satisfied as soon as Y is not
contained in any proper projective subspace.
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Proposition 4.8 shows the invertibility of Eq = DqTν under assumption (ii). This
is a key assumption in the classical Grobman–Hartman theorem, which we use
in Theorem 4.4 to show that the iterations of the dynamical system Tν converge
exponentially fast to a fixed point. As assumption (ii) is automatically satisfied for a
projective smooth manifold Y not contained in any proper projective subspace, this
strengthens Donaldson’s prediction in [Don09, Section 4.1] on the asymptotic rate
of convergence of the dynamical system Tν . Namely, with only the positivity of the
spectral gap, we expect that the rate of convergence is exponentially fast for almost
all initial conditions, while Theorem 4.4 shows that it actually holds for all initial
conditions.

Proposition 4.6. — Assume that assumption (i) of Theorem 4.4 holds. Then
for any q0 ∈ Prod(V), the iterations T r

ν (q0) converge to a fixed point as r → +∞,
unique up to the action of R+ by scalar multiplication.

Proof. — Fix q0 ∈ Prod(V), and identify (V , q0) with (Cn, 〈·, ·〉), where 〈·, ·〉
denotes the canonical Hermitian product of Cn. Recall that L (Cn)+ denotes the set
of positive Hermitian n×n matrices. Following [Don09, p. 582], for any [z] ∈ CP n−1,
let z ∈ Cn be a lift of norm 1, and for any G ∈ L (Cn)+, set

(4.11) ψ[z](G) := log
〈
G−1z, z

〉
+ 1
n

log detG.

This quantity does not depend on the choice of a lift of [z] ∈ CP n−1 of norm 1, and
the second term makes it invariant under multiplication of G by a positive scalar.
Given a Borel measure ν on CP n−1, we then define a functional on L (Cn)+ by the
formula
(4.12) Ψν(G) =

∫
CPn−1

ψ[z](G) dν([z]),

for any G ∈ L (Cn)+. Using formula (4.9), we see that G ∈ L (Cn)+ is a critical
point of Ψν if and only if it is a fixed point of Tν . Thus to show the existence and
uniqueness of such a fixed point up to the action of R+, we can restrict Ψν to the
space L (Cn)1

+ of positive Hermitian matrices of determinant 1, and it suffices to
show that Ψν is strictly convex and proper along any geodesic of L (Cn)1

+ for its
natural Riemannian metric as a symmetric space. In fact, any strictly convex and
proper function over R has a unique absolute minimum, which is also its unique
critical point. Now as two points can always be joined by a geodesic, we conclude
in that case that a fixed point of Tν on L (Cn)1

+ coincide with a minimum of Ψν ,
which exists and is unique.

Recall that the structure of symmetric space on L (Cn)1
+ is given by the map

SLn(C) −→ L (Cn)1
+

G 7−→
√
G∗G ,

(4.13)

which realizes L (Cn)1
+ as the quotient of the special linear group SLn(C) by the

special unitary group SU(n). The usual scalar product ((·, ·)) on the space of n× n
matrices induces a Riemannian metric on L (Cn)1

+ through the identification of its
tangent space at any point with the space of traceless matrices. By general theory of
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symmetric spaces, geodesics are simply the images of 1-parameter groups of SLn(C)
through the above map, so that up to the action of SU(n) by conjugation, they are
of the form Gt ∈ L (Cn)1

+, with

(4.14) Gt = diag(eλ1t, eλ2t, · · · , eλnt) ,

for all t ∈ R, where λ1 > λ2 > · · · > λn satisfy ∑n
j=1 λj = 0. Now if ν satisfies

assumption (i) of Theorem 4.4, its pullback by the action of a unitary matrix also
satisfies this assumption, and thus we are reduced to show strict convexity and
properness of

(4.15) t 7−→ Ψν(Gt) =
∫
CPn−1

log
 n∑
j=1

eλjt|zj|2
 dν([z]), t ∈ R .

Now convexity follows from a direct computation, with strict convexity as long as
the total mass of ν is not contained in any projective subspace of CP n−1, which is a
straightforward consequence of assumption (i).

Let us now show properness, i.e. that Ψν(Gt)→ +∞ when t→ ±∞. By consider-
ing the geodesic going to the opposite direction, it suffices to show it when t→ +∞.
Consider an irreducible component Z ⊂ Y , and let k 6 n be the largest integer such
that Z is contained in the projective subspace

(4.16) Σk :=
{

[0 : · · · : 0 : zk : · : zn] ∈ CP n−1
}
⊂ CP n−1

As ν is absolutely continuous over the smooth part of Z, this means in particular
that the function log |zk|2 restricted to Z is integrable with respect to ν. We thus
get a constant CZ > 0 such that

∫
Z

log
 n∑
j=1

eλjt|zj|2
 dν([z]) >

∫
Z

log
(
eλkt|zj|2

)
dν([z])

> λktν(Z)− CZ .
(4.17)

For any k 6 n, write νk > 0 for the total mass of the irreducible components of Y
for which k is the largest integer such that they are not contained in Σk as above.
We then get a constant CY > 0 such that

(4.18) Ψν(Gt) > t
n∑
j=1

λjνj − CY .

We are thus reduced to show that ∑n
j=1 λjνj > 0. Notice now that assumption (i)

implies

(4.19)
n∑
j=k

νj <
n− k
n

n∑
j=1

νj, for all 1 6 k 6 n .
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Using λ1 > λ2 > · · · > λn and ∑n
j=1 λj = 0, we then get

n∑
j=1

λjνj =λ0

n∑
j=1

νj +
n∑
k=1

(λk − λk−1)
n∑
j=k

νj

>

(
λ0 +

n∑
k=1

n− k
n

(λk − λk−1)
)

n∑
j=1

νj

>

(
1
n

n∑
k=1

λk

)
n∑
j=1

νj = 0 .

(4.20)

This implies properness.
Let us now show the convergence of iterations of Tν to a fixed point. We will

first show that Tν decreases Ψν , so that iterations have an accumulation point by
properness, and we will then show that this accumulation point is in fact a fixed
point. First note that for any G ∈ L (Cn)+, using the fact that projectors are of
trace 1, formula (4.3), together with (4.9), gives tr [Tν(G)G−1] = n. Using the strict
concavity of the logarithm, we thus get

1
n

log det (Tν(G))− 1
n

log det (G) = 1
n

log det
(
Tν(G)G−1

)
6 log

(
tr [Tν(G)G−1]

n

)
= 0 ,

(4.21)

with equality if and only if Tν(G)G−1 = 1l. Thus to show that Ψν(Tν(G)) 6 Ψν(G),
by definition (4.12) of Ψν , we only need to show that Tν decreases the integral
against ν of the first term of formula (4.11). Again by concavity of the logarithm,
we get

(4.22)
∫
CPn−1

log
〈
Tν(G)−1z, z

〉
dν([z])−

∫
CPn−1

log
〈
G−1z, z

〉
dν([z])

6 log
(∫

CPn−1

〈Tν(G)−1z, z〉
〈G−1z, z〉

dν([z])
)

6 log
( 1
n

tr
[
Tν(G)Tν(G)−1

])
= 0 ,

where we used formula (4.9) for Tν(G) together with the fact that 〈Az, z〉
= |z|2 Tr [ΠzA] for all z ∈ Cn\{0} and A ∈ End(Cn). Equations (4.21) and (4.22),
together with the definition of Ψν given by formulas (4.11) and (4.12), show that
Ψν(Tν(G)) 6 Ψν(G) for all G ∈ L (Cn)+.

To conclude, note first that properness over L (Cn)1
+ and invariance under the

action of R+ implies that Ψν is bounded from below over the whole L (Cn)+. Thus for
any G0 ∈ L (Cn)+, we get that the decreasing sequence {Ψν(T r

ν (G0))}r∈N converges
to its lower bound. As both terms in the definition of Ψν are decreasing under
iterations of Tν by (4.21) and (4.22), we then deduce that {log det(T r

ν (G0))}r∈N,
thus also {det(T r

ν (G0))}r∈N, are bounded in R, and that

(4.23) 1
n

log det
(
T r+1
ν (G0)T r

ν (G0)−1
)
−→ 0, as r → +∞ .
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Now from properness of Ψν over L (Cn)1
+ and boundedness in R of the sequences

{Ψν(T r
ν (G0))}r∈N and {det(T r

ν (G0))}r∈N, we get that the sequence {T r
ν (G0)}r∈N

admits an accumulation point G∞ ∈ L (Cn)+. On the other hand, by strict concavity
of the logarithm, formula (4.23) and the equality case in formula (4.21) imply
(4.24) T r+1

ν (G0)T r
ν (G0)−1 −→ 1l, as r → +∞ .

We thus get that G∞ ∈ L (Cn)+ is the unique accumulation point, and satisfies
Tν(G∞) = G∞. This concludes the proof of Proposition 4.6. �

In the following Proposition 4.7, we use the result that a fixed point of Tν exists as
soon as ν satisfies assumption (i), which was proved in the previous Proposition 4.6.

Proposition 4.7. — Assume that assumption (i) holds. Then for any ν-balan-
ced product q ∈ Prod(V), the associated quantum channel Eq as in Lemma 4.5 has
positive spectral gap.

Proof. — Let q ∈ Prod(V) be a ν-balanced product, and identify (V , q) with
(Cn, 〈·, ·〉), so that Φq(z) = Πz for all z ∈ Cn\{0} in the definition (4.2) of Wq, where
Πz is the orthogonal projector on [z] with respect to 〈·, ·〉. Assume that ν satisfies
assumption (i) of Theorem 4.4, and normalize it by setting α := ν/|ν|. For any
z ∈ Cn\{0}, we denote by [z] its class in CP n−1. For any z, w ∈ Cn\{0}, we write

(4.25) Bq([z], [w]) = n
|〈z, w〉|2

|z|2|w|2

for the Schwartz kernel with respect to α of the Berezin transform (2.3) on
L2(CP n−1, ν) associated with Wq. Let Y1, . . . , Yk be the irreducible components
of Y . Since (z, w) 7→ 〈z, w〉 is holomorphic in z and anti-holomorphic in w, for every
i, j 6 k, we get that

(a) either Bq([z], [w]) = 0 for all ([z], [w]) ∈ Yi × Yj ,
(b) or Bq([z], [w]) 6= 0 for almost all ([z], [w]) ∈ Yi × Yj .

Consider a graph Γ with vertices 1, . . . , k, where i, j are connected by an edge
whenever (b) occurs of Yi× Yj. In particular, each i is connected by an edge to itself.

Recall that ∫
Bq(x, y)dα(y) =

∫
Bq(x, y)dα(x) = 1 .

Using the Schur test as in formula (3.33) above, we apply Cauchy–Schwarz inequality
on the formula
(4.26)

∫
Bq(x, y)φ(y)dα(y) =

∫
Bq(x, y) 1

2 Bq(x, y) 1
2φ(y)dα(y) ,

to get for any φ ∈ L2(CP n−1, ν),

‖Bqφ‖2
L2 =

∫ (∫
Bq(x, y)φ(y)dα(y)

)2
dα(x)

6
∫ (∫

Bq(x, y)dα(y) ·
∫
Bq(x, y)φ2(y)dα(y)

)
dα(x) = ‖φ‖L2 .

(4.27)

In particular, the equality Bqφ = φ can hold only if the inequality above is an
equality, and by the equality case of Cauchy–Schwarz inequality, this implies that
for α-almost all x, there exists c 6= 0 such that cBq(x, y)1/2

q = B(x, y)1/2φ(y) for
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α-almost all X. In terms of the graph defined in the previous step, this yields that φ
is constant on every subset of the form ⋃

j∈star(i) Yj, where i = 1, . . . , k. Thus if φ is a
non constant function satisfying Bqφ = φ, it follows that Γ is disconnected. Denote
by Γi, i = 1, . . . , k the connected components, and put Zi = ⋃

j∈Γi Yj.
Assuming that there exists a non-constant φ satisfying Bqφ = φ as above, we

will show that assumption (i) can not hold. Recall that we work with the POVM
dWq(x) = nΠxdα(x), where Πx is the orthogonal projector to the line x ∈ CP n−1

with respect to 〈·, ·〉. With this notation, Bq(x, y) = 0 yields ΠxΠy = 0. Write
P = Wq(Z1) and P ′ = Wq(Z2 ∪ · · · ∪ Zk). It follows that P + P ′ = 1l and PP ′ = 0.
Thus P is an orthogonal projector whose image is a proper projective subspace Σ of
CP n−1 of dimension m− 1, with

m = tr [P ] = tr [Wq(Z1)] = nα(Z1) = n
ν(Z1)
|ν|

.

Observe also that if Pz = 0, we get∫
Z1
〈Πxz, z〉 dν(x) = 0 ,

and hence 〈Πxz, z〉 = 0 for ν-almost all x. Since ν is absolutely continuous on each
irreducible component of X, it follows that x is orthogonal to z for all x ∈ Z1, and
hence Z1 ⊂ Σ. We conclude that

ν(Σ)
m
>
ν(Z1)
m

= |ν|
n
,

so that assumption (i) does not hold. �

The proof of this last Proposition is a variation on the theme of [BMS94, Propo-
sition 4.1].

Proposition 4.8. — Assume that assumption (ii) holds. Then for any ν-
balanced product q ∈ Prod(V), the associated quantum channel Eq as in Lemma 4.5
is invertible.

Proof. — Let q ∈ Prod(V) be ν-balanced, and identify (V , q) with (Cn, 〈·, ·〉). For
any z ∈ Cn\{0}, we denote by [z] its class in CP n−1.

Denote by Ỹ the cone of Y in Cn. Assume on the contrary that an Hermitian
matrix A 6= 0 lies in the kernel of Eq, and set

FA([z], [w]) := 〈Az,w〉
|z| · |w|

.

Since Eq = n−1TT ∗ and T ∗(A)([z]) = FA([z], [z]) by the results of Section 2, we
have FA([z], [z]) = 0 for all [z] ∈ Y . Noticing that the function (z, w) 7→ 〈Az,w〉 is
holomorphic in z and anti-holomorphic in w and that it vanishes on the diagonal of
Ỹ × Ỹ , we conclude that F vanishes on Z × Z for every irreducible component Z
of Y .

Pick any irreducible component Z. If it fully lies in KerA, we have that Z is
contained in a proper projective subspace. Otherwise, pick [u] ∈ Z so that Au 6= 0.
We thus proved that any other [z] ∈ Z satisfies a linear equation 〈z, Au〉 = 0,
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meaning that Z lies in a proper projective subspace. This is in contradiction with
assumption (ii). �

Using the Propositions above, we are then ready to prove Theorem 4.4.
Proof of Theorem 4.4. — Suppose that ν satisfies the assumptions (i) and (ii),

and fix q0 ∈ Prod(V). By Proposition 4.6, the iterations T r(q0) converge to a fixed
point q ∈ Prod(V) as r → +∞, so that we can use it to identify (V , q) with (Cn, 〈·, ·〉).
Identify diffeomorphically L (Cn)+ with L (Cn)1

+ × R+ via the map

Θ : G 7−→ (D(G), det(G)) , where D(G) := G

det(G) 1
n

.

Then for every r ∈ N,

(4.28) ΘT r
ν Θ−1(G, g) =

(
D(T r

ν (G)), g · det T r
ν (G)

)
.

Recall that by Lemma 4.5, the differential of Tν at q coincides with the quantum
channel Eq, and recall that q ∈ Prod(V) is sent to the identity 1l ∈ L (Cn)+ in the
identification of (V , q) with (Cn, 〈·, ·〉). Since L (Cn)1

+ is a slice of the R+-action and
Tν is R+-equivariant, the differential of D ◦Tν equals to the restriction of Eq to the
tangent space T1lL (Cn)1

+, which consists of all trace 0 Hermitian matrices. Then by
Propositions 4.7 and 4.8, the spectrum of this differential is contained in (0, 1), so
that D ◦Tν is a local diffeomorphism of L (Cn)1

+ in a neighborhood its hyperbolic
fixed point 1l, and conjugate through a local homeomorphism to its linearization at
1l by the classical Hartman–Grobman theorem. In particular, taking β ∈ (0, 1) as
the largest eigenvalue of E in (0, 1), we get a constant C > 0 such that

(4.29) dist
(
D(T r

ν (G0)), 1l
)
6 Cβr , for all r ∈ N ,

where G0 ∈ L (Cn)+ denotes the image of q0 ∈ Prod(V) in the identification of
(V , q) with (Cn〈·, ·〉). By (4.28), in order to complete the proof of the exponential
convergence of the orbit of G0 to 1l, we need to show that for r large enough

(4.30)
∣∣∣ det T r

ν (G0)− 1
∣∣∣ < Cβr .

To this end recall that the functional Ψν of the proof of Proposition 4.6 is decreasing
under iterations of Tν and invariant with respect to the action of R+ by multiplication.
By (4.29) and the differentiability of Ψν at 1l, there exists a constant C > 0 such
that

(4.31) 0 6 Ψν

(
T r
ν (G0)

)
−Ψν(1l) 6 Cβr .

Now as both (4.21) and (4.22) are non-positive and as T r
ν (G0) → 1l as r → +∞,

recalling the definition (4.11)-(4.12) of Ψν we deduce in particular that

(4.32) 0 6 log det
(
T r
ν (G0)

)
6 Cβr .

Since for x close to 1, we have 2| log x| > |1 − x|, this yields (4.30). The proof of
Theorem 4.4 is complete. �
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Remark 4.9. — Consider the setting of Example 4.3 above for all p ∈ N∗ large
enough, where qp ∈ Prod(H0(X,Lp)) is the unique ν-balanced product and hp the
induced Fubini–Study metric on Lp over X, with Chern curvature −2iπωp. Recall
that in that case, the induced POVM (4.2) coincides with the weighted Berezin–
Toeplitz POVM (3.52) of Remark 3.12. Then using a refined version of Theorem 3.1
and Lemma 4.5, one can show that the exponential convergence rate βp > 0 of
Donaldson’s iterations in Theorem 4.4 satisfies as p→∞ the estimate

(4.33) βp = λ1(ω∞)
4πp + o

(
p−1

)
,

where λ1(ω∞) is the first eigenvalue of the Laplace–Beltrami operator associated
with the metric induced by the unique Kähler form ω∞ in c1(L) solving the Calabi
problem ωd = cν for some c > 0. This follows from the estimate (3.54) on the
spectral gap of the weighted Berezin transform, together with the uniformity on the
metric in the estimates of [DLM06, Theorem 4.18’] and the fact that the sequence
{1
p
ωp} converges to ω∞ as p → ∞. This complements a result of Keller in [Kel09,

Proposition 4.7].

5. POVMs and geometry of measures

Assume that we are given an L (H)-valued POVM on Ω satisfying equation (2.1),
i.e., of the form dW = nF dα for some F : Ω → S(H). In this section we discuss
spectral properties of the Berezin transform associated toW in terms of the geometry
of the measure

(5.1) σW := F∗α

on S(H), focusing on its multi-scale features, and on stability of the spectral gap
under perturbations of the measure. Recall that for pure POVMs we have encountered
measure (5.1) in Example 4.1.

Write V ⊂ L (H) for the affine subspace consisting of all trace 1 operators, dist
for the distance on V associated to the scalar product ((A,B)) = tr(AB) on L (H).
Given a compactly supported probability measure σ on V, introduce the following
objects:

• the center of mass C(σ) =
∫
V vdσ(v);

• the mean squared distance from the origin,

I(σ) =
∫
V
dist(C, v)2dσ(v) ;

• the mean squared distance to the best fitting line

J(σ) = inf
`

∫
V
dist(v, `)2dσ(v) ,

where the infimum is taken over all affine lines ` ⊂ V .

TOME 3 (2020)



1374 Louis IOOS, Victoria KAMINKER, Leonid POLTEROVICH & Dor SHMOISH

The infimum in the definition of J is attained at the (not necessarily unique) best
fitting line which is known to pass through the center of mass C (Pearson, 1901;
see [Far99, p. 188] for a historical account).(4)

Observe that the center of mass C(σW ) for the measure σW given by (5.1) coin-
cides with the maximally mixed state 1

n
1l.

Theorem 5.1. — The spectral gap γ(W ) depends only on the push-forward
measure σW on S(H):

γ(W ) = 1− n(I(σW )− J(σW )) .
Proof. — Let ` ⊂ V be any line passing through the center of mass 1

n
1l generated

by a trace zero unit vector A ∈ L (H). For a point B ∈ V we have

dist(B, `)2 =
((
B − 1

n
1l, B − 1

n
1l
))
−
((
B − 1

n
1l, A

))2
.

Integrating over σW and taking infimum over ` we get that
(5.2) J(σW ) = I(σW )−K ,

with
(5.3) K = sup

tr(A)=0
tr(A2)=1

∫
V
((B,A))2dF∗α(B) .

The latter integral can be rewritten as

(5.4)
∫

Ω
((F (s), A))2dα(s) = n−1((E(A), A)) ,

so by definition K = n−1γ1 = n−1(1−γ(W )). Substituting this into (5.2), we deduce
the Theorem 5.1. �

Remark 5.2. — Observe that the supremum in (5.3) is attained at a unit vector A
generating the best fitting line. By (5.4), A is an eigenvector of E with the eigenvalue
γ1.

Example 5.3. — For a pure POVM W , i.e. when F is a one-to-one map from Ω
to the set of rank-one projectors,

dist(C,F (s))2 = tr
[( 1
n

1l− F (s)
)2 ]

= 1− 1
n

for all s ∈ Ω, and hence I(σW ) = 1− 1
n
. Thus, by Theorem 5.1,

(5.5) J(σW ) = n− 2 + γ

n
.

For instance, consider the (pure!) Berezin–Toeplitz POVM Wp from Example 4.2.
Let us use formula (5.5) in order to calculate J . Recall that by the Riemann–Roch
theorem (see [Fin12a, Propositions 2.25 and 4.21])

np = V pd + Upd−1 +O
(
pd−2

)
,

(4)The problem of finding J and the corresponding minimizer ` appears in the literature under
several different names including “total least squares” and “orthogonal regression”.
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where
V = Vol(X) = [ω]d

d! , U = c1(X) ∪ [ω]d−1

(d− 1)! .

It follows from formula (3.11) for γp that

J(σWp) = 1− 2
V
p−d + 8πU + V λ1

4πV 2 p−d−1 +O
(
p−d−2

)
.

For instance, for the dual to the tautological bundle over CP 1 in Example 3.4
n = p+ 1 and γ = 2

p+2 so by (5.5) J = 1− 2
p+2 .

Furthermore, we explore robustness of the gap γ(W ), as a function of the mea-
sure σW , with respect to perturbations in the Wasserstein distances on the space of
Borel probability measures on S(H). They are defined as follows. For compactly sup-
ported Borel probability measures σ1, σ2 on a metric space (X, d) the L2-Wasserstein
distance is given by

δ2 (σ1, σ2) := inf
ν

 ∫
X×X

dist (x1, x2)2 dν(x1, x2)


1
2

,

and the L∞-Wasserstein distance by
δ∞ (σ1, σ2) := inf

ν
sup

(x1,x2)∈supp (ν)
dist(x1, x2) ,

where in both cases the infimum is taken over all Borel probability measures ν on
X ×X with marginals σ1 and σ2.

Theorem 5.4. — Let σV and σW be measures on S(H) associated to POVMs
V and W respectively.

(i) |γ(V ) − γ(W )| 6 c(n)δ2(σV , σW ), where c(n) depends on the dimension
n = dimH;

(ii) If in addition V and W are pure POVMs, there exists a universal constant c
such that

(5.6) |γ(V )− γ(W )| 6 cδ∞(σV , σW ) .

Note that this result enables us to compare spectral gaps of POVMs defined on
different sets (but having values in the same Hilbert space). This idea goes back
to [OC09](5) . Let us emphasize that the estimate in (ii) is dimension-free. This is
important, for instance, for comparison of spectral gaps corresponding to different
Berezin–Toeplitz quantization schemes.

Theorem 5.4(i) immediately follows from the fact that C(σ), I(σ) and J(σ) are
Lipschitz in σ with respect to L2-Wasserstein distance. The details will appear in
MSc thesis by V. Kaminker.

For the proof of part (ii), we need the following auxiliary statement. In what
follows we write ‖A‖2 for the Hilbert–Schmidt norm (tr(AA∗)) 1

2 .

(5) In [OC09] the authors consider the L1-version of this distance, and call it the Kantorovich
distance.
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Lemma 5.5. — Let P,Q be rank 1 orthogonal projectors. Then for every A ∈
L (H),

| tr(A(P −Q))| 6
√

2‖P −Q‖2
(

tr(A2(P +Q))
) 1

2 .

Proof. — Suppose that P and Q are orthogonal projectors to unit vectors ξ and
η, respectively. By tuning the phase of ξ, we can assume that 〈ξ, η〉 > 0. We have

| tr(A(P −Q))| = |〈Aξ, ξ〉 − 〈Aη, η〉|
= |〈ξ − η, Aξ〉+ 〈Aη, ξ − η〉| 6 |ξ − η|(|Aξ|+ |Aη|)

= |ξ − η|
(〈
A2ξ, ξ

〉 1
2 +

〈
A2η, η

〉 1
2
)
6
√

2|ξ − η|
(〈
A2ξ, ξ

〉
+
〈
A2η, η

〉) 1
2

=
√

2|ξ − η|
(
tr(A2P ) + tr(A2Q)

) 1
2 .

But since 0 6 〈ξ, η〉 6 1,

|ξ − η| = (2− 2〈ξ, η〉)
1
2 6

(
2− 2〈ξ, η〉2

) 1
2

=
(
tr(P −Q)2

) 1
2 = ‖P −Q‖2 .

This completes the proof of Lemma 5.5. �

Proof. — Proof of Theorem 5.4 (ii): Denote by P the space of all rank 1 orthog-
onal projectors on H. We can assume without loss of generality that pure POVMs
V and W are defined on subsets Ω1 and Ω2 of P, respectively, and that the maps
Fi : Ωi → P are the inclusions. Thus representation (2.1) in this case can be simpli-
fied as

dV (s) = n s dα1(s) , dW (t) = n t dα2(t) ,
where σV = α1 and σW = α2 are Borel probability measures supported in Ω1 and Ω2,
respectively. Let us emphasize that here and below s, t stand for rank 1 orthogonal
projectors. Pick any measure ν on P × P with marginals α1 and α2 and write

∆ := max
(s,t)∈supp (ν)

‖s− t‖2 .

We use the fact that the operators E1, E2 : L (H)→ L (H) given by formula (2.2)
have the same spectrum as the Berezin transform. For A ∈ L (H) with tr(A2) = 1
put

D :=
∣∣∣((E1A,A))− ((E2A,A))

∣∣∣ .
One readily rewrites

D = n
∣∣∣∣∫

Ω1
((F1(s), A))2dα1(s)−

∫
Ω2

((F2(t), A))2dα2(t)
∣∣∣∣

6 n
∫

Ω1×Ω2

∣∣∣ tr((s− t)A)
∣∣∣ ∣∣∣ tr((s+ t)A)

∣∣∣dν .
By Lemma 5.5, ∣∣∣ tr((s− t)A)

∣∣∣ 6 √2‖s− t‖2
(
tr(A2(s+ t))

) 1
2 .
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By Cauchy–Schwarz, writing
(s+ t)A = (s+ t) 1

2
(
(s+ t) 1

2A
)
,

we get ∣∣∣ tr((s+ t)A)
∣∣∣ 6 (tr(s+ t))

1
2
(
tr(A2(s+ t))

) 1
2 =
√

2
(
tr(A2(s+ t))

) 1
2 .

It follows that
D 6 2n max

(s,t)∈supp (ν)
‖s− t‖2

∫
tr
(
A2(s+ t)

)
dν .

The integral on the right can be rewritten as

tr
(
A2
∫

Ω1
sdα1(s)

)
+ tr

(
A2
∫

Ω2
tdα2(t)

)
= 2
n
,

since ∫
Ω1
s dα1(s) =

∫
Ω2
t dα2(t) = 1

n
1l

and tr(A2) = 1. It follow that D 6 4∆. Choosing ν so that ∆ becomes arbitrary
close to δ := δ∞(α1, α2), and taking A with

(5.7) tr(A) = 0 , tr
(
A2
)

= 1

to be an eigenvector of E1 with the first eigenvalue γ1(E1), we get that
|γ1(E1)− ((E2A,A))| 6 4δ .

But due to the variational characterization of the first eigenvalue, γ1(E2) =
max((E2A,A)), where the maximum is taken over all A satisfying (5.7). It follows
that γ1(E1) − γ1(E2) 6 4δ. By symmetry, γ1(E2) − γ1(E1) 6 4δ, which yields the
theorem with c = 4. �

Our next result provides a geometric characterization of the eigenfunction of the
operator B with the eigenvalue γ1. Let A ∈ L (H) be the trace zero unit vector
generating the best fitting line corresponding to W . In view of Theorem 5.1,

γ1 = 1− γ(W ) = n(I − J) ,
with I = I(σW ) and J = J(σW ).

Theorem 5.6. — The function

(5.8) ψ1 : Ω→ R, s 7→ ((F (s), A))√
I − J

is an eigenfunction of the operator B with the eigenvalue γ1. Furthermore, ‖ψ1‖ = 1.

In other words, up to a multiplicative constant, the first eigenfunction sends
s ∈ Ω to the projection of the density F (s) to the best fitting line.

Proof. — By Remark 5.2 above, the operator A generating the best fitting line
is an eigenvector of the quantum channel E : EA = γ1A. Since E = n−1TT ∗ and
B = n−1T ∗T , we have B(T ∗A) = γ1T

∗A and (T ∗A, T ∗A) = nγ1. Furthermore,
T ∗A(s) = n((F (s), A)) and nγ1 = n2(I −J). Choosing ψ1 = T ∗A

‖T ∗A‖ , we get (5.8). �
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Next, we discuss the diffusion distance on Ω associated to the Markov operator
B (see [CL06]). This distance, which originated in geometric analysis of data sets,
depends on a positive parameter τ playing the role of the time in the corresponding
random process. Take any orthonormal eigenbasis {ψk} corresponding to eigenvalues
1 = γ0 > γ1 > γ2 . . . of B such that ψ0 is constant. The diffusion distance Dτ is
defined by

(5.9) Dτ (s, t) =
(∑
k>1

γ2τ
k (ψk(s)− ψk(t))2

) 1
2 ∀ s, t ∈ Ω .

If γ1 < 1, i.e., the spectral gap is positive, this expression decays exponentially.
Suppose now that γ2 < γ1. In this case the asymptotic behavior of Dτ (s, t) as

τ →∞ is given by

(5.10) Dτ (s, t) = γτ1
|((F (s)− F (t), A))|

(I − J) 1
2

(1+o(1)) , if
(
(F (s), A)) 6= ((F (t), A)

)
,

and Dτ (s, t) = O(γτ2 ) otherwise. The difference in these asymptotic formulas high-
lights the multi-scale behaviour of the metric space (Ω, Dτ ). In the first approxima-
tion, this space consists of the level sets of the function s 7→ ((F (s), A)) situated
at the distance ∼ γτ1 from one another, while each fiber has the diameter . γτ2 .
Viewing POVMs as data clouds in S opens up a prospect of using various tools
of geometric data analysis for studying POVMs. The above result on the diffusion
distance associated to a POVM can be considered as a step in this direction.

6. Case study: representations of finite groups

In this section we will be interested in finite POVMs associated to irreducible
representations of finite groups. We start with some preliminaries from Woldron’s
book [Wal18]. Let G be a finite set.

Definition 6.1. — A finite collection {fs}s∈G of non-zero vectors in a finite-
dimensional Hilbert space H is said to be a tight frame if there exists a number
A > 0, called the frame bound, such that
(6.1) A‖f‖2 =

∑
s∈G
|〈f, fs〉|2,∀ f ∈ H .

Denote by Ps the orthogonal projector to fs. One readily checks that for such a
frame, the operators

(6.2) Ws := ‖fs‖
2

A
Ps, s ∈ G ,

form a L (H)-valued POVM on G.
Suppose from now on that G is a finite group, and we are given its non-trivial

irreducible unitary representation ρ on a dρ-dimensional Hilbert space V .(6) One can
show [Wal18] that the vectors {fs := 1√

dρ
ρ(s)}s∈G form a tight frame in the operator

(6)All the representations considered below are assumed to be unitary.
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space H := End(V ) equipped with the Hermitian product ((C,D)) = tr(CD∗) with
the frame bound A = |G|/d2

ρ. Write n = d2
ρ = dimH. By (6.2), the corresponding

POVM W = {Ws}, s ∈ G is given by Ws = nPsαs with αs = 1
|G| . Interestingly

enough, the spectrum of the corresponding Berezin transform can be calculated via
the characters of irreducible unitary representations of G.

Denote by χρ : G → C, χρ(s) := tr(ρ(s)) the character of the representation ρ.
Consider a basis in L2(G) consisting of the indicator functions of the elements of G.
It readily follows from the definition that the Berezin transform B corresponding to
the POVM W is given by a matrix

Bts = n tr(PtPs)αs = 1
|G|

u
(
st−1

)
,

where u(s) := |χρ(s)|2. The eigenvalues of this matrix and their multiplicities are
given by the following proposition, see [Dia88, Chapter 3E].

Proposition 6.2. — The eigenvalues of B are given by

λϕ := 1
dϕ|G|

∑
s∈G

u(s)χϕ(s) ,

where ϕ runs over irreducible representations of G, and the contribution of each ϕ
into the multiplicity of λϕ is d2

ϕ.

Let us emphasize that it could happen that λϕ = λψ for different representations
ϕ and ψ. Note also that by Lemma 6.5(i) below, λϕ = 1 when ϕ is the trivial
one-dimensional representation.

Remark 6.3. — We claim that the gap γ(W ) is rational. Indeed, for a unitary
representation ψ by complex unitary matrices denote ψ′(s) = ψ(s), where the bar
stands for the complex conjugation. Note that u is the character of the (in general,
reducible) representation θ := ρ⊗ ρ′. By the Schur orthogonality relations,

1
|G|

∑
s∈G

u(s)χϕ(s)

equals the multiplicity of ϕ in the decomposition of θ into irreducible representations,
and hence is an integer. The claim follows from Proposition 6.2.

The main result of this section is the following algebraic criterion of the positivity
of the spectral gap of W . Following [Isa06, Chapter 12] we define the vanishing-off
subgroup V(ρ) to be the smallest subgroup of G such that χρ vanishes on G \ V(ρ):

V(ρ) = 〈s ∈ G | χρ(s) 6= 0〉 .
Since the character χρ is conjugation invariant, V(ρ) is normal.

Theorem 6.4. — The following are equivalent:
(i) V(ρ) 6= G;
(ii) γ(W ) = 0, i.e., there exists a non-trivial irreducible unitary representation ϕ

of G with λϕ = 1.
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In the next Lemma 6.5, we collect some standard facts from the representation
theory (see e.g. [Dia88, Chapter 2]) which will be used in the proof of Theorem 6.4.
We write Irrep for the set of all unitary irreducible representations of G up to an
isomorphism.

Lemma 6.5. —
1
|G|

∑
s∈G
|χρ(s)|2 = 1, ∀ ρ ∈ Irrep;(i)
∑

ϕ∈Irrep
d2
ϕ = |G|.(ii)

Proof. — Proof of Theorem 6.4: We begin by proving (ii) ⇒ (i): Assume that
there exists a non-trivial irreducible representation ϕ with λϕ = 1. By using Lem-
ma 6.5 and the explicit formula for the eigenvalues from Proposition 6.2 we see that

1 =
6.2

1
dϕ|G|

∑
s∈G
|χρ(s)|2χϕ(s) =

= 1
|G|

∑
s∈G
|χρ(s)|2 −

1
dϕ|G|

∑
s∈G
|χρ(s)|2(dϕ − χϕ(s)) =

6.5

= 1− 1
dϕ|G|

∑
s∈G
|χρ(s)|2(dϕ − χϕ(s))

By taking the real part of both sides we get∑
s∈G
|χρ(s)|2 Re(dϕ − χϕ(s)) = 0

Note that since ϕ(s) is unitary, all its eigenvalues are of the form eiθ so |χϕ(s)|
= | tr(ϕ(s))| 6 dϕ and χϕ(s) = dϕ iff ϕ(s) is the identity. Hence Re(dϕ−χϕ(s)) must
be non-negative. Since |χρ(s)|2 is also non-negative, χϕ(s) = dϕ for every s ∈ G with
χρ(s) 6= 0. As we have seen above χϕ(s) = dϕ if and only if ϕ(s) = 1l. It follows that
the vanishing off subgroup V(ρ) is contained in the normal subgroup

Ker(ϕ) := {s | ϕ(s) = 1l} .

Since ϕ is irreducible and non-trivial, the latter subgroup 6= G, and hence V(ρ) 6= G,
as required.

Next, we prove (i)⇒ (ii): Assume V(ρ) 6= G. Consider the quotient H := G/V(ρ),
which is a non-trivial group, and let π : G → H be the natural projection. Take
any non-trivial irreducible representation ψ of H. Then ϕ := ψ ◦ π is an irreducible
representation of G. We claim that λϕ = 1. Indeed, for s ∈ V(ρ) we have ϕ(s) = 1l
and hence χϕ(s) = dϕ, and for s /∈ V(ρ) holds χρ(s) = 0. It follows that

λϕ =
∑

s∈V(ρ)

1
dϕ|G|

|χρ(s)|2dϕ = 1
|G|

∑
s∈G
|χρ(s)|2 =

6.5
1 .

This proves the claim and hence completes the proof of the Theorem 6.4. �
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Corollary 6.6. — If G is a simple group, then the gap of W is positive.

Proof. — Indeed, otherwise by Theorem 6.4 and the simplicity of G, V(ρ) = {1l},
which means that χρ(s) = 0 for every s 6= 1l. Then the first statement of Lemma 6.5
yields |G| = d2

ρ, while the second statement guarantees that |G| > 1 + d2
ρ, since ρ is

a non-trivial representation. We get a contradiction. �

Let us point out that there exist non-simple groups G admitting an irreducible
representation ρ with V(ρ) = G. Indeed, consider the irreducible representation
ρ : Zm → U(C), ρ(s) = e2πis/m of the abelian cyclic group Zm. Observe that
V(ρ) = Zm, while Zm is simple if and only if m is prime.

Let us describe the diffusion distance Dτ (see (5.9)) corresponding to the POVM
W associated to a finite group G and a non-trivial irreducible representation ρ. Re-
call [Dia88] that for an irreducible representation ϕ : G → U(n), the orthonormal
basis of eigenfunctions corresponding to the eigenvalue λϕ presented in Proposi-
tion 6.2 is given by the matrix coefficients of ϕ multiplied by

√
dϕ. Assume that

the gap of G is strictly positive, and denote by β1 > · · · > βk all pair-wise distinct
eigenvalues of B lying in the open interval (0, 1). Denote

Rj := {ϕ ∈ Irrep | λϕ = βj} .
Then (5.9) yields the following expression for the diffusion distance:

(6.3) Dτ (s, t) =
∑
j=1k

β2τ
j

∑
ϕ∈Rj

dϕ‖ϕ(s)− ϕ(t)‖2
2

 1
2

,

where ‖ ‖2 stands for the Hilbert–Schmidt norm ‖C‖2 = (tr(CC∗)) 1
2 . Note that this

expression can be rewritten in terms of the character χϕ since

‖ϕ(s)− ϕ(t)‖2
2 = 2

(
dϕ − Re χϕ

(
st−1

))
.

Define a normal subgroup Γj := ⋂
ϕ∈Rj Ker(ϕ) , j = 1, . . . , k and a normal series

K0 ⊃ K1 ⊃ . . . . . . with K0 = G, Kk+1 = {1} and

Km :=
m⋂
j=1

Γj ,m = 1, . . . k .

It follows from (6.3) that for τ → +∞
(6.4) Dτ (s, t) ∼ βτp+1 for st−1 ∈ Kp \Kp+1 .

In fact we have a sequence of nested partitions ∆p of G formed by the cosets of Kp.
For every pair of distinct points s, t ∈ G choose maximal p so that s and t lie in the
same element of ∆p. Then asymptotical formula (6.4) holds, which manifests the
multi-scale nature of the diffusion distance.

Let us illustrate this in the case when G = S4 is the symmetric group, and ρ a
3-dimensional irreducible representation. The direct calculation with the character
table of S4 shows that the first non-trivial eigenvalue 1

2 corresponds to the unique
2-dimensional irreducible representation whose kernel coincides with the normal
subgroup K of order 4 of S4 called the Klein four-group. Thus Dτ (s, t) ∼ (1

2)τ if s, t
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belong to different cosets of K in S4, and one can calculate that Dτ (s, t) ∼ (1
3)τ if

s, t are distinct and belong to the same coset.

Remark 6.7. — A modification of the construction presented in this section is
related to Berezin–Toeplitz quantization. The modification goes in two directions.
First, we deal with unitary representations ρ of compact Lie groups G instead of
finite groups, and second, our POVMs are related to the G–orbits in a representation
space H as opposed to the image of ρ in the endomorphisms of H. Let us very
briefly illustrate this in the following simplest case. Consider the irreducible unitary
representation ρj of the group G = SU(2) in an n = 2j + 1-dimensional Hilbert
space H, j ∈ 1

2N. Fix a maximal torus K = S1 ⊂ G, and let w ∈ H be the maximal
weight vector of K, that is ρj(t)w = e4πijtw for all t ∈ K. Consider an L (H)-valued
POVM W on Ω = G/K = CP 1 of the form dW ([g]) = nP[g]dα([g]), where [g] stands
for the class of g ∈ G in Ω, α is the G-invariant measure on Ω and P[g] is the rank one
projector to gw. Note that W is nothing else but the Berezin–Toeplitz POVM Wp

from Example 3.4 with p = 2j. We refer to [CR12, Chapter 7] for the representation
theoretic approach to coherent states and quantization. By using theory of Gelfand
pairs (cf. [Dia88, Chapter 3.F]) one can check that the eigenvalues of the Berezin
transform are of the form λϕ = (u, χϕ)L2 , where ϕ runs over all irreducible unitary
representations of G, χϕ stands for the character of ϕ and u(g) = n|〈ρ(g)w,w〉|2.
The multiplicity of λϕ equals dϕ, where dϕ is the dimension of ϕ. In order to calculate
λϕ, recall that

(6.5) ρj ⊗ ρj =
2j⊕
k=0

ρk .

Writing v for the vector of weight −j of ρj, we have

u(g) = n
〈
(ρj ⊗ ρj)(g)ξ, ξ

〉
, where ξ = w ⊗ v .

In order to complete this calculation, one has to decompose ξ in the sense of (6.5).
This can be done with the help of explicit expressions for the Clebsch–Gordan
coefficients, and it eventually yields eigenvalues of the Berezin transform, including
γ1 = j

j+1 (cf. Example 3.4), in agreement with calculations by Zhang [Zha98] and
Donaldson [Don09, p. 613]. The details will appear in MSc thesis by D. Shmoish.

7. Two concepts of quantum noise

In the present section we provide two different (and essentially tautological)
interpretations of the spectral gap in the context of quantum noise. In quantum
measurement theory, there are two concepts of quantum noise: the increment of
variance for unbiased approximate measurements as formalized by the noise operator,
see below, and a non-unitary evolution of a quantum system described by a quantum
channel (a.k.a. a quantum operation, see, e.g. [NC00, Chapter 8]). Such a non-unitary
evolution can be caused, for instance, by the quantum state reduction in the process
of repeated quantum measurements. Interestingly enough, for pure POVMs, the
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spectral gap γ(W ) brings together these two seemingly remote concepts: it measures
the minimal magnitude of noise production in the context of the noise operator,
and it equals the spectral gap of the Markov chain modeling repeated quantum
measurements.

Given an observable A ∈ L (H), write A = ∑
λiPi for its spectral decomposition,

where Pi’s are pair-wise distinct orthogonal projectors. According to the statistical
postulate of quantum mechanics, in a state ρ the observable A attains value λi
with probability ((Pi, ρ)). It follows that the expectation of A in ρ equals E(A, ρ) =
((A, ρ)) and the variance is given by Var(A, ρ) = ((A2, ρ))− E(A, ρ)2. In quantum
measurement theory [BLPY16], a POVM W represents a measuring device coupled
with the system, while Ω is interpreted as the space of device readings. When the
system is in a state ρ ∈ S(H), the probability of finding the device in a subset
X ∈ C equals µρ(X) := ((W (X), ρ)). An experimentalist performs a measurement
whose outcome, at every state ρ, is distributed in Ω according to the measure µρ.
Given a function φ ∈ L2(Ω, α) (experimentalist’s choice), this procedure yields
an unbiased approximate measurement of the quantum observable A := T (φ). The
expectation of A in every state ρ equals ((A, ρ)) and thus coincides with the one of the
measurement procedure given by

∫
Ω φdµρ (hence unbiased), in spite of the fact that

actual probability distributions determined by the observable A (see above) and the
random variable (φ, µρ) could be quite different (hence approximate). In particular,
in general, the variance increases under an unbiased approximate measurement:
(7.1) Var(φ, µρ) = Var(A, ρ) + ((∆W (φ), ρ)) ,
where ∆W (φ) := T (φ2)− T (φ)2 is the noise operator. This operator, which is known
to be positive, measures the increment of the variance. We wish to explore the
relative magnitude of this increment for the “maximally mixed” state θ0 = 1

n
1l. To

this end introduce the minimal noise of the POVM W as

Nmin(W ) := inf
φ

((∆W (φ), θ0))
Var(φ, µθ0) ,

where the infimum is taken over all non-constant functions φ ∈ L2(Ω, α). It turns
out that the minimal noise coincides with the spectral gap:
(7.2) Nmin(W ) = γ(W ) .
Indeed, since tr(T (φ2)) = n(φ, φ), we readily get that

((∆W (φ), θ0)) = ((1l− B)φ, φ) ,
where B = n−1T ∗T is the Markov operator given by (2.3), while

Var(φ, µθ0) = (φ, φ)− (φ, 1)2 .

Formula (7.2) follows from the variational principle.
Suppose now that Ω ⊂ S(H) is a finite set consisting of rank one projectors

{P1, . . . , PN} and that W is a pure POVM of the form W (Pi) := nαiPi, where α is
a probability measure on Ω. Given a system in the original state ρ, the result of the
measurement equals Pj with probability p = nαj((Pj, ρ)). Recall the quantum state
reduction (a.k.a. the wave function collapse) axiom for so called Lüders repeated
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quantum measurements: if the result of the measurement equals Pj, the system
moves from the original state ρ to the new (reduced) state

ρ′ = 1
p
W (Pj)

1
2ρW (Pj)

1
2 = Pj .

It follows that if the original state ρ is chosen from Ω, the repeated quantum measure-
ments are described by the Markov chain with transition probabilities nαj((Pi, Pj)).
The corresponding Markov operator equals B, and the spectral gap of the Markov
chain coincides with the spectral gap γ(W ) of the POVM W . Furthermore, given
an original state ρ ∈ Ω, the expected value of the reduced state equals E(ρ). It
follows that if γ(W ) > 0, Ek(ρ), k →∞ converge to the maximally mixed quantum
state 1

n
1l at the exponential rate ∼ (1 − γ(W ))k. In other words, for pure POVMs

the spectral gap controls the convergence rate to the maximally mixed state under
repeated quantum measurements.
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