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Résumé. — Si une variété projective complexe est rationnellement connexe, chaque en-
semble fini de points est contenu dans une courbe rationnelle ; si elle est rationnellement simple-
ment connexe, les espaces paramétrant ces courbes rationnelles sont eux-mêmes rationnellement
connexes. Nous montrons qu’un schéma projectif sur un corps global de caractéristique non
nulle possède un point rationnel s’il se déforme en une variété rationnellement simplement
connexe de caractéristique zéro dont l’obstruction élémentaire s’évanouit. Pour de tels corps,
on obtient ainsi des preuves uniformes du théorème période-indice, du cas quasi-déployé de la
« Conjecture II » de Serre, et de la propriété C2 de Lang.

1. Statement of Results

For a field F and a projective F -scheme XF , does XF have an F -rational point?
Colliot-Thélène and Sansuc defined an obstruction to existence of an F -rational point,
the elementary obstruction, [CTS87, Section 2.2]. If XF ×SpecF SpecF is integral and
smooth, the elementary obstruction vanishes if and only if XF admits a universal
torsor, cf. [CTS87, Proposition 2.2.3], [Sko01, Theorem 2.3.4]. For geometrically
integral and smooth XF , the universal torsor is a torsor over XF for a multiplicative
group F -scheme Q such that for every field extension E/F , for every multiplicative
group F -scheme R, every R-torsor over XF ×SpecF SpecE arises from the universal
torsor by a unique morphism of group E-schemes, Q ×SpecF SpecE → R. For our
geometric applications, it is important to extend these notions to a flat, projective
scheme over a base scheme rather than a base field. This has been developed in [Pir12,
Definition, p. 468] and in [Zhu19]. We review below the constructions from [Zhu19].
When is vanishing of the elementary obstruction a sufficient condition for existence

of an F -rational point? Let F(η) be a global function field: the function field of a
smooth projective curve over a finite field F. For a projective F(η)-variety fη : Xη →
SpecF(η), our main theorem gives an F(η)-rational point of Xη provided that there
exists a lift to characteristic 0 of a projective model that has vanishing elementary
obstruction and that is a rationally simply connected fibration. A key role is played
by Esnault’s theory of rational points of specializations over finite fields of varieties
of coniveau > 1, specifically [Esn07, Corollary 1.2].

1.1. Rationally simply connected fibration

Let us first fix some notation: Our main theorem will be for degenerations over F(η)
that can be lift to rationally simply connected varieties over a field of characteristic
0, which is the function field of a curve CK over a field K = K(R) where R is a
Henselian discrete valuation ring (DVR) (see [Gre66] for the definition and examples
of Henselian DVR) with residue field F.
The following is a precise definition of lifts to characteristic 0.

Definition 1.1. — A projective extension over R of Xη is a surjective morphism,
fR : XR → CR,

between projective, flat, R-schemes satisfying the following.
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(1) The morphism CR → SpecR has connected geometric fibers.
(2) The R-smooth locus CR, sm of CR contains both the generic fiber CK and one

of the generic points η of the closed fiber CF whose residue field equals F(η).
(3) The flat locus in CR of the morphism fR contains both the generic fiber CK

and η.
(4) The fiber of fR over η equals fη.

Now, we explain what we mean by simply rationally connected fibrations. While a
rationally connected variety X being rationally simply connected roughly means the
space of rational curves on X is rationally connected, to give a precise definition is
a lot more technical. For our purpose in this note, we will consider two cases that
the “rational simple connectedness” has been confirmed.

Hypothesis 1.2 ([dJHS11]). — Let LK be an fK-ample line bundle on XK

CK
. We

assume the following.
(1) There exists an open subset C◦K ⊂ CK and an open set U of X◦ := X×CK

C◦K
surjecting to C◦ such that the geometric fibres of the evaluation morphism
from the Kontsevich moduli space with the vertical curve classes intersection
L being 1

ev : M0,1

(
X◦K
C◦K

, 1
)
→ X◦K

over U are nonempty, irreducible and rationally connected.
(2) There exists a positive integer m0 and an open subset V of X◦K ×C◦K X◦K

surjecting to C◦K and such that the geometric fibres of the evaluation morphism
(See [dJHS11, P. 30])

ev1,m0+1 : FreeChain2

(
X◦K
C◦K

,m0

)
→ X◦K ×C◦K X◦K

over V are nonempty, irreducible and birationally rationally connected.
(3) There exists a geometric fibre of XK → CK which has a very twisting scroll

(see [dJHS11, Definition 12.3]).

The above Definition 1.1 can be applied to fibrations of homogeneous spaces with
Picard number 1, see [dJHS11, Section 15]. In [Zhu19], the setting is extended to
fibrations of homogeneous spaces with general Picard number in the following way.

Hypothesis 1.3 ([Zhu19, 5.1]). — Let fK : XK → CK be a smooth family of
projective homogeneous spaces. Assume that the relative Picard number, i.e., the
rank of PicXK/CK

(CK) is one. Assume that the Picard number of the geometric
generic fiber of fK is r. Let S be the character CK-group scheme of PicXK/CK

.
Assume that the relative universal S-torsor T exists for the family.

1.1.1. Main Theorem

The main theorem is as follows.
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Theorem 1.4. — For every projective F(η)-scheme Xη, for every projective ex-
tension over R of Xη, if the generic fiber of fK has vanishing elementary obstruction,
[CTS87, Section 2.2], and if fK is either a rationally simply connected fibration as
in Hypothesis 1.2 or a Homogeneous spaces fibration satisfying Hypothesis 1.3, then
Xη has an F(η)-point.
Remark 1.5. — One main application of the theory of rationally simply connected

varieties is that one can extend various results on the existence of rational points on
rationally connected varieties over certain C1 fields, to rationally simply connected
varieties over C2 fields obtained by adding one variable.
Theorem 1.4 can be considered to roughly say that for F(η), the degenerations of

simply rationally connected varieties also has a rational point. The proof will use a
similar result for degenerations of rationally connected varieties over F(see [Esn07,
EX09] or Section 2.2). In characteristic 0, there is indeed a purely geometric ex-
planation on why in terms of the existence of rational points, the degeneration
of rationally connected varieties admit the same property as rationally connected
varieties, see [HX09].
The corollaries of Theorem 1.4 include several well-known existence theorems for

rational points, as well as some new consequences.
Corollary 1.6. — [Lan52, Corollary, p. 378] Every intersectionXη, 1∩ . . .∩Xη, b

in PnF(η) of hypersurfaces of degrees (d1, . . . , db) satisfying d2
1 + . . . + d2

b 6 n has an
F(η)-point.
Corollary 1.7 (Period-Index Theorem). — Every central simple algebra over

F(η) has period equal to the index. This also follows from the Brauer–Hasse–Noether
theorem and Hasse’s Global Structure Theorem over F(η), cf. [Roq05, pp. 40–41].
Corollary 1.8. — [Har75] For every simply connected, semisimple group

F(η)-scheme G that is quasi-split, every G-torsor over F(η) has an F(η)-point, i.e.,
the quasi-split case of Serre’s “Conjecture II” holds for F(η).
One new consequence follows from Theorem 1.4 and Robert Findley’s work on ra-

tional simple connectedness of hypersurfaces in Grassmannians, [Fin10, Theorem 1.8].
Let ` > 0 and m > 2` be integers. Denote by G`,m the Grassmannian scheme over
F(η) parameterizing `-dimensional quotient vector spaces of a fixed vector space of
dimension m (up to replacing ` by m− `, we can always assume that m > 2`).
Corollary 1.9. — Let ` > 0 and m > 2` be integers. Let G be an F(η)-scheme

whose elementary obstruction vanishes and with G ×SpecF(η) SpecF(η) isomorphic
to G`,m ×SpecF(η) SpecF(η). Every hypersurface in G of Plücker degree d satisfying
(3`− 1)d2 − d < m− 4`− 1 has an F(η)-point.
Unfortunately, the above bound is likely not the optimal one. For instance, it does

not specialise to the bound in Corollary 1.6 when G`,m is a projective space.

2. The Proof of the Main Theorem
In this section we review Esnault’s theory, [Esn07], we review the constructions of

Abel sequences from [dJHS11] and [Zhu19], and we prove Theorem 1.4. In the next
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section, we review the technique of discriminant avoidance from [SdJ10] and [dJHS11,
Section 16], and we prove the corollaries. The proof of Theorem 1.4 has three
components. The main new component is the use of Esnault’s Theorem, [Esn07,
Corollary 1.2].

2.1. Review of Esnault’s Theorem.

As above, let R be a Henselian DVR with finite residue field F and with fraction
field K. For the following discussion, we do not assume that K has characteristic
0, although in applications K does have characteristic 0. Let Z̃R → SpecR be a
projective, flat morphism such that the generic fiber Z̃K is smooth and geometrically
connected overK. The following Theorem 2.1 was first proved in mixed characteristic
in [Esn07]. The equicharacteristic result was proved in [EX09].
Theorem 2.1. — [Esn07, Theorem 1.1] [EX09, Theorem 1.1] Assume that the

`-adic cohomology of the geometric generic fiber H i(XK×SpecK SpecK) is supported
in codimension > 1 for all i > 1. There exists a surjective, projective morphism
ZR → Z̃R such that the set of F-rational points of the closed fiber ZF is congruent
to 1 modulo q = |F|.

Recall that the `-adic cohomology H i(Z̃K ⊗SpecK SpecK) is supported in codi-
mension > 1 if for every α in the cohomology group, there exists a closed subset of
codimension > 1, D ⊂ Z̃K , such that the restriction of α vanishes in the cohomology
group H i((Z̃ \ D) ×SpecK SpecK). Via the technique of Bloch–Srinivas, Esnault
proved, [Esn03], that whenever Z̃K×SpecK SpecK is rationally chain connected, then
for every i > 1, the cohomology is supported in codimension > 1, and thus Theo-
rem 2.1 applies. A smooth, projective variety Z̃K over K is rationally chain connected
if for every algebraically closed field extension k/K, for every pair of k-points of
Z̃K there exists a connected, finite union of images of k-morphisms from P1

k to the
variety such that both k-points are contained in the union. If K has characteristic 0,
then Z̃K is rationally chain connected if and only if Z̃K is rationally connected, i.e.,
for every pair of k-points, there exists a single k-morphism from P1

k to the variety
whose image contains both k-points.
The proof of Theorem 2.1 is a combination of several techniques. The authors

encourage readers to refer to the original articles [Esn07, EX09], but we summarize
the method. The proof is more direct when K has characteristic 0, as suffices for this
article. First, by de Jong’s alteration of singularities, [dJ97], there exists a birational,
projective morphism ZR → Z̃R of flat R-schemes such that ZR is the geometric
quotient of a finite group Γ acting by R-automorphisms on a flat, projective R-scheme
WR that is regular. In particular, if K has characteristic 0 (the case of interest
in what follows), the cohomology H i(ZK ×SpecK SpecK) equals the Γ-invariants
H i(WK×SpecK SpecK)Γ. Using Esnault’s earlier work, [Esn06], and Gabber’s purity
theorem, cf. [Fuj02], it follows that for every i > 1, the eigenvalues of the geometric
Frobenius acting on H i(ZK ×SpecK SpecKu) and on the relative cohomology group
H i
ZF

(ZK×SpecRR
u) are algebraic integers divisible by q. Here Ru denotes the maximal
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unramified extension of k (usually the ring of Witt vectors of F) andKu is the fraction
field of Ru. Finally, the relative cohomology exact sequence implies that for every
i > 1, the eigenvalues of the geometric Frobenius acting on H i(ZF) are algebraic
integers divisible by q. By the Lefschetz trace formula, [Jou77, Corollary III.4.8,
p. 109], this implies the congruence of the number of F-points of ZF. In particular,
ZF has at least one F-point. Since there is an F-morphism from ZF to Z̃F, it follows
that Z̃F has at least one F-point (without stronger hypotheses, however, we lose the
more refined congruence for the number of F-points modulo q).

2.2. Application of Esnault’s Theorem to the Hilbert scheme.

We apply Theorem 2.1 to a scheme obtained as a blowing up of a closed subscheme
of the relative Hilbert scheme of XR over SpecR. Since fR is projective and since CR
is projective over SpecR, the relative Hilbert scheme HilbXR/R has connected com-
ponents that are projective over SpecR. There is an open subscheme Sec(XR/CR/R)
of HilbXR/R parameterizing closed subschemes of XR arising as closed images of sec-
tions of fR, cf. [Gro62, Part IV.4.c, p. 221–219]. Denote by Σ(XR/CR/R) the closure
in HilbXR/R of this open subscheme. A smooth pseudosection of Sec(XK/CK/K) is a
projective K-morphism νK : Z̃K,I → Σ(XK/CK/K) pulling back Sec(XK/CK/K) to
a dense open subscheme of Z̃K,I and such that Z̃K,I is a smooth, projective K-scheme
whose base change to SpecK is rationally connected, cf. [GHMS05, Definition 1.2].
Esnault’s Theorem reduces Theorem 1.4 to existence of a smooth pseudosection.

Proposition 2.2. — For every projective F(η)-scheme Xη, for every projective
extension over R of Xη, for every smooth pseudosection of Sec(XK/CK/K), there
exists an F(η)-point of Xη, a finite flat extension of DVRs R→ R′ with fraction field
extension K → K ′, and a K ′-point of the pseudosection parameterizing a section σK′
whose specialization over η ×SpecR SpecR′ equals the base change of the F(η)-point
of Xη.

Proof. — By taking closures in an appropriate projective space, there exists a flat,
projective R-scheme Z̃R,I and an R-morphism νR : Z̃R,I → HilbXR/R whose K-fiber
is νK . By Theorem 2.1 for the characteristic 0 field K, there exists an F-rational
point of Z̃F,I mapping to an F-rational point of Σ(XR/CR/R) corresponding to a
closed subscheme CF of XF.
Since Σ(XR/CR/R) is the closure of Sec(XR/CR/R), there exists a finite flat exten-

sion of DVRs, R→ R′, and a lifting of the F-point to an R′-point of Σ(XR/CR/R)
whose generic point, SpecK ′, maps to Sec(XR/CR/R). This K ′-point parameterizes
the closed image of a section σK′ of fK′ : XK′ → CK′ .
Since XR′ → CR′ is proper, by the valuative criterion of properness, the rational

section σK′ extends to every codimension one point of the normal locus of CR′ . By
Item (2) of Definition 1.1, every point of CR′ lying over η is a codimension one
point at which CR′ → SpecR′ is smooth, and hence at which CR′ is normal. Thus,
the closure of the image of σK′ in XK′ restricts over η to the closed image of a
rational section. Since this closed subset is the base change of CF, also the restriction
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Rational points of rationally simply connected varieties 1405

of CF over η is the closed image of a rational section. This rational section is an
F(η)-rational point of Xη. �

2.3. The associated Abelian variety, Abel torsors, and Abel maps.

In order to apply Proposition 2.2, we need closed subschemes that are potentially
equal to pseudosections. Every morphism from a pseudosection to a torsor for an
Abelian K-variety is constant. Thus, every pseudosection must be contained in a
fiber for every morphism from the Hilbert scheme to a torsor for an Abelian K-
variety. The open subscheme Sec(XR/CR/R) is contained in the maximal open sub-
scheme HilbXR/R,CM of the Hilbert scheme parameterizing Cohen–Macaulay closed
subschemes of pure relative dimension 1. Thus, every pseudosection also has dense
intersection with this open subscheme. So every pseudosection is contained in a fiber
of every K-morphism from Hilb0

XR/R
to a torsor for an Abelian K-variety. What is

the “universal” such morphism? There is a natural answer to this question under
the following hypothesis.
Definition 2.3. — [Zhu19, Definition 2.10] For a Noetherian scheme T , a T -

scheme f : XT → T that is projective locally over T is Picard-free if
(i) f is flat with integral geometric fibers Xt,
(ii) every Xt is locally complete intersection and is smooth in codimension 6 3,
(iii) h1(Xt,OXt) and h2(Xt,OXt) equal 0, and
(iv) every finite, Abelian, étale cover of Xt is trivial.
The Condition (ii) above implies each finite type closed subscheme of PicXT /T is

proper over T (see [Gro05, XI, 3.13]).
Remark 2.4. — Assume that fK is Picard-free, e.g., a rationally simply connected

fibration also satisfying Condition (ii).
(i) The relative Picard scheme P = PicfK

over CK is étale locally a constant
group scheme Zρ in the sense of [DG70, Definition X.5.1], cf. [Zhu19, Propo-
sition 2.9].

(ii) The Cartier dual group scheme Q = D(P ) = HomCK−gp(P,Gm,CK
), is étale

locally isomorphic to Gρ
m,CK

, cf. [DG70, Proposition X.5.3].
(iii) The K-stack BQCK/K of Q-torsors over CK is a locally finitely presented,

algebraic K-stack, [Lie06, Proposition 2.3.4], equal to a gerbe over the coarse
moduli space |BQCK/K |, which is a smooth group K-scheme whose identity
component |BQ0

CK/K
| is an Abelian K-variety.

(iv) The component group Λ(Q/CK/K) of |BQCK/K | is an étale group K-scheme
whose associated Galois module Λ(Q/CK/K)(SpecK) is the kernel of the
map of curve classes, HomZ(Pic(XK),Z)→ HomZ(Pic(CK),Z).

(v) For every fK-ample divisor class H on the generic fiber Y of fK , for the
associated complete intersection curve class θ = (H · · · H)Y , the extension
of smooth group K-schemes,

0→ |BQ0
CK
K

| → |BQCK
K

| → Λ(Q/CK/K)→ 0,

has split restriction on the infinite subgroup Z · θ ⊂ Λ(Q/CK/K)(K).
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(vi) For every universal fK-torsor T on XK , there is an associated K-morphism
αT : HilbXK

K
,CM → |BQCK/K |,

whose restriction to Sec(XK/CK/K) sends each section σ to σ∗T (see [Zhu19,
Proposition 3.3]).

Even without the universal torsor T , there is still a natural morphism α defined
on HilbXK/K,CM mapping every connected component to a torsor (over some finite
extension of SpecK) for |BQ0

CK/K
|. This is the Abel torsor. Since every pseudosection

in the connected component maps to a K-point of the Abel torsor, there exists a
pseudosection only if the Abel torsor is a trivial torsor for |BQ0

CK/K
| over SpecK.

The construction of αT using a universal torsor shows that, for every e in the infinite
subgroup Z · θ, the Abel torsor |BQe

CK/K
| is actually a trivial torsor, i.e., it has

K-points I. Because K is the fraction field of a complete DVR, if there exists at
least one K-point I, then every dense, Zariski open subset of |BQe

CK/K
| contains a

Zariski dense set of K-points.

2.4. Smoothness of the Abel maps.

Denote by g the genus of the smooth, projective, geometrically connected K-curve
CK . For every algebraically closed extension k/K, a k-morphism σ : Ck → Xk is
(g)-free if the image is contained in the smooth locus of fk and for every invertible
sheaf L on Ck of degree d 6 max(2g, 0), the locally free sheaf HomOCk

(σ∗Ωfk
,L) has

vanishing h1. There is an open subscheme Sec(XK/CK/K)free of Sec(XK/CK/K)
such that for every k/K, the k-points of Sec(XK/CK/K)free(k) are precisely the
(g)-free sections. For every (g)-free section σ, for every closed k-curve C̃ in Xk

obtained by gluing to Image(σk) at δ distinct k-points a free, genus 0 curve in the
smooth locus of the corresponding fiber of fk, the point [C̃] of the Hilbert scheme is a
smooth point of Σ(XR/CR/R)(Spec k), and all formal deformations of [C̃] to sections
parameterized by Sec(XR/CR/R)(Spec k((r))) are also (g)-free sections. Finally, the
Abel map is smooth at [C̃] under a weak hypothesis. Let C ′K → CK be a quasi-finite,
étale morphism such that P ×CK

C ′K is trivial, Zρ. For each glued free rational curve,
choose a lift of the attaching point to C ′K so that the curve class is well defined in
the constant group scheme HomZ(P ×CK

C ′K ,Z) with fiber N1 ∼= Zρ. The Abel map
is smooth at [C̃] if there are at least (2g − 2)ρ free curves that can be partitioned
into > 2g − 2 subsets of ρ free rational curves whose classes in N1 ⊗Z Q ∼= Qρ span
as a Q-vector space.

2.5. Abel sequences.

There is a “positive structure” on Λ(Q/CK/K). This is the unique étale semi-
group subscheme Λ+(Q/CK/K) of Λ(Q/CK/K) whose associated subsemigroup
Λ+(Q/CK/K)(SpecK) equals the semigroup of “effective” curve classes, i.e., those
curve classes having non-negative pairing with all fK-ample invertible sheaves on
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XK . If the Mori cone of the geometric generic fiber of fK is finitely generated,
then also Λ+(Q/CK/K)(SpecK) is finitely generated: it equals the invariant sub-
semigroup of the Mori cone for the (finite) action of the Galois group of K(CK).
For every e0 ∈ Λ+(Q/CK/K)(SpecK), denote by Λ>e0(Q/CK/K) the translate of
Λ+(Q/CK/K) by e0. Denote by Σ>e0(Q/CK/K) the inverse image in Σ(Q/CK/K)
of Λ>e0(Q/CK/K).

Definition 2.5. — A sequence of (g)-free sections is an K-rational point e0 of
Λ(Q/CK/K) and a closed subscheme Z>e0 of Σ>e0(XK/CK/K)

(i) whose open subscheme Z>e0 ∩ Sec(XK/CK/K)free is dense,
(ii) whose fiber Ze over every geometric point e of Λ>e0(Q/CK/K) is an irreducible

component of Σe(XK/CK/K), and
(iii) for every geometric point [σ] of Sec(XK/CK/K)free, for all δ > δ0, the scheme

Z>e0 parameterizes every curve C̃ obtained by gluing to Image(σ) at δ distinct
points a free, genus 0 curve in the smooth locus of the fiber of fK .

The sequence is a pseudo Abel sequence, resp. an Abel sequence, if for the morphism,
αTK ,Ze : Z>e0 ∩ Sec(XK/CK/K)→ |BQ>e0

CK/K
|,

every geometric generic fiber is nonempty and integral, resp. “birationally rationally
connected” (every projective model is rationally connected). Define ZR,>e0 to be the
closure of Z>e0 in Σ(XR/CR/R).

Proposition 2.6. — For every projective F(η)-scheme Xη, for every projective
extension over R of Xη whose K-fiber fK : XK → CK is a Picard-free morphism
admitting a universal torsor T (i.e., the elementary obstruction vanishes), if there
exists an Abel sequence Z>e0 , then for every K-point e of Λ(Q/CK/K) and for
every general K-point I of |BQe

CK/K
|, there exists an F(η)-point of Xη, a finite

flat extension of DVRs R → R′ with fraction field extension K → K ′, and a K ′-
point [σK′ ] ∈ Ze whose image under αT equals the base change of I and whose
specialization over η ×SpecR SpecR′ equals the base change of the F(η)-point of Xη.

Proof. — Since K has characteristic 0, by [Hir64], there exists a projective, bi-
rational morphism ν : Z̃>e0 → Z>e0 such that Z̃>e0 is K-smooth. Moreover, there
exists such ν for which the Abel map αT extends to a projective morphism,

α̃T : Z̃>e0 → |BQ>e0
CK/K

|.

By generic smoothness, there exists a dense open subscheme of |BQ>e0
CK/K

| over
which α̃T is smooth. Over this open subscheme, since every geometric generic fiber is
rationally connected, every fiber is rationally connected. For I in this open subscheme,
denote by Z̃K,I the fiber of α̃T over I, and denote by νK : Z̃K,I → Σ(XK/CK/K)
the restriction of ν. This is a smooth pseudosection of Sec(XK/CK/K). Now apply
Proposition 2.2. �

Proof of Theorem 1.4. — By hypothesis, fK is either a rationally simply connected
fibration of Picard rank 1 as in [dJHS11, Theorem 13.1], or a rationally simply con-
nected fibration as in [Zhu19, 5.1]. Then by [dJHS11, Theorem 13.1], resp. by [Zhu19,
Theorem 5.12], there exists an Abel sequence. By Remark 2.4(v), for every fK-ample
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divisor class H on the generic fiber of fK , for θ = (H · · ·H), for every integer d� 0,
the class e = d · θ gives a K-point of Λ>e0(Q/CK/K) such that |BQe

CK/K
| has an

K-point. For every general K-point I of |BQe
CK/K

|, by Proposition 2.6, there exists
an F(η)-point of Xη whose base change over η×SpecRSpecR′ equals the specialization
of a section σK′ whose Abel image equals the base change of I. �

3. Projective Extensions

For each of the four corollaries, we explain how to find projective extensions whose
generic fiber is a rationally simply connected fibration over a curve. Combined with
Theorem 1.4, this produces rational points.

3.1. Projective Homogeneous Spaces. Corollaries 1.7 and 1.8.

Definition 3.1. — For a stackM over a scheme S, a generic splitting variety
ofM (ala Amitsur) is a pair (M, ζM) of a locally finitely presented S-scheme M and
a 1-morphism over S,

ζM : M →M,

such that for every field E and for every 1-morphism, ζ : SpecE →M, there exists
a morphism z : SpecE →M with ζM ◦ z equivalent to ζ.

For every fppf group S-scheme GS, the classifying stack BGS is the stack over
the fppf site of S-schemes whose fiber category over an S-scheme T has as objects
the GS-torsors over T and has as morphisms the GS-equivariant T -morphisms of
torsors [LMB00, Proposition 10.13.1]. A smooth, affine group scheme GS,0 over S is
a reductive group scheme if the geometric fibers are connected and (geometrically)
reductive, i.e., the unipotent radical is trivial. A flat, affine group scheme GS over S is
finite-by-reductive if there exists a surjective, smooth morphism of group S-schemes

GS � π0GS

where π0GS is a finite, flat group S-scheme and the kernel, GS,0, is a reductive group
S-scheme.

Theorem 3.2. — [SdJ10] [dJHS11, Section 16] Let R be a DVR, and let S be
SpecR in the above setup. For every “finite-by-reductive” group R-scheme, GR, for
every integer c > 1, there exists a projective, fppf R-scheme M , an open subscheme
M whose closed complement ∂M has codimension > c in every fiber M s, and a
1-morphism ζM : M → BGR that is a generic splitting variety.

Proof. — There exists a linear representation of GR on a finite free R-module
V whose induced action on PRV is free on a dense open subset (PRV )o whose
complement in the semistable locus (PRV )ss has codimension > c in every fiber over
SpecR. By [Ses77], the uniform categorical quotient of the action of GR on (PRV )ss

is a projective R-scheme M , and there exists a unique open subscheme M such that
(PRV )o is a GR-torsor over M . This defines ζM : M → BGR.
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By construction, M is normal and integral. Since it is also projective over the
DVR R, and since it dominates the generic point SpecK, M is R-flat. Since the
complement of (PRV )o has codimension > c, also ∂M has codimension > c. Since
(PRV )◦ is R-smooth, and since (PRV )o → M is flat, also M is R-smooth, [Gro65,
Proposition 17.7.7].
For every ζ : SpecE → BGR, the 2-fibered productM×ζM ,ζ SpecE with its projec-

tion to SpecE is (PEVζ)o where Vζ is theE-vector space HomE(E⊕c+1,HomE(W0,W ))
for finite free E-vector spacesW0,W of equal (positive) rank. The free locus contains
the locus parameterizing (c+ 1)-tuples (λ0, . . . , λc) of E-linear maps λi : W0 → W
that are isomorphisms. This locus has E-rational points. Thus, there exists an R-
morphism λ : SpecE →M and a 2-equivalence of the composition ζM ◦λ with ζ. �
Let HS be a split, connected and simply connected, semisimple group scheme over

S. Let PS ↪→ HS be a standard parabolic subgroup scheme (containing a specified
Borel). This has a Levi decomposition. Denote by χ : PS → QS the multiplicative
quotient, i.e., the quotient of the Levi factor L(PS) = PS/ radu(PS) by its commutator
subgroup S-scheme L(1)(PS). Consider the left regular action of PS on HS, p ·h = ph.
Consider the diagonal left action of PS on QS ×S HS, p · (q, h) = (qχ(p)−1, ph).
The projection morphism pr 2 : QS ×S HS → HS is PS-equivariant. Finally, the left
regular QS-action,

QS ×S (QS ×S HS)→ QS ×S HS, q
′ · (q, h) = (q′q, h),

is PS-equivariant. By fppf descent, there are affine morphisms
HS → PS\HS, QS ×S HS → PS\(QS ×S HS)

that are PS-torsors. The PS-equivariant morphisms above induce morphisms
pr 2 : PS\(QS ×S HS)→ PS\HS,

QS ×S PS\(QS ×S HS)→ PS\(QS ×S HS).
Moreover, the scheme PS\HS is projective over S: the dual of the relative dualizing
sheaf is relatively very ample, cf. [Dem77, p. 186]. The other schemes are affine over
PS\HS, hence can be constructed by fpqc descent for affine schemes. Altogether
these quotients and morphisms make TS := PS\(QS ×S HS) into a (left) QS-torsor
over PS\HS.
Definition 3.3. — For the pair (HS, PS) as above, the associated projective

homogeneous scheme is XH,P = PS\HS.

Lemma 3.4. — [Zhu19, Construction 5.3], [BCTS08, Lemma 2.2(vi)], [Gil10,
Lemma 6.4] The Picard torus of XH,P over S is QS and the Picard lattice is the
character lattice QD

S . The QS-torsor TS is a universal torsor on PS\HS.
Since HS → XH,P is a PS-torus, since PS is S-flat, and since HS is S-smooth, XH,P

is S-smooth, [Gro65, Proposition 17.7.7].
Notation 3.5. — Denote by ρX the unique morphism of group S-schemes,

ρX : QS → Gm,S,

such that the associated Gm,S-torsor ρX,∗TS is the Gm,S-torsor of the very ample
invertible sheaf that is the dual of the relative dualizing sheaf.
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The automorphism group scheme of the pair (XH,P , ω
∨
X/S) is an affine group S-

scheme, cf. [SdJ10, Section 2.1]. This is essentially just [Gro62, No. 221, Section 4.c],
[Gro63, Corollaire 7.7.8], [LMB00, Théorème 4.6.2.1]. The same method proves that
the automorphism group scheme G′S of the pair (XH,P , TS) is an affine group S-
scheme. Since TS is intrinsic, the forgetful morphism

AutS(XH,P , TS)→ AutS(XH,P )
is surjective. The domain group scheme, G′S, is smooth, and the identity component
of the target is a semisimple group S-scheme, [Dem77, Proposition 4]. The kernel of
the forgetful morphism is QS with its induced action on TS. Thus, G′S is a smooth,
affine group S-scheme whose identity component GS,0 is a reductive group scheme.
The quotient G′S/GS,0 is a quasi-finite, étale group scheme π0G

′
S over S. When S is

SpecR for a Henselian local ring, there is a unique closed subgroup scheme π0G
′
S,fin

of π0G
′
S that is finite, étale over S and whose closed fiber π0G

′
F,fin equals the closed

fiber π0G
′
F .

By construction GS is finite-by-reductive. Denote the induced action of G′S, as a
right action

γX : XH,P ×S G′S → XH,P , (PS · h, g) 7→ (PS · h) • g.
γT : TS ×S G′S → TS.

Let GS ⊂ G′S be a closed subgroup scheme that contains GS,0 and that is finite-
by-reductive, i.e., GS,0 is the kernel of a smooth, surjective group homomorphism
GS → π0GS with π0GS finite and flat. The action of GS on XH,P induces an action
on the Picard lattice QD

S . This action factors through an action of π0GS on QD
S .

Definition 3.6. — The triple (HS, PS, GS) of a split, simply connected, semisim-
ple group S-scheme HS, a standard parabolic PS, and a finite-by-reductive subgroup
S-scheme of AutS(XH,P , TS) containing the identity component is primitive if the
induced action of π0GS on the Picard lattice QD

S of PS\HS has a rank 1 invariant
sublattice.

Since it is intrinsic, one nonzero element in the invariant lattice is the character
ρX giving rise to the ample invertible sheaf ω∨X/S. Thus, the triple is primitive if and
only if every invariant character is commensurate with ρX .
For every S-scheme T and for every left GS-torsor ET over T ,

(µ, pr 2) : GS ×S ET
∼=−→ ET ×T ET , (g, x) 7→ (µ(g, x), x),

there are induced left actions of GS as follows,
µ̃X : GS ×S (XH,P ×S ET )→ XH,P ×S ET , (g, (x, y)) 7→ (xγX(g−1), µ(g)y),

µ̃T : GS ×S TS ×S ET → TS ×S ET , (g, (q, y)) 7→ (qγT (g−1), µ(g)y).
These are free action. Associated to the GS-invariant cocharacter ρX , the action µ̃T
induces a GS-linearization over XH,P ×S ET of the relatively ample invertible sheaf
pr 1∗ω∨X/S. Thus, by fppf descent in the projective case, there is an affine T -morphism
that is a GS-torsor,

qX,E : XH,P ×S ET → XE,
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together with a GS-torsor,

qT ,E : TS ×S ET → TE,

and a quotient morphism
TE → XE

that is a QS-torsor.

Definition 3.7. — The pair (XE, TE) is the E-twist of (XH,P , TS).

Notation 3.8. — For a triple (HS, PS, GS), let (M,OM(1), i : M → M) be a
datum with codimension > 1 boundary as in Theorem 3.2. For the 1-morphism
ζM : M → BGS, denote by fM : XM →M and TM the associated twist of (XH,P , TS).

Hypothesis 3.9. — With notation as in Section 1, let Xη be an F(η)-scheme
that is projective homogeneous. Assume that Xη has a universal torsor Tη.

There exists a pair (HS, PS) as above such that XH,P ×SpecR SpecF(η) is geomet-
rically isomorphic to Xη. Let Qη be the Picard torus of Xη.

Notation 3.10. — Denote by GS ⊂ AutS(XH,P , TH,P ) the unique closed subgroup
scheme that is finite-by-reductive, that contains the identity component, and such
that π0GF is the group of connected components of AutF(XH,P , TH,P ).

The Isom scheme from (Xη, Tη) to (XH,P , TH,P ) is a left GS-torsor over F(η). The
S-smooth schemeM from Theorem 3.2, for c = 1, is a generic splitting variety. Thus,
there is an induced morphism ζ : CF →M . If necessary, replace M by M ×S P3

S so
that ζ is a closed immersion. Denote the relative dimension of M by m. Denote by
(XM , TM) the twist of (XH,P , TH,P ) by the torsor ζM : M → BGS.

Theorem 3.11. — [Zhu19] Assume Hypothesis 3.9. For every general (m− 1)-
tuple (D1, . . . , Dm−1) of very ample divisors of M that contain ζ(CF), the common
intersection CR = D1∩ . . . ∩Dm−1 gives a projective extension of Xη → SpecF(η). If
(HS, PS, GS) is primitive, then XK → CK and TK satisfies the hypotheses of [Zhu19,
5.1], and the family has an Abel sequence.

Proof. — Since CF is smooth, and since the image of ζ intersects the smooth open
subscheme M , there exist very ample divisors (D1,F, . . . , Dm−1,F) that contain ζ(CF)
and whose common intersection C ′F is a curve containing a dense open subset of ζ(CF)
as an open subset. Since the boundary ∂M has codimension > 1 in M , for a general
lift (D1, . . . , Dm−1) (inside the complete linear system PNR over the Henselian ring
R), the curve CK is a smooth curve that is contained in M . Thus, the restriction of
(XM , TM) gives a projective extension of (Xη, Tη).
By the Bertini irreducibility theorem, for a general complete intersection curve

CK , the sections of the relative Picard of XM/M over CK equal the sections over all
of MK . If (HS, PS, GS) is primitive, the group of sections is a free Abelian group of
rank 1. Thus, the restricted family XK → CK with the restricted universal torsor
Tη satisfies [Zhu19, 5.1]. By the proof of [Zhu19, Theorem 1.4], this family has an
Abel sequence. �
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Proofs of Corollaries 1.7 and 1.8. — For Corollary 1.7, let A be a division algebra
with center F(η) that has finite dimension n2 over the center and whose order in
the Brauer group of F(η) equals `. Then ` divides n; the goal is to prove that `
equals n. Let Xη be the generalized Severi–Brauer variety associated to A that
represents the functor on F(η)-scheme associating to each F(η)-scheme T the set of
local direct summands of A ⊗F(η) OT of rank `n over OT and that are left ideals.
Since the order of the Brauer element equals `, there exists a universal torsor Tη on
Xη. Since Xη ×SpecF(η) SpecF(η) is isomorphic to a Grassmannian, which has Picard
group isomorphic to Z, the scheme Xη is primitive. By Theorem 3.11, there exists
a projective extension that admits an Abel sequence. Thus, by Theorem 1.4, Xη

has an F(η)-point, i.e., A has an ideal of rank `n. The only left ideals in a division
algebra are the zero ideal and all of A. Thus, `n equals the dimension n2 of A, i.e.,
` equals n.
For Corollary 1.8, let E be a left G-torsor over SpecF(η). Since G is quasi-split,

there exists a Borel B ⊆ G. Let Xη and Tη be the E-twist of (XG,B, TF(η)). This
might not be primitive. However, the inductive strategy of [Zhu19, Lemma 12.1]
reduces existence of an F(η)-point of Xη to existence of an F(η)-point of a projective
homogeneous space Y over F(η) whose elementary obstruction vanishes and that
is primitive. This will imply that the generic fiber of the projective extension of Y
is also primitive. In the primitive case, by Theorem 3.11, there exists a projective
extension that admits an Abel sequence. Thus, by Theorem 1.4, there is an F(η)-point
of Y . �

3.2. Complete Intersections. Corollary 1.6.

Notation 3.12. — Let S be a scheme. Let n and 1 6 b 6 n be positive integers.
Let d = (d1, . . . , db) be an ordered b-tuple of integers di > 2. For each j = 1, . . . , b,
denote by Vj(dj) the free OS-module H0(PnS,OP

rj
S

(dj)). Denote by V (d) the direct
sum V1(d1) ⊕ . . . ⊕ Vb(db) as a free OS-module. Denote by PSV (d) the projective
space over S on which there is a universal ordered b-tuple (φ1, . . . , φb) of sections
of the invertible sheaves OPn(dj). Precisely, for the product

P = PSV (d)×S PnS
with its projections

pr1 : P → PTV (d) and pr2 : P → PnT ,

the sequence (φ1, . . . , φb) is a universal homomorphism of coherent sheaves
pr∗2OPn

S
(−d1)⊕ . . . ⊕ pr∗2OPn

S
(−db)→ pr∗1OPSV (d)(1),

or equivalently, a universal homomorphism of coherent sheaves,

(φ1, . . . , φb) : pr∗1OPSV (d)(−1)⊗
(
pr∗2OPn

T
(−d1)⊕ . . . ⊕ pr∗2OPn

T
(−db)

)
→ OP .

For each j = 1, . . . , b, denote by Xj ⊂ P the effective Cartier divisor defined by φj.
Denote by X ′j the intersection X1 ∩ . . . ∩Xj as a closed subscheme of P .
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Definition 3.13. — For every j = 1, . . . , b, the smooth locus PSV (d)sm
j , resp.

the Lefschetz locus PSV (d)Lef
j , is the maximal open subscheme of PSV (d) over which

X ′j is flat and every geometric fiber is smooth, resp. has at worst a single ordinary
double point. The degenerate locus, resp. the badly degenerate locus, is the closed
complement of PSV (d)sm

j , resp. PSV (d)Lef
j .

Proposition 3.14. — [Del73, Exposé XVII, Théorème 2.5] Assume that b < n.
Then for every j = 1, . . . , b, the degenerate locus is a proper closed subset, and the
badly degenerate locus of X ′j is a proper closed subset of codimension > 1.
Proof. — This is proved by induction on j. For j = 1, this follows from loc. cit. By

way of induction, assume that j > 1 and assume that the result is proved for j − 1.
By loc. cit., the intersection with PSV (d)sm

j−1 of the degenerate locus, resp. badly
degenerate locus, ofX ′j is a proper closed subset, resp. has codimension > 1. It suffices
to prove that PSV (d)sm

j contains every generic point ξ of the degenerate locus of X ′j−1
that is not in the badly degenerate locus. By hypothesis, X ′j−1,ξ has a unique ordinary
double point. In PSV (d), it is a codimension 1 condition for φj to vanish at this point.
On the complement of this proper closed subset, the degenerate locus of X ′j is a
proper closed subset by Bertini’s smoothness theorem [Jou83, Theorème 6.3(2)]. �
Hypothesis 3.15. — Let S be SpecR for a Henselian DVR with finite residue

field F and with characteristic 0 fraction field K. Let F(η) be F(C ′F) for a smooth,
projective, geometrically connected F-curve C ′F. Notations are as in Notation 3.12.
Assume that b < n. LetX ′η ⊂ PnF(η) be an intersectionXη,1∩ . . .∩Xη,b of hypersurfaces
Xη, i = Zero(φη, i) of degree di. Denote by ζ : C ′F → PRV (d) the R-morphism of
(φη,1, . . . , φη,b). Denote by m the relative dimension of PRV (d) over SpecR.
Theorem 3.16. — [DeL15, dJHS11] Assume Hypothesis 3.15. For every general

(m− 1)-tuple (D1, . . . , Dm−1) of very ample divisors of PRV (d) that contain ζ(C ′F),
for the common intersection CR = D1 ∩ . . . ∩ Dm−1, for the restriction X ′R of X ′b
over CR, for the closure XR in X ′R of the generic fiber XK,b = X ′R×SpecR SpecK, the
morphism XR → CR is a projective extension over R of the fiber Xη → SpecF(η).
Also, Xη is a closed subscheme of X ′η,b that has pure dimension n− b. The restriction
of the Gm-torsor of O(1) on PnR is a universal torsor. If d2

1 + . . . + d2
b 6 n, then

XK,b → CK is a rationally simply connected fibration (of Picard rank 1) in the sense
of [dJHS11, Theorem 13.1], and the family has an Abel sequence.
Proof. — Existence of the projective extension is basically the same as in the proof

of Theorem 3.11. By Proposition 3.14, for a general choice of (D1, . . . , Dm−1), the
curve CK is a smooth, projective, geometrically connected curve contained in the
Lefschetz locus of Xb and having dense intersection with the smooth locus.
Now assume that d2

1 + . . . +d2
b 6 n. There are three global hypotheses in [dJHS11,

Theorem 13.1], and the remaining hypotheses are on the geometric generic fiber
of fK : XK,b → CK . The first hypothesis is that XK,b is smooth. The projection
X ′b → PnR is a projective space bundle, hence X ′b is R-smooth. By Bertini’s the-
orem, [Jou83, Théorème 6.3(2)], for D1, . . . , Dm−1 general, the inverse image of
CK = DK,1 ∩ . . . ∩DK,m−1 under the projection X ′b → PRV (d) is smooth.
The second hypothesis is that every geometric fiber of fK is irreducible. By hypoth-

esis, every di > 2, so that d2
1+ . . . +d2

b > 4b. Thus, n > 4b, so that also n−b > 3b > 3.
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Every fiber of fK is a complete intersection of ample divisors of dimension > 3. Thus,
the complete intersection is connected, cf. [Gro03, Corollary XII.3.5]. Moreover, the
complete intersection has at most a single ordinary double point. Thus, the fiber is
normal by Serre’s Criterion, cf. [Gro03, XI.3.11], hence it is irreducible.
The third global hypothesis is that O(1) is fK-ample. In fact it is fK-very ample

since XK is a closed subscheme of CK ×SpecK PnK .
The remaining hypotheses are all hypotheses of the geometric generic fiber of fK ,

which is a smooth complete intersection with d2
1 + . . . +d2

b 6 n that is general. These
hypotheses are all established by Matt DeLand, [DeL15]. Therefore, by [dJHS11,
Theorem 13.1], there exists an Abel sequence. �

Proof of Corollary 1.6. By Theorem 3.16, there exists a projective extension with
vanishing elementary obstruction and with an Abel sequence. By Theorem 1.4, there
exists an F(η)-point. �

3.3. Hypersurfaces in Grassmannians. Corollary 1.9.

Notation 3.17. — Let S be an affine scheme. Let m > 0 be an integer, and let
` > 0 be an integer such that m > 2` (or else replace ` by m − `). Let d > 0 be
an integer. Let HS be SLm,S. Let PS ⊂ HS be the parabolic that preserves the
projection O⊕mS → O⊕`S onto the first ` factors. Thus, XH,P = PS\HS is the Grass-
mannian GrassS(`,O⊕mS ). Also the universal torsor TH,P is the Gm-torsor associated
to the Plücker invertible sheaf O(1). Let GS be AutS(XH,P , TH,P ). Let W (d) be the
free OS-module H0(XH,P ,O(d)). Denote by PSW (d)Lef the Lefschetz locus param-
eterizing degree d hypersurfaces that have at worst a single ordinary double point,
cf. Definition 3.13.

Let VS be the linear representation of GS from the proof of Theorem 3.2 with
c = 1. Define M ′ to be the uniform categorical quotient of the action of GS on
the semistable locus of PS(VS) ×S PSW (d). By the proofs of Theorem 3.2 and
Proposition 3.14, there is an open subscheme M ′ ⊂M

′ whose inverse image equals
PS(VS)o×SPSW (d)Lef and that has closed complement ∂M ′ of codimension> 1. Since
PS(Vs)o×SPSW (d)Lef →M ′ is flat, alsoM ′ is R-smooth, [Gro65, Proposition 17.7.7].
Denote by GM ′ → M ′ and TM ′ the twist of XH,P and TH,P . Denote by XM ′ ⊂ GM ′

the universal degree d hypersurface.

Hypothesis 3.18. — Let S be SpecR for a Henselian DVR with finite residue
field F and with characteristic 0 fraction field K. Let F(η) be F(C ′F) for a smooth,
projective, geometrically connected F-curve C ′F. Let Gη be a smooth, projective F(η)-
scheme that is geometrically isomorphic toXH,P . Assume that there exists a universal
torsor Tη. Let Xη ⊂ Gη be a closed subscheme that is geometrically isomorphic to a
degree d hypersurface in XH,P . Denote by ζ : C ′F →M

′
F the associated R-morphism.

Denote by s the relative dimension of M ′ over SpecR.

Theorem 3.19 ([dJHS11, Fin10]). — Assume Hypothesis 3.18. For every general
(s− 1)-tuple (D1, . . . , Ds−1) of very ample divisors of M ′

R that contain ζ(C ′F), the
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common intersection CR = D1 ∩ . . . ∩Dm−1 and the restriction XR → CR of XM ′

gives a projective extension of Xη → SpecF(η). The restriction of TM ′ is a universal
torsor. If (3` − 1)d2 − d < m − 4` − 1, then XK,b → CK is a rationally simply
connected fibration (of Picard rank 1) in the sense of [dJHS11, Theorem 13.1], and
the family has an Abel sequence.
Proof. — The first part of the proof is precisely the same as in the proof of

Theorem 3.16. The hypotheses on the geometric generic fiber of fK follow from [Fin10,
Theorem 1.8]. �
Proof of Corollary 1.9. By Theorem 3.19, there exists a projective extension with

vanishing elementary obstruction that has an Abel sequence. By Theorem 1.4, there
exists an F(η)-point. �
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