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Abstract. — We establish an equidistribution result for Ruelle resonant states on compact
locally symmetric spaces of rank 1. More precisely, we prove that among the first band Ruelle
resonances there is a density one subsequence such that the respective products of resonant
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new description of Patterson–Sullivan distributions.
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1. Introduction

Let X be a smooth Anosov vector field on a compact Riemannian manifold M.
Then the resolvent R(λ) := (−X − λ)−1 : L2(M) → L2(M) is holomorphic for
Re(λ) � 0 and has a meromorphic continuation to C [BL07, DZ16, FS11, Liv04]
as a family of continuous operators R(λ) : C∞(M) → D′(M). The poles of this
meromorphic continuation are called Ruelle resonances. Given a pole λ0 of the
resolvent, (minus) the residue of the resolvent R(λ) at λ0 is a finite rank operator Πλ0

and we call its range Ran(Πλ0) ⊂ D′(M) the space of generalized Ruelle resonant
states. The generalized resonant states are known to be distributions which are
supported on the whole manifoldM [Wei17] and they lie in ker(−X−λ0)J for some
J > 1, and J = 1 if and only if there are no Jordan blocks. Furthermore, to each
Ruelle resonance λ0 we can define a canonical generalized density in the following
way: Because the wavefront set of Πλ0 is precisely known [FS11, Theorem 1.7] [DZ16,
Proposition 3.3], there is a well defined notion of a trace of Πλ0 , the so called flat
trace Tr[ and we can define the following continuous linear functional

Tλ0 :

C∞(M) → C
f 7→ Tr[(fΠλ0)

If λ0 = 0, then the functional Tλ0 is given by the SRB measure(1) , see [BL07]. For
a general resonance λ0 ∈ C these functionals are only distributional densities and
not measures. As X commutes with Πλ0 , they are still invariant under the flow, i.e.
XTλ0 = 0, and we call them invariant Ruelle densities. Note that these invariant
Ruelle densities have also explicit expressions in terms of the Ruelle resonant states:
In the simplest case of a first order pole of multiplicity one the invariant density
is simply the distributional product of a resonant and co-resonant state, where
co-resonant states are resonant states for the flow in backward time.
We want to study high frequency limits (also called semiclassical limits) of these

invariant Ruelle distributions. For Ruelle resonances the reasonable notion of semi-
classical limit is to fix a range in the real part Re(λ) > −C and consider | Im(λ)| → ∞.
In this limit there have recently been established several results on the distri-
butions of resonances such as Weyl laws [DDZ14, FS11, FT17a] or band struc-
tures [FT13, FT17b].

1.1. High-frequency limits.

If G/K is a rank one Riemannian symmetric space of noncompact type, Γ ⊂
G a co-compact torsion free discrete subgroup, then the locally symmetric space
M := Γ\G/K is a compact Riemannian manifold of strictly negative curvature. Its
geodesic flow on the unit sphere bundleM := SM is Anosov. Any compact manifold
of constant negative curvature can be realized in this way, but the rank one locally
symmetric spaces contain also families with nonconstant sectional curvature. In
(1)More precisely by an SRB measure, because the eigenvalue λ0 might be degenerate and the SRB
measure not unique.
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constant curvature the spectrum is known to obey an exact band structure [DFG15,
KW19], i.e. for any Ruelle resonance λ0 one has either Im(λ0) = 0, or Re(λ0) ∈
−ρ − N0, where ρ > 0 is the positive constant that is associated to a Riemannian
symmetric space by taking half the sum of its positive restricted roots. Our first
result is the following equidistribution Theorem 1.1.

Theorem 1.1. — Let M be a compact locally symmetric space of rank one,
M = SM be the unit sphere bundle and dµL the Liouville measure on M. Let
rn ∈ R+ be such that λn = −ρ + irn are the Ruelle resonances with Re(λn) = −ρ,
Im(λn) > 0 for the geodesic flow onM. Then there exists a subsequence (rkn)n>0 ⊂
(rn)n>0, such that

• T−ρ+irkn converges weakly towards dµL as n→∞.
• The subsequence is of density one, i.e.

lim
N→∞

∑
kn<N dim(Ran Π−ρ+irkn )∑
n<N dim(Ran Π−ρ+irn) = 1.

To prove this result, we have to show an explicit correspondence between the
Ruelle resonant states on Re(λ) = −ρ and the eigenstates of the Laplacian ∆M. This
allows us to reduce the problem to a quantum ergodicity result for the Laplacian
and use the Shnirelman–Zelditch–Colin de Verdière theorem [CdV85, Shn74, Zel87].
In fact, we prove several results in this article which are of independent interest.

1.2. The quantum-classical correspondence (Theorem 4.5 and
Theorem 4.6).

In [DFG15, GHW18, Had20] it is shown that for geodesic flows on compact (resp.
convex cocompact) constant negative curvature manifolds the Ruelle resonances
are related to eigenvalues (resp. quantum resonances) for the Laplacian. A central
ingredient in the proof is to establish an explicit bijection between the Ruelle resonant
states in D′(SM) that are killed by unstable derivatives and the eigenstates of
the Laplacian ∆M on M, at least for Ruelle resonances that are not in a certain
exceptional set. The map from Ruelle resonant states to eigenfunctions of ∆M is given
by the pushforward π0∗ : D′(SM)→ D′(M), where π0 : SM→M is the projection
onto the base. We extend this bijection to the setting of all compact locally symmetric
spaces of rank one in Theorem 4.5 and Theorem 4.6. To prove the bijection, one
uses as in [DFG15] a correspondence between Ruelle (generalized) resonant states
killed by the unstable derivatives and the distributions on the boundary of G/K that
have a certain conformal equivariance by the group Γ, and the bijection between
these distributions and Γ-invariant eigenfunctions of Laplacian on G/K, which thus
descend to M. The quantum-classical correspondence that we establish in this article
form a crucial basis for the generalizations to vector bundles [KW20, KW19].
We note that the correspondence between the distributions on the boundary and

the Laplace eigenfunctions follows from works of [BS87, GO05, Hel74, OS80, Ota98]
on the Poisson transformation. Some results related to the quantum-classical cor-
respondence were obtained previously in [Cos05, FF03] for G = SL2(R) where the
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authors study distributions on SM invariant by the horocycle flow. In particular
in [Cos05], a relation is made between such distributions and conformally equivariant
distributions on the boundary ∂(G/K), similarly to what we discussed above.

1.3. A new description of Patterson–Sullivan distributions
(Theorem 5.2).

In [AZ07], Anantharaman and Zelditch introduced Patterson–Sullivan distribu-
tions on compact hyperbolic surfaces. Given an eigenfunction of the Laplacian in
C∞(M), these distributions are distributions in D′(SM) which are invariant under
the geodesic flow and become equivalent to usual semiclassical lifts such as Wigner
distributions in the semiclassical limit. In [HHS12] this construction has been gener-
alized to compact higher rank locally symmetric spaces. Using the quantum-classical
correspondence we give in Theorem 5.2 a new description of these Patterson–Sullivan
distributions for rank one spaces: given a Laplace eigenfunction ϕ ∈ C∞(M) the
quantum-classical correspondence allows us to associate a unique Ruelle resonant
state v ∈ D′(SM) as well as a Ruelle co-resonant state v∗ ∈ D′(SM). The Patterson–
Sullivan distribution is then precisely given by the distributional product of v · v∗
which is well defined by a wavefront condition.

1.4. A pairing formula (Theorem 6.1).

If the Ruelle resonance λ0 associated to a Patterson–Sullivan distribution is simple,
then it is easy to check that the Patterson–Sullivan distribution coincides with the
invariant Ruelle density. If Rank(Πλ0) > 1, one additionally needs a pairing formula
in order to express the invariant Ruelle density in terms of the Patterson–Sullivan
distributions. The pairing formula relates pairings of resonant states with co-resonant
states to pairings of the associated eigenfunctions of ∆M. Such pairing formulas have
previously been proved in [AZ07] for hyperbolic surfaces and in [DFG15] for compact
constant negative curvature manifolds using different methods. We extend them to all
rank one cases in Theorem 6.1. We follow the strategy of [DFG15] but we emphasize
that new difficulties appear due to the anisotropy of the Lyapunov exponents given
by the fact that the curvature is not constant anymore.
We would like to end the introduction with the following remark: in this article we

use the precise correspondence between Ruelle and Laplace resonant states in order
to prove the first version of quantum ergodicity for Ruelle resonant states. If however
it becomes possible to prove stronger properties like quantum unique ergodicity
for the high frequency limits of Ruelle resonant states, then the quantum-classical
correspondence would allow to transfer these results to the semiclassical limits of
Laplace eigenfunctions.

2. Ruelle resonances
In this section we introduce the spectral theory of Ruelle resonances for Anosov

flows as well as the notion of their resonant states and invariant distributions.
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Within this section let M be a smooth, compact manifold without boundary,
X ∈ C∞(M, TM) a smooth vector field that generates an Anosov flow ϕt.
We want to introduce Ruelle resonances as the discrete spectrum of the differen-

tial operator X on suitable Hilbert spaces, as they have been introduced by Liv-
erani [Liv04], Butterley–Liverani [BL07] and Faure–Sjöstrand [FS11] and Dyatlov–
Zworski [DZ16]. We will use the microlocal approach from [DZ16, FS11]. General-
izations to flows on noncompact manifolds can be found in [DG16, GBW17].
Proposition 2.1. — There exists a family of Hilbert spaces denoted by HN and

parametrized by N > 0. Each HN is an anisotropic Sobolev space that fulfills the
relations

HN(M) ⊂ HN(M) ⊂ H−N(M),
where HN(M) denotes the ordinary L2-based Sobolev space of order N . Consider
furthermore the operator X acting on D′(M) and define

DomN(X) :=
{
u ∈ HN

∣∣∣Xu ∈ HN
}
,

which is a dense subset in HN . Then the operator X : HN → HN is an unbounded
closed operator defined on a dense domain satisfying:

(1) There is C0 > 0 such that for any N > 0 the operator (X + λ) : DomN(X)
→ HN is Fredholm of index 0 depending analytically on λ in the region

{Re(λ) > −N/C0} .
(2) There is a constant C1 > 0 such that for Reλ > C1 the operator (X + λ) :

DomN(X)→ HN is invertible for all N > 0.
Proof. — For the Fredholm property see [FS11, Theorem 1.4] ([DZ16, Proposi-

tion 3.2], respectively) and for the invertibility [FS11, Lemma 3.3] ([DZ16, Proposi-
tion 3.1], respectively). �
Consequently, the operator −X has discrete spectrum on {Re(λ) > −N/C0} of

finite algebraic multiplicity. We recall that the algebraic multiplicity of an eigenvalue
λ0 of −X is

dim
{
u ∈ HN

∣∣∣ ∃ j > 1, (X + λ0)ju = 0
}
,

while the geometric multiplicity of λ0 is dim kerHN (X + λ0). We call λ ∈ C a Ruelle
resonance if

ResX(λ) := kerHN (X + λ) 6= 0
for some N > −C0 Re(λ).
It can also be shown [FS11, Theorem 1.5] that for each j > 0, kerHN (X + λ)j ⊂
D′(M) is independent of the choice of N > −C0 · Re(λ), so ResX(λ) is well defined
and we call it the space of Ruelle resonant states associated to the resonance λ. In
general the geometric and algebraic multiplicity of a Ruelle resonance λ need not be
equal. Thus we define J(λ) to be the smallest integer such that

kerHN (X + λ)k = kerHN (X + λ)J(λ)

for all k > J(λ). We call kerHN (X + λ)J(λ) the space of generalized Ruelle resonant
states. Spectral theory also provides us with a finite rank spectral projector

Πλ0 : HN → HN
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satisfying Π2
λ0 = Πλ0 and Ran(Πλ0) = kerHN (X + λ0)J(λ0), which commutes with

the Anosov flow, i.e. [X,Πλ0 ] = 0. Note that this spectral projector coincides with
the residue of the meromorphically continued resolvent as defined in the introduc-
tion (see [DZ16, Section 4]). For f ∈ C∞(M), the multiplication operator by f is
continuous on HN and the spectral projector allows to define a distribution

(2.1) Tλ0 :

C
∞(M) → C

f 7→ 1
mλ0

TrHN (fΠλ0)

where mλ0 := dim(kerHN (X + λ0)J(λ0)) is called multiplicity of the resonance λ0.
From the invariance of Πλ0 under the Anosov flow it directly follows that Tλ0 is
flow-invariant as well. Note that from the microlocal description of Πλ0 in [DZ16] it
follows that Tλ0 ∈ D′(M) does not depend on the choice of HN and is an intrinsic
invariant distribution associated to each Ruelle resonance which we will call invariant
Ruelle distribution. Note that if the space of generalized resonant states for λ0 = 0
is one-dimensional, then the invariant Ruelle distribution corresponds to the unique
SRB-measure.
We will not need any detailed knowledge on the construction of the Hilbert space

structure of HN . However, we will use the microlocal description of the resonant
states using the wavefront set. Therefore, let

TmM = E0(m) ⊕ Es(m) ⊕ Eu(m)

be the Anosov splitting of the tangent bundle into neutral, stable and unstable
bundles. We can introduce the following dual splitting of the cotangent space

T ∗mM = E∗0(m) ⊕ E∗s (m) ⊕ E∗u(m),

which is defined by
E∗0(m)(Es(m) ⊕ Eu(m)) = 0, E∗u(m)(E0(m) ⊕ Eu(m)) = 0,

E∗s (m)(E0(m) ⊕ Es(m)) = 0.

Lemma 2.2 ([DFG15, Lemma 5.1]). — The space of Ruelle resonant states for a
resonance λ0 is given by

(2.2) ResX(λ0) = {u ∈ D′(M) | (X + λ0)u = 0 and WF(u) ⊂ E∗u},

where WF(u) ⊂ T ∗M denotes the wavefront set of the distribution u. The generalized
resonant states can be characterized similarly:

(2.3) ker(X + λ0)J(λ0) =
{
u ∈ D′(M)

∣∣∣(X + λ0)J(λ0)u = 0 and WF(u) ⊂ E∗u
}
.

By duality one can define the co-resonant states which we will denote by ResX∗(λ0)
and if the Anosov flow preserves a smooth volume density(2) , they can microlocally
be described as

(2.4) ResX∗(λ0) = {u ∈ D′(M) | (X − λ0)u = 0 and WF(u) ⊂ E∗s}.

(2)For the geodesic flows considered in the sequel, there is a canonical smooth preserved measure,
the so called Liouville measure.
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Note that given a Ruelle resonance λ0, since E∗s∩E∗u = 0, the resonant and co-resonant
states satisfy conditions on their wavefront sets ensuring that their product is well-
defined in D′(M) by [Hör90, Theorem 8.2.10]. For u ∈ ResX(λ0), v ∈ ResX∗(λ0), the
product is a flow-invariant distribution:

X(u · v) = (Xu) · v + u ·Xv = (λ0 − λ0)(u · v) = 0.
We will see in Section 5 that the Patterson–Sullivan distributions on compact locally
symmetric spaces of rank one can be interpreted as such a product of resonant
states. It turns out that in the case of a nondegenerate Ruelle resonance without
Jordan block, (i.e. for dim(ResX(λ0)) = 1 and J(λ0) = 1) also the invariant Ruelle
distribution Tλ0 can be expressed in this way.

3. Ruelle resonances on rank one locally symmetric spaces

In this section we want to relate the Ruelle resonant states of the so called “first
band” on rank one locally symmetric spaces to certain distributional vectors in
principal series representations (Proposition 3.8).

3.1. Riemannian symmetric spaces

We first recall some standard notations for Riemannian symmetric spaces. Let G be
a noncompact, connected, real, semisimple Lie group of real rank 1 with finite center
and K ⊂ G a maximal compact subgroup. We will write G = KAN for an Iwasawa
decomposition and let M be the centralizer of A in K in what follows. The Killing
form K : g × g → R is a non-degenerate bilinear form and the Cartan involution
θ : g→ g on the Lie algebra g of G allows to define a natural positive-definite scalar
product 〈·, ·〉g = −K(·, θ·) on g (and thus on g∗ as well). Moreover, as G/K is of
rank 1, i.e. dimR(A) = 1, we have an isomorphism a∗C → C by identifying λ with
λ(H0), after choosing a suitable element H0 ∈ a: we choose H0 to be the uniquely
determined element of a which satisfies α0(H0) =

√
〈α0, α0〉g =: ||α0||, where α0 ∈ a∗

is the unique simple positive restricted root. We shall denote by ρ ∈ a∗ the half-sum
of the positive restricted roots weighted by multiplicity, and let mα0 := dim g±α0 and
m2α0 := dim g±2α0 be the multiplicities of the possible restricted roots. In particular,
one gets ρ = 1

2 ||α0||mα0 + ||α0||m2α0 when identifying a∗C ' C.
Under the above assumptions G/K is a Riemannian symmetric space of rank 1.

More precisely,G/K is a hyperbolic space HK whereK is either R,C,H,O (H denotes
the quaternions and O the octonions) and we will denote by n its real dimension(3) .
To simplify notation, we will write H = G/K. The Killing form induces a canonical
Riemannian metric on H and with this metric the space H has negative sectional
curvature (equal to −1 if K = R and in [−4,−1] in the other cases). Furthermore, it
induces a smooth left G-invariant measure, which we denote by dx. The unit sphere
(3)Note that this choice implies, that e.g. for complex hyperbolic spaces n has always to be chosen
even. For K = O only n = 16 is possible (Cayley plane).
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bundle SH can be identified with G/M and we denote the left G-invariant Liouville
measure by dµL. Using a trivialization SH ∼= H × Sn−1 the Liouville measure can
be written as dµL = dx⊗ dµSn−1 where dµSn−1 is the standard Lebesgue measure on
the unit sphere. Note that the measures dx and dµL are intrinsically defined by the
Riemannian geometry of H. We normalize the bi-invariant Haar measures on the
Lie groups G,M,K,A and N in a consistent way as follows: we start by fixing dm
by the condition vol(M) = 1 and in addition set vol(K) = vol(Sn−1). The adjoint
action of K on p gives an identification K/M ∼= Sn−1 and our choice implies that,
under this identification, dµSn−1 = d(kM). Next we fix dg such that d(gK) = dx.
With these choices one obtains the identification d(gM) = dµL in the following
way: the G = NAK decomposition gives a trivialization G/M ∼= G/K × K/M
and using the normalizations from above one checks that d(gM) = d(gK)⊗ d(kM)
= dx ⊗ dµSn−1 = dµL. Finally it remains to normalize da: recall that we identify
a ∼= R or respectively a∗C

∼= C by the choice of an element H0 that is normalized
w.r.t. the Killing form. This imposes an analogous normalization of the measure da.
Let Γ ⊂ G be a torsion-free discrete co-compact subgroup, then M := Γ\G/K is

a smooth compact Riemannian locally symmetric space of rank 1. We denote the
respective positive Laplacians by ∆H and ∆M. Again we have a Lebesgue measure
defined by the Riemannian metric as well as the Liouville measure and by slight
abuse of notation we also denote them by dx and dµL. The unit tangent bundle
M := SM of M = Γ\H can be identified with the quotient Γ\G/M . Under this
identification the geodesic flow is simply the right action of A: i.e

A× Γ\G/M → Γ\G/M, (a,ΓgM) 7→ ΓgaM.

It is known to be an Anosov flow (see e.g. [Hil05]), thus all the definitions of Ruelle
resonances and resonant states from Section 2 apply. Moreover, the Anosov splitting
of TM into neutral, stable, and unstable directions can be expressed explicitly as
associated vector bundles TM = Γ\G×M (a⊕ n+ ⊕ n−). Here n+ is the Lie algebra
of N and n− = θn+ is the Lie algebra of N := θN , where θ denotes the Cartan
involution on G as well as its derivative on the Lie algebra g of G. The bundles Eu
and Es are identified with

Eu = Γ\G×M n−, Es = Γ\G×M n+.

Similarly, the geodesic flow on the cover SH = G/M also has an Anosov splitting
with smooth stable and unstable bundles

Ẽu := G×M n−, Ẽs := G×M n+.

3.2. The first band of classical Ruelle resonances

In [DFG15] it is shown for compact real hyperbolic manifolds that the spectrum
of Ruelle resonances forms an exact band structure. A particularly important subset
of resonances are those that are invariant by the horocyclic flows (i.e. killed by the
unstable derivatives).
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Definition 3.1. — A Ruelle resonant state u is said to belong to the first band,
if for each smooth section U− of Eu we have U−u = 0 and we write Res0

X(λ0) for the
first band Ruelle resonant states at the resonance λ0 ∈ C.
Similarly, we say a co-resonant state u belongs to the first band if for each section

U+ of Es we have U+u = 0. We write Res0
X∗(λ0) for the first band Ruelle co-resonant

states at the resonance λ0 ∈ C.

Remark 3.2. — The notion first band is justified by the following result of an exact
band structure (see [DFG15] for constant negative curvature manifolds and [KW19]
for compact locally symmetric spaces of rank one): If λ0 ∈ C is a Ruelle resonance
with Im(λ0) 6= 0, then Re(λ0) ∈ −ρ − N0α0, i.e. the resonances with nonvanishing
imaginary parts are arranged on vertical lines parallel to the imaginary axis. Fur-
thermore, if λ = −ρ + ir for r 6= 0 i.e. if λ lies on the first line, then it is shown
in [DFG15, KW19], that the resonant states are first band resonances in the sense
of Definition 3.1.

We can lift the resonant states to the cover G/M by the quotient map πΓ : G/M
→ Γ\G/M . By a slight abuse of notation, X will also denote the infinitesimal
generator of the geodesic flow on G/M which descends to the infinitesimal gener-
ator of the geodesic flow on Γ\G/M via πΓ. The geodesic flow (the flow of X) on
M = Γ\G/M and on SH = G/M will be denoted by ϕt. The splitting G ×M
(a + n+ + n−) of the tangent bundle of G/M is G-invariant and descends to the
Anosov splitting for Γ\G/M via πΓ. With this notation, for λ ∈ a∗C, let

R±(λ)

=
{
u ∈ D′(G/M)

∣∣∣ (X ∓ λ(H0))u = 0,∀ U± ∈ C∞(G/M ;G×M n±), U±u = 0
}
.

Remark 3.3. — In view of the above characterizations of Res0
X(λ) and Res0

X∗(λ)
we obtain the linear isomorphisms

(πΓ)∗ : Res0
X(λ(H0)) → ΓR−(λ), (πΓ)∗ : Res0

X∗(λ(H0)) → ΓR+(λ),
where ΓR±(λ) denotes the subspace of Γ-invariant elements of R±(λ).

3.3. Points at infinity

Next we want to identify the first band of (co)-resonant states with distribu-
tions on the Furstenberg boundary ∂H of the symmetric space, which is identified
with G/P = K/M where P = MAN is the minimal parabolic of G. Let us ex-
plain how this boundary can be naturally obtained from the geodesic flow on G/M .
For any point y ∈ SH = G/M we define the limiting points of the geodesic passing
through y:

B±(y) := lim
t→+∞

π̃0(ϕ±t(y)) ∈ ∂H

if π̃0 : SH→ H is the projection onto the base. In terms of Lie groups, the resulting
maps are simply the projections
(3.1) B± : G/M → G/P = K/M, gM 7→ gw±P,
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where w+ represents the trivial and w− the nontrivial element of the Weyl group
W = NK(A)/M ∼ Z2 (cf. [DFG15, Hil05, HHS12]); here NK(A) denotes the nor-
malizer of A in K. We will refer to B− and B+ as the initial respectively the end
point map.

Remark 3.4. — The values of the initial and the end point map are invariant
under the geodesic flow on G/M , i.e.
(3.2) ∀ a ∈ A, B±(gaM) = B±(gM).
Furthermore, the initial and the end point map are invariant under changes in the
unstable, resp. the stable direction.

(3.3) ∀ U± ∈ n± : d

ds |s=0
B±

(
gesU±M

)
= 0.

To see (3.2) and (3.3) for the initial point map, note that Ad(w−) interchanges n+
and n− and is − id on a. Finally, both maps intertwine the left G-actions on G/M
and K/M = G/P

(3.4) ∀ γ ∈ G : B±(γgM) = γ ·B±(gM)

Lemma 3.5. — The maps

Q± :

D′(∂H) → R±(0) ⊂ D′(SH)
T 7→ B∗±T

are topological, linear isomorphisms intertwining the pullback actions of G on
SH = G/M and ∂H = K/M .

Proof. — As B± : G/M → K/M are surjective submersions, the pullback opera-
tors B∗± are injective operators on D′(K/M). We show that their images lie in the
indicated spaces: for T ∈ D′(K/M), Remark 3.4 implies

X
(
B∗±T

)
= 0 and U±

(
B∗±T

)
= 0

for all U± ∈ C∞(G/M ;G×M n±). For the surjectivity of Q+ consider a v ∈ D′(G/M)
such that
(3.5) Xv = 0 and ∀ U+ ∈ C∞(G/M ;G×M n+), U+v = 0 .
Now consider the AN -fiber bundle B+ : G/M → G/P and note that (3.5) implies
that v is a distribution which is constant along the fibers. Thus there is a T+ ∈
D′(G/P ) such that v = B∗+T+. Analogously, we obtain the surjectivity of Q−.
The fact that Q± intertwines the pullback action is a direct consequence of the

intertwining property (3.4) of B±.
The continuity of Q± follows directly from the continuity of push-forwards of

distributions under submersions. For the continuity of the inverse map consider the
embedding ι : K/M ↪→ G/M . Then (3.5) implies that for elements v ∈ R+(0), WF(v)
is a subset of the annihilator of G×M (a⊕ n+) in T ∗(G/M). Thus the Hörmander
condition for pullbacks [Hör90, Theorem 8.2.4] implies that ι∗ : R±(0)→ D′(K/M)
is well defined and continuous. As B± ◦ ι = IdK/M and Q± is bijective, we find that
ι∗ = Q−1

± and we deduce the continuity of the inverse map. �
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Similar isomorphisms can also be defined for nontrivial resonances λ 6= 0. This
requires the so called Busemann function (based at the origin) defined on H× ∂H
= G/K ×K/M by

(3.6) β :

G/K ×K/M → a

(gK, kM) 7→ β(gK, kM) := −H(g−1k) ,

where H : G → a is given by H(kan) = log a. Using this horocycle bracket as well
as the initial and end point maps, we can define the smooth functions on

(3.7) Φ± :

G/M → R
gM 7→ eν0β(gK,B±(gM)) ,

where ν0 := α0/‖α0‖. A straightforward computation using (3.2) and (3.3) shows
that they are ±1 eigenfunctions of the geodesic vector field,

(3.8) XΦ± = d

dt |t=0
Φ±

(
getH0M

)
= ±Φ±,

and they are constant in the stable and unstable directions, respectively:

(3.9) ∀ U± ∈ n± : U±Φ± = d

ds |s=0
Φ±

(
gesU±M

)
= 0.

For γ ∈ G, x ∈ H = G/K and b ∈ ∂H = K/M we have the following equalities
β(γx, γb) = β(x, b) + β(γK, γb)(3.10)
β(γK, γb) = −β(γ−1K, b),(3.11)

see for example [HHS12, Lemma 2.3]. Then for γ, g ∈ G we obtain
Φ±(γgM) =

(3.4)
eν0β(γgK,γ.B±(gM)) =

(3.10)
eν0β(gK,B±(gM))eν0β(γK,γB±(gM))

=
(3.11)

eν0β(gK,B±(gM))e−ν0β(γ−1K,B±(gM)).

If we introduce, generalizing [DFG15, (3.26)], the function
Nγ(kM) := e−ν0β(γ−1K,kM)

on ∂H = K/M , we get the identity (cf. [DFG15, (3.28)])
(3.12) Φ±(γgM) = Nγ(B±(gM))Φ±(gM).
A last ingredient is the compact picture of the spherical principal series.

Definition 3.6. — Let µ ∈ a∗C and Hµ := L2(∂H) be the Hilbert space of
square integrable functions w.r.t. the K-invariant measure on ∂H = K/M . Then the
spherical principal series representation (πcpt

µ , Hµ) is the representation of G on Hµ

given by (
πcpt
µ (γ)f

)
(k′M) := e−(µ+ρ)H(γ−1k′)f

(
k
(
γ−1k′

)
M
)

(3.13)

= e(µ+ρ)β(γK,k′M)f
(
k
(
γ−1k′

)
M
)
.

Here k(γ−1k′) = kKAN(γ−1k′) denotes the K-component of γ−1k′ ∈ G in the KAN -
decomposition.
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Note that these principal series representations are unitary iff µ ∈ iR. Furthermore
we can express (3.13) via the functions Nγ as follows:

(3.14)
(
πcpt
µ (γ)f

)
= N

−(µ+ρ)(H0)
γ−1

(
γ−1

)∗
f,

where (γ−1)∗ is the pullback of distributions with the diffeomorphism obtained by
the left G-action on K/M = G/P .

Proposition 3.7. — For λ ∈ a∗C the initial and end point transforms defined by

(3.15) Qλ,±(T ) := Φλ(H0)
± Q±(T )

are topological isomorphisms
Qλ,± : D′(∂H)→ R±(λ)

intertwining the left regular representation on R±(λ) ⊂ D′(SH) with the represen-
tation (πcpt

−(λ+ρ),D′(∂H)).

Proof. — In view of Lemma 3.5 and the properties of Φ±, the property of Qλ,±
being a topological isomorphism is clear. It only remains to verify the intertwining
property: for γ ∈ G and T ∈ D′(K/M) we compute(

γ−1
)∗

(Qλ,±T ) =
((
γ−1

)∗
Φλ(H0)
±

)
·
((
γ−1

)∗
B∗±T

)
=

(3.12),(3.4)

(
B∗±

(
N
λ(H0)
γ−1

)
Φλ(H0)
±

)
·
(
B∗±

(
γ−1

)∗
T
)

=
(
Φλ(H0)
±

)
·
(
B∗±

(
N
λ(H0)
γ−1 ·

(
γ−1

)∗
T
))

=
(3.14),λ=−(µ+ρ)

(
Φλ(H0)
±

)
·
(
Q±

(
πcpt
µ (γ)T

))
= Qλ,±

(
πcpt
µ (γ)T

)
.

�

Combining Proposition 3.7 with Remark 3.3 we arrive at the promised description
of the first band of Ruelle resonances.

Proposition 3.8. — There are isomorphisms of finite dimensional vector spaces
Res0

X(λ) ∼= Γ
(
H−∞−(λ+ρ)

)
and Res0

X∗(λ) ∼= Γ
(
H−∞−(λ+ρ)

)
,

where Γ(H−∞−(λ+ρ)) denotes the spaces of Γ-invariant distributional vectors in the
spherical principal series with spectral parameter µ = −(λ+ ρ).

After having described the Ruelle resonances by distributions on the boundary, we
now turn to the description of generalized resonant states via boundary distributions.

Proposition 3.9. — Let λ ∈ C be a Ruelle resonance of X onM = Γ\G/M .
Then the following conditions are equivalent.

(1) There is a Jordan block of first band resonant states of size J , i.e. there are
distributions u0, . . . , uJ−1 ∈ D′(M) and some λ such that

(3.16) (X + λ)u0 = 0 and (X + λ)uk = uk−1 for k = 1, . . . , J − 1
and U−uk = 0 for all smooth sections U− of the bundle Eu = Γ\G×M n−.
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(2) There exist distributions T0, . . . , TJ−1 ∈ D′(∂H) such that for 1 6 k 6 J − 1
and all γ ∈ Γ

(3.17) γ∗Tk = N−λγ

k∑
l=0

(logNγ)k−l
(k − l)! Tl

Proof. — We start with a Jordan basis uk onM = Γ\G/M as in (1) and we lift
them to a set of Γ-invariant distributions on the cover SH = G/M

(3.18) ũk := (πΓ)∗uk, k = 0, . . . , J − 1.
where πΓ : SH → M = SM is the natural projection. They satisfy the rela-
tions (3.16) with ũk replacing uk. Then we use the functions Φ− defined in (3.7) and
define the distributions on SH

(3.19) vk := Φ−λ−
k∑
l=0

(log Φ−)k−l
(k − l)! ũl.

From (3.9) we deduce U−vk = 0 for all sections U− in Ẽu. Using (3.8) as well as
the Γ-invariance of ũk, a straightforward computation yields Xvi = 0. According
to Lemma 3.5 there are unique distributions Tk ∈ D′(∂H) fulfilling vk = Q−Tk.
The transformation property (3.17) finally follows, as Q− intertwines the pullback
actions, from the following computation for γ ∈ Γ:

γ∗vk = γ∗Φ−λ−
k∑
l=0

(log γ∗Φ−)k−l
(k − l)! ũl

=
(3.12)

(
B∗−N

−λ
γ

)
Φ−λ−

k∑
l=0

(log Φ− +B∗− logNγ)k−l
(k − l)! ũl

=
(
B∗−N

−λ
γ

)
Φ−λ−

k∑
l=0

k−l∑
r=0

(k − l)!
r!(k − l − r)!

(log Φ−)r(B∗− logNγ)k−l−r
(k − l)! ũl

= B∗−N
−λ
γ

k∑
j=0

(B∗− logNγ)k−j
(k − j)! vj

This proves that (1) implies (2).
The converse follows similarly: Given T0, . . . , TJ−1 ∈ D′(∂H) fulfilling (3.17) we

can define vk = Q−Tk. Next, we can obtain ũl from the vk by (3.19). From (3.17) we
conclude that ũ ∈ D′(SH) are Γ-invariant, thus we obtain distributions uk ∈ D′(M).
By a straightforward computation they fulfill (3.18) and U−uk = 0 for all smooth
sections U− of Eu. �

4. Quantum-classical correspondence

4.1. Poisson Transformation

A central role for the relation between classical and quantum resonances is played
by the Poisson transformation which we now introduce.
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As explained in Section 3.2, we can identify a∗ with C via λ 7→ λ(H0), and we
shall do so in what follows, writing λ2 instead of λ(H0)2. Given a spectral parameter
µ ∈ a∗C we introduce the eigenspace (cf. [BS87])

Eµ(H) :=
{
u ∈ D′(H)

∣∣∣(∆H − ρ2 + µ2
)
u = 0

}
for the positive Laplacian ∆H on H. Note that by elliptic regularity the elements of
Eµ(H) are real analytic. If we define the space of quantum eigenstates of ∆M on M
as

Eig∆M
(µ) :=

{
u ∈ L2(M)

∣∣∣(∆M − ρ2 + µ2
)
u = 0

}
,

taking the lift to the universal cover π̃Γ : H → M we obtain a bijection between
eigenfunctions of ∆M and Γ-invariant elements in Eµ(H), denoted by

ΓEµ(H) := {f ∈ Eµ(H) |∀ γ ∈ Γ, γ∗f = f}.

Definition 4.1. — Let µ ∈ a∗C and define
pµ(gK, kM) := e(µ+ρ)β(gK,kM) ∈ C∞(G/K ×K/M),

which is the Schwartz kernel of the Poisson transformation and which defines, using
the K-invariant measure db := dµSn−1 = d(kM) on K/M , a linear operator

Pµ :

D′(K/M) → C∞(G/K)
T 7→ T (db)[pµ(gK, kM)] .

Here we use the notation that T (db) is the generalized density associated with the
distribution T via the invariant measure db.

In the case of rank 1 symmetric spaces, kernel and image of the Poisson transforma-
tion have very explicit descriptions. In this paper we mostly restrict our attention to
spectral parameters µ for which the Poisson transformation is injective. The maximal
domains of definition for the Poisson transformations are spaces of hyperfunctions.
As we restrict our attention to spaces of distributions we need to introduce spaces
of smooth functions with moderate growth in order to describe the image of our
Poisson transformations.
For f ∈ C∞(H) and r > 0 the norm

‖f‖r := sup
x∈H

∣∣∣f(x)e−r·dH(o,x)
∣∣∣ ,

where dH is the Riemannian distance function on H = G/K and o = eK is the base
point of H. Then we define

Erµ(H) := {f ∈ Eµ(H), ‖f‖r 6∞}.
The space of eigenfunctions of weak moderate growth (see [BS87, Remark 12.5]) can
then be defined as

E∗µ(H) :=
⋃
r>0
Erµ(H)

and we can equip it with the direct limit topology.
In the following proposition we collect the mapping properties of the Poisson

transformation we will use (cf. [BS87]).
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Proposition 4.2. — Define the set of exceptional parameters to be

(4.1) Ex :=
(
−mα0

2 − 1− 2N0

)
α0
⋃(
−mα0

2 −m2α0 − 2N0

)
α0 ⊂ a∗C.

For µ ∈ a∗C the Poisson transformation Pµ is a bounded continuous map

(4.2) Pµ : D′(∂H)→ E∗µ(H),

which is a topological isomorphism if and only if µ /∈ Ex.

Note that E∗µ(H) is invariant under the left regular representation. Moreover, if one
considers the compact picture πcpt

−µ of the spherical principal series representation
of G associated with the spectral parameter µ, then D′(∂H) can be interpreted as
the space of distribution vectors of πcpt

−µ (cf. [BS87]). As is well-known, the Poisson
transformation Pµ intertwines these two representations.
For later reference we collect some of the spectral properties of ∆M.

Remark 4.3. — Let Γ ⊂ G be a co-compact discrete subgroup. Then for all µ ∈ a∗C
the pullback of smooth functions is a bijection

(π̃Γ)∗ : Eig∆M
(µ)→ ΓEµ(H),

where ΓEµ(H) denote the space of Γ-invariant elements in Eµ(H). Consequently
ΓEµ(H) is finite dimensional and ΓEµ(H) 6= 0 only holds on a discrete set of values
for µ ∈ a∗C that fulfill ‖ρ‖2 − ‖µ‖2 > 0. Furthermore,

ΓEµ(H) ⊂ E0
µ(H) ⊂ E∗µ(H).

4.2. Correspondence of spectra and resonant states

Let us now come to the proof of the first main result. Consider the canonical
projection π̃0 : SH = G/M → H = G/K on the base of the fibration and similarly
π0 : SM = Γ\G/M →M = Γ\G/K. The pullback of smooth functions leads to a
map π∗0 : C∞c (M)→ C∞c (SM). Using the canonical measures on both spaces we can
identify distributions as dual spaces of smooth compactly supported functions and
by duality we obtain a map π0∗ : D′(SM)→ D′(M). In the same way we obtain the
associated pushforward on distributions π̃0∗ on the universal cover, which allows us
to state the following useful expressions for the Poisson transformation.

Proposition 4.4. — Let µ ∈ a∗C be an arbitrary spectral parameter. Then we
have the equalities Pµ = π̃0∗ ◦ Qµ−ρ,−, and Pµ = π̃0∗ ◦ Qµ−ρ,+, respectively, as maps
D′(∂H)→ D′(H).

Proof. — By a density argument we restrict our attention to the map for smooth
functions φ ∈ C∞(K/M). Recall from Section 3.1 that the invariant measures on
G/K, G/M and K/M are normalized such that∫

G/M
f(gM) d(gM) =

∫
G/K

∫
K/M

f(gkM) d(kM) d(gK).
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For f ∈ C∞c (G/M) and φ ∈ C∞c (G/K) we find∫
G/K

π̃0∗f · φ d(gK) =
∫
G/M

f · π̃∗0φ d(gM)

=
∫
G/K

∫
K/M

f(gkM) π̃∗0φ(gkM) d(kM) d(gK)

=
∫
G/K

∫
K/M

f(gkM)φ(gK) d(kM) d(gK).

This implies

(4.3) π̃0∗f(gK) =
∫
K/M

f(gkM) d(kM).

For ψ ∈ C∞(K/M) = C∞(G/P ) we recall Qµ−ρ,−(ψ) ∈ C∞(G/M) from (3.15) and
note that (we use the isomorphism gP 7→ k(g)M identifying G/P with K/M , k(g)
being the K element in the KAN -decomposition of g)

(Qµ−ρ,−ψ)(gM) = Φ(µ−ρ)(H0)
− (gM)ψ(gw−P )

=
(
eν0β(gK,B−(gM))

)(µ−ρ)(H0)
ψ(gw−P )

= e(µ−ρ)β(gK,k(gw−)M)ψ(k(gw−)M).

Now (4.3) and [Hel84, Lemma I.5.19] allow us to compute

[(π̃0∗ ◦ Qµ−ρ,−)ψ](gK) =
∫
K/M

e(µ−ρ)β(gk′K,k(gk′w−)M)ψ(k(gk′w−)M) d(k′M)

=
∫
K/M

e(µ−ρ)β(gK,k(gk′)M)ψ(k(gk′)M) d(k′M)

=
∫
K/M

e(µ−ρ)β(gK,kM)ψ(kM)e−2ρ(H(g−1k)) d(kM)

=
∫
K/M

e(µ−ρ)β(gK,kM)ψ(kM)e2ρβ(gK,kM) d(kM)

= (Pµψ)(gK)

(the third line corresponds to a change of variable k′ 7→ k := k(gk′) in ∂H = K/M).
The equality Pµ = π̃0∗ ◦ Qµ−ρ,+ follows analogously. �

Theorem 4.5. — Let G be of real rank 1 and Γ ⊂ G a discrete, torsion-free, co-
compact subgroup, let H = G/K and M = Γ\H. If µ ∈ a∗C \Ex is a regular spectral
parameter, then the pushforward π0∗ : D′(SM)→ D′(M) restricts to isomorphisms

(4.4) π0∗ : Res0
X(µ− ρ)→ Eig∆M

(µ) and π0∗ : Res0
X∗(µ− ρ)→ Eig∆M

(µ).

Proof. — Note that we have a bijection (π̃Γ)∗ : Eig∆M
(µ)→ ΓEµ(H) (Remark 4.3)

as well as bijections (πΓ)∗ : Res0
X(λ(H0)) → ΓR−(λ) and (πΓ)∗ : Res0

X∗(λ(H0))
→ ΓR+(λ) (Remark 3.3). If we consider the projections on the covers we have the
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following commuting diagram
ΓD′(SH) ΓD′(H)

D′(SM) D′(M).

π̃0∗

π∗Γ

π0∗

π̃∗Γ

We see that it is sufficient to prove that π̃0∗ : ΓR±(µ− ρ) 7→ ΓEµ(H) is an iso-
morphism. By Propositions 4.2 and 3.7 we already know that Pµ ◦ (Qµ−ρ,±)−1 :
ΓR±(µ− ρ) 7→ ΓEµ(H) is an isomorphism and we conclude with Proposition 4.4. �
We can also give a precise description of first band Jordan blocks: we write
Res0

X(λ, k) :=
{
u ∈ D′(SM)

∣∣∣(X + λ)ku = 0, U−u = 0, ∀ U− ∈ C∞(SM;Eu)
}
.

Theorem 4.6. — If µ ∈ a∗C \Ex is a regular spectral parameter and µ 6= 0, then
there are no first band Jordan blocks with spectral parameter λ = −ρ+ µ:

∀ k ∈ N∗ : Res0
X(λ, k) = Res0

X(λ, 1).
If µ = 0, then the first band Jordan block at λ = −ρ is precisely of size two, i.e.
∀ k > 2, Res0

X(λ, k) = Res0
X(λ, 2), and dim Res0

X(λ, 2) = 2 dim Res0
X(λ, 1).

Proof. — Let µ ∈ a∗C, µ /∈ Ex ∪ {0}. In order to simplify the notation, let us
identify throughout this proof a∗C ∼= C by identifying ν0 with 1. Assume that there
is a non-trivial Jordan block for λ = −ρ+ µ. Then there are nonzero distributions
u0, u1 ∈ D′(SM) with (X + λ)u0 = 0, (X + λ)u1 = u0 and U−u0 = U−u1 = 0 for all
smooth sections U− in Ẽu. From Theorem 4.5 we know that φ0 := π0∗(u0) ∈ C∞(M)
is a nonzero element that fulfills (∆M − ρ2 + µ2)φ0 = 0. We claim that by setting
φ1 := π0∗(u1) we obtain (

∆M − ρ2 + µ2
)
φ1 = 2µφ0.

If this holds, then pairing this equation with φ0, for µ 6= 0 we get 2µ||φ0||2L2 = 0 so
that φ0 = 0, which is a contradiction.
Now let us prove the claim: let ũ0, ũ1 ∈ D′(SM) and φ̃0, φ̃1 ∈ C∞(H) be the

lifts of φi to the universal cover. By Proposition 3.9 and its proof we can write
ũ1 = Φµ−ρ

− (B∗−T1 − log Φ−B∗−T0) with T0, T1 ∈ D′(∂H). Furthermore, by Propo-
sition 4.4 we can write ∂µPµ(T0) = π̃0∗(Φµ−ρ

− log Φ−B∗−T0). Thus we get φ̃1 =
Pµ(T1)− ∂µPµ(T0) and

(4.5)
(
∆H − ρ2 + µ2

)
φ̃1 = −

(
∆H − ρ2 + µ2

)
∂µPµ(T0).

Now it is easily checked that
(4.6) 2µPµ(T0) +

(
∆H − ρ2 + µ2

)
∂µPµ(T0) = 0,

by taking the derivative of the equation (∆H − ρ2 + µ2)Pµ(T0) = 0 with respect to
µ. Thus, (4.5) and (4.6) imply the above claim.
Let us finally consider the case µ = 0 and assume there is a Jordan block of size

larger than two. Then there are nonzero distributions u0, u1, u2 ∈ D′(SM) such that
(X − ρ)u2 = u1, (X − ρ)u1 = u0, (X − ρ)u0 = 0
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and U−ui = 0 for all smooth sections U− in Ẽu. We set for i = 1, 2, 3, φi = π0∗(ui)
∈ D′(M) and claim that

(4.7)
(
∆M − ρ2

)
φ2 = −φ0.

As above, pairing this equation with φ0 we get a direct contradiction. In order to
prove this claim, let ũ0, ũ1, ũ2 ∈ D′(SH) and φ̃0, φ̃1, φ̃2 ∈ D′(H) be the lifts to the
covers. By Proposition 3.9 and its proof we can write

ũ2 = Φ−ρ−
(
B∗−T2 − (log Φ−)B∗−T1 + 1

2(log Φ−)2B∗−T0

)
with T0, T1, T2 ∈ D′(∂H).
Using again the representation of the Poisson transformation from Proposition 4.4

we get

(4.8) φ̃2 = Pµ(T2)− (∂µPµ)|µ=0(T1) + 1
2
(
∂2
µPµ

)
|µ=0

(T0).

Now taking the second derivative of (∆H − ρ2 + µ2)Pµ(T0) = 0 at µ = 0 we get

(4.9) 2P0(T0) +
(
∆H − ρ2

) (
∂2
µPµ

)
|µ=0

(T0) = 0.

Finally (4.8), (4.6) and (4.9) together imply (4.7). This shows that the first band
Jordan blocks of X at λ = −ρ are maximally of size two.
Let us finally show that at µ = 0 the Jordan blocks are at least of size two.

To this end we assume that Res0
X(−ρ) is nonzero and u0 ∈ Res0

X(−ρ) \ {0}. By
Proposition 3.7 we know that for ũ0 ∈ R−(−ρ) there exists a classical boundary
value T0 ∈ D′(∂H) such that ũ0 = Q−ρ,−(T0). From the same proposition we obtain
πcpt

0 (γ)T0 = T0 for all γ ∈ Γ. For µ /∈ a∗C \Ex we define the scattering operator for H

(4.10) Sµ :

D′(∂H) → D′(∂H)
T 7→ P−1

µ ◦ P−µ(T ) .

Note that by Proposition 4.2 this operator is well defined and we have
(4.11) Sµπ

cpt
µ (g) = πcpt

−µ(g)Sµ for all g ∈ G.
Obviously, we have S0 = Id. Taking the derivative of (4.11) with respect to µ at
µ = 0, we obtain
(4.12)

πcpt
0 (g)(∂µSµ)|µ=0 − (∂µSµ)|µ=0 π

cpt
0 (g) = −2

(
∂µπ

cpt
−µ(g)

)
|µ=0

for all g ∈ G.

If we now set T1 := −1
2(∂µSµ)|µ=0 T0 ∈ D′(∂H), then (4.12), together with the

transformation properties of T0, yields

πcpt
0 (γ)T1 − T1 =

(
∂µπ

cpt
−µ(γ)|µ=0 T0

)
for all γ ∈ Γ.

With (3.14) this implies
γ∗T1 = Nρ

γ (T1 + logNγT0) for all γ ∈ Γ.
Note that Proposition 3.9 implies that the existence of such a pair of distributions
T0, T1 ∈ D′(∂H) is equivalent to the existence of u1 ∈ D′(SM) with (X − ρ)u1 = u0.
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We have thus constructed for any u0 ∈ Res0
X(−ρ) a Jordan block of size two. This

finishes the proof of Theorem 4.6. �

For the special case of a real hyperbolic space a description of Jordan blocks is
given in [DFG15]. The proof there however relies on the pairing formula and the
self adjointness of the Laplacian. Here we have given a different proof, more in the
spirit of [GHW18], that also allows the precise description of the spectral value at
λ = −ρ which was untractable with the methods in [DFG15]. For G = SL2(R), it is
also shown in [Cos05, FF03] that −ρ has a Jordan block.
Let us finally give a rough description of the first band resonant states at the ex-

ceptional points. At these points the Poisson transformation is not injective anymore,
but one has a nontrivial, closed G-invariant subspace kerPµ ⊂ D′(∂H) ∼= H−∞µ as
well as a G-invariant subspace ImPµ ⊂ E∗µ(H). In particular, the existence of the
kernel implies that at these exceptional points there could be more Ruelle resonant
states in the first band than expected from the Laplace spectrum.

Proposition 4.7. — Let µ ∈ Ex ⊂ a∗C be an exceptional spectral parameter.
Then

(4.13) dim Res0
X(µ− ρ) = dim Res0

X∗(µ− ρ) = dim(ΓkerPµ) + dim(ΓImPµ).

In particular, if ‖µ‖ > ‖ρ‖, then we have

(4.14) dim Res0
X(µ− ρ) = dim Res0

X∗(µ− ρ) = dim(ΓkerPµ).

If µ = −ρ, then we get dim Res0
X(µ− ρ) = dim Res0

X∗(µ− ρ) = dim(ΓkerPµ) + 1.

Proof. — The statement follows directly from Proposition 3.8. If we write the
finite dimensional vector space Γ(H−∞µ ) = Γ(kerPµ) ⊕ C with an arbitrary lin-
ear complement C ⊂ Γ(H−∞µ ), then Pµ : C → ΓImPµ is a bijection and we
get (4.13). Furthermore, if ‖µ‖ > ‖ρ‖, then by positivity of ∆M we know that ΓE∗µ(H)
∼= Eig∆M

(µ) = 0, thus dim(ΓImPµ) = 0 and we obtain (4.14). If µ = −ρ, then
ImPµ = C. �

Note that for real and complex hyperbolic spaces, ‖µ‖ > ‖ρ‖ if µ ∈ Ex.

5. A new description of Patterson–Sullivan distributions

We briefly recall the construction of Patterson–Sullivan distributions from [AZ07,
HHS12, HS09]. For µ, µ′ ∈ a∗C we introduce a weighted Radon transform Rµ,µ′ by

(Rµ,µ′f)(g) :=
∫
A
e(µ+ρ)H(ga) + (µ′+ρ)H(gaw)f(ga) da

for each f ∈ C∞c (G/M). By definition this Radon transformation is right MA-
invariant and we have [HHS12, Lemma 4.4]

Rµ,µ′ : C∞c (G/M)→ C∞c (G/MA).

The Patterson–Sullivan distributions are then defined as follows:
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Definition 5.1. — Let µ, µ′ ∈ a∗C and ϕµ ∈ E∗µ(G/K) ϕµ′ ∈ E∗µ′(G/K). Then the
associated Patterson–Sullivan distribution PSϕµ,ϕµ′ ∈ D

′(G/M) is the generalized
density defined by its evaluation at f ∈ C∞c (G/M):

PSϕµ,ϕµ′ (f) :=
∫

G/MA

(Rµ,µ′f) (gMA)
[
P−1
µ (ϕµ)

]
(db) ⊗

[
P−1
µ′ (ϕµ′)

]
(db′).

Here [P−1
µ (ϕµ)](db) and [P−1

µ′ (ϕµ′)](db′) are the generalized densities on ∂H =
K/M = G/P obtained by the boundary distributions and the invariant measure.
Their tensor product is a generalized density on ∂H × ∂H and can be restricted
to the open subset (∂H)2

∆ := (∂H × ∂H) \ ∆(∂H), where ∆(∂H) is the diagonal
in ∂H× ∂H. Note that G acts transitively on (∂H)2

∆ with respect to the diagonal
action and that (∂H)2

∆
∼= G/MA as a G-homogeneous space.

Let us denote by I+(µ) and I−(µ) the respective inverse maps of the isomor-
phisms (4.4), defined on Eig∆M

(µ) by

I+(µ) := (π∗Γ)−1Qµ−ρ,+ ◦ (Pµ)−1π̃∗Γ, I−(µ) := (π∗Γ)−1Qµ−ρ,− ◦ (Pµ)−1π̃∗Γ.

Theorem 5.2. — Let µ, µ′ ∈ a∗C \ Ex and ϕµ ∈ Eig∆M
(µ) and ϕµ′ ∈ Eig∆M

(µ′).
Then the Patterson–Sullivan distribution PSϕµ,ϕµ′ descends to SM = Γ\G/M and
is given by

(5.1) PSϕµ,ϕµ′ = I+(µ)(ϕµ) · I−(µ′)(ϕµ′).

Here the product of the distributions I+(µ)(ϕµ) and I−(µ′)(ϕµ′) is well defined by the
wavefront condition. The descended Patterson–Sullivan distribution will be denoted
by PSΓ

ϕµ,ϕµ′
.

Proof. — We will prove the statement for the corresponding Γ-invariant distri-
butions on G/M . Let ϕ̃µ ∈ Eµ(G/K) and ϕ̃µ′ ∈ Eµ′(G/K) be the lifted Laplace
eigenfunctions. Then the lift of the left hand side of (5.1) simply becomes PSϕ̃µ.ϕ̃µ′ ,
while the right hand side becomes[[

Qµ′−ρ,− ◦ (Pµ′)−1
]

(ϕ̃µ) ·
[
Qµ−ρ,+ ◦ (Pµ)−1

]
(ϕ̃µ)

]
(d(gM)) ∈ D′(G/M).

Note that with the diffeomorphism

Ψ :

G/M → A× (∂H)2
∆

gM 7→ (a(g), B+(gM), B−(gM))

we can write the G invariant measure d(gM) as

dgM = e2ρ(H(g)+H(gw))(Ψ−1)∗(da db db′).

In fact, in view of G/MA ∼= (∂H)2
∆ and the description of the K-invariant measures

on G/P ∼= K/M and G/P ∼= K/M this follows from∫
G/M

f(gM) d(gM) =
∫
G/MA

∫
A
f(gaM) da d(gMA)
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and Ψ(gaM) = (a(g)a,B+(gM), B−(gM)). Now inserting the expressions for Qλ,±
from (3.15) and replacing the measure, we obtain for the right-hand-side

e(µ+ρ)H(g)+(µ′+ρ)H(gw)(Ψ−1)∗
(
da⊗

[
P−1
µ (ϕ̃µ)

]
(db)⊗

[
P−1
µ′ (ϕ̃µ′)

]
(db′)

)
.

This is exactly the Patterson–Sullivan distribution as defined in Definition 5.1. �

6. A pairing formula for Ruelle resonant states

Let us normalize the Haar measure(4) on N by
∫
N e
−2ρH(n) dn = vol(Sn−1). Now

we can define the Harish–Chandra c-function as the holomorphic function given by
the convergent integral for Re(z) > 0

(6.1) c(z) :=
∫
N
e−(ρ+z)H(n) dn.

It has a meromorphic continuation to z ∈ C (see e.g. [Hel84, IV.6]) which is given
by

c(λ‖α0‖) = c0
2−λΓ(λ)

Γ
(

1
2

(
1
2mα0 + 1 + λ

))
Γ
(

1
2

(
1
2mα0 +m2α0 + λ

)) ,
where

c0 =
πn/221+ 1

2mα0+m2α0 Γ
(

1
2 (mα0 +m2α0 + 1)

)
Γ(n/2) .

One easily checks that the zeros and poles of the c-function are contained in the real
line.

Theorem 6.1. — Let λ ∈ C\{−ρ−N0α0} be a Ruelle resonance in the first band
and let v ∈ Res0

X(λ) and v∗ ∈ Res0
X∗(λ) be some associated resonant/co-resonant

states. Then we have∫
M
π0∗(v)π0∗(v∗) dx = c(ρ+ λ)v · v∗[1SM].

The product v · v∗ is well defined by the wavefront set properties of v and v∗ and
can be paired with the constant one function 1SM.

As a direct consequence of Theorem 6.1 we obtain that for two quantum eigen-
states ϕ, ϕ′ ∈ Eig∆M

(µ) the normalization of the corresponding Patterson–Sullivan
distribution is given by

PSϕ,ϕ′ [1SM] = 1
c(µ)〈ϕ, ϕ

′〉L2(M).

Furthermore, the pairing formula allows to relate the invariant Ruelle distributions
(defined in (2.1)) to Patterson–Sullivan distributions:

(4)This normalization is slightly different from normalizations common in the literature of symmetric
spaces, where one has c(ρ) = 1. We have chosen this normalization such that they give simple
formulas in our geometric context.

TOME 4 (2021)



102 Colin GUILLARMOU, Joachim HILGERT & Tobias WEICH

Corollary 6.2. — Let r > 0 such that −ρ+ ir is a Ruelle resonance of multi-
plicity m in the first band. Then ρ2 + r2 is an eigenvalue of ∆M with multiplicity m
and, for an L2-orthonormal basis ϕ1, . . . , ϕm of Eig∆M

(ir), we have

T−ρ+ir = c(ir)
m

m∑
l=1

PSϕl,ϕl .

Proof. — Via the quantum-classical correspondence (Theorem 4.5) we define a
basis of Ruelle resonant states ul := I−(ir)(ϕl) ∈ ResX(−ρ+ ir) as well as a basis of
co-resonant states u∗l := c(ir)I+(ir)(ϕl) ∈ ResX∗(−ρ+ ir). Now the pairing formula
(Theorem 6.1) together with the chosen normalization of u∗i implies the bilinear
pairing formula

〈u∗i , uj〉 :=
∫
SM

ui · u∗i dµL = δij,

which means that the basis u∗i is dual to the chosen basis ui. By Theorem 4.6 we
know that there are no Jordan blocks at the spectral parameter −ρ+ ir and thus the
spectral projector can be written as Π−ρ+ir = ∑m

l=1 ul ⊗ u∗l . Now for f ∈ C∞(M)
we obtain

Tρ+ir[f ] = 1
m

m∑
l=1
〈u∗l , ful〉 = c(ir)

m

m∑
l=1

PSϕl,ϕl [f ]

which completes the proof of Corollary 6.2. �
So far, pairing formulas like Theorem 6.1 have been shown for compact hyper-

bolic surfaces [AZ07, Theorem 1.2] and compact real hyperbolic manifolds [DFG15,
Lemma 5.10]. We follow the strategy of proof of [DFG15]: first we consider the pair-
ing

∫
M π0∗(v)π0∗(v∗) with respect to the measure which is obtained by restricting the

measure dx on G/K to a Γ-fundamental domain. Then we construct a coordinate
transformation on an open dense subset that formally makes the Harish–Chandra
c-function appear as an integral over N (see Lemma 6.3). However, as we integrate
distributions, we have to cut out an ε-neighborhood of the points where the coordi-
nate transformation is not defined and consider the limit ε→ 0 (see Lemma 6.4). As
in [DFG15] this turns out to be a subtle limit that requires a suitable regularization
of divergent integrals. Compared to the constant curvature case there are two major
challenges: first, one has to replace the explicit computations in the hyperboloid
model in the construction of the coordinate transformations. Second, one has to deal
with the fact that the defining integral of the c-function becomes an integral over a
non-commutative group N , adding some anisotropy to the regularization process.

6.1. A suitable coordinate transformation

Let us define the double unit sphere bundle Sn−1 × Sn−1 → S2M → M as the
pullback of SM×SM under the diagonal embedding M ↪→M×M (or equivalently
as S2M = {((x, η+), (x′, η−)) ∈ SM×SM | x = x′}) and equip this bundle with the
measure dx ⊗ dµSn−1 ⊗ dµSn−1 for which we will use the slightly shorter notation
dx dη+ dη−. Define

I :=
∫

M
π0∗(v)π0∗(v∗) dx =

∫
S2M

v(x, η+)v∗(x, η−) dx dη+ dη−.

ANNALES HENRI LEBESGUE



Invariant Ruelle densities 103

Figure 6.1. The figure visualizes the coordinate transformation for the case
G = SL(2,R): A base point x ∈ G/K can be thought as a point in the Poincaré
disk and η± are tangent vectors of this point. The points k±M ∈ K/M are the
starting and end points through the geodesics, tangent to the vectors η±. Except
in the case η+ + η− = 0 those are two disjoint points on the boundary K/M
and they define a unique geodesic which can be interpreted by gMA. On this
geodesic, the point gM is by construction chosen such that it is the projection
of x along an unstable manifold of the geodesic gMA.

The integral on the right makes sense by the wavefront set properties of v, v∗: indeed,
v ⊗ v∗ ∈ D′(SM× SM) has wavefront set contained in E∗u × E∗s and its restriction
to the submanifold S2M makes sense since N∗(S2M) ∩ (E∗u × E∗s ) = ∅ because of
the transversality E∗u ∩ E∗s = {0}. We furthermore define the open dense subset
S2

∆M := {(x, η−, η+) ∈ S2M | η− + η+ 6= 0}. Recall that the unstable bundle
Eu → M is given by an associated vector bundle Eu = Γ\G ×M n− and, using
the exponential map, can be identified with Γ\G ×M N . We will denote points in
Eu by equivalence classes [g, n], where [gm, n] = [g,mnm−1] for all m ∈ M . Thus,
any M -conjugation invariant function χ ∈ C∞c (N) defines a function in C∞c (Eu,C),
which we also denote by χ. We have:

Lemma 6.3. — There is a diffeomorphism A : S2
∆M → Eu such that for any

M -conjugation invariant function χ ∈ C∞c (N), any Ruelle resonance λ ∈ C in the
first band and associated resonant/co-resonant states v ∈ Res0

X(λ), v∗ ∈ Res0
X∗(λ),

we have

(6.2)
∫
S2

∆M
v(x, η−)v∗(x, η+)χ ◦ A(x, η−, η+) dx dη− dη+

=
∫
SM

vv∗dµL

∫
N
e−(2ρ+λ)H(n)χ(n) dn

Proof. — (For a geometric interpretation of the constructions below, see Fig-
ure 6.1). We first give an explicit construction of the diffeomorphism by constructing
a left G-invariant diffeomorphism Ã : S2

∆Hn → Ẽu ∼= G×MN . In a first step consider
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the G-equivariant diffeomorphism

E :

 S2H → H× ∂H× ∂H
(x, η−, η+) 7→ (x,B−(x, η−), B+(x, η+))

via the initial and end point maps B± : SH → ∂H from (3.1) and note that it
restricts to a diffeomorphism E : S2

∆H → H × (∂H)2
∆. Furthermore, recall (see

e.g. [HS09, Section 2] and [HHS12, Proposition 2.7]) that there is a G-equivariant
diffeomorphism

(6.3) G :

G/MA → (∂H)2
∆

gMA 7→ (gwP, gP )

after identifying ∂H ∼= G/P , where w = w− denotes a representative of the nontrivial
Weyl group element. Note that the map

(6.4) ψ :

G×M N → G/K ×G/MA

[g, n] 7→ (gnK, gMA)

is well defined and left G-equivariant. Furthermore, we can construct an inverse
using the ANK-decomposition g = aANK(g)nANK(g)kANK(g)

ψ−1 : (hK, gMA) 7→
[
gaANK

(
g−1h

)
, nANK

(
g−1h

)]
.

Using these three diffeomorphisms we define A := ψ−1 ◦ G−1 ◦ E .
It remains to prove (6.2). We clearly have that the left hand side equals∫

Eu
A∗(vv∗)χ(n)A∗(dx dη− dη+).

Thus, we have to compute the pushforward of the distribution A∗(vv∗) and the
measure A∗(dx dη− dη+).
Let us first consider the pushforward A∗v∗: as v∗ is a first band co-resonant state,

we know by Proposition 3.7 that v∗ = Φλ
+B
∗
+w for some distribution w ∈ D′(∂H).

If we write A(x, η−, η+) = [g, n], then by the construction of A we have B+(x, η+)
= B+(gM) = kKAN(g)M and consequently

(A∗v∗)([g, n]) = v∗(x, η+) = eλ(β(x,kKAN (g)M)−β(gK,kKAN (g)M))v∗(gM).

Since x = gnK, we can use (3.6) and (3.10) to simplify this expression to

(A∗v∗)([g, n]) = eλβ(nk,g−1kKAN (g)M)v∗(gM) = e−λH(n−1)v∗(gM).

In a similar manner we obtain the equality (A∗v)([g, n]) = v(gM). The latter equality
can also be understood geometrically as (x, η−) and gM lie, by construction, on the
same unstable manifold and v is constant along the unstable leaves, because it is a
first band co-resonant state.
Next, let us consider the transformation of measures. In analogy to the final step

in the proof of Proposition 4.4 we use [Hel84, Lemma I.5.19] to establish the formula

E∗(dx dη− dη+) = e2ρ(β(x,k−M) +β(x,k+M)) dx d(k−M) d(k+M).

ANNALES HENRI LEBESGUE



Invariant Ruelle densities 105

Moreover, by the Propositions B.2 and B.3 proved in the appendix, we have

G∗
(
e−2ρ(H(g) +H(gw)) d(gMA)

)
= cG d(k−M) d(k+M)

and
cψψ∗(d(gM) dn) = d(gK) d(gMA) .

Putting these three transformations together and simplifying the exponents
using (3.6) and (3.10) we obtain a constant cA > 0 such that

(6.5) A∗(dx dη− dη+) = cAe
−2ρH(n−1) d(gM) dn.

Because dn is invariant under inversion, this establishes (6.2) up to a multiplicative
constant. However, this constant is equal to 1 by the choice of the normalizations of
the measures. This can be seen by passing to a co-compact quotient and integrating
a constant function on both sides of the variable transform. This completes the proof
of Lemma 6.3. �

6.2. Renormalization

The formula of Lemma 6.3 would directly imply the desired pairing formula if we
could set χ = 1. However, as v, v∗ are distributions, this is not allowed and in fact
we see for the important case of taking a Ruelle resonance with Re(λ) = −ρ that
the integral over N on the right hand side of (6.2) would not converge anymore. We
thus have to perform a careful regularization of the appearing quantities.
As a first step we introduce a suitable cutoff function: We take an arbitrary M -

conjugation invariant function χ ∈ C∞c (N) which is equal to 1 in a neighborhood of
the identity. Then we define for any ε > 0

χε(n) := χ
(
e− ln(ε)Ȟ0neln(ε)Ȟ0

)
,

where Ȟ0 := H0/‖α0‖. Since the conjugation by exp(− ln(ε)Ȟ0) strictly contracts N
to the identity, the function χε converges to 1 on compact sets of N as ε → 0. As
M centralizes A, χε is still M -conjugation invariant, so that it defines a function in
C∞c (Γ\G×M N,C). After a pullback with A this function can be identified with a
function in C∞c (S2

∆M) ⊂ C∞(S2M). By abuse of notation we will denote all these
instances of the function by χε and it will be clear from the context where the
function lives. Having defined χε we can write

I =
∫
S2

∆M
v(x, η−)v∗(x, η+)χε dx dη− dη+︸ ︷︷ ︸

=: Ic(ε)

+
∫
S2M

v(x, η−)v∗(x, η+)(1− χε) dx dη− dη+︸ ︷︷ ︸
=: I0(ε)

.

Note that by this decomposition the term Ic(ε) can now be treated with the
transformation from Lemma 6.3. The idea of taking formally χ = 1 would correspond
to considering the limit ε→ 0. We will see that in general this limit is defined neither
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for Ic(ε) nor for I0(ε). However, we can prove the following important asymptotic
expansions.
Lemma 6.4. — Given a Ruelle resonance λ ∈ C \ {−ρ− N0α0} in the first band

and corresponding Ruelle resonant/coresonant states v ∈ Res0
X(λ), v∗ ∈ Res0

X∗(λ),
there are nonzero exponents β` ∈ C, ` = 1, . . . , `0 such that for some coefficients
α` ∈ C

(6.6)

∣∣∣∣∣∣Ic(ε)− c(λ+ ρ)
∫
S∗M

vv∗ dµL −
`0∑
`=1

α`ε
β`

∣∣∣∣∣∣ = O(ε),

and for some other set of coefficients α′`,

(6.7)

∣∣∣∣∣∣I0(ε)−
`0∑
`=1

α′`ε
β`

∣∣∣∣∣∣ = O(ε).

Remark 6.5. — As we know that I = Ic(ε) + I0(ε) is independent of ε, we directly
conclude that for all ` with Re(β`) < 0 we have α` = −α′` and Theorem 6.1 is a
direct consequence of Lemma 6.4.
An important tool in the proof of the expansions (6.6) and (6.7) will be the

following differential operator on N

(Lf)(n) := d

dτ |τ=0
f
(
e−τȞ0neτȞ0

)
, f ∈ C∞(N),

which satisfies the relation ε∂εχε = Lχε. Note that for U1 ∈ g−α, U2 ∈ g−2α we have

(6.8) Lf(exp(U1 + U2)) = d

dτ |τ=0
f ◦ exp

(
eτU1 + e2τU2

)
.

Thus, the operator L corresponds to a special linear combination of Euler operators
on the two different root spaces.
As L commutes with the M -conjugation on N we can lift it to a differential

operator L̃ with smooth coefficients on Γ\G×M N in the following way:

L̃f([g, n]) := d

dτ |τ=0
f
([

Γg exp
(
τȞ0

)
, e−τȞ0neτȞ0

])
.

Note that L̃ is not just the differential operator that differentiates along the fibers
of Γ\G×M N , but it is twisted with a derivative along the geodesic flow on the base
space Γ\G/M . Nevertheless, we still have the property ε∂εχε = L̃χε, where χε is
now understood as a function on Γ\G×M N . The twist is crucial for the following
lemma.
Lemma 6.6. — The differential operator (A−1)∗L̃ on the open dense set S2

∆M ⊂
S2M extends to a first order differential operator on S2M with smooth coefficients.

By abuse of notation we will denote this extended operator on S2M again by L̃.
Proof. — Just as we did for the definition of A, we lift everything to H. By

definition the vector field A−1
∗ L̃ is smooth on S2

∆H, so we have to study its behav-
ior near the antidiagonal {η− + η+ = 0} ⊂ S2H, and we need some appropriate
coordinates for this neighborhood. By the NAK-decomposition we can identify
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S2H ∼= G/K×K/M×K/M ∼= G/K×G/P ×G/P . The antidiagonal consists of the
points (naK, kP, kwP ), na ∈ NA, k ∈ K, where again w is some representative of
the nontrivial Weyl group element. By the Bruhat decomposition (naK, kP, kwn∆P )
with na ∈ NA, k ∈ K,n∆ ∈ N parametrizes an open neighborhood of the antidiag-
onal and the antidiagonal corresponds to n∆ = e. We now want to compute how
these coordinates are transformed for n∆ 6= e under the diffeomorphism A.
The crucial point is that we need an explicit expression for G−1. This can also be

achieved by the Bruhat decomposition which for real rank one implies that NP ⊂ G
is open and dense. Given g ∈ NP we define nNP (g) ∈ N to be the unique element
such that gP = nNP (g)P . Then we can write

G−1(g1wP, g2P ) = g1nNP
(
g−1

1 g2
)
MA.

Putting everything together we obtain

A (naK, kP, kwn∆P ) = ψ−1G−1 (naK, nakwP, nakwn∆P )

= ψ−1 (naK, nakΩ(n∆)MA) =
[
nakΩ(n∆),Ω(n∆)−1

]
,

where

Ω :

N \ {e} → N \ {e}
n 7→ nNP (wn)) .

The inverse transformation reads

(6.9) A−1([g, n]) =
(
gnK, kNAK(gn)P, kNAK(gn)wΩ−1

(
n−1

)
P
)
.

Now the crucial observation for the smoothness of L̃ is that for any n ∈ N

we−τȞ0neτȞ0P = eτȞ0wnP = eτȞ0nNP (wn)P = eτȞ0nNP (wn)e−τȞ0P,

so that one has Ω(e−τȞ0neτȞ0) = eτȞ0Ω(n)e−τȞ0 and Ω∗L = −L.
Using this identity and (6.9) we compute the transformation of the global vector

field:

(6.10)
(
A−1
∗ L̃

)
f([naK, kP, kwn∆P ])

= d

dτ |τ=0
f
(
A−1

[
nakΩ(n∆)eτȞ0 , e−τȞ0Ω(n∆)−1eτȞ0

])
= d

dτ |τ=0
f
(
nakeτȞ0K, kNAK

(
keτȞ0

)
P, kNAK

(
keτȞ0

)
weτȞ0n∆e

−τȞ0P
)
,

which clearly is smooth in a neighborhood of the diagonal.(5) �

(5)Without the derivative along the geodesics in L̃ there would occur a derivative
d

dτ |τ=0
nake−τȞ0Ω(n)eτȞ0

or A−1
∗ L. But near the diagonal in the limit n → e, Ω(n) → ∞, so this derivative would diverge.

This shows the necessity of the precise choice of L̃.
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Using the smooth vector field L̃ on S2M we get the identity ε∂εχε = −L̃(1− χε)
(for the last equality note that L̃1 = 0). Now integration by parts yields

(6.11)
ε∂εI0(ε) =

∫
S2M

(
L̃∗(vv∗)

)
(1− χε) dx dη− dη+

ε∂εIc(ε) =
∫
S2M

(
L̃∗(vv∗)

)
χε dx dη− dη+,

where L̃∗ = −L̃− divdxdη− dη+(L̃) is the L2 adjoint on S2M. By virtue of Lemma 6.3
we obtain the alternative expression

ε∂εIc(ε) =
∫
SM

vv∗ dµL ·
∫
N

(
L∗e−2(ρ+λ)H(n)

)
χε(n) dn ,

where L∗ = −L− divdn(L) is the L2-adjoint on N .
The following Lemma 6.7 implies that L is suitable for a regularization at infin-

ity in n and L̃ is suitable for a regularization near the antidiagonal in S2M . In
order to formulate it, let us define 〈n〉 := ‖U1‖2 + ‖U2‖ where n = exp(U1 + U2),
U1 ∈ g−α0 , U2 ∈ g−2α0 .

Lemma 6.7. — There are functions V` = V`,λ ∈ C∞(N) depending polynomially
on λ as well as polynomials β`(λ), ` = 1, 2, . . . that do not vanish for λ ∈ C \ {−ρ−
N0α0} such that

(6.12) (L∗ − β`(λ))V`−1(n)e−(2ρ+λ)H(n) = V`(n)e−(2ρ+λ)H(n),

where we set V0(n) = 1 and for fixed λ the functions V` satisfy the uniform pointwise
estimate V` = O(〈n〉−`) for 〈n〉 → ∞.
Furthermore V`◦A ∈ C∞(S2

∆M) extends to a smooth function Ṽ` ∈ C∞(S2M) that
vanishes of order O(〈n∆〉`) at the antidiagonal.(6) Moreover, if λ ∈ C\{−ρ−N0α0} is
a Ruelle resonance in the first band and v, v∗ are corresponding resonant/co-resonant
states, then

(6.13)
(
L̃∗ − β`(λ)

)
Ṽ`−1vv

∗ = Ṽ`vv∗

Before we prove Lemma 6.7 let us show how it implies Lemma 6.4:
Proof of Lemma 6.4. — From (6.11) and (6.13) we get

`0−1∏
`=0

(ε∂ε − β`0−`(λ))I0(ε) =
∫
S2M

(vv∗) ·
(
Ṽ`0(1− χε)

)
dx dη− dη+.

Recall that Ṽ`0 vanishes to the order `0 at the antidiagonal and (1− χε) (identified
with its pull-back A∗(1−χε)) is supported in an ε-neighbourhood of the antidiagonal,
thus ‖(Ṽ`0(1−χε))‖C(S2M) = O(ε`0). Furthermore we have ‖(1−χε)‖Ck(SM) = O(ε−k),
and because Ṽ`0 is vanishing to order `0 at the antidiagonal and is also C∞, the
Taylor formula implies that for any smooth kth order differential operator P on S2M
and k < `0 the function P Ṽ`0 vanishes to order `0 − k at the antidiagonal. Putting
everything together we get ‖(Ṽ`0(1−χε))‖C`0−1(S2M) = O(ε). As vv∗ is a distribution

(6)Recall that the coordinates n∆ near the antidiagonal have been introduced in the proof of
Lemma 6.6.
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of finite order we get that ∏`0
`=1(ε∂ε − β`0−`(λ))I0(ε) = O(ε) for sufficiently large `0

depending on the order of vv∗. Consequently, there exist α` ∈ C such that∣∣∣∣∣∣I0(ε)−
`0∑
`=1

α`ε
β`(λ)

∣∣∣∣∣∣ = O(ε).

Next let us define for any λ ∈ C

cε(λ) :=
∫
N
e−(2ρ+λ)H(n)χε(n) dn,

which, by [Hel84, Chapter IV.6], converges for Re(λ) > −ρ to c(λ + ρ). While the
meromorphic continuation of the Harish–Chandra c-function is well-known, we also
need a precise asymptotic expansion in powers of ε. To that end we consider (6.12)
which implies

(6.14)
`0−1∏
`=0

(ε∂ε − β`0−`(λ))cε(λ) =
∫
N
e−(2ρ+λ)H(n)V`0(n)χε(n) dn.

From [Hel78, Theorem IX.3.8] we know that e−(2ρ+λ)H(n) = O(〈n〉−(2ρ+Re(λ)) / ‖α0‖).
Thus, if we fix C > 0, then for sufficiently large `0 the right side of (6.14) converges
to a function h(λ) holomorphic on {Re(λ) > −C}:

`0−1∏
`=0

(ε∂ε − β`0−`(λ))cε(λ) = h(λ) +O(ε),

and consequently there exist α′` ∈ C such that∣∣∣∣∣∣∣∣∣∣∣
cε(λ)− h(λ)

`0∏
`=1
β`(λ)

−
`0∑
`=1

α′`ε
β`(λ)

∣∣∣∣∣∣∣∣∣∣∣
= O(ε).

As we know that the integral defining cε(λ) converges for Re(λ) large enough, we
get by uniqueness of meromorphic continuation that

h(λ)
`0∏
`=1
β`(λ)

= c(λ+ ρ) .

This yields (6.6). �

The only remaining task is to prove Lemma 6.7
Proof of Lemma 6.7. — In order to simplify notation let us define N (n) := eα0H(n),

ρ̌ := ρ/‖α0‖ and λ̌ := λ/‖α0‖. For n = exp(U1 + U2), we then have the explicit
expression [Hel78, Theorem IX.3.8]

(6.15) N (n) =
[(

1 + c‖U1‖2
)2

+ 4c‖U2‖2
]1/2

,

where c = (4mα0 + 16m2α0)−1. Thus, we have N (n) � 〈n〉 for n→∞.
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We first want to prove the existence of β` and V` fulfilling (6.12) by induction. In
order to study (6.12) for ` = 1 we compute

L∗N−(2ρ̌+λ̌) =
((

2ρ̌+ λ̌
) LN
N
− 2ρ̌

)
N−(2ρ̌+ λ̌).

Here we used the fact that (log)∗ dn is the Lebesgue measure on n− and from the
expression of L as an Euler operator (6.8), we get divdn(L) = 2ρ̌. We are thus lead
to study the properties of (LN )/N . Using (6.15) we get

(6.16) LN
N

= 2− Q
N 2 ,

where Q(n) = 2 + 2c‖U1‖2. Putting everything together we get

(6.17) L∗N−(2ρ̌+ λ̌) =
(

2
(
ρ̌+ λ̌

)
−
(
2ρ̌+ λ̌

) Q
N 2

)
N−(2ρ̌+ λ̌).

We note that QN 2 = O(〈n〉−1) for n→∞. Thus, we have found β1(λ) = 2(ρ̌+ λ̌) and
V1,λ = −(2ρ̌ + λ̌) QN 2 . In order to examine (6.12) for ` = 2 we additionally need to
compute L QN 2 . A straightforward computation yields

(L+ 2) Q
N 2 = 2

( Q
N 2

)2
− 4 1
N 2 .

First of all, both terms on the right hand side are O(〈n〉−2). This observation
directly implies that V2 is O(〈n〉−2). Secondly on the right hand side, only powers of
Q
N 2 and 1

N 2 appear. This allows for a straightforward induction procedure because
all appearing V` are some homogeneous polynomials of degree ` in the variable
(Q/N 2, 1/N 2) with coefficients polynomial in λ̌. Furthermore one checks that β`(λ)
= 2(ρ̌+ λ̌+ `− 1). This establishes the existence of β`,V` fulfilling (6.12).
Let us now turn to (6.13). We note that, as L̃ is a smooth differential operator,

we can compute its divergence on S2
∆M. Using (6.5) as well as the fact that dµL is

preserved by the geodesic flow, we compute

div
(
L̃
)

= −2ρ̌LN
N

+ divdn(L).

Furthermore, using (A∗(vv∗))([g, n]) = (vv∗)(gM)N−λ̌(n) as well as the description
of L̃ near the antidiagonal (6.10), we obtain L̃(vv∗) = −λ̌LNN (vv∗), whence

L̃∗(vv∗) =
((

2ρ̌+ λ̌
) LN
N
− divdn(L)

)
(vv∗).

Comparing this equation to (6.17) and recalling divdn(L) = 2ρ̌ we directly see that
we are led to the same recursion as for (6.12) and consequently Ṽ` = V` ◦A on S2

∆M.
The existence of a smooth extension to S2M is obvious by the following global
argument: L̃ is a smooth vector field thus its divergence is a smooth function, and all
Ṽ` are built out of derivatives of this divergence. The smoothness can, however, also
be seen in the coordinates n, a, k, n∆ around the antidiagonal, which were introduced
in the proof of Lemma 6.6. In these coordinates

N = eα0H(n
NP

(wn∆)) = eα0(H(n∆)−B(wn∆))
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where B = log(aNMAN). Now for n∆ = exp(V1 + V2), V1 ∈ g−α0 , V2 ∈ g−2α0 [Hel78,
Theorem IX.3.8] gives us

eα0B(wn∆)) =
[
c2‖V1‖4 + 4c‖V2‖2

] 1
2

and with a completely analogous computation as above we check the vanishing of
the iteratively defined Ṽ`. �

7. Equidistribution for Ruelle resonant states

Let us finally draw the desired conclusions concerning the high frequency limits
of invariant Ruelle distributions from the explicit relations between Ruelle resonant
states and Patterson–Sullivan distributions.
ForM = Γ\G/M = SM a number λ = −ρ+ µ ∈ C is a Ruelle resonance of the

first band if and only if the complex conjugate λ is a Ruelle resonance of the first
band as well. This follows from the fact that the generating vector field X commutes
with complex conjugation. By this symmetry of the spectrum it is enough to consider
first band resonances with Im(λ) > 0, and since we are interested in high frequency
limits, we take Im(µ) > 0. We thus denote by λn = −ρ + irn ∈ C a sequence of
Ruelle resonances in the first band with rn > 0 and rn+1 > rn. We do not want
to repeat them according to multiplicity but rather work with the multiplicities
mn := dim(Res0

X(λn)). Now to any subsequence (rkn)n>0 ⊂ (rn)n>0 we can associate
the sequence of invariant Ruelle distributions Tλkn ∈ D

′(M) and we study the weak
limits of these sequences.
Then we obtain the following reformulation of Theorem 1.1.
Theorem 7.1. — LetM = Γ\G/M = SM the unit tangent bundle of a compact

locally Riemannian symmetric space of rank one and dµL the Liouville measure. Then
there is a subsequence (rkn)n>0 ⊂ (rn)n>0 of density one, i.e. with

lim
N→∞

∑
kn<N mkn∑
n<N mn

= 1,

such that Trkn converges weakly to dµL in D′(M) as n→∞.
Proof. — According to Theorem 4.5 we can associate to each Ruelle resonance

λn = −ρ + irn a spectral parameter µn := irn ∈ a∗C of the Laplacian such that
dim(Eig∆M

(µn)) = dim(Res0
X(λn)) = mn. For each of these ∆M-eigenspaces we

choose an orthonormal basis ϕn,l of real-valued functions, where l = 1, . . . ,mn. Let
B = {ϕn,l} be the set of all these basis vectors. Then the quantum ergodicity
theorem of Shnirelman–Zelditch–Colin de Verdière [Shn74, CdV85, Zel87] implies
the existence of a density one subsequence such that the Wigner distributions Wφ,n

(see Appendix A for a precise definition) converge towards the Liouville measure.
More precisely, we can split B into the disjoint union B = Bgood ∪ Bbad such that
for any sequence in Bgood the Wigner distributions converge towards the Liouville
measure and

qN :=
∑
n6N m

bad
n∑

n6N mn

→ 0, as N →∞,
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where mbad
n := #(Bbad ∩ Eig∆M

(irn)). In order to obtain the subsequence rkn
for the convergence of the invariant Ruelle distributions, we remove from the full
sequence (rn)n>0 all elements for which mbad

n /mn > εn, where εn := (supk>n qk)1/2

is a decreasing sequence converging to 0. Thus, we obtain a subsequence (rkn)n> 0
for which we have ∑

n<N mn −
∑
kn 6N mkn∑

n6N mn

6
qN
εN
6
√
qN

or, equivalently, ∑
kn 6N mkn∑
n6N mn

> 1−√qN → 1.

Let us finally show the convergence of the subsequence of invariant Ruelle distribu-
tions: we fix a Ruelle resonance λkn . Then, using the basis ϕkn,l and the isomorphism
I−(irkn), we define a basis ul := I−(µkn)(ϕkn,l) ∈ ResX(λkn). Theorem 4.5 implies
that ul is a basis of Res0

X(λn). In addition we define the basis of co-resonant states

u∗l := 1
PSΓ

ϕkn,l,ϕkn,l
(1)
I+(µkn)(ϕkn,l) ∈ ResX∗(λkn).

The pairing of co-resonant states and resonant states is simply given by the pairing
of distributions with disjoint wavefront sets, which in turn is the product of the
distributions paired with 1. We recall the pairing formula of Theorem 6.1: let λ ∈ a∗C
and for v ∈ Res0

X(λ), v∗ ∈ Res0
X∗(λ). Then one has the identity

(7.1) 〈π0∗v
∗, π0∗v〉L2(Γ\G/K) = c(λ+ ρ) · (vv∗)[1SM, ]

where c(µ) =
∫
N e
−(µ+ρ)H(nw) dn is the Harish–Chandra c-function.

Thus, the pairing formula together with the chosen normalization of u∗i implies
that u∗i [uj] = δij, which means, that the basis u∗i is dual to the chosen basis ui. By
Theorem 4.6 we know that there are no Jordan blocks at the spectral parameter
λkn , and thus the spectral projector can be written as Π̂kn = ∑mkn

l=1 ul ⊗ u∗l . Now for
f ∈ C∞(M) we obtain that

Tkn [f ] = 1
mkn

mkn∑
l=1

u∗l [f · ul] = 1
mkn

mkn∑
l=1

PSϕkn,l,ϕkn,l [f ]
PSϕkn,l,ϕkn,l [1]

If f̃ ∈ C∞c (TM) is an arbitrary compactly supported function such that f̃ |SM = f ,
then by [HHS12]

Tkn [f ] = 1
mkn

mkn∑
l=1
Wϕkn,l

[f̃ ] +O
(

1
rkn

)
.

Note that there can still appear some Wigner distributions from the bad eigenfunc-
tions ϕkn that do not converge towards the Liouville measure. However, by the choice
of the subsequence, there are only few of them and we can write

Tkn [f ] =

1
mkn

 ∑
ϕkn,l ∈Bgood ∩Eig∆Γ (µkn )

Wϕkn,l
[f̃ ] +

∑
ϕkn,l ∈Bbad ∩Eig∆Γ (µkn )

Wϕkn,l
[f̃ ]

+O
(

1
rkn

)
.
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The Wigner distributions in the first sum converge towards the Liouville measure
and the contributions of the second sum can be bounded with a standard L2 estimate
(see e.g. [Zwo12, Theorem 5.1]) by

|Wϕkn,l
[f̃ ]| 6 C sup |f̃ |+O(1/rkn).

Thus

Tkn [f ] = 1
mkn

 ∑
ϕkn,l ∈Bgood ∩Eig∆Γ (µkn )

Wϕkn,l
[f̃ ]+

+ mbad
kn

mkn

C sup |f̃ |

+O
(

1
rkn

)
.

But as we have chosen the subsequence such that mbad
kn

mkn
→ 0, we conclude that in the

limit n→∞ only the “good” Wigner distributions contribute and we obtain

Tkn [f ]→
∫
SM

f dµL,

concluding the proof of Theorem 7.1. �

Appendix A. Wigner distributions
Definition A.1. — Let r > 0, µ = ir and ϕ ∈ Eig∆M

(µ) be an L2-normalized
eigenfunction of the Laplacian. Then we define the associated Wigner-distribution(7)

Wϕ ∈ C−∞(T ∗M) as follows:

Wϕ :

C∞c (T ∗M) → C
a 7→ 〈Op1/|µ|(a)ϕ, ϕ〉L2

Here 〈•, •〉L2 is the L2-scalar product on M and for any ~ > 0, Opw~ (a) is a
bounded operator on L2(M) obtained by a semiclassical Weyl quantization (see
e.g. [Zwo12],[DZ19, Appendix E]).
In quantum ergodicity one is then interested in understanding the weak limits of

these generalized densities. They have the following important properties.
Proposition A.2. — Let rn > 0 be the positive real numbers such that the

eigenspaces Eig∆M
(irn) 6= 0, where we repeat rn according to the multiplicity

(dimension of Eig∆M
(irn)), and let ψn ∈ Eig∆M

(irn) be an associated L2-normalized
eigenfunction. If there is µ ∈ C−∞(T ∗M) as well as a subsequence rnk such that
Wψnk

→ µ weakly, then µ is a positive Radon measure that is supported on S∗M
and we call it a semiclassical measure.
Proof. — The fact that the semiclassical limits are positive Radon measures follows

from a standard compactness argument (see e.g. [Zwo12, Chapter 5]). For the support
on S∗M see e.g. [Zwo12, Chapter 15]. �
(7)Although they are commonly called distributions, strictly speaking, Wigner distributions are
by definition generalized densities. However, the space C−∞(T ∗M) of generalized densities can be
identified with the space D′(T ∗M) of distributions via the canonical measure on T ∗M.
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Appendix B. Transformation formulas

In this appendix we prove the transformation formulas used in the proof of
Lemma 6.3.
Let d(gMA) be the G-invariant measure on G/MA which is uniquely determined(8)

by the condition that for all f ∈ C∞c (G) we have

(B.1)
∫
G
f(g) dg =

∫
G/MA

∫
M

∫
A
f(gma) da dm d(gMA).

The following lemma gives two helpful expressions for d(gMA)

Lemma B.1. —
(i) There is a constant c1 such that for all f ∈ Cc(G/MA)∫

G/MA
f(gMA) d(gMA) = c1

∫
K

∫
N
f(knMA) dn dk

(ii) There is a constant c2 such that for all f ∈ Cc(G/MA)∫
G/MA

f(gMA) d(gMA) = c2

∫
N

∫
N
f(nnMA) dn dn

Proof.
(i) Let f ∈ C∞c (G/MA) and fix χ ∈ C∞c (A) such that

∫
A χ(a) da = 1. Using the

KNA decomposition we can find a function f̃ ∈ C∞c (KN)M such that f(gMA)
= f̃(kKNA(g)nKNA(g)). Then by (B.1) we and [Hel84, Corollary I.5.3] we get∫

G/M
f(gM) =

∫
G
f̃(kKNA(g)nKNA(g))χ(aKNA(g)) dg

= c1

∫
K

∫
N

∫
A
f̃(kn)χ(a) da dn dk

= c1

∫
K

∫
N
f(knMA) dn dk

(ii) The Bruhat decomposition of G implies that the group multiplication in-
duces a diffeomorphism N × N × M × A → NNMA with NNMA ⊆ G open
dense and complement of measure zero. It is thus enough to prove the equality
for f ∈ C∞c (NNMA/MA) = C∞c (NN). The equality then follows from [Hel84,
Proposition I.5.21], which implies

(B.2)
∫
G
f(g) dg = c2

∫
N

∫
N

∫
M

∫
A
f(nnma) da dm dn dn.

�

Proposition B.2. — There is a constant cG such that

G∗ d(gMA) = cG(d0(kM, k′M))2
(

d(kM)⊗ d(k′M)
)∣∣∣

(∂H)2
∆
.

(8)Recall that the measures dg,da dm have been fixed in Section 3.1.
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Proof. — Let f ∈ C∞c ((∂H)2
∆) ⊆ C∞(∂H × ∂H). Lemma B.1(i), together with

[HHS12, Proposition 2.11] and [Hel84, Theorem. 5.20], shows that∫
(∂H)(2)

∆

f d−2
0 G∗ d(gMA) =

∫
G/MA

f(gP, gwP )d0(gP, gwP )−2 d(gMA)

is actually equal to

c1

∫
K

∫
K
f(kP, k′P ) dk′ dk =

∫
∂H×∂H

f d(kM)⊗ d(k′M).

�
Recall the map ψ : G×M N → G/K ×G/MA from (6.4) and note that

ψ−1(G/K ×NNMA/MA) = (NNMA×N)/M ∼= NNA×N.
Let d(gK) be the G-invariant measure on G/K normalized by the Killing metric

on G/K. By our choices in Section 3.1 this coincides with the push-forward of the
Haar measure on G by the canonical projection prK : G → G/K. Further, let
p̃rM : G×N → G×M N be the canonical projection with respect to the M -action.
Proposition B.3. — There is a constant cψ > 0(

ψ−1
)
∗

(
d(gK)⊗ d(g′MA)

)
= cψ(p̃rM)∗(dg ⊗ dn).

Proof. — For h ∈ C∞c (G/K ×NNMA/MA) = C∞c (G/K ×NN) we compute∫
G/K×NNMA/MA

h(gK, g′MA) d(gK) ⊗ d(g′MA)

= c1

∫
G/K

∫
N

∫
N
h(gK, nnMA) dn dn d(gK)

= c1c2

∫
A

∫
N

∫
N

∫
N
h(an′K,nnMA) dn dn dn′ da

using Lemma B.1(ii). Now, if h̃ ∈ C∞c (NNMA×N)M = C∞c (NNA×N), we obtain∫
(NNMA×N)/M

h̃
(
ψ−1

)
∗

(d(gK)⊗ d(g′MA))

=
∫
G/K×NNMA/MA

(
h̃ ◦ ψ−1

)
d(gK)⊗ d(g′MA)

= c1c2

∫
A

∫
N

∫
N

∫
N

(
h̃ ◦ ψ−1

)
(an′K,nnMA) dn dn dn′ da

= c1c2

∫
A

∫
N

∫
N

∫
N
h̃
(
nn aANK

(
(nn)−1an′

)
, nANK

(
(nn)−1an′

) )
dn dn dn′ da.

We now use Fubini theorem and arrange the integrals such that the dn′ integral is
the inner integral. Then the invariance of dn′ by left multiplication implies that the
latter integral equals

c1c2

∫
N

∫
N

∫
A

∫
N
h̃
(
nn aANK

(
n−1an′

)
, nANK

(
n−1an′

) )
dn′ da dn dn.

Reordering the integrals such that the da integral is the interior integral and using
the invariance of da we can transform our expression to

c1c2

∫
N

∫
N

∫
A

∫
N
h̃
(
nn a,

(
a−1n−1a

)
nANK(n′)

)
da dn′ dn dn.
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Note that N → N, n′ 7→ w−1n′w is measure preserving. Therefore we can rewrite
this integral as

c1c2

∫
N

∫
A

∫
N

∫
N
h̃
(
nn a,

(
a−1n−1a

)
nANK

(
wn′w−1

))
dn′ dn da dn.

Moreover we have that the map ν : N → N, n→ nANK(wnw−1) has Jacobian equal
to one (see Lemma B.4). Thus we obtain

c1c2

∫
N

∫
A

∫
N

∫
N
h̃
(
nn a,

(
a−1n−1a‘

)
n′
)

dn′ dn da dn.

Using again the Fubini trick, this time with the invariance of dn′ we obtain

c1c2

∫
N

∫
A

∫
N

∫
N
h̃(nn a, n′) dn′ dn da dn = c1c2

∫
G

∫
N
h̃(g, n′) dn′ dg,

where we use (B.2) for the final equality. In summary we have shown

c1c2

∫
(NNMA×N)/M

h̃ (ψ−1)∗(d(gK)⊗ d(g′MA) = c1c2

∫
NNA

∫
N
h̃ dn′ dg.

Since ψ is a diffeomorphism so that the measure zero set G\ (NNMA) gets mapped
to a measure zero set, namely (NNAM ×N)/M , this proves the claim. �

Lemma B.4. — The diffeomorphism

ν :

 N → N

n 7→ nANK (wnw−1)

has Jacobi determinant | detDν| = 1.

Proof. — Note that ñ = nANK(wnw−1) implies that there are ã ∈ A and k̃ ∈ K
such that wnw−1 = ãñk̃. But then

w−1ñw = w−1ã−1wnw−1k̃−1w

so that n = nANK(w−1ñw).
Case 1 Suppose that w = w−1. Then n = ν(ñ), i.e. we have that ν = ν−1. As a

consequence the Jacobian determinant is 1.
Case 2 Suppose that one cannot choose w such that w = w−1. Then one can choose

w of order 4. The computation above shows that

n = nANK
(
ww−2ñw2w−1

)
ν
(
w−2ñw2

)
.

On the other hand, w = w−3 so that

ν
(
ν(n)

)
= ν

(
ñ
)

= nANK
(
wñw−1

)
= ñ

(
w−1

(
w−2ñw2

)
w
)

= ν−1
(
w−2ñw2

)
.

Thus we deduce ν4 = Id and the Jacobian determinant is again equal to 1. �
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