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MARKOV PARTITIONS FOR
TORAL Z2-ROTATIONS
FEATURING JEANDEL–RAO WANG
SHIFT AND MODEL SETS
PARTITIONS DE MARKOV POUR
Z2-ROTATIONS FAISANT INTERVENIR LE
SOUS-DÉCALAGE DE JEANDEL–RAO ET
LES ENSEMBLES MODÈLES

Abstract. — We define a partition P0 and a Z2-rotation (Z2-action defined by rotations)
on a 2-dimensional torus whose associated symbolic dynamical system is a minimal proper
subshift of the Jeandel–Rao aperiodic Wang shift defined by 11 Wang tiles. We define another
partition PU and a Z2-rotation on T2 whose associated symbolic dynamical system is equal to
a minimal and aperiodic Wang shift defined by 19 Wang tiles. This proves that PU is a Markov
partition for the Z2-rotation on T2. We prove in both cases that the toral Z2-rotation is the
maximal equicontinuous factor of the minimal subshifts and that the set of fiber cardinalities of
the factor map is {1, 2, 8}. The two minimal subshifts are uniquely ergodic and are isomorphic
as measure-preserving dynamical systems to the toral Z2-rotations. It provides a construction

Keywords: Wang tilings, aperiodic, rotation, Markov partition, cut and project.
2020 Mathematics Subject Classification: 37B50, 52C23, 28D05, 37B05.
DOI: https://doi.org/10.5802/ahl.73
(*) The author acknowledges financial support from the Laboratoire International Franco-Québécois
de Recherche en Combinatoire (LIRCO), the Agence Nationale de la Recherche through the project
CODYS (ANR-18-CE40-0007) and the Horizon 2020 European Research Infrastructure project
OpenDreamKit (676541).

https://annales.lebesgue.fr/
https://doi.org/10.5802/ahl.73


284 Sébastien LABBÉ

of these Wang shifts as model sets of 4-to-2 cut and project schemes. A do-it-yourself puzzle
is available in the appendix to illustrate the results.
Résumé. — Nous définissons une partition P0 et une Z2-rotation (Z2-action définie par

des rotations)sur un tore 2-dimensionnel dont le système dynamique symbolique associé est
un sous-décalage propre et minimal du sous-décalage apériodique de Jeandel–Rao décrit par
un ensemble de 11 tuiles de Wang. Nous définissons une autre partition PU et une Z2-rotation
sur T2 dont le système dynamique symbolique associé est égal au sous-décalage minimal et
apériodique défini par un ensemble de 19 tuiles de Wang. On montre que PU est une partition
de Markov pour la Z2-rotation sur T2. Nous prouvons dans les deux cas que la Z2-rotation
sur le tore est le facteur équicontinu maximal des sous-décalages minimaux et que l’ensemble
des cardinalités des fibres du facteur est {1, 2, 8}. Les deux sous-décalages minimaux sont
uniquement ergodiques et sont isomorphes en tant que systèmes dynamiques mesurés à la
Z2-rotation sur le tore. Les résultats fournissent une construction de ces sous-décalages de
Wang en tant qu’ensembles modèles par la méthode de coupe et projection 4 sur 2. Un puzzle
à faire soi-même est disponible en annexe pour illustrer les résultats.

1. Introduction
We build a biinfinite necklace by placing beads at integer positions on the real

line:
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1. Introduction

We build a biinfinite necklace by placing beads at integer positions on the real
line:
−2 −1 0 1 2 3

Beads come in two colors: light red and dark blue . Given α > 0, we would
like to place the colored beads in such a way that the relative frequency

number of blue beads in {−n,−n+ 1, . . . , n}
number of red beads in {−n,−n+ 1, . . . , n}

converges to α as n goes to infinity.
A well-known approach is to use coding of rotations on a circle of circumference

α + 1 whose radius is 1
2π (α + 1). The coding is given by the partition of the circle

R/(α + 1)Z into one arc of length α associated with dark blue beads and another
arc of length 1 associated with light red beads. The two end points of the arcs
are associated with red and blue beads respectively in one way or the other. Then,
we wrap the biinfinite necklace around the circle and each bead is given the color
according to which of the two arcs it falls in. For example, when α = 1+

√
5

2 and if
the zero position is assigned to one of the end points, we get the picture below:
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Then, we unwrap the biinfinite necklace and we get an assignment of colored beads
to each integer position such that the relative frequency between blue and red beads
is α. Here is what we get after zooming out a little:
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−2 −1 0 1 2 3 4 5 6 7 8

We observe that this colored necklace has very few distinct patterns. The patterns
of size 0, 1, 2 and 3 that we see in the necklace are shown in the table below:

0 1 2 3

We do not get other patterns of size 1, 2 or 3 in the whole biinfinite necklace since
every pattern is uniquely determined by the position of its first bead on the circle. For
each n ∈ N there exists a partition of the circle according to the pattern associated
with the position of its first bead:

When α is irrational, one can prove that the partition of the circle for patterns of
size n is made of n + 1 parts. The proof follows from the fact that the distance
between two consecutive beads on the necklace is equal to the length of one of
the original arc (here, the red arc of length 1). So the partition at a given level is
obtained from the previous one by adding exactly one separation which increases
the number of patterns by 1. This shows that the colored necklace is a Sturmian
sequence, that is, a sequence whose pattern complexity is n+ 1, see [Lot02]. When
α = 1+

√
5

2 , this is a construction of the biinfinite Fibonacci word [Ber80]. Note that
it is known that sequences having strictly less than n + 1 patterns of length n, for
some n ∈ N, are eventually periodic [MH38]. Therefore, Sturmian sequences are the
simplest aperiodic sequences in terms of pattern (or factor) complexity [CN10].
What Coven and Hedlund proved in [CH73] based on the initial work of Morse

and Hedlund [MH40] on Sturmian sequences dating from 1940 is that a biinfinite
sequence is Sturmian if and only if it is the coding of an irrational rotation. Proving
that the coding of an irrational rotation is a Sturmian sequence is the easy part and
corresponds to what we did above. The difficult part is to prove that a Sturmian
sequence can be obtained as the coding of an irrational rotation for some starting
point. The proof is explained nowadays in terms of S-adic development of Sturmian
sequences, Rauzy induction of circle rotations, the continued fraction expansion of
real numbers and the Ostrowski numeration system [Fog02]. Rauzy discovered that
the connection between Sturmian sequences and rotations can be generalized to
sequences using three symbols [Rau82] involving a rotation on a 2-dimensional torus
T2. This result was extended recently for almost all rotations on T2 [BST19], see
also [Thu19].
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T2. This result was extended recently for almost all rotations on T2 [BST19], see
also [Thu19].

1.1. From biinfinite necklaces to 2-dimensional configurations

In this work, we want to extend the behavior of Sturmian sequences beyond
the 1-dimensional case by considering d-dimensional configurations. We say that
a configuration is an assignment of colored beads from a finite set A to every
coordinate of the lattice Zd. Are there rules describing how to place colored beads
in a configuration in such a way that it encodes rotations on a higher dimensional
torus?
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This is related to a question of Adler: “how and to what extent can a dynamical system
be represented by a symbolic one” [Adl98]. The kind of dynamical system we consider
are toral Zd-rotations, that is, Zd-actions by rotations on a torus. When d = 1, the
answer is given in terms of Sturmian sequences and factor complexity. While Berthé
and Vuillon [BV00] considered the coding of Z2-rotations on the 1-dimensional torus,
we consider Zd-rotations on the d-dimensional torus. We show that an answer to
the question when d = 2 can be made in terms of sets of configurations avoiding a
finite set of forbidden patterns known as subshifts of finite type and more precisely
in terms of aperiodic tilings by Wang tiles. This contrasts with the one-dimensional
case, since Sturmian sequences can not be described by a finite set of forbidden
patterns (a one-dimensional shift of finite type is nonempty if and only if it has a
periodic point [LM95, §13.10]).

1.2. Jeandel-Rao’s aperiodic set of 11 Wang tiles

The study of aperiodic order [GS87, BG13] gained a lot of interest since the
discovery in 1982 of quasicrystals by Shechtman [SBGC84] for which he was awarded
the Nobel Prize in Chemistry in 2011. The first known aperiodic structure was based
on the notion of Wang tiles.Wang tiles can be represented as unit square with colored
edges, see Figure 1.1. Given a finite set of Wang tiles T , we consider tilings of the

2
4

2
1

2
2

2
0

1
1

3
1

1
2

3
2

3
1

3
3

0
1

3
1

0
0

0
1

3
1

0
2

0
2

1
2

1
2

1
4

3
3

1
2

Figure 1.1. The aperiodic set T0 of 11 Wang tiles discovered by Jeandel and Rao
in 2015 [JR15].
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consider are toral Zd-rotations, that is, Zd-actions by rotations on a torus. When
d = 1, the answer is given in terms of Sturmian sequences and factor complexity.
While Berthé and Vuillon [BV00] considered the coding of Z2-rotations on the 1-
dimensional torus, we consider Zd-rotations on the d-dimensional torus. We show that
an answer to the question when d = 2 can be made in terms of sets of configurations
avoiding a finite set of forbidden patterns known as subshifts of finite type and more
precisely in terms of aperiodic tilings by Wang tiles. This contrasts with the one-
dimensional case, since Sturmian sequences can not be described by a finite set of
forbidden patterns (a one-dimensional shift of finite type is nonempty if and only if
it has a periodic point [LM95, Section 13.10]).

1.2. Jeandel-Rao’s aperiodic set of 11 Wang tiles

The study of aperiodic order [BG13, GS87] gained a lot of interest since the
discovery in 1982 of quasicrystals by Shechtman [SBGC84] for which he was awarded
the Nobel Prize in Chemistry in 2011. The first known aperiodic structure was based
on the notion of Wang tiles. Wang tiles can be represented as unit square with
colored edges, see Figure 1.1.
Given a finite set of Wang tiles T , we consider tilings of the Euclidean plane

using arbitrarily many translated (but not rotated) copies of the tiles in T . Tiles are
placed on the integer lattice points of the plane with their edges oriented horizontally
and vertically. The tiling is valid if every pair of contiguous edges have the same
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Figure 1.1. The aperiodic set T0 of 11 Wang tiles discovered by Jeandel and Rao
in 2015 [JR15].

color. Deciding if a set of Wang tiles admits a valid tiling of the plane is a difficult
question known as the domino problem. Answering a question of Wang [Wan61],
Berger proved that the domino problem is undecidable [Ber66] using a reduction to
the halting problem of Turing machines. As noticed by Wang, if every set of Wang
tiles that admits a valid tiling of the plane would also admit a periodic tiling, then
the domino problem would be decidable. As a consequence, there exist aperiodic
sets of Wang tiles. A set T of Wang tiles is called aperiodic if there exists a valid
tiling of the plane with the tiles from T and none of the valid tilings of the plane
with the tiles from T is invariant under a nonzero translation.
Berger constructed an aperiodic set made of 20426 Wang tiles [Ber66], later reduced

to 104 by himself [Ber65] and further reduced by others [Knu68, Rob71]. Small
aperiodic sets of Wang tiles include Ammann’s 16 tiles [GS87, p. 595], Kari’s 14
tiles [Kar96] and Culik’s 13 tiles [Cul96]. The search for the smallest aperiodic set of
Wang tiles continued until Jeandel and Rao proved the existence of an aperiodic set T0
of 11 Wang tiles and that no set of Wang tiles of cardinality 6 10 is aperiodic [JR15].
Thus their set, shown in Figure 1.1, is a smallest possible set of aperiodic Wang tiles.
An equivalent geometric representation of their set of 11 tiles is shown in Figure 1.2.

0 1 2 3 4 5 6 7 8 9 10

Figure 1.2. Jeandel-Rao tiles can be encoded into a set of equivalent geometrical
shapes in the sense that every tiling using Jeandel-Rao tiles can be transformed
into a unique tiling with the corresponding geometrical shapes and vice versa.

The aperiodicity of the Jeandel–Rao set of 11 Wang tiles follows from the decom-
position of tilings as horizontal strips of height 4 or 5. Using the representation of
Wang tiles by transducers, Jeandel and Rao proved that the language of sequences
describing the heights of consecutive horizontal strips in the decomposition is ex-
actly the language of the Fibonacci word on the alphabet {4, 5}. Thus it contains
the same patterns as in the necklace we constructed above where 5 corresponds to
the dark blue bead and 4 corresponds to the light red bead . This proves the
absence of any vertical period in every tiling with Jeandel–Rao tiles. This is enough
to conclude aperiodicity in all directions, see [BG13, Proposition 5.9]. The presence
of the Fibonacci word in the vertical structure of Jeandel–Rao tilings is a first hint
that Jeandel–Rao tilings are related to irrational rotations on a torus.

TOME 4 (2021)
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1.3. Results

In this article, we consider Wang tilings from the point of view of symbolic dynam-
ics [Rob04]. While a tiling by a set of Wang tiles T is a tiling of the plane R2 whose
validity is preserved by translations of R2 (leading to the notion of hull, see [BG13]),
we prefer to consider maps Z2 → T , that we call configurations, whose validity is
preserved by translations of Z2. The set ΩT of all valid configurations Z2 → T is
called a Wang shift as it is closed under the shift σ by integer translates. The passage
from Wang shifts (Z2-actions) to Wang tiling dynamical systems (R2-action) can be
made with the 2-dimensional suspension of the former as in the classical construction
of a “flow under a function” in Ergodic Theory, see [Rob96].
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Figure 1.3. On the left, we illustrate the lattice Γ0 = 〈(ϕ, 0), (1, ϕ+ 3)〉Z, where
ϕ = 1+

√
5

2 , with black vertices, a rectangular fundamental domain of the flat
torus R2/Γ0 with a black contour and a polygonal partition P0 of R2/Γ0 with
indices in the set {0, 1, . . . , 10}. We show that for every starting point p ∈ R2,
the coding of the shifted lattice p + Z2 under the polygonal partition yields a
configuration w : Z2 → {0, 1, . . . , 10} which is a symbolic representation of p.
The configuration w corresponds to a valid tiling of the plane with Jeandel–Rao’s
set of 11 Wang tiles.

We may now state the main results of this article together with an illustration. A
partition P0 of the plane into well-chosen polygons indexed by integers from the set
{0, 1, 2, . . . , 10} is shown in Figure 1.3 (left). The partition P0 is invariant under the
group of translations Γ0 = 〈(ϕ, 0), (1, ϕ + 3)〉Z where ϕ = 1+

√
5

2 . Equivalently, it is
a partition of the torus R2/Γ0 given by a partition of the rectangular fundamental
domain [0, ϕ)× [0, ϕ+ 3). On the torus R2/Γ0, we consider the continuous Z2-action
defined by Rn

0 (x) := R0(n,x) = x + n for every n = (n1, n2) ∈ Z2 which defines a
dynamical system that we denote (R2/Γ0,Z2, R0). The symbolic dynamical system
XP0,R0 corresponding to P0, R0 is the topological closure of the set of all configurations
w ∈ {0, 1, . . . , 10}Z2 obtained from the coding by the partition P0 of the orbit of
some starting point in R2/Γ0 by the Z2-action of R0 (see Lemma 4.1). We say
that XP0,R0 is a subshift as it is also closed under the shift σ by integer translations.
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We state the first theorem below. The fact that XP0,R0 ⊂ Ω0 is illustrated in Figure 1.3
where Ω0 ⊂ {0, 1, . . . , 10}Z2 is the Jeandel–Rao Wang shift. The definitions of the
terms used in the theorem can be found in Section 2 and Section 3.
Theorem 1.1. — The Jeandel–Rao Wang shift Ω0 has the following properties:
(i) XP0,R0 ( Ω0 is a proper minimal and aperiodic subshift of Ω0,
(ii) the partition P0 gives a symbolic representation of (R2/Γ0,Z2, R0),
(iii) the dynamical system (R2/Γ0,Z2, R0) is the maximal equicontinuous factor

of (XP0,R0 ,Z2, σ),
(iv) the set of fiber cardinalities of the factor map XP0,R0 → R2/Γ0 is {1, 2, 8},
(v) the dynamical system (XP0,R0 ,Z2, σ) is strictly ergodic and the measure-

preserving dynamical system (XP0,R0 ,Z2, σ, ν) is isomorphic to (R2/Γ0,Z2,
R0, λ) where ν is the unique shift-invariant probability measure on XP0,R0

and λ is the Haar measure on R2/Γ0.
A larger picture of the partition P0 is illustrated in the appendix together with

a DIY puzzle allowing hand made construction of configurations in XP0,R0 ⊂ Ω0 as
the symbolic representation of starting points in R2/Γ0.
Theorem 1.1 corresponds to the easy direction in the proof of Morse–Hedlund’s

theorem, namely that codings of irrational rotations have pattern complexity n+ 1.
Proving the converse, i.e., that almost every (for some shift-invariant probability
measure) configuration in the Jeandel–Rao Wang shift is obtained as the coding of
the shifted lattice p +Z2 for some unique p ∈ R2/Γ0 is harder. This has lead to split
the proof of the converse [Lab20].
Note that a similar result was obtained for Penrose tilings [Rob96, Theorem A]. In

particular, it was shown that the set of fiber cardinalities for Penrose tilings (with the
action of R2) is {1, 2, 10}. In [LM13], it was proved that the set of fiber cardinalities
is {1, 2, 6, 12} for a minimal hull among Taylor–Socolar hexagonal tilings. We show in
Lemma 2.2 that the set of fiber cardinalities of the maximal equicontinuous factor of
a minimal dynamical system is invariant under topological conjugacy. Therefore, the
Jeandel–Rao tilings, the Penrose tilings and the Taylor–Socolar tilings are inherently
different.
We also provide a stronger result on another example. We define a polygonal

partition PU of the torus T2 = R2/Z2 into 19 atoms. We consider the continuous
Z2-action RU defined on T2 by Rn

U(x) = x+ϕ−2n for every n ∈ Z2 where ϕ = 1+
√

5
2 . It

defines a dynamical system that we denote (T2,Z2, RU). We prove that the symbolic
dynamical system XPU ,RU corresponding to PU , RU is equal to the Wang shift ΩU
where U is the set of 19 Wang tiles introduced by the author in [Lab19a] and
discovered from the study of the Jeandel–Rao Wang shift [Lab19b].
Theorem 1.2. — The Wang shift ΩU has the following properties:
(i) the subshift XPU ,RU is minimal, aperiodic and is equal to ΩU ,
(ii) PU is a Markov partition for the dynamical system (T2,Z2, RU),
(iii) (T2,Z2, RU) is the maximal equicontinuous factor of (ΩU ,Z2, σ),
(iv) the set of fiber cardinalities of the factor map ΩU → T2 is {1, 2, 8},
(v) the dynamical system (ΩU ,Z2, σ) is strictly ergodic and the measure-preser-

ving dynamical system (ΩU ,Z2, σ, ν) is isomorphic to (T2,Z2, RU , λ) where
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ν is the unique shift-invariant probability measure on ΩU and λ is the Haar
measure on T2.

Since a Wang shift is a shift of finite type, the equality XPU ,RU = ΩU implies
that PU is a Markov partition (see Definition 3.2) for the Z2-action RU . Note that
Markov partitions “remained abstract objects for a long time” [Fog02, Section 7.1].
Explicit constructions of Markov partitions were originally given for hyperbolic au-
tomorphisms of the torus, see [Adl98, AW70]. More recent references relate Markov
partitions with arithmetics [Ken99, KV98], algebraic numbers [AFHI11] and numer-
ation systems [Pra99].
The link between aperiodic order and cut and project schemes (Definition 12.1)

and model sets (Definition 12.2) is not new. In one dimension, the fact that Stur-
mian sequences are codings of rotations implies that they can be seen as model
sets of cut and project schemes, see [BG13, BMP05]. Since the contribution of
N. G. de Bruijn [Bru81], we know that Penrose tilings are obtained as the projection
of discrete surfaces in a 5-dimensional space onto a 2-dimensional plane. Other typi-
cal examples include Ammann–Beenker tilings [BF13] and Taylor–Socolar aperiodic
hexagonal tilings for which Lee and Moody gave a description in terms of model
sets [LM13]. Likewise, a consequence of Theorem 1.1 and Theorem 1.2 is a descrip-
tion of the two aperiodic Wang shifts Ω0 and ΩU with cut and project schemes. More
precisely, we show that the occurrences of patterns in the two Wang shifts are regular
model sets. Definitions of generic and singular configurations is in Section 4 and
definitions of regular, generic and singular models sets can be found in Section 12.

Theorem 1.3. — There exists a cut and project scheme such that for every
Jeandel–Rao configuration w ∈ XP0,R0 ( Ω0, the set Q ⊆ Z2 of occurrences of a
pattern in w is a regular model set. If w is a generic (resp. singular) configuration,
then Q is a generic (resp. singular) model set.

We prove the same result for the Wang shift ΩU (see Theorem 14.1). As opposed to
the Kari–Culik Wang shift, for which a minimal subsystem is related to a dynamical
system on p-adic numbers [Sie17], windows used for the cut and project schemes are
Euclidean.
It was shown that the action of R2 by translation on the set of Penrose tilings is

an almost one-to-one extension of a minimal R2-action by rotations on T4 [Rob96]
(the fact that it is T4 instead of T2 is related to the consideration of tilings instead
of shifts). This result can also be seen as a higher dimensional generalization of
the Sturmian dynamical systems. Note that a shift of finite type or Wang shift
can be explicitly constructed from the Penrose tiling dynamical system, as shown
in [SW03]. This calls for a common point of view including Jeandel–Rao aperiodic
tilings, Penrose tilings and others. For example, we do not know if Penrose tilings
can be seen as a symbolic dynamical system associated to a Markov partition like it
is the case for the Jeandel–Rao Wang shift. It is possible that such Markov partitions
exist only for tilings associated to some algebraic numbers, see [BF20].
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1.4. Structure of the article

This article is divided into three parts. In the first part, we construct symbolic
representations of toral Z2-rotations and a factor map which provides an isomorphism
between symbolic dynamical systems and toral Z2-rotations. In the second part, we
construct sets of Wang tiles and Wang shifts as the coding of Z2-rotations on the
2-torus. We illustrate the method on two examples including Jeandel–Rao aperiodic
Wang shift. In the third part, we express occurrences of patterns in these Wang
shifts in terms of model sets of cut and project schemes. In the appendix, we propose
a do-it-yourself puzzle to explain the construction of valid configurations in the
Jeandel–Rao Wang shift as the coding of Z2-rotations on the 2-torus.
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Part 1. Symbolic dynamics of toral Z2-rotations
This part is divided into 5 sections. After introducing dynamical systems and sub-

shifts, we define the symbolic representations of toral Z2-rotations from a topological
partition of the 2-torus. We introduce a one-to-one map from the 2-torus to symbolic
representations and a factor map from symbolic representations to the 2-torus. We
show that the factor map provides an isomorphism between symbolic dynamical
systems and toral Z2-rotations.

2. Dynamical systems, maximal equicontinuous factors and
subshifts

In this section, we introduce dynamical systems, maximal equicontinuous factors,
set of fiber cardinalities of a factor map, subshifts and shifts of finite type. We
let Z = {. . . , −1, 0, 1, 2, . . .} denote the integers and N = {0, 1, 2, . . .} be the
nonnegative integers.
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2.1. Topological dynamical systems

Most of the notions introduced here can be found in [Wal82]. A dynamical system
is a triple (X,G, T ), where X is a topological space, G is a topological group and
T is a continuous function G×X → X defining a left action of G on X: if x ∈ X,
e is the identity element of G and g, h ∈ G, then using additive notation for the
operation in G we have T (e, x) = x and T (g + h, x) = T (g, T (h, x)). In other words,
if one denotes the transformation x 7→ T (g, x) by T g, then T g+h = T g T h. In this
work, we consider the Abelian group G = Z× Z.
If Y ⊂ X, let Y denote the topological closure of Y and let T (Y ) := ∪g ∈G T g(Y )

denote the T -closure of Y . A subset Y ⊂ X is T -invariant if T (Y ) = Y . A dynamical
system (X,G, T ) is called minimal if X does not contain any nonempty, proper,
closed T -invariant subset. The left action of G on X is free if g = e whenever there
exists x ∈ X such that T g(x) = x.
Let (X,G, T ) and (Y,G, S) be two dynamical systems with the same topological

group G. A homomorphism θ : (X,G, T ) → (Y,G, S) is a continuous function
θ : X → Y satisfying the commuting property that T g ◦ θ = θ ◦ Sg for every g ∈ G.
A homomorphism θ : (X,G, T )→ (Y,G, S) is called an embedding if it is one-to-one,
a factor map if it is onto, and a topological conjugacy if it is both one-to-one and
onto and its inverse map is continuous. If θ : (X,G, T )→ (Y,G, S) is a factor map,
then (Y,G, S) is called a factor of (X,G, T ) and (X,G, T ) is called an extension of
(Y,G, S). Two subshifts are topologically conjugate if there is a topological conjugacy
between them.
The set of all T -invariant probability measures of a dynamical system (X,G, T ) is

denoted byMT (X). An invariant probability measure on X is called ergodic if for
every set B ∈ B such that T g(B) = B for all g ∈ G, we have that B has either zero
or full measure. A dynamical system (X,G, T ) is uniquely ergodic if it has only one
invariant probability measure, i.e., |MT (X)| = 1. A dynamical system (X,G, T ) is
said strictly ergodic if it is uniquely ergodic and minimal.
A measure-preserving dynamical system is defined as a system (X,G, T, µ,B),

where µ is a probability measure defined on the Borel σ-algebra B of subsets of X,
and T g : X → X is a measurable map which preserves the measure µ for all g ∈ G,
that is, µ(T g(B)) = µ(B) for all B ∈ B. The measure µ is said to be T -invariant.
In what follows, B is always the Borel σ-algebra of subsets of X, so we omit B and
write (X,G, T, µ) when it is clear from the context.
Let (X,G, T, µ,B) and (X ′, G, T ′, µ′,B′) be two measure-preserving dynamical

systems. We say that the two systems are isomorphic if there exist measurable sets
X0 ⊂ X and X ′0 ⊂ X ′ of full measure (i.e., µ(X \ X0) = 0 and µ′(X ′ \ X ′0) = 0)
with T g(X0) ⊂ X0, T ′g(X ′0) ⊂ X ′0 for all g ∈ G and there exists a map φ : X0 → X ′0,
called an isomorphism, that is one-to-one and onto and such that for all A ∈ B′(X ′0),

• φ−1(A) ∈ B(X0),
• µ(φ−1(A)) = µ′(A), and
• φ ◦ T g(x) = T ′g ◦ φ(x) for all x ∈ X0 and g ∈ G.

The role of the set X0 is to make precise the fact that the properties of the isomor-
phism need to hold only on a set of full measure.
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2.2. Maximal equicontinuous factor

In this section, we provide the definition of maximal continuous factor and of
related notions. We recall a sufficient condition for a factor to be the maximal
equicontinuous factor and we prove a result on the set of fiber cardinalities of the
maximal equicontinuous factor of a minimal dynamical system.
A metrizable dynamical system (X,G, T ) is called equicontinuous if the family of

homeomorphisms {T g}g ∈G is equicontinuous, i.e., if for all ε > 0 there exists δ > 0
such that

dist(T g(x), T g(y)) < ε

for all g ∈ G and all x, y ∈ X with dist(x, y) < δ. According to a well-known
theorem [ABKL15, Theorem 3.2], equicontinuous minimal systems defined by the
action of an Abelian group are rotations on groups.
We say that θ : (X,G, T ) → (Y,G, S) is an equicontinuous factor if θ is a factor

map and (Y,G, S) is equicontinuous. We say that (Xmax, G, Tmax) is the maximal
equicontinuous factor of (X,G, T ) if there exists an equicontinuous factor πmax :
(X,G, T )→ (Xmax, G, Tmax), such that for any equicontinuous factor θ : (X,G, T )→
(Y,G, S), there exists a unique factor map ψ : (Xmax, G, Tmax)→ (Y,G, S) with ψ ◦
πmax = θ. The maximal equicontinuous factor exists and is unique (up to topological
conjugacy), see [ABKL15, Theorem 3.8] and [Kur03, Theorem 2.44].
Let θ : (X,G, T )→ (Y,G, S) be a factor map. We call the preimage set θ−1(y) of a

point y ∈ Y the fiber of θ over y. The cardinality of the fiber θ−1(y) for some y ∈ Y
has an important role and is related to the definition of other notions. In particular,
the factor map θ is almost one-to-one if {y ∈ Y : card(θ−1(y)) = 1} is a Gδ-dense
set in Y . In that case, (X,G, T ) is an almost one-to-one extension of (Y,G, S).
Moreover, it provides a sufficient condition to prove that an equicontinuous factor
of a minimal dynamical system is the maximal one as stated in the next Lemma 2.1
from [ABKL15].

Lemma 2.1. — [ABKL15, Lemma 3.11] Let (X,G, T ) be a minimal dynamical
system and (Y,G, S) an equicontinuous dynamical system. If (Y,G, S) is a factor of
(X,G, T ) with factor map θ and there exists y ∈ Y such that card(θ−1(y)) = 1, then
(Y,G, S) is the maximal equicontinuous factor.

The set of fiber cardinalities of a factor map θ : (X,G, T ) → (Y,G, S) is the set
{card(θ−1(y)) : y ∈ Y } ⊂ N ∪ {∞}, see [Fie01]. Note that different terminology is
used in [Rob96] as the set of fiber cardinalities of a factor map is called thickness
spectrum and its supremum is called thickness whereas the supremum is called
maximum rank in [ABKL15]. As shown in the next Lemma 2.2, the set of fiber
cardinalities of the maximal equicontinuous factor of a minimal dynamical system
is invariant under topological conjugacy.

Lemma 2.2. — Let (X,G, T ) and (Y,G, S) be a minimal dynamical systems. Let
f : (X,G, T )→ (Xmax, G, Tmax) and g : (Y,G, S)→ (Ymax, G, Smax) be two maximal
equicontinuous factors. If X and Y are topologically conjugate, then f and g have
the same set of fiber cardinalities.

TOME 4 (2021)



294 Sébastien LABBÉ

The maximal equicontinuous factor f : (X,G, T ) → (Xmax, G, Tmax) defines an
equivalence relation on the elements a, b ∈ X as a ≡ b if and only if f(a) = f(b).
A theorem of Auslander [Aus88, p. 130] on the equivalence relation defined by the
maximal equicontinuous factor says that if (X,G, T ) is minimal, then f(a) = f(b) if
and only if a and b are regionally proximal. Two elements x, y ∈ X are said to be
regionally proximal if there are sequences of elements xi, yi ∈ X and a sequence of
elements gi ∈ G such that limi→∞ xi = x, limi→∞ yi = y and limi→∞ dist(gi xi, gi yi
= 0.
Proof. — Let θ : (X,G, T ) → (Y,G, S) be a topological conjugacy. Let us show

that the formula π = g ◦ θ ◦ f−1 defines a map Xmax → Ymax. Let x ∈ Xmax. Since
f is onto, there exists a ∈ X such that f(a) = x. Suppose that a, b ∈ f−1(x). Thus
f(a) = f(b) and by Auslander’s theorem, a and b are regionally proximal. That
property depends only on the distance so it is preserved by the topological conjugacy.
Thus θ(a) and θ(b) are regionally proximal. Therefore g(θ(a)) = g(θ(b)) which shows
that π is well-defined.
The map π is one-to-one. Let x, x′ ∈ Xmax and suppose that π(x) = π(x′). Let

a, a′ ∈ X such that f(a) = x and f(a′) = x′. Then g(θ(a)) = π(x) = π(x′) = g(θ(a′)).
Thus θ(a) and θ(a′) are regionally proximal from Auslander’s theorem. Thus a and
a′ are regionally proximal and we obtain x = f(a) = f(a′) = x′.
It is sufficient to show that the fiber cardinalities of f is a subset of the fiber

cardinalities of g. Let x ∈ Xmax such that π(x) = y. Then g ◦ θ ◦ f−1(x) = y which
means that θ(f−1(x)) ⊆ g−1(y) and {x} ⊆ f(θ−1(g−1(y))). Since π is one-to-one, we
deduce {x} = f(θ−1(g−1(y))). Thus θ−1(g−1(y)) ⊆ f−1(x) and g−1(y) ⊆ θ(f−1(x)).
We conclude that g−1(y) = θ(f−1(x)). In particular, card(f−1(x)) = card(g−1(y))
and {

card(f−1(x)) : x ∈ Xmax
}
⊆
{

card(g−1(y)) : y ∈ Ymax
}
.

The equality follows from the symmetry of the argument. �

2.3. Subshifts and shifts of finite type

We follow the notation of [Sch01]. Let A be a finite set, d > 1, and let AZd be
the set of all maps x : Zd → A, equipped with the compact product topology. An
element x ∈ AZd is called configuration and we write it as x = (xm) = (xm : m ∈ Zd),
where xm ∈ A denotes the value of x at m. The topology on AZd is compatible with
the metric defined for all configurations x, x′ ∈ AZd by dist(x, x′) = 2−min{‖n‖ :xn 6=x′n}

where ‖n‖ = |n1|+ · · ·+ |nd|. The shift action σ : n 7→ σn of Zd on AZd is defined by
(2.1) (σn(x))m = xm+n

for every x = (xm) ∈ AZd and n ∈ Zd. If X ⊂ AZd , let X denote the topological
closure of X and let σ(X) = {σn(x) | x ∈ X,n ∈ Zd} denote the shift-closure of
X. A subset X ⊂ AZd is shift-invariant if σ(X) = X and a closed, shift-invariant
subset X ⊂ AZd is a subshift. If X ⊂ AZd is a subshift we write σ = σX for the
restriction of the shift action (2.1) to X. When X is a subshift, the triple (X,Zd, σ)
is a dynamical system and the notions presented in the previous section hold.
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A configuration x ∈ X is periodic if there is a nonzero vector n ∈ Zd \ {0} such
that x = σn(x) and otherwise it is said nonperiodic. We say that a nonempty subshift
X is aperiodic if the shift action σ on X is free.
For any subset S ⊂ Zd let πS : AZd → AS denote the projection map which

restricts every x ∈ AZd to S. A pattern is a function p ∈ AS for some finite subset
S ⊂ Zd. To every pattern p ∈ AS corresponds a subset π−1

S (p) ⊂ AZd called cylinder.
A subshift X ⊂ AZd is a shift of finite type (SFT) if there exists a finite set F of
forbidden patterns such that
(2.2) X =

{
x ∈ AZd

∣∣∣πS ◦ σn(x) /∈ F for every n ∈ Zd and S ⊂ Zd
}
.

In this case, we write X = SFT(F). In this article, we consider shifts of finite type
on Z× Z, that is, the case d = 2.

3. Symbolic representations and Markov partitions for toral
Z2-rotations

We follow the section [LM95, Section 6.5] on Markov partitions where we adapt it to
the case of invertible Z2-actions. A topological partition of a metric spaceM is a finite
collection {P0, P1, . . . , Pr−1} of disjoint open sets such that M = P0∪P1∪ · · · ∪Pr−1.
Suppose that M is a compact metric space, (M,Z2, R) is a dynamical system and

that P = {P0, P1, . . . , Pr−1} is a topological partition ofM . Let A = {0, 1, . . . , r−1}
and S ⊂ Z2 be a finite set. We say that a pattern w ∈ AS is allowed for P , R if

⋂

k∈S
R−k(Pwk) 6= ∅.

Let LP,R be the collection of all allowed patterns for P , R. It can be checked that
LP,R is the language of a subshift. Hence, using standard arguments [LM95, Propo-
sition 1.3.4], there is a unique subshift XP,R ⊂ AZ2 whose language is LP,R. We call
XP,R the symbolic dynamical system corresponding to P , R. For each w ∈ XP,R ⊂ AZ2

and n > 0 there is a corresponding nonempty open set
Dn(w) =

⋂

‖k‖6n
R−k(Pwk) ⊆M.

The closures Dn(w) of these sets are compact and decrease with n, so that D0(w) ⊇
D1(w) ⊇ D2(w) ⊇ . . . . It follows that ∩∞n=0Dn(w) 6= ∅. In order for configurations
in XP,R to correspond to points inM , this intersection should contain only one point.
This leads to the following definition.
Definition 3.1. — Let M be a compact metric space and (M,Z2, R) be a dy-

namical system. A topological partition P of M gives a symbolic representation of
(M,Z2, R) if for every configuration w ∈ XP,R the intersection ∩∞n=0Dn(w) consists
of exactly one point m ∈M . We call w a symbolic representation of m.
Markov partition were originally defined for one-dimensional dynamical systems

(M,Z, R) and were extended to Zd-actions by automorphisms of compact Abelian
group in [ES97]. We allow ourselves to use the same terminology for dynamical
systems (M,Z2, R) defined by higher-dimensional actions by rotations.
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Definition 3.2. — A topological partition P of M is a Markov partition for
(M,Z2, R) if

• P gives a symbolic representation of (M,Z2, R) and
• XP,R is a shift of finite type (SFT).

Of course, 2-dimensional SFTs are much different then 1-dimensional SFTs. For
example, there exist 2-dimensional aperiodic SFTs with zero entropy. But this is
not possible in the one-dimensional case, since one-dimensional infinite SFTs have
positive entropy. In this article, we consider partitions associated to 2-dimensional
aperiodic Wang shifts with zero entropy.
The partitions we consider are partitions of the 2-dimensional torus. Let Γ be

a lattice in R2, i.e., a discrete subgroup of the additive group R2 with 2 linearly
independent generators. This defines a 2-dimensional torus T = R2/Γ. By analogy
with the rotation x 7→ x + α on the circle R/Z for some α ∈ R/Z, we use the
terminology of rotation to denote the following Z2-action defined on a 2-dimensional
torus.

Definition 3.3. — For some α, β ∈ T, we consider the dynamical system
(T,Z2, R) where R : Z2 ×T→ T is the continuous Z2-action on T defined by

Rn(x) := R(n,x) = x + n1α + n2β

for every n = (n1, n2) ∈ Z2. We say that the Z2-action R is a toral Z2-rotation or a
Z2-rotation on T.

From now on, we assume that the compact metric space M is T and that R is a
Z2-rotation on T when we consider dynamical systems (M,Z2, R).

Lemma 3.4. — Let (T,Z2, R) be a minimal dynamical system and P = {P0, P1,
. . . , Pr−1} be a topological partition of T. If there exists an atom Pi which is invariant
only under the trivial translation in T, then P gives a symbolic representation of
(T,Z2, R).

Proof. — Let A = {0, 1, . . . , r − 1}. Let w ∈ XP,R ⊂ AZ2 . As already noticed,
the closures Dn(w) are compact and decrease with n, so that D0(w) ⊇ D1(w) ⊇
D2(w) ⊇ . . . . It follows that ∩∞n=0Dn(w) 6= ∅.
We show that ∩∞n=0Dn(w) contains at most one element. Let x,y ∈ T. We assume

x ∈ ∩∞n=0Dn(w) and we want to show that y /∈ ∩∞n=0Dn(w) if x 6= y. Let Pi ⊂ T
for some i ∈ A be an atom which is invariant only under the trivial translation.
Since x 6= y, Pi \ (Pi − (y− x)) contains an open set O. Since (T,Z2, R) is minimal,
any orbit {Rkx | k ∈ Z2} is dense in T. Therefore, there exists k ∈ Z2 such that
Rkx ∈ O ⊂

◦
Pi. Also x ∈ ∩∞n=0Dn(w) ⊂ R−kPwk which implies Rkx ∈ Pwk . Thus

Pwk ∩
◦
Pi 6= ∅ which implies that Pwk = Pi and wk = i since P is a topological

partition. Thus
∩∞n=0Dn(w) ⊂ R−kPwk = R−kPi.

The fact that Rkx ∈ O also means that Rkx /∈ Pi − (y− x) which can be rewritten
as Rky /∈ Pi or y /∈ R−kPi and we conclude that y /∈ ∩∞n=0Dn(w). Thus P gives a
symbolic representation of (T,Z2, R). �
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Remark 3.5. — Note that minimality hypothesis in Lemma 3.4 is not necessary.
For example, the partition � of the torus T2 = R2/Z2 gives a symbolic representation
of the toral Z2-rotation defined by R(n,x) = x + n1(

√
2, 0) + n2(

√
3, 0) even if

(T2,Z2, R) is not minimal.

4. A one-to-one map from the 2-torus to symbolic
representations

The goal of this section is to express the symbolic dynamical system XP,R as the
closure of the image of a one-to-one map defined on the 2-torus. First we define the
map on the points of the torus having a unique symbolic representation. Then, we
extend it on all points of the torus by approaching them from some direction v ∈ R2.
The set

∆P,R :=
⋃

n∈Z2
Rn

( ⋃

a∈A
∂Pa

)
⊂ T

is the set of points whose orbits under the toral Z2-rotation R intersect the boundary
of the topological partition P = {Pa}a∈A. From the Baire Category Theorem [LM95,
Theorem 6.1.24], the set T \∆P,R is dense in T.
For every starting point x ∈ T \ ∆P,R, the coding of its orbit under the toral

Z2-rotation R is a 2-dimensional configuration:
ConfigP,Rx : Z× Z → A

n 7→ a if and only if Rn(x) ∈ Pa.
Thus it defines a map

SymbRep : T \∆P,R → AZ2

x 7→ ConfigP,Rx .

The map SymbRep can not be extended continuously on T. Up to some choice to
be made, it can still be extended to the whole domain T. Recall that for interval
exchange transformations, one way to deal with this issue is to consider two copies
x− and x+ for each discontinuity point [Kea75]. Here we use this idea in order to
extend SymbRep on the whole domain T by approaching any point from a chosen
direction. Not all directions work, so we need some care to formalize this properly.
Let ΘP with {0} ⊆ ΘP ⊂ R2 be the set of vectors parallel to a segment included
in the boundary of some atom Pa ∈ P. If all atoms have curved boundaries, then
ΘP = {0}. If the atoms are polygons like in this article, then the set ΘP contains
nonzero directions. In any case, we assume that RΘP = ΘP . For every v ∈ R2 \ΘP
we define

SymbRepv : T → AZ2

x 7→ lim
ε→0

SymbRep(x + ε · v).

We say that the configuration SymbRep(x) = ConfigP,Rx is generic if x ∈ T\∆P,R
and that SymbRepv(x) is singular if x ∈ ∆P,R for some v ∈ R2 \ ΘP . The choice
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of direction v is not so important since the topological closure of the range of
SymbRepv does not depend on v as shown in the next Lemma 4.1. In other words,
singular configurations are limits of generic configurations and XP,R is equal to the
topological closure of the range of SymbRep.

Lemma 4.1. — For every v ∈ R2 \ΘP , the following equalities hold

SymbRepv(T) = SymbRep(T \∆P,R) = XP,R
where XP,R is the symbolic dynamical system corresponding to P , R.

Proof. — (⊇) If x ∈ T \ ∆P,R, then SymbRep(x) = SymbRepv(x). Thus
SymbRep(T \∆P,R) = SymbRepv(T \∆P,R). Then

SymbRep(T \∆P,R) = SymbRepv(T \∆P,R) ⊆ SymbRepv(T).

(⊆) Let w ∈ SymbRepv(∆P,R). Then w = limε→0 SymbRep(x + εv) for some
x ∈ ∆P,R. We may extract a subsequence (SymbRep(x + εnv))n∈N with εn ∈ R such
that x + εnv ∈ T \∆P,R for all n ∈ N. This implies that w ∈ SymbRep(T \∆P,R).
Therefore SymbRepv(∆P,R) ⊆ SymbRep(T \∆P,R). We obtain

SymbRepv(T) = SymbRepv(T \∆P,R) ∪ SymbRepv(∆P,R)
⊆ SymbRep(T \∆P,R)

which proves the first equality.
Recall that the collection of all allowed patterns for P , R is the language LP,R.

The set SymbRep(T \∆P,R) is a subshift and contains LP,R. Moreover the language
of SymbRep(T \∆P,R) is contained in LP,R. The equality SymbRep(T \∆P,R) =
XP,R follows since the symbolic dynamical system XP,R is the unique subshift whose
language is LP,R. �

Lemma 4.2. — Let P give a symbolic representation of the dynamical system
(T,Z2, R) and let v ∈ R2 \ΘP . Then SymbRep : T\∆P,R → XP,R and SymbRepv :
T→ XP,R are one-to-one. Moreover, the following diagrams commute:

T \∆P,R T \∆P,R

XP,R XP,R

Rk

SymbRep SymbRep

σk

and
T T

XP,R XP,R

Rk

SymbRepv SymbRepv

σk

for every k ∈ Z2.

Proof. — The fact that w = SymbRepv(x) implies that x ∈ ∩∞n=0Dn(w). There-
fore, if SymbRepv(x) = SymbRepv(y) = w then x,y ∈ ∩∞n=0Dn(w). Since P gives
a symbolic representation of the dynamical system (T,Z2, R), the set ∩∞n=0Dn(w)
contains at most one element, and it implies that x = y. Thus, SymbRepv is one-to-
one. As SymbRepv and SymbRep agree on T \∆P,R, we also have that SymbRep
is one-to-one.
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We now show conjugacy of Z2-actions. Let k ∈ Z2, x ∈ T \∆P,R and n ∈ Z2. We
have

(
σk ◦ SymbRep(x)

)
(n) =

(
σk ◦ConfigP,Rx

)
(n) = ConfigP,Rx (n + k)

= ConfigP,RRkx(n) =
(
SymbRep

(
Rkx

))
(n)

=
(
SymbRep ◦Rk(x)

)
(n).

Therefore σk ◦ SymbRep = SymbRep ◦ Rk. The conjugacy of Z2-actions by the
map SymbRep also extends to SymbRepv. �
The fact that SymbRepv is one-to-one means that it admits a left-inverse map

f : SymbRepv(T) → T such that f ◦ SymbRepv = IdT. But we can say more
and define the map f on the closure SymbRepv(T) = XP,R. Indeed, if P gives a
symbolic representation of the dynamical system (T,Z2, R), then there is a well-
defined function f from XP,R to T which maps a configuration w ∈ XP,R ⊂ AZ2 to
the unique point f(w) ∈ T in the intersection ∩∞n=0Dn(w). We consider the map f
in the next section.

5. A factor map from symbolic representations to the
2-torus

In the spirit of [LM95, Proposition 6.5.8], the following result shows that there
exists a continuous and onto homomorphism and therefore a factor map from
(XP,R,Z2, σ) to (T,Z2, R).

Proposition 5.1. — Let P give a symbolic representation of the dynamical
system (T,Z2, R). Let f : XP,R → T be defined such that f(w) is the unique point
in the intersection ∩∞n=0Dn(w). The map f is a factor map from (XP,R,Z2, σ) to
(T,Z2, R) which makes the following diagram commute

XP,R XP,R

T T

σk

f f

Rk

for every k ∈ Z2. The map f is one-to-one on f−1(T \∆P,R).

Proof. — Let P = {P0, P1, . . . , Pr−1}. We show that the map f is continuous. Let
ε > 0. Let w ∈ XP,R. Since the partition gives a symbolic representation, there exists
n ∈ N such that the diameter of

Dn(w) =
⋂

‖k‖6n
R−k

(
Pwk

)

is smaller than or equal to ε. That set contains
(
∩∞n=0Dn(w)

)
∪
(
∩∞n=0Dn(w′)

)
if

w′ ∈ XP,R is such that distXP,R
(w,w′) < 1

2n . We conclude that if distXP,R
(w,w′) < 1

2n ,
then distT(f(w), f(w′)) < ε which means that f is continuous.
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We show that the map f is onto. Let x ∈ T \∆P,R and w = SymbRep(x). Then
x ∈ ∩∞n=0 Dn(w). Since P gives a symbolic representation of (T,Z2, R), we have that

{x} =
∞⋂

n=0
Dn(w) =

∞⋂

n=0
Dn(w),

so that f(w) = x. Thus the image of f contains the dense set T \∆P,R. Since the
image of a compact set via a continuous map is compact and therefore closed, it
follows that the image of f is all of T.
An alternate proof that f is onto uses SymbRepv. Let x ∈ T and w = SymbRepv

(x) for some v ∈ R2 \ ΘP . We have that ∩∞n=0Dn(w) = {x}. Therefore, f(w) = x
and f is onto.
We show that the map f is a homomorphism:

Rk{f(w)} = Rk
( ∞⋂

n=0
Dn(w)

)
= Rk ⋂

n∈Z2
R−nPwn =

⋂

n∈Z2
R−(n−k)Pσkwn−k

=
⋂

m∈Z2
R−mPσkwm =

∞⋂

n=0
Dn

(
σkw

)
=
{
f
(
σkw

)}

where m = n− k. Therefore Rk ◦ f = f ◦ σk for every k ∈ Z2 and f : XP,R → T is
a factor map.
We show that f is one-to-one on f−1(T \∆P,R). Let x ∈ T \∆P,R and suppose

that w,w′ ∈ f−1(x). This means that ∩∞n=0Dn(w) = ∩∞n=0Dn(w′) = {x}. Therefore
for every n ∈ Z2 we have

x ∈
(
R−nPwn

)◦ ∩
(
R−nPw′n

)◦
.

Then wn = w′n for every n ∈ Z2 and w = w′. Therefore for every x ∈ T \ ∆P,R,
f−1(x) contains exactly one element. �
As mentioned in Remark 3.5, it is possible that XP,R is not minimal. But as shown

in the next Lemma 5.2, it is minimal if R is minimal.

Lemma 5.2. — Let P give a symbolic representation of the dynamical system
(T,Z2, R). Then

(i) if (T,Z2, R) is minimal, then (XP,R,Z2, σ) is minimal,
(ii) if R is a free Z2-action on T, then XP,R aperiodic.

Proof. — Let f : XP,R → T be the factor map from Proposition 5.1.
(i) Let Y ⊆ XP,R be a nonempty subshift. Thus Y is compact. Continuous map

preserve compact sets, thus f(Y ) is compact. The set f(Y ) is also R-invariant since
Rkf(Y ) = f(σkY ) = f(Y ) for every k ∈ Z2. Since (T,Z2, R) is minimal, the only
nonempty compact subset of T which is invariant under R is T. Thus f(Y ) = T.
For every x ∈ T, f−1(x)∩ Y 6= ∅. Then Y contains SymbRep(x) for every x ∈ T

such that f−1(x) is a singleton. Then Y contains SymbRep(T \ ∆P,R). Since Y
is closed, it must contain SymbRep(T \∆P,R). From Lemma 4.1, this means that
XP,R ⊆ Y . Thus Y = XP,R and XP,R is minimal.
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(ii) Suppose that there exists w ∈ XP,R such that w is periodic, i.e., there exists
k ∈ Z2 such that σkw = w. Since f commutes the Z2-actions, we obtain

Rkf(w) = f(σkw) = f(w).
Since we assume that R is a free Z2-action, this implies that k = 0. Thus XP,R is
aperiodic. �
We can now deduce a corollary of Proposition 5.1.

Corollary 5.3. — If the dynamical system (T,Z2, R) is minimal and P gives a
symbolic representation of (T,Z2, R), then (T,Z2, R) is the maximal equicontinuous
factor of (XP,R,Z2, σ).

Proof. — From Lemma 5.2(i), (XP,R,Z2, σ) is minimal. The dynamical system
(T,Z2, R) is equicontinuous. We proved in Proposition 5.1 that the factor map f
is one-to-one on f−1(T \ ∆P,R). In particular, there exists at least one element
y ∈ T \ ∆P,R such that card(f−1(y)) = 1. From Lemma 2.1, (T,Z2, R) is the
maximal equicontinuous factor of (XP,R,Z2, σ). �
Remark 5.4. — There are some more consequences. From Proposition 5.1, we

deduce that
λ
({

x ∈ T : card
(
f−1(x)

)
> 1

})
6 λ (∆P,R) = 0

where λ be the Haar measure on T. From [FGL18], this implies that (XP,R,Z2, σ) is a
regular extension of (T,Z2, R) and that (XP,R,Z2, σ) is mean equicontinuous which
has more structural consequences including the fact of having discrete spectrum
with continuous eigenfunctions. We refer the reader to [FGL18] for the definitions of
regular extension and mean equicontinuous.

6. An isomorphism between symbolic dynamical systems
and toral Z2-rotations

Let X ⊂ AZ2 be a subshift. Recall that for any subset S ⊂ Z2, πS : X → AS is
the projection map which restricts every w ∈ X to S. To every finite pattern p ∈ AS
correspond a cylinder [p] = π−1

S (p) ⊂ X. The set of all cylinders
{

[p]
∣∣∣ p ∈ AS with S ⊂ Z2 finite

}

generates the Borel σ-algebra on X.
Let P = {Pa}a∈A give a symbolic representation of the dynamical system (T,Z2, R)

and let f : XP,R → T be the factor map from Proposition 5.1. For each a ∈ A, we
have that

f([a]) = Pa ⊂ T
is a closed set. Thus the image of a cylinder [p] under f for some finite pattern p ∈ AS
is a closed set called coding region for the pattern p being the finite intersection of
closed sets:
(6.1) f ([p]) =

⋂

n∈S
R−nPpn ⊂ T.
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The following proposition can be seen as an explicit construction of a strictly
ergodic symbolic dynamical system isomorphic to the Z2-rotation R on the torus T
as established by the Theorem of Jewett and Krieger [DGS76] for one-dimensional
dynamical systems and generalized to Z2-actions by Rosenthal [Ros87].
Proposition 6.1. — Let P give a symbolic representation of a minimal dy-

namical system (T,Z2, R). Suppose that λ(∂P ) = 0 for each atom P ∈ P where
λ is the Haar measure on T. Then the dynamical system (XP,R,Z2, σ) is strictly
ergodic and the measure-preserving dynamical system (XP,R,Z2, σ, ν) is isomorphic
to (T,Z2, R, λ) where ν is the unique shift-invariant probability measure on XP,R.
Proof. — We prove that the factor map f : XP,R → T from Proposition 5.1

provides the isomorphism. The map f is measurable as f is continuous and f−1(K)
is compact for any compact subset K ⊂ T. Let λ be the Haar measure on T. By
hypothesis, (T,Z2, R) is minimal. It is also strictly ergodic [Wal82] with λ being the
only R-invariant probability measure on T.
Since σ is continuous and XP,R is a compact metric space, the set Mσ(XP,R)

of σ-invariant probability measures on XP,R is nonempty [Wal82, Corollary 6.9.1].
Thus let ν ∈Mσ(XP,R). Let Z = [p] ⊂ XP,R be the cylinder corresponding to some
pattern p ∈ AS for some finite subset S ⊂ Z2. From Equation (6.1) we know that
f (Z) is a closed set being the intersection of a finite number of closed sets. Closed
sets as well as their interior are both measurable for the Haar measure λ. Continuity
of f implies that f−1 (f (Z)) and f−1 (f (Z)◦) are both measurable for ν.
For each letter a ∈ A, we have f−1(f([a])◦) ⊂ [a]. Thus we have

f−1 (f (Z)◦) ⊂ Z ⊂ f−1 (f (Z))
so that

ν
(
f−1 (f (Z)◦)

)
6 ν(Z) 6 ν

(
f−1 (f (Z))

)
.

Let f? be the pushforward map
f? :Mσ(XP,R) → MR(T)

ν 7→ ν ◦ f−1

which maps shift-invariant measures on XP,R to R-invariant measures on T. But
there is only one such measure, so that f?ν = λ for every ν ∈Mσ(XP,R). For every
ν ∈Mσ(XP,R), we have for the left-hand side

ν
(
f−1 (f (Z)◦)

)
= f?ν (f (Z)◦) = λ (f (Z)◦)

and for the right-hand side
ν(f−1 (f (Z))) = f?ν (f (Z)) = λ (f (Z)) .

As the boundary of f(Z) is a λ-null set, we obtain
λ (f (Z)) = λ (f (Z)◦) 6 ν(Z) 6 λ (f (Z))

and we conclude that
ν(Z) = λ (f (Z)) .

Since measures are defined from the measure of cylinders which generate the Borel
σ-algebra, we conclude that there is a unique shift-invariant probability measure on
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XP,R. Thus XP,R is uniquely ergodic and therefore strictly ergodic since minimality
of XP,R was proved in Lemma 5.2. �
Proposition 6.1 implies uniform pattern frequencies for configurations in XP,R.

It also means that the symbolic dynamical system XP,R is an almost one-to-one
extension of a Kronecker dynamical system (a rotation action on a compact Abelian
group) and from Von Neumann’s Theorem [Que10, Theorem 3.9], it implies that
XP,R has discrete spectrum. See also [Rob07] for a treatment of Von Neumann’s
Theorem in the context of tiling dynamical systems.

Part 2. Wang shifts as codings of toral Z2-rotations
This part is divided into 5 sections. After introducing Wang tiles and Wang

shifts, we present a generic method for constructing sets of Wang tiles and valid
configurations in the associated Wang shift as codings of toral Z2-rotations. We
illustrate the method on Jeandel–Rao’s set of 11 Wang tiles and on a self-similar
set of 19 Wang tiles. We expose the limitations of the method by presenting two
“non-examples”.

7. Wang shifts

A Wang tile

τ = abc
d

is a unit square with colored edges formally represented as a tuple of four colors
(a, b, c, d) ∈ I × J × I × J where I, J are two finite sets (the vertical and horizontal
colors respectively). For each Wang tile τ = (a, b, c, d), let right(τ) = a, top(τ) = b,
left(τ) = c, bottom(τ) = d denote the colors of the right, top, left and bottom
edges of τ [Rob71, Wan61].
Let T be a set of Wang tiles. A configuration x : Z2 → T is valid if it assigns tiles

to each position of Z2 so that contiguous edges have the same color, that is,
right(xn) = left(xn+e1)(7.1)
top(xn) = bottom(xn+e2)(7.2)

for every n ∈ Z2 where e1 = (1, 0) and e2 = (0, 1). Let ΩT ⊂ T Z2 denote the set of
all valid configurations Z2 → T and we call it the Wang shift of T . Together with
the shift action σ of Z2 on T Z2 , ΩT is a SFT of the form (2.2) since there exists a
finite set of forbidden patterns made of all horizontal and vertical dominoes of two
tiles that do not share an edge of the same color.
A set of Wang tiles T is periodic if there exists a periodic configuration x ∈ ΩT .

Originally, Wang thought that every set of Wang tiles T is periodic as soon as ΩT
is nonempty [Wan61]. This statement is equivalent to the existence of an algorithm
solving the domino problem, that is, taking as input a set of Wang tiles and returning
yes or no whether there exists a valid configuration with these tiles. Berger, a student
of Wang, later proved that the domino problem is undecidable and he also provided
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a first example of an aperiodic set of Wang tiles [Ber66]. A set of Wang tiles T is
aperiodic if the Wang shift ΩT is a nonempty aperiodic subshift. This means that
in general one can not decide the emptiness of a Wang shift ΩT . This illustrates
that the behavior of d-dimensional SFTs when d > 2 is much different than the one-
dimensional case where emptiness of a SFT is decidable [LM95]. Note that another
important difference between d = 1 and d > 2 is expressed in terms of the possible
values of entropy of d-dimensional SFTs, see [HM10].

8. From toral partitions and Z2-rotations to Wang shifts

We consider the 2-torus T = R2/Γ where Γ is a lattice in R2. We suppose that
(T,Z2, R) is a dynamical system where R is a toral Z2-rotation. Let Y = {Yi}i∈I , Z =
{Zj}j∈J be two finite topological partitions of T. For each (i, j, k, `) ∈ I × J × I × J
we define the intersection of 4 atoms in the following way

P(i,j,k,`) = Yi ∩ Zj ∩Re1(Yk) ∩Re2(Z`)
where e1 = (1, 0) and e2 = (0, 1). The quadruples τ for which the intersection Pτ is
nonempty define a set

T = {τ ∈ I × J × I × J | Pτ 6= ∅}
that we see as a set of Wang tiles. Naturally, this comes with a topological partition

P = {Pτ}τ∈T
of T which is the refinement of the four partitions Y (the right color), Z (the
top color), Re1(Y) (the left color) and Re2(Z) (the bottom color). Thus to each
x ∈ T \∆P,R corresponds a unique Wang tile, that is, a right, a top, a left and a
bottom color according to which atom it belongs in each of the four partitions.

Proposition 8.1. — Let (T,Z2, R) be a dynamical system where R is a Z2-
rotation and let Y and Z be two finite topological partitions of T. Let P = Y ∧Z ∧
Re1(Y)∧Re2(Z) be the refinement of four partitions. Let T be the set of Wang tiles
defined above as the set of quadruples τ such that Pτ is a nonempty atom of the
partition P . Then XP,R is a subshift of the Wang shift ΩT .

Proof. — Let x ∈ T \∆P,R and w = SymbRep(x). Let n ∈ Z2. First we check
that Equation (7.1) is satisfied. There exists i ∈ I such that Rn(x) ∈ Yi. Equivalently,
Rn+e1(x) ∈ Re1(Yi). Thus we have

right(wn) = right
(
ConfigP,Rx (n)

)
= i

= left
(
ConfigP,Rx (n + e1)

)
= left(wn+e1).

Similarly we check that Equation (7.2) is satisfied. There exists j ∈ J such that
Rn(x) ∈ Zj. Equivalently, Rn+e2(x) ∈ Re2(Zj). Thus we have

top(wn) = top
(
ConfigP,Rx (n)

)
= j

= bottom
(
ConfigP,Rx (n + e2)

)
= bottom(wn+e2).
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Then the configuration w is valid and w ∈ ΩT . Thus SymbRep(T \∆P,R) ⊆ ΩT .
Remark that ΩT is closed since it is a subshift. Therefore the topological closure

of the image of SymbRep is in the Wang shift ΩT . Using Lemma 4.1, we conclude
that

XP,R = SymbRep(T \∆P,R) ⊆ ΩT . �

Lemma 8.2. — If the refined partition P = Y ∧ Z ∧ Re1(Y) ∧ Re2(Z) gives a
symbolic representation of (T,Z2, R), then for every v ∈ R2 \ΘP , SymbRepv is a
one-to-one map T→ ΩT .

Proof. — Follows from Lemma 4.2 and Proposition 8.1. �

9. Example 1: Jeandel-Rao aperiodic Wang shift

Consider the lattice Γ0 = 〈(ϕ, 0), (1, ϕ+ 3)〉Z where ϕ = 1+
√

5
2 . On the torus R2/Γ0,

we consider the Z2-rotation R0 : Z2 × R2/Γ0 → R2/Γ0 defined by

Rn
0 (x) := R0(n,x) = x + n

for every n ∈ Z2. We consider the fundamental domain D = [0, ϕ[× [0, ϕ+ 3[ of R2

for the group of translations Γ0. Let I = {0, 1, 2, 3} and J = {0, 1, 2, 3, 4} be sets of
colors and consider the partitions Y = {Yi}i∈I and Z = {Zj}j∈J shown in Figure 9.1.
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9. Example 1: Jeandel-Rao aperiodic Wang shift

Consider the lattice Γ0 = 〈(ϕ, 0), (1, ϕ+ 3)〉Z where ϕ = 1+
√
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2 . On the torus R2/Γ0,

we consider the Z2-rotation R0 : Z2 × R2/Γ0 → R2/Γ0 defined by
Rn0 (x) := R0(n,x) = x+ n

for every n ∈ Z2. We consider the fundamental domain D = [0, ϕ[× [0, ϕ+ 3[ of R2

for the group of translations Γ0. Let I = {0, 1, 2, 3} and J = {0, 1, 2, 3, 4} be sets of
colors and consider the partitions Y = {Yi}i∈I and Z = {Zj}j∈J shown in Figure 9.1.
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Figure 9.1. Partitions for the 11 Jeandel-Rao Wang tiles. From left to right, the
partition Y for the right color, Z for the top color, Re1

0 (Y) for the left color and
Re2

0 (Z) for the bottom color. Their refinement is the partition P0 where each
part is associated with one of Jeandel-Rao Wang tiles.

The refined partition is P0 = Y ∧ Z ∧Re1
0 (Y) ∧Re2

0 (Z) = {Pt}t∈I×J×I×J . The set
of quadruples (i, j, k, `) such that P(i,j,k,`) = Yi ∩Zj ∩Re1(Yk)∩Re2(Z`) is nonempty
is

T0 = {(2, 4, 2, 1), (2, 2, 2, 0), (1, 1, 3, 1), (1, 2, 3, 2), (3, 1, 3, 3), (0, 1, 3, 1),
(0, 0, 0, 1), (3, 1, 0, 2), (0, 2, 1, 2), (1, 2, 1, 4), (3, 3, 1, 2)}

which can be seen as a set of Wang tiles
(9.1)
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Figure 9.1. Partitions for the 11 Jeandel–Rao Wang tiles. From left to right, the
partition Y for the right color, Z for the top color, Re1

0 (Y) for the left color and
Re2

0 (Z) for the bottom color. Their refinement is the partition P0 where each
part is associated with one of the Jeandel–Rao Wang tiles.
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The refined partition is P0 = Y∧Z∧Re1
0 (Y)∧Re2

0 (Z) = {Pt}t∈I×J×I×J . The set of
quadruples (i, j, k, `) such that P(i,j,k,`) = Yi ∩Zj ∩Re1(Yk)∩Re2(Z`) is nonempty is

T0 =
{

(2, 4, 2, 1), (2, 2, 2, 0), (1, 1, 3, 1), (1, 2, 3, 2), (3, 1, 3, 3), (0, 1, 3, 1),

(0, 0, 0, 1), (3, 1, 0, 2), (0, 2, 1, 2), (1, 2, 1, 4), (3, 3, 1, 2)
}

which can be seen as a set of Wang tiles

(9.1) T0 =
{
t0 =
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9. Example 1: Jeandel-Rao aperiodic Wang shift

Consider the lattice Γ0 = 〈(ϕ, 0), (1, ϕ+ 3)〉Z where ϕ = 1+
√

5
2 . On the torus R2/Γ0,

we consider the Z2-rotation R0 : Z2 × R2/Γ0 → R2/Γ0 defined by
Rn0 (x) := R0(n,x) = x+ n

for every n ∈ Z2. We consider the fundamental domain D = [0, ϕ[× [0, ϕ+ 3[ of R2

for the group of translations Γ0. Let I = {0, 1, 2, 3} and J = {0, 1, 2, 3, 4} be sets of
colors and consider the partitions Y = {Yi}i∈I and Z = {Zj}j∈J shown in Figure 9.1.
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Figure 9.1. Partitions for the 11 Jeandel-Rao Wang tiles. From left to right, the
partition Y for the right color, Z for the top color, Re1

0 (Y) for the left color and
Re2

0 (Z) for the bottom color. Their refinement is the partition P0 where each
part is associated with one of Jeandel-Rao Wang tiles.

The refined partition is P0 = Y ∧ Z ∧Re1
0 (Y) ∧Re2

0 (Z) = {Pt}t∈I×J×I×J . The set
of quadruples (i, j, k, `) such that P(i,j,k,`) = Yi ∩Zj ∩Re1(Yk)∩Re2(Z`) is nonempty
is

T0 = {(2, 4, 2, 1), (2, 2, 2, 0), (1, 1, 3, 1), (1, 2, 3, 2), (3, 1, 3, 3), (0, 1, 3, 1),
(0, 0, 0, 1), (3, 1, 0, 2), (0, 2, 1, 2), (1, 2, 1, 4), (3, 3, 1, 2)}

which can be seen as a set of Wang tiles
(9.1)
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Markov partitions for toral Z2-rotations featuring Jeandel-Rao Wang shift and model sets 23

9. Example 1: Jeandel-Rao aperiodic Wang shift

Consider the lattice Γ0 = 〈(ϕ, 0), (1, ϕ+ 3)〉Z where ϕ = 1+
√

5
2 . On the torus R2/Γ0,

we consider the Z2-rotation R0 : Z2 × R2/Γ0 → R2/Γ0 defined by
Rn0 (x) := R0(n,x) = x+ n

for every n ∈ Z2. We consider the fundamental domain D = [0, ϕ[× [0, ϕ+ 3[ of R2

for the group of translations Γ0. Let I = {0, 1, 2, 3} and J = {0, 1, 2, 3, 4} be sets of
colors and consider the partitions Y = {Yi}i∈I and Z = {Zj}j∈J shown in Figure 9.1.
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Figure 9.1. Partitions for the 11 Jeandel-Rao Wang tiles. From left to right, the
partition Y for the right color, Z for the top color, Re1

0 (Y) for the left color and
Re2

0 (Z) for the bottom color. Their refinement is the partition P0 where each
part is associated with one of Jeandel-Rao Wang tiles.

The refined partition is P0 = Y ∧ Z ∧Re1
0 (Y) ∧Re2

0 (Z) = {Pt}t∈I×J×I×J . The set
of quadruples (i, j, k, `) such that P(i,j,k,`) = Yi ∩Zj ∩Re1(Yk)∩Re2(Z`) is nonempty
is

T0 = {(2, 4, 2, 1), (2, 2, 2, 0), (1, 1, 3, 1), (1, 2, 3, 2), (3, 1, 3, 3), (0, 1, 3, 1),
(0, 0, 0, 1), (3, 1, 0, 2), (0, 2, 1, 2), (1, 2, 1, 4), (3, 3, 1, 2)}

which can be seen as a set of Wang tiles
(9.1)
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9. Example 1: Jeandel-Rao aperiodic Wang shift

Consider the lattice Γ0 = 〈(ϕ, 0), (1, ϕ+ 3)〉Z where ϕ = 1+
√

5
2 . On the torus R2/Γ0,

we consider the Z2-rotation R0 : Z2 × R2/Γ0 → R2/Γ0 defined by
Rn0 (x) := R0(n,x) = x+ n

for every n ∈ Z2. We consider the fundamental domain D = [0, ϕ[× [0, ϕ+ 3[ of R2

for the group of translations Γ0. Let I = {0, 1, 2, 3} and J = {0, 1, 2, 3, 4} be sets of
colors and consider the partitions Y = {Yi}i∈I and Z = {Zj}j∈J shown in Figure 9.1.
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Figure 9.1. Partitions for the 11 Jeandel-Rao Wang tiles. From left to right, the
partition Y for the right color, Z for the top color, Re1

0 (Y) for the left color and
Re2

0 (Z) for the bottom color. Their refinement is the partition P0 where each
part is associated with one of Jeandel-Rao Wang tiles.

The refined partition is P0 = Y ∧ Z ∧Re1
0 (Y) ∧Re2

0 (Z) = {Pt}t∈I×J×I×J . The set
of quadruples (i, j, k, `) such that P(i,j,k,`) = Yi ∩Zj ∩Re1(Yk)∩Re2(Z`) is nonempty
is

T0 = {(2, 4, 2, 1), (2, 2, 2, 0), (1, 1, 3, 1), (1, 2, 3, 2), (3, 1, 3, 3), (0, 1, 3, 1),
(0, 0, 0, 1), (3, 1, 0, 2), (0, 2, 1, 2), (1, 2, 1, 4), (3, 3, 1, 2)}

which can be seen as a set of Wang tiles
(9.1)
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9. Example 1: Jeandel-Rao aperiodic Wang shift

Consider the lattice Γ0 = 〈(ϕ, 0), (1, ϕ+ 3)〉Z where ϕ = 1+
√

5
2 . On the torus R2/Γ0,

we consider the Z2-rotation R0 : Z2 × R2/Γ0 → R2/Γ0 defined by
Rn0 (x) := R0(n,x) = x+ n

for every n ∈ Z2. We consider the fundamental domain D = [0, ϕ[× [0, ϕ+ 3[ of R2

for the group of translations Γ0. Let I = {0, 1, 2, 3} and J = {0, 1, 2, 3, 4} be sets of
colors and consider the partitions Y = {Yi}i∈I and Z = {Zj}j∈J shown in Figure 9.1.
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Figure 9.1. Partitions for the 11 Jeandel-Rao Wang tiles. From left to right, the
partition Y for the right color, Z for the top color, Re1

0 (Y) for the left color and
Re2

0 (Z) for the bottom color. Their refinement is the partition P0 where each
part is associated with one of Jeandel-Rao Wang tiles.

The refined partition is P0 = Y ∧ Z ∧Re1
0 (Y) ∧Re2

0 (Z) = {Pt}t∈I×J×I×J . The set
of quadruples (i, j, k, `) such that P(i,j,k,`) = Yi ∩Zj ∩Re1(Yk)∩Re2(Z`) is nonempty
is

T0 = {(2, 4, 2, 1), (2, 2, 2, 0), (1, 1, 3, 1), (1, 2, 3, 2), (3, 1, 3, 3), (0, 1, 3, 1),
(0, 0, 0, 1), (3, 1, 0, 2), (0, 2, 1, 2), (1, 2, 1, 4), (3, 3, 1, 2)}

which can be seen as a set of Wang tiles
(9.1)
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9. Example 1: Jeandel-Rao aperiodic Wang shift

Consider the lattice Γ0 = 〈(ϕ, 0), (1, ϕ+ 3)〉Z where ϕ = 1+
√

5
2 . On the torus R2/Γ0,

we consider the Z2-rotation R0 : Z2 × R2/Γ0 → R2/Γ0 defined by
Rn0 (x) := R0(n,x) = x+ n

for every n ∈ Z2. We consider the fundamental domain D = [0, ϕ[× [0, ϕ+ 3[ of R2

for the group of translations Γ0. Let I = {0, 1, 2, 3} and J = {0, 1, 2, 3, 4} be sets of
colors and consider the partitions Y = {Yi}i∈I and Z = {Zj}j∈J shown in Figure 9.1.

1

2

3

ϕ+1

ϕ+2

ϕ+3
Y

0 11
ϕ2

1
ϕ

ϕ

2

1
1

0
1

3

0
0

Z

0 11
ϕ2

1
ϕ

ϕ

444

2

1
1

000

3

Re1
0 (Y)

0 11
ϕ2

1
ϕ

ϕ

2

1
1

30

3

0
00

Re2
0 (Z)

0 11
ϕ2

1
ϕ

ϕ

111

444

2

1
1

000

3

P0

0 11
ϕ2

1
ϕ

ϕ

t6 t6 t6

t7
t5

t4

t2 t10

t8t7 t3

t9 t9 t9

t1 t1 t1

t0 t0 t0

Figure 9.1. Partitions for the 11 Jeandel-Rao Wang tiles. From left to right, the
partition Y for the right color, Z for the top color, Re1

0 (Y) for the left color and
Re2

0 (Z) for the bottom color. Their refinement is the partition P0 where each
part is associated with one of Jeandel-Rao Wang tiles.

The refined partition is P0 = Y ∧ Z ∧Re1
0 (Y) ∧Re2

0 (Z) = {Pt}t∈I×J×I×J . The set
of quadruples (i, j, k, `) such that P(i,j,k,`) = Yi ∩Zj ∩Re1(Yk)∩Re2(Z`) is nonempty
is

T0 = {(2, 4, 2, 1), (2, 2, 2, 0), (1, 1, 3, 1), (1, 2, 3, 2), (3, 1, 3, 3), (0, 1, 3, 1),
(0, 0, 0, 1), (3, 1, 0, 2), (0, 2, 1, 2), (1, 2, 1, 4), (3, 3, 1, 2)}

which can be seen as a set of Wang tiles
(9.1)
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9. Example 1: Jeandel-Rao aperiodic Wang shift

Consider the lattice Γ0 = 〈(ϕ, 0), (1, ϕ+ 3)〉Z where ϕ = 1+
√

5
2 . On the torus R2/Γ0,

we consider the Z2-rotation R0 : Z2 × R2/Γ0 → R2/Γ0 defined by
Rn0 (x) := R0(n,x) = x+ n

for every n ∈ Z2. We consider the fundamental domain D = [0, ϕ[× [0, ϕ+ 3[ of R2

for the group of translations Γ0. Let I = {0, 1, 2, 3} and J = {0, 1, 2, 3, 4} be sets of
colors and consider the partitions Y = {Yi}i∈I and Z = {Zj}j∈J shown in Figure 9.1.
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Figure 9.1. Partitions for the 11 Jeandel-Rao Wang tiles. From left to right, the
partition Y for the right color, Z for the top color, Re1

0 (Y) for the left color and
Re2

0 (Z) for the bottom color. Their refinement is the partition P0 where each
part is associated with one of Jeandel-Rao Wang tiles.

The refined partition is P0 = Y ∧ Z ∧Re1
0 (Y) ∧Re2

0 (Z) = {Pt}t∈I×J×I×J . The set
of quadruples (i, j, k, `) such that P(i,j,k,`) = Yi ∩Zj ∩Re1(Yk)∩Re2(Z`) is nonempty
is

T0 = {(2, 4, 2, 1), (2, 2, 2, 0), (1, 1, 3, 1), (1, 2, 3, 2), (3, 1, 3, 3), (0, 1, 3, 1),
(0, 0, 0, 1), (3, 1, 0, 2), (0, 2, 1, 2), (1, 2, 1, 4), (3, 3, 1, 2)}

which can be seen as a set of Wang tiles
(9.1)
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9. Example 1: Jeandel-Rao aperiodic Wang shift

Consider the lattice Γ0 = 〈(ϕ, 0), (1, ϕ+ 3)〉Z where ϕ = 1+
√

5
2 . On the torus R2/Γ0,

we consider the Z2-rotation R0 : Z2 × R2/Γ0 → R2/Γ0 defined by
Rn0 (x) := R0(n,x) = x+ n

for every n ∈ Z2. We consider the fundamental domain D = [0, ϕ[× [0, ϕ+ 3[ of R2

for the group of translations Γ0. Let I = {0, 1, 2, 3} and J = {0, 1, 2, 3, 4} be sets of
colors and consider the partitions Y = {Yi}i∈I and Z = {Zj}j∈J shown in Figure 9.1.
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Figure 9.1. Partitions for the 11 Jeandel-Rao Wang tiles. From left to right, the
partition Y for the right color, Z for the top color, Re1

0 (Y) for the left color and
Re2

0 (Z) for the bottom color. Their refinement is the partition P0 where each
part is associated with one of Jeandel-Rao Wang tiles.

The refined partition is P0 = Y ∧ Z ∧Re1
0 (Y) ∧Re2

0 (Z) = {Pt}t∈I×J×I×J . The set
of quadruples (i, j, k, `) such that P(i,j,k,`) = Yi ∩Zj ∩Re1(Yk)∩Re2(Z`) is nonempty
is

T0 = {(2, 4, 2, 1), (2, 2, 2, 0), (1, 1, 3, 1), (1, 2, 3, 2), (3, 1, 3, 3), (0, 1, 3, 1),
(0, 0, 0, 1), (3, 1, 0, 2), (0, 2, 1, 2), (1, 2, 1, 4), (3, 3, 1, 2)}

which can be seen as a set of Wang tiles
(9.1)
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9. Example 1: Jeandel-Rao aperiodic Wang shift

Consider the lattice Γ0 = 〈(ϕ, 0), (1, ϕ+ 3)〉Z where ϕ = 1+
√

5
2 . On the torus R2/Γ0,

we consider the Z2-rotation R0 : Z2 × R2/Γ0 → R2/Γ0 defined by
Rn0 (x) := R0(n,x) = x+ n

for every n ∈ Z2. We consider the fundamental domain D = [0, ϕ[× [0, ϕ+ 3[ of R2

for the group of translations Γ0. Let I = {0, 1, 2, 3} and J = {0, 1, 2, 3, 4} be sets of
colors and consider the partitions Y = {Yi}i∈I and Z = {Zj}j∈J shown in Figure 9.1.
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Figure 9.1. Partitions for the 11 Jeandel-Rao Wang tiles. From left to right, the
partition Y for the right color, Z for the top color, Re1

0 (Y) for the left color and
Re2

0 (Z) for the bottom color. Their refinement is the partition P0 where each
part is associated with one of Jeandel-Rao Wang tiles.

The refined partition is P0 = Y ∧ Z ∧Re1
0 (Y) ∧Re2

0 (Z) = {Pt}t∈I×J×I×J . The set
of quadruples (i, j, k, `) such that P(i,j,k,`) = Yi ∩Zj ∩Re1(Yk)∩Re2(Z`) is nonempty
is

T0 = {(2, 4, 2, 1), (2, 2, 2, 0), (1, 1, 3, 1), (1, 2, 3, 2), (3, 1, 3, 3), (0, 1, 3, 1),
(0, 0, 0, 1), (3, 1, 0, 2), (0, 2, 1, 2), (1, 2, 1, 4), (3, 3, 1, 2)}

which can be seen as a set of Wang tiles
(9.1)
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9. Example 1: Jeandel-Rao aperiodic Wang shift

Consider the lattice Γ0 = 〈(ϕ, 0), (1, ϕ+ 3)〉Z where ϕ = 1+
√

5
2 . On the torus R2/Γ0,

we consider the Z2-rotation R0 : Z2 × R2/Γ0 → R2/Γ0 defined by
Rn0 (x) := R0(n,x) = x+ n

for every n ∈ Z2. We consider the fundamental domain D = [0, ϕ[× [0, ϕ+ 3[ of R2

for the group of translations Γ0. Let I = {0, 1, 2, 3} and J = {0, 1, 2, 3, 4} be sets of
colors and consider the partitions Y = {Yi}i∈I and Z = {Zj}j∈J shown in Figure 9.1.
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Figure 9.1. Partitions for the 11 Jeandel-Rao Wang tiles. From left to right, the
partition Y for the right color, Z for the top color, Re1

0 (Y) for the left color and
Re2

0 (Z) for the bottom color. Their refinement is the partition P0 where each
part is associated with one of Jeandel-Rao Wang tiles.

The refined partition is P0 = Y ∧ Z ∧Re1
0 (Y) ∧Re2

0 (Z) = {Pt}t∈I×J×I×J . The set
of quadruples (i, j, k, `) such that P(i,j,k,`) = Yi ∩Zj ∩Re1(Yk)∩Re2(Z`) is nonempty
is

T0 = {(2, 4, 2, 1), (2, 2, 2, 0), (1, 1, 3, 1), (1, 2, 3, 2), (3, 1, 3, 3), (0, 1, 3, 1),
(0, 0, 0, 1), (3, 1, 0, 2), (0, 2, 1, 2), (1, 2, 1, 4), (3, 3, 1, 2)}

which can be seen as a set of Wang tiles
(9.1)
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9. Example 1: Jeandel-Rao aperiodic Wang shift

Consider the lattice Γ0 = 〈(ϕ, 0), (1, ϕ+ 3)〉Z where ϕ = 1+
√

5
2 . On the torus R2/Γ0,

we consider the Z2-rotation R0 : Z2 × R2/Γ0 → R2/Γ0 defined by
Rn0 (x) := R0(n,x) = x+ n

for every n ∈ Z2. We consider the fundamental domain D = [0, ϕ[× [0, ϕ+ 3[ of R2

for the group of translations Γ0. Let I = {0, 1, 2, 3} and J = {0, 1, 2, 3, 4} be sets of
colors and consider the partitions Y = {Yi}i∈I and Z = {Zj}j∈J shown in Figure 9.1.
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Figure 9.1. Partitions for the 11 Jeandel-Rao Wang tiles. From left to right, the
partition Y for the right color, Z for the top color, Re1

0 (Y) for the left color and
Re2

0 (Z) for the bottom color. Their refinement is the partition P0 where each
part is associated with one of Jeandel-Rao Wang tiles.

The refined partition is P0 = Y ∧ Z ∧Re1
0 (Y) ∧Re2

0 (Z) = {Pt}t∈I×J×I×J . The set
of quadruples (i, j, k, `) such that P(i,j,k,`) = Yi ∩Zj ∩Re1(Yk)∩Re2(Z`) is nonempty
is

T0 = {(2, 4, 2, 1), (2, 2, 2, 0), (1, 1, 3, 1), (1, 2, 3, 2), (3, 1, 3, 3), (0, 1, 3, 1),
(0, 0, 0, 1), (3, 1, 0, 2), (0, 2, 1, 2), (1, 2, 1, 4), (3, 3, 1, 2)}

which can be seen as a set of Wang tiles
(9.1)
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9. Example 1: Jeandel-Rao aperiodic Wang shift

Consider the lattice Γ0 = 〈(ϕ, 0), (1, ϕ+ 3)〉Z where ϕ = 1+
√

5
2 . On the torus R2/Γ0,

we consider the Z2-rotation R0 : Z2 × R2/Γ0 → R2/Γ0 defined by
Rn0 (x) := R0(n,x) = x+ n

for every n ∈ Z2. We consider the fundamental domain D = [0, ϕ[× [0, ϕ+ 3[ of R2

for the group of translations Γ0. Let I = {0, 1, 2, 3} and J = {0, 1, 2, 3, 4} be sets of
colors and consider the partitions Y = {Yi}i∈I and Z = {Zj}j∈J shown in Figure 9.1.
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Figure 9.1. Partitions for the 11 Jeandel-Rao Wang tiles. From left to right, the
partition Y for the right color, Z for the top color, Re1

0 (Y) for the left color and
Re2

0 (Z) for the bottom color. Their refinement is the partition P0 where each
part is associated with one of Jeandel-Rao Wang tiles.

The refined partition is P0 = Y ∧ Z ∧Re1
0 (Y) ∧Re2

0 (Z) = {Pt}t∈I×J×I×J . The set
of quadruples (i, j, k, `) such that P(i,j,k,`) = Yi ∩Zj ∩Re1(Yk)∩Re2(Z`) is nonempty
is

T0 = {(2, 4, 2, 1), (2, 2, 2, 0), (1, 1, 3, 1), (1, 2, 3, 2), (3, 1, 3, 3), (0, 1, 3, 1),
(0, 0, 0, 1), (3, 1, 0, 2), (0, 2, 1, 2), (1, 2, 1, 4), (3, 3, 1, 2)}

which can be seen as a set of Wang tiles
(9.1)
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}
.

We observe that T0 is Jeandel–Rao’s set of 11 tiles [JR15]. Let Ω0 = ΩT0 be the
Jeandel–Rao Wang shift. We may now prove Theorem 1.1 which follows mostly from
the work done in the Part 1.

Proof of Theorem 1.1. —
(i) The dynamical system (R2/Γ0,Z2, R0) is minimal. Since Re1

0 and Re2
0 are linearly

independent irrational rotations on R2/Γ0, we have that R0 is a free Z2-action. Thus
from Lemma 5.2, XP0,R0 is minimal and aperiodic. From Proposition 8.1 and from
Equation (9.1), we have XP0,R0 ⊆ Ω0. It was proved in [Lab19b] that the Jeandel–Rao
Wang shift Ω0 is not minimal. Thus Ω0 \ XP0,R0 is nonempty.
(ii) The atom Pt10 is invariant only under the trivial translation. Therefore, from

Lemma 3.4, P0 gives a symbolic representation of (R2/Γ0,Z2, R0).
(iii) From Proposition 5.1, there exists a factor map f0 from (XP0,R0 ,Z2, σ) to

(R2/Γ0,Z2, R0) and from Corollary 5.3, (R2/Γ0,Z2, R0) is the maximal equicontinu-
ous factor of (XP0,R0 ,Z2, σ).
(iv) From Proposition 5.1, we have that f0 is one-to-one on T2 \∆P0,R0 . Suppose

that x ∈ ∆P0,R0 . We have card(f−1
0 (x)) > 2. If card(f−1

0 (x)) > 2, then we may
show that there exists n ∈ Z2 such that x = Rn

0 (0). If x = Rn
0 (0) for some n ∈ Z2,

then the set f−1
0 (x) contains 8 different configurations of the form SymbRepv

0 (0)
for some v ∈ R2 \ ΘP0 where ΘP0 = R · {(1, 0), (0, 1), (1, ϕ), (1, ϕ2)}. If x ∈ ∆P0,R0

but is not in the orbit of 0 under R0, then card(f−1
0 (x)) = 2. We conclude that

{card(f−1
0 (x)) | x ∈ R2/Γ0} = {1, 2, 8}.

(v) We have that λ(∂P ) = 0 for each atom P ∈ P0 where λ is the Haar measure
on R2/Γ0. The result follows from Proposition 6.1. �

The frequency of any pattern p in XP0,R0 is equal to the measure of the associated
cylinder [p] in XP0,R0 which is equal to the Haar measure of f0([p]) in R2/Γ0 and
can be computed using Equation (6.1) as the area of the coding region which is the
intersection of polygons. Here is what it gives for the frequencies of tiles in XP0,R0 .
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Proposition 9.1. — The frequencies of each of the 11 Jeandel-Rao tiles ti for
i ∈ {0, . . . , 10} in the subshift XP0,R0 is given by the measure of the cylinders below:

ν([7]) = 5/(12ϕ+ 14) ≈ 0.1496,
ν([0]) = ν([1]) = ν([3]) = ν([6]) = ν([9]) = 1/(2ϕ+ 6) ≈ 0.1083,

ν([5]) = 1/(5ϕ+ 4) ≈ 0.0827,
ν([4]) = ν([8]) = ν([10]) = 1/(8ϕ+ 2) ≈ 0.0669,

ν([2]) = 1/(18ϕ+ 10) ≈ 0.0256.

Proof. — Thanks to Theorem 1.1(v), it can be computed from the area of atoms
of the partition P0 shown in Figure 9.1 and dividing by the area of the fundamental
domain which is ϕ(ϕ+ 3) = 4ϕ+ 1. �
We may check that the frequency of each tile in the minimal subshift XP0,R0 ⊂ Ω0

match those obtained in [Lab19b] for some minimal subshift X0 ⊂ Ω0 and computed
from the substitutive structure of X0. In fact, X0 = XP0,R0 but we postpone the
proof of this in a later work [Lab20] in which the substitutive structure of XP0,R0 is
described using Rauzy induction of toral partitions and Z2-rotations. In [Lab19b],
we also proved that X0 is a shift of finite type as it can be described by the forbidden
patterns coming from Ω0 plus a finite number of other forbidden patterns. The
completion of the proof of the equality X0 = XP0,R0 will imply that the following
statement holds, but we can only state it as a conjecture for now.

Conjecture 9.2. — P0 is a Markov partition for (R2/Γ0,Z2, R0).

10. Example 2: A minimal aperiodic Wang shift defined by
19 tiles

On the torus T2 = R2/Z2, we consider the Z2-rotation RU : Z2 × T2 → T2

defined by
Rn
U(x) := RU(n,x) = x + ϕ−2n

for every n ∈ Z2 where ϕ = 1+
√

5
2 . Let I = {A,B,C,D,E,F,G,H, I, J} and

J = {K,L,M,N,O,P} be sets of colors and consider the partitions Y = {Yi}i∈ I and
Z = {Zj}j ∈ J shown in Figure 10.1.
The refined partition is PU = Y ∧ Z ∧Re1

U (Y) ∧Re2
U (Z) = {Pu}u∈ I×J×I×J . Let U

be the set of quadruples (i, j, k, `) such that P(i,j,k,`) = Yi ∩ Zj ∩ Re1
U (Yk) ∩ Re2

U (Z`)
is nonempty. We represent U as a set of Wang tiles, see Figure 10.2. It corresponds
to the set of 19 Wang tiles U = {u0, u1, . . . , u18} introduced in [Lab19a] which was
derived from the substitutive structure of the Jeandel–Rao Wang shift [Lab19b].
Let ΩU be the Wang shift associated with the set of Wang tiles U . We now prove

the second theorem of the article. Note that the fact that ΩU is minimal (proved
in [Lab19a]) allows to conclude that PU is a Markov partition without having to
exploit the substitutive structure of XPU ,RU which is computed in [Lab20].
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Figure 10.1. Partitions for the set U of 19 Wang tiles. From left to right, the
partition Y for the right color, Z for the top color, Re1

U (Y) for the left color and
Re2
U (Z) for the bottom color. Their refinement is the partition PU where each

part is associated with a Wang tile.26 S. LABBÉ
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Figure 10.2. The set U = {u0, . . . , u18} of 19 Wang tiles. Each index i ∈
{0, ..., 18} written in the middle of a tile corresponds to a tile ui.

we have XPU ,RU ⊆ ΩU . It was proved in [Lab19a] that ΩU is minimal. Thus XPU ,RU =
ΩU .
(ii) The atom Pu0 is invariant only under the trivial translation. Therefore, from

Lemma 3.4, PU gives a symbolic representation of (T2,Z2, RU). Moreover XPU ,RU =
ΩU is a shift of finite type. Therefore, the conditions of Definition 3.2 are satisfied
and PU is a Markov partition for the dynamical system (T2,Z2, RU).
(iii) From Proposition 5.1, there exists a factor map fU from (XPU ,RU ,Z2, σ) to

(T2,Z2, RU) and from Corollary 5.3, (T2,Z2, RU) is the maximal equicontinuous
factor of (XPU ,RU ,Z2, σ).
(iv) In Proposition 5.1, we proved that fU is one-to-one on T2 \∆PU ,RU . Suppose

that x ∈ ∆PU ,RU . We have card(f−1
U (x)) > 2. If card(f−1

U (x)) > 2, then we may
show that there exists n ∈ Z2 such that x = RnU(0). If x = RnU(0) for some n ∈ Z2,
then the set f−1

U (x) contains 8 different configurations of the form SymbRepvU(0) for
some v ∈ R2 \ ΘPU where ΘPU = R · {(1, 0), (0, 1), (1,−1), (1,−ϕ)}. If x ∈ ∆PU ,RU
but not in the orbit of 0 under RU , then card(f−1

U (x)) = 2. We conclude that
{card(f−1

U (x)) | x ∈ T2} = {1, 2, 8}.
(v) We have that λ(∂P ) = 0 for each atom P ∈ PU where λ is the Haar measure

on T2. The result follows from Proposition 6.1. �

11. Two non-examples

In this section, we present two “non-examples”. The motivation for presenting
those two “non-examples” is to illustrate that properties of partitions presented in
the previous sections are not shared by “randomly” chosen partitions of T2 and
Z2-rotations on T2.

Example 3

Letα,β ∈ R2. On the torus T2 = R2/Z2, we consider the Z2-rotation R : Z2×T2 →
T2 defined by

Rn(x) := R(n,x) = x+ n1α+ n2β

for every n = (n1, n2) ∈ Z2. Let Y = {YA} and Z = {ZB} be trivial partitions with
YA = ZB = T2. The refined partition is P = Y ∧Z ∧Re1(Y)∧Re2(Z) = {P(A,B,A,B)}
where P(A,B,A,B) = T2. The set of Wang tiles T = {τ} is a singleton set with
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Figure 10.2. The set U = {u0, . . . , u18} of 19 Wang tiles. Each index i ∈
{0, . . . , 18} written in the middle of a tile corresponds to a tile ui.

Proof of Theorem 1.2. —
(i) The dynamical system (T2,Z2, RU) is minimal. Since Re1

U and Re2
U are lin-

early independent irrational rotations, we have that RU is a free Z2-action. Thus
from Lemma 5.2, XPU ,RU is minimal and aperiodic. From Proposition 8.1, we have
XPU ,RU ⊆ ΩU . It was proved in [Lab19a] that ΩU is minimal. Thus XPU ,RU = ΩU .
(ii) The atom Pu0 is invariant only under the trivial translation. Therefore, from

Lemma 3.4, PU gives a symbolic representation of (T2,Z2, RU). Moreover XPU ,RU
= ΩU is a shift of finite type. Therefore, the conditions of Definition 3.2 are satisfied
and PU is a Markov partition for the dynamical system (T2,Z2, RU).
(iii) From Proposition 5.1, there exists a factor map fU from (XPU ,RU ,Z2, σ) to

(T2,Z2, RU) and from Corollary 5.3, (T2,Z2, RU) is the maximal equicontinuous
factor of (XPU ,RU ,Z2, σ).
(iv) In Proposition 5.1, we proved that fU is one-to-one on T2 \∆PU ,RU . Suppose

that x ∈ ∆PU ,RU . We have card(f−1
U (x)) > 2. If card(f−1

U (x)) > 2, then we may
show that there exists n ∈ Z2 such that x = Rn

U(0). If x = Rn
U(0) for some n ∈ Z2,

then the set f−1
U (x) contains 8 different configurations of the form SymbRepv

U(0) for
some v ∈ R2 \ ΘPU where ΘPU = R · {(1, 0), (0, 1), (1,−1), (1,−ϕ)}. If x ∈ ∆PU ,RU
but not in the orbit of 0 under RU , then card(f−1

U (x)) = 2. We conclude that
{card(f−1

U (x)) | x ∈ T2} = {1, 2, 8}.
(v) We have that λ(∂P ) = 0 for each atom P ∈ PU where λ is the Haar measure

on T2. The result follows from Proposition 6.1. �
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11. Two non-examples

In this section, we present two “non-examples”. The motivation for presenting
them is to illustrate that properties of partitions presented in the previous sections
are not shared by “randomly” chosen partitions of T2 and Z2-rotations on T2.

Example 3

Let α, β ∈ R2. On the torus T2 = R2/Z2, we consider the Z2-rotation R : Z2 × T2

→ T2 defined by
Rn(x) := R(n,x) = x + n1α + n2β

for every n = (n1, n2) ∈ Z2. Let Y = {YA} and Z = {ZB} be trivial partitions with
YA = ZB = T2. The refined partition is P = Y∧Z∧Re1(Y)∧Re2(Z) = {P(A,B,A,B)}
where P(A,B,A,B) = T2. The set of Wang tiles T = {τ} is a singleton set with
τ = (A, B, A, B). The associated color partitions and the tile coding partition are
shown in Figure 11.1.Markov partitions for toral Z2-rotations featuring Jeandel-Rao Wang shift and model sets 27

Y Z Re1(Y) Re2(Z) P

0
0

A

1

A

1
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0

τ = A
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A
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1
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A
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Figure 11.1. Partitions for the Example 3. From left to right, the partition Y
for the right color, Z for the top color, Re1(Y) for the left color and Re2(Z) for
the bottom color. Their refinement is the trivial partition P whose single atom
is associated with the Wang tile τ .

τ = (A,B,A,B). The associated color partitions and the tile coding partition are
shown in Figure 11.1.
The map SymbRep : T2 → ΩT is clearly not one-to-one, but it is onto.
Lemma 11.1. — We have XP,R = ΩT , but the partition P does not give a

symbolic representation of (T2,Z2, R).
Proof. — The set of Wang tiles T = {τ} is a singleton set with τ = (A,B,A,B).

Therefore ΩT contains a unique configuration corresponding to the constant map
(m,n) 7→ τ for all m,n ∈ Z. The fact that XP,R ⊆ ΩT follows from Proposi-
tion 8.1. The unique constant configuration in ΩT can be obtained as SymbRep(x) =
ConfigP,Rx for any x ∈ T2. Therefore SymbRep is onto.
The partition P does not give a symbolic representation of (T2,Z2, R) as every

point of T2 is associated with the same configuration. �

Example 4

Let ϕ = 1+
√

5
2 . On the torus T2 = R2/Z2, we consider the Z2-rotation R : Z2×T2 →

T2 defined by
Rn(x) := R(n,x) = x+ ϕn

for every n ∈ Z2. Let I = {A,B} and J = {C,D} be sets of colors. We consider
the partitions Y = {YA, YB} and Z = {ZC , ZD} shown in Figure 11.2 involving
slopes 1 and −1 in the partition of T2 into polygons. The refined partition is P =
Y ∧ Z ∧ Re1(Y) ∧ Re2(Z) = {Pτ}τ∈T where T is the set of Wang tiles made of 20
tiles shown in Figure 11.3.
Lemma 11.2. — The partition P gives a symbolic representation of (T2,Z2, R)

and (T2,Z2, R) is the maximal equicontinuous factor of (XP,R,Z2, σ). We have that
XP,R is a strictly ergodic and aperiodic subshift of ΩT . But the Wang shift ΩT
contains a periodic configuration so XP,R ( ΩT .
Proof. — The dynamical system (T2,Z2, R) is minimal. The atom Pτ0 is invari-

ant only under the trivial translation. Therefore, from Lemma 3.4, P gives a sym-
bolic representation of (T2,Z2, R). From Proposition 5.1 , there exists a factor map
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Figure 11.1. Partitions for the Example 3. From left to right, the partition Y
for the right color, Z for the top color, Re1(Y) for the left color and Re2(Z) for
the bottom color. Their refinement is the trivial partition P whose single atom
is associated with the Wang tile τ .

The map SymbRep : T2 → ΩT is clearly not one-to-one, but it is onto.

Lemma 11.1. — We have XP,R = ΩT , but the partition P does not give a
symbolic representation of (T2,Z2, R).

Proof. — The set of Wang tiles T = {τ} is a singleton set with τ = (A,B,A,B).
Therefore ΩT contains a unique configuration corresponding to the constant map
(m,n) 7→ τ for all m,n ∈ Z. The fact that XP,R ⊆ ΩT follows from Proposi-
tion 8.1. The unique constant configuration in ΩT can be obtained as SymbRep(x)
= ConfigP,Rx for any x ∈ T2. Therefore SymbRep is onto.
The partition P does not give a symbolic representation of (T2,Z2, R) as every

point of T2 is associated with the same configuration. �
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Example 4

Let ϕ = 1+
√

5
2 . On the torus T2 = R2/Z2, we consider the Z2-rotation R : Z2 × T2

→ T2 defined by
Rn(x) := R(n,x) = x + ϕn

for every n ∈ Z2. Let I = {A,B} and J = {C,D} be sets of colors. We con-
sider the partitions Y = {YA, YB} and Z = {ZC , ZD} shown in Figure 11.2 involv-
ing slopes 1 and −1 in the partition of T2 into polygons. The refined partition is
P = Y ∧ Z ∧Re1(Y) ∧Re2(Z) = {Pτ}τ∈T where T is the set of Wang tiles made of
20 tiles shown in Figure 11.3.
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Figure 11.2. Partitions for the Example 4. From left to right, the partition Y for
the right color, Z for the top color, Re1(Y) for the left color and Re2(Z) for the
bottom color. Their refinement is the partition P where each part is associated
with a Wang tile.
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Figure 11.2. Partitions for the Example 4. From left to right, the partition Y for
the right color, Z for the top color, Re1(Y) for the left color and Re2(Z) for the
bottom color. Their refinement is the partition P where each part is associated
with a Wang tile.
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Figure 11.3. The set of 20 tiles T = {τ0, . . . , τ19}. Each index i ∈ {0, ..., 19}
written in the middle of a tile corresponds to a tile τi. The Wang shift ΩT
contains periodic configurations.

from (XP,R,Z2, σ) to (T2,Z2, R) and from Corollary 5.3, (T2,Z2, R) is the maximal
equicontinuous factor of (XP,R,Z2, σ).
Since Re1 and Re2 are linearly independent irrational rotations, we have that R

is a free Z2-action. Thus from Lemma 5.2, XP,R is minimal and aperiodic. From
Proposition 6.1, XP,R is uniquely ergodic thus strictly ergodic. From Proposition 8.1,
we have XP,R ⊆ ΩT . The set of Wang tiles T contains the tile τ0 = (A,C,A,C). Let
w be the constant map (m,n) 7→ τ0 for all m,n ∈ Z. The configuration w is valid
and periodic, thus w ∈ ΩT \ XP,R. �
The two examples presented in this section show that we can not expect Theo-

rem 1.1 and Theorem 1.2 to hold for any given toral partition and Z2-rotation. The
characterization of toral partitions and Z2-rotations for which such results hold is
an open question.

Part 3. Wang shifts as model sets of cut and project schemes
This part is divided into three sections. Its goal is to show that occurrences of

patterns in a minimal subshift of the Jeandel-Rao Wang shift and in the Wang shift
ΩU are obtained as 4-to-2 cut and project schemes.
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Figure 11.3. The set of 20 tiles T = {τ0, . . . , τ19}. Each index i ∈ {0, . . . , 19}
written in the middle of a tile corresponds to a tile τi. The Wang shift ΩT contains
periodic configurations.

Lemma 11.2. — The partition P gives a symbolic representation of (T2,Z2, R)
and (T2,Z2, R) is the maximal equicontinuous factor of (XP,R,Z2, σ). We have that
XP,R is a strictly ergodic and aperiodic subshift of ΩT . But the Wang shift ΩT
contains a periodic configuration so XP,R ( ΩT .

Proof. — The dynamical system (T2,Z2, R) is minimal. The atom Pτ0 is invari-
ant only under the trivial translation. Therefore, from Lemma 3.4, P gives a sym-
bolic representation of (T2,Z2, R). From Proposition 5.1, there exists a factor map
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from (XP,R,Z2, σ) to (T2,Z2, R) and from Corollary 5.3, (T2,Z2, R) is the maximal
equicontinuous factor of (XP,R,Z2, σ).
Since Re1 and Re2 are linearly independent irrational rotations, we have that R

is a free Z2-action. Thus from Lemma 5.2, XP,R is minimal and aperiodic. From
Proposition 6.1, XP,R is uniquely ergodic thus strictly ergodic. From Proposition 8.1,
we have XP,R ⊆ ΩT . The set of Wang tiles T contains the tile τ0 = (A,C,A,C). Let
w be the constant map (m,n) 7→ τ0 for all m,n ∈ Z. The configuration w is valid
and periodic, thus w ∈ ΩT \ XP,R. �
The two examples presented in this section show that we can not expect Theo-

rem 1.1 and Theorem 1.2 to hold for any given toral partition and Z2-rotation. The
characterization of toral partitions and Z2-rotations for which such results hold is
an open question.

Part 3. Wang shifts as model sets of cut and project schemes
This part is divided into three sections. Its goal is to show that occurrences of

patterns in a minimal subshift of the Jeandel-Rao Wang shift and in the Wang shift
ΩU are obtained as 4-to-2 cut and project schemes.

12. Cut and project schemes and model sets

In [BHP97], the torus parametrization of three tiling dynamical systems was given.
We want to do similarly in the case of symbolic dynamical systems and in particular
in the case of Wang shifts. We recall from the more recent book [BG13, Section 7.2]
the definition of cut and project scheme and we reuse their notation.

Definition 12.1. — A cut and project scheme (CPS) is a triple (Rd, H,L) with
a (compactly generated) locally compact Abelian group (LCAG) H, a lattice L in
Rd ×H and the two natural projections π : Rd ×H → Rd and πint : Rd ×H → H,
subject to the conditions that π|L is injective and that πint(L) is dense in H.

A CPS is called Euclidean when H = Rm for some m ∈ N. A general CPS is
summarized in the following diagram.

Rd Rd ×H H

π(L) L πint(L)

L L?

π πint

⊂ ⊂

1−1

⊂ dense

?

The image is denoted L = π(L). Since for a given CPS, π is a bijection between L
and L, there is a well-defined mapping ? : L→ H given by

x 7→ x? := πint
(
(π|L)−1(x)

)
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where (π|L)−1(x) is the unique point in the set L ∩ π−1(x). This mapping is called
the star map of the CPS. The ?-image of L is denoted by L?. The set L can be
viewed as a diagonal embedding of L as

L = {(x, x?) | x ∈ L}.
For a given CPS (Rd, H,L) and a (general) set A ⊂ H,

f(A) := {x ∈ L | x? ∈ A}
is the projection set within the CPS. The set A is called its acceptance set, window
or coding set.
Definition 12.2. — If A ⊂ H is a relatively compact set with non-empty interior,

the projection set f(A), or any translate t+f(A) with t ∈ Rd, is called a model set.
A model set is termed regular when µH(∂A) = 0, where µH is the Haar measure

of H. If L? ∩ ∂A = ∅, the model set is called generic. If the window is not in a
generic position (meaning that L? ∩ ∂A 6= ∅), the corresponding model set is called
singular.
The shape of the acceptance set A is important and implies structure on the

model set Λ = t+f(A). For example, if A is relatively compact, Λ has finite local
complexity and thus also is uniformly discrete; if A◦ 6= ∅, Λ is relatively dense. If Λ
is a model set, it is also a Meyer set, [BG13, Proposition 7.5]. For regular model set
Λ = f(A) with a compact window A = A◦, it is known [BG13, Theorem 7.2] that
the points {x? | x ∈ Λ} are uniformly distributed in A.
Linear repetitivity of model sets is an important notion. Recall that a Delone set

Y ⊆ Rd is called linearly repetitive if there exists a constant C > 0 such that, for any
r > 1, every patch of size r in Y occurs in every ball of diameter Cr in Rd. It was
shown by Lagarias and Pleasants in [LP03, Theorem 6.1] that linear repetitivity of a
Delone set implies the existence of strict uniform patch frequencies, equivalently the
associated dynamical system on the hull of the point set is strictly ergodic (minimal
and uniquely ergodic). As a consequence [LP03, Corollary 6.1], a linearly repetitive
Delone set X in Rn has a unique autocorrelation measure γX . This measure γX
is a pure discrete measure supported on X − X. In particular X is diffractive. A
characterization of linearly repetitive model sets f(A) for cubical acceptance set A
was recently proved by Haynes, Koivusalo and Walton [HKW18].

Polygon exchange transformations

We end this section with a concept that will be useful for the next two Sections 13
and 14. Suppose that (T,Z2, R) is a dynamical system where R is a Z2-rotation on T.
The rotations Re1 and Re2 can be seen as polygon exchange transformations [Sch14]
on a fundamental domain of T.
Definition 12.3. — [AKY19] Let X be a polygon together with two topological

partitions of X into polygons

X =
N⋃

k=0
Pk =

N⋃

k=0
Qk
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such that for each k, Pk and Qk are translation equivalent, i.e., there exists vk ∈ R2

such that Pk = Qk + vk. A polygon exchange transformation (PET) is the piecewise
translation on X defined for x ∈ Pk by T (x) = x + vk. The map is not defined for
points x ∈ ∪Nk=0∂Pk.

13. A model set for the Jeandel-Rao Wang shift

We want to describe the positions Q ⊆ Z2 of patterns in configurations belong-
ing to XP0,R0 ( Ω0. Because of that, in the construction of a proper cut and
project scheme, we need to be careful in the choice of the locally compact Abelian
group H so that π|L is an injective map. This is why we introduce the submodule
Λ = 〈(1,−1, 0, 0), (0, 0, 1,−1)〉Z and define the projections π and πint on R4/Λ as:

π : R4/Λ → R2

(x1, x2, x3, x4) 7→ (x1 + x2, x3 + x4)

and

πint : R4/Λ → R2/Γ0

(x1, x2, x3, x4) 7→
(
x1 −

1
ϕ
x2 + 1

ϕ
x4, x3 − (ϕ+ 2)x4

)

where ϕ = 1+
√

5
2 . The product π × πint : R4/Λ → R2 × R2/Γ0 of the projections is

one-to-one and onto. Therefore, the projections define a Euclidean cut and project
scheme with d = 2 and H = R2/Γ0 on R4/Λ ' R2 ×H.
Recall that we proved in Theorem 1.1 that XP0,R0 ( Ω0 and that there exists a

factor map f0 from (XP0,R0 ,Z2, σ) to (R2/Γ0,Z2, R0). Therefore any Jeandel–Rao
configuration w ∈ XP0,R0 ( Ω0 can be qualified as a singular or generic according to
whether f0(w) is in the set ∆P0,R0 ⊂ R2/Γ0 or not.
Proof of Theorem 1.3. — Let w ∈ XP0,R0 . Let x = (r, s) = r′(ϕ, 0) + s′(1, ϕ + 3)

= f0(w) ∈ R2/Γ0. We consider the lattice L = Z4 + (r′+ s′,−r′− s′, s′,−s′) ⊂ R4/Λ.
We have that π|L is injective. Also L = π(L) = Z2 since π(r′+s′,−r′−s′, s′,−s′) = 0.
We also have that πint(L) is dense in H = R2/Γ0. Also πint(r′ + s′,−r′ − s′, s′,−s′)
= (r, s).
Recall that the Z2-rotation R0 is defined on the torus R2/Γ0 by Rn

0 (x) = x + n
for every n ∈ Z2. The maps (R0)e1 and (R0)e2 can be seen as polygon exchange
transformations on the fundamental domain W = [0, ϕ) × [0, ϕ + 3) of R2/Γ0 (see
Figure 13.1):

(R0)e1(x) =




x + va if x ∈ Pa,
x + vb if x ∈ Pb,

and (R0)e2(x) =





x + vc if x ∈ Pc,
x + vd if x ∈ Pd,
x + ve if x ∈ Pe.

The translations written in terms of the base of Z2 and Γ0 and vice versa are:
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where ϕ = 1+
√

5
2 . The product π × πint : R4/Λ → R2 × R2/Γ0 of the projections is

one-to-one and onto. Therefore, the projections define a Euclidean cut and project
scheme with d = 2 and H = R2/Γ0 on R4/Λ ' R2 ×H.
Recall that we proved in Theorem 1.1 that XP0,R0 ( Ω0 and that there exists a

factor map f0 from (XP0,R0 ,Z2, σ) to (R2/Γ0,Z2, R0). Therefore any Jeandel-Rao
configuration w ∈ XP0,R0 ( Ω0 can be qualified as a singular or generic according to
whether f0(w) is in the set ∆P0,R0 ⊂ R2/Γ0 or not.

Proof of Theorem 1.3. — Let w ∈ XP0,R0 . Let x = (r, s) = r′(ϕ, 0) + s′(1, ϕ+ 3) =
f0(w) ∈ R2/Γ0. We consider the lattice L = Z4+(r′+s′,−r′−s′, s′,−s′) ⊂ R4/Λ. We
have that π|L is injective. Also L = π(L) = Z2 since π(r′+s′,−r′−s′, s′,−s′) = 0. We
also have that πint(L) is dense in H = R2/Γ0. Also πint(r′+s′,−r′−s′, s′,−s′) = (r, s).
Recall that the Z2-rotation R0 is defined on the torus R2/Γ0 by Rn0 (x) = x + n

for every n ∈ Z2. The maps (R0)e1 and (R0)e2 can be seen as polygon exchange
transformations on the fundamental domain W = [0, ϕ) × [0, ϕ + 3) of R2/Γ0 (see
Figure 13.1):

(R0)e1(x) =



x+ va if x ∈ Pa,
x+ vb if x ∈ Pb,

and (R0)e2(x) =





x+ vc if x ∈ Pc,
x+ vd if x ∈ Pd,
x+ ve if x ∈ Pe.

The translations written in terms of the base of Z2 and Γ0 and vice versa are:
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Figure 13.1. The maps (R0)e1 and (R0)e2 can be seen as polygon exchange
transformations on the fundamental domain W = [0, ϕ)× [0, ϕ+ 3) of R2/Γ0.
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Figure 13.1. The maps (R0)e1 and (R0)e2 can be seen as polygon exchange
transformations on the fundamental domain W = [0, ϕ)× [0, ϕ+ 3) of R2/Γ0.

va = e1 e1 = va,

vb = e1 − (ϕ, 0) e2 = vc,

vc = e2 (ϕ, 0) = va − vb,
vd = e2 − (1, ϕ+ 3) + (ϕ, 0) (1, ϕ+ 3) = va − vb + vc − vd,
ve = e2 − (1, ϕ+ 3).

Since W is a fundamental domain for Γ0 = 〈(ϕ, 0), (1, ϕ + 3)〉Z, by definition for
every x ∈ R2, there exist unique k, ` ∈ Z such that x + k(ϕ, 0) + `(1, ϕ + 3) ∈ W .
Therefore, for every (m,n) ∈ Z2 there exist unique k, ` ∈ Z such that the following
holds

R
(m,n)
0 (r, s) = (r, s) + (m,n) mod Γ0

= r′(ϕ, 0) + s′(1, ϕ+ 3) +me1 + ne2 + k(ϕ, 0) + `(1, ϕ+ 3) ∈ W
= me1 + ne2 + (r′ + k)(ϕ, 0) + (s′ + `)(1, ϕ+ 3)
= mva + nvc + (r′ + k)(va − vb) + (s′ + `)(va − vb + vc − vd)
= (m+ r′ + k + s′ + `)va − (r′ + k + s′ + `)vb

+ (n+ s′ + `)vc − (s′ + `)vd
= πint

(
(m+ r′ + k + s′ + `,−r′ − k − s′ − `,

n+ s′ + `,−s′ − `) + Λ
)
∈ πint(L).
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Notice that the projection into the physical space is
π
(
(m+ r′ + k + s′ + `,−r′ − k − s′ − `, n+ s′ + `,−s′ − `) + Λ

)
= (m,n).

Thus
(m+ r′ + k + s′ + `,−r′ − k − s′ − `, n+ s′ + `,−s′ − `) + Λ = (π|L)−1(m,n)

so that
(m,n)? = πint

(
(π|L)−1(m,n)

)

= πint
(
(m+ r′ + k + s′ + `,−r′ − k − s′ − `, n+ s′ + `,−s′ − `) + Λ

)

= R
(m,n)
0 (r, s).

Let p = πS(w) ∈ T S0 be a pattern occurring in the configuration w for some subset
S ⊂ Z2. Let [p] be the cylinder associated with the pattern p and A = f0([p]) ⊂ W
be the acceptance set. The set A is a polygon by construction, see Equation (6.1).
Therefore the Lebesgue measure of ∂A is zero. Assume for now that w is a generic
configuration. Since R(m,n)

0 (r, s) = (m,n)? /∈ ∂A for every m,n ∈ Z, the set Q ⊆ Z2

of occurrences of p in w is
Q =

{
(m,n) ∈ Z2

∣∣∣R(m,n)
0 (r, s) ∈ A

}
= {(m,n) ∈ L | (m,n)? ∈ A} = f(A)

which is a regular and generic model set. If w is a singular configuration, then
w = SymbRepv

0 (r, s) for some v ∈ R2 \ ΘP0 . If A = f0([p]) ⊂ W , then we take
A′ = limε→0 A ∩ (A− εv) as acceptance set and we have

Q =
{

(m,n) ∈ Z2
∣∣∣R(m,n)

0 (r, s) ∈ A′
}

= {(m,n) ∈ L | (m,n)? ∈ A′} = f(A′)
which is a regular and singular model set. �

14. A model set for the Wang shift ΩU defined by 19 tiles

As in the previous section we use the submodule Λ = 〈(1,−1, 0, 0), (0, 0, 1,−1)〉Z
and define the projections on R4/Λ as:

π : R4/Λ → R2

(x1, x2, x3, x4) 7→ (x1 + x2, x3 + x4)
and

πint : R4/Λ → T2

(x1, x2, x3, x4) 7→
(

1
ϕ2x1 −

1
ϕ
x2,

1
ϕ2x3 −

1
ϕ
x4

)

where ϕ = 1+
√

5
2 . The product π×πint : R4/Λ→ R2×T2 of the projections is one-to-

one and onto so we may identify the domain of the projections as R4/Λ ' R2 × T2,
in agreement with the definition of cut and project scheme.
Note that if L = Z4 ⊂ R4/Λ, then π|L is injective and L = π(L) = Z2. If the

acceptance set is the whole cubical window A = T2, we obtain a description of the
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positions of patterns in a configuration as a model set, that is, Z2 = f(A). In the
result below, noncubical acceptance sets A ⊂ T2 are used to describe the positions
of patterns occurring in configurations.
Recall that we proved among other things in Theorem 1.2 that XPU ,RU = ΩU and

that there exists a factor map fU from (XPU ,RU ,Z2, σ) to (T2,Z2, RU). Therefore any
configuration w ∈ ΩU can be qualified as singular or generic according to whether
fU(w) is in the set ∆PU ,RU ⊂ T2 or not.

Theorem 14.1. — Let U be the self-similar set of Wang tiles shown in Figure 10.2.
There exists a cut and project scheme such that for every configuration w ∈ ΩU , the
set Q ⊆ Z2 of occurrences of a pattern in w is a regular model set. If w is a generic
(resp. singular) configuration, then Q is a generic (resp. singular) model set.

Proof. — Let w ∈ ΩU be a valid configuration and let x = (r, s) = fU(w) ∈ T2.
We consider L = Z4 + (r,−r, s,−s) ⊂ R4/Λ. We have that π|L is injective and
L = π(L) = Z2. We also have that πint(L) is dense in H = T2. Also πint(r,−r, s,−s)
= (r, s).
Since π is a bijection between L and L, there is a well-defined mapping ? : L→ H

given by
x 7→ x? := πint

(
(π|L)−1(x)

)

where (π|L)−1(x) is the unique point in the set L ∩ π−1(x).
Recall that the Z2-rotation RU is defined on the torus T2 by Rn

U(x) = x + ϕ−2n
for every n ∈ Z2. The maps (RU)e1 and (RU)e2 can be seen as polygon exchange
transformations on the fundamental domain W = [0, 1)2 of T2:

(RU)e1(x) =




x + va if x ∈ Pa,
x + vb if x ∈ Pb,

and (RU)e2(x) =




x + vc if x ∈ Pc,
x + vd if x ∈ Pd.

with va = (ϕ−2, 0), vb = (−ϕ−1, 0), vc = (0, ϕ−2) and vd = (0,−ϕ−1), see Figure 14.1.34 S. LABBÉ
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Figure 14.1. The maps (RU)e1 and (RU)e2 can be seen as polygon exchange
transformations on the fundamental domain W = [0, 1)2 of T2.

with va = (ϕ−2, 0), vb = (−ϕ−1, 0), vc = (0, ϕ−2) and vd = (0,−ϕ−1), see Figure 14.1.
Notice that the base of Z2 can be written in terms of the translations as

e1 = va − vb and e2 = vc − vd.
Since W is a fundamental domain for Z2 = 〈e1, e2〉Z, for every x ∈ R2 there exist
unique k, ` ∈ Z such that x+ ke1 + `e2 ∈ W . Therefore, for every (m,n) ∈ Z2 there
exist unique k, ` ∈ Z such that the following holds

R
(m,n)
U (r, s) = (r, s) + 1

ϕ2 (m,n) mod Z2

= re1 + se2 +mva + nvc mod Z2

= re1 + se2 +mva + nvc + ke1 + `e2 ∈ W
= mva + nvc + (r + k)(va − vb) + (s+ `)(vc − vd)
= (m+ r + k)va − (r + k)vb + (n+ s+ `)vc − (s+ `)vd
= πint((m+ r + k,−r − k, n+ s+ `,−s− `) + Λ) ∈ πint(L).

Notice that the projection into the physical space is

π((m+ r + k,−r − k, n+ s+ `,−s− `) + Λ) = (m,n).

Thus
(m+ r + k,−r − k, n+ s+ `,−s− `) + Λ = (π|L)−1(m,n)

so that

(m,n)? = πint
(
(π|L)−1(m,n)

)

= πint ((m+ r + k,−r − k, n+ s+ `,−s− `) + Λ)

= R
(m,n)
U (r, s) = ({r + ϕm}, {s+ ϕn})

where {x} = x− bxc is the fractional part of x.
Let p = πS(w) ∈ US be a pattern occurring in the configuration w for some subset

S ⊂ Z2. Let [p] be the cylinder associated with the pattern p and A = fU([p]) ⊂ W
be the acceptance set. The set A is a polygon by construction, see Equation (6.1).
Therefore the Lebesgue measure of ∂A is zero. Assume for now that w is a generic
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Figure 14.1. The maps (RU)e1 and (RU)e2 can be seen as polygon exchange
transformations on the fundamental domain W = [0, 1)2 of T2.

Notice that the base of Z2 can be written in terms of the translations as

e1 = va − vb and e2 = vc − vd.
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Since W is a fundamental domain for Z2 = 〈e1, e2〉Z, for every x ∈ R2 there exist
unique k, ` ∈ Z such that x + ke1 + `e2 ∈ W . Therefore, for every (m,n) ∈ Z2 there
exist unique k, ` ∈ Z such that the following holds

R
(m,n)
U (r, s) = (r, s) + 1

ϕ2 (m,n) mod Z2

= re1 + se2 +mva + nvc mod Z2

= re1 + se2 +mva + nvc + ke1 + `e2 ∈ W
= mva + nvc + (r + k)(va − vb) + (s+ `)(vc − vd)
= (m+ r + k)va − (r + k)vb + (n+ s+ `)vc − (s+ `)vd
= πint

(
(m+ r + k,−r − k, n+ s+ `,−s− `) + Λ

)
∈ πint(L).

Notice that the projection into the physical space is

π
(
(m+ r + k,−r − k, n+ s+ `,−s− `) + Λ

)
= (m,n).

Thus
(m+ r + k,−r − k, n+ s+ `,−s− `) + Λ = (π|L)−1(m,n)

so that
(m,n)? = πint

(
(π|L)−1(m,n)

)

= πint
(
(m+ r + k,−r − k, n+ s+ `,−s− `) + Λ

)

= R
(m,n)
U (r, s) =

(
{r + ϕm}, {s+ ϕn}

)

where {x} = x− bxc is the fractional part of x.
Let p = πS(w) ∈ US be a pattern occurring in the configuration w for some subset

S ⊂ Z2. Let [p] be the cylinder associated with the pattern p and A = fU([p]) ⊂ W
be the acceptance set. The set A is a polygon by construction, see Equation (6.1).
Therefore the Lebesgue measure of ∂A is zero. Assume for now that w is a generic
configuration. Since R(m,n)

U (r, s) = (m,n)? /∈ ∂A for every m,n ∈ Z, the set Q ⊆ Z2

of occurrences of p in w is

Q =
{

(m,n) ∈ Z2
∣∣∣R(m,n)
U (r, s) ∈ A

}
= {(m,n) ∈ L | (m,n)? ∈ A} = f(A)

which is a regular and generic model set. If w is a singular configuration, then
w = SymbRepv

U(r, s) for some v ∈ R2 \ ΘPU . If A = fU([p]) ⊂ W , then we take
A′ = limε→0 A ∩ (A− εv) as acceptance set and we have

Q =
{

(m,n) ∈ Z2
∣∣∣R(m,n)
U (r, s) ∈ A′

}
= {(m,n) ∈ L | (m,n)? ∈ A′} = f(A′)

which is a regular and singular model set. �
In [Lab19a], ΩU was proved to be self-similar being invariant under the application

of an expansive and primitive substitution. It follows that ΩU is linearly repetitive.
Based on [HKW18], an alternate proof of linear repetitivity of ΩU could be obtained
now that ΩU is described as a model set. Some more work has to be done as the
characterization of linearly repetitive model sets provided in [HKW18] is stated for
cubical windows only.
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In the present work, we made the choice of uniform 1× 1 size for Wang tiles but
we can make the following remark on the use of other rectangular shapes and stone
inflations.
Remark 14.2. — To use the natural size for Wang tiles in U as stone inflation

deduced from its self-similarity, see [Lab19a, Section 7], one must use
π′ : R4 → R2

(x1, x2, x3, x4) 7→ (x1 + 1
ϕ
x2, x3 + 1

ϕ
x4).

as projection into the physical space. In this case, π′|L is injective making it a proper
cut and project scheme. Another way to construct the cut and project scheme is to
use the Minkowski embedding of Z[

√
5]× Z[

√
5]

L =
{

(x, y, x?, y?)
∣∣∣x, y ∈ Z

[√
5
]}

where the star map ? corresponds to the algebraic conjugation (
√

5)? = −
√

5 in the
quadratic field Q(

√
5), see [BG13, Section 7]. In this setup, the natural window to

be used should be W = [−1, ϕ− 1)× [−1, ϕ− 1) instead of [0, 1)× [0, 1) following
known construction in the Fibonacci case. We do not provide this construction here.

Appendix. A DIY Puzzle to illustrate the results

We encode the 11 Jeandel–Rao tiles into geometrical shapes, see Figure 1.2, where
each integer color in {0, 1, 2, 3, 4} is replaced by an equal number of triangular or
circular bumps. Print one or more copies of this page and cut each of the 25 tiles
shown in Figure A.1 with scissors. Use the tiles and the Universal solver for Jeandel–
Rao Wang shift shown in Figure A.2 to construct every pattern seen in the proper
minimal subshift XP0,R0 ( Ω0 of the Jeandel–Rao Wang shift.
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Figure A.1. A 5 × 5 pattern with Jeandel–Rao tiles ready to laser cut. Tiles
should have 3cm size when printed in A4 format.

TOME 4 (2021)



320 Sébastien LABBÉ

6 6 6

7
5

4

2 10

87 3

9 9 9

1 1 1

0 0 0

6 6 6

7
5

4

2 10

87 3

9 9 9

1 1 1

0 0 0

6 6 6

7
5

4

2 10

87 3

9 9 9

1 1 1

0 0 0

6 6 6

7
5

4

2 10

87 3

9 9 9

1 1 1

0 0 0

6 6 6

7
5

4

2 10

87 3

9 9 9

1 1 1

0 0 0

6 6 6

7
5

4

2 10

87 3

9 9 9

1 1 1

0 0 0

6 6 6

7
5

4

2 10

87 3

9 9 9

1 1 1

0 0 0

6 6 6

7
5

4

2 10

87 3

9 9 9

1 1 1

0 0 0

6 6 6

7
5

4

2 10

87 3

9 9 9

1 1 1

0 0 0

6 6 6

7
5

4

2 10

87 3

9 9 9

1 1 1

0 0 0

6 6 6

7
5

4

2 10

87 3

9 9 9

1 1 1

0 0 0

6 6 6

7
5

4

2 10

87 3

9 9 9

1 1 1

0 0 0

6 6 6

7
5

4

2 10

87 3

9 9 9

1 1 1

0 0 0

6 6 6

7
5

4

2 10

87 3

9 9 9

1 1 1

0 0 0

6 6 6

7
5

4

2 10

87 3

9 9 9

1 1 1

0 0 0

6 6 6

7
5

4

2 10

87 3

9 9 9

1 1 1

0 0 0

6 6 6

7
5

4

2 10

87 3

9 9 9

1 1 1

0 0 0

6 6 6

7
5

4

2 10

87 3

9 9 9

1 1 1

0 0 0

Figure A.2. The Universal solver for Jeandel–Rao Wang shift. Any pattern in
the minimal subshift of Jeandel–Rao Wang shift is the coding of the orbit of
some starting point by the action of horizontal and vertical translations by 1 unit
(3 cm when printed in A4 format).
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